WO2017197803A1 - 一种镀件漂洗废水在线资源化的方法 - Google Patents

一种镀件漂洗废水在线资源化的方法 Download PDF

Info

Publication number
WO2017197803A1
WO2017197803A1 PCT/CN2016/096465 CN2016096465W WO2017197803A1 WO 2017197803 A1 WO2017197803 A1 WO 2017197803A1 CN 2016096465 W CN2016096465 W CN 2016096465W WO 2017197803 A1 WO2017197803 A1 WO 2017197803A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
rinsing
water
reverse osmosis
membrane module
Prior art date
Application number
PCT/CN2016/096465
Other languages
English (en)
French (fr)
Inventor
靳强
杜建伟
张劲
温勇
单爱党
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2017197803A1 publication Critical patent/WO2017197803A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Definitions

  • the invention belongs to the technical field of industrial wastewater treatment and resource recovery, and relates to a method for online recycling of plating parts rinsing wastewater.
  • Plating parts are an important process in the manufacturing industry, and the composition of wastewater discharge is complex.
  • the annual average discharge of plating wastewater in China is as high as 4 billion tons, of which rinsing wastewater accounts for 80%, about 3.2 billion tons.
  • the rinsing wastewater of the plated parts contains heavy metal pollutants such as chromium, nickel, cadmium, copper and zinc, and also contains a considerable amount of organic compounds such as additives and brighteners. These chemicals enter the environment and are bound to cause extremely serious human health and the environment. harm.
  • the most commonly used methods for rinsing wastewater treatment of plating parts are chemical precipitation method, ion exchange method and membrane separation method, but the chemical precipitation method is aimed at reaching the standard discharge, the sludge volume is large, the treatment cost is high, and the heavy metal is not regarded as one.
  • the reuse of resources has resulted in a fundamentally negative economic benefit.
  • the ion exchange method can only achieve the reuse of heavy metal ions, while other substances such as various additives cannot be reused, and the waste water contains various additives other than heavy metals and must be further removed before being discharged or recovered.
  • the ion exchange resin After the adsorption is saturated, the agent needs to be regenerated to cause secondary pollution.
  • the Chinese invention patent with the publication number CN 1590322A discloses a method for treating electroplating wastewater. It includes process-based liquid material handling, lifting, pressurization and transport routines, using a combination of membrane separation techniques, including pretreatment, primary nanofiltration membrane separation, secondary brackish water reverse osmosis membrane separation, tertiary The seawater reverse osmosis membrane is separated, and the permeate is reused.
  • the multi-stage membrane separation technology requires a high-pressure pump in front of each membrane module, which greatly increases the fixed investment of the system, and also greatly increases the operating energy consumption and cost. Since the plating bath concentration is as high as several hundred grams per liter, the plating-type rinsing wastewater concentration ratio is as high as several thousand times, and the running cost and membrane fouling are particularly remarkable.
  • the heavy metals and other additives in the rinsing wastewater of the plating parts are an excellent resource rather than a pollutant. If they are reused, not only can the discharge be achieved, but also the enterprise can obtain considerable economic benefits. Therefore, the development of corresponding low-cost resource technology to replace the current mainstream technology for governance and high-cost reuse technology is an important way to reduce the pressure on the survival of plated enterprises and achieve sustainable development.
  • the purpose of the invention is to overcome the defects of the prior art mentioned above and to provide an online recycling of the rinsing wastewater of the plating part capable of effectively recycling the heavy metal ions and various additives and water in the rinsing wastewater of the plating part and having low energy consumption and low cost. Methods.
  • the invention relates to a method for online recycling of plating rinsing wastewater, which is characterized in that the rinsing wastewater of the plating part is subjected to multi-stage countercurrent cleaning, filtration, reverse osmosis treatment, nanofiltration treatment, evaporation thickening or direct recycling, and recycling.
  • the metal ions and additives in the rinsing waste water of the plating part are returned to the plating tank as the plating liquid, and the water in the rinsing waste water of the plating part is recovered and reused as the rinsing water of the plating part, thereby realizing online resource utilization.
  • the method specifically includes the following steps:
  • Multi-stage countercurrent cleaning the rinsing wastewater of the plating parts is initially concentrated by countercurrent rinsing and collected in a regulating tank;
  • Reverse osmosis treatment after pressurization, it enters the pre-reverse osmosis membrane module for reverse osmosis concentration, and the water side of the clean water side is reused as the rinsing water of the plating part, and the reverse osmosis water side effluent is used as the influent water to enter the post-infiltration membrane.
  • the component is further enriched;
  • Nanofiltration treatment the reverse osmosis concentrated water side effluent obtained in the step (3) is fed into the nanofiltration membrane module for concentration;
  • Evaporation enrichment or direct reuse the water filtration side of the nanofiltration membrane module is used as the influent water to enter the pre-reverse osmosis membrane module for further purification, and the effluent from the concentrated water side of the nanofiltration membrane module is required to reach the plating solution in the plating tank.
  • the concentration is directly returned to the plating tank as the plating liquid. If the concentration required for the plating liquid in the plating tank is not reached, the evaporation unit is further concentrated to the required concentration of the plating liquid, and then enters the plating tank, the condensed water. Used as rinse water.
  • the rinsing wastewater of the step (1) is initially concentrated by countercurrent rinsing to a concentration of metal ions of 50-500 mg/L, and is subjected to the security filtration or ultrafiltration treatment of the step (2) to remove solids having a particle diameter of ⁇ 5-10 ⁇ m. particulates.
  • step (3) The pressurization described in step (3) is pressurized to 0.5-6 MPa in the high pressure pump.
  • Step (2) The filtered filtrate is concentrated 1-9 times by the pre-reverse osmosis membrane module (ie, the reverse osmosis concentrated water side).
  • concentration of effluent is 2-10 times of the concentration of the filtrate, and the concentration of the effluent of the nanofiltration membrane module is further increased by 1-29 times (that is, the concentration of the effluent from the concentrated water side of the nanofiltration membrane module is 2 - the concentration of the effluent from the concentrated water side of the reverse osmosis 30 times).
  • the concentrated water side effluent of the nanofiltration membrane module described in the step (3) is further concentrated by an evaporation unit.
  • the evaporation unit is preferably a falling film evaporator.
  • the countercurrent rinsing is a multi-stage countercurrent rinsing.
  • the multi-stage countercurrent rinsing is a 3-5 level countercurrent rinsing.
  • the metal ion includes one or more of nickel ion, copper ion, silver ion, chromium ion, cadmium ion or zinc ion.
  • filtering out solid particles with particle size ⁇ 5-10 ⁇ m can protect the safe operation of the pre-reverse osmosis membrane module and the post-nanofiltration membrane module; in the reverse osmosis membrane treatment, the filtered water can completely reach the rinsing quality of the plating part. Requires reuse; if the effluent from the concentrated water side of the nanofiltration membrane module can meet the concentration requirement of the plating solution, it is directly transported as a plating solution to the plating tank for recycling, and the water in the concentrated water side of the nanofiltration membrane module is still not satisfied.
  • the concentration of the plating solution is required to be further concentrated by the evaporation unit, and then transferred to the plating tank as a plating liquid for recycling; the condensed water used in the evaporation unit can be reused as the rinsing water.
  • the invention has the following characteristics:
  • the rinsing process of the plating part is actually the physical dilution process of the plating solution.
  • the chemical concentrating unit of the invention adopts the membrane processing and the evaporation operation to concentrate the rinsing wastewater of the plating part to the original concentration, thereby realizing all the solute in the rinsing wastewater of the plating part (heavy metal)
  • the reuse of ions and various additives at the same time, achieves the closed circulation of clean water, which realizes the online resource utilization of almost all substances in the rinsing wastewater of the plating parts, and achieves the purpose of near zero discharge of wastewater.
  • the traditional chemical precipitation method can only achieve the standard discharge, and at most only the water can be reused; the traditional ion exchange method can only achieve the reuse of heavy metal ions, other substances such as various additives can not be reused, and the waste water contains heavy metals. All kinds of additives need to be further removed before they can be discharged or recovered. In addition, after the ion exchange resin is saturated, it needs to be regenerated and secondary pollution is generated.
  • the present invention employs a novel combination of reverse osmosis and nanofiltration membrane modules, that is, the reverse osmosis membrane module is located between the nanofiltration membrane modules, which greatly reduces operating energy consumption and economic cost compared with the conventional membrane method.
  • the rinsing wastewater concentration is relatively low, the osmotic pressure is low, and the reverse osmosis membrane module is placed in front, on the one hand, the operating pressure can be at a lower level, and on the other hand, the effluent water quality can be ensured to reach the rinsing water quality reuse requirement.
  • the nanofiltration membrane module After the nanofiltration membrane module is placed and connected to the reverse osmosis concentrated water side, although the reverse osmosis pressure of the concentrated water is high, the nanofiltration membrane belongs to the low pressure reverse osmosis membrane, and the operating pressure is lower than that of the conventional reverse osmosis membrane. s level.
  • the clean water of the nanofiltration membrane module usually does not meet the requirements for rinsing water reuse, and is further purified as the inlet water to the reverse osmosis membrane module.
  • This combination method has obvious advantages over the combination of the nanofiltration membrane module in the front reverse osmosis membrane module, fully utilizing the characteristics that reverse osmosis is more suitable for low concentration and low osmotic pressure, and the nanofiltration membrane is more suitable for high concentration.
  • the high osmotic pressure makes the overall pressure of the system at a low level, greatly reducing the energy consumption and economic cost.
  • the new combination of reverse osmosis membrane modules and nanofiltration membrane modules can also reduce fixed investment.
  • the operating pressure required for the nanofiltration membrane module is lower than that of the reverse osmosis membrane module, so the reverse osmosis membrane module is behind the front nanofiltration membrane module compared to the latter combination of the nanofiltration membrane module in the front reverse osmosis membrane module.
  • one high pressure pump can be omitted before the nanofiltration membrane element.
  • High-pressure pumps account for a high proportion of investment in the entire system, which can significantly reduce fixed investment.
  • the invention fully utilizes the technical advantages of membrane method and evaporation, and avoids the respective technical disadvantages, so the overall efficiency of the system after the process combination is high.
  • Membrane method is a kind of conventional chemical concentration process. Since there is no phase change process, the unit energy consumption is low, so the total energy consumption in the membrane method stage is not high.
  • the concentration ratio can reach several tens of times or even hundreds of times, and the absolute amount of concentration required for subsequent evaporation It has been quite small, so despite the phase change process of the evaporation unit, the unit energy consumption is higher, but the total energy consumption required for the evaporation operation is still small.
  • the invention is applicable to both electroless plating rinsing wastewater and electroplating rinsing wastewater.
  • the concentration of the electroless plating bath is only tens of grams per liter or even a few grams per liter. It is optimized according to the required concentration ratio. In most cases, evaporation and concentration can be omitted to achieve direct reuse. When it is high, it is concentrated by evaporation and reused.
  • the concentration of the plating bath is as high as one hundred gram per liter, and the concentration ratio of the electroplating rinsing wastewater is as high as several thousand times, so that the full membrane method greatly increases the operating energy consumption and the operating cost, and the membrane pollution is particularly remarkable, and in most cases, evaporation is required. Concentration can only meet the requirements of the bath concentration; only when the bath concentration is low, the evaporation and concentration are omitted and directly reused.
  • FIG. 1 is a schematic view showing a process route for online recycling of a plated rinsing wastewater in Embodiment 1;
  • 1 plating tank
  • 2 3 cleaning tank
  • 3 regulating tank
  • 4 low pressure pump
  • 5 security filter
  • 6 high pressure pump
  • 7 pre-reverse osmosis membrane module
  • 8 post-mounted nanofiltration membrane Component
  • 9-evaporation unit 10-reverse Penetration of clean water side water, 11-reverse osmosis concentrated water side water, 12-nanofiltration membrane module clear water side water, 13-nanofiltration membrane unit concentrated water side water, 14-condensed water, 15-plating liquid, 16-refill cleaning water.
  • FIG. 1 A method for online recycling of nickel-containing plating rinsing wastewater is shown in FIG. 1 , and the method comprises the following steps:
  • the electroplating rinsing wastewater is initially concentrated in the tertiary cleaning tank 2 by three-stage countercurrent rinsing, and is collected in the regulating tank 3, and the concentration of Ni2+ is 200 mg/L.
  • solid particles larger than 5 ⁇ m are removed through the security filter 5 to protect the safe operation of the subsequent membrane filter.
  • the rinsing wastewater of the plating part After being pressurized by the high-pressure pump 6 to 1.0Mpa, the rinsing wastewater of the plating part enters the pre-reverse osmosis membrane module 7, and the concentration of Ni2+ in the effluent 10 of the reverse osmosis water side is 0.2 mg/L, which can completely meet the requirements of the rinsing quality of the plating parts, and after the recovery It is mixed with the supplementary washing water 16 in the third-stage washing tank 2; the plating rinsing wastewater is concentrated three times to obtain the reverse osmosis concentrated water side effluent 11 and is sent to the post-strain nanofiltration membrane module 8 for further enrichment by 10 times.
  • the concentration of Ni2+ in the fresh water side of the nanofiltration membrane module is 9.0 mg/L, which cannot meet the requirements of the rinsing quality of the plating parts, and is further purified as the influent water entering the pre-reverse osmosis membrane module 7.
  • the concentration of Ni2+ in the concentrated water side of the nanofiltration membrane module is 8790 mg/L, which still does not reach the concentration required for the plating solution 15 in the plating tank 1, and is further concentrated in the evaporation unit 9 to 180 g/L.
  • the condensed water 14 is reused as rinsing water.
  • the resource efficiency of Ni2+ is 99.9%, the resource efficiency of various additives is 99.8%, the resource efficiency of water is 99.0%, online resource is realized, and there is no secondary pollution in the whole process, which is compared with the traditional precipitation process. More than the advantage.
  • a method for online recycling of leaching wastewater containing copper plating parts comprising the following steps:
  • the electroplating rinsing wastewater was initially concentrated by three-stage countercurrent rinsing and collected in a regulating tank with a Cu2+ concentration of 500 mg/L. Under the action of the low-pressure pump, the solid particles larger than 5 ⁇ m are removed by the security filter to protect the safe operation of the subsequent membrane filter.
  • the plated wastewater After being pressurized by a high-pressure pump of 6.0Mpa, the plated wastewater enters the pre-reverse osmosis membrane module, and the Cu2+ concentration of the effluent from the fresh water side is 0.4mg/L, which can be completely reused for the rinsing quality of the plated parts, and the reverse osmosis concentrated water side effluent It is 10 times thicker and is further concentrated 30 times as a feed water into the post-filtration nanofiltration module.
  • the concentration of Cu2+ in the water side of the nanofiltration membrane module is 80.0 mg/L, which cannot meet the requirements of the rinsing quality of the plating parts, and is further purified as the influent water entering the pre-reverse osmosis membrane module.
  • the effluent from the concentrated water side of the nanofiltration membrane module is 170 g/L, which reaches the concentration required for the plating solution in the plating tank and directly enters the plating tank.
  • a method for online recycling of rinsing wastewater containing silver plating comprising the following steps:
  • the electroplating rinsing wastewater was initially concentrated by three-stage countercurrent rinsing and collected in a regulating tank with an Ag2+ concentration of 50 mg/L.
  • the solid particles larger than 5 ⁇ m are removed by the security filter to protect the safe operation of the subsequent membrane filter.
  • the high pressure pump pressurizes 0.5Mpa
  • the plated wastewater enters the pre-reverse osmosis membrane module, and the Ag2+ concentration of the effluent from the clean water side is 0.05mg/L, which can completely meet the requirements of the rinsing quality of the plated parts, and is reused in the reverse osmosis concentrated water side.
  • the Ag2+ concentration of the water filtration side of the nanofiltration membrane module is 2.0 mg/L, which cannot meet the requirements of the rinsing quality of the plating parts, and is further purified as the influent into the pre-reverse osmosis membrane module.
  • the effluent from the concentrated water side of the nanofiltration membrane module is 299mg/L, which still does not reach the concentration required for the plating solution in the plating tank. It is further concentrated to 3g/L by the evaporation unit and then enters the plating tank.
  • the condensed water is used as the rinsing water. use.
  • the resource efficiency of Ag2+ is 98.8%, the resource efficiency of various additives is 98.4%, the resource efficiency of water is 98.0%, online resource is realized, and there is no secondary pollution in the whole process, which is compared with the traditional precipitation process. More than the advantage.
  • a method for online recycling of chrome-plated rinsing wastewater wherein the electroplating rinsing wastewater is subjected to multi-stage countercurrent cleaning, security filtration, reverse osmosis treatment and nanofiltration treatment, and the metal ions and additives in the electroplating rinsing wastewater are recovered. As a plating solution, it is returned to the plating tank to realize online resource utilization.
  • Multi-stage countercurrent cleaning the electroplating rinsing wastewater is initially concentrated by a 3-stage countercurrent rinsing and collected in a regulating tank;
  • Reverse osmosis treatment pressurize the filtrate filtered in step (2) and then enter the pre-reverse osmosis membrane module for reverse osmosis concentration, and the water on the clean water side is reused as the rinsing water for the plating part, and the reverse osmosis concentrated water side effluent Further enrichment as a feed water into the post-filtration nanofiltration module;
  • Nanofiltration treatment the reverse osmosis concentrated water side effluent is input into the nanofiltration membrane module for concentration, and the nanofiltration membrane module clear water side effluent is further purified as the influent into the pre-reverse osmosis membrane module, and the nanofiltration membrane module concentrated water side
  • the effluent is further concentrated by the evaporation unit and returned to the plating tank as a plating solution, and the condensed water is reused as rinsing water.
  • the electroplating rinsing wastewater in the step (1) is initially concentrated by countercurrent rinsing to a concentration of metal ions of 50 mg/L, and enters a security filter to remove solid particles having a particle diameter of ⁇ 5 ⁇ m.
  • step (3) The pressurization in step (3) is boosted to 0.5 MPa in the high pressure pump.
  • Step (2) The filtered filtrate is concentrated one time by the pre-reverse osmosis membrane module, and further concentrated by the post-nanofiltration membrane module.
  • the resource efficiency of Cr2+ is 99.1%, the resource efficiency of various additives is 98.2%, and the resource efficiency of water is 97.8%. Online resource utilization is realized, and there is no secondary pollution in the whole process, which is compared with the traditional precipitation process. More than the advantage.
  • a method for online recycling of plated rinsing wastewater containing silver and cadmium wherein the electroless plating rinsing wastewater is subjected to multi-stage countercurrent cleaning, security filtration, reverse osmosis treatment and nanofiltration treatment, and the rinsing of the plating parts is recovered.
  • the metal ions and additives in the waste water are returned to the plating tank as the plating liquid, and the online resource utilization is realized.
  • Multi-stage countercurrent cleaning the rinsing wastewater of the plating parts is initially concentrated by a 5-stage countercurrent rinsing and collected in a regulating tank;
  • Reverse osmosis treatment pressurize the filtrate filtered in step (2) and then enter the pre-reverse osmosis membrane module for reverse osmosis concentration, and the water on the clean water side is reused as the rinsing water for the plating part, and the reverse osmosis concentrated water side effluent Further enrichment as a feed water into the post-filtration nanofiltration module;
  • Nanofiltration treatment the reverse osmosis concentrated water side effluent is input into the nanofiltration membrane module for concentration, and the nanofiltration membrane module clear water side effluent is further purified as the influent into the pre-reverse osmosis membrane module, and the nanofiltration membrane module concentrated water side
  • the effluent is directly returned to the plating tank as the plating liquid, and the condensed water is reused as the rinsing water.
  • the plating rinsing wastewater in the step (1) is initially concentrated by countercurrent rinsing to a concentration of metal ions of 500 mg/L, and the solid particles having a particle diameter of ⁇ 10 ⁇ m are removed by ultrafiltration treatment.
  • step (3) The pressurization in step (3) is boosted to 6 MPa in the high pressure pump.
  • Step (2) The filtrate after filtration is concentrated 10 times by the pre-reverse osmosis membrane module, and further concentrated 30 times after entering the nanofiltration membrane module.
  • a method for online recycling of plated rinsing wastewater containing silver, copper and zinc wherein the electroless plating rinsing wastewater is subjected to multi-stage countercurrent cleaning, security filtration, reverse osmosis treatment and nanofiltration treatment in turn.
  • the metal ions and additives in the rinsing wastewater of the plating parts are recovered, and are returned as plating liquid to the plating tank to realize on-line resource utilization.
  • Multi-stage countercurrent cleaning The rinsing wastewater of the plating parts is initially concentrated by a 4-stage countercurrent rinsing and collected in a regulating tank;
  • Reverse osmosis treatment pressurize the filtrate filtered in step (2) and then enter the pre-reverse osmosis membrane module for reverse osmosis concentration, and the water on the clean water side is reused as the rinsing water for the plating part, and the reverse osmosis concentrated water side effluent Further enrichment as a feed water into the post-filtration nanofiltration module;
  • Nanofiltration treatment the reverse osmosis concentrated water side effluent is input into the nanofiltration membrane module for concentration, and the nanofiltration membrane module clear water side effluent is further purified as the influent into the pre-reverse osmosis membrane module, and the nanofiltration membrane module concentrated water side
  • the effluent is directly returned to the plating tank as the plating liquid, and the condensed water is reused as the rinsing water.
  • the plating rinsing wastewater in the step (1) is initially concentrated by countercurrent rinsing to a concentration of 200 mg/L of metal ions, and enters a security filter to remove solid particles having a particle diameter of ⁇ 7 ⁇ m.
  • step (3) The pressurization in step (3) is boosted to 3 MPa in the high pressure pump.
  • Step (2) The filtrate after filtration is concentrated 8 times by the pre-reverse osmosis membrane module, and further concentrated 20 times after entering the nanofiltration membrane module.
  • Ag2+ resource efficiency is 98.5%
  • Cu2+ resource efficiency is 99.8%
  • Zn2+ resource efficiency is 98.8%
  • resource efficiency of various additives is 98.8%
  • water resource efficiency is 99.5%. Recycling, and the entire process without secondary pollution, compared with the traditional precipitation process has significant advantages.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种镀件漂洗废水在线资源化的方法,该方法是将镀件漂洗废水依次经过多级逆流清洗、过滤、反渗透处理、纳滤处理以及蒸发提浓或直接回用,回收镀件漂洗废水中的金属离子和添加剂,作为镀件液返回镀件槽中,回收镀件漂洗废水中的水,作为镀件漂洗水而回用,实现在线资源化利用。与现有技术相比,采用反渗透膜组件在前、纳滤膜组件在后的组合方式,能够有效回用镀件漂洗废水中的重金属离子及各类添加剂和水,实现镀件漂洗废水的在线资源化,且大大降低了运行能耗和经济成本。

Description

一种镀件漂洗废水在线资源化的方法 技术领域
本发明属于工业废水处理及资源回收技术领域,涉及一种镀件漂洗废水在线资源化的方法。
背景技术
镀件是制造行业的重要工艺环节,排放废水成分复杂。我国镀件废水年均排放量高达40亿吨,其中漂洗废水占80%,约32亿吨。镀件漂洗废水中含有铬、镍、镉、铜、锌等重金属污染物,还含有相当数量的添加剂、光亮剂等有机化合物,这些化学物质进入环境,必然会对人类健康以及环境造成极其严重的危害。
目前镀件漂洗废水处理最常用的方法有化学沉淀法、离子交换法和膜分离法,但化学沉淀法是以达标排放为目的,污泥量大,处理成本高,且未将重金属视为一种资源回用,致使经济效益基本为负。离子交换法只能实现重金属离子的回用,而其它物质如各类添加剂则无法回用,且废水中含有除重金属外的各类添加剂而必需进一步去除之后才能排放或回收,此外,离子交换树脂吸附饱和后还需药剂再生,产生二次污染。公开号为CN 1590322A的中国发明专利公开了一种电镀废水治理方法。它包括工艺学上液体物料处理、提升、增压和输运常规,采用了膜分离技术的分级组合,包括预处理、一级纳滤膜分离、二级苦咸水反渗透膜分离、三级海水反渗透膜分离,实现了透过液回用。上述专利公布的技术方案中,多级膜分离技术需在每个膜组件前均需设置高压泵,大幅增大了***的固定投资,也大幅增加了运行能耗和费用。由于电镀槽液浓度高达每升上百克,致使电镀类漂洗废水浓缩比高达数千倍,运行费用和膜污染尤其显著。
实际上,镀件漂洗废水中的重金属及其它添加剂都是一种优良资源而非污染物,如果将其回用,不仅可以实现达标排放,还能够使企业获得可观的经济效益。因此,开发相应的低成本资源化技术,取代当前以治理为目的主流技术和高成本的回用技术,是减轻镀件企业生存压力和实现可持续发展的重要途径。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种能够有效回用镀件漂洗废水中的重金属离子及各类添加剂和水且能耗及成本低的镀件漂洗废水在线资源化的方法。
本发明的目的可以通过以下技术方案来实现:
一种镀件漂洗废水在线资源化的方法,其特征在于,该方法是将镀件漂洗废水依次经过多级逆流清洗、过滤、反渗透处理、纳滤处理以及蒸发提浓或直接回用,回收镀件漂洗废水中的金属离子和添加剂,作为镀件液返回镀件槽中,回收镀件漂洗废水中的水,作为镀件漂洗水而回用,实现在线资源化利用。
所述的方法具体包括以下步骤:
(1)多级逆流清洗:将镀件漂洗废水经逆流漂洗初步浓缩,汇集于调节池;
(2)过滤:在低压泵作用下,经保安过滤或超滤处理去除固体颗粒物;保护后续膜滤器的安全运行;
(3)反渗透处理:增压后进入前置反渗透膜组件进行反渗透提浓,清水侧出水作为镀件漂洗水而回用,反渗透浓水侧出水作为进水进入后置纳滤膜组件进一步提浓;
(4)纳滤处理:将步骤(3)所得反渗透浓水侧出水输入纳滤膜组件进行提浓;
(5)蒸发提浓或直接回用:纳滤膜组件清水侧出水作为进水进入前置反渗透膜组件进一步净化,纳滤膜组件浓水侧出水如果达到镀槽中镀件液所要求的浓度,直接作为镀件液返回镀件槽中,如果达不到镀槽中镀件液所要求的浓度,则采用蒸发单元进一步提浓至镀件液所需浓度后进入镀件槽,冷凝水作为漂洗水回用。
步骤(1)所述的镀件漂洗废水经逆流漂洗初步浓缩至金属离子的浓度为50-500mg/L,进入步骤(2)所述保安过滤或超滤处理去除粒径≥5-10μm的固体颗粒物。
步骤(3)所述的增压是在高压泵中增压至0.5-6Mpa。
步骤(2)过滤后的滤液经前置反渗透膜组件提浓1-9倍(即反渗透浓水侧 出水的浓度为滤液浓度的2-10倍),进入后置纳滤膜组件进一步提浓1-29倍(即纳滤膜组件浓水侧出水的浓度为反渗透浓水侧出水浓度的2-30倍)。
步骤(3)所述的纳滤膜组件浓水侧出水通过蒸发单元进一步浓缩。
所述的蒸发单元优选为降膜式蒸发器。
所述的经逆流漂洗为多级逆流漂洗。
所述的多级逆流漂洗为3-5级逆流漂洗。
所述的金属离子包括镍离子、铜离子、银离子、铬离子、镉离子或锌离子中的一种或多种。
其中,过滤掉粒径≥5-10μm的固体颗粒物能够保护前置反渗透膜组件及后置纳滤膜组件的安全运行;反渗透膜处理中,滤出的清水能够完全达到镀件漂洗水质的要求回用;若纳滤膜组件浓水侧出水能够满足镀件液的浓度需要,则直接作为镀件液输送至镀件槽中循环利用,若纳滤膜组件浓水侧出水仍未能满足镀件液的浓度需要,则经蒸发单元进一步提浓后,可作为镀件液输送至镀件槽中循环利用;蒸发单元所用的冷凝水能够作为漂洗水回用。
与现有技术相比,本发明具有以下特点:
1.镀件漂洗过程实际上就是镀液的物理稀释过程,本发明采用膜法处理和蒸发操作的化工浓缩单元将镀件漂洗废水浓缩至原浓度,实现了镀件漂洗废水中所有溶质(重金属离子及各类添加剂)的回用,同时实现了清水闭合循环利用,即实现了镀件漂洗废水中几乎所有物质的在线资源化,达到了废水近零排放的目的。而传统化学沉淀法只能实现达标排放,至多仅能实现水的回用;传统离子交换法只能实现重金属离子的回用,其它物质如各类添加剂则无法回用,且废水中含有除重金属外的各类添加剂均需进一步去除才能排放或回收,此外,离子交换树脂吸附饱和后还需药剂再生,产生二次污染。
2.本发明采用了反渗透和纳滤膜组件的新型组合方式,即反渗透膜组件位于纳滤膜组件之间,与传统的膜法相比,大大降低了运行能耗和经济成本。漂洗废水浓度相对较低,渗透压较低,反渗透膜组件置前,一方面可以使运行压力处于较低的水平,另一方面又可以确保出水水质达到漂洗水质的回用要求。纳滤膜组件置后且接反渗透浓水侧出水,虽然浓水的反渗透压较高,但是纳滤膜属于低压反渗透膜,与常规反渗透膜相比仍可使运行压力处于较低的水平。 纳滤膜组件的清水通常达不到漂洗水回用的要求,作为进水接入反渗透膜组件进一步净化。这种组合方式较纳滤膜组件在前反渗透膜组件在后的组合方式具有明显的优势,充分利用了反渗透更适于低浓度低渗透压的特点,以及纳透膜更适于高浓度高渗透压的特点,使***的整体压力处于较低的水平,大大降低了运行能耗和经济成本。
3.反渗透膜组件和纳滤膜组件的新型组合方式还能够减少固定投资。纳滤膜组件所需的运行压力比反渗透膜组件要低,所以,与纳滤膜组件在前反渗透膜组件在后的组合方式相比,反渗透膜组件在前纳滤膜组件在后的组合方式中,纳滤膜元件前可以省去高压泵1台。高压泵在整个***中所占投资比例较高,故可大幅降低固定投资。
4.本发明充分利用了膜法和蒸发的技术优势,并且避开了各自的技术劣势,因此工艺组合后***整体效率较高。膜法是一种常规的化工浓缩工艺,由于不存在相变过程,单位能耗较低,故膜法阶段总能耗不高。镀件漂洗废水经反渗透和纳滤两级膜法浓缩后,即使达不到镀件液所要求的浓度,但浓缩比可达几十倍甚至几百倍,后续蒸发所需的浓缩绝对量已相当少,因而尽管蒸发单元存在相变过程,单位能耗较高,但蒸发操作所需的总能耗仍然很少。
5.本发明既适用化学镀漂洗废水,也适用于电镀漂洗废水。化学镀槽液的浓度仅为每升几十克甚至只有每升几克,根据所需浓缩比情况进行优化,大多数情况下可以省去蒸发提浓,实现直接回用;只有槽液浓度较高时才经蒸发提浓后回用。而电镀槽液浓度高达每升上百克,电镀类漂洗废水浓缩比因此高达数千倍,致使全膜法大幅增加运行能耗和费用运行费用,膜污染也尤其显著,大多数情况下需蒸发提浓才可达到槽液浓度的要求;只有槽液浓度较低时才省去蒸发提浓而直接回用。
附图说明
图1为实施例1中镀件漂洗废水在线资源化的工艺路线示意图;
图中标记说明:
1—镀件槽、2—三级清洗槽、3—调节池、4—低压泵、5—保安过滤器、6—高压泵、7—前置反渗透膜组件、8—后置纳滤膜组件、9—蒸发单元、10—反 渗透清水侧出水、11—反渗透浓水侧出水、12—纳滤膜组件清水侧出水、13—纳滤膜组件浓水侧出水、14—冷凝水、15—镀件液、16—补充清洗水。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
一种用于含镍镀件漂洗废水在线资源化的方法如图1所示,该方法包括以下步骤:
电镀漂洗废水在三级清洗槽2中经三级逆流漂洗初步浓缩,汇集于调节池3,Ni2+浓度为200mg/L。在低压泵4作用下,经保安过滤器5去除大于5μm固体颗粒物,保护后续膜滤器的安全运行。经高压泵6增压至1.0Mpa,镀件漂洗废水进入前置反渗透膜组件7,反渗透清水侧出水10中Ni2+浓度为0.2mg/L,能够完全达到镀件漂洗水质的要求,回收后与三级清洗槽2中的补充清洗水16混合;镀件漂洗废水提浓3倍后得到反渗透浓水侧出水11,并输送至后置纳滤膜组件8中进一步提浓10倍。纳滤膜组件清水侧出水12中Ni2+浓度为9.0mg/L,不能达到镀件漂洗水质的要求,作为进水进入前置反渗透膜组件7进一步净化。纳滤膜组件浓水侧出水13中Ni2+浓度为8790mg/L,仍达不到镀件槽1中镀件液15所要求的浓度,在蒸发单元9中进一步提浓至180g/L后进入镀件槽1,冷凝水14作为漂洗水回用。
本实施例实施效果:
(1)Ni2+资源化效率为99.9%,各类添加剂的资源化效率为99.8%,水的资源化效率为99.0%,实现了在线资源化,且整个过程无二次污染,与传统沉淀工艺相比优势显著。
(2)与主流膜工艺相比,固定投资降低1/5,运行成本降低1/2,能耗降低1/3。
实施例2:
一种用于含铜镀件漂洗废水在线资源化的方法,该方法包括以下步骤:
电镀漂洗废水经三级逆流漂洗初步浓缩,汇集于调节池,Cu2+浓度为500mg/L。在低压泵作用下,经保安过滤器去除大于5μm固体颗粒物,保护后续膜滤器的安全运行。经高压泵增压6.0Mpa,镀件废水进入前置反渗透膜组件,清水侧出水Cu2+浓度为0.4mg/L,能够完全达到镀件漂洗水质的要求而回用,反渗透浓水侧出水提浓10倍,并作为进水进入后置纳滤膜组件进一步提浓30倍。纳滤膜组件清水侧出水Cu2+浓度为80.0mg/L,不能达到镀件漂洗水质的要求,作为进水进入前置反渗透膜组件进一步净化。纳滤膜组件浓水侧出水为170g/L,达到了镀槽中镀件液所要求的浓度,直接进入镀件槽。
本实施例实施效果:
(1)Cu2+资源化效率为97.7%,各类添加剂的资源化效率为97.3%,水的资源化效率为97.8%,实现了在线资源化,且整个过程无二次污染,与传统沉淀工艺相比优势显著。
(2)与主流膜工艺相比,固定投资降低1/5,运行成本降低2/3,能耗降低1/2。
实施例3:
一种用于含银镀件漂洗废水在线资源化的方法,该方法包括以下步骤:
电镀漂洗废水经三级逆流漂洗初步浓缩,汇集于调节池,Ag2+浓度为50mg/L。在低压泵作用下,经保安过滤器去除大于5μm固体颗粒物,保护后续膜滤器的安全运行。经高压泵增压0.5Mpa,镀件废水进入前置反渗透膜组件,清水侧出水Ag2+浓度为0.05mg/L,能够完全达到镀件漂洗水质的要求而回用,反渗透浓水侧出水提浓1倍,并作为进水进入后置纳滤膜组件进一步提浓3倍。纳滤膜组件清水侧出水Ag2+浓度为2.0mg/L,不能达到镀件漂洗水质的要求,作为进水进入前置反渗透膜组件进一步净化。纳滤膜组件浓水侧出水为299mg/L,仍达不到镀槽中镀件液所要求的浓度,采用蒸发单元进一步提浓至3g/L后进入镀件槽,冷凝水作为漂洗水回用。
本实施例实施效果:
(1)Ag2+资源化效率为98.8%,各类添加剂的资源化效率为98.4%,水的资源化效率为98.0%,实现了在线资源化,且整个过程无二次污染,与传统沉淀工艺相比优势显著。
(2)与主流膜工艺相比,固定投资降低1/5,运行成本降低1/6,能耗降低1/10。实施例4:
一种含铬镀件漂洗废水在线资源化的方法,该方法是将电镀漂洗废水依次经过多级逆流清洗、保安过滤、反渗透处理及纳滤处理后,回收电镀漂洗废水中的金属离子和添加剂,作为电镀液返回镀件槽中,实现在线资源化利用。
具体包括以下步骤:
(1)多级逆流清洗:将电镀漂洗废水经3级逆流漂洗初步浓缩,汇集于调节池;
(2)过滤:在低压泵作用下,经保安过滤去除固体颗粒物;保护后续膜滤器的安全运行;
(3)反渗透处理:将步骤(2)过滤后的滤液增压后进入前置反渗透膜组件进行反渗透提浓,清水侧出水作为镀件漂洗水而回用,反渗透浓水侧出水作为进水进入后置纳滤膜组件进一步提浓;
(4)纳滤处理:将反渗透浓水侧出水输入纳滤膜组件进行提浓,纳滤膜组件清水侧出水作为进水进入前置反渗透膜组件进一步净化,纳滤膜组件浓水侧出水通过蒸发单元进一步浓缩后作为电镀液返回镀件槽中,冷凝水作为漂洗水回用。
步骤(1)中的电镀漂洗废水经逆流漂洗初步浓缩至金属离子的浓度为50mg/L,进入保安过滤器去除粒径≥5μm的固体颗粒物。
步骤(3)中的增压是在高压泵中增压至0.5Mpa。
步骤(2)过滤后的滤液经前置反渗透膜组件提浓1倍,进入后置纳滤膜组件进一步提浓1倍。
本实施例实施效果:
(1)Cr2+资源化效率为99.1%,各类添加剂的资源化效率为98.2%,水的资源化效率为97.8%,实现了在线资源化,且整个过程无二次污染,与传统沉淀工艺相比优势显著。
(2)与主流膜工艺相比,固定投资降低1/5,运行成本降低1/6,能耗降低1/10。
实施例5:
一种含银和镉的镀件漂洗废水在线资源化的方法,该方法是将化学镀镀件漂洗废水依次经过多级逆流清洗、保安过滤、反渗透处理及纳滤处理后,回收镀件漂洗废水中的金属离子和添加剂,作为镀件液返回镀件槽中,实现在线资源化利用。
具体包括以下步骤:
(1)多级逆流清洗:将镀件漂洗废水经5级逆流漂洗初步浓缩,汇集于调节池;
(2)过滤:在低压泵作用下,经超滤处理去除固体颗粒物;保护后续膜滤器的安全运行;
(3)反渗透处理:将步骤(2)过滤后的滤液增压后进入前置反渗透膜组件进行反渗透提浓,清水侧出水作为镀件漂洗水而回用,反渗透浓水侧出水作为进水进入后置纳滤膜组件进一步提浓;
(3)纳滤处理:将反渗透浓水侧出水输入纳滤膜组件进行提浓,纳滤膜组件清水侧出水作为进水进入前置反渗透膜组件进一步净化,纳滤膜组件浓水侧出水直接作为镀件液返回镀件槽中,冷凝水作为漂洗水回用。
步骤(1)中的镀件漂洗废水经逆流漂洗初步浓缩至金属离子的浓度为500mg/L,经超滤处理去除粒径≥10μm的固体颗粒物。
步骤(3)中的增压是在高压泵中增压至6Mpa。
步骤(2)过滤后的滤液经前置反渗透膜组件提浓10倍,进入后置纳滤膜组件进一步提浓30倍。
本实施例实施效果:
(1)Ag2+资源化效率为98.9%,Cd2+资源化效率为97.8%,各类添加剂的资源化效率为98.8%,水的资源化效率为98.5%,实现了在线资源化,且整个过程无二次污染,与传统沉淀工艺相比优势显著。
(2)与主流膜工艺相比,固定投资降低1/5,运行成本降低1/6,能耗降低1/10。
实施例6:
一种含银、铜和锌的镀件漂洗废水在线资源化的方法,该方法是将化学镀镀件漂洗废水依次经过多级逆流清洗、保安过滤、反渗透处理及纳滤处理后, 回收镀件漂洗废水中的金属离子和添加剂,作为镀件液返回镀件槽中,实现在线资源化利用。
具体包括以下步骤:
(1)多级逆流清洗:将镀件漂洗废水经4级逆流漂洗初步浓缩,汇集于调节池;
(2)过滤:在低压泵作用下,经保安过滤去除固体颗粒物;保护后续膜滤器的安全运行;
(3)反渗透处理:将步骤(2)过滤后的滤液增压后进入前置反渗透膜组件进行反渗透提浓,清水侧出水作为镀件漂洗水而回用,反渗透浓水侧出水作为进水进入后置纳滤膜组件进一步提浓;
(4)纳滤处理:将反渗透浓水侧出水输入纳滤膜组件进行提浓,纳滤膜组件清水侧出水作为进水进入前置反渗透膜组件进一步净化,纳滤膜组件浓水侧出水直接作为镀件液返回镀件槽中,冷凝水作为漂洗水回用。
步骤(1)中的镀件漂洗废水经逆流漂洗初步浓缩至金属离子的浓度为200mg/L,进入保安过滤器去除粒径≥7μm的固体颗粒物。
步骤(3)中的增压是在高压泵中增压至3Mpa。
步骤(2)过滤后的滤液经前置反渗透膜组件提浓8倍,进入后置纳滤膜组件进一步提浓20倍。
本实施例实施效果:
(1)Ag2+资源化效率为98.5%,Cu2+资源化效率为99.8%,Zn2+资源化效率为98.8%,各类添加剂的资源化效率为98.8%,水的资源化效率为99.5%,实现了在线资源化,且整个过程无二次污染,与传统沉淀工艺相比优势显著。
(2)与主流膜工艺相比,固定投资降低1/5,运行成本降低1/6,能耗降低1/10。

Claims (8)

  1. 一种镀件漂洗废水在线资源化的方法,其特征在于,该方法是将镀件漂洗废水依次经过多级逆流清洗、过滤、反渗透处理、纳滤处理以及蒸发提浓或直接回用,回收镀件漂洗废水中的金属离子和添加剂,作为镀件液返回镀件槽中,回收镀件漂洗废水中的水,作为镀件漂洗水而回用,实现在线资源化利用。
  2. 根据权利要求1所述的一种镀件漂洗废水在线资源化的方法,其特征在于,所述的方法具体包括以下步骤:
    (1)多级逆流清洗:将镀件漂洗废水经逆流漂洗初步浓缩,汇集于调节池;
    (2)过滤:在低压泵作用下,经保安过滤或超滤处理去除固体颗粒物;
    (3)反渗透处理:增压后进入前置反渗透膜组件进行反渗透提浓,清水侧出水作为镀件漂洗水而回用,反渗透浓水侧出水作为进水进入后置纳滤膜组件进一步提浓;
    (4)纳滤处理:将步骤(3)所得反渗透浓水侧出水输入纳滤膜组件进行提浓;
    (5)蒸发提浓或直接回用:纳滤膜组件清水侧出水作为进水进入前置反渗透膜组件进一步净化,纳滤膜组件浓水侧出水如果达到镀槽中镀件液所要求的浓度,直接作为镀件液返回镀件槽中,如果达不到镀槽中镀件液所要求的浓度,则采用蒸发单元进一步提浓至镀件液所需浓度后进入镀件槽,冷凝水作为漂洗水回用。
  3. 根据权利要求2所述的一种镀件漂洗废水在线资源化的方法,其特征在于,步骤(1)所述的镀件漂洗废水经逆流漂洗初步浓缩至金属离子的浓度为50-500mg/L,进入步骤(2)所述保安过滤或超滤处理去除粒径≥5-10μm的固体颗粒物。
  4. 根据权利要求2所述的一种镀件漂洗废水在线资源化的方法,其特征在于,步骤(3)所述的增压是在高压泵中增压至0.5-6Mpa。
  5. 根据权利要求2所述的一种镀件漂洗废水在线资源化的方法,其特征在于,步骤(2)过滤后的滤液经前置反渗透膜组件提浓1-9倍,进入后置纳滤膜组件进一步提浓1-29倍。
  6. 根据权利要求2所述的一种镀件漂洗废水在线资源化的方法,其特征在于,步骤(3)所述的纳滤膜组件浓水侧出水通过蒸发单元一步浓缩。
  7. 根据权利要求2所述的一种镀件漂洗废水在线资源化的方法,其特征在于,所述的逆流漂洗为多级逆流漂洗。
  8. 根据权利要求7所述的一种镀件漂洗废水在线资源化的方法,其特征在于,所述的多级逆流漂洗为3-5级逆流漂洗。
PCT/CN2016/096465 2016-05-18 2016-08-24 一种镀件漂洗废水在线资源化的方法 WO2017197803A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610331251.7A CN105967416A (zh) 2016-05-18 2016-05-18 一种镀件漂洗废水在线资源化的方法
CN201610331251.7 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017197803A1 true WO2017197803A1 (zh) 2017-11-23

Family

ID=56957008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096465 WO2017197803A1 (zh) 2016-05-18 2016-08-24 一种镀件漂洗废水在线资源化的方法

Country Status (2)

Country Link
CN (1) CN105967416A (zh)
WO (1) WO2017197803A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108211802A (zh) * 2018-04-13 2018-06-29 成都硕特环保科技有限公司 一种高压碟管式纳滤膜分盐***
CN109250867A (zh) * 2018-10-19 2019-01-22 江门市崖门新财富环保工业有限公司 一种电镀废水泥水同治的思路
CN110078245A (zh) * 2019-06-06 2019-08-02 淄博博立特冷冻空调设备有限公司 一种大循环倍率浓水回流膜法废水回收回用***
CN110937656A (zh) * 2019-10-17 2020-03-31 珠海市江河海水处理科技股份有限公司 全自动电镀镍废水零排放设备及其操作方法
CN111592164A (zh) * 2020-05-29 2020-08-28 江苏跃达环保工程有限公司 电厂全膜法中水回用处理***及其工作方法
CN112028270A (zh) * 2019-06-04 2020-12-04 核工业理化工程研究院 化学镀镍漂洗废水的浓缩处理装置及处理方法
CN112028347A (zh) * 2019-06-04 2020-12-04 核工业理化工程研究院 化学镀镍废水零排放处理***及处理方法
CN112593276A (zh) * 2020-12-07 2021-04-02 娄底市安地亚斯电子陶瓷有限公司 一种基于同一陶瓷不同部位金属层不同厚度的镀镍工艺
CN113264629A (zh) * 2021-06-16 2021-08-17 四川省创飞格环保技术有限公司 一种电镀废水全膜法工艺及装置
CN114147015A (zh) * 2021-11-26 2022-03-08 苏州普瑞得电子有限公司 一种用于表面处理槽中液体的清理装置
CN114455765A (zh) * 2022-02-11 2022-05-10 广东中青环境工程有限公司 一种电镀液膜分离回收技术设备及其回收方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106587459B (zh) * 2016-11-28 2018-06-19 环境保护部华南环境科学研究所 一种电镀清洗废水在线资源化方法
CN106865816A (zh) * 2017-02-27 2017-06-20 环境保护部华南环境科学研究所 一种化学镀镍清洗废水在线资源化方法
CN110981055A (zh) * 2019-12-02 2020-04-10 无锡绿都环保科技有限公司 一种废水处理方法及废水处理***
CN116639769B (zh) * 2023-07-27 2023-10-20 杭州永洁达净化科技有限公司 一种抛光废酸的回收方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197075A1 (en) * 2006-09-07 2008-08-21 Musale Deepak A Removing mercury and other heavy metals from industrial wastewater
CN101439911A (zh) * 2008-12-30 2009-05-27 山东天诺光电材料有限公司 一种焦磷酸盐镀铜废水的处理方法
CN101948205A (zh) * 2009-08-28 2011-01-19 吴志文 工业废水回用处理***
CN102020385A (zh) * 2010-11-29 2011-04-20 广州凯膜过滤设备有限公司 一种电镀漂洗废水处理的方法
CN102874981A (zh) * 2012-09-27 2013-01-16 南京集鸿环保科技有限公司 一种电镀含镍废水零排放在线循环处理***
CN103130348A (zh) * 2011-11-23 2013-06-05 合肥信达膜科技有限公司 一种电镀镀铬废水全膜法处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204454757U (zh) * 2014-12-26 2015-07-08 南京源泉环保科技股份有限公司 一种电镀漂洗水在线回收零排放***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197075A1 (en) * 2006-09-07 2008-08-21 Musale Deepak A Removing mercury and other heavy metals from industrial wastewater
CN101439911A (zh) * 2008-12-30 2009-05-27 山东天诺光电材料有限公司 一种焦磷酸盐镀铜废水的处理方法
CN101948205A (zh) * 2009-08-28 2011-01-19 吴志文 工业废水回用处理***
CN102020385A (zh) * 2010-11-29 2011-04-20 广州凯膜过滤设备有限公司 一种电镀漂洗废水处理的方法
CN103130348A (zh) * 2011-11-23 2013-06-05 合肥信达膜科技有限公司 一种电镀镀铬废水全膜法处理方法
CN102874981A (zh) * 2012-09-27 2013-01-16 南京集鸿环保科技有限公司 一种电镀含镍废水零排放在线循环处理***

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108211802A (zh) * 2018-04-13 2018-06-29 成都硕特环保科技有限公司 一种高压碟管式纳滤膜分盐***
CN109250867A (zh) * 2018-10-19 2019-01-22 江门市崖门新财富环保工业有限公司 一种电镀废水泥水同治的思路
CN112028270A (zh) * 2019-06-04 2020-12-04 核工业理化工程研究院 化学镀镍漂洗废水的浓缩处理装置及处理方法
CN112028347A (zh) * 2019-06-04 2020-12-04 核工业理化工程研究院 化学镀镍废水零排放处理***及处理方法
CN110078245A (zh) * 2019-06-06 2019-08-02 淄博博立特冷冻空调设备有限公司 一种大循环倍率浓水回流膜法废水回收回用***
CN110937656A (zh) * 2019-10-17 2020-03-31 珠海市江河海水处理科技股份有限公司 全自动电镀镍废水零排放设备及其操作方法
CN111592164A (zh) * 2020-05-29 2020-08-28 江苏跃达环保工程有限公司 电厂全膜法中水回用处理***及其工作方法
CN112593276A (zh) * 2020-12-07 2021-04-02 娄底市安地亚斯电子陶瓷有限公司 一种基于同一陶瓷不同部位金属层不同厚度的镀镍工艺
CN113264629A (zh) * 2021-06-16 2021-08-17 四川省创飞格环保技术有限公司 一种电镀废水全膜法工艺及装置
CN114147015A (zh) * 2021-11-26 2022-03-08 苏州普瑞得电子有限公司 一种用于表面处理槽中液体的清理装置
CN114455765A (zh) * 2022-02-11 2022-05-10 广东中青环境工程有限公司 一种电镀液膜分离回收技术设备及其回收方法

Also Published As

Publication number Publication date
CN105967416A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2017197803A1 (zh) 一种镀件漂洗废水在线资源化的方法
US6162361A (en) Plating waste water treatment and metals recovery system
CN105366838B (zh) 三价铬钝化废水零排放处理方法
CN101805083A (zh) 一种从电镀废水中回收贵金属的工艺方法
CN106396221A (zh) 一种络合型电镀污水零排放处理方法
WO2024113796A1 (zh) 一种pcb生产过程中产生的含锡废水的膜法处理工艺
WO2024113798A1 (zh) 一种pcb生产过程中产生的含铜废水的膜法处理工艺
CN205347081U (zh) 氰化镀镉废水零排放处理***
CN101402496A (zh) 纳滤法处理电镀漂洗水的清洁生产方法
CN1869289B (zh) 电镀废水零排放循环利用工艺及设备
CN201343455Y (zh) 含金属离子废水处理***
CN201610402U (zh) 电子电镀废水回用深度处理装置
CN111233101A (zh) 一种印染废水的处理方法及处理装置
CN104071925A (zh) 一种钢铁车间的镀镍废水的零排放处理***及方法
CN107055912B (zh) Scr催化剂再生废水的废水零排放处理***
CN108793568A (zh) 一种不锈钢含酸清洗废水零排放废水组合设备
CN109467242B (zh) 节约碱用量的线路板综合废水处理及铜回收工艺
CN116573806A (zh) 一种反渗透-电渗析-纳滤组合的分盐***及其应用
CN115108673B (zh) 一种氧化法生产磷酸铁母液资源化处理的工艺
WO2018040223A1 (zh) 提高镍锌电镀漂洗废水在线资源化膜法闭合***效率的简便方法
CN211847559U (zh) 一种电镀清洗废水零排放处理***
CN201722222U (zh) 集成膜分离法电镀工业废水处理设备
CN210505916U (zh) 一种分流式电镀污水零排放处理装置
CN210505915U (zh) 一种高浓废水零排放处理装置
CN110921949B (zh) 一种电镀废水资源化处理方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902183

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 01/04/2019)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 01/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16902183

Country of ref document: EP

Kind code of ref document: A1