WO2017197550A1 - 电磁感应器件及其制作方法 - Google Patents

电磁感应器件及其制作方法 Download PDF

Info

Publication number
WO2017197550A1
WO2017197550A1 PCT/CN2016/082167 CN2016082167W WO2017197550A1 WO 2017197550 A1 WO2017197550 A1 WO 2017197550A1 CN 2016082167 W CN2016082167 W CN 2016082167W WO 2017197550 A1 WO2017197550 A1 WO 2017197550A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
electromagnetic induction
layer
induction device
layers
Prior art date
Application number
PCT/CN2016/082167
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to CN201680084738.8A priority Critical patent/CN109074936A/zh
Priority to PCT/CN2016/082167 priority patent/WO2017197550A1/zh
Priority to EP16901936.1A priority patent/EP3457416A1/en
Priority to US16/302,047 priority patent/US20190156989A1/en
Priority to JP2019510732A priority patent/JP2019520714A/ja
Publication of WO2017197550A1 publication Critical patent/WO2017197550A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Definitions

  • the present invention relates to the field of electronic devices or electrical devices, and in particular, to an electromagnetic induction device and a method of fabricating the same.
  • Devices that are weak (lower voltage and current) are often referred to as electronic devices, while devices that are strong (higher voltage and current) are referred to as electrical devices.
  • Many electronic devices and electrical devices work based on electromagnetic induction effects, such as inductors and transformers.
  • Electromagnetic induction devices typically include a magnetic core and a coil.
  • a transformer is a common electromagnetic induction device.
  • the structure of the coil wrapped by the conventional transformer makes the device have a large magnetic leakage, which not only causes energy loss but also radiation damage.
  • a structure using a shell-type transformer is also used, and the coil is wrapped by a portion (yoke) in which the core is not covered by the coil. This structure increases the magnetic resistance due to the presence of an air gap on the magnetic flux return path.
  • an electromagnetic induction device comprising a magnetic garment and at least one set of coils.
  • the magnetic garment is composed of two or more magnetic units, each of which can form a closed magnetic flux loop, and all the magnetic units are put together to form an integral body having at least one cavity inside, and the magnet splitting plane between the magnetic units Basically along the flux loop without cutting the flux loop.
  • the coil is placed in a cavity formed by the magnetic coat
  • the electrode of the coil is led out of the magnetic coat, and the magnetic flux loop in the magnetic garment is formed by energizing the coil.
  • the dividing surface of the magnet is formed by an air gap or an insulating material;
  • the overall structure of the magnetic coating comprises at least two magnetically conductive layers substantially parallel, the magnetic conducting layer being substantially parallel to the dividing surface of the magnet or substantially perpendicular to the dividing surface of the magnet; In the case of a substantially perpendicular to the split face of the magnet, a portion of the magnetic units respectively located at different magnetically permeable layers is seamlessly integrated by the magnetic material across the layers.
  • a method of fabricating an electromagnetic induction device comprising the steps of: determining a structure of an electromagnetic induction device according to the present invention; and decomposing the determined structure into a plurality of substantially parallel overlapping arrangements
  • the functional layer includes a magnetic conductive layer and a conductive layer, determining a planar layout of each functional layer, the magnetic conductive layer may include a magnetic material layout and an insulating material layout, and the conductive layer may include a conductive material layout and an insulating material layout;
  • the base layer is a magnetic conductive layer of the magnetic coating; on the base layer, at least one conductive layer and another magnetic conductive layer of the magnetic coating are formed according to the determined planar layout of each functional layer.
  • An electromagnetic induction device employs a magnetic garment composed of a plurality of magnetic units to wrap a coil, on the one hand, can substantially close the coil to reduce magnetic leakage, and on the other hand, due to the division of the magnet between the magnetic units With the magnetic flux loop, no air gap is generated on the magnetic flux loop, and the magnetic resistance is effectively reduced; and the magnetic coating adopts a layered structure, so that the electromagnetic induction device can be fabricated in a layer-by-layer manner, which not only reduces the fabrication. Difficulty also helps to obtain a high-performance electromagnetic induction device with a flat shape.
  • the fabrication method according to the present invention provides a layered fabrication method similar to that of a semiconductor integrated circuit processing method, enabling large-scale automation to fabricate an electromagnetic induction device according to the present invention, improving fabrication efficiency and reducing cost.
  • FIG. 1 is a schematic structural view of an electromagnetic induction device of Embodiment 1;
  • Embodiment 2 is a schematic structural view of two magnetic units in Embodiment 1;
  • Embodiment 3 is a schematic structural view of two coils in Embodiment 1;
  • Embodiment 4 is a plan view showing the planarization of five functional layers in Embodiment 1;
  • FIG. 5 is a schematic exploded view of the electromagnetic induction device of Embodiment 2;
  • FIG. 6 is a schematic structural view of a coil wound magnetic core in Embodiment 2;
  • FIG. 7 is a schematic exploded perspective view of an electromagnetic induction device of Embodiment 3.
  • An electromagnetic induction device in accordance with the present invention includes a magnetic garment and at least one set of coils.
  • the so-called magnetic coating refers to a magnetic material casing wrapped around the outside of the device, which is composed of two or more magnetic units. All of the magnetic units are pieced together to form an integral interior having at least one cavity.
  • the magnetic garment may be a substantially closed structure to avoid magnetic leakage as much as possible.
  • substantially closed refers to the passages (such as the electrodes of the coil) in addition to the necessary communication chambers, as well as the holes required for design or processing. In addition to the gap (for example the air gap between the magnetic units), the cavity is closed relative to the outside.
  • the magnetic clothing is at the end portion of the cavity. Incomplete closure is also possible, which further reduces the difficulty of fabrication without significantly affecting the performance of the device.
  • the coil is placed in a cavity formed by the magnetic coating, and the electrode of the coil is led out of the magnetic garment, and the magnetic flux in the magnetic garment is formed by energizing the routing coil.
  • the coils may be in a group such that the electromagnetic induction device is formed as an inductor, or the coils may be two or more groups, such that the electromagnetic induction device is formed as an AC transformer of a multi-value inductor, a single voltage output or a multi-voltage output.
  • the single magnetic unit may be in the form of a block, a sheet, a strip or a film, etc., and each of the magnetic units can form a closed magnetic flux loop.
  • the coil forms a magnetic flux loop on each of the magnetic units, and There is basically no air gap.
  • substantially no air gap means that the magnetic flux occupying a major portion of the magnetic unit can form a loop without an air gap. If a small part of the magnetic flux cannot be closed in one magnetic unit due to the difference in precision between the theoretical design and the actual product, process limitations, etc., it should not be considered beyond the scope of the present invention.
  • the magnet splitting faces of the magnetic units are disposed substantially along the flux loop without cutting the flux loop.
  • the split face of the magnet may be formed by an air gap or an insulating material.
  • the normal of the split face of the magnet is substantially parallel to the direction of the current in the coil.
  • the design of the magnetic unit or the split surface of the magnet can be employed in such a manner as to first determine the structure of the complete magnetic garment; and then according to the arrangement of the coils, such as the winding method, the placement in the cavity of the magnetic garment, etc.
  • the so-called “incompatibility” includes both parallel to each other (having the same path curvature) and nesting with each other (paths with large curvature are nested in paths with small curvature).
  • the magnet splitting surface may include a planar magnet splitting surface that divides the magnetic flux loop into two or more parallel portions, or divides the magnetic flux loop into two or more
  • the cylindrical section of the sleeve is divided into sections, or both.
  • the plane may be first divided into blocks or pieces by a plane magnet splitting surface, and the block or sheet may be further divided into a plurality of layers by a cylindrical magnet dividing surface to form a plurality of parallel and multi-layered magnetic coating structures.
  • the shape of the divided surface of the cylindrical magnet may be, for example, a circle, an ellipse, a polygon, or the like, and may be specifically determined according to the path curvature and shape of the magnetic flux loop. Dividing the magnetic garment into multiple magnetic units can effectively reduce eddy currents, thereby reducing energy consumption and reducing the device. Working temperature.
  • the electromagnetic induction device may not include a magnetic core, that is, a magnetic material is not disposed inside the coil, and this type is hereinafter referred to as a class I device; a magnetic core may also be included, and this type is hereinafter referred to as a class II device.
  • the core can be divided into more than two portions in a manner similar to the magnetic coating to reduce eddy currents.
  • the core can be either a separate component from the magnet or a magnetic garment.
  • the overall structure of the magnetic coating is layered.
  • the overall structure of the magnetic coating may include at least two magnetically conductive layers substantially parallel, and the magnetic conductive layer may be substantially parallel to the magnet.
  • the split face is substantially perpendicular to the split face of the magnet.
  • the magnetically permeable layer is substantially parallel to the split surface of the magnet, one magnetic unit is completely located in one magnetic conductive layer, so an air gap between adjacent magnetic conductive layers or an insulating layer formed of an insulating material can be regarded as a magnet. Split the face.
  • the core may similarly have a layered monolithic structure, such as one or more magnetically permeable layers.
  • the overall structure of the coil may also be layered.
  • the overall structure of the coil may include at least one conductive layer, the conductive layer is substantially parallel to the magnetic conductive layer of the magnetic coating;
  • the conductive lines within the conductive layer are insulated from each other.
  • the coil can be implemented by one or more laminated conductive layers due to the absence of a magnetic core.
  • the coil can be realized by at least two upper and lower conductive layers with the core between the two conductive layers. In the case of including more than two conductive layers, a portion of a set of coils respectively located at different conductive layers may be joined together by a conductive line across the layers.
  • an insulating layer formed of an insulating material is required to be separated; between the magnetic conductive layer and the adjacent conductive layer, or between two adjacent magnetic conductive layers may be directly superposed It is also possible to separate only the air gap, or to provide a corresponding insulating layer, which can be determined according to the insulation property of the magnetic material used and the safety requirement for the line voltage.
  • an insulating material having good thermal conductivity is preferably used, so that the insulating structure can also serve as a heat dissipating structure, effectively reducing the temperature of the device.
  • the thickness of the magnetic conductive layer, the conductive layer, the insulating layer or the like in the electromagnetic induction device according to the present invention is easily made much smaller than its planar size, such as length or width, so that the electromagnetic induction device according to the present invention has a flat shape.
  • the shape, such as the overall thickness of the device is less than 10% of its length or width. In this case, the volume of the coil exposed at the end of the cavity is small, and the leakage magnetic force generated is also small, so that in the case where the manufacturing process is inconvenient, the closed magnetic coat may not be formed at the exposed end of the cavity. .
  • the magnetic coating or magnetic unit is made of a magnetic material and can be electrically conductive, preferably non-conductive.
  • the material may be selected from the group consisting of: triiron tetroxide and mixtures thereof (eg, sulphate ferroferric oxide), chromium dioxide, ferric oxide and mixtures thereof, carbon-based ferromagnetic powder, resin-based ferromagnetic powder, permalloy Powder (permalloy;), iron silicon aluminum powder, iron nickel powder, ferrites, silicon steel, amorphous and nanocrystalline alloys, Fe-based amorphous Alloys), Fe-Ni based-amorphous alloy, iron-based nanocrystalline alloy, nickel-iron-molybdenum superconducting magnetic alloy (Supermalloy), etc.
  • the coil may be made of a wire covered with an insulating layer, and the conductive material used for fabricating the wire may be selected from, for example, copper, aluminum, magnesium, gold, silver, and an alloy material for conducting electricity.
  • a spacer made of an insulating material such as a spacer, a separator, or an insulating varnish may be provided at the split face of the magnet to maintain the separation of the magnetic unit and reduce the eddy current.
  • FIGS. 1 through 4 One embodiment of an electromagnetic induction device in accordance with the present invention can be referred to in FIGS. 1 through 4 as a class II device including a magnetic garment 110, a coil 120, and a magnetic core 130.
  • the overall structure of the device of the embodiment includes five functional layers, from bottom to top: a first magnetic conductive layer 110' serving as a bottom of the magnetic coating, and a first conductive layer 120' serving as a lower half of the coil,
  • the second magnetic conductive layer 130' serving as a magnetic core serves as a second conductive layer 120" of the upper half of the coil, serving as the third magnetic conductive layer 110" at the top of the magnetic coating.
  • the magnetic core in this embodiment can be considered as a part of the magnetic garment.
  • one magnetic unit includes a portion of the three magnetic conducting layers and passes through the magnetic material 111 at the edge of the magnetic conducting layer. They are seamlessly connected together.
  • the split surface of the magnet is substantially perpendicular to the magnetically permeable layer; a condition as shown in Fig. 2(b) 2(a) differs in that, in addition to the magnet splitting plane perpendicular to the magnetically permeable layer, there is a magnet splitting plane parallel to the magnetically permeable layer, and the magnetic unit in Fig.
  • the magnetic core is composed of two overlapping magnetic conductive layers, and the magnet splitting plane parallel to the magnetic conductive layer can also be regarded as an air gap or an insulating layer between the two magnetic conductive layers of the magnetic core.
  • Each of the magnetically permeable layers of the magnetic core is integrally connected to the corresponding top or bottom magnetically permeable layer at the edge position.
  • the coil is formed by two conductive layers respectively located on the upper and lower sides of the magnetic core, and the two conductive layers are integrally connected by the conductive traces 121 at the ends to form a coil.
  • there are two sets of coils one set being led out to the outside of the magnetic garment by a pair of electrode leads 122, and the other set being led out to the outside of the magnetic coat by a pair of electrode leads 122'.
  • the two conductive layers of the coil can be formed by two structures: one is as shown in Fig. 3(a), formed by a flexible printed circuit board (FPCB) around the core, and welded at the end to form a ring; As shown in Fig.
  • two printed circuit boards are used as a conductive layer, and wires are respectively connected at both ends of the conductive layer to form a coil.
  • more electrode leads may be provided in the conductive layer as needed, such as 122" in Fig. 3(a), and the desired circuit structure can be obtained as needed by externally connecting the leads in parallel or in parallel.
  • the piece of FPCB or PCB used may be multi-layered, that is, one piece contains a multi-layer circuit structure.
  • One conductive layer may include a plurality of FPCBs or PCBs.
  • the use of a thin layer of conductive layer to form a coil not only makes the gap between the coil and the magnetic coat or the magnetic core extremely small, but also maximizes the use of the conductive material, which is advantageous for reducing copper loss, reducing cost, and reducing volume.
  • the FPCB or the PCB is also used to fabricate the coil of the electromagnetic induction device, and the difficulty in winding, mounting, and wiring docking is avoided, and the quality of the coil (such as insulation and consistency) is also guaranteed.
  • the cavity inside the magnetic garment is an annular cavity 112, and its overall shape may be a circular ring shape, an elliptical ring shape, a rectangular shape or a polygonal shape.
  • the normal cross section of the hollow portion of the cavity may be rectangular or circular, or may have a more desirable shape as long as the coil can be wrapped therein.
  • the cavity should wrap the coil as closely as possible so that its shape can substantially conform to the shape of the cross section of the coil.
  • the insulating material forming the split surface of the magnet may be made of a heat conductive material, and since the split surface of the magnet is perpendicular to and in contact with the conductive layer, the insulating material can also serve as a heat sink of the coil. This not only helps to increase the power density of the electromagnetic induction device, but also can be used to monitor the temperature of the internal coil and provide safety.
  • the five functional layers included therein are further shown in FIG. 4 in a planarized form. In FIG.
  • the white strips in the magnetic permeability layers 110', 130', 110" indicate magnetic material regions, and the black strips spaced apart in the white strips indicate the insulating material regions; the white in the conductive layers 1 20', 120"
  • the strip indicates the area of the conductive material, and the black strips spaced in the white strip indicate the area of the insulating material.
  • the five functional layers may be formed in order from bottom to top, wherein the strip structures of the three magnetic conductive layers may be identical, and the strip structures of the two conductive layers may be different, and it is necessary to pay attention to being able to be connected at the ends of each other. Form the required coils.
  • the edges of the individual magnetically permeable layers should be aligned in accordance with the divided magnetic units and seamlessly connected using a magnetically permeable material.
  • the conductive traces of the conductive layers should also be aligned at the ends and joined into a coil.
  • each layer in FIG. 4 can be easily replicated in the horizontal or vertical direction on the same plane, thereby making it possible to mass-produce integrated electromagnetic induction devices, which is integrated with the semiconductor chip. Similar. After the large-scale planar production is completed, a large number of devices having similar structures can be obtained by cutting, and then the connection of the edge portions can be performed. On the other hand, it is also possible to arrange the electromagnetic induction device together with other electronic devices or circuit structures that can be layered by this planar manufacturing method, thereby improving the integration degree and reliability of the entire circuit.
  • the two overlapping electromagnetic induction devices may be separated by an insulating layer (especially a thermally conductive insulating layer). This not only improves production efficiency, but also facilitates high-power electromagnetic induction devices by simple series or parallel connection of external lines.
  • the magnetic conductive layers of the bottom layer and the top layer form an almost closed and tightly packed cavity, even if the two conductive layers are at the end of the cross-layer conductive connection. It is not covered by a magnetic coating, but it is only a very narrow area, and it hardly affects the overall performance of the device.
  • FIG. 5 to FIG. 6 is a class II device including a magnetic garment 210, a coil 220, and a magnetic core 230.
  • This embodiment is similar to Embodiment 1, and the overall structure includes five functional layers, from bottom to top: a first magnetic conductive layer 210' serving as a bottom of the magnetic coating, serving as a first conductive portion of the lower half of the coil.
  • Layer 220' (the conductive line is represented by a dotted line), serves as a second magnetically permeable layer 230' of the magnetic core, and serves as a second conductive portion of the upper half of the coil
  • Layer 220" acts as the third magnetically permeable layer 210" on top of the magnetic garment.
  • the magnetic core and the magnetic garment in this embodiment each have an independent magnetic flux loop.
  • an insulating layer (especially a thermally conductive insulating layer) 240 is disposed between adjacent different types of functional layers to enhance the withstand voltage capability and heat dissipation capability of the device.
  • the manner in which the coil is wound around the core is different.
  • the cavity inside the magnetic garment is an annular cavity, and the coil is formed by the wire around its axis, and the extension direction of the axis of the coil is substantially consistent with the extending direction of the annular cavity, and the annular core package Covered inside the coil.
  • the magnet splitting surface AA in this embodiment may be a plane magnet splitting surface substantially parallel to the toroidal surface of the annular cavity, or may be a cylindrical magnet splitting surface coaxial with the annular surface of the annular cavity.
  • the number of turns of the coil in the embodiment is much larger than that of the coil in the first embodiment, and thus it is more suitable for fabricating a high-voltage electromagnetic induction device or having a high ratio.
  • the inductance of the inductance value is more suitable for fabricating a high-voltage electromagnetic induction device or having a high ratio.
  • All of the individual functional layers in the present invention may be overlapped by two or more functional layers of the same kind; for the magnetically permeable layer, this means that the structure of the magnetic flux loop allows the presence of parallel to the magnetically conductive layer.
  • the magnet splits the surface, thereby dividing the single magnetic conductive layer into two or more overlapping magnetic conductive layers; for the conductive layer, a single conductive layer or a plurality of overlapping conductive layers can be used according to the design, as long as Connect the conductive lines as needed.
  • only a single functional layer is generally used for structural description, but in practice, it should be understood as the case where two or more overlapping functional layers of the same kind are included.
  • FIG. 7 is a Class I device, including a magnetic garment 310 and a coil 320.
  • This embodiment is a simple implementation of the present invention, does not have a magnetic core, so the coil can be realized by a single conductive layer, and the overall structure includes three functional layers, from bottom to top:
  • the first magnetically permeable layer 310' at the bottom serves as the first conductive layer 320' of the coil, acting as the second magnetic permeability of the top of the magnetic coating Layer 310".
  • one conductive layer 320" may be overlapped with the first conductive layer 320'.
  • more conductive layers may be further overlapped, and no further description is provided.
  • An insulating layer (especially a thermally conductive insulating layer) 240 is required between adjacent conductive layers.
  • an insulating layer 240 may be further disposed between adjacent different types of functional layers to improve device performance and Increase reliability.
  • the coil is surrounded by the annular cavity formed by the magnetic body, and the extending direction of the wire is substantially consistent with the extending direction of the annular cavity. Therefore, the magnet splitting plane AA in this embodiment can employ a plane magnet splitting plane which is substantially perpendicular to the extending direction of the wire.
  • Each magnetic unit is divided into two parts, which are respectively located at the first magnetic conductive layer 310' and the second magnetic conductive layer 310", so the two magnetic conductive layers need to be aligned up and down, and are used inside and outside the annular cavity.
  • the magnetic material is seamlessly joined, for example, a powdery or viscous magnetic material is used to fill or bond the portions to be joined between the upper and lower layers to form a complete magnetic unit.
  • a layered manufacturing method of the electromagnetic induction device according to the present invention will be described below, or may be referred to as a planar manufacturing method. It is fabricated in a manner similar to that of a semiconductor integrated circuit to fabricate an electromagnetic induction device in accordance with the present invention. Specifically, the following steps are included:
  • S1. Determine the structure of the electromagnetic induction device according to the present invention that needs to be fabricated.
  • the functional layer includes a magnetic conductive layer and a conductive layer.
  • the overall shape of the device, the number of coil sets, the number of turns of each set, the winding method of the coil, and the manner of dividing the magnetic unit can be determined according to the needs of the actual application.
  • S2. Determine the planar layout of each functional layer, including whether a single functional layer needs to be served by two or more functional layers that overlap.
  • the layout of the magnetically permeable layer includes a magnetic material layout and an insulating material (or air gap) layout
  • the layout of the conductive layer includes a conductive material layout and an insulating material layout.
  • each layer various templates can be fabricated for subsequent processing, such as photolithography templates and templates required for magnetic circuit processing, circuit processing, and insulated wire/layer processing. This step is similar to slicing the entire electromagnetic sensing device.
  • the planar layout of each layer be accomplished by a consistent process, such as coating, etching, and the like.
  • the design structure and template required for fabricating each layer may be Transverse or longitudinal replication over a larger area such that each fabrication layer corresponds to a respective layer of a plurality of electromagnetic induction devices.
  • At least one conductive layer and another magnetic conductive layer of the magnetic body are formed according to the determined planar layout of each functional layer. For example, in a device in which three layers are fabricated, a conductive layer and a magnetic conductive layer are alternately formed on the base layer, and in a device of five layers, a conductive layer, a magnetic conductive layer (acting as a magnetic core), and a conductive layer are alternately formed on the base layer. , magnetic permeability layer. Alternatively, an insulating layer can be formed between the two functional layers.
  • the specific generation manner may be determined according to needs and the ability of the process, for example, may include spraying, sputtering, coating, chemical precipitation, etc., and may refer to a process of a semiconductor integrated circuit.
  • performing cross-layer connection in the process of performing plane production or after completing the plane production including:
  • the portions belonging to the same magnetic unit respectively located in different magnetic conductive layers are seamlessly connected by a magnetic material across the layers, for example, at the edge of the magnetic conductive layer, Or,
  • portions belonging to the same set of coils respectively located in different conductive layers are integrally connected by a conductive line across the layers, for example, at the ends of the conductive layers.
  • the above steps may be repeated on the electromagnetic induction device that has completed the planar fabrication to continue to fabricate a new electromagnetic induction device to obtain an overlapping electromagnetic induction device.
  • an insulating layer especially a thermally conductive insulating layer
  • the functional layer magnetic conductive layer
  • Steps 1 to 2 may be repeated to generate a plurality of overlapping magnetically conductive layers
  • the jets are formed by a conductive material. Planar areas (each area acts as a wire) to make a conductive layer;
  • Steps 2 to 3 may be repeated to generate a plurality of overlapping conductive layers
  • the portion of the magnetic unit on which the magnetic unit is located is sprayed; for the device of the 3-layer structure, the layer serves as the magnetic conductive layer at the top of the magnetic coating; In the case of a 5-layer structure device, this layer serves as a magnetic conductive layer of the magnetic core;
  • Steps 4 to 5 may be repeated to generate a plurality of overlapping magnetically conductive layers
  • the fabrication method according to the present invention has the same advantages as the processing of the semiconductor integrated circuit, and by copying each layer of the electromagnetic induction device to be processed, multiple devices can be processed simultaneously, thereby greatly improving the production efficiency and reducing production cost. Moreover, the manufacturing method of the electromagnetic induction device of the present invention can also be integrated into the process of fabricating a semiconductor chip, thereby generating a semiconductor chip with a built-in electromagnetic induction device, which is a new idea for the design of the semiconductor chip.
  • the electromagnetic induction device has advantages such as low loss, high energy density, and low electromagnetic interference, and can be integrated not only with a low-power semiconductor device but also with a high-power semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种电磁感应器件,包括磁衣(110)和至少一组线圈(120)。磁衣(110)由全部磁单元拼合在一起形成,内部具有至少一个腔体。磁单元彼此之间的磁体分割面(AA)基本沿着磁通回路设置而不切断磁通回路。线圈(120)置于由磁衣(110)形成的腔体中,磁衣(110)中的磁通回路由线圈(120)通电后形成。磁衣(110)的整体结构包括至少两个导磁层(110',110")。上述电磁感应器件,一方面能够基本封闭以减少漏磁,另一方面由于磁单元上没有气隙,有效减小了磁阻。并且磁衣(110)采用层状结构,使得电磁感应器件能够以逐层叠加的方式进行制作,不仅降低了制作难度,也有助于获得形状扁平的高性能电磁感应器件。还提供了相应的电磁感应器件的制作方法。

Description

电磁感应器件及其制作方法
技术领域
[0001] 本发明涉及电子器件或电气器件技术领域, 具体涉及一种电磁感应器件及其制 作方法。
[0002] 背景技术
[0003] 通常人们将弱电 (电压和电流较低的)器件称为电子器件, 而将强电 (电压和电流 较高的)器件称为电气器件。 很多电子器件和电气器件基于电磁感应效应来工作 , 例如电感以及变压器等。
[0004] 电磁感应器件通常包括磁芯和线圈。 变压器是一种常见的电磁感应器件。 传统 的变压器所采用的线圈包裹磁芯的结构, 使得器件会有很大的漏磁, 不仅造成 能量损耗也产生了辐射的危害。 为减小漏磁, 也有采用壳式变压器的结构, 利 用磁芯未被线圈覆盖的部分 (磁轭) 将线圈包裹起来。 这种结构由于在磁通回 路上存在气隙而使得磁阻增大。
[0005] 此外, 传统的电磁感应器件中, 一般是在磁芯整体制作完成后再将导线缠绕在 磁芯上以形成线圈, 这使得制作难度较大且器件整体难以小型化。 因此, 仍需 要改进现有的电磁感应器件。
[0006] 发明内容
[0007] 依据本发明的一方面提供一种电磁感应器件, 包括磁衣和至少一组线圈。 磁衣 由两个以上的磁单元组成, 每个磁单元内能够形成闭合的磁通回路, 全部磁单 元拼合在一起形成为内部具有至少一个腔体的整体, 磁单元彼此之间的磁体分 割面基本沿着磁通回路设置而不切断磁通回路。 线圈置于由磁衣形成的腔体中
, 线圈的电极引出至磁衣之外, 磁衣中的磁通回路由线圈通电后形成。 其中, 磁体分割面由气隙或绝缘材料形成; 磁衣的整体结构包括基本平行的至少两个 导磁层, 导磁层基本平行于磁体分割面或基本垂直于磁体分割面; 在导磁层基 本垂直于磁体分割面的情况下, 一个磁单元分别位于不同导磁层的部分通过跨 层的磁性材料无缝连接为一体。 [0008] 依据本发明的另一方面提供一种电磁感应器件的制作方法, 包括如下步骤: 确 定依据本发明的电磁感应器件的结构; 将所确定的结构分解为基本平行的重叠 布置的多个功能层, 所称功能层包括导磁层和导电层, 确定每个功能层的平面 布局, 导磁层可包括磁性材料布局和绝缘材料布局, 导电层可包括导电材料布 局和绝缘材料布局; 生成基层, 该基层为磁衣的一个导磁层; 在基层上, 按照 所确定的每个功能层的平面布局至少生成一个导电层和磁衣的另一个导磁层。
[0009] 依据本发明的电磁感应器件采用由多个磁单元组合成的磁衣来包裹线圈, 一方 面能够基本封闭线圈, 以减少漏磁, 另一方面由于磁单元之间的磁体分割面沿 着磁通回路, 因此在磁通回路上不会产生气隙, 有效减小了磁阻; 并且磁衣采 用层状结构, 使得电磁感应器件能够以逐层叠加的方式进行制作, 不仅降低了 制作难度, 也有助于获得形状扁平的高性能电磁感应器件。 依据本发明的制作 方法则提供了类似于半导体集成电路加工方式的分层制作方法, 使得能够大规 模自动化制作依据本发明的电磁感应器件, 提高制作的效率并降低成本。
[0010] 以下结合附图, 对依据本发明的具体示例进行详细说明。
[0011] 附图说明
[0012] 图 1是实施例 1的电磁感应器件的结构示意图;
[0013] 图 2是实施例 1中的两种磁单元结构示意图;
[0014] 图 3是实施例 1中的两种线圈结构示意图;
[0015] 图 4是实施例 1中 5个功能层的平面化示意图;
[0016] 图 5是实施例 2的电磁感应器件的分解结构示意图;
[0017] 图 6是实施例 2中线圈缠绕磁芯的结构示意图;
[0018] 图 7是实施例 3的电磁感应器件的分解结构示意图。
[0019] 具体实施方式
[0020] 依据本发明的电磁感应器件包括磁衣和至少一组线圈。
[0021] 所称磁衣是指包裹在器件外部的磁性材料壳体, 其由两个以上的磁单元拼合组 成。 全部磁单元拼合在一起形成为内部具有至少一个腔体的整体。 优选地, 磁 衣可以是基本封闭的结构, 以尽可能地避免漏磁。 所称基本封闭是指除了必需 的连通腔体内外的通路 (例如线圈的电极) , 以及设计或加工工艺上需要的孔 隙 (例如磁单元之间的气隙) 以外, 腔体相对于外部是封闭的。 此外, 若磁衣 整体具有扁平的形状, 使得腔体端部的尺寸相对较小 (即, 线圈外露的部分与 线圈整体相比, 所占比例较小) , 则磁衣在腔体端部区域不完全封闭也是可以 的, 这使得能够在不明显影响器件的性能的前提下, 进一步降低制作难度。
[0022] 线圈置于由磁衣形成的腔体中, 线圈的电极引出至磁衣之外, 磁衣中的磁通回 路由线圈通电后形成。 线圈可以为一组, 使得该电磁感应器件形成为电感, 或 者, 线圈可以为两组或三组以上, 使得该电磁感应器件形成为多值电感、 单电 压输出或多电压输出的交流变压器。
[0023] 单个磁单元可以是块状, 片状, 条状或薄膜状等, 每个磁单元内能够形成闭合 的磁通回路, 换言之, 线圈在每个磁单元上均形成磁通回路, 且基本没有气隙 。 所称基本没有气隙是指磁单元上占主要部分的磁通能够形成没有气隙的回路 。 若因为理论设计与实际产品之间的精度差异、 工艺限制等原因导致少部分磁 通不能在一个磁单元内闭合, 也不应认为超出本发明的范围。
[0024] 磁单元彼此之间的磁体分割面基本沿着磁通回路设置而不切断磁通回路。 磁体 分割面具体可由气隙或绝缘材料形成, 一般而言, 磁体分割面的法线与线圈中 电流的方向基本平行。 依据本发明, 磁单元或磁体分割面的设计可采用这样的 方式: 首先确定完整的磁衣的结构; 然后根据线圈的布置方式, 例如绕线方式 、 在磁衣的腔体中的放置方式等确定出线圈在磁衣中形成的磁通回路的结构; 接着沿着磁通回路设置磁体分割面, 将磁衣分为多个磁单元, 换言之, 将全部 磁通回路分割为多个互不相通的部分。 所称"互不相通"既包括彼此平行 (具有相 同的路径曲率) , 也包括彼此嵌套 (曲率大的路径嵌套在曲率小的路径中) 。
[0025] 因此, 作为一种优选的实施方式, 磁体分割面可包括将磁通回路分割为两个以 上彼此平行的部分的平面磁体分割面, 或者, 将磁通回路分割为两个以上彼此 嵌套的部分的筒状磁体分割面, 或者, 以上二者皆有。 例如, 可以先用平面磁 体分割面将磁衣分割成块或片, 再用筒状磁体分割面将块或片继续分割成多层 , 形成多块并列且多层嵌套的磁衣结构。 所称筒状磁体分割面的形状可以是诸 如圆形、 椭圆形, 多边形等, 具体可根据磁通回路的路径曲率和形状来确定。 将磁衣分割为多个磁单元能够有效地减少涡流, 从而降低能耗, 也降低了器件 的工作温度。
[0026] 依据本发明的电磁感应器件可以不包含磁芯, 即线圈内部并不设置磁性材料, 这种类型以下称为 I类器件; 也可以包含磁芯, 这种类型以下称为 II类器件。 对 于 II类器件, 作为优选的实施方式, 磁芯同样可采用与磁衣类似的分割方式被分 割为两个以上的部分, 以减少涡流。 根据具体的器件结构, 磁芯既可以是与磁 衣分离的独立元件, 也可以与磁衣形成为一体。
[0027] 以上按照磁通回路以及电流回路的结构对本发明中的磁衣、 磁芯、 线圈进行了 说明。 以下按照各功能部件的整体结构进行说明。
[0028] 依据本发明的电磁感应器件中, 至少磁衣的整体结构是层状的, 换言之, 磁衣 的整体结构可包括基本平行的至少两个导磁层, 导磁层可基本平行于磁体分割 面或基本垂直于磁体分割面。 在导磁层基本平行于磁体分割面的情况下, 一个 磁单元完整地位于一个导磁层中, 因此相邻导磁层之间的气隙或由绝缘材料形 成的绝缘层可被视为磁体分割面。 在导磁层基本垂直于磁体分割面的情况下, 一个磁单元分别位于不同导磁层的部分可通过跨层的磁性材料被无缝连接为一 体, 从而形成基本无气隙的磁单元。 对于 II类器件, 磁芯也可类似地具有层状的 整体结构, 例如形成为一个或多个导磁层。
[0029] 作为一种优选的实施方式, 线圈的整体结构也可以是层状的, 换言之, 线圈的 整体结构可包括至少一个导电层, 导电层基本平行于磁衣的导磁层; 分布在同 一导电层内的导电线路之间彼此绝缘。 对于 I类器件, 由于不含磁芯, 线圈可以 由一个或多个层叠的导电层来实现。 对于 II类器件, 为避免绕线的困难, 线圈可 以由至少上下两个导电层来实现, 而磁芯位于这两个导电层之间。 在包括两个 以上导电层的情况下, 一组线圈分别位于不同导电层的部分可通过跨层的导电 线路被连接为一体。 在两个相邻的导电层之间, 需要设置由绝缘材料形成的绝 缘层予以分隔; 在导磁层与相邻的导电层之间, 或者两个相邻的导磁层之间可 以直接叠加, 也可以仅以气隙分隔, 也可以设置相应的绝缘层, 具体可根据所 采用的磁性材料的绝缘性以及对线间电压的安全性要求来确定。
[0030] 当采用绝缘材料来形成磁体分割面或者绝缘层吋, 优选采用具有良好导热性能 的绝缘材料, 使得绝缘结构还能充当为散热结构, 有效降低器件的温度。 [0031] 依据本发明的电磁感应器件中的导磁层、 导电层、 绝缘层等的厚度容易被制作 为远小于其平面尺寸, 例如长度或宽度, 使得依据本发明的电磁感应器件具有 扁平的外形, 例如器件的整体厚度小于其长度或宽度的 10%。 在这种情况下, 腔 体端部处露出的线圈体积很小, 产生的漏磁也很少, 因此在制作工艺不便的情 况下, 也可以不在腔体露出的端部处形成封闭的磁衣。
[0032] 磁衣或磁单元由磁性材料制成, 可以导电, 优选为不导电的。 例如, 材料可选 自: 四氧化三铁及其混合物 (例如惨钴四氧化三铁) , 二氧化铬, 三氧化二铁 及其混合物, 碳基铁磁粉, 树脂碳基铁磁粉, 坡莫合金粉 (permalloy;), 铁硅铝粉 , 铁镍粉, 软磁铁氧体 (Ferrites) , 硅钢, 非晶及纳米晶软磁合金 (Amorphous and Nanocrystalline alloys) , 铁基非晶合金 (Fe-based amorphous alloys) , 铁操基 、 钴基非晶合金 (Fe-Ni based-amorphous alloy) , 铁基纳米晶合金 (Nanocrystalline alloy) , 镍铁钼超导磁合金 (Supermalloy) 等。
[0033] 线圈可由包覆有绝缘层的导线环绕制成, 制作导线所采用的导电材料例如可选 自: 铜, 铝, 镁, 金, 银, 以及用于导电的合金材料等。
[0034] 作为一种优选的实施方式, 可以在磁体分割面处设置由绝缘材料制成的分隔件 , 例如隔片、 隔膜、 或绝缘漆层, 以保持磁单元的分隔, 减小涡流。
[0035] 以下对依据本发明的电磁感应器件的具体应用形式进行举例说明, 上述对总体 内容的描述均可应用于下述示例中。
[0036] 实施例 1
[0037] 依据本发明的电磁感应器件的一种实施方式可参考图 1至图 4, 是一种 II类器件 , 包括磁衣 110、 线圈 120和磁芯 130。
[0038] 本实施例器件的整体结构包括 5个功能层, 从下至上依次为: 充当磁衣的底部 的第一导磁层 110', 充当线圈的下半部分的第一导电层 120', 充当磁芯的第二导 磁层 130', 充当线圈的上半部分的第二导电层 120", 充当磁衣的顶部的第三导磁 层 110"。 本实施例中的磁芯可视为磁衣的一部分。
[0039] 在设置磁体分割面 AA吋可采用两种结构: 一种如图 2(a)所示, 一个磁单元包括 位于三个导磁层的部分, 并通过导磁层边缘的磁性材料 111被无缝连接为一体, 这种情况下, 磁体分割面与导磁层基本垂直; 一种如图 2(b)所示, 这种情况与图 2(a)的差别在于, 除了垂直于导磁层的磁体分割面, 还具有一个平行于导磁层的 磁体分割面, 将图 2(a)中的磁单元进一步分为上下两部分; 这种情况下, 可视为 磁芯由两个重叠的导磁层组成, 该平行于导磁层的磁体分割面也可视为磁芯的 两个导磁层之间的气隙或绝缘层, 磁芯的每个导磁层分别与相应的顶部或底部 导磁层在边缘位置无缝连接为一体。
[0040] 线圈由分别位于磁芯上下两侧的两个导电层来形成, 这两个导电层通过端部的 导电线路 121连接为一体以形成线圈。 本实施例中有两组线圈, 一组通过一对电 极引线 122引出至磁衣外部, 另一组通过一对电极引线 122'引出至磁衣外部。 线 圈的两个导电层可采用两种结构来生成: 一种如图 3(a)所示, 采用一片柔性印刷 电路板 (FPCB) 环绕磁芯形成, 并在端部焊接成环状; 一种如图 3(b)所示, 采 用两片印刷电路板 (PCB) 各自充当一个导电层, 并在导电层的两个端部分别进 行线路的连接以形成线圈。 当然, 可以根据需要在导电层中设置更多的电极引 线, 例如图 3(a)中的 122", 通过对这些引线进行外部的串联或并联可根据需要获 得所期望的电路结构。 需要说明的是, 所使用的一片 FPCB或 PCB本身可以是多 层的, 即一片之中包含多层电路结构。 一个导电层可以包括多片 FPCB或 PCB。
[0041] 众所周知, 电子主要在导体的表面上流动。 因此, 采用薄层结构的导电层来形 成线圈, 不仅可以使得线圈与磁衣或磁芯之间的间隙极小, 也最大化地利用了 导电材料, 有利于降低铜损、 降低成本、 减小体积。 本实施例中还采用 FPCB或 PCB来制作电磁感应器件的线圈, 同吋避免了绕线、 安装、 线路对接方面的困难 , 线圈的品质 (例如绝缘性和一致性) 也得到了保障。
[0042] 磁衣内部的腔体为环状腔体 112, 其整体形状可以是圆环形、 椭圆环型、 矩形 或多边形等。 腔体中空部分的法向截面可以是矩形或圆形, 也可以具有较为随 意的形状, 只要能够将线圈包裹其中即可。 优选地, 腔体应尽可能紧密地包裹 线圈, 因此其形状可基本与线圈截面的形状一致。
[0043] 优选地, 形成磁体分割面的绝缘材料可采用导热材料, 由于磁体分割面垂直于 导电层并与其接触, 因此这些绝缘材料还能够作为线圈的散热片。 这不仅有助 于提高电磁感应器件的功率密度, 还可用于监测内部线圈的温度, 提供安全保 障。 [0044] 为更好地理解本实施例电磁感应器件的分层结构, 将其所包含的 5个功能层进 一步以平面化的形式展示在图 4中。 图 4中, 导磁层 110', 130', 110"中的白色条 带表示磁性材料区域, 白色条带中间隔的黑色条带表示绝缘材料区域; 导电层 1 20', 120"中的白色条带表示导电材料区域, 白色条带中间隔的黑色条带表示绝 缘材料区域。 5个功能层可以自下而上依次形成, 其中 3个导磁层的条带结构可 以是完全相同的, 两个导电层的条带结构则可能不同, 需要注意能够在彼此的 端部连接后形成所需要的线圈。 在采用这种平面制作方式吋, 各个导磁层的边 缘应当按照所划分的磁单元被对齐并使用导磁材料无缝连接, 导电层的导电线 路也应当在端部对准并连接成线圈。
[0045] 显然, 图 4中每一层的结构都能够很容易地在同一平面上沿横向或纵向被复制 , 从而使得大规模集成化制作电磁感应器件成为可能, 这与半导体芯片的集成 加工方法类似。 在大规模平面制作完成后, 通过切割即可获得大量具有相似结 构的器件, 此吋再进行边缘部分的连接工作即可。 另一方面, 也可以通过这种 平面制作方式, 将电磁感应器件与其他可以分层制作的电子器件或电路结构布 置在一起, 提高整个电路的集成程度和可靠性。
[0046] 此外, 还可以在一个层叠结构的电磁感应器件上继续叠加生成另一个电磁感应 器件, 两个重叠的电磁感应器件之间可以由绝缘层 (尤其是导热的绝缘层) 进 行分隔。 这样不仅能提高生产效率, 还便于通过外部线路的简单串联或并联来 实现大功率的电磁感应器件。
[0047] 可以看出, 在这种非常紧凑的层叠结构下, 底层和顶层的导磁层形成了几乎封 闭且被紧密填充的腔体, 即使两个导电层在进行跨层导电连接的端部没有被磁 衣覆盖, 也仅仅是很窄小的区域, 几乎不会对器件的整体性能产生影响。
[0048] 实施例 2
[0049] 依据本发明的电磁感应器件的另一种实施方式可参考图 5至图 6, 是一种 II类器 件, 包括磁衣 210、 线圈 220和磁芯 230。
[0050] 本实施例与实施例 1类似, 整体结构包括 5个功能层, 从下至上依次为: 充当磁 衣的底部的第一导磁层 210', 充当线圈的下半部分的第一导电层 220' (导电线路 以点状线表示) , 充当磁芯的第二导磁层 230', 充当线圈的上半部分的第二导电 层 220" (导电线路以实线表示) , 充当磁衣的顶部的第三导磁层 210"。 本实施例 中的磁芯与磁衣各自具有独立的磁通回路。 图中, 以虚线框示出了导电层所在 的平面, 简明起见, 仅示出了一组线圈, 其通过一对电极 222被引出。 如需多组 线圈, 在两个导电层中增加相应的线路以及电极引线即可, 不再赘述。 本实施 例中相邻的不同类型的功能层之间还设置有绝缘层 (尤其是导热的绝缘层) 240 , 以增强器件的耐压能力和散热能力。
[0051] 本实施例与实施例 1的主要区别在于线圈缠绕磁芯的方式不同。 本实施例中, 磁衣内部的腔体为一个环状腔体, 线圈由导线环绕其轴线而形成, 线圈的轴线 的伸展方向与环状腔体的伸展方向基本一致, 环状的磁芯包覆于线圈内。 因此 , 本实施例中的磁体分割面 AA可以是基本平行于环状腔体的环面的平面磁体分 割面, 也可以是与环状腔体的环面同轴的筒状磁体分割面。
[0052] 与实施例 1相比, 在线圈体积相同的情况下, 本实施例中的线圈匝数远大于实 施例 1中的线圈匝数, 因此更适于制作高电压电磁感应器件或具有高电感值的电 感。
[0053] 值得注意的是, 由于磁芯中的磁通量较大, 优选地, 可增加一个 (或多个) 导 磁层 230", 与导磁层 230'重叠来共同作为磁芯。
[0054] 本发明中所有的单个功能层均可以由同种类的两个或更多功能层重叠来充当; 对于导磁层而言, 这意味着磁通回路的结构允许存在平行于导磁层的磁体分割 面, 从而将单个导磁层分为两个或多个重叠的导磁层; 对于导电层而言, 则可 根据设计的需要使用单个导电层或重叠的多个导电层, 只要能够将导电线路按 照需要进行连接即可。 有鉴于此, 本发明中通常仅使用单个功能层进行结构描 述, 但实际上均应理解为包含了两个或多个重叠的同种类功能层的情况。
[0055] 实施例 3
[0056] 依据本发明的电磁感应器件的另一种实施方式可参考图 7, 是一种 I类器件, 包 括磁衣 310和线圈 320。
[0057] 本实施例是本发明的一种简洁的实现方式, 不具有磁芯, 因此线圈可以采用单 个导电层来实现, 其整体结构包括 3个功能层, 从下至上依次为: 充当磁衣的底 部的第一导磁层 310', 充当线圈的第一导电层 320', 充当磁衣的顶部的第二导磁 层 310"。
[0058] 为便于设置多组线圈或者增加线圈的匝数, 优选地, 可增加一个导电层 320"与 第一导电层 320'重叠, 当然, 还可进一步重叠更多的导电层, 不再赘述。 相邻的 导电层之间需要设置绝缘层 (尤其是导热的绝缘层) 240。 可选地, 相邻的不同 类型的功能层之间也可进一步设置绝缘层 240, 以提升器件的性能以及增强可靠 性。
[0059] 本实施例中线圈环绕在磁衣形成的环状腔体中, 导线的伸展方向与环状腔体的 伸展方向基本一致。 因此, 本实施例中的磁体分割面 AA可采用基本垂直于导线 的伸展方向的平面磁体分割面。 每个磁单元被分为两部分, 分别位于第一导磁 层 310'和第二导磁层 310", 因此两个导磁层需要上下对准, 并在环状腔体的内侧 和外侧使用磁性材料进行无缝连接, 例如在制作过程中采用粉状或黏性磁性材 料对上下层需要连接的部分进行填充或粘合, 以形成完整的磁单元。
[0060]
[0061] 以下介绍依据本发明的电磁感应器件的一种分层制作方法, 或者, 也可称为平 面制作方法。 其采用类似于半导体集成电路的加工方式来制作依据本发明的电 磁感应器件。 具体包括如下步骤:
[0062] S1.确定所需要制作的依据本发明的电磁感应器件的结构。 例如前述各种实施 方式或类似的实施方式中所描述的具有 5个功能层或 3个功能层的结构。 功能层 包括导磁层和导电层。 可以根据实际应用的需要来设计器件的整体形状、 线圈 组数、 每组线圈匝数、 线圈缠绕方式, 进而确定磁单元分割方式等。
[0063] S2.确定每个功能层的平面布局, 包括单个的功能层是否需要由重叠的两个或 多个同类的功能层来充当。 导磁层的布局包括磁性材料布局和绝缘材料 (或气 隙) 布局, 导电层的布局包括导电材料布局和绝缘材料布局。
[0064] 根据确定的每层布局即可为后续的加工过程制作各种模板, 例如光蚀刻模板以 及磁路加工、 电路加工和绝缘线 /层加工所需要的模板。 此步骤类似于对整个电 磁感应器件进行切片。 为便于制作, 在分层吋, 最好使得每层的平面布局可以 通过一致的操作过程来完成, 例如涂覆、 蚀刻等。
[0065] S3.可选地, 为实现大规模的生产, 可以将制作各层所需要的设计结构和模板 , 在一个更大的面积上进行横向或纵向复制, 使得每制作一层都能对应于多个 电磁感应器件的相应层。
[0066] S4.生成基层, 其为磁衣的一个导磁层。 由于整个器件均由磁衣包裹, 因此应 当先制作作为磁衣的一部分的导磁层。
[0067] S5.在基层上, 按照所确定的每个功能层的平面布局至少生成一个导电层和磁 衣的另一个导磁层。 例如, 在制作 3层的器件吋, 在基层上交替生成导电层和导 磁层, 在制作 5层的器件吋, 在基层上交替生成导电层、 导磁层 (充当为磁芯) 、 导电层、 导磁层。 可选地, 可在两个功能层之间, 生成一个绝缘层。
[0068] 具体生成方式可根据需要以及工艺的能力来确定, 例如, 可包括喷射、 溅射、 涂覆、 化学沉淀等, 可参考半导体集成电路的加工过程。
[0069] S6.可选地, 在进行平面制作的过程中或者完成平面制作后还进行跨层连接, 包括:
[0070] 在需要跨层形成磁单元的情况下, 通过跨层的磁性材料将分别位于不同导磁层 的属于同一磁单元的部分无缝连接为一体, 例如在导磁层的边缘进行连接, 或 者,
[0071] 在需要跨层形成绕组的情况下, 通过跨层的导电线路将分别位于不同导电层的 属于同一组线圈的部分连接为一体, 例如在导电层的端部进行连接。
[0072] S7.可选地, 还可以在已经完成平面制作的电磁感应器件上, 重复进行以上步 骤继续制作新的电磁感应器件, 以获得重叠的电磁感应器件。 在制作新的电磁 感应器件之前, 可在已制作的电磁感应器件顶部的功能层 (导磁层) 上设置一 个绝缘层 (尤其是导热的绝缘层) 进行分隔。
[0073] 作为示例, 上述制作过程的一个例子为:
[0074] 1.先根据作为磁衣底部的导磁层的平面结构, 喷射生成磁单元位于这个平面上 的部分, 即, 以绝缘分隔线隔幵的一个个由导磁材料形成的平面区域, 以此作 为基层;
[0075] 2.在当前层上喷射生成一个绝缘层;
[0076] (步骤 1至 2可以重复, 以生成多个重叠的导磁层)
[0077] 3.按照接下来的导电层上设计的线圈布局, 喷射生成一个个由导电材料形成的 平面区域 (每个区域充当为一条导线) , 制作一个导电层;
[0078] (步骤 2至 3可以重复, 以生成多个重叠的导电层)
[0079] 4.在当前层上喷射生成一个绝缘层;
[0080] 5.按照接下来的导磁层上设计的平面结构, 喷射生成磁单元位于这个平面上的 部分; 对于 3层结构的器件而言, 此层作为磁衣顶部的导磁层; 对于 5层结构的 器件而言, 此层作为磁芯的导磁层;
[0081] (步骤 4至 5可以重复, 以生成多个重叠的导磁层)
[0082] (对于 5层结构的器件而言, 若当前已制作了 3层, 则还将步骤 2至 5再重复一遍 , 在第二次执行步骤 5吋, 即相当于制作磁衣顶部的导磁层了)
[0083] 6.若需要重叠制作新的电磁感应器件, 继续重复步骤 1至 5, 直至形成所需要数 目的重叠的电磁感应器件。
[0084] 依据本发明的制作方法具有与半导体集成电路加工同样的优势, 通过对所需加 工的电磁感应器件的每一层进行复制, 可同吋加工多个器件, 从而大幅提高制 作效率, 降低制作成本。 并且, 本发明的电磁感应器件的制作方法还可以集成 到半导体芯片制作的过程中去, 从而产生内置电磁感应器件的半导体芯片, 为 半导体芯片设计幵启新的思路。
[0085] 依据本发明的电磁感应器件, 由于具有损耗低, 能量密度高, 电磁干扰低等优 点, 不仅可与小功率的半导体器件集成, 也可与大功率的半导体器件集成。
[0086]
[0087] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种电磁感应器件, 其特征在于, 包括,
磁衣, 由两个以上的磁单元组成, 每个磁单元内能够形成闭合的磁通 回路, 全部磁单元拼合在一起形成为内部具有至少一个腔体的整体, 磁单元彼此之间的磁体分割面基本沿着所述磁通回路设置而不切断所 述磁通回路;
至少一组线圈, 所述线圈置于由所述磁衣形成的腔体中, 所述线圈的 电极引出至所述磁衣之外, 所述磁衣中的磁通回路由所述线圈通电后 形成;
其中, 所述磁体分割面由气隙或绝缘材料形成; 所述磁衣的整体结构 包括基本平行的至少两个导磁层, 所述导磁层基本平行于所述磁体分 割面或基本垂直于所述磁体分割面; 在所述导磁层基本垂直于所述磁 体分割面的情况下, 一个磁单元分别位于不同导磁层的部分通过跨层 的磁性材料被无缝连接为一体。
[权利要求 2] 如权利要求 1所述的电磁感应器件, 其特征在于,
所述线圈的整体结构包括至少一个导电层, 所述导电层基本平行于所 述磁衣的导磁层; 分布在同一导电层内的导电线路之间彼此绝缘; 在 包括两个以上导电层的情况下, 一组线圈分别位于不同导电层的部分 通过跨层的导电线路被连接为一体。
[权利要求 3] 如权利要求 2所述的电磁感应器件, 其特征在于,
所述导磁层与相邻的导电层之间, 或者两个相邻的导磁层之间, 或者 两个相邻的导电层之间, 还设置有由绝缘材料形成的绝缘层。
[权利要求 4] 如权利要求 1至 3任意一项所述的电磁感应器件, 其特征在于,
所述磁体分割面包括, 将磁通回路分割为两个以上彼此平行的部分的 平面磁体分割面, 或者, 将磁通回路分割为两个以上彼此嵌套的部分 的筒状磁体分割面。
[权利要求 5] 如权利要求 1至 3任意一项所述的电磁感应器件, 其特征在于,
所述磁衣内部的腔体为一个环状腔体, 所述磁衣由基本平行于所述环 状腔体的环面的磁体分割面被分割为两个以上的磁单元,
所述线圈由导线环绕其轴线而形成, 所述线圈的轴线的伸展方向与所 述环状腔体的伸展方向基本一致。
如权利要求 5所述的电磁感应器件, 其特征在于, 还包括
环状的磁芯, 包覆于所述线圈内; 所述磁芯的整体结构包括至少一个 基本平行于所述环状腔体的环面的导磁层; 在所述磁芯包括两个以上 导磁层的情况下, 磁芯的两个相邻的导磁层之间通过气隙或绝缘材料 被隔离。
如权利要求 6所述的电磁感应器件, 其特征在于,
所述磁芯位于一个导磁层内的环状结构由与其同轴的环面分割为两个 以上嵌套的部分。
如权利要求 5至 7任一项所述的电磁感应器件, 其特征在于, 还包括 所述磁衣还由与所述环状腔体的环面同轴的筒状磁体分割面分割为嵌 套的磁单元。
如权利要求 1所述的电磁感应器件, 其特征在于, 还包括如下特征中 的一种或多种:
制成所述磁单元的材料选自: 四氧化三铁及其混合物, 二氧化铬, 三 氧化二铁及其混合物, 碳基铁磁粉, 树脂碳基铁磁粉, 坡莫合金粉 (p ermalloy) , 铁硅铝粉, 铁镍粉, 软磁铁氧体 (Ferrites) , 硅钢, 非晶 及纳米晶软磁合金 (Amorphous and Nanocrystalline alloys) , 铁基非 晶合金 (Fe-based amorphous alloys) , 铁镍基、 钴基非晶合金 (Fe-Ni based-amorphous alloy) , 铁基纳米晶合金 (Nanocrystalline alloy) , 镍铁钼超导磁合金 (Supermalloy) 。
如权利要求 1至 9任一项所述的电磁感应器件, 其特征在于, 所述线圈为一组, 使得所述电磁感应器件形成为电感, 或者, 所述线圈为两组或三组以上, 使得所述电磁感应器件形成为多值电感
、 单电压输出或多电压输出的交采用流变压器。
一种电磁感应器件的制作方法, 其特征在于, 包括: 确定如权利要求 1至 10任一项所述的电磁感应器件的结构,
将所确定的结构分解为基本平行的重叠布置的多个功能层, 所述功能 层包括导磁层和导电层, 确定每个功能层的平面布局, 所述导磁层包 括磁性材料布局和绝缘材料布局, 所述导电层包括导电材料布局和绝 缘材料布局,
生成基层, 所述基层为磁衣的一个导磁层,
在所述基层上, 按照所确定的每个功能层的平面布局至少生成一个导 电层和磁衣的另一个导磁层。
[权利要求 12] 如权利要求 11所述的制作方法, 其特征在于, 还包括,
在两个导电层之间, 生成充当为磁芯的至少一个导磁层, 或者, 在两个功能层之间, 生成一个绝缘层。
[权利要求 13] 如权利要求 11或 12所述的制作方法, 其特征在于, 还包括,
在需要跨层形成磁单元的情况下, 通过跨层的磁性材料将分别位于不 同导磁层的属于同一磁单元的部分无缝连接为一体, 或者, 在需要跨层形成绕组的情况下, 通过跨层的导电线路将分别位于不同 导电层的属于同一组线圈的部分连接为一体。
PCT/CN2016/082167 2016-05-16 2016-05-16 电磁感应器件及其制作方法 WO2017197550A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680084738.8A CN109074936A (zh) 2016-05-16 2016-05-16 电磁感应器件及其制作方法
PCT/CN2016/082167 WO2017197550A1 (zh) 2016-05-16 2016-05-16 电磁感应器件及其制作方法
EP16901936.1A EP3457416A1 (en) 2016-05-16 2016-05-16 Electromagnetic induction device and manufacturing method therefor
US16/302,047 US20190156989A1 (en) 2016-05-16 2016-05-16 Electromagnetic induction device and manufacturing method therefor
JP2019510732A JP2019520714A (ja) 2016-05-16 2016-05-16 電磁誘導装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082167 WO2017197550A1 (zh) 2016-05-16 2016-05-16 电磁感应器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2017197550A1 true WO2017197550A1 (zh) 2017-11-23

Family

ID=60324712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082167 WO2017197550A1 (zh) 2016-05-16 2016-05-16 电磁感应器件及其制作方法

Country Status (5)

Country Link
US (1) US20190156989A1 (zh)
EP (1) EP3457416A1 (zh)
JP (1) JP2019520714A (zh)
CN (1) CN109074936A (zh)
WO (1) WO2017197550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200411222A1 (en) * 2018-03-22 2020-12-31 Robert Bosch Gmbh Inductive component and high-frequency filter device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10504784B2 (en) 2017-10-25 2019-12-10 Taiwan Semiconductor Manufacturing Co., Ltd. Inductor structure for integrated circuit
US10475877B1 (en) 2018-08-21 2019-11-12 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-terminal inductor for integrated circuit
US20200072872A1 (en) * 2018-09-05 2020-03-05 Flex Instruments Co., Ltd. Current sensing module for current sensor and method for manufacturing current sensing module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752054A (zh) * 2008-10-07 2010-06-23 环旭电子股份有限公司 电路板式薄型电感结构
US8013709B2 (en) * 2008-04-18 2011-09-06 Delta Electronics, Inc. Conductive module and assembly structure having such conductive module
CN202394669U (zh) * 2012-01-09 2012-08-22 深圳市澳磁电源科技有限公司 线饼及使用该线饼的变压器
CN202513015U (zh) * 2012-03-16 2012-10-31 广州金升阳科技有限公司 一种平面变压器
CN104575948A (zh) * 2015-01-05 2015-04-29 广东工业大学 基于闭合磁路的框式薄膜电感器及其制作方法
WO2016039518A1 (ko) * 2014-09-11 2016-03-17 주식회사 이노칩테크놀로지 파워 인덕터 및 그 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397401B2 (en) * 2008-04-25 2016-07-19 Toda Kogyo Corporation Magnetic antenna, board mounted with the same, and RF tag
JP5917496B2 (ja) * 2011-04-25 2016-05-18 株式会社東芝 磁性シートとそれを用いた非接触受電装置、電子機器および非接触充電装置
JP2013243886A (ja) * 2012-05-22 2013-12-05 Nitto Denko Corp 永久磁石モータ、永久磁石モータの製造方法及び永久磁石
CN205039043U (zh) * 2015-09-14 2016-02-17 广东新昇电业科技股份有限公司 一种新型电抗器铁芯结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013709B2 (en) * 2008-04-18 2011-09-06 Delta Electronics, Inc. Conductive module and assembly structure having such conductive module
CN101752054A (zh) * 2008-10-07 2010-06-23 环旭电子股份有限公司 电路板式薄型电感结构
CN202394669U (zh) * 2012-01-09 2012-08-22 深圳市澳磁电源科技有限公司 线饼及使用该线饼的变压器
CN202513015U (zh) * 2012-03-16 2012-10-31 广州金升阳科技有限公司 一种平面变压器
WO2016039518A1 (ko) * 2014-09-11 2016-03-17 주식회사 이노칩테크놀로지 파워 인덕터 및 그 제조 방법
CN104575948A (zh) * 2015-01-05 2015-04-29 广东工业大学 基于闭合磁路的框式薄膜电感器及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200411222A1 (en) * 2018-03-22 2020-12-31 Robert Bosch Gmbh Inductive component and high-frequency filter device
US11817243B2 (en) * 2018-03-22 2023-11-14 Robert Bosch Gmbh Inductive component and high-frequency filter device

Also Published As

Publication number Publication date
EP3457416A1 (en) 2019-03-20
JP2019520714A (ja) 2019-07-18
US20190156989A1 (en) 2019-05-23
CN109074936A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
JP4059498B2 (ja) 半導体装置
TWI438795B (zh) 平面狀感應裝置及由此裝置製成之平面狀變壓器
JP4247518B2 (ja) 小型インダクタ/変圧器及びその製造方法
EP0547120B1 (en) Power transformers and coupled inductors with optimum interleaving of windings
TWI315074B (en) Electronic transformer/inductor devices and methods for making same
WO2017197550A1 (zh) 电磁感应器件及其制作方法
JP2014504009A (ja) 集積化したギャップを有する薄膜インダクタ
KR20150126914A (ko) 라미네이트식 폴리머 평면 자기체와 관련된 장치 및 방법
US20210383958A1 (en) Patterned magnetic cores
CN109686549B (zh) 一种具有多个绕组线圈通过微纳加工制作的集成变压器
KR101338139B1 (ko) 파워 인덕터
EP3419032A1 (en) Electromagnetic induction device and method for manufacturing same
JPH03126204A (ja) 高周波コイル
JPH03280409A (ja) 平面トランス
CN100511503C (zh) 电子变压器/电感器器件及其制造方法
CN214505217U (zh) 变压器
JP7288651B2 (ja) 平面トランス
TWM317640U (en) High efficient standalone planar transformer
JP3141220U (ja) 磁性装置
CN117711802A (zh) 变压器的制备方法、变压器、变压器芯片及半导体装置
JPH03280511A (ja) 強磁性体箔の磁場中熱処理法
KR20150069892A (ko) 적층 세라믹 전자 부품
JP2011071337A (ja) トランス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901936

Country of ref document: EP

Effective date: 20181213