WO2017199901A1 - エネルギー管理装置、エネルギーシステム、エネルギー管理方法、及びプログラム記憶媒体 - Google Patents

エネルギー管理装置、エネルギーシステム、エネルギー管理方法、及びプログラム記憶媒体 Download PDF

Info

Publication number
WO2017199901A1
WO2017199901A1 PCT/JP2017/018163 JP2017018163W WO2017199901A1 WO 2017199901 A1 WO2017199901 A1 WO 2017199901A1 JP 2017018163 W JP2017018163 W JP 2017018163W WO 2017199901 A1 WO2017199901 A1 WO 2017199901A1
Authority
WO
WIPO (PCT)
Prior art keywords
consumer
reduction
community
target value
energy
Prior art date
Application number
PCT/JP2017/018163
Other languages
English (en)
French (fr)
Inventor
真澄 一圓
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018518279A priority Critical patent/JPWO2017199901A1/ja
Priority to US16/301,803 priority patent/US20190165579A1/en
Publication of WO2017199901A1 publication Critical patent/WO2017199901A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a technique for determining a highly feasible energy reduction target value for each consumer constituting the community when trying to suppress energy of the entire community.
  • CEMS community-based energy management system
  • CEMS is a system that collectively manages the energy of a plurality of consumers for the purpose of reducing the energy amount of the entire community and effectively using renewable energy (storage battery or photovoltaic power) in each consumer.
  • renewable energy storage battery or photovoltaic power
  • an operator supplying energy to a plurality of consumers for example, a power aggregator, reduces the energy supply load from the power system by greatly reducing the energy consumption in the entire community using CEMS.
  • the energy supplier provides an attractive price menu that returns the corresponding incentive to each customer.
  • a simple measure is to request each customer to reduce their energy usage and have them reduce energy usage as much as possible.
  • the apparatus disclosed in Patent Document 1 sets a target value for carbon dioxide emission to each consumer, and calculates a reward from a result value for the target value. The evaluation value of is calculated. Moreover, the apparatus which patent document 2 discloses selects the consumer suitable for requesting power saving from the electric power usage history of each consumer.
  • the target value of each consumer in Patent Document 1 is calculated based on the future prediction information of the power receiving and power generation energy of each consumer and the adjustable range of energy usage. Since this target value is calculated based on the prediction information, there is a possibility that an appropriate target value may not be set when the situation changes or when the prediction information is lost. Therefore, there is a possibility that the energy usage amount is not appropriately reduced at each consumer, and as a result, the energy usage amount of the entire community cannot be reduced. In the first place, the technique of Patent Document 2 does not notify the customer of a specific power saving target value.
  • the main object of the present invention is to present a reduction target for energy consumption according to the situation of consumers belonging to the community to the consumer, thereby making it easy to achieve the reduction target for energy consumption of the entire community. Is to provide.
  • An energy management apparatus includes: An expectation index that indicates the amount of energy that the customer has reduced during the set period, inputs the reduction target value of the energy consumption set for the consumer, and indicates the expected level of achievement of the reduction target value
  • the index updating means for determining the function that outputs the higher expected index as the reduction target value is lower and the reduction actual amount is higher, by using the reduction actual amount.
  • An energy management method includes: An expectation index that indicates the amount of energy that the customer has reduced during the set period, inputs the reduction target value of the energy consumption set for the consumer, and indicates the expected level of achievement of the reduction target value The function that outputs the higher expected index as the reduction target value is lower and the reduction actual amount is higher is determined using the reduction actual amount, When the target amount of energy consumption set for the entire managed community including the consumer is distributed to the consumer in the community, the expectation index based on the function of the consumer in the community The reduction target value of each of the consumers is determined so that the sum is maximized.
  • the program storage medium includes: An expectation index that indicates the amount of energy that the customer has reduced during the set period, inputs the reduction target value of the energy consumption set for the consumer, and indicates the expected level of achievement of the reduction target value
  • the index update process for determining the function that outputs the higher expected index as the reduction target value is lower and the reduction actual amount is higher by using the reduction actual amount
  • the expected index based on the function of the consumer in the community when distributing the reduction target amount of the energy usage set for the entire managed community including the consumer to the consumer in the community
  • a computer program for causing a computer to execute a setting process for determining the reduction target value of each of the consumers so as to maximize the total sum of the above.
  • the energy management device can easily achieve the energy usage reduction target of the entire community by presenting the energy usage reduction target according to the situation of the consumer belonging to the community to the consumer.
  • the energy system 40 in the first embodiment includes a centralized energy management device 20 and a load management device 100.
  • the centralized energy management device 20 and the load management device 100 are connected via a communication network 50.
  • the load management device 100 is included in the customer 10.
  • limiting in the number of the consumers 10 contained in a community in the description of 1st Embodiment, suppose that the some consumer 10 is contained in one community.
  • the customer 10 is a control unit of energy demand existing in the community, for example, a contract unit with an electric power company or a gas company. Specifically, the consumer 10 is, for example, a house, a store, an office, or a building that uses energy.
  • the centralized energy management apparatus 20 manages the energy usage state of a plurality of consumers 10 in a community to be managed, determines a reduction target value of the energy usage amount of each consumer 10 and notifies each consumer 10 It is.
  • Each customer 10 is expected to comply with the notified reduction target value of energy usage (hereinafter, the reduction target value of energy usage is also simply referred to as a reduction target value), but is actually observed May not be protected.
  • the centralized energy management apparatus 20 determines an easy-to-protect reduction target value for each customer 10 under the restriction of complying with the reduction target value for the entire community.
  • the communication network 50 is a communication means used for notification of energy information and reduction target values between the customer 10 and the centralized energy management apparatus 20, and is configured by a wired communication network or a wireless communication network.
  • the customer 10 includes a load management device 100, a load device 101, a customer communication unit 102, and a display unit 103.
  • the load management device 100 manages the setting state of the load device 101 in the customer 10, and manages and measures the energy usage.
  • the load management apparatus 100 has a function of HEMS (Home Energy Management System), for example.
  • the load device 101 is a device that uses energy within the customer 10.
  • the load device 101 is, for example, lighting, air conditioning, a cooking appliance, a water heater, or an AV (Audio Visual) device.
  • the customer communication unit 102 is a communication function module.
  • the customer communication unit 102 transmits the energy usage information of the load device 101 transmitted from the load management device 100 to the centralized energy management device 20 through the communication network 50. Further, the customer communication unit 102 receives the reduction target value transmitted from the centralized energy management apparatus 20.
  • the display unit 103 is configured to display information that prompts the resident of the customer 10 to reduce the energy usage based on the reduction target value received by the customer communication unit 102.
  • the display unit 103 displays, for example, the current energy usage amount of the entire consumer 10 and the energy usage amount that the customer 10 wants to reduce by arranging them numerically.
  • the display unit 103 may display an action instruction directed toward a human based on the reduction target value.
  • the centralized energy management apparatus 20 includes a system communication unit 200, a usage information update unit 201, a usage information holding unit 202, an index update unit 203, an index holding unit 204, and a setting unit 205.
  • the system communication unit 200 has a function of receiving energy information transmitted from the customer 10 (load management device 100) and transmitting the reduction target value calculated by the setting unit 205 to each customer 10.
  • the usage information update unit 201 has a function of periodically acquiring current energy information from each customer 10 and storing it in the usage information holding unit 202.
  • the index update unit 203 outputs a function (expected index output function) that outputs an expected index that indicates the possibility that each customer 10 can reduce energy consumption based on energy information periodically acquired from each customer 10. It has a function to determine.
  • the exponent updating unit 203 further stores information related to the determined expected exponent output function in the exponent holding unit 204 every time the expected exponent output function is determined (updates information related to the expected exponent output function). Is provided.
  • the output function of the expected index is a function that is determined by each customer 10 based on the energy usage reduction results of each customer 10, and the expected index is output with the reduction target value as an input (parameter). Is a function.
  • the output function of the expected index outputs an expected index that indicates a higher possibility as the input reduction target value is smaller.
  • the expected index corresponding to the customer 10 having a high energy consumption reduction record The higher the output function is, the higher the exponent is expressed.
  • the setting unit 205 uses the amount of energy to be reduced as a whole community and the output function of the expectation index of each customer 10 to set the reduction target value of each consumer 10 so that the sum of the expectation index of the community is maximized. A function to calculate periodically is provided. In addition, the setting unit 205 has a function of notifying each customer 10 of the calculated reduction target value and prompting to achieve the target.
  • the system communication unit 200, the usage information update unit 201, the index update unit 203, and the setting unit 205 are configured by logic circuits. Further, the usage information holding unit 202 and the index holding unit 204 are configured by a magnetic disk device or a semiconductor storage device.
  • the centralized energy management device 20 may be realized by a computer device.
  • FIG. 12 is a diagram illustrating a configuration example of a computer apparatus.
  • the computer device 60 shown in FIG. 12 includes a processor 610, a main storage unit 630, and an external storage device 620 that are connected to each other via a bus 640.
  • the processor 610 reads / writes data from / to the main storage unit 630 and the external storage device 620 via the bus 640. Further, the processor 610 executes a program 650 stored in the main storage unit 630. Note that the program 650 is stored in the external storage device 620 when initial setting of the computer device 60 is started, and the processor 610 moves from the external storage device 620 to the main storage unit 630 by the initial setting processing of the computer device 60. May be loaded.
  • the main storage unit 630 is a semiconductor memory device.
  • the external storage device 620 is a storage device such as a disk device or a semiconductor storage device.
  • the processor 610 functions as a system communication unit 200, a usage information update unit 201, an index update unit 203, and a setting unit 205 as illustrated in FIG. 1 by executing the program 650. That is, the processor 610 executes processing performed by the system communication unit 200, the usage information update unit 201, the index update unit 203, and the setting unit 205 by executing the program 650.
  • the external storage device 620 functions as a usage information holding unit 202 and an index holding unit 204.
  • FIG. 2 is a flowchart of processing in which the usage information update unit 201 updates the energy usage information of all the consumers 10 in the community.
  • the usage information update unit 201 determines whether it is the update timing of energy usage information (S100). When it is not the update timing (No in S100), the usage information update unit 201 determines again after a set standby time elapses, for example.
  • the update process is performed periodically, for example, after a predetermined time interval. In this case, whether or not it is the update timing is determined by whether or not a predetermined time has elapsed since the previous update process. Other timings are similarly determined.
  • the usage information update unit 201 acquires the current energy usage of each customer 10, and stores it in the usage information holding unit 202 as the current energy usage (S101).
  • the energy usage information is, for example, in the form of electric power (W) or electric energy (Wh) that is an integrated value of electric power.
  • the usage information update unit 201 determines whether it is time to set a reference point (S102). When it is not the timing (No in S102), the usage information update unit 201 ends the process as it is.
  • the usage information update unit 201 sets the energy usage amount of each customer 10 at the present time (latest) as reference point information (S103).
  • This reference point is used as the reference energy usage (P base_i ) in the process of calculating the reduction amount of the energy usage of each customer 10 when updating the function that outputs the expected index (output function of the expected index). Is done.
  • the usage information update unit 201 sets the reference point once every m times (m is a natural number of 1 or more).
  • FIG. 3 is a flowchart of processing in which the index update unit 203 updates a function (expected index output function) for outputting the expected index of each customer 10.
  • the index update unit 203 determines whether it is time to update the output function information of the expected index (S200). When it is not the update timing (No in S200), the index update unit 203 determines again after a set standby time has elapsed, for example.
  • the index update unit 203 calculates the energy usage of the reference point based on the information on the current energy usage of each customer 10 and the energy usage set as the reference point. A reduction amount of energy usage from the acquired time to the present is calculated (S201). Then, the index update unit 203 updates the output function of the expected index corresponding to each customer 10 based on the calculated reduction amount of the energy usage, and stores information on the output function of the updated expected index as the index holding unit It stores in 204 (S202).
  • the output function of the expectation index is, for example, a function as expressed in Equation (1) and FIG.
  • i represents the identifier of the customer 10, for example, the ordinal number given to the customer 10.
  • T i denotes reduction targets of consumer 10 that identifier i is assigned (amount reduced).
  • E i represents an expectation index of the customer 10 to which the identifier i is assigned, and represents a value indicating a high possibility of reducing the energy corresponding to the input reduction target value T i .
  • Equation (1) relationship of Figure 11 is the expectation index E i showing the reduction target value T i is and, if in the reduction expectation value E i as the target value T i is reduced is increased, i.e. less reduction targets T i if, indicating that the possibility of consumers 10 us to achieve the energy reduction of the reduction target value T i is increased.
  • R base represents the standard value of energy reduction amount of the entire community.
  • P base — i represents the reference value of the energy usage of the customer 10 to which the identifier i is assigned .
  • P base — i is a value set in S103 in the processing flow for updating the energy use information.
  • P i represents the current energy consumption of consumer 10 in which the identifier i is given. Therefore, P base — i ⁇ P i represents the amount of energy reduction from the time when the reference point is set to the present, and the slope of the graph becomes gentler as the amount of reduction increases.
  • E base — i and R base are coefficients set by the exponent updating unit 203 and are positive values.
  • E base — i is set to a predetermined maximum value of the expectation index.
  • R base is set so that E i becomes a value of 0 or more within the range of the assumed energy reduction amount and the target value.
  • the index update unit 203 regularly updates the information on the coefficients constituting the output function of such an expected index based on the information on the energy reduction amount.
  • the output function of the expected exponent may be not only linear but also non-linear or a mapping rule that cannot be expressed as a mathematical expression.
  • FIG. 4 is a flowchart showing a process in which the setting unit 205 notifies each customer 10 of the target value.
  • the setting unit 205 determines whether or not it is the notification timing of the reduction target value (S300). When it is not the notification timing (No in S300), the setting unit 205 determines again after, for example, a setting standby time has elapsed.
  • the setting unit 205 calculates the amount of energy (R total ) to be reduced in the entire community (S301). For example, the setting unit 205 calculates the difference between the target energy usage set in advance and the total energy usage of all the consumers 10 in the community at the time of the calculation.
  • the amount of energy (R total ) to be reduced for the entire community may be a predetermined fixed value.
  • the setting unit 205 acquires information on the expected index from the index holding unit 204 (S302). For example, the setting unit 205 acquires coefficient information related to the output function of the expectation index corresponding to each customer 10.
  • the setting unit 205 calculates a reduction target value for each customer 10 that maximizes the sum of the expected indices based on the calculated amount of energy to be reduced for the entire community and the acquired information on the expected index. (S303).
  • the maximum sum of the expected indexes means that each customer 10 has the highest possibility of achieving the reduction target value, that is, the highest possibility of achieving energy reduction in the entire community.
  • the setting unit 205 notifies each customer 10 of the calculated reduction target value (S304).
  • N is the total number of consumers 10 in the community.
  • the item of max means aiming for the maximum sum of the expected indexes of each customer 10. s. t.
  • the item of means that it aims to maximize the sum of the expected index under the condition that the sum of the reduction target values (the amount of energy to be reduced) of each customer 10 is equal to the amount of energy (R total ) that the entire community wants to reduce. is doing.
  • R total represents the value calculated in S301.
  • the setting unit 205 uses, for example, the simplex method as a specific optimization solution.
  • the above-described three processes of the energy information update process in FIG. 2, the expected index information update process in FIG. 3, and the target value notification process in FIG. 4 may be processed asynchronously or synchronously. May be.
  • the index updating unit 203 and the setting unit 205 may continuously execute the processes in FIGS. 3 and 4 after a certain period of time when the usage information updating unit 201 executes the S103 process in FIG.
  • the centralized energy management apparatus 20 can prompt each customer 10 to perform a reasonable energy reduction action in accordance with the current situation, and as a result, the possibility of achieving the target energy reduction for the entire community. Can be high.
  • the reason is that the index updating unit 203 periodically updates the information related to the output function of the expected index based on the actual amount of energy reduction of each customer 10, and the setting unit 205 sets each demand for which the expected index is maximized. This is because the reduction target value of the house 10 is calculated.
  • the energy system 40 in the second embodiment does not include a centralized energy management device, but includes distributed energy management devices respectively included in a plurality of consumers 10. These distributed energy management apparatuses are connected to each other via a communication network 50. In addition, there is no restriction
  • the communication network 50 is the same as the communication network 50 in the first embodiment.
  • each customer 10 corresponds to a node of a predetermined network topology (structural network).
  • Each customer 10 exchanges information with adjacent nodes in the network topology.
  • the customer 10 includes a distributed energy management device 30.
  • Each distributed energy management device 30 calculates an optimal reduction target value by distributed processing while communicating between adjacent customers 10 on the network topology.
  • the centralized energy management apparatus 20 in the first embodiment described above collects information on all the consumers 10 in the community, and sets a reduction target value based on the collected information.
  • the distributed energy management apparatus 30 according to the second embodiment calculates an optimal reduction target value for the entire community through distributed processing by exchanging information between neighboring consumers 10.
  • the customer 10 includes a load management device 100, a load device 101, a customer communication unit 102, and a display unit 103 in addition to the distributed energy management device 30.
  • the load management device 100, the load device 101, the customer communication unit 102, and the display unit 103 are the same as the load management device 100, the load device 101, the customer communication unit 102, and the display unit 103 in the first embodiment.
  • the distributed energy management apparatus 30 includes a usage information updating unit 300, a usage information holding unit 301, an index updating unit 302, an index holding unit 303, a setting unit 304, a parameter transmitting / receiving unit 305, an adjacent information holding unit 306, and a parameter holding unit 307.
  • the home means the customer 10 provided with the corresponding distributed energy management apparatus 30.
  • the usage information updating unit 300 has a function of periodically acquiring own energy usage information and recording it in the usage information holding unit 301.
  • the index update unit 302 has a function of periodically acquiring self-used energy information, determining an output function of an expected index in the home based on the information, and updating information related to the output function.
  • the index holding unit 303 holds information related to the output function of the expected exponent of the house.
  • the output function of the expected exponent may be the same as the output function of the expected exponent described in the first embodiment.
  • the setting unit 304 has a function of periodically calculating and setting a self-reduction target value so that the sum of the expected exponents in the community is maximized using information and calculation parameters regarding the expected exponent output function in the home. Prepare.
  • the parameter transmission / reception unit 305 acquires information necessary for calculating the optimal reduction target value in a distributed manner by transmission / reception with the adjacent customer 10.
  • the adjacent information holding unit 306 holds information related to the customer 10 that is adjacent to the home, for example, a communication address.
  • the parameter holding unit 307 holds the calculation parameter received from the adjacent customer 10 and the information of the calculation parameter updated in-house.
  • the load management device 100, the customer communication unit 102, the usage information update unit 300, the index update unit 302, the setting unit 304, and the parameter transmission / reception unit 305 are configured by logic circuits.
  • the usage information holding unit 301, the index holding unit 303, the adjacent information holding unit 306, and the parameter holding unit 307 are configured by a magnetic disk device or a semiconductor memory device.
  • distributed energy management apparatus 30 may be realized by the computer apparatus 60 of FIG.
  • the processor 610 functions as the usage information update unit 300, the index update unit 302, the setting unit 304, and the parameter transmission / reception unit 305 by executing the program 650. That is, the processor 610 executes the program 650 to execute processing performed by the usage information update unit 300, the index update unit 302, the setting unit 304, and the parameter transmission / reception unit 305.
  • the external storage device 620 functions as a usage information holding unit 301, an index holding unit 303, an adjacent information holding unit 306, and a parameter holding unit 307.
  • FIG. 6 is a flowchart of a process in which the usage information update unit 300 updates own energy usage information.
  • the usage information update unit 300 determines whether it is the update timing of the energy usage information (S400). When it is not the update timing (No in S400), the usage information update unit 300 determines again after a set standby time elapses, for example.
  • the usage information update unit 300 acquires the current energy usage of the home and stores it in the usage information holding unit 301 (S401).
  • the usage information update unit 300 determines whether it is time to set a reference point (S402). When it is not the timing (No in S402), the usage information update unit 300 ends the process as it is.
  • the usage information update unit 300 sets the current energy usage amount as the reference point information (S403).
  • This reference point is used as the reference energy usage (P base — i ) in the process of calculating the energy reduction amount of each customer 10 when updating the information related to the output function of the expected index.
  • the usage information update unit 300 sets the reference point once every m times (m is a natural number of 2 or more).
  • FIG. 7 is a flowchart of a process in which the index update unit 302 updates information related to the output function of the own expected index.
  • the exponent update unit 302 determines whether it is the update timing of information related to a function that outputs an expected exponent (expected exponent output function) (S500). When it is not the update timing (No in S500), the index update unit 302 determines again after the set standby time has elapsed, for example.
  • the index update unit 302 obtains the energy usage of the reference point by calculating the difference between the current energy usage of the home and the energy usage set as the reference point. The amount of energy reduction from the set time to the present is obtained (S501). Then, the index update unit 302 determines an expected exponent output function based on the calculated energy reduction amount, and stores information on the determined output function in the index holding unit 303 (S502).
  • FIG. 8 is a flowchart of a process in which the setting unit 304 calculates the own reduction target value.
  • the setting unit 205 determines whether it is the calculation timing of the reduction target value (S600). When it is not the calculation timing (No in S600), the setting unit 304 determines again after elapse of the setting standby time, for example.
  • the setting unit 304 acquires the calculation parameter received from the adjacent customer 10 from the parameter holding unit 307 and the information on the expected index of the home from the index holding unit 303. (S601). Then, for example, as described in the first embodiment, the setting unit 304 calculates a reduction target value for the entire community (S602), calculates a reduction target value for the home (S603), and calculates the calculated reduction target value. Is displayed on the display unit 103 (S604).
  • FIG. 9 is a flowchart of processing in which the parameter transmission / reception unit 305 transmits calculation parameters.
  • the parameter transmission / reception unit 305 determines whether it is the transmission timing of the calculation parameter (S700). If it is not the transmission timing (No in S700), the parameter transmission / reception unit 305 determines again after the set standby time has elapsed, for example.
  • the parameter transmission / reception unit 305 updates the calculation parameter of the home (S701), and based on the information about the adjacent customer 10 stored in the adjacent information holding unit 306 The calculation parameters are transmitted to the adjacent customer 10 (S702).
  • FIG. 10 is a flowchart of processing in which the parameter transmission / reception unit 305 receives calculation parameters.
  • the parameter transmission / reception unit 305 receives the calculation parameter from the adjacent customer 10 (S800), and overwrites (updates) the calculation parameter in the parameter holding unit 307 (S801).
  • the distributed energy management device 30 sets a reasonable reduction target value suitable for the situation of each customer 10 by distributed processing with the distributed energy management device 30 provided in the other customer 10. It can be calculated. Thereby, the distributed energy management apparatus 30 can reduce bottlenecks in terms of processing performance and safety of the energy system 40.
  • the setting unit 304 solves the dispersion constraint optimization problem in order to calculate the reduction target value of each customer 10.
  • the adjacency relationship with the customer 10 the content of the calculation parameter that the parameter transmission / reception unit 305 transmits / receives to / from the adjacent customer 10, and the timing at which transmission / reception is required change.
  • DPOP Distributed Pseudo tree Optimization Procedure
  • a tree structure is set by a control target (in the modified example, a distributed energy management device 30 in a community), and a partial evaluation value and an optimum variable of each control target are determined along the tree structure. They are exchanged and the optimal solution is calculated for the entire community.
  • DPOP takes two steps to derive the optimal solution.
  • evaluation value information necessary for derivation of an optimal solution called a UTIL (Utility) message is propagated in order from a child node of the tree structure to a parent node.
  • UTIL Ultra-Reliable
  • the intermediate node propagates it toward the parent node while updating the UTIL message.
  • Root node aggregates UTIL messages of all nodes and calculates the optimal solution of all nodes based on the information.
  • the distributed energy management device 30 propagates the solution calculated by the root node in the reverse direction, that is, from the parent node to the child node.
  • the calculation parameter corresponds to the UTIL message or the notified optimal solution.
  • transmission / reception of calculation parameters corresponds to exchange of UTIL messages and optimal solutions between nodes.
  • the setting unit 304 acquires information regarding the output function of the expected index in each customer 10. This information is information that is aggregated in the distributed energy management device 30 of the root node through exchange of calculation parameters between the distributed energy management devices 30.
  • the setting unit 304 calculates a reduction target value for each customer 10 based on the information related to the output function of the acquired expectation index. Then, the setting unit 304 displays the own reduction target value on the own display unit 103, and notifies the child node side of the reduction target value of the other customer 10 according to the tree structure.
  • the setting unit 304 identifies the own reduction target value from the reduction target values notified from the parent node, and displays the reduction target value on the own display unit 103. indicate. And the setting part 304 notifies the reduction target value of the other consumer 10 to the child node side via the parameter transmission / reception part 305 according to the subtree structure below the own apparatus.
  • one of the plurality of consumers 10 in the community functions in the same manner as the centralized energy management apparatus 10 described in the first embodiment.
  • the distributed energy management apparatus 30 may form a network having a flat structure, for example, a network having a grid structure.
  • the setting unit 304 of each distributed energy management apparatus 30 may employ a known algorithm that derives a local optimum solution only by local information exchange and repeats it to derive an overall optimum solution. .
  • solution algorithm is not limited to DPOP, and the distributed energy management apparatus 30 may use another solution.
  • the energy management device 70 in the third embodiment includes an index update unit 401 and a setting unit 402.
  • the index update unit 401 acquires the actual amount of energy consumption reduction of the customer 10 for a certain period, inputs the energy reduction target value to the customer 10, and indicates the expected degree of achievement of the energy reduction target value Determine the function whose exponent is the output. This function outputs a higher expectation index as the energy reduction target value is lower and the actual amount of energy reduction of the customer 10 is higher.
  • the setting unit 402 distributes the given energy reduction target amount of the entire community to the consumers 10 in the community. At this time, the setting part 402 determines the energy reduction target value of each consumer 10 so that the sum total of the expectation index
  • the energy management device 70 can prompt each customer 10 to take a reasonable action to reduce the amount of energy used in accordance with the current situation, and as a result, achieve the target reduction of the energy usage of the entire community. Can increase the possibility.
  • the reason is that the index updating unit 203 updates the information on the function that outputs the expected index based on the actual amount of reduction in energy consumption of each customer 10, and the setting unit 205 sets each demand with the maximum expected index. This is because the reduction target value of the house 10 is calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

各需要家に現在の状況に合った無理のないエネルギー削減行動を促す。すなわち、エネルギー管理装置は、需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、削減目標値が低いほど、かつ、需要家のエネルギー削減実績量が高いほど、高い期待指数を出力する関数を決定する。また、エネルギー管理装置は、コミュニティ全体の削減目標量をコミュニティ内の需要家に分配するに際し、コミュニティ内の需要家の期待指数の総和が最大となるように、各々の需要家の削減目標値を決定する。

Description

エネルギー管理装置、エネルギーシステム、エネルギー管理方法、及びプログラム記憶媒体
 本発明は、コミュニティ全体のエネルギーを抑制しようとする際に、当該コミュニティを構成する各需要家に対して、実現可能性の高いエネルギー削減目標値を決定する技術に関する。
 エネルギーの効率的な利用に向けたエネルギー管理の一つとして、コミュニティ単位のエネルギーマネジメントシステム(Community Energy Management System(CEMS))がある。CEMSは、コミュニティ全体のエネルギー量の削減や、各需要家における再生可能エネルギー(蓄電池や太陽光発電の電力)の有効利用を目的に、複数の需要家のエネルギーをまとめて管理するシステムである。複数の需要家にエネルギーを供給する事業者、例えば、電力アグリゲータが、CEMSを用いてコミュニティ全体でのエネルギー使用量を大きく削減することにより、電力系統からのエネルギー供給負荷を軽減させることが考えられる。この場合、エネルギーの供給事業者は、その分のインセンティブを各需要家にリターンするような魅力的な料金メニューを提供する。
 コミュニティ全体でのエネルギー使用の制御に向けて、様々な施策が考えられている。シンプルな施策としては、エネルギー使用量の削減の要請を各需要家に出し、可能な範囲でエネルギー使用量を抑制してもらうというものがある。
 このようなエネルギー使用量の制御を実現するため、例えば、特許文献1が開示する装置は、各需要家への二酸化炭素排出量目標値を設定し、その目標値に対する成果値から報酬計算のための評価値を算出する。また、特許文献2が開示する装置は、各需要家の電力使用履歴から節電依頼するのに適した需要家を選択する。
特許第5606614号公報 特開2015-104137号公報
 上述した文献の技術は、いずれも、各需要家の状況に合わせた適切なエネルギー使用量の削減目標が設定できない。
 特許文献1における各需要家の目標値は、各需要家の受電および発電エネルギー、またエネルギー使用量の調整可能範囲の将来の予測情報を基にして算出されている。この目標値は、予測情報を基に算出されているため、状況が変化した場合や予測情報が外れた場合に、適切な目標値が設定されない虞が有る。したがって、各需要家で適切にエネルギー使用量が削減されず、結果としてコミュニティ全体のエネルギー使用量の削減が実現できない虞がある。特許文献2の技術は、そもそも、需要家に具体的な節電目標値を通知していない。
 本発明は上記課題を解決するために考え出された。すなわち、本発明の主な目的は、コミュニティに属する需要家の状況に合わせたエネルギー使用量の削減目標を需要家に提示することにより、コミュニティ全体のエネルギー使用量の削減目標を達成し易くする技術を提供することにある。
 本発明の実施の形態のエネルギー管理装置は、
 需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定する指数更新手段と、
 前記需要家を含む管理対象のコミュニティ全体に設定されるエネルギー使用量の削減目標量を前記コミュニティ内の前記需要家に分配するに際し、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を決定する設定手段と、を備える。
 本発明の実施の形態のエネルギー管理方法は、
 需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定し、
 前記需要家を含む管理対象のコミュニティ全体に設定されるエネルギー使用量の削減目標量を前記コミュニティ内の前記需要家に分配するに際し、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を決定する。
 本発明の実施の形態のプログラム記憶媒体は、
 需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定する指数更新処理と、
 前記需要家を含む管理対象のコミュニティ全体に設定される前記エネルギー使用量の削減目標量を前記コミュニティ内の前記需要家に分配するに際し、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を決定する設定処理と、をコンピュータに実行させるコンピュータプログラムを記憶する。
 本発明にかかるエネルギー管理装置は、コミュニティに属する需要家の状況に合わせたエネルギー使用量の削減目標を需要家に提示することにより、コミュニティ全体のエネルギー使用量の削減目標を達成し易くできる。
本発明の第1実施形態に係るエネルギーシステムの構成の一例を示す図である。 本発明の第1実施形態に係るエネルギー管理装置におけるエネルギーの使用情報更新フローの一例を示す図である。 本発明の第1実施形態に係るエネルギー管理装置における期待指数更新フローの一例を示す図である。 本発明の第1実施形態に係るエネルギー管理装置における目標値通知フローの一例を示す図である。 本発明の第2実施形態に係るエネルギーシステムの構成の一例を示す図である。 本発明の第2実施形態に係るエネルギー管理装置における自家のエネルギー使用情報更新フローの一例を示す図である。 本発明の第2実施形態に係るエネルギー管理装置における自家の期待指数更新フローの一例を示す図である。 本発明の第2実施形態に係るエネルギー管理装置における自家の目標値通知フローの一例を示す図である。 本発明の第2実施形態に係るエネルギー管理装置における計算パラメータ送信フローの一例を示す図である。 本発明の第2実施形態に係るエネルギー管理装置における計算パラメータ受信フローの一例を示す図である。 期待指数を出力する関数の情報の一例を示す図である。 コンピュータ装置の構成の一例を示す図である。 本発明の第3実施形態に係るコミュニティエネルギー管理装置の構成の一例を示す図である。
 <第1実施形態>
 <構成>
 本発明に係る第1実施形態について図面を参照して説明する。
 図1を参照すると、第1実施形態におけるエネルギーシステム40は、集中型エネルギー管理装置20と負荷管理装置100を有する。集中型エネルギー管理装置20と負荷管理装置100は通信網50を介して接続される。負荷管理装置100は需要家10に包含される。なお、コミュニティに含まれる需要家10の数に制限はないが、第1実施形態の説明では、1つのコミュニティには複数の需要家10が含まれているとする。
 需要家10は、コミュニティ内に存在するエネルギー需要量の制御単位であり、例えば、電力会社、ガス会社との契約単位である。具体的には需要家10は、例えば、エネルギーを使用する家屋、店舗、オフィス、ビルである。
 集中型エネルギー管理装置20は、管理対象のコミュニティ内における複数の需要家10のエネルギー使用状態を管理し、各需要家10のエネルギー使用量の削減目標値を決定し各需要家10に通知するシステムである。各需要家10は、通知されたエネルギー使用量の削減目標値(以下、エネルギー使用量の削減目標値を単に削減目標値とも記す)を順守することが期待されるが、実際には守られる場合も、守られない場合も有る。集中型エネルギー管理装置20は、コミュニティ全体としての削減目標値を順守するという制約の下で、守りやすい削減目標値を各需要家10に決定する。
 通信網50は、需要家10と集中型エネルギー管理装置20の間のエネルギー情報や削減目標値の通知に使われる通信手段で、有線通信網や無線通信網により構成される。
 需要家10は、負荷管理装置100、負荷機器101、需要家通信部102、および表示部103を含む。
 負荷管理装置100は、需要家10内の負荷機器101の設定状態を管理し、エネルギー使用量を管理、計測する。負荷管理装置100は、例えばHEMS(Home Energy Management System)の機能を有する。負荷機器101は、需要家10内でエネルギーを使用する機器である。負荷機器101は、例えば、照明、空調、調理器具、給湯器、AV(Audio Visual)機器である。
 需要家通信部102は、通信機能モジュールである。需要家通信部102は、負荷管理装置100から送信された負荷機器101のエネルギー使用情報を、通信網50を通して集中型エネルギー管理装置20に送信する。また、需要家通信部102は、集中型エネルギー管理装置20から送信された削減目標値を受信する。
 表示部103は、需要家通信部102が受信した削減目標値に基づいて、需要家10の居住者にエネルギー使用量の削減行動を促す情報を表示する構成を持つ。表示部103は、例えば、現在の需要家10全体のエネルギー使用量と、需要家10に削減してほしいエネルギー使用量とを数値で並べて表示する。あるいは、表示部103は、削減目標値に基づいて、人間に向けての行動指示を表示しても良い。
 集中型エネルギー管理装置20は、システム通信部200、使用情報更新部201、使用情報保持部202、指数更新部203、指数保持部204、および設定部205を備える。
 システム通信部200は、需要家10(負荷管理装置100)が送信したエネルギー情報を受信し、また、設定部205が算出した削減目標値を各需要家10に送信する機能を備える。
 使用情報更新部201は、定期的に各需要家10から現在のエネルギー情報を取得し、使用情報保持部202に格納する機能を備える。
 指数更新部203は、各需要家10から定期的に取得されたエネルギー情報を基に各需要家10がエネルギー使用量を削減できる可能性を表す期待指数を出力する関数(期待指数の出力関数)を決定する機能を備える。指数更新部203は、さらに、期待指数の出力関数を決定する度に、決定された期待指数の出力関数に関する情報を指数保持部204に格納する(期待指数の出力関数に関する情報を更新する)機能を備える。
 ここで、期待指数の出力関数は、各需要家10のエネルギー使用量の削減実績に基づいて各需要家10に決定される関数であり、削減目標値を入力(パラメータ)とし、期待指数を出力とする関数である。当該期待指数の出力関数は、入力される削減目標値が小さいほど、高い可能性を示す期待指数を出力する。また、エネルギー使用量の削減実績が異なる各需要家10に対応する期待指数の出力関数に、同じ削減目標値が入力された場合、エネルギー使用量の削減実績が高い需要家10に対応する期待指数の出力関数ほど、高い可能性を表す指数を出力する。
 設定部205は、コミュニティ全体として削減すべきエネルギー量と各需要家10の期待指数の出力関数を用いて、コミュニティの期待指数の総和が最大になるように、各需要家10の削減目標値を定期的に算出する機能を備える。また、設定部205は、算出した削減目標値を各需要家10に通知し、目標を達成するように促す機能を備える。
 ここで、システム通信部200、使用情報更新部201、指数更新部203、および設定部205は、論理回路で構成される。また、使用情報保持部202、および指数保持部204は、磁気ディスク装置や、半導体記憶装置で構成される。
 なお、集中型エネルギー管理装置20は、コンピュータ装置により実現されても良い。図12は、コンピュータ装置の構成例を表す図である。図12に表されるコンピュータ装置60は、バス640で相互に接続されたプロセッサ610、主記憶部630、および、外部記憶装置620を備える。プロセッサ610は、バス640を経由して、主記憶部630、および、外部記憶装置620に対してデータの読み書きを行う。また、プロセッサ610は、主記憶部630に格納されているプログラム650を実行する。なお、プログラム650は、コンピュータ装置60の初期設定を開始する際には外部記憶装置620に格納されており、コンピュータ装置60の初期設定処理により、プロセッサ610が外部記憶装置620から主記憶部630にロードされても良い。
 ここで、主記憶部630は半導体メモリ装置である。外部記憶装置620はディスク装置、または、半導体記憶装置等の記憶装置である。
 プロセッサ610は、プログラム650を実行することにより、図1に表されるようなシステム通信部200、使用情報更新部201、指数更新部203、および設定部205として機能する。すなわち、プロセッサ610は、プログラム650を実行することにより、システム通信部200、使用情報更新部201、指数更新部203、および設定部205が行う処理を実行する。外部記憶装置620は、使用情報保持部202、および指数保持部204として機能する。
 <動作>
 図2乃至図4は、集中型エネルギー管理装置20の動作例を表すフローチャートである。図2は、使用情報更新部201がコミュニティ内の全ての需要家10のエネルギー使用情報を更新する処理のフローチャートである。
 まず、使用情報更新部201は、エネルギー使用情報の更新タイミングかどうかを判定する(S100)。更新タイミングでない場合(S100でのNo)、使用情報更新部201は、例えば設定の待機時間を経過した後に再度判定する。
 なお、更新の処理は、例えば、所定時間を空けて定期的に行われる。この場合、更新タイミングか否かは、前回の更新処理から所定時間が経過したか否かで判断される。他のタイミングも、同様に判断される。
 更新タイミングである場合(S100でのYes)、使用情報更新部201は、各需要家10の現在のエネルギー使用量を取得し、使用情報保持部202に現エネルギー使用量として格納する(S101)。エネルギー使用情報は、例えば電力(W)や電力の積算値である電力量(Wh)の形式である。
 次に、使用情報更新部201は、基準点を設定するタイミングかどうかを判断する(S102)。そのタイミングでない場合(S102でのNo)、使用情報更新部201は、そのまま処理を終了する。
 そのタイミングである場合(S102でのYes)、使用情報更新部201は、現時点(最新)の各需要家10のエネルギー使用量を基準点の情報として設定する(S103)。この基準点は、期待指数を出力する関数(期待指数の出力関数)を更新する際に、各需要家10のエネルギー使用量の削減量を算出する処理において基準エネルギー使用量(Pbase_i)として使用される。使用情報更新部201は、例えば、m回(mは1以上の自然数)の更新ごとに、1回基準点を設定する。
 図3は、指数更新部203が、各需要家10の期待指数を出力する関数(期待指数の出力関数)を更新する処理のフローチャートである。
 まず、指数更新部203は、期待指数の出力関数情報を更新するタイミングかどうかを判定する(S200)。更新タイミングでない場合(S200でのNo)、指数更新部203は、例えば設定の待機時間を経過した後に再度判定する。
 更新タイミングである場合(S200でのYes)、指数更新部203は、各需要家10の現エネルギー使用量と、基準点に設定したエネルギー使用量との情報に基づき、基準点のエネルギー使用量を取得した時間から現在迄のエネルギー使用量の削減量を算出する(S201)。そして、指数更新部203は、算出したエネルギー使用量の削減量を基に、各需要家10に対応する期待指数の出力関数を更新し、更新後の期待指数の出力関数に関する情報を指数保持部204に格納する(S202)。
 期待指数の出力関数は、例えば、数式(1)、および図11に表されるような関数である。
Figure JPOXMLDOC01-appb-I000001
 ここで、数式(1)において、iは需要家10の識別子、例えば、需要家10に付与された序数を表す。Tは、識別子iが付与されている需要家10の削減目標値(減らす量)を表す。Eは、識別子iが付与されている需要家10の期待指数を表し、入力された削減目標値T分のエネルギーを削減してくれる可能性の高さを示す値を表す。
 また、Ebase_iは定数を表す。数式(1)および図11が示す期待指数Eと削減目標値Tとの関係は、削減目標値Tが小さくなるにつれて期待値Eが高くなる、すなわち少ない削減目標値Tであれば、需要家10が削減目標値Tのエネルギー削減を達成してくれる可能性が高くなることを表す。
 図11に表される関数の傾きは、需要家10のエネルギーの削減量によって変わる。傾きはRbaseとPbase_iとPによって決まる。Rbaseはコミュニティ全体のエネルギー削減量の基準の値を表す。Pbase_iは識別子iが付与されている需要家10のエネルギー使用量の基準値を表す。Pbase_iは、エネルギー使用情報を更新する処理フローにおけるS103にて設定される値である。
 Pは、識別子iが付与される需要家10の現在のエネルギー使用量を表す。したがって、Pbase_i-Pは基準点を設定した時間から現在までのエネルギー削減量を表しており、削減量が大きいほど、グラフの傾きが緩やかになる。
 なお、Ebase_iとRbaseは、指数更新部203によって設定される係数であり、正の値である。Ebase_iは、期待指数の所定最大値が設定される。Rbaseは、想定されるエネルギー削減量と、目標値との範囲内で、Eが0以上の値となるように設定される。
 指数更新部203は、このような期待指数の出力関数を構成する係数の情報をエネルギー削減量の情報を基に、定期的に更新し続ける。
 なお、期待指数の出力関数は、線形だけでなく、非線形、あるいは、数式表現できないマッピング規則であっても良い。
 図4は、設定部205が、目標値を各需要家10に通知する処理を表すフローチャートである。
 設定部205は、まず、削減目標値の通知タイミングかどうかを判定する(S300)。通知タイミングでない場合(S300でのNo)、設定部205は、例えば設定の待機時間を経過した後に再度判定する。
 通知タイミングである場合(S300でのYes)、設定部205は、コミュニティ全体における削減すべきエネルギーの量(Rtotal)を算出する(S301)。例えば、設定部205は、事前に設定しておいた目標エネルギー使用量とその算出時点でのコミュニティ内の全ての需要家10における総エネルギー使用量との差分を計算する。なお、コミュニティ全体の削減すべきエネルギーの量(Rtotal)は、所定の固定値であっても良い。
 その後、設定部205は、期待指数に関する情報を指数保持部204から取得する(S302)。例えば、設定部205は、各需要家10に対応する期待指数の出力関数に関する係数の情報を取得する。
 その後、設定部205は、算出したコミュニティ全体の削減すべきエネルギーの量と、取得した期待指数に関する情報とを基に、期待指数の総和が最大となる各需要家10の削減目標値を算出する(S303)。期待指数の総和が最大であることは、各需要家10での削減目標値の達成の可能性が最も高い、すなわちコミュニティ全体でのエネルギー削減の達成の可能性がもっとも高いことを意味する。
 そして、設定部205は、算出した削減目標値を各需要家10に通知する(S304)。
 ここで、各需要家10の目標値Tの算出は、例えば下記の数式(2)の最適化問題を解くことに相当する。
Figure JPOXMLDOC01-appb-I000002
 ここで、Nはコミュニティ内の需要家10の総数である。maxの項目は、各需要家10の期待指数の総和の最大を目指すことを意味している。s.t.の項目は、各需要家10の削減目標値(減らすエネルギーの量)の総和がコミュニティ全体で削減したいエネルギー量(Rtotal)と等しくなる条件下で、期待指数の総和の最大を目指すことを意味している。
 なお、Rtotalは、S301で算出される値を表す。例えば、期待指数と削減目標値の関係が式(1)および図11のような線形の場合、具体的な最適化解法として、設定部205は、例えば、シンプレックス法を利用する。
 なお、以上説明した図2におけるエネルギー情報の更新処理、図3における期待指数情報の更新処理、図4における目標値の通知処理の3つの処理は非同期で処理されてもよいし、同期的に処理されてもよい。例えば、使用情報更新部201が、図2におけるS103処理を実行した一定時間後に、指数更新部203と設定部205が、図3と4における処理を連続して実行しても良い。
 <効果>
 第1実施形態における集中型エネルギー管理装置20は、各需要家10に現在の状況に合った無理のないエネルギー削減行動を促すことができ、結果として、コミュニティ全体の目標エネルギー削減達成の可能性を高くすることができる。
 その理由は、定期的に、指数更新部203が、各需要家10のエネルギー削減実績量を基に期待指数の出力関数に関する情報を更新し、設定部205が、期待指数が最大となる各需要家10の削減目標値を算出するからである。
 <第2実施形態>
 <構成>
 本発明の第2実施形態について図面を参照して説明する。
 図5を参照すると、第2実施形態におけるエネルギーシステム40は、集中型のエネルギー管理装置を含んでおらず、複数の需要家10にそれぞれ含まれる分散型のエネルギー管理装置を有する。それら分散型のエネルギー管理装置は通信網50を介して相互に接続される。なお、需要家10の数に制限はない。通信網50は、第1実施形態における通信網50と同じである。
 第2実施形態におけるエネルギーシステム40において、各需要家10は、所定のネットワークトポロジー(構造ネットワーク)のノードに対応する。各需要家10は、当該ネットワークトポロジーにおける隣接ノードとの間で、情報交換を行う。
 需要家10は、分散型エネルギー管理装置30を備えている。各分散型エネルギー管理装置30は、ネットワークトポロジー上の隣接する需要家10同士で通信しながら、最適な削減目標値を、分散処理により算出する。前述した第1実施形態における集中型エネルギー管理装置20は、コミュニティ内の全ての需要家10の情報を収集し、収集した情報に基づいて削減目標値を設定している。一方、第2実施形態における分散型エネルギー管理装置30は近隣の需要家10同士の情報交換により、コミュニティ全体で最適な削減目標値を分散処理により算出する。
 需要家10は、分散型エネルギー管理装置30以外に、負荷管理装置100、負荷機器101、需要家通信部102、表示部103を備える。負荷管理装置100、負荷機器101、需要家通信部102、および表示部103は、第1実施形態における負荷管理装置100、負荷機器101、需要家通信部102、および表示部103と同様である。
 分散型エネルギー管理装置30は、使用情報更新部300、使用情報保持部301、指数更新部302、指数保持部303、設定部304、パラメータ送受信部305、隣接情報保持部306、パラメータ保持部307を備える。なお、自家というのは該当する分散型エネルギー管理装置30が備えられている需要家10のことを意味する。
 使用情報更新部300は自家のエネルギー使用情報を定期的に取得して、使用情報保持部301に記録する機能を備える。
 指数更新部302は、定期的に自家の使用エネルギー情報を取得し、その情報を基に自家における期待指数の出力関数を決定し、当該出力関数に関する情報を更新する機能を備える。指数保持部303は、自家の期待指数の出力関数に関する情報を保持する。ここで、期待指数の出力関数は、第1実施形態で説明した期待指数の出力関数と同じで良い。
 設定部304は、自家における期待指数の出力関数に関する情報および計算パラメータを用いて、コミュニティ内における期待指数の総和が最大になるように自家の削減目標値を定期的に算出して設定する機能を備える。
 パラメータ送受信部305は、最適な削減目標値を分散的に計算する際に必要な情報を隣接の需要家10との送受信により取得する。隣接情報保持部306は、自家と隣接の関係にある需要家10に関する情報、例えば通信アドレスを保持する。パラメータ保持部307は、隣接関係の需要家10から受信した計算パラメータや、自家で更新した計算パラメータの情報を保持する。
 ここで、負荷管理装置100、需要家通信部102、使用情報更新部300、指数更新部302、設定部304、およびパラメータ送受信部305は、論理回路で構成される。また、使用情報保持部301、指数保持部303、隣接情報保持部306、およびパラメータ保持部307は、磁気ディスク装置や、半導体記憶装置で構成される。
 なお、分散型エネルギー管理装置30は、図12のコンピュータ装置60により実現されても良い。
 この場合、第1実施形態で説明したように、プロセッサ610は、プログラム650を実行することにより、使用情報更新部300、指数更新部302、設定部304、およびパラメータ送受信部305として機能する。すなわち、プロセッサ610は、プログラム650を実行することにより、使用情報更新部300、指数更新部302、設定部304、およびパラメータ送受信部305が行う処理を実行する。外部記憶装置620は、使用情報保持部301、指数保持部303、隣接情報保持部306、およびパラメータ保持部307として機能する。
 <動作>
 図6乃至図9は、分散型エネルギー管理装置30の動作フローチャートである。図6は、使用情報更新部300が、自家のエネルギー使用情報を更新する処理のフローチャートである。
 まず、使用情報更新部300は、エネルギー使用情報の更新タイミングかどうかを判定する(S400)。更新タイミングでない場合(S400でのNo)、使用情報更新部300は、例えば設定の待機時間を経過した後に再度判定する。
 更新タイミングである場合(S400でのYes)、使用情報更新部300は、自家の現在のエネルギー使用量を取得し、使用情報保持部301に格納する(S401)。
 その後、使用情報更新部300は、基準点を設定するタイミングかどうかを判断する(S402)。そのタイミングでない場合(S402でのNo)、使用情報更新部300は、そのまま処理を終了する。
 基準点を設定するタイミングである場合(S402でのYes)、使用情報更新部300は、現時点での自家のエネルギー使用量を基準点の情報として設定する(S403)。この基準点は期待指数の出力関数に関する情報を更新する際に、各需要家10のエネルギー削減量を算出する処理において、基準エネルギー使用量(Pbase_i)として利用される。使用情報更新部300は、例えば、m回(mは2以上の自然数)の更新ごとに、1回基準点を設定する。
 図7は、指数更新部302が、自家の期待指数の出力関数に関する情報を更新する処理のフローチャートである。
 まず、指数更新部302は、期待指数を出力する関数(期待指数の出力関数)に関する情報の更新タイミングかどうかを判定する(S500)。更新タイミングでない場合(S500でのNo)、指数更新部302は、例えば設定の待機時間を経過した後に再度判定する。
 更新タイミングである場合(S500でのYes)、指数更新部302は、自家の現エネルギー使用量と基準点に設定したエネルギー使用量との差を算出することにより、基準点のエネルギー使用量を取得した時間から現在迄のエネルギー削減量を得る(S501)。そして指数更新部302は、算出したエネルギー削減量を基に、自家における期待指数の出力関数を決定し、その決定した出力関数に関する情報を指数保持部303に格納する(S502)。
 なお、期待指数の出力関数は、例えば、第1実施形態で説明した関数(数式(1)、図11を参照)と同じである。
 図8は、設定部304が自家の削減目標値を算出する処理のフローチャートである。
 設定部205は、まず、削減目標値の算出タイミングかどうかを判定する(S600)。算出タイミングでない場合(S600でのNo)、設定部304は、例えば設定の待機時間を経過した後に再度判定する。
 算出タイミングである場合(S600でのYes)、設定部304は、パラメータ保持部307から隣接する需要家10から受信した計算パラメータを、また、指数保持部303から自家の期待指数の情報を取得する(S601)。そして、設定部304は、例えば、第1実施形態で述べたように、コミュニティ全体の削減目標値を算出し(S602)、自家の削減目標値を算出し(S603)、算出された削減目標値を表示部103に通知する(S604)。
 図9は、パラメータ送受信部305が計算パラメータを送信する処理のフローチャートである。
 まず、パラメータ送受信部305は、計算パラメータの送信タイミングかどうかを判定する(S700)。送信タイミングでない場合(S700でのNo)、パラメータ送受信部305は、例えば設定の待機時間が経過した後に再度判定する。
 送信タイミングである場合(S700でのYes)、パラメータ送受信部305は、自家の計算パラメータを更新して(S701)、隣接情報保持部306に格納されている隣接の需要家10に関する情報を基に、計算パラメータを隣接の需要家10に送信する(S702)。
 図10は、パラメータ送受信部305が計算パラメータを受信する処理のフローチャートである。パラメータ送受信部305は、隣接の需要家10から計算パラメータを受信し(S800)、その計算パラメータをパラメータ保持部307に上書きする(更新する)(S801)。
 <効果>
 第2実施形態における分散型エネルギー管理装置30は、他の需要家10に備えられた分散型エネルギー管理装置30との分散処理により、各需要家10の状況に合った無理のない削減目標値を算出できる。これにより、分散型エネルギー管理装置30は、エネルギーシステム40の処理性能上、および、安全上のボトルネック発生を軽減できる。
 ここで、コミュニティ内の各需要家10に備えられた分散型エネルギー管理装置30によって各需要家10における削減目標値を算出する別の形態例(以下、変形例と記す)を説明する。
 この変形例では、各需要家10の削減目標値を算出するために、設定部304は、分散制約最適化問題を解く。その解法アルゴリズムによって、需要家10との隣接関係、パラメータ送受信部305が隣接の需要家10と送受信する計算パラメータの内容、送受信が必要となるタイミングが変わる。
 例えば分散制約最適化問題の解法アルゴリズムの一例としてDPOP(Distributed Pseudo tree Optimization Procedure)がある。この解法アルゴリズムでは、制御対象(変形例では、コミュニティ内における分散型エネルギー管理装置30)によりツリー構造が設定され、そのツリー構造に沿ってそれぞれの制御対象の部分的な評価値と最適な変数が交換され、コミュニティ全体で最適な解が算出される。
 DPOPは、2つのステップを踏んで最適解を導出する。一つ目のステップでは、UTIL(Utility)メッセージと呼ばれる最適解導出に必要な評価値の情報がツリー構造の子ノードから順に親ノードに伝搬される。親ノードへ伝搬されていく際、途中のノードはUTILメッセージを更新しながら親ノードに向けて伝搬させていく。
 ルートノードは、全ノードのUTILメッセージを集約し、その情報を基に全ノードの最適解を算出する。次に、分散型エネルギー管理装置30は、ルートノードが算出した解を、逆方向、すなわち親ノードから子ノードへと伝搬していく。
 このDPOPの場合、計算パラメータは、UTILメッセージや通知されてきた最適解に相当する。またDPOPの場合、計算パラメータの送受信は、各ノード間のUTILメッセージや最適解のやり取りに相当する。
 すなわち、ツリー構造のルートノードとなる分散型エネルギー管理装置30において、設定部304は、各需要家10における期待指数の出力関数に関する情報を取得する。この情報は、分散型エネルギー管理装置30間の計算パラメータの授受を通じて、ルートノードの分散型エネルギー管理装置30に集約される情報である。
 設定部304は、取得した期待指数の出力関数に関する情報に基づいて、各需要家10の削減目標値を算出する。そして、設定部304は、自家の削減目標値を自家の表示部103に表示するとともに、他の需要家10の削減目標値を、ツリー構造に従って、子ノード側に通知していく。
 ツリー構造の中間ノードとなる分散型エネルギー管理装置30において、設定部304は、親ノードから通知されてきた削減目標値の中から、自家の削減目標値を特定して、自家の表示部103に表示する。そして、設定部304は、パラメータ送受信部305経由で、他の需要家10の削減目標値を、自装置以下のサブツリー構造に従って、子ノード側に通知していく。
 この変形例では、コミュニティ内の複数の需要家10のうちの一つが第1実施形態で述べた集中型エネルギー管理装置10と同様に機能するとも言える。
 なお、分散型エネルギー管理装置30は、フラットな構造のネットワーク、たとえば、グリッド構造のネットワークを形成しても良い。そのうえで、各分散型エネルギー管理装置30の設定部304は、局所的な情報交換のみで局所最適解を出し、それを繰り返すことによって、全体最適解を導くような公知のアルゴリズムを採用しても良い。
 なお、解法アルゴリズムはDPOPに限定するものではなく、分散型エネルギー管理装置30は、別の解法を用いても良い。
 <第3実施形態>
 本発明に係る第3実施形態について図面を参照して説明する。
 図13を参照すると、第3実施形態におけるエネルギー管理装置70は、指数更新部401と設定部402を備える。
 指数更新部401は、需要家10の一定期間のエネルギー使用量の削減実績量を取得して、需要家10に対して、エネルギー削減目標値を入力、エネルギー削減目標値の達成期待度合いを示す期待指数を出力とする関数を決定する。この関数は、エネルギー削減目標値が低いほど、かつ、需要家10のエネルギー削減実績量が高いほど、高い期待指数を出力する。
 設定部402は、与えられたコミュニティ全体のエネルギー削減目標量をコミュニティ内の需要家10に分配する。このとき、設定部402は、関数から得られる、コミュニティ内の需要家10の期待指数の総和が最大となるように、各々の需要家10のエネルギー削減目標値を決定する。
 第3実施形態のエネルギー管理装置70は、各需要家10に現在の状況に合った無理のないエネルギー使用量の削減行動を促すことができ、結果として、コミュニティ全体のエネルギー使用量の目標削減達成の可能性を高くすることができる。
 その理由は、指数更新部203が、各需要家10のエネルギー使用量の削減実績量を基に期待指数を出力する関数の情報を更新し、設定部205が、期待指数が最大となる各需要家10の削減目標値を算出するからである。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2016年5月20日に出願された日本出願特願2016-101540を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10  需要家
 20  集中型エネルギー管理装置
 30  分散型エネルギー管理装置
 40  エネルギーシステム
 70  エネルギー管理装置
 201  使用情報更新部
 203、302、401  指数更新部
 205、304、402  設定部
 300  使用情報更新部
 610  プロセッサ
 620  外部記憶装置
 630  主記憶部
 650  プログラム

Claims (10)

  1.  需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定する指数更新手段と、
     前記需要家を含む管理対象のコミュニティ全体に設定されるエネルギー使用量の削減目標量を前記コミュニティ内の前記需要家に分配するに際し、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を決定する設定手段と、を備えるエネルギー管理装置。
  2.  前記コミュニティ内の各々の前記需要家と接続され、
     前記指数更新手段は、前記コミュニティ内の各々の前記需要家から前記削減実績量を取得し、当該取得した削減実績量に基づき前記コミュニティ内の各々の前記需要家に対応する前記関数を決定し、
     前記設定手段は、前記コミュニティ内の各々の前記需要家に向けて、前記削減目標値を通知する、請求項1に記載のエネルギー管理装置。
  3.  管理対象のコミュニティに含まれる複数の需要家にそれぞれ備えられるエネルギー管理装置であって、
     前記需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定する指数更新手段と、
     前記コミュニティ内の各々の前記需要家を前記コミュニティ内の構造ネットワークのノードに対応させた場合における前記構造ネットワーク上の隣接ノードとの間で、前記関数に関する計算パラメータを送受信するパラメータ送受信手段と、
     前記計算パラメータの授受によって得られた情報を利用して、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を前記コミュニティ内の前記需要家による分散処理により決定する設定手段と、
    を備えるエネルギー管理装置。
  4.  前記構造ネットワークは、ツリー構造ネットワークであり、
     前記パラメータ送受信手段は、前記計算パラメータの授受によって、前記関数の情報を前記ツリー構造ネットワークの子ノードから親ノードに伝搬し、前記需要家の前記削減目標値を前記親ノードから前記子ノードに伝搬し、
     前記設定手段は、a)自装置が前記ツリー構造ネットワーク上のルートノードであれば、前記関数を用いて前記削減目標値を決定して自装置を含む前記需要家に通知し、さらに、前記パラメータ送受信手段を通じて前記子ノードに通知し、b)自装置が前記ルートノードでなければ、前記親ノードから得た前記計算パラメータから、自装置を含む前記需要家の前記削減目標値を決定する、請求項3に記載のエネルギー管理装置。
  5.  管理対象のコミュニティ内の各々の需要家に備えられて、前記需要家の使用電力量を設定時間ごとに送信する複数の負荷管理装置と、
     前記複数の負荷管理装置と接続するエネルギー管理装置と
    を備え、
     前記エネルギー管理装置は、
     前記負荷管理装置の各々からエネルギー使用量を前記設定時間ごとに受信して、前記コミュニティ内の各々の前記需要家の前記設定期間の削減実績量を算出する使用情報更新手段と、
     前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定する指数更新手段と、
     前記需要家を含む管理対象のコミュニティ全体に設定されるエネルギー使用量の削減目標量を前記コミュニティ内の前記需要家に分配するに際し、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を決定する設定手段と
    を備える
    エネルギーシステム。
  6.  管理対象のコミュニティ内の各々の需要家に備えられて、自装置の使用電力量を設定時間ごとに送信する複数の負荷管理装置と、
     前記需要家の各々に備えられるエネルギー管理装置と
    を備え、
     前記エネルギー管理装置は、
     前記負荷管理装置からエネルギー使用量を前記設定時間ごとに受信して、自装置を含む前記需要家の前記設定期間の削減実績量を算出する使用情報更新手段と、
     前記需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定する指数更新手段と、
     前記コミュニティ内の各々の前記需要家を前記コミュニティ内の構造ネットワークのノードに対応させた場合における前記構造ネットワーク上の隣接ノードとの間で、前記関数に関する計算パラメータを送受信するパラメータ送受信手段と、
     前記計算パラメータの授受によって得られた情報を利用して、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を前記コミュニティ内の前記需要家による分散処理により決定する設定手段と、
    を備える
    エネルギーシステム。
  7.  需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定し、
     前記需要家を含む管理対象のコミュニティ全体に設定されるエネルギー使用量の削減目標量を前記コミュニティ内の前記需要家に分配するに際し、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を決定する、エネルギー管理方法。
  8.  前記コミュニティ内の各々の前記需要家から前記削減実績量を取得し、当該取得した削減実績量に基づき前記コミュニティ内の各々の前記需要家に対応する前記関数を決定し、
     前記コミュニティ内の各々の前記需要家に向けて、前記削減目標値を通知する、請求項7に記載のエネルギー管理方法。
  9.  需要家が設定期間に削減できたエネルギー量である削減実績量を取得し、前記需要家に設定されるエネルギー使用量の削減目標値を入力とし、当該削減目標値の達成期待度合いを示す期待指数を出力とする関数であって、前記削減目標値が低いほど、かつ、前記削減実績量が高いほど、高い前記期待指数を出力する前記関数を前記削減実績量を利用して決定する指数更新処理と、
     前記需要家を含む管理対象のコミュニティ全体に設定される前記エネルギー使用量の削減目標量を前記コミュニティ内の前記需要家に分配するに際し、前記コミュニティ内の前記需要家における前記関数に基づく前記期待指数の総和が最大となるように、各々の前記需要家の前記削減目標値を決定する設定処理と、をコンピュータに実行させるコンピュータプログラムを記憶するプログラム記憶媒体。
  10.  前記コミュニティ内の各々の前記需要家と接続されるコンピュータに、
     前記コミュニティ内の各々の前記需要家から前記削減実績量を取得し、当該取得した削減実績量に基づき前記コミュニティ内の各々の前記需要家に対応する前記関数を決定する処理と、
     前記コミュニティ内の各々の前記需要家に向けて、前記削減目標値を通知する処理と、を実行させるコンピュータプログラムをさらに記憶する請求項9に記載のプログラム記憶媒体。
PCT/JP2017/018163 2016-05-20 2017-05-15 エネルギー管理装置、エネルギーシステム、エネルギー管理方法、及びプログラム記憶媒体 WO2017199901A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018518279A JPWO2017199901A1 (ja) 2016-05-20 2017-05-15 エネルギー管理装置、エネルギーシステム、エネルギー管理方法、及びプログラム記憶媒体
US16/301,803 US20190165579A1 (en) 2016-05-20 2017-05-15 Energy management device, energy management method, and program storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016101540 2016-05-20
JP2016-101540 2016-05-20

Publications (1)

Publication Number Publication Date
WO2017199901A1 true WO2017199901A1 (ja) 2017-11-23

Family

ID=60325900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018163 WO2017199901A1 (ja) 2016-05-20 2017-05-15 エネルギー管理装置、エネルギーシステム、エネルギー管理方法、及びプログラム記憶媒体

Country Status (3)

Country Link
US (1) US20190165579A1 (ja)
JP (1) JPWO2017199901A1 (ja)
WO (1) WO2017199901A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004160A (ja) * 2018-06-29 2020-01-09 アズビル株式会社 目標達成可否判定方法、需要家選定方法および装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186149B2 (ja) * 2019-08-29 2022-12-08 株式会社日立製作所 資源管理システム、情報処理装置、および資源管理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069357A1 (ja) * 2011-11-07 2013-05-16 大和ハウス工業株式会社 情報報知システム
JP2014204581A (ja) * 2013-04-05 2014-10-27 富士通株式会社 計画策定装置、計画策定システム、計画策定方法および計画策定プログラム
JP2015011408A (ja) * 2013-06-26 2015-01-19 京セラ株式会社 電力抑制方法、電力管理システム及び電力管理プログラム
JP2015146726A (ja) * 2015-04-06 2015-08-13 パナソニックIpマネジメント株式会社 コントローラ、エネルギ管理方法、及びエネルギ管理プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151992A (ja) * 2011-01-19 2012-08-09 Hitachi Ltd 電力需要調整装置,電力調整ネットワークシステム及び電力調整方法
US9735575B2 (en) * 2011-09-26 2017-08-15 Kyocera Corporation Power management system, power management method, and upper power management apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069357A1 (ja) * 2011-11-07 2013-05-16 大和ハウス工業株式会社 情報報知システム
JP2014204581A (ja) * 2013-04-05 2014-10-27 富士通株式会社 計画策定装置、計画策定システム、計画策定方法および計画策定プログラム
JP2015011408A (ja) * 2013-06-26 2015-01-19 京セラ株式会社 電力抑制方法、電力管理システム及び電力管理プログラム
JP2015146726A (ja) * 2015-04-06 2015-08-13 パナソニックIpマネジメント株式会社 コントローラ、エネルギ管理方法、及びエネルギ管理プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004160A (ja) * 2018-06-29 2020-01-09 アズビル株式会社 目標達成可否判定方法、需要家選定方法および装置
JP7084231B2 (ja) 2018-06-29 2022-06-14 アズビル株式会社 目標達成可否判定方法、需要家選定方法および装置

Also Published As

Publication number Publication date
US20190165579A1 (en) 2019-05-30
JPWO2017199901A1 (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
De Paola et al. A mean field game approach for distributed control of thermostatic loads acting in simultaneous energy-frequency response markets
Yang et al. Pricing-based decentralized spectrum access control in cognitive radio networks
JP5828109B2 (ja) エネルギー管理システム、エネルギー管理システムに用いられるエネルギー管理装置および管理サーバ
JP6239631B2 (ja) 管理システム、管理方法、管理プログラム及び記録媒体
JP5656921B2 (ja) 電力融通装置、電力融通システム、電力融通方法及びプログラム
US20200202459A1 (en) Aggregated distribution for energy demand response
JP6168060B2 (ja) 電力管理方法、電力管理装置およびプログラム
JP6235125B2 (ja) エネルギ管理のための装置、システム、コンピュータプログラム及び記憶媒体
JP6246412B1 (ja) 電力融通システム
JP6414456B2 (ja) 需要家装置、電力消費管理装置、電力消費管理システム、電力消費管理方法および電力消費管理プログラム
JP5439424B2 (ja) 制御装置
KR20160140266A (ko) 전력 공급을 제어하는 방법 및 장치
JP6168061B2 (ja) 電力管理方法、電力管理装置およびプログラム
JP2015216833A (ja) 統合デマンド制御方法、及び、統合デマンド制御装置
JP2016001986A (ja) 電力制御方法、電力制御装置、及び、電力制御システム
WO2017199901A1 (ja) エネルギー管理装置、エネルギーシステム、エネルギー管理方法、及びプログラム記憶媒体
JPWO2016084313A1 (ja) 電力需要調整システム、需要調整装置、グループ生成装置及びグループ生成方法
JP6134286B2 (ja) 需要家調整計画立案方法および需要家調整計画立案装置
JP2016046934A (ja) 電力管理システム、地域電力管理装置、需要家電力管理装置
WO2015025426A1 (ja) 電力制御装置、電力制御装置の制御方法及びプログラム
EP3062412B1 (en) Control device, control method, and program
JP6452259B2 (ja) 電力制御ネットワークシステム、制御装置および制御プログラム
JP6560359B2 (ja) 電力管理サーバ及び電力管理方法
JP5632415B2 (ja) 制御機器、及び制御方法
JP6686510B2 (ja) 電力消費管理装置および電力消費管理プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799325

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799325

Country of ref document: EP

Kind code of ref document: A1