WO2017200007A1 - 固体撮像装置およびイメージセンサー - Google Patents

固体撮像装置およびイメージセンサー Download PDF

Info

Publication number
WO2017200007A1
WO2017200007A1 PCT/JP2017/018537 JP2017018537W WO2017200007A1 WO 2017200007 A1 WO2017200007 A1 WO 2017200007A1 JP 2017018537 W JP2017018537 W JP 2017018537W WO 2017200007 A1 WO2017200007 A1 WO 2017200007A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photoelectric conversion
conversion element
solid
filter
Prior art date
Application number
PCT/JP2017/018537
Other languages
English (en)
French (fr)
Inventor
正輝 大野
雅俊 児玉
直幸 時田
亜紀子 藤内
恵右 仲村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/092,133 priority Critical patent/US10991737B2/en
Priority to CN201780029635.6A priority patent/CN109196848B/zh
Priority to DE112017002541.9T priority patent/DE112017002541T5/de
Priority to JP2017559717A priority patent/JP6355862B2/ja
Publication of WO2017200007A1 publication Critical patent/WO2017200007A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/14652Multispectral infrared imagers, having a stacked pixel-element structure, e.g. npn, npnpn or MQW structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only

Definitions

  • the present invention relates to a solid-state imaging device and an image sensor provided with a photoelectric conversion element.
  • An image sensor that reads an image of a reading object printed with ink that reacts to ultraviolet light, blue light, green light, red light, and infrared light, respectively, ultraviolet light, blue light, green light, red light, and infrared light. It is necessary to read an image for each wavelength region.
  • the reading object is, for example, a banknote or a securities.
  • an image sensor that reads a color image generally, a photoelectric conversion element for one line is prepared, and a light source of each color is sequentially switched and emitted for one line to read one line of each color.
  • a plurality of lines of photoelectric conversion elements in which color filters having different transmission colors are stacked for each line are prepared, light of each color wavelength is simultaneously emitted, and images of lines at different positions for each color are read and read.
  • a color image is obtained by aligning the positions of the lines of the image.
  • Patent Document 1 discloses a solid-state imaging device in which a color filter is provided on a light receiving element.
  • a color filter that transmits only blue, green, or red light is formed on a photodiode, and an infrared that transmits visible light and blocks infrared light thereon.
  • a light receiving portion on which a light shielding filter is stacked is provided.
  • Patent Document 2 for each photosensor array, an image sensor having a filter that transmits light of any one of blue (B), green (G), red (R), and intermediate colors is provided on the photosensor.
  • a solid-state imaging device that obtains images of respective colors simultaneously using a light source is disclosed.
  • the color filter and the infrared light shielding filter are generally made of a material added with a pigment on the photoelectric conversion element. In this manufacturing method, highly accurate film thickness control and uniformity are important.
  • the film thickness of the color filter is determined according to the color purity of the light having the wavelength to be transmitted, and a difference occurs in each color. For this reason, in a configuration in which a color filter is stacked on a photoelectric conversion element as described in Patent Document 1 and an infrared light shielding filter is stacked on the photoelectric conversion element, a step between adjacent color filters causes a difference in adjacent pixels. There has been a concern that light bleeding may occur, or the flatness of the color filter may be insufficient and the characteristics of the infrared shading filter may not be stable.
  • Patent Document 2 shows a structure that obtains an image with good image quality by providing a color filter of intermediate colors in addition to the three primary colors of blue (B), green (G), and red (R).
  • B blue
  • G green
  • R red
  • the present invention has been made in view of the circumstances as described above.
  • the present invention is to suppress the bleeding of light to adjacent pixels and to ensure the characteristics of an infrared light shielding filter. Objective.
  • a solid-state imaging device includes a red photoelectric conversion element, a green photoelectric conversion element, a blue photoelectric conversion element, an infrared photoelectric conversion element, and an infrared light shielding element that blocks infrared light.
  • a filter a red filter that transmits light of a red wavelength, a green filter that transmits light of a green wavelength, a blue filter that transmits light of a blue wavelength, a red filter that transmits infrared light, and a green light And a visible light blocking filter that blocks blue light.
  • the red photoelectric conversion element receives red light and converts it into an electrical signal.
  • the green photoelectric conversion element receives green light and converts it into an electrical signal.
  • the blue photoelectric conversion element receives blue light and converts it into an electrical signal.
  • the infrared photoelectric conversion element receives infrared light and converts it into an electrical signal.
  • the infrared light shielding filter is laminated on each of the red photoelectric conversion element, the green photoelectric conversion element, and the blue photoelectric conversion element.
  • the red filter is laminated on the infrared light shielding filter on the red photoelectric conversion element.
  • the green filter is laminated on the infrared light shielding filter on the green photoelectric conversion element.
  • the blue filter is laminated on the infrared light shielding filter on the blue photoelectric conversion element.
  • the visible light shielding filter is laminated on the infrared photoelectric conversion element.
  • an infrared shading filter is first laminated on a photoelectric conversion element, and a color filter is laminated thereon, thereby suppressing light bleeding to adjacent pixels.
  • the characteristics of the infrared light shielding filter can be ensured.
  • Arrangement of photoelectric conversion elements in solid-state imaging device according to Embodiment 1 The figure which shows the spectral sensitivity characteristic of each photoelectric conversion element of a solid-state imaging device which does not have an infrared shading filter but has only a color filter.
  • Schematic sectional view showing layer overlap of the solid-state imaging device according to Embodiment 2 The figure which shows the optical effect
  • the figure which shows the spectral sensitivity characteristic of each photoelectric conversion element of the solid-state imaging device concerning Embodiment 2, and another solid-state imaging device The figure which shows the operation
  • FIG. 1 is a cross-sectional view orthogonal to the main scanning direction of the image sensor according to Embodiment 1 of the present invention.
  • the main scanning direction is a direction orthogonal to the paper surface of FIG.
  • the image sensor 1 extends in the main scanning direction and is arranged side by side in the main scanning direction, with a light guide 2 that emits light from the side surface to the reading object, a light guide case 3 that holds the light guide 2,
  • a lens 6 for connecting an image of the object to be read; a transparent plate 7 provided between the lens 6 and the object to be read; a solid-state imaging device 8 for converting an image formed by the lens 6 into an electric signal and outputting the electric signal;
  • a direction parallel to the upper surface of the transparent plate 7 and perpendicular to the main scanning direction is the sub-scanning direction.
  • the light guide 2 is irradiated with visible light and infrared light from the light source to the end face, propagates the incident light in the main scanning direction, and emits visible light and infrared light toward the reading object from the side surface.
  • the light guide case 3 includes a reflecting plate extending in the main scanning direction. The light leaking from the side surface of the light guide 2 to the light guide case 3 is reflected by the reflector of the light guide case 3 and enters the light guide 2 again.
  • the light guide 2 and a light source (not shown) constitute an irradiation unit.
  • the lens 6 ties an image of the reading object irradiated with visible light and infrared light on the solid-state imaging device 8.
  • the solid-state imaging device 8 converts the image formed by the lens 6 into an electric signal corresponding to the intensity of light hitting each element by photoelectric conversion.
  • the image sensor 1 includes two light guides 2 arranged side by side in the sub-scanning direction with the lens 6 interposed therebetween.
  • the number of light sources and light guides 2 is not limited to two.
  • FIG. 2 is a layout diagram of photoelectric conversion elements of the solid-state imaging device according to the first embodiment.
  • the solid-state imaging device 8 includes, on a semiconductor substrate 100, a blue photoelectric conversion element 11 that receives blue light and converts it into an electrical signal, a green photoelectric conversion element 12 that receives green light and converts it into an electrical signal, and a red color.
  • a red photoelectric conversion element 13 that receives light and converts it into an electric signal, and an infrared photoelectric conversion element 14 that receives infrared light and converts it into an electric signal are arranged in four rows, one row in the main scanning direction. Has been.
  • the blue photoelectric conversion element 11, the green photoelectric conversion element 12, the red photoelectric conversion element 13, and the infrared photoelectric conversion element 14 are simply referred to as a photoelectric conversion element. Since photoelectric conversion elements are semiconductor elements such as photodiodes and phototransistors and do not have wavelength selectivity, it is necessary to provide color filters on these photoelectric conversion elements in order to obtain a color image.
  • the solid-state imaging device 8 includes an infrared light shielding filter and a color filter in this order on the upper surface of the photoelectric conversion element.
  • the color filter is a filter that transmits visible light in a specific wavelength region in visible light and attenuates light in other wavelength regions.
  • a color filter is a photolithography method in which a color resist based on a pigment is applied, a pattern is formed by exposure and development, and the process is repeated for each color of blue (B), green (G), and red (R).
  • the infrared light shielding filter is a filter that shields infrared light and transmits visible light.
  • a method of forming by infrared vapor deposition is generally used for manufacturing the infrared light shielding filter.
  • An infrared shading filter is a thin film in which vapor deposition materials having different refractive indexes are combined and laminated at a determined thickness. By appropriately designing the thickness of each layer, only the wavelength range of infrared light is attenuated, It has the characteristic of transmitting light in other wavelength ranges.
  • a pixel circuit portion for processing a signal from the photoelectric conversion element and a pad portion for supplying power and exchanging signals with the outside are arranged on the semiconductor substrate 100.
  • a passivation film is formed on the surface of the IC.
  • the passivation film (shaded portion in the drawing) of the solid-state imaging device 8 has a structure in which the portion on the photoelectric conversion element is removed as shown in FIG.
  • a difference in spectral sensitivity characteristics between the solid-state imaging device including only the color filter without the infrared light shielding filter on the photoelectric conversion element and the solid-state imaging device 8 according to Embodiment 1 will be described.
  • FIG. 3 is a diagram showing the spectral sensitivity characteristics of each photoelectric conversion element of a solid-state imaging device that is provided with only a color filter without an infrared light shielding filter.
  • the photoelectric conversion element is not provided with an infrared light shielding filter but only a color filter, as shown in FIG. 3, the blue photoelectric conversion element 11, the green photoelectric conversion element 12, and the red photoelectric conversion element 13 are transmitted through the color filter. It receives not only light but also infrared light.
  • FIG. 4 is a diagram showing the spectral sensitivity characteristics of each photoelectric conversion element of the solid-state imaging device according to the first embodiment.
  • the blue photoelectric conversion element 11, the green photoelectric conversion element 12, the red photoelectric conversion element 13, and the infrared photoelectric conversion element 14 are mounted by mounting an infrared light shielding filter and a color filter on the photoelectric conversion element. 4 receive only blue light, green light, red light and infrared light, respectively, and the spectral sensitivity of the photoelectric conversion element has characteristics as shown in FIG. Subsequently, a difference between the solid-state imaging device in which the color filter and the infrared light shielding filter are stacked in this order on the photoelectric conversion element and the solid-state imaging device 8 according to Embodiment 1 will be described.
  • FIG. 5 is a schematic cross-sectional view showing the overlapping of the layers of the solid-state imaging device in which a color filter and an infrared light shielding filter are sequentially laminated on the photoelectric conversion element.
  • the film thickness of the color filter is determined according to the color purity of light having a wavelength to be transmitted.
  • the film thickness of each color filter is, for example, blue filter: 2.1 ⁇ m, green filter: 1.9 ⁇ m, red filter: 1.8 ⁇ m.
  • blue filter 2.1 ⁇ m
  • green filter 1.9 ⁇ m
  • red filter 1.8 ⁇ m.
  • FIG. 6 is a diagram showing the optical action of a solid-state imaging device in which a color filter and an infrared light shielding filter are stacked in this order on a photoelectric conversion element.
  • a color filter and an infrared light shielding filter are stacked in this order on a photoelectric conversion element, when white light (visible light + infrared light) enters from above, the infrared light shielding filter depends on the wavelength. Therefore, each color filter is incident with a different intensity distribution from that before passing through the infrared light shielding filter.
  • the infrared light shielding filter has a step in the color filter therebelow, the characteristic of shielding infrared light is not stable, and part of the infrared light may be transmitted. Since the red filter has transmittance even for light having a wavelength near 800 nm, the red photoelectric conversion element 13 that detects red light detects a part of infrared light as red light.
  • FIG. 7 is a schematic cross-sectional view showing the layer overlap of the solid-state imaging device according to the first embodiment.
  • the blue photoelectric conversion element 11, the green photoelectric conversion element 12, and the red photoelectric conversion element 13 that respectively receive visible light of blue (B), green (G), and red (R) wavelengths.
  • An infrared shading filter is uniformly laminated on the top.
  • a visible light shielding filter is laminated on the infrared photoelectric conversion element 14 that receives infrared light.
  • a blue filter that transmits light having a blue (B) wavelength is laminated.
  • a green filter that transmits light having a green (G) wavelength is laminated on the infrared light shielding filter on the green photoelectric conversion element 12.
  • a red filter that transmits light of red (R) wavelength is laminated on the infrared light shielding filter on the red photoelectric conversion element 13.
  • a vapor deposition film of an infrared light shielding filter is first laminated on each color photoelectric conversion element, and a vapor deposition film is stably formed by laminating each color filter thereon, so that the infrared light shielding is performed. Stabilization of filter characteristics and suppression of blurring to adjacent pixels are possible, and a color image with good image quality can be obtained.
  • FIG. 8 is a diagram illustrating the optical action of the solid-state imaging device according to the first embodiment.
  • white light visible light + infrared light
  • the infrared shading filter As shown in FIG. 8, in the solid-state imaging device 8, when white light (visible light + infrared light) enters from above, it passes through the color filter of each color and then passes through the infrared shading filter. The light having the wavelength of is incident on the infrared light shielding filter in an attenuated state, and the effect of further attenuating the remaining infrared light by the red filter is obtained. Thereby, it is possible to obtain a color image with good image quality without blur.
  • the difference in operation timing between the solid-state imaging device in which the color filter and the infrared light shielding filter are stacked in this order on the photoelectric conversion element and the solid-state imaging device 8 according to Embodiment 1 will be described.
  • FIG. 9 is a diagram showing the operation timing of the solid-state imaging device in which a color filter and an infrared light shielding filter are stacked in this order on the photoelectric conversion element.
  • a solid-state imaging device in which a color filter and an infrared light shielding filter are stacked in this order on a photoelectric conversion element
  • white light visible light + infrared light
  • the red photoelectric conversion element 13 detects a part of the infrared light as red light. Therefore, in order to obtain a color image with good image quality, as shown in FIG. It is necessary to read an image at each timing when the light, red light, and infrared light are irradiated four times in total.
  • FIG. 10 is a diagram illustrating the operation timing of the solid-state imaging device according to the first embodiment.
  • the solid-state imaging device 8 can obtain a color image with good image quality without blurring even when irradiated with white light (visible light + infrared light). Therefore, as shown in FIG. It is possible to read an image at a single timing of simultaneous irradiation of light and infrared light.
  • the infrared shading filter is first laminated on the photoelectric conversion element, and the color filter is laminated thereon, thereby suppressing blurring to adjacent pixels.
  • the characteristics of the deposited film can be ensured, the reading speed can be improved, and a color image with good image quality can be obtained without adding a manufacturing process. Further, it is not necessary to sequentially irradiate blue light, green light, red light, and infrared light, and the reading time can be shortened.
  • Embodiment 2 the solid-state imaging device 8 in the case where the image sensor 1 needs to read ink that reacts to ultraviolet light in addition to blue light, green light, red light, and infrared light will be described.
  • FIG. 11 is a cross-sectional view orthogonal to the main scanning direction of the image sensor according to Embodiment 2 of the present invention.
  • the image sensor 1 according to the second embodiment is arranged in a row in the main scanning direction and a light guide 2 that extends in the main scanning direction and emits light from the side surface to the reading target, and irradiates the reading target with ultraviolet light.
  • An ultraviolet light source 20 that is arranged side by side in the main scanning direction and connects the image of the object to be read, a transparent plate 7 that is placed between the lens 6 and the object to be read, and an image in which the lens 6 is connected.
  • a sensor substrate 9 on which the solid-state imaging device 8 is mounted and a housing 10 that holds these members.
  • the light guide 2 and the ultraviolet light source 20 are arranged side by side in the sub-scanning direction with the lens 6 interposed therebetween.
  • the light guide 2 is irradiated with visible light and infrared light from the light source to the end face, propagates the incident light in the main scanning direction, and emits visible light and infrared light toward the reading object from the side surface.
  • the lens 6 ties an image of a reading object irradiated with visible light, infrared light, and ultraviolet light on the solid-state imaging device 8.
  • the solid-state imaging device 8 receives visible light and infrared light from the image connected by the lens 6 and converts them into an electrical signal corresponding to the intensity of light hitting each element by photoelectric conversion.
  • the image sensor 1 includes a UV image pickup device that receives ultraviolet light from an image formed by the lens 6, converts the light into an electric signal corresponding to the intensity of light by photoelectric conversion, and outputs the electric signal. .
  • the arrangement of the photoelectric conversion elements of the solid-state imaging device 8 according to the second embodiment is the same as that shown in FIG. As in the first embodiment, the solid-state imaging device 8 and the UV imaging device have a structure in which the passivation film on the photoelectric conversion element is removed.
  • the light source, the light guide 2 and the ultraviolet light source 20 constitute an irradiation unit.
  • the image sensor 1 may include a light source that irradiates visible light, infrared light, and ultraviolet light without including the ultraviolet light source 20 separately. In this case, the light source and the light guide 2 are irradiation units. Further, the number of light sources and light guides 2 is not limited to one.
  • the solid-state imaging device 8 includes an ultraviolet light shielding filter, an infrared light shielding filter, and a color filter in this order on the top surface of the photoelectric conversion element.
  • the ultraviolet light shielding filter is a filter that shields ultraviolet light and transmits visible light and infrared light, and a method of forming by vapor deposition is generally used for manufacturing.
  • Ultraviolet light shielding filter is a thin film that is a combination of laminated materials with different refractive indexes and a laminated thickness on the substrate, and attenuates only the wavelength range of ultraviolet light by designing the thickness of each layer appropriately, It has the characteristic of transmitting light in other wavelength ranges.
  • the infrared light shielding filter and the color filter are manufactured by a method similar to the method described in the first embodiment.
  • an ultraviolet light shielding filter is inserted between the lens and a solid-state imaging device that receives visible light and infrared light. For this reason, it is necessary to use different image sensors according to the necessity of receiving ultraviolet light.
  • an ultraviolet light shielding filter is inserted between the lens and the solid-state imaging device, and the solid-state imaging device according to the second embodiment and the solid-state imaging device 8 according to the second embodiment are stacked on the photoelectric conversion element in the order of the color filter and the infrared light shielding filter. The difference is explained.
  • FIG. 12 is a diagram showing the optical action of the solid-state imaging device in which an ultraviolet light shielding filter is inserted between the lens and the solid-state imaging device, and a color filter and an infrared light shielding filter are stacked in this order on the photoelectric conversion element.
  • FIG. 12 in the case of a solid-state imaging device in which an ultraviolet light-shielding filter is inserted between a lens and a solid-state imaging device and a color filter and an infrared light-shielding filter are stacked in this order on a photoelectric conversion element, When (Visible light + Infrared light + Ultraviolet light) is incident, the ultraviolet light shielding filter and the infrared light shielding filter exhibit different properties depending on the wavelength.
  • the intensity is different from that before passing through the ultraviolet light shielding filter and the infrared light shielding filter. Incident to each color filter with distribution. Since the infrared light shielding filter has a step in the color filter therebelow, the characteristic of shielding infrared light is not stable, and part of the infrared light may be transmitted. Since the red filter has transmittance even for light having a wavelength near 800 nm, the red photoelectric conversion element 13 that detects red light detects a part of infrared light as red light.
  • the upper surface of the infrared light shielding filter is drawn flat, but since there is a step in the color filter below it, a step is actually generated on the upper surface of the infrared light shielding filter. For this reason, the ultraviolet light shielding filter is also affected by the step of the color filter, and the characteristic of shielding ultraviolet light is not stable, and part of the ultraviolet light may be transmitted. Since the blue filter has transmittance even for light having a wavelength of 400 nm or less, the blue photoelectric conversion element 11 that detects blue light detects part of the ultraviolet light as blue light. Similar to the case of FIG. 5 and FIG. 6, there is a problem that due to the step between adjacent color filters, blurring to adjacent pixels occurs or the characteristics of the deposited film of the infrared shading filter are not stable due to insufficient flatness. Can happen.
  • FIG. 13 is a schematic cross-sectional view showing the layer overlap of the solid-state imaging device according to the second embodiment.
  • the ultraviolet light shielding filter is uniformly laminated on all the photoelectric elements. Ultraviolet light on each of the blue photoelectric conversion element 11, the green photoelectric conversion element 12, and the red photoelectric conversion element 13 that respectively receives visible light of blue (B), green (G), and red (R) wavelengths.
  • An infrared shading filter is uniformly laminated on the shading filter.
  • a visible light shielding filter is laminated on the ultraviolet light shielding filter on the infrared photoelectric conversion element 14 that receives infrared light.
  • a blue filter that transmits light having a blue (B) wavelength is laminated on the infrared light shielding filter on the blue photoelectric conversion element 11.
  • a green filter that transmits light having a green (G) wavelength is laminated on the infrared light shielding filter on the green photoelectric conversion element 12.
  • a red filter that transmits light of red (R) wavelength is laminated on the infrared light shielding filter on the red photoelectric conversion element 13.
  • the deposited film of the ultraviolet light shielding filter is first laminated on the photoelectric conversion element, and the ultraviolet light shielding filter on each of the blue photoelectric conversion element 11, the green photoelectric conversion element 12 and the red photoelectric conversion element 13.
  • a vapor deposition film of an infrared shielding filter is laminated on the top. Then, by stacking the color filter on the infrared shading filter, the deposited film is stably formed, and it becomes possible to stabilize the characteristics and suppress the blurring to the adjacent pixels, and obtain a color image with good image quality. Can do.
  • FIG. 14 is a diagram illustrating an optical action of the solid-state imaging device according to the second embodiment.
  • the solid-state imaging device 8 when white light (visible light + infrared light + ultraviolet light) enters from above, the solid-state imaging device 8 passes through the color filter of each color and then passes through the infrared light shielding filter and the ultraviolet light shielding filter. Therefore, light with a wavelength outside the visible light region is incident on the infrared light shielding filter and ultraviolet light shielding filter in an attenuated state, the infrared light remaining by the red filter is further attenuated, and the ultraviolet light remaining by the blue filter is further attenuated. Effect is obtained.
  • the infrared light shielding filter and the ultraviolet light shielding filter each have a constant film thickness and the specific light shielding property is stable, so that the original attenuation characteristics can be obtained.
  • infrared light incident on the red photoelectric conversion element 13 and ultraviolet light incident on the blue photoelectric conversion element 11 can be reduced. Thereby, it is possible to obtain a color image with good image quality without blur.
  • FIG. 15 is a diagram showing the spectral sensitivity characteristics of the photoelectric conversion elements of the solid-state imaging device according to the second embodiment and other solid-state imaging devices.
  • the solid-state imaging device 8 by mounting an ultraviolet light shielding filter, an infrared light shielding filter, and a color filter in order on the photoelectric conversion element, the blue photoelectric conversion element 11, the green photoelectric conversion element 12, and the red photoelectric sensor of the solid-state imaging device 8.
  • the conversion element 13 and the infrared photoelectric conversion element 14 receive blue light, green light, red light, and infrared light, respectively, the photoelectric conversion elements of other solid-state imaging devices receive ultraviolet light, and each of the photoelectric conversion elements
  • the spectral sensitivity has characteristics as shown in FIG.
  • an ultraviolet light shielding filter is inserted between the lens and the solid-state imaging device, and the solid-state imaging device according to the second embodiment and the solid-state imaging device 8 according to Embodiment 2 are stacked in the order of the color filter and the infrared light shielding filter on the photoelectric conversion element. And the difference in operation timing will be described.
  • FIG. 16 is a diagram showing the operation timing of the solid-state imaging device in which an ultraviolet light shielding filter is inserted between the lens and the solid-state imaging device, and a color filter and an infrared light shielding filter are stacked in this order on the photoelectric conversion element.
  • FIG. 17 is a diagram illustrating operation timing of the solid-state imaging device according to the second embodiment.
  • the solid-state imaging device 8 can obtain a color image with good image quality without blurring even when irradiated with white light (visible light + infrared light + ultraviolet light), as shown in FIG.
  • the image can be read at the timing when the visible light and the infrared light are simultaneously irradiated and at the timing when the ultraviolet light is irradiated twice.
  • the image sensor 1 does not include the ultraviolet light source 20 but includes a light source that emits visible light, infrared light, and ultraviolet light, visible light + infrared light + ultraviolet light is simultaneously irradiated 1
  • the image may be read at each timing.
  • the solid-state imaging device 8 of the second embodiment even when it is necessary to read ink that reacts with ultraviolet light, the deposited films of the ultraviolet light shielding filter and the infrared light shielding filter on the photoelectric conversion element. Is layered first, and a color filter is stacked on top of it to prevent bleeding to adjacent pixels and ensure the characteristics of the deposited film, improve the scanning speed without adding a manufacturing process, and provide a color with good image quality. An image can be obtained. Further, it is not necessary to sequentially irradiate ultraviolet light, blue light, green light, red light, and infrared light, and the reading time can be shortened. Furthermore, since the solid-state imaging device 8 includes the ultraviolet light shielding filter, in the image sensor 1, the solid-state imaging device 8 and other solid-state imaging devices that receive ultraviolet light and perform photoelectric conversion can be shared.
  • the present invention is not limited to an image sensor that receives reflected light from a reading object, but an image sensor that receives transmitted light from a reading object, and an image sensor that receives reflected light and transmitted light from a medium to be read. You may apply to.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Optical Filters (AREA)

Abstract

固体撮像装置は、青色光、緑色光、赤色光および赤外光をそれぞれ受光して電気信号に変換する青色光電変換素子11、緑色光電変換素子12、赤色光電変換素子13および赤外光電変換素子14を備え、青色光電変換素子11、緑色光電変換素子12および赤色光電変換素子13の上には赤外光を遮光する赤外遮光フィルターが積層される。赤外遮光フィルター上には青色光電変換素子11、緑色光電変換素子12および赤色光電変換素子13に対応して、それぞれ青色光、緑色光および赤色光を透過する色フィルターが積層される。赤外光電変換素子14の上には青色光、緑色光および赤色光を遮光する可視光遮光フィルターが積層される。

Description

固体撮像装置およびイメージセンサー
 本発明は、光電変換素子を備える固体撮像装置およびイメージセンサーに関する。
 紫外光、青色光、緑色光、赤色光および赤外光に反応するインクで印刷された読取対象物の画像を読み取るイメージセンサーでは、紫外光、青色光、緑色光、赤色光および赤外光それぞれの波長域ごとに画像を読み取ることが必要である。読取対象物は、例えば紙幣または有価証券である。カラー画像を読み取るイメージセンサーでは、一般的には1ライン分の光電変換素子を用意し、1ラインについて各色の光源を順次切替え発光させて各色の1ラインの読み取りを行う。あるいは、例えばラインごとに透過色が異なる色フィルターを積層した複数ラインの光電変換素子を用意し、各色の波長の光を同時に発光させて、色ごとに異なる位置のラインの画像を読み取り、読み取った画像のラインの位置を合わせてカラー画像を得る。
 近年、固体撮像装置の傾向として光電変換素子の微細化と高速化が求められている。固体撮像装置の光源として各波長域のLEDを順次切替え発光させる方式では、1ラインの読取に時間が掛かり読取速度を向上させることが困難である。そのため、それぞれ読み取る波長域に対応して特定の波長の光を透過させる色フィルターを光電変換素子上に積層し、複数の波長の光を同時に照射させて、各波長域の画像を同時に読み取る構成とすることで、読取速度を向上させる方式が求められている。
 受光素子の上に色フィルターが設けられた固体撮像装置が特許文献1に開示されている。特許文献1の固体撮像装置は、フォトダイオードの上に青、緑または赤のいずれかの光のみを透過する色フィルターが形成され、その上に可視光を透過し赤外光を遮断する赤外遮光フィルターが積層された受光部を備える。
 特許文献2には、フォトセンサアレイごとに、青色(B)、緑色(G)、赤色(R)および中間色のいずれかの光を透過するフィルターをフォトセンサの上に有するイメージセンサーで、1つの光源を用いて同時に各色の画像を得る固体撮像装置が開示されている。
特開2008-5213号公報 特開2005-184293号公報
 特許文献1に記載されているような光電変換素子上に色フィルターおよび赤外遮光フィルターを積層する構造では、色フィルターおよび赤外遮光フィルターは、一般的に顔料を添加した材料を光電変換素子上に積層することにより形成されるが、この製造方法では高精度の膜厚コントロールと均一性が重要である。
 色フィルターの膜厚は透過させたい波長の光の色純度に応じて決定され、各色で差が生じる。このため、特許文献1に記載されているような光電変換素子上に色フィルターを積層し、その上に赤外遮光フィルターを積層する構成では、隣接する色フィルター相互の段差により、隣接画素への光のにじみが発生したり、色フィルターの平坦性が不足し赤外遮光フィルターの特性が安定しないといった問題が起こる懸念があった。
 特許文献2に記載の技術では、青色(B)、緑色(G)および赤色(R)の3原色に加えて中間色の色フィルターを備えることにより良好な画質の画像を得る構造が示されているが、赤外光の受光ができない。
 本発明は、上述のような事情に鑑みてなされたもので、色フィルターを用いる固体撮像装置において、隣接画素への光のにじみを抑制し、かつ、赤外遮光フィルターの特性を確保することを目的とする。
 上記目的を達成するため、本発明に係る固体撮像装置は、赤色光電変換素子と、緑色光電変換素子と、青色光電変換素子と、赤外光電変換素子と、赤外光を遮光する赤外遮光フィルターと、赤色の波長の光を透過する赤色フィルターと、緑色の波長の光を透過する緑色フィルターと、青色の波長の光を透過する青色フィルターと、赤外光を透過し赤色光、緑色光および青色光を遮光する可視光遮光フィルターとを備える。赤色光電変換素子は、赤色光を受光して電気信号に変換する。緑色光電変換素子は、緑色光を受光して電気信号に変換する。青色光電変換素子は、青色光を受光して電気信号に変換する。赤外光電変換素子は、赤外光を受光して電気信号に変換する。赤外遮光フィルターは、赤色光電変換素子、緑色光電変換素子および青色光電変換素子それぞれの上に積層されている。赤色フィルターは、赤色光電変換素子の上の赤外遮光フィルターの上に積層されている。緑色フィルターは、緑色光電変換素子の上の赤外遮光フィルターの上に積層されている。青色フィルターは、青色光電変換素子の上の赤外遮光フィルターの上に積層されている。可視光遮光フィルターは、赤外光電変換素子の上に積層されている。
 この発明によれば、色フィルターを用いる固体撮像装置において、光電変換素子上に赤外遮光フィルターをまず積層し、その上に色フィルターを積層することで、隣接画素への光のにじみを抑制し、赤外遮光フィルターの特性を確保することができる。
本発明の実施の形態1に係るイメージセンサーの主走査方向に直交する断面図 実施の形態1に係る固体撮像装置における光電変換素子の配置図 赤外遮光フィルターを備えず色フィルターのみを備える固体撮像装置の各光電変換素子の分光感度特性を示す図 実施の形態1に係る固体撮像装置の各光電変換素子の分光感度特性を示す図 光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の層の重なりを示す概略断面図 光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の光学作用を示す図 実施の形態1に係る固体撮像装置の層の重なりを示す概略断面図 実施の形態1に係る固体撮像装置の光学作用を示す図 光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の動作タイミングを示す図 実施の形態1に係る固体撮像装置の動作タイミングを示す図 本発明の実施の形態2に係るイメージセンサーの主走査方向に直交する断面図 レンズと固体撮像装置との間に紫外遮光フィルターが挿入され、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の光学作用を示す図 実施の形態2に係る固体撮像装置の層の重なりを示す概略断面図 実施の形態2に係る固体撮像装置の光学作用を示す図 実施の形態2に係る固体撮像装置および他の固体撮像装置の各光電変換素子の分光感度特性を示す図 レンズと固体撮像装置との間に紫外遮光フィルターが挿入され、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の動作タイミングを示す図 実施の形態2に係る固体撮像装置の動作タイミングを示す図
 以下に、本発明を実施するための形態について図面を参照して詳細に説明する。なお、図中同一または相当する部分には同じ符号を付す。
 実施の形態1.
 図1は、本発明の実施の形態1に係るイメージセンサーの主走査方向に直交する断面図である。主走査方向は、図1の紙面に直交する方向である。イメージセンサー1は、主走査方向に延在し光を側面から読取対象物に出射する導光体2と、導光体2を保持する導光体ケース3と、主走査方向に並べて配置され、それぞれ読取対象物の像を結ぶレンズ6と、レンズ6と読取対象物との間に設置される透明板7と、レンズ6が結んだ像を電気信号に変換して出力する固体撮像装置8と、固体撮像装置8が実装されたセンサー基板9と、これらの部材を保持する筐体10とを備える。透明板7の上面に平行で、かつ、主走査方向に直交する方向が副走査方向である。
 導光体2には、光源から端面に可視光および赤外光が照射され、入射した光を主走査方向に伝播するとともに、側面から可視光および赤外光を読取対象物に向けて照射する。導光体ケース3は、主走査方向に延在する反射板を備える。導光体2の側面から導光体ケース3に洩れた光は、導光体ケース3の反射板で反射されて導光体2に再び入射する。導光体2および図示されない光源は、照射部を構成する。レンズ6は、可視光および赤外光が照射された読取対象物の像を、固体撮像装置8の上に結ぶ。固体撮像装置8は、レンズ6で結ばれた像から光電変換で、各素子に当たる光の強さに応じた電気信号に変換する。
 イメージセンサー1は、レンズ6を間に挟んで副走査方向に並んで配置される2本の導光体2を備える。光源および導光体2の数は2つに限らない。
 図2は、実施の形態1に係る固体撮像装置の光電変換素子の配置図である。固体撮像装置8は、半導体基板100の上に、青色光を受光して電気信号に変換する青色光電変換素子11と、緑色光を受光して電気信号に変換する緑色光電変換素子12と、赤色光を受光して電気信号に変換する赤色光電変換素子13と、赤外光を受光して電気信号に変換する赤外光電変換素子14とが、それぞれ主走査方向に1列ずつ4列で配置されている。以下、青色光電変換素子11、緑色光電変換素子12、赤色光電変換素子13および赤外光電変換素子14を総称する場合には単に光電変換素子という。光電変換素子はフォトダイオード、フォトトランジスタ等の半導体素子であり波長選択性を有していないため、カラー画像を得るにはこれらの光電変換素子上に色フィルターを備える必要がある。
 固体撮像装置8は、光電変換素子の上面に赤外遮光フィルターおよび色フィルターの順に備える。色フィルターは可視光の中の特定の波長域の可視光を透過させ、それ以外の波長域の光を減衰するフィルターである。色フィルターは顔料をベースとしたカラーレジストを塗布し、露光・現像によりパターン形成を行い、同工程を青色(B)、緑色(G)および赤色(R)の各色で繰り返して形成するフォトリソグラフィ法により製造される。赤外遮光フィルターは赤外光を遮光し、可視光を透過するフィルターである。赤外遮光フィルタの製造には一般的に蒸着で形成する方法が用いられる。赤外遮光フィルターは、異なる屈折率を持つ蒸着物質を決められた厚さで組み合わせて積層した薄膜であり、各層の膜厚を適切に設計することにより赤外光の波長域だけを減衰し、それ以外の波長域の光を透過する特性を持たせている。
 半導体基板100上には、光電変換素子からの信号を処理する画素回路部と、電源の供給および外部との信号のやり取りを行うパッド部が配置されている。通常、ICの表面にはパッシベーション膜を形成するが、固体撮像装置8では、光電変換素子上に色フィルターを積層するので、色フィルターとパッシベーション膜の界面において特性の変化が生じる。このため、固体撮像装置8のパッシベーション膜(図中、斜線部分)は、図2に示すように光電変換素子上の部分を取り除いた構造とする。ここで、光電変換素子上に赤外遮光フィルターを備えず色フィルターのみを備える固体撮像装置と実施の形態1に係る固体撮像装置8との分光感度特性の違いについて説明する。
 図3は、赤外遮光フィルターを備えず色フィルターのみを備える固体撮像装置の各光電変換素子の分光感度特性を示す図である。光電変換素子上に赤外遮光フィルターを備えず色フィルターのみを備える場合、図3に示すように、青色光電変換素子11、緑色光電変換素子12および赤色光電変換素子13は、色フィルターを透過した光だけでなく赤外光も受光してしまう。
 図4は、実施の形態1に係る固体撮像装置の各光電変換素子の分光感度特性を示す図である。固体撮像装置8のように、光電変換素子上に赤外遮光フィルターおよび色フィルターを実装することにより、青色光電変換素子11、緑色光電変換素子12、赤色光電変換素子13および赤外光電変換素子14がそれぞれ、青色光、緑色光、赤色光および赤外光のみを受光し、光電変換素子の分光感度は図4に示すような特性となる。続いて、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置と実施の形態1に係る固体撮像装置8との違いについて説明する。
 図5は、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の層の重なりを示す概略断面図である。色フィルターの膜厚は透過させたい波長の光の色純度に応じて決定され、各色フィルターの膜厚は、例えば、青色フィルター:2.1μm、緑色フィルター:1.9μm、赤色フィルター:1.8μmといったように各色で差が生じる。このため、光電変換素子上に色フィルターを積層し、その上に赤外遮光フィルターを積層する構成では、図5に示すような隣接する色フィルター間の段差により、隣接画素へのにじみが生じたり、平坦性が不足して赤外遮光フィルターの蒸着膜の特性が安定しないといった問題が起こる可能性がある。
 図6は、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の光学作用を示す図である。図6に示すように、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層される場合、上方から白色光(可視光+赤外光)が入射すると、赤外遮光フィルターが波長に応じて異なる性質を示すため、赤外遮光フィルターを通過する前とは異なる強度分布を持った状態で各色フィルターに入射する。赤外遮光フィルターは、その下の色フィルターに段差があるため、赤外光を遮光する特性が安定せず、赤外光の一部が透過する可能性がある。赤色フィルターは800nm付近の波長の光に対しても透過率を有するため、赤色光を検出する赤色光電変換素子13は赤外光の一部を赤色の光として検出してしまう。
 図7は、実施の形態1に係る固体撮像装置の層の重なりを示す概略断面図である。固体撮像装置8では、可視光の青色(B)、緑色(G)、赤色(R)の各波長の光をそれぞれ受光する青色光電変換素子11、緑色光電変換素子12および赤色光電変換素子13それぞれの上に一様に赤外遮光フィルターが積層されている。赤外光を受光する赤外光電変換素子14上には可視光遮光フィルターが積層されている。青色光電変換素子11の上の赤外遮光フィルターの上には、青色(B)の波長の光を透過する青色フィルターが積層されている。緑色光電変換素子12の上の赤外遮光フィルターの上には、緑色(G)の波長の光を透過する緑色フィルターが積層されている。赤色光電変換素子13の上の赤外遮光フィルターの上には、赤色(R)の波長の光を透過する赤色フィルターが積層されている。図7に示すように、各色の光電変換素子上に赤外遮光フィルターの蒸着膜をまず積層し、その上にそれぞれの色フィルターを積層することで蒸着膜が安定して形成され、赤外遮光フィルターの特性の安定化と隣接画素へのにじみ抑制が可能となり、良好な画質のカラー画像を得ることができる。
 図8は、実施の形態1に係る固体撮像装置の光学作用を示す図である。固体撮像装置8では、図8に示すように、上方から白色光(可視光+赤外光)が入射すると、各色の色フィルターを通過した後に赤外遮光フィルターを通過するため、可視光領域外の波長の光は減衰した状態で赤外遮光フィルターに入射し、赤色フィルターにより残留した赤外光がさらに減衰する効果が得られる。これにより、にじみの無い良好な画質のカラー画像を得ることができる。ここで、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置と実施の形態1に係る固体撮像装置8との動作タイミングの違いについて説明する。
 図9は、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の動作タイミングを示す図である。光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の場合、前述のように、白色光(可視光+赤外光)を照射すると、隣接画素へのにじみが発生したり、赤色光電変換素子13が赤外光の一部を赤色の光として検出してしまったりするので、良好な画質のカラー画像を得るためには、図9に示すように、青色光・緑色光・赤色光・赤外光の順に合計4回照射されるそれぞれのタイミングで画像の読取を行う必要がある。
 図10は、実施の形態1に係る固体撮像装置の動作タイミングを示す図である。固体撮像装置8では、前述のように、白色光(可視光+赤外光)を照射してもにじみの無い良好な画質のカラー画像を得ることができるので、図10に示すように、可視光+赤外光が同時照射される1回のタイミングで画像の読取が可能となる。
 以上説明したように、実施の形態1の固体撮像装置8によれば、光電変換素子上に赤外遮光フィルターをまず積層し、その上に色フィルターを積層することで、隣接画素へのにじみ抑制や蒸着膜の特性を確保し、製造工程を追加することなく、読取速度を向上させ、良好な画質のカラー画像を得ることができる。また、青色光・緑色光・赤色光・赤外光を順次照射する必要がなく、読取時間を短縮することができる。
 実施の形態2.
 実施の形態2では、イメージセンサー1において、青色光、緑色光、赤色光および赤外光に加えて紫外光に反応するインクの読取が必要となる場合の固体撮像装置8について説明する。
 図11は、本発明の実施の形態2に係るイメージセンサーの主走査方向に直交する断面図である。実施の形態2に係るイメージセンサー1は、主走査方向に延在し光を側面から読取対象物に出射する導光体2と、主走査方向に並べて配置され、紫外光を読取対象物に照射する紫外光源20と、主走査方向に並べて配置され、それぞれ読取対象物の像を結ぶレンズ6と、レンズ6と読取対象物との間に設置される透明板7と、レンズ6が結んだ像を電気信号に変換して出力する固体撮像装置8と、固体撮像装置8が実装されたセンサー基板9と、これらの部材を保持する筐体10とを備える。導光体2および紫外光源20は、レンズ6を間に挟んで副走査方向に並んで配置される。
 導光体2には、光源から端面に可視光および赤外光が照射され、入射した光を主走査方向に伝播するとともに、側面から可視光および赤外光を読取対象物に向けて照射する。レンズ6は、可視光、赤外光および紫外光が照射された読取対象物の像を、固体撮像装置8の上に結ぶ。固体撮像装置8は、レンズ6で結ばれた像から可視光および赤外光を受光して光電変換で、各素子に当たる光の強さに応じた電気信号に変換する。
 イメージセンサー1は、固体撮像装置8とは別に、レンズ6で結ばれた像から紫外光を受光して光電変換により光の強さに応じた電気信号に変換して出力するUV撮像装置を備える。実施の形態2の固体撮像装置8の光電変換素子の配置は図2と同様である。固体撮像装置8およびUV撮像装置は、実施の形態1と同様に、光電変換素子の上のパッシベーション膜が取り除かれた構造である。光源、導光体2および紫外光源20は、照射部を構成する。イメージセンサー1は、紫外光源20を別に備えず、可視光、赤外光および紫外光を照射する光源を備える構成にしてもよい。この場合、光源および導光体2は、照射部である。また、光源および導光体2の数は1つに限らない。
 実施の形態2では、固体撮像装置8は、光電変換素子の上面に紫外遮光フィルター、赤外遮光フィルターおよび色フィルターの順に備える。紫外遮光フィルターは紫外光を遮光し、可視光および赤外光を透過させるフィルターであり、製造には一般的に蒸着で形成する方法が用いられる。紫外遮光フィルターは、基板に異なる屈折率を持つ蒸着物質を決められた厚さで組み合わせて積層した薄膜であり、各層の膜厚を適切に設計することにより紫外光の波長域だけを減衰し、それ以外の波長域の光を透過する特性を持たせている。赤外遮光フィルターおよび色フィルターは実施の形態1に示す方法と同様の方法で製造する。
 一般的には、イメージセンサーにおいて紫外光に反応するインクの読取が必要となる場合、レンズと可視光および赤外光を受光する固体撮像装置との間に紫外遮光フィルターを挿入する。このため、紫外光の受光の要否に応じて異なるイメージセンサーを使用する必要があった。ここで、レンズと固体撮像装置との間に紫外遮光フィルターが挿入され、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置と実施の形態2に係る固体撮像装置8との違いについて説明する。
 図12は、レンズと固体撮像装置との間に紫外遮光フィルターが挿入され、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の光学作用を示す図である。図12に示すように、レンズと固体撮像装置との間に紫外遮光フィルターが挿入され、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層される固体撮像装置の場合、上方から白色光(可視光+赤外光+紫外光)が入射すると、紫外遮光フィルターおよび赤外遮光フィルターが波長に応じて異なる性質を示すため、紫外遮光フィルターおよび赤外遮光フィルターを通過する前とは異なる強度分布を持った状態で各色フィルターに入射する。赤外遮光フィルターは、その下の色フィルターに段差があるため、赤外光を遮光する特性が安定せず、赤外光の一部が透過する可能性がある。赤色フィルターは800nm付近の波長の光に対しても透過率を有するため、赤色光を検出する赤色光電変換素子13は赤外光の一部を赤色の光として検出してしまう。
 図12では、赤外遮光フィルターの上面が平らに描かれているが、その下の色フィルターに段差があるので、実際には赤外遮光フィルターの上面に段差が生じる。そのため、紫外遮光フィルターも色フィルターの段差の影響を受けて、紫外光を遮光する特性が安定せず、紫外光の一部が透過する可能性がある。青色フィルターは400nm以下の波長の光に対しても透過率を有するため、青色光を検出する青色光電変換素子11は紫外光の一部を青色の光として検出してしまう。図5および図6の場合と同様に、隣接する色フィルター間の段差により、隣接画素へのにじみが発生したり、平坦性が不足して赤外遮光フィルターの蒸着膜の特性が安定しないといった問題が起こる可能性がある。
 図13は、実施の形態2に係る固体撮像装置の層の重なりを示す概略断面図である。固体撮像装置8では、すべての光電素子上に一様に紫外遮光フィルターが積層されている。可視光の青色(B)、緑色(G)、赤色(R)の各波長の光をそれぞれ受光する青色光電変換素子11、緑色光電変換素子12および赤色光電変換素子13それぞれの上の、紫外光遮光フィルターの上に一様に赤外遮光フィルターが積層されている。赤外光を受光する赤外光電変換素子14上の紫外遮光フィルターの上には可視光遮光フィルターが積層されている。
 青色光電変換素子11の上の赤外遮光フィルターの上には、青色(B)の波長の光を透過する青色フィルターが積層されている。緑色光電変換素子12の上の赤外遮光フィルターの上には、緑色(G)の波長の光を透過する緑色フィルターが積層されている。赤色光電変換素子13の上の赤外遮光フィルターの上には、赤色(R)の波長の光を透過する赤色フィルターが積層されている。
 図13に示すように、光電変換素子上に紫外遮光フィルターの蒸着膜をまず積層し、青色光電変換素子11、緑色光電変換素子12および赤色光電変換素子13それぞれの上の、紫外光遮光フィルターの上に赤外遮光フィルターの蒸着膜を積層する。そして、赤外遮光フィルターの上に色フィルターを積層することで蒸着膜が安定して成膜され、特性の安定化と隣接画素へのにじみ抑制が可能となり、良好な画質のカラー画像を得ることができる。
 図14は、実施の形態2に係る固体撮像装置の光学作用を示す図である。固体撮像装置8では、図14に示すように、上方から白色光(可視光+赤外光+紫外光)が入射すると、各色の色フィルターを通過後に赤外遮光フィルターおよび紫外遮光フィルターを通過するため、可視光領域外の波長の光は減衰した状態で赤外遮光フィルターおよび紫外遮光フィルターに入射し、赤色フィルターにより残留した赤外光がさらに減衰し、青色フィルターにより残留した紫外光がさらに減衰する効果が得られる。そして、赤外遮光フィルターおよび紫外遮光フィルターはそれぞれ、膜厚が一定で遮光する特定が安定するので、本来の減衰特性が得られる。その結果、赤色光電変換素子13に入射する赤外光および青色光電変換素子11に入射する紫外光を減少させることができる。これにより、にじみの無い良好な画質のカラー画像を得ることができる。
 図15は、実施の形態2に係る固体撮像装置および他の固体撮像装置の各光電変換素子の分光感度特性を示す図である。固体撮像装置8のように、光電変換素子上に紫外遮光フィルター、赤外遮光フィルターおよび色フィルターを順に実装することにより、固体撮像装置8の青色光電変換素子11、緑色光電変換素子12、赤色光電変換素子13および赤外光電変換素子14がそれぞれ、青色光、緑色光、赤色光および赤外光を受光し、他の固体撮像装置の光電変換素子が紫外光を受光し、各光電変換素子の分光感度は図15に示すような特性となる。続いて、レンズと固体撮像装置との間に紫外遮光フィルターが挿入され、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置と実施の形態2に係る固体撮像装置8と動作タイミングの違いについて説明する。
 図16は、レンズと固体撮像装置との間に紫外遮光フィルターが挿入され、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の動作タイミングを示す図である。レンズと固体撮像装置との間に紫外遮光フィルターが挿入され、光電変換素子上に色フィルターおよび赤外遮光フィルターの順に積層された固体撮像装置の場合、前述のように、白色光(可視光+赤外光+紫外光)を照射すると、隣接画素へのにじみが発生したり、赤色光電変換素子13が赤外光の一部を赤色の光として検出してしまったり、青色光電変換素子11が紫外光の一部を青色の光として検出してしまったりするので、良好な画質のカラー画像を得るためには、図16に示すように、紫外光・青色光・緑色光・赤色光・赤外光の順に合計5回照射されるそれぞれのタイミングで画像の読取を行う必要がある。
 図17は、実施の形態2に係る固体撮像装置の動作タイミングを示す図である。固体撮像装置8では、前述のように、白色光(可視光+赤外光+紫外光)を照射してもにじみの無い良好な画質のカラー画像を得ることができるので、図17に示すように、可視光+赤外光が同時照射されたタイミングと紫外光が照射された2回タイミングで画像の読取が可能となる。なお、イメージセンサー1が紫外光源20を別に備えず、可視光、赤外光および紫外光を照射する光源を備える構成の場合には、可視光+赤外光+紫外光が同時照射される1回のタイミングで画像の読取を行ってもよい。
 以上説明したように、実施の形態2の固体撮像装置8によれば、紫外光に反応するインクの読取が必要となる場合も、光電変換素子上に紫外遮光フィルターおよび赤外遮光フィルターの蒸着膜をまず積層し、その上に色フィルターを積層することで、隣接画素へのにじみ抑制や蒸着膜の特性を確保し、製造工程を追加することなく、読取速度を向上させ、良好な画質のカラー画像を得ることができる。また、紫外光・青色光・緑色光・赤色光・赤外光を順次照射する必要がなく、読取時間を短縮することができる。さらに、紫外遮光フィルターを固体撮像装置8が備えることで、イメージセンサー1において、固体撮像装置8と、紫外光を受光して光電変換する他の固体撮像装置とを共用することが可能となる。
 本発明は、読取対象物からの反射光を受光するイメージセンサーに限らず、読取対象物からの透過光を受光するイメージセンサーや、読取対象の媒体からの反射光および透過光を受光するイメージセンサーに適用してもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 本出願は、2016年5月19日に出願された、日本国特許出願特願2016-100686号に基づく。本明細書中に日本国特許出願特願2016-100686号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 1 イメージセンサー、2 導光体、3 導光体ケース、6 レンズ、7 透明板、8 固体撮像装置、9 センサー基板、10 筐体、11 青色光電変換素子、12 緑色光電変換素子、13 赤色光電変換素子、14 赤外光電変換素子、20 紫外光源、100 半導体基板。

Claims (4)

  1.  赤色光を受光して電気信号に変換する赤色光電変換素子と、
     緑色光を受光して電気信号に変換する緑色光電変換素子と、
     青色光を受光して電気信号に変換する青色光電変換素子と、
     赤外光を受光して電気信号に変換する赤外光電変換素子と、
     前記赤色光電変換素子、前記緑色光電変換素子および前記青色光電変換素子それぞれの上に積層され、赤外光を遮光する赤外遮光フィルターと、
     前記赤色光電変換素子の上の前記赤外遮光フィルターの上に積層され、赤色の波長の光を透過する赤色フィルターと、
     前記緑色光電変換素子の上の前記赤外遮光フィルターの上に積層され、緑色の波長の光を透過する緑色フィルターと、
     前記青色光電変換素子の上の前記赤外遮光フィルターの上に積層され、青色の波長の光を透過する青色フィルターと、
     前記赤外光電変換素子の上に積層され、赤外光を透過し、赤色光、緑色光および青色光を遮光する可視光遮光フィルターと、
     を備える固体撮像装置。
  2.  前記赤色光電変換素子、前記緑色光電変換素子および前記青色光電変換素子のそれぞれと前記赤外遮光フィルターとの間、ならびに、前記赤外光電変換素子と前記可視光遮光フィルターとの間に積層され、赤外光および可視光を透過し、紫外光を遮光する紫外遮光フィルターをさらに備える請求項1に記載の固体撮像装置。
  3.  請求項1に記載の固体撮像装置と、
     可視光および赤外光を読取対象物に照射する照射部と、
     前記照射部から可視光および赤外光が照射された前記読取対象物の像を、前記固体撮像装置の上に結ぶレンズと、
     前記固体撮像装置、前記照射部および前記レンズを保持する筐体と、
     を備えるイメージセンサー。
  4.  請求項2に記載の固体撮像装置と、
     可視光、赤外光および紫外光を読取対象物に照射する照射部と、
     前記照射部から可視光、赤外光および紫外光が照射された前記読取対象物の像を、前記固体撮像装置の上に結ぶレンズと、
     前記固体撮像装置、前記照射部および前記レンズを保持する筐体と、
     を備えるイメージセンサー。
PCT/JP2017/018537 2016-05-19 2017-05-17 固体撮像装置およびイメージセンサー WO2017200007A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/092,133 US10991737B2 (en) 2016-05-19 2017-05-17 Solid-state imaging device and image sensor for suppressing or preventing leaking of light into adjoining pixels
CN201780029635.6A CN109196848B (zh) 2016-05-19 2017-05-17 固态摄像装置及图像传感器
DE112017002541.9T DE112017002541T5 (de) 2016-05-19 2017-05-17 Festkörper-bildgebungseinrichtung und bildsensor
JP2017559717A JP6355862B2 (ja) 2016-05-19 2017-05-17 固体撮像装置およびイメージセンサー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-100686 2016-05-19
JP2016100686 2016-05-19

Publications (1)

Publication Number Publication Date
WO2017200007A1 true WO2017200007A1 (ja) 2017-11-23

Family

ID=60325284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018537 WO2017200007A1 (ja) 2016-05-19 2017-05-17 固体撮像装置およびイメージセンサー

Country Status (5)

Country Link
US (1) US10991737B2 (ja)
JP (1) JP6355862B2 (ja)
CN (1) CN109196848B (ja)
DE (1) DE112017002541T5 (ja)
WO (1) WO2017200007A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056874A (ja) * 2018-10-01 2020-04-09 キヤノン電子株式会社 光学フィルタ及び光学装置
WO2020149207A1 (ja) * 2019-01-17 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
CN111602246A (zh) * 2018-03-30 2020-08-28 索尼半导体解决方案公司 成像元件和成像装置
JP2021150800A (ja) * 2020-03-18 2021-09-27 株式会社リコー 光電変換装置、画像読取装置、画像形成装置、及び撮像システム
JP2021150837A (ja) * 2020-03-19 2021-09-27 株式会社リコー 固体撮像素子、画像読取装置、及び画像形成装置
WO2022163223A1 (ja) * 2021-01-28 2022-08-04 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12009379B2 (en) * 2017-05-01 2024-06-11 Visera Technologies Company Limited Image sensor
TW202127642A (zh) * 2020-01-14 2021-07-16 力晶積成電子製造股份有限公司 影像感測器結構及其製造方法
CN111584673A (zh) * 2020-05-22 2020-08-25 成都天马微电子有限公司 传感器、传感器的制造方法及电子设备
CN114190113A (zh) * 2020-07-14 2022-03-15 深圳市汇顶科技股份有限公司 图像传感装置以及相关电子装置
CN117581372A (zh) * 2021-06-18 2024-02-20 苏州晶湛半导体有限公司 前照式图像传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204444A (ja) * 1993-01-01 1994-07-22 Canon Inc イメージセンサ
JPH06217079A (ja) * 1993-01-19 1994-08-05 Canon Inc イメージセンサ及び画像情報処理装置
JP2003318374A (ja) * 2002-04-23 2003-11-07 Toppan Printing Co Ltd 固体撮像素子
JP2008076084A (ja) * 2006-09-19 2008-04-03 Denso Corp 車載用カラーセンサおよびその製造方法
JP2016076682A (ja) * 2014-10-06 2016-05-12 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited イメージセンサーとその形成方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453611A (en) 1993-01-01 1995-09-26 Canon Kabushiki Kaisha Solid-state image pickup device with a plurality of photoelectric conversion elements on a common semiconductor chip
JP3405620B2 (ja) * 1995-05-22 2003-05-12 松下電器産業株式会社 固体撮像装置
US7022965B2 (en) * 2003-07-22 2006-04-04 Omnivision Tehnologies, Inc. Low voltage active CMOS pixel on an N-type substrate with complete reset
JP2005184293A (ja) 2003-12-18 2005-07-07 Nec Electronics Corp 固体撮像装置及びそれを用いた画像読取システム
KR100672995B1 (ko) * 2005-02-02 2007-01-24 삼성전자주식회사 이미지 센서의 제조 방법 및 그에 의해 형성된 이미지 센서
US20070010042A1 (en) * 2005-07-05 2007-01-11 Sheng-Chin Li Method of manufacturing a cmos image sensor
JP4695550B2 (ja) 2006-06-22 2011-06-08 富士フイルム株式会社 固体撮像装置およびその駆動方法
US20080067330A1 (en) 2006-09-19 2008-03-20 Denso Corporation Color sensor for vehicle and method for manufacturing the same
EP2698771B1 (en) * 2007-03-29 2015-11-18 Glory Ltd. Paper-sheet recognition apparatus, paper-sheet processing apparatus, and paper-sheet recognition method
JP2008288629A (ja) * 2007-05-15 2008-11-27 Sony Corp 画像信号処理装置、撮像素子、および画像信号処理方法、並びにコンピュータ・プログラム
JP4674610B2 (ja) * 2008-03-07 2011-04-20 パナソニック株式会社 分析物測定方法および自動遺伝子検出装置
US9532033B2 (en) * 2010-11-29 2016-12-27 Nikon Corporation Image sensor and imaging device
JP6161007B2 (ja) * 2012-09-14 2017-07-12 パナソニックIpマネジメント株式会社 固体撮像装置及びカメラモジュール
US9699393B2 (en) * 2014-06-26 2017-07-04 Semiconductor Components Industries, Llc Imaging systems for infrared and visible imaging with patterned infrared cutoff filters
US9679933B2 (en) 2014-10-06 2017-06-13 Visera Technologies Company Limited Image sensors and methods of forming the same
JP2016100686A (ja) 2014-11-19 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. 撮像装置および撮像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204444A (ja) * 1993-01-01 1994-07-22 Canon Inc イメージセンサ
JPH06217079A (ja) * 1993-01-19 1994-08-05 Canon Inc イメージセンサ及び画像情報処理装置
JP2003318374A (ja) * 2002-04-23 2003-11-07 Toppan Printing Co Ltd 固体撮像素子
JP2008076084A (ja) * 2006-09-19 2008-04-03 Denso Corp 車載用カラーセンサおよびその製造方法
JP2016076682A (ja) * 2014-10-06 2016-05-12 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited イメージセンサーとその形成方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602246A (zh) * 2018-03-30 2020-08-28 索尼半导体解决方案公司 成像元件和成像装置
JP2020056874A (ja) * 2018-10-01 2020-04-09 キヤノン電子株式会社 光学フィルタ及び光学装置
JP7271121B2 (ja) 2018-10-01 2023-05-11 キヤノン電子株式会社 光学フィルタ及び光学装置
WO2020149207A1 (ja) * 2019-01-17 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
JP2021150800A (ja) * 2020-03-18 2021-09-27 株式会社リコー 光電変換装置、画像読取装置、画像形成装置、及び撮像システム
JP7447591B2 (ja) 2020-03-18 2024-03-12 株式会社リコー 光電変換装置、画像読取装置、画像形成装置、及び撮像システム
JP2021150837A (ja) * 2020-03-19 2021-09-27 株式会社リコー 固体撮像素子、画像読取装置、及び画像形成装置
US11978749B2 (en) 2020-03-19 2024-05-07 Ricoh Company, Ltd. Solid-state image sensor, image scanning device, and image forming apparatus
WO2022163223A1 (ja) * 2021-01-28 2022-08-04 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器

Also Published As

Publication number Publication date
CN109196848B (zh) 2020-03-20
JP6355862B2 (ja) 2018-07-11
CN109196848A (zh) 2019-01-11
US20190165021A1 (en) 2019-05-30
US10991737B2 (en) 2021-04-27
DE112017002541T5 (de) 2019-02-21
JPWO2017200007A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6355862B2 (ja) 固体撮像装置およびイメージセンサー
US8779541B2 (en) Solid-state imaging device with pixels having white filter, microlens and planarizing film refractive indices in predetermined relationship
JP5536150B2 (ja) イメージセンサユニット及び画像読取装置
US8872086B2 (en) Photoelectric conversion device and imaging system
US7786426B2 (en) Imaging device with a color filter that contains a layer only covering the surrounding areas
CN106612420B (zh) 彩色滤光器阵列及图像传感器
WO2015190291A1 (ja) 光学フィルタ、固体撮像装置、および電子機器
JP3948439B2 (ja) 密着イメージセンサおよびこれを用いた画像読み取り装置
US20120012961A1 (en) Solid-state imaging device and method of manufacturing of same
JP4761505B2 (ja) 撮像装置、ならびに撮像システム
US7285768B2 (en) Color photodetector array
US11824074B2 (en) Imaging element and imaging apparatus including incident light attenuating section between color filters
KR20100091107A (ko) 고체 촬상 장치, 카메라, 전자 기기, 및, 고체 촬상 장치의 제조 방법
US20200075651A1 (en) Double-layer color filter and method for forming the same
WO2013111419A1 (ja) 固体撮像装置
WO2013018559A1 (ja) 撮像素子およびその製造方法
JP2016197794A (ja) 撮像装置
JP2005064385A (ja) 撮像素子、該撮像素子を備えたデジタルカメラ
WO2022172624A1 (ja) 光検出装置及び電子機器
JP2022069852A (ja) マルチカラーセンサ及びマルチカラーセンサ装置
JP7331490B2 (ja) 固体撮像素子、画像読取装置、及び画像形成装置
TW201740141A (zh) 彩色濾光陣列與應用其之影像感測裝置
JP2014086743A (ja) 固体撮像素子、撮像装置、および信号処理方法
JP2021185421A (ja) カラーフィルタアレイの形成方法および電子デバイスの製造方法
JPH1169081A (ja) センサic、およびこれを備えたイメージセンサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559717

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799431

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799431

Country of ref document: EP

Kind code of ref document: A1