WO2017195732A1 - Fertilizer or soil conditioner and plant growth method - Google Patents

Fertilizer or soil conditioner and plant growth method Download PDF

Info

Publication number
WO2017195732A1
WO2017195732A1 PCT/JP2017/017395 JP2017017395W WO2017195732A1 WO 2017195732 A1 WO2017195732 A1 WO 2017195732A1 JP 2017017395 W JP2017017395 W JP 2017017395W WO 2017195732 A1 WO2017195732 A1 WO 2017195732A1
Authority
WO
WIPO (PCT)
Prior art keywords
fertilizer
soil
organic polymer
polymer compound
biodegradability
Prior art date
Application number
PCT/JP2017/017395
Other languages
French (fr)
Japanese (ja)
Inventor
昭彦 小杉
昌義 齋藤
カナパティ ピッライ ケー スデッシュ クマール シー
ムルガン パラマシバム
Original Assignee
国立研究開発法人国際農林水産業研究センター
ユニヴァーシティ サインズ マレーシア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人国際農林水産業研究センター, ユニヴァーシティ サインズ マレーシア filed Critical 国立研究開発法人国際農林水産業研究センター
Priority to JP2018517005A priority Critical patent/JPWO2017195732A1/en
Priority to CN201780028500.8A priority patent/CN109563006A/en
Publication of WO2017195732A1 publication Critical patent/WO2017195732A1/en
Priority to PH12018502317A priority patent/PH12018502317A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • C09K17/32Prepolymers; Macromolecular compounds of natural origin, e.g. cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/80Soil conditioners
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds

Definitions

  • an organic polymer compound having biodegradability is biosynthesized using a microorganism
  • a known method is used as a method for recovering the organic polymer compound having biodegradability from the microorganism. Just do it.
  • a specific recovery method when an organic polymer compound having biodegradability is secreted from the microbial cells into the culture medium, a method of extraction and purification from the culture medium is used.
  • organic polymer compounds having biodegradability are accumulated in the cells of microorganisms, a method of extracting and purifying from the cells is used.
  • each component of the fertilizer or soil improver of the present embodiment is the above-described ⁇ organic polymer compound having biodegradability>, ⁇ microorganism containing an organic polymer compound having biodegradability>, or ⁇ other additions What is necessary is just to set suitably so that it may become content shown to agent>.
  • an appropriate solvent may be used. Usable solvents are those that are suitable for the growth environment of the plant, do not denature each component, and have a low environmental load. Examples of the solvent that can be used include water and ethanol.
  • the mixing time may be, for example, 5 to 30 minutes. At this time, mixing may be performed while heating. As heating temperature, what is necessary is just the temperature which each component of the fertilizer of this embodiment or a soil improvement agent does not decompose
  • the plant to which the growing method of the present embodiment is applied is not particularly limited, and examples of the plant to be applied include flower buds such as roses and pansies; pumpkin, pumpkin, cucumber, and the like.
  • Cucurbitaceae plants such as melon, spinach, lettuce, asparagus, cabbage, vegetables such as carrot, onion, tomato, potato, pepper; pear, apple, pear, plum, peach, almond, cherry tree, grape Fruits such as citrus fruits such as berries such as berries, berries, fruit fruits such as strawberries, raspberries, blackberries, oranges, lemons, grapefruits, tangerines; wheat, barley, rye, oats, rice Cereals such as corn, sorghum (sorghum); beets such as sugar beet and beet for feed; Legumes such as beans, lentils, peas, soybeans; oil crops such as rapeseed, mustard, poppy, olives, sunflower, coconut, castor bean, cacao bean, groundnut; fiber plants such as cotton, flax
  • Comparative Example 5 a commercially available organic fertilizer administration group in which the above-mentioned commercially available organic fertilizer was directly administered to 3 g of soil every other month, and as Comparative Example 6, a water-only administration group in which nothing other than water was administered were also prepared. The growth test was conducted for 3 months.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pest Control & Pesticides (AREA)
  • Fertilizers (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Cultivation Of Plants (AREA)

Abstract

This fertilizer or soil conditioner contains, as an active ingredient, an organic polymer compound substantially free of fertilizer components and having biodegradability or a microorganism including the organic polymer compound. The organic polymer compound may be a polyhydroxy alkanoic acid or a derivative thereof. The fertilizer or the soil conditioner may further include a plant-derived extracellular matrix. The shape of the fertilizer or the soil conditioner may be a disc-type. The plant growth method is a method for providing plants with the fertilizer or the soil conditioner.

Description

肥料又は土壌改良剤、及び植物の生育方法Fertilizer or soil conditioner and plant growth method
 本発明は、肥料又は土壌改良剤、及び植物の生育方法に関する。
 本願は、2016年5月13日に、日本に出願された特願2016-097309号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a fertilizer or soil conditioner and a method for growing plants.
This application claims priority on May 13, 2016 based on Japanese Patent Application No. 2016-097309 for which it applied to Japan, and uses the content here.
 施肥された肥料は、全て植物に吸収及び利用されず、環境に放出される。肥料の主な成分としては、例えば、窒素、リン、カリウム等が挙げられるが、この中でも主に窒素が問題となる。例えば、浸透水とともに地下水に移行したり、雨水等、地表を流れる水とともに河川へ流出することにより、富栄養化、硝酸濃度増加の原因になると言われている。その他、土壌質の低下、亜酸化窒素として大気揮散することによるオゾン層破壊等の環境への影響が指摘されている。 Fertilizers that have been fertilized are not absorbed or used by plants but are released to the environment. Examples of main components of fertilizer include nitrogen, phosphorus, potassium, etc. Among them, nitrogen is mainly a problem. For example, it is said that eutrophication and increase in nitric acid concentration are caused by shifting to groundwater together with osmotic water, or flowing into rivers along with water flowing on the ground surface such as rainwater. In addition, it has been pointed out that there are environmental effects such as the degradation of the soil quality and ozone depletion due to the volatilization of nitrous oxide.
 肥料の環境負荷を低減する方法として、施肥量そのものを減らす他に、例えば、植物の生育に合わせて肥料成分が溶出する徐放性肥料(緩効性肥料)を用いることにより、肥料の利用効率を高める方法等が挙げられる。緩効性肥料としては、例えば、尿素等の水溶性肥料を水に溶けにくい化合物にしたものや、成分の溶出速度を広範にコントロールできる被覆肥料等が挙げられる。 As a method to reduce the environmental load of fertilizer, in addition to reducing the amount of fertilizer itself, for example, by using sustained release fertilizer (slow release fertilizer) in which fertilizer components elute according to the growth of the plant, fertilizer utilization efficiency The method of raising is mentioned. Examples of slow-acting fertilizers include those in which water-soluble fertilizers such as urea are made into compounds that are difficult to dissolve in water, and coated fertilizers that can broadly control the elution rate of components.
特許文献1には、徐放性肥料として、肥料成分を水に難溶性又は不溶性の生分解性高分子で被覆した被覆肥料が開示されている。 Patent Document 1 discloses a coated fertilizer obtained by coating a fertilizer component with a water-insoluble or insoluble biodegradable polymer as a sustained-release fertilizer.
特開平6-157181号公報JP-A-6-157181
 従来の徐放性肥料は、肥料成分を含み、植物の生育に合わせて肥料成分が溶出するように被覆に使用する生分解性高分子の種類や含有量を調節する必要がある。従って、より効率的且つ効果的で、簡便に製造可能な徐放性肥料が求められている。 Conventional sustained-release fertilizers contain fertilizer components, and it is necessary to adjust the type and content of biodegradable polymers used for coating so that the fertilizer components elute as the plant grows. Therefore, there is a need for a sustained release fertilizer that is more efficient and effective and can be easily produced.
 本発明は上記事情を鑑みてなされたものであり、より効率的且つ効果的で、簡便に製造可能な肥料又は土壌改良剤を提供する。 The present invention has been made in view of the above circumstances, and provides a fertilizer or a soil conditioner that is more efficient and effective and can be easily produced.
 本発明者らは、上記課題を解決すべく鋭意研究した結果、生分解性能を有する有機高分子化合物自体を肥料の有効成分として施肥することによって、効率的且つ効果的に植物を生育可能であることを見出した。 As a result of diligent research to solve the above-mentioned problems, the present inventors can grow plants efficiently and effectively by applying an organic polymer compound having biodegradability as an active ingredient of a fertilizer. I found out.
 すなわち、本発明は以下の態様を含む。
本発明の第1態様に係る肥料又は土壌改良剤は、肥料成分を実質的に含まず、生分解性能を有する有機高分子化合物、又は前記有機高分子化合物を含む微生物を有効成分として含有する。
前記有機高分子化合物がポリヒドロキシアルカン酸、又はその誘導体であってもよい。
上記態様に係る肥料又は土壌改良剤において、さらに、植物由来の細胞外マトリクスを含んでもよい。
上記態様に係る肥料又は土壌改良剤において、形状が円盤型であってもよい。
That is, the present invention includes the following aspects.
The fertilizer or soil improver according to the first aspect of the present invention does not substantially contain a fertilizer component, and contains an organic polymer compound having biodegradability or a microorganism containing the organic polymer compound as an active ingredient.
The organic polymer compound may be polyhydroxyalkanoic acid or a derivative thereof.
The fertilizer or soil conditioner according to the above aspect may further contain a plant-derived extracellular matrix.
In the fertilizer or the soil conditioner according to the above aspect, the shape may be a disk shape.
本発明の第2態様に係る植物の生育方法は、上記第1態様に係る肥料又は土壌改良剤を植物に与える方法である。 The method for growing a plant according to the second aspect of the present invention is a method for giving a fertilizer or soil improver according to the first aspect to a plant.
上記態様によれば、より効率的且つ効果的で、簡便に製造可能な肥料又は土壌改良剤を提供することができる。 According to the above aspect, it is possible to provide a fertilizer or a soil conditioner that is more efficient and effective and can be easily produced.
実施例1におけるオイルパーム幹の構成を示す模式図及び画像である。It is the schematic diagram and image which show the structure of the oil palm trunk in Example 1. FIG. 実施例1におけるPHB-オイルパーム繊維物複合体の製造方法を示す工程図である。FIG. 3 is a process diagram showing a method for producing a PHB-oil palm fiber composite in Example 1. 実施例1における精製PHBとオイルパーム繊維物との混合円盤プレートの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the mixing disc plate of refined PHB and oil palm fiber material in Example 1. 試験例1における試験開始時での実施例1~4及び比較例1~4の各肥料を投与した試験区の苗木の様子を示す画像である。6 is an image showing the state of seedlings in the test section to which each fertilizer of Examples 1 to 4 and Comparative Examples 1 to 4 was administered at the start of the test in Test Example 1. 試験例1における苗木の高さ、苗木の葉緑体数、及び苗木の茎の太さの測定方法を示す画像である。It is an image which shows the measuring method of the height of the seedling in Experiment 1, the number of chloroplasts of a seedling, and the thickness of the stalk of a seedling. 試験例1における試験開始時、試験開始から1ヶ月後、2ヶ月後、及び3ヶ月後での実施例1~4及び比較例1~4の各肥料を投与した試験区の苗木の高さを測定した結果を示すグラフである。At the start of the test in Test Example 1, the height of the seedlings in the test section to which the fertilizers of Examples 1 to 4 and Comparative Examples 1 to 4 were administered 1 month, 2 months, and 3 months after the start of the test It is a graph which shows the measurement result. 試験例1における試験開始時、試験開始から1ヶ月後、2ヶ月後、及び3ヶ月後での実施例1~4及び比較例1~4の各肥料を投与した試験区の苗木の葉の枚数を測定した結果を示すグラフである。At the start of the test in Test Example 1, the number of seedling leaves in the test section to which the fertilizers of Examples 1 to 4 and Comparative Examples 1 to 4 were administered 1 month, 2 months, and 3 months after the start of the test It is a graph which shows the measurement result. 試験例1における試験開始時、試験開始から1ヶ月後、2ヶ月後、及び3ヶ月後での実施例1~4及び比較例1~4の各肥料を投与した試験区の苗木の葉緑体数を測定した結果を示すグラフである。The number of chloroplasts in the seedlings of the test section to which the fertilizers of Examples 1 to 4 and Comparative Examples 1 to 4 were administered at the start of the test in Test Example 1, 1 month, 2 months, and 3 months after the start of the test It is a graph which shows the result of having measured. 試験例1における試験開始時、試験開始から1ヶ月後、2ヶ月後、及び3ヶ月後での実施例1~4及び比較例1~4の各肥料を投与した試験区の土壌pHを測定した結果を示すグラフである。At the start of the test in Test Example 1, the soil pH of the test plots to which the fertilizers of Examples 1 to 4 and Comparative Examples 1 to 4 were administered 1 month, 2 months, and 3 months after the start of the test was measured. It is a graph which shows a result. 試験例1における試験開始から2ヶ月後、及び3ヶ月後での実施例1~4及び比較例1~4の各肥料を投与した試験区の苗木の茎の太さを測定した結果を示すグラフである。The graph which shows the result of having measured the thickness of the stalk of the seedling of the test area which administered each fertilizer of Examples 1-4 and Comparative Examples 1-4 after the start of the test in Test Example 1 and 3 months later It is. 試験例1における試験開始から3ヶ月後での実施例1~4及び比較例1~4の各肥料を投与した試験区のバイオマス重量を測定した結果を示すグラフである。3 is a graph showing the results of measuring the biomass weight of test sections to which each fertilizer of Examples 1 to 4 and Comparative Examples 1 to 4 was administered 3 months after the start of the test in Test Example 1. FIG. 試験例2における試験開始から3ヶ月後での実施例2、5及び6、並びに、比較例5及び6の各肥料を投与した試験区の水稲の様子を示す画像である。It is an image which shows the mode of the paddy rice of the test area which administered each fertilizer of Example 2, 5 and 6 and Comparative Example 5 and 6 three months after the test start in Test Example 2. FIG.
≪肥料又は土壌改良剤≫
 本実施形態の肥料又は土壌改良剤は、肥料成分を実質的に含まず、生分解性能を有する有機高分子化合物、又は前記有機高分子化合物を含む微生物を有効成分として含有する。
≪Fertilizer or soil conditioner≫
The fertilizer or soil improver of this embodiment contains substantially no fertilizer component and contains an organic polymer compound having biodegradability or a microorganism containing the organic polymer compound as an active ingredient.
 本実施形態の肥料又は土壌改良剤によれば、従来の徐放性肥料よりも効率的且つ効果的に植物を生育することができる。さらに、本実施形態の肥料又は土壌改良剤は、生分解性能を有する有機高分子化合物を有効成分として含有することにより、散布後徐々に分解され、放出終了後には消失するため、環境への負荷が低減されたものである。
 また、通常の肥料成分は、雨等水の浸透により流出しやすいのに対し、本実施形態の肥料又は土壌改良剤は有効成分が高分子であるため、土壌にとどまりやすく、有効成分が流出しにくい。
According to the fertilizer or soil improver of this embodiment, plants can be grown more efficiently and effectively than conventional sustained-release fertilizers. Furthermore, since the fertilizer or soil conditioner of this embodiment contains an organic polymer compound having biodegradability as an active ingredient, it is gradually decomposed after spraying and disappears after the end of the release. Is reduced.
In addition, normal fertilizer components are likely to flow out due to infiltration of water such as rain, whereas the fertilizer or soil conditioner of this embodiment is a high molecular weight active component, so that it tends to stay in the soil and the active component flows out. Hateful.
 本明細書において、「肥料」とは、植物を生育させるための栄養分として、人間が施すものを意味する。
本明細書において、「肥料成分」としては、例えば、窒素、リン、カリウム等が挙げられ、これらに限定されない。さらに、上記原子を含む塩や上記原子の複合体であってもよく、例えば、硫酸アンモニウム、石灰窒素、硝酸アンモニウム、尿素等の窒素系肥料;過リン酸石灰、重過リン酸石灰、溶成リン肥、焼成リン肥、蛇紋岩過リン酸石灰等のリン酸系肥料;硫酸カリウム、塩化カリウム、灰類等のカリウム系肥料;窒素-リン酸-カリウムを含む複合肥料等が挙げられる。
本明細書において、「肥料成分を実質的に含まない」とは、上記の肥料成分を全く含まない、又は、上記の肥料成分を単独で用いた場合において、肥料として食物の生育させる効果を有さない程度の量を含む状態を意味する。
In this specification, "fertilizer" means what a human gives as a nutrient for growing a plant.
In the present specification, examples of the “fertilizer component” include, but are not limited to, nitrogen, phosphorus, potassium and the like. Further, it may be a salt containing the above atoms or a complex of the above atoms, for example, nitrogenous fertilizers such as ammonium sulfate, lime nitrogen, ammonium nitrate, urea; superphosphate lime, heavy superphosphate, dissolved phosphorus fertilizer Phosphoric fertilizers such as calcined phosphorous fertilizer and serpentinite superphosphate; potassium fertilizers such as potassium sulfate, potassium chloride and ash; composite fertilizers containing nitrogen-phosphate-potassium.
In this specification, “substantially free of fertilizer components” means that the above fertilizer components are not included at all, or when the above fertilizer components are used alone, there is an effect of growing food as fertilizer. It means a state that includes an amount that does not.
 本明細書において、「土壌改良剤」とは、土壌を農作物等の植物の耕作等に適するように改良するため、地力を増進させることを目的とするものを意味する。 In the present specification, the term “soil improver” means a substance intended to enhance the ground strength in order to improve the soil so as to be suitable for cultivation of plants such as agricultural crops.
 本明細書において、「生分解性能を有する」とは、有機化合物等が、地中や水中等で微生物等により、もとの分子量から低分子化され得ることを意味し、低分子化された化合物には、水、二酸化炭素、メタン等を含む。
本実施形態における生分解性を有する有機高分子化合物は、例えば、ISO 17556(JISK6955)「土壌中での好気的生分解性試験」において、生分解することが認められるものが好ましく、該求め方において、半年以内に60%以上分解するものであることがより好ましい。
In this specification, “having biodegradability” means that an organic compound or the like can be reduced in molecular weight from its original molecular weight by microorganisms or the like in the ground or in water. Compounds include water, carbon dioxide, methane and the like.
The organic polymer compound having biodegradability in the present embodiment is preferably one that is found to biodegrade in, for example, ISO 17556 (JISK 6955) “Aerobic biodegradability test in soil”. On the other hand, it is more preferable that it decomposes 60% or more within half a year.
<生分解性能を有する有機高分子化合物>
 本実施形態における生分解性能を有する有機高分子化合物としては、具体的には、例えば、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン、ポリジオキサノン、乳酸-グリコール酸共重合体、乳酸-カプロラクトン共重合体、ポリグリセロールセバシン酸、ポリヒドロキシアルカン酸(PHA)、ポリブチレンサクシネート等の脂肪族ポリエステル類、ポリメチレンカーボネート等の脂肪族ポリカーボネート類、セルロースジアセテート、セルローストリアセテート、メチルセルロース、プロピルセルロース、ベンジルセルロース、カルボキシメチルセルロース等の多糖類誘導体、フィブロイン、ゼラチン、コラーゲン等のタンパク質、及びこれらの誘導体等が挙げられる。中でも、本実施形態における生分解性能を有する有機高分子化合物としては、ポリヒドロキシアルカン酸、又はその誘導体であることが好ましい。
<Organic polymer compound with biodegradability>
Specific examples of the organic polymer compound having biodegradability in the present embodiment include polylactic acid, polyglycolic acid, polycaprolactone, polydioxanone, lactic acid-glycolic acid copolymer, lactic acid-caprolactone copolymer, Polyglycerol sebacic acid, polyhydroxyalkanoic acid (PHA), aliphatic polyesters such as polybutylene succinate, aliphatic polycarbonates such as polymethylene carbonate, cellulose diacetate, cellulose triacetate, methylcellulose, propylcellulose, benzylcellulose, carboxy Examples thereof include polysaccharide derivatives such as methylcellulose, proteins such as fibroin, gelatin and collagen, and derivatives thereof. Among them, the organic polymer compound having biodegradability in the present embodiment is preferably polyhydroxyalkanoic acid or a derivative thereof.
 ポリヒドロキシアルカン酸とは、ポリヒドロキシアルカノエイトと称することもあり、ヒドロキシル基が結合したアルカン酸を構成モノマーとして、それらがエステル結合した重合体、又は共重合体である。ポリヒドロキシアルカン酸を構成するモノマーとしては、3-ヒドロキシ酪酸(3HB)、3-ヒドロキシ吉草酸(3HV)、4-ヒドロキシ酪酸(4HB)等が挙げられ、これらに限定されない。上記構成モノマーを含む生分解性能を有する有機高分子化合物としては、例えば、ポリヒドロキシ酪酸(ポリ(3-ヒドロキシブチレート)、PHB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(PHBH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)(PHBV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)等が挙げられる。中でも、本実施形態における生分解性能を有する有機高分子化合物としては、PHB、又はその誘導体であることが好ましい。 Polyhydroxyalkanoic acid is sometimes referred to as polyhydroxyalkanoate, and is a polymer or copolymer in which alkanoic acid having a hydroxyl group bonded is used as a constituent monomer and these are ester-bonded. Examples of the monomer constituting the polyhydroxyalkanoic acid include, but are not limited to, 3-hydroxybutyric acid (3HB), 3-hydroxyvaleric acid (3HV), 4-hydroxybutyric acid (4HB), and the like. Examples of the organic polymer compound having biodegradability including the above constituent monomers include polyhydroxybutyric acid (poly (3-hydroxybutyrate), PHB), poly (3-hydroxybutyrate-co-3-hydroxyhexano). Ate) (PHBH), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly (3- Hydroxybutyrate-co-3-hydroxyoctanoate), poly (3-hydroxybutyrate-co-3-hydroxyoctadecanoate) and the like. Among them, the organic polymer compound having biodegradability in the present embodiment is preferably PHB or a derivative thereof.
 本実施形態の肥料又は土壌改良剤において、生分解性能を有する有機高分子化合物は、1種類を単独で含有していてもよく、2種類以上を混合して含有していてもよい。 In the fertilizer or soil improver of the present embodiment, the organic polymer compound having biodegradability may contain one kind alone, or may contain two kinds or more mixed.
 本実施形態の肥料又は土壌改良剤において、含有する生分解性能を有する有機高分子化合物の重量平均分子量は、特別な限定はなく、例えば50000~3000000であればよく、低分子量であれば、例えば50000~100000であればよく、高分子量であれば、例えば100000~3000000であればよい。
 生分解性能を有する有機高分子化合物の重量平均分子量が上記範囲であることにより、適当な速度で、土壌に生息する微生物等により分解される。さらに、前記有機高分子化合物の分解物が、肥料成分としての役割を担うと考えられ、効果的且つ効率的に植物を生育させることができる。
In the fertilizer or soil conditioner of the present embodiment, the weight average molecular weight of the organic polymer compound having biodegradability contained therein is not particularly limited, and may be, for example, 50,000 to 3000000, and may be, for example, a low molecular weight. What is necessary is just 50000-100000, and what is necessary is just high molecular weight, for example, 100000-3 million.
When the weight average molecular weight of the organic polymer compound having biodegradability is within the above range, it is decomposed by microorganisms or the like that inhabit the soil at an appropriate rate. Furthermore, it is thought that the decomposition product of the organic polymer compound plays a role as a fertilizer component, and it is possible to grow a plant effectively and efficiently.
 本実施形態の肥料又は土壌改良剤における全ての成分の総含有量に対する生分解性能を有する有機高分子化合物の含有量の割合(すなわち、肥料又は土壌改良剤の生分解性能を有する有機高分子化合物の含有量)は、50質量%以上100質量%以下であることが好ましく、55質量%以上100質量%以下であることがより好ましく、60質量%以上100質量%以下であることがさらに好ましい。ただし、対象となる植物の大きさ、種類、農地面積等によって、有機高分子化合物の含有量は、50質量%以下であってもよい。
 肥料又は土壌改良剤の生分解性能を有する有機高分子化合物の含有量が上記下限値以上であることにより、効果的に植物を生育することができる。また、肥料又は土壌改良剤の生分解性能を有する有機高分子化合物の含有量が上記上限値以下であることにより、生分解性能を有する有機高分子化合物の過剰な使用を抑制することができ、効率的に植物を生育することができる。
Ratio of content of organic polymer compound having biodegradability to total content of all components in fertilizer or soil improver of this embodiment (that is, organic polymer compound having biodegradability of fertilizer or soil improver Is preferably 50% by mass or more and 100% by mass or less, more preferably 55% by mass or more and 100% by mass or less, and further preferably 60% by mass or more and 100% by mass or less. However, the content of the organic polymer compound may be 50% by mass or less depending on the size, type, and farmland area of the target plant.
When the content of the organic polymer compound having biodegradability of a fertilizer or a soil conditioner is not less than the above lower limit, plants can be effectively grown. Further, the content of the organic polymer compound having biodegradability of fertilizer or soil improver is less than or equal to the above upper limit, thereby suppressing excessive use of the organic polymer compound having biodegradability, Plants can be grown efficiently.
 本実施形態における生分解性能を有する有機高分子化合物は、公知の方法を用いて、化学合成されたものでもよく、又は、微生物により生合成されたものでもよい。生分解性能を有する有機高分子化合物を生合成可能な微生物としては、後述の<生分解性能を有する有機高分子化合物を含む微生物>で例示されたものと同様のものが挙げられる。また、微生物に生分解性能を有する有機高分子化合物を生合成及び蓄積させる方法についても、後述の<生分解性能を有する有機高分子化合物を含む微生物>で例示されたものと同様のものが挙げられる。 The organic polymer compound having biodegradability in the present embodiment may be chemically synthesized using a known method, or may be biosynthesized by a microorganism. Examples of microorganisms capable of biosynthesizing organic polymer compounds having biodegradability include the same as those exemplified in <Microorganisms containing organic polymer compounds having biodegradability> described later. In addition, a method for biosynthesis and accumulation of an organic polymer compound having biodegradability in a microorganism is the same as that exemplified in <Microorganism containing an organic polymer compound having biodegradability> described later. It is done.
また、生分解性能を有する有機高分子化合物を、微生物を用いて生合成させた場合において、前記微生物から生分解性能を有する有機高分子化合物を回収する方法としては、公知の方法を用いて行えばよい。
具体的な回収方法としては、生分解性能を有する有機高分子化合物が微生物の菌体内から培養培地中に分泌される場合では、培地培養液から抽出及び精製する方法が用いられる。また、生分解性能を有する有機高分子化合物を微生物の菌体内に蓄積される場合では、菌体から抽出及び精製する方法が用いられる。
生分解性能を有する有機高分子化合物を微生物の菌体内に蓄積される場合における、より具体的な回収方法としては、例えば、後述の実施例に示すように、ミールワーム等の陸生又は水生節足動物の幼虫を用いて消化させて精製する方法;クロロホルム、ジクロロメタン、アセトン等の有機溶媒による抽出方法;SDS等の界面活性剤による処理、リゾチーム等の酵素による処理、又は、EDTA、次亜塩素酸ナトリウム、アンモニア、過酸化水素等の薬剤による処理によって、生分解性能を有する有機高分子化合物以外の菌体成分を除去して、生分解性能を有する有機高分子化合物を回収する方法等が挙げられる。
In addition, when an organic polymer compound having biodegradability is biosynthesized using a microorganism, a known method is used as a method for recovering the organic polymer compound having biodegradability from the microorganism. Just do it.
As a specific recovery method, when an organic polymer compound having biodegradability is secreted from the microbial cells into the culture medium, a method of extraction and purification from the culture medium is used. When organic polymer compounds having biodegradability are accumulated in the cells of microorganisms, a method of extracting and purifying from the cells is used.
As a more specific recovery method in the case where an organic polymer compound having biodegradability is accumulated in the microbial cells, for example, as shown in the examples below, terrestrial or aquatic arthropods such as mealworms Method of digestion using animal larvae and purification; Extraction method using organic solvent such as chloroform, dichloromethane, acetone; Treatment with surfactant such as SDS, treatment with enzyme such as lysozyme, or EDTA, hypochlorous acid Examples include a method of recovering an organic polymer compound having biodegradability by removing bacterial cell components other than the organic polymer compound having biodegradability by treatment with chemicals such as sodium, ammonia, and hydrogen peroxide. .
<生分解性能を有する有機高分子化合物を含む微生物>
 本明細書において、生分解性能を有する有機高分子化合物を含む微生物とは、生分解性能を有する有機高分子化合物を合成する微生物を意味する。
 前記微生物としては、例えば、カプリアビダス(Cupriavidus)属、アルカリゲネス(Alcaligenes)属、ラルストニア(Ralstonia)属、シュウドモナス(Pseudomonas)属、バチルス(Bacillus)属、アゾトバクター(Azotobacter)属、ノカルディア(Nocardia)属、アエロモナス(Aeromonas)属の菌等が挙げられる。中でも、アエロモナス属、アルカリゲネス属、ラルストニア属、バチルス属、又はカプリアビダス属等に属するPHA生産菌等が挙げられ、これらに限定されない。前記微生物として、より具体的には、アルカリゲネス・リポリティカ(A.lipolytica)、アルカリゲネス・ラトゥス(A.latus)、アエロモナス・キャビエ(A.caviae)、アエロモナス・ハイドロフィラ(A.hydrophila)、カプリアビダス・ネケータ(C.necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus、ラルストニア・ユートロフア(Ralstonia eutropha))等が挙げられる。
さらに、前記微生物は、所望の生分解性能を有する有機高分子化合物に合わせて、各種生分解性能を有する有機高分子化合物の合成関連遺伝子を導入した遺伝子組換え微生物であってもよい。
<Microorganisms containing organic polymer compounds with biodegradability>
In the present specification, a microorganism containing an organic polymer compound having biodegradability means a microorganism that synthesizes an organic polymer compound having biodegradability.
Examples of the microorganism include, for example, the genus Capriavidus, the genus Alcaligenes, the genus Ralstonia, the genus Pseudomonas, the genus Bacillus, the genus Azotobacter (No), Examples include Aeromonas genus bacteria. Among them, PHA-producing bacteria belonging to the genus Aeromonas, Alkaligenes, Ralstonia, Bacillus, Capriavidas, etc. can be mentioned, but the invention is not limited thereto. More specifically, as the microorganism, Alkaline Genes lipolytica, A. latus, Aeromonas caviae, Aeromonas hydrophila (A. hydrophila), Capriavidas neketa (C. necator) (old classification: Alcaligenes eutrophus, Ralstonia eutropha) and the like.
Furthermore, the microorganism may be a genetically modified microorganism into which a synthesis-related gene of an organic polymer compound having various biodegradability is introduced in accordance with an organic polymer compound having a desired biodegradability.
 前記微生物の培養条件としては、微生物、又は所望の生分解性能を有する有機高分子化合物の種類に応じて、栄養源、温度、培養培地のpH、二酸化炭素濃度等を適宜選択、又は調整すればよい。 As the culture conditions for the microorganism, depending on the type of microorganism or organic polymer compound having the desired biodegradability, the nutrient source, temperature, pH of the culture medium, carbon dioxide concentration, etc. may be appropriately selected or adjusted. Good.
 培養方法としては、液体培養、固体培養等により前記微生物が増殖し、所望の生分解性能を有する有機高分子化合物を生産する培養方法であればよく、例えば、バッチ培養、フェドバッチ培養、半連続培養、連続培養等が挙げられる。液体バッチ培養の形態として、より具体的には、例えば、振盪フラスコによって振盪させて酸素を供給する方法、ジャーファーメンターによる攪拌通気方式の酸素供給方法等が挙げられる。また、これらの方法を複数組み合わせた培養方法であってもよい。 The culture method may be any culture method in which the microorganism is grown by liquid culture, solid culture, etc., and produces an organic polymer compound having a desired biodegradation performance. For example, batch culture, fed-batch culture, semi-continuous culture And continuous culture. More specifically, examples of the form of liquid batch culture include a method of supplying oxygen by shaking with a shake flask, and a method of supplying oxygen by stirring aeration using a jar fermenter. In addition, a culture method combining a plurality of these methods may be used.
培養培地としては、微生物の生育や生存に悪影響を及ぼすものでなければよく、例えば、一般的な天然培地(肉汁培地、酵母エキス等)や、増殖のための栄養源を添加した合成培地等が挙げられる。 The culture medium may be any medium that does not adversely affect the growth and survival of microorganisms, such as a general natural medium (meat broth medium, yeast extract, etc.), a synthetic medium to which a nutrient source for growth is added, and the like. Can be mentioned.
前記栄養源としては、例えば、酵母エキス、ポリペプトン、肉エキス等のタンパク質、メタノール、エタノール、プロパノール等のアルコール類;乳酸、ピルビン酸、リンゴ酸、クエン酸、コハク酸、フマル酸の有機酸;酢酸ナトリウム、プロピオン酸ナトリウム等の有機酸塩;グリセロアルデヒド、エリスロース、アラビノース、キシロース、グルコース、ガラクトース、マンノース、フルクトース等のアルドース、グリセロール、エリスリトール、キシリトール等のアルジトール、グルコン酸等のアルドン酸、グルクロン酸、ガラクツロン酸等のウロン酸、マルトース、スクロース,ラクトース等の二糖等の糖類等が挙げられ、これらに限定されない。 Examples of the nutrient source include proteins such as yeast extract, polypeptone and meat extract, alcohols such as methanol, ethanol and propanol; organic acids such as lactic acid, pyruvic acid, malic acid, citric acid, succinic acid and fumaric acid; acetic acid Organic acid salts such as sodium and sodium propionate; aldoses such as glyceraldehyde, erythrose, arabinose, xylose, glucose, galactose, mannose and fructose, alditols such as glycerol, erythritol and xylitol, aldonic acids such as gluconic acid, glucuronic acid And saccharides such as uronic acids such as galacturonic acid, disaccharides such as maltose, sucrose, and lactose, and the like.
 培養温度としては前記微生物が良好に増殖可能な温度であればよく、例えば15~40℃であればよく、例えば20~37℃であればよい。 The culture temperature may be any temperature at which the microorganism can grow well, for example, 15 to 40 ° C., for example, 20 to 37 ° C.
 微生物に生分解性能を有する有機高分子化合物を生合成及び蓄積させる方法としては、例えば、一旦十分に微生物を増殖させて後に、塩化アンモニウム等の窒素源を制限した培地へ菌体を移し、所望の生分解性能を有する有機高分子化合物を生合成するための基質となる化合物を加えた状態で更に培養する方法等が挙げられる。
具体的には、前記の工程を複数段接続した多段方式での培養方法が挙げられる。例えば、D-グルコースを 0.05~5.0%程度、5-ベンゾイル吉草酸を0.01%~1.0%程度含んだ無機培地等で対数増殖後期から定常期の時点まで培養し、菌体を遠心分離等で回収したのち、5-ベンゾイル吉草酸を0.01~1.0%程度含んだ、窒素源を制限した、又は実質的に含まない無機培地でさらに培養する方法等が挙げられる。また、前記多段方式での培養方法において、D-グルコースの代わりに、同量の有機酸や、酵母エキス、ポリペプトン等を与えてもよく、また、それらの組み合わせを用いてもよい。
As a method for biosynthesizing and accumulating organic polymer compounds having biodegradability in microorganisms, for example, once the microorganisms are sufficiently grown, the cells are transferred to a medium in which a nitrogen source such as ammonium chloride is restricted, and then desired. And a method of further culturing in a state where a compound serving as a substrate for biosynthesis of an organic polymer compound having biodegradability is added.
Specifically, a multistage culture method in which the above steps are connected in a plurality of stages can be mentioned. For example, culturing from the late phase of logarithmic growth to the stationary phase in an inorganic medium containing about 0.05 to 5.0% D-glucose and about 0.01% to 1.0% 5-benzoylvaleric acid, A method of further culturing in an inorganic medium containing about 0.01 to 1.0% of 5-benzoylvaleric acid, limiting the nitrogen source, or substantially not containing the fungus body by centrifugation, etc. Can be mentioned. In addition, in the multistage culture method, the same amount of organic acid, yeast extract, polypeptone, or the like may be given instead of D-glucose, or a combination thereof may be used.
 前記無機培地としては、リン源(例えば、リン酸塩等)、窒素源(例えば、アンモニウム塩、硝酸塩等)等、微生物が増殖するために必要な成分を含んでいるものであればよい。無機塩培地としては、例えば、MSB培地、E培地(J.Biol.Chem.,218,97-106, 1956)、M9培地等が挙げられる。 The inorganic medium may be any medium that contains components necessary for the growth of microorganisms, such as a phosphorus source (for example, phosphate) and a nitrogen source (for example, ammonium salt, nitrate, etc.). Examples of the inorganic salt medium include MSB medium, E medium (J. Biol. Chem., 218, 97-106, 1956), M9 medium, and the like.
 微生物の菌体内での生分解性能を有する有機高分子化合物の蓄積は、光学顕微鏡や位相差顕微鏡や電子顕微鏡等を用いて、確認することができる。本実施形態における微生物の菌体内での生分解性能を有する有機高分子化合物の蓄積率は、条件により異なるが、少なくとも20%であって、少なくとも40%であることが好ましく、少なくとも60%であることがより好ましい。 Accumulation of organic polymer compounds having biodegradability within the microbial cells can be confirmed using an optical microscope, a phase contrast microscope, an electron microscope, or the like. In the present embodiment, the accumulation rate of the organic polymer compound having biodegradability in the cells of the microorganisms varies depending on conditions, but is at least 20%, preferably at least 40%, and preferably at least 60%. It is more preferable.
 本実施形態の肥料又は土壌改良剤における全ての成分の総含有量に対する生分解性能を有する有機高分子化合物を含む微生物の含有量の割合(すなわち、肥料又は土壌改良剤の生分解性能を有する有機高分子化合物を含む微生物の含有量)は、有機高分子化合物を含む微生物の含有量が上記範囲となるように適宜調整すればよい。
よって、本実施形態の肥料又は土壌改良剤の生分解性能を有する有機高分子化合物を含む微生物の含有量は、84質量%以上100質量%以下であることが好ましく、85質量%以上100質量%以下であることがより好ましく、90質量%以上100質量%以下であることがさらに好ましい。ただし、対象となる植物の大きさ、種類、農地面積等によって、微生物の含有量は、84質量%以下であってもよく、例えば、数質量%であっても構わない。
 肥料又は土壌改良剤の生分解性能を有する有機高分子化合物を含む微生物の含有量が上記下限値以上であることにより、効果的に植物を生育することができる。また、肥料又は土壌改良剤の生分解性能を有する有機高分子化合物を含む微生物の含有量が上記上限値以下であることにより、過剰な肥料又は土壌改良材の投与を抑制することができ、効率的に植物を生育することができる。
Ratio of content of microorganism containing organic polymer compound having biodegradability with respect to total content of all components in fertilizer or soil improver of this embodiment (that is, organic having biodegradability of fertilizer or soil improver What is necessary is just to adjust suitably content of the microorganisms containing a high molecular compound so that the content of the microorganisms containing an organic high molecular compound may become the said range.
Therefore, it is preferable that content of the microorganisms containing the organic polymer compound which has the biodegradation performance of the fertilizer or soil improvement agent of this embodiment is 84 mass% or more and 100 mass% or less, and 85 mass% or more and 100 mass%. The content is more preferably 90% by mass or more and 100% by mass or less. However, the content of microorganisms may be 84% by mass or less, for example, several mass%, depending on the size, type, farmland area, and the like of the target plant.
When the content of the microorganism containing the organic polymer compound having the biodegradability of the fertilizer or the soil conditioner is equal to or higher than the lower limit, plants can be effectively grown. Moreover, when the content of the microorganism containing the organic polymer compound having the biodegradability of the fertilizer or soil improver is not more than the above upper limit value, it is possible to suppress the administration of excess fertilizer or soil improver, efficiency Plants can be grown.
<植物由来の細胞外マトリクス>
 本実施形態の肥料又は土壌改良剤は、さらに、植物由来の細胞外マトリクスを含むことが好ましい。本実施形態の肥料又は土壌改良剤は、植物由来の細胞外マトリクスを含むことにより、土壌の保水力を高く保つことができる。また、土壌に優れた通気性及び高い保肥性を付与することができる。
<Plant-derived extracellular matrix>
It is preferable that the fertilizer or soil conditioner of this embodiment further contains a plant-derived extracellular matrix. The fertilizer or soil improver of this embodiment can keep the water retention capacity of soil high by including a plant-derived extracellular matrix. Moreover, the air permeability excellent in soil and high fertilizer retention can be provided.
 植物由来の細胞外マトリクスとは、植物の細胞外の空間を充填する物質を意味しており、主な構成成分としては、セルロース、ヘミセルロース、リグニン、ペクチン等が挙げられる。
 植物由来の細胞外マトリクスを多く含むものとしては、例えば、リグノセルロース系バイオマス等が挙げられる。リグノセルロース系バイオマスとして、より具体的には、例えば、針葉樹、広葉樹、建築廃材、林地残材、剪定廃材、稲藁、籾殻、麦藁、木材チップ、木材繊維、化学パルプ、古紙、合板等の農林産物資源、サトウキビバガス、サトウキビ茎葉、コーンストーバー、パーム幹残渣等の農林産物廃棄物、又は農林産物加工品;大型藻類、微細藻類等の植物組織等が挙げられ、これらに限定されない。本実施形態の肥料又は土壌改良剤において、これらのリグノセルロース系バイオマスを単独で含有していてもよく、2種類以上を混合して含有していてもよい。
 また、含有する前記リグノセルロース系バイオマスについては、植物を生育させる地域、土地において、農林産物廃棄物として多く排出されるものを適宜選択して用いればよい。これにより、本実施形態の肥料又は土壌改良剤の製造コストを抑えることができ、さらに農林産物廃棄物の低減することができるため、環境負荷の低減を実現できる。
The plant-derived extracellular matrix means a substance that fills the extracellular space of the plant, and examples of main components include cellulose, hemicellulose, lignin, and pectin.
As what contains many plant-derived extracellular matrices, a lignocellulosic biomass etc. are mentioned, for example. More specifically, as lignocellulosic biomass, for example, agricultural forests such as conifers, hardwoods, construction waste, forest residue, pruning waste, rice straw, rice husk, wheat straw, wood chips, wood fiber, chemical pulp, waste paper, plywood, etc. Examples include, but are not limited to, product resources, sugarcane bagasse, sugarcane foliage, corn stover, corn stover, agricultural and forestry product waste products such as palm stem residue, plant products such as macroalgae and microalgae. In the fertilizer or soil conditioner of this embodiment, these lignocellulosic biomasses may be contained alone, or two or more kinds may be mixed and contained.
The lignocellulosic biomass to be contained may be appropriately selected and used as a large amount of agricultural and forestry product waste discharged in the area and land where plants are grown. Thereby, since the manufacturing cost of the fertilizer or soil improvement agent of this embodiment can be suppressed, and also the agricultural and forestry product waste can be reduced, a reduction in environmental load can be realized.
 本実施形態の肥料又は土壌改良剤における全ての成分の総含有量に対する植物由来の細胞外マトリクスの含有量の割合(すなわち、肥料又は土壌改良剤の植物由来の細胞外マトリクスの含有量)は、5質量%以上90質量%以下であることが好ましく、10質量%以上85質量%以下であることがより好ましく、15質量%以上40質量%以下であることがさらに好ましい。ただし、乾燥地等の保水性が求められる環境下である場合は、植物由来の細胞外マトリクスの含有量は、90質量%以上であってもよい。 The ratio of the content of the plant-derived extracellular matrix to the total content of all components in the fertilizer or soil conditioner of the present embodiment (that is, the content of the plant-derived extracellular matrix of the fertilizer or soil conditioner) is: It is preferably 5% by mass or more and 90% by mass or less, more preferably 10% by mass or more and 85% by mass or less, and further preferably 15% by mass or more and 40% by mass or less. However, in an environment where water retention such as dry land is required, the content of the plant-derived extracellular matrix may be 90% by mass or more.
<その他添加剤>
 本実施形態の肥料又は土壌改良剤は、さらに、保水剤、乾燥剤、pH調整剤、微量の肥料成分等を含んでいてもよい。
<Other additives>
The fertilizer or soil improver of the present embodiment may further contain a water retention agent, a desiccant, a pH adjuster, a trace amount of a fertilizer component, and the like.
 保水剤とは、土壌の撥水を抑え、水の浸透を改善し、土壌中の水分分布を均一にするためのものである。
保水剤としては、例えば、天然土壌(例えば、沖積土、洪積土、火山性土、腐植土等)、鉱物(例えば、ピートモス、バーミキュライト、ゼオライト等)、パーライト(例えば、真珠岩、松脂岩、珪藻土系パーライト等)、発泡樹脂等が挙げられる。前記植物由来の細胞外マトリクスにより保水効果が得られるため、保水剤は微量含んでいてもよく、含んでいなくてもよい。
 本実施形態の肥料又は土壌改良剤における全ての成分の総含有量に対する保水剤の含有量の割合(すなわち、肥料又は土壌改良剤の保水剤の含有量)は、例えば5質量%以上30質量%以下であればよく、例えば5質量%以上20質量%以下であればよく、例えば5質量%以上15質量%以下であればよい。
The water retention agent is for suppressing water repellency of the soil, improving water penetration, and making the moisture distribution in the soil uniform.
Examples of water retention agents include natural soils (eg, alluvial soils, diluvial soils, volcanic soils, humus soils, etc.), minerals (eg, peat moss, vermiculite, zeolites, etc.), perlites (eg, pearlite, rosinite, Diatomaceous earth perlite, etc.) and foamed resin. Since the water-retaining effect is obtained by the plant-derived extracellular matrix, the water-retaining agent may or may not be contained in a trace amount.
The ratio of the content of the water retention agent to the total content of all components in the fertilizer or soil improvement agent of the present embodiment (that is, the content of the water retention agent of the fertilizer or soil improvement agent) is, for example, 5% by mass or more and 30% by mass. For example, it may be 5% by mass or more and 20% by mass or less, for example, 5% by mass or more and 15% by mass or less.
 乾燥剤とは、土壌に含まれる過剰な水分を吸収し、土壌の水分を適当な量に調整するためのものである。
 乾燥剤としては、例えば、石灰(例えば、生石灰、消石灰等)、コバルトマンガン、マンガン、コバルトカルシウム、ジルコニウ ムコバルト、及びそれらの混合物等が挙げられる。
 本実施形態の肥料又は土壌改良剤における全ての成分の総含有量に対する乾燥剤の含有量の割合(すなわち、肥料又は土壌改良剤の乾燥剤の含有量)は、例えば5質量%以上20質量%以下であればよく、例えば5質量%以上15質量%以下であればよく、例えば5質量%以上10質量%以下であればよい。
The desiccant is for absorbing excess moisture contained in the soil and adjusting the soil moisture to an appropriate amount.
Examples of the desiccant include lime (for example, quick lime, slaked lime), cobalt manganese, manganese, cobalt calcium, zirconium cobalt, and mixtures thereof.
The ratio of the content of the desiccant to the total content of all the components in the fertilizer or soil improver of the present embodiment (that is, the content of the desiccant of the fertilizer or soil improver) is, for example, 5% by mass or more and 20% by mass. For example, it may be 5% by mass or more and 15% by mass or less, and for example, 5% by mass or more and 10% by mass or less.
 pH調整剤とは、土壌のpHを所望の植物の生育に適した値に調整するためのものである。
 pH調整剤としては、クエン酸、リン酸、及びこれらの塩、並びに硫酸第一鉄(フェロサンド)等の酸性化合物、水酸化カリウム等の塩基性化合物等が挙げられる。
 本実施形態の肥料又は土壌改良剤における全ての成分の総含有量に対するpH調整剤の含有量の割合(すなわち、肥料又は土壌改良剤のpH調整剤の含有量)は、例えば0.5質量%以上10質量%以下であればよく、例えば1質量%以上5質量%以下であればよく、例えば1質量%以上3質量%以下であればよい。
A pH adjuster is for adjusting the pH of soil to a value suitable for the growth of a desired plant.
Examples of the pH adjuster include citric acid, phosphoric acid, and salts thereof, acidic compounds such as ferrous sulfate (ferrosand), basic compounds such as potassium hydroxide, and the like.
The ratio of the content of the pH adjuster to the total content of all components in the fertilizer or soil improver of the present embodiment (that is, the content of the pH adjuster of the fertilizer or soil improver) is, for example, 0.5% by mass. It may be 10 mass% or less, for example, may be 1 mass% or more and 5 mass% or less, for example, may be 1 mass% or more and 3 mass% or less.
肥料成分としては、上述において例示されたものと同様のものが挙げられる。
本実施形態の肥料又は土壌改良剤における全ての成分の総含有量に対する肥料成分の含有量の割合(すなわち、肥料又は土壌改良剤の肥料成分の含有量)は、肥料を全く含まない、又は実質的に含まない量であればよく、例えば0%以上10%以下であればよく、例えば0%以上9.5%以下であればよく、例えば0%以上9%以下であればよい。
As a fertilizer component, the thing similar to what was illustrated in the above-mentioned is mentioned.
The ratio of the content of the fertilizer component to the total content of all components in the fertilizer or the soil conditioner of the present embodiment (that is, the content of the fertilizer component of the fertilizer or the soil conditioner) does not contain any fertilizer or is substantially For example, the amount may be 0% to 10%, for example, 0% to 9.5%, for example, 0% to 9%.
<肥料又は土壌改良剤の製造方法>
 本実施形態の肥料又は土壌改良剤の製造方法は、特別な限定はなく、所望の形状となるように、公知の方法を用いて、製造すればよい。
<Manufacturing method of fertilizer or soil conditioner>
The manufacturing method of the fertilizer or soil conditioner of this embodiment is not particularly limited, and may be manufactured using a known method so as to have a desired shape.
本実施形態の肥料又は土壌改良剤の形状は、液体状であってもよく、固体状であってもよい。固体状である場合、本実施形態の肥料又は土壌改良剤の形状は、例えば、顆粒、ブリケット、ペレット、タブレット等が挙げられ、これらに限定されない。中でも、本実施形態の肥料又は土壌改良剤の形状は、ブリケットであることが好ましく、円盤型のブリケットであることがより好ましい。
本実施形態の肥料又は土壌改良剤は、円盤型のブリケットであることにより、適度な硬度を有するため崩れにくく、本実施形態の肥料又は土壌改良剤の散布対象となる植物を囲むように使用することができ、植物に偏ることなく有効成分を行き渡らせることができる。
The form of the fertilizer or soil conditioner of this embodiment may be liquid or solid. When it is solid, examples of the shape of the fertilizer or soil improver of the present embodiment include, but are not limited to, granules, briquettes, pellets, tablets, and the like. Especially, it is preferable that the shape of the fertilizer or soil improvement agent of this embodiment is a briquette, and it is more preferable that it is a disk type briquette.
The fertilizer or soil conditioner of the present embodiment is a disc-shaped briquette, so that it has an appropriate hardness and is not easily collapsed. The fertilizer or soil conditioner of the present embodiment is used so as to surround the plant to be sprayed with the fertilizer or soil conditioner of the present embodiment. The active ingredient can be spread without being biased to the plant.
本実施形態の肥料又は土壌改良剤が固形状であって、ブリケットである場合、例えば、後述の実施例に示す方法等を用いて製造することができる。
 具体的には、前記生分解性能を有する有機高分子化合物、又は前記生分解性能を有する有機高分子化合物を含む微生物と、前記植物由来の細胞外マトリクスと、必要に応じて、保水剤、乾燥剤、pH調整剤、及び微量の肥料成分とを、スクリュープレス、フィルタープレス、ベルトプレス、ロール圧搾機等を用いて、適度に圧力をかけながら混合し、混合物を作製する。
本実施形態の肥料又は土壌改良剤の各成分の含有量は、上述の<生分解性能を有する有機高分子化合物>、<生分解性能を有する有機高分子化合物を含む微生物>、又は<その他添加剤>に示した含有量となるように適宜設定すればよい。また、混合しやすくするために、適当な溶媒を使用してもよい。使用可能な溶媒としては、植物の生育環境に適しており、各成分を変性させることなく、且つ環境負荷の少ないものであればよい。使用可能な溶媒としては、例えば、水、エタノール等が挙げられる。
混合時間としては、例えば5~30分であればよい。このとき、加温しながら混合を行ってもよい。加熱温度としては、本実施形態の肥料又は土壌改良剤の各成分が分解しない温度であればよく、例えば100℃以上150℃以下であればよい。
When the fertilizer or soil conditioner of this embodiment is solid and is a briquette, it can be manufactured using, for example, the methods shown in the examples described later.
Specifically, the organic polymer compound having biodegradability or a microorganism containing the organic polymer compound having biodegradability, the plant-derived extracellular matrix, and optionally, a water retention agent, drying An agent, a pH adjuster, and a small amount of a fertilizer component are mixed using a screw press, a filter press, a belt press, a roll press, or the like while applying moderate pressure to prepare a mixture.
The content of each component of the fertilizer or soil improver of the present embodiment is the above-described <organic polymer compound having biodegradability>, <microorganism containing an organic polymer compound having biodegradability>, or <other additions What is necessary is just to set suitably so that it may become content shown to agent>. In order to facilitate mixing, an appropriate solvent may be used. Usable solvents are those that are suitable for the growth environment of the plant, do not denature each component, and have a low environmental load. Examples of the solvent that can be used include water and ethanol.
The mixing time may be, for example, 5 to 30 minutes. At this time, mixing may be performed while heating. As heating temperature, what is necessary is just the temperature which each component of the fertilizer of this embodiment or a soil improvement agent does not decompose | disassemble, for example, what is necessary is just 100 degreeC or more and 150 degrees C or less.
 続いて、ホットプレート等を用いて、所望の形の金型に前記混合物を充填し、加圧及び加温条件下で、成形し、肥料又は土壌改良剤を得る。成形時間としては、例えば5~30分であればよい。温度としては、本実施形態の肥料又は土壌改良剤の各成分が分解しない温度であればよく、例えば100℃以上150℃以下であればよい。圧力としては、例えば3~10MPaであればよい。 Subsequently, using a hot plate or the like, the mixture is filled into a mold having a desired shape, and molded under pressure and heating conditions to obtain a fertilizer or a soil conditioner. The molding time may be, for example, 5 to 30 minutes. As temperature, what is necessary is just the temperature which each component of the fertilizer of this embodiment or a soil improvement agent does not decompose | disassemble, for example, what is necessary is just 100 degreeC or more and 150 degrees C or less. The pressure may be 3 to 10 MPa, for example.
 本実施形態の肥料又は土壌改良剤が、液体状である場合、例えば、溶媒に、前記生分解性能を有する有機高分子化合物、又は前記生分解性能を有する有機高分子化合物を含む微生物と、前記植物由来の細胞外マトリクスと、必要に応じて、保水剤、乾燥剤、pH調整剤、及び微量の肥料成分とを、溶解させて製造すればよい。使用可能な溶媒としては、上述のブリケットの製造方法で例示されたものと同様のものが挙げられる。 When the fertilizer or soil improver of the present embodiment is in a liquid state, for example, the organic polymer compound having the biodegradability or the microorganism containing the organic polymer compound having the biodegradability in a solvent, What is necessary is just to melt | dissolve a plant-derived extracellular matrix and a water retention agent, a desiccant, a pH adjuster, and a trace amount fertilizer component as needed. Examples of the usable solvent include the same solvents as those exemplified in the above-described method for producing briquettes.
 また、本実施形態の肥料又は土壌改良剤が、顆粒である場合、例えば、前記生分解性能を有する有機高分子化合物、又は前記生分解性能を有する有機高分子化合物を含む微生物と、前記植物由来の細胞外マトリクスと、必要に応じて、保水剤、乾燥剤、pH調整剤、及び微量の肥料成分とを、混合する工程まで、ブリケットと同様に行うことができる。続いて、流動造粒、転動造粒、破砕造粒等の既知の造粒技術により造粒して製造すればよい。 Moreover, when the fertilizer or soil improver of this embodiment is a granule, for example, the organic polymer compound having the biodegradability or the microorganism containing the organic polymer compound having the biodegradability and the plant-derived In the same manner as the briquette, the extracellular matrix and, if necessary, a water retention agent, a desiccant, a pH adjuster, and a small amount of a fertilizer component can be mixed. Subsequently, it may be produced by granulation by a known granulation technique such as fluid granulation, rolling granulation, crush granulation or the like.
 また、本実施形態の肥料又は土壌改良剤が、ペレット又はタブレットである場合、例えば、前記生分解性能を有する有機高分子化合物、又は前記生分解性能を有する有機高分子化合物を含む微生物と、前記植物由来の細胞外マトリクスと、必要に応じて、保水剤、乾燥剤、pH調整剤、及び微量の肥料成分とを、混合する工程まで、ブリケットと同様に行うことができる。続いて、押し出し成形、プレス成形、流し込み成形、射出成形等の既知の成形技術により成形して製造すればよい。 Further, when the fertilizer or soil improver of the present embodiment is a pellet or a tablet, for example, the organic polymer compound having the biodegradability, or a microorganism containing the organic polymer compound having the biodegradability, It can carry out similarly to a briquette until the process which mixes a plant-derived extracellular matrix and a water retention agent, a desiccant, a pH adjuster, and a trace amount fertilizer component as needed. Then, what is necessary is just to shape | mold and manufacture by known shaping | molding techniques, such as extrusion molding, press molding, casting molding, and injection molding.
<肥料又は土壌改良剤の使用方法>
 本実施形態の肥料又は土壌改良剤の散布量は、散布対象となる植物の種類や状態に応じて、適宜調整することができ、1坪(約3.3m)あたり、例えば50g以上10000g以下であればよく、例えば100g以上900g以下であればよく、例えば、400g以上800g以下であればよい。
<How to use fertilizer or soil conditioner>
The application amount of the fertilizer or soil conditioner of the present embodiment can be adjusted as appropriate according to the type and state of the plant to be applied, for example, 50 g or more and 10,000 g or less per 1 tsubo (about 3.3 m 2 ). What is necessary is just 100 g or more and 900 g or less, for example, what is necessary is just 400 g or more and 800 g or less.
 また、従来の肥料の有効期間が5日~60日程度であるのに対し、本実施形態の肥料又は土壌改良剤は有効期間が90日以上であるため、長期にわたり植物の生育を促進させることができる。また、従来よりも肥料の散布量及び散布回数を減らすことができるため、手間がかからず、コストを低減することができる。 Moreover, since the effective period of the conventional fertilizer is about 5 to 60 days, the fertilizer or the soil conditioner of the present embodiment has an effective period of 90 days or more, and therefore promotes the growth of the plant over a long period of time. Can do. In addition, since the fertilizer application amount and the number of application times can be reduced as compared with the conventional case, it is not time-consuming and the cost can be reduced.
≪植物の生育方法≫
 本実施形態の植物の生育方法は、上述の肥料又は土壌改良剤を植物に与える方法である。
≪Plant growth method≫
The growth method of the plant of this embodiment is a method of giving the above-mentioned fertilizer or soil improvement agent to a plant.
 本実施形態の生育方法によれば、従来の徐放性肥料を用いるよりも、効率的且つ効果的に植物を生育することができる。 According to the growth method of the present embodiment, it is possible to grow a plant more efficiently and effectively than using a conventional sustained-release fertilizer.
 本実施形態の生育方法の適用対象となる植物としては、特別な限定はなく、適用対象となる植物としては、例えば、バラ、パンジー等の花卉類;カボチャ(pumpkin)、カボチャ(squash)、キュウリ、メロン等のウリ科植物;ホウレンソウ、レタス、アスパラガス、キャベツ類、ニンジン、タマネギ、トマト、ジャガイモ、ピーマン等の野菜類;ナシ、リンゴ、西洋ナシ、プラム、モモ、アーモンド、サクラの木、ブドウの木等の仁果類、核果類及び小果樹類、イチゴ、ラズベリー、クロイチゴ等の液果類、オレンジ、レモン、グレープフルーツ、タンジェリン等の柑橘類等の果実類;ムギ、オオムギ、ライムギ、エンバク、イネ、トウモロコシ、モロコシ(ソルガム)等の禾穀類;テンサイ、飼料用ビート等のビート;インゲンマメ、レンズマメ、エンドウマメ、ダイズ等のマメ果類; ナタネ、カラシナ、ケシ、オリーブ、ヒマワリ、ココナッツ、トウゴマ、カカオマメ、ラッカセイ等の油料作物;ワタ、アマ、アサ、ジュート等の繊維植物;アボガド、クスノキ属(Cinnamomum)、ショウノウ等のクスノキ科;芝生、タバコ、堅果類、コーヒー、ナス、サトウキビ、チャ、コショウ、ブドウの蔓、ホップ、バナナ、ラテックス植物、観賞植物、低木、落葉樹、針葉樹等が挙げられ、これらに限定されず、全ての植物に対し適用可能である。また、適用対象となる植物が樹木である場合、苗木であってもよく、成木であってもよい。 The plant to which the growing method of the present embodiment is applied is not particularly limited, and examples of the plant to be applied include flower buds such as roses and pansies; pumpkin, pumpkin, cucumber, and the like. Cucurbitaceae plants such as melon, spinach, lettuce, asparagus, cabbage, vegetables such as carrot, onion, tomato, potato, pepper; pear, apple, pear, plum, peach, almond, cherry tree, grape Fruits such as citrus fruits such as berries such as berries, berries, fruit fruits such as strawberries, raspberries, blackberries, oranges, lemons, grapefruits, tangerines; wheat, barley, rye, oats, rice Cereals such as corn, sorghum (sorghum); beets such as sugar beet and beet for feed; Legumes such as beans, lentils, peas, soybeans; oil crops such as rapeseed, mustard, poppy, olives, sunflower, coconut, castor bean, cacao bean, groundnut; fiber plants such as cotton, flax, Asa, jute; avocado, Cynnamum, camphoraceae such as camphor; lawn, tobacco, nuts, coffee, eggplant, sugarcane, tea, pepper, grapevine, hop, banana, latex plant, ornamental plant, shrub, deciduous tree, conifer, etc. It is mentioned, It is not limited to these, It is applicable with respect to all the plants. When the plant to be applied is a tree, it may be a seedling or an adult tree.
 また、本実施形態の生育方法において、上述の肥料又は土壌改良剤を散布するタイミングとしては、植物の発芽前であってもよく、発芽後であってもよい。 Further, in the growth method of the present embodiment, the timing of spraying the fertilizer or soil improver may be before or after germination of the plant.
 本実施形態の生育方法において、上述の肥料又は土壌改良剤の使用量は、上述の<肥料又は土壌改良剤の使用方法>で示された範囲であればよい。 In the growth method of the present embodiment, the amount of the fertilizer or soil improver used may be in the range indicated by the above <Method of using fertilizer or soil improver>.
 また、本実施形態の生育方法において、上述の肥料又は土壌改良剤の有効期間は、上述の<肥料又は土壌改良剤の使用方法>で示された範囲であり、長期にわたり植物の生育を促進させることができる。また、従来よりも肥料の散布量及び散布回数を減らすことができるため、手間がかからず、コストを低減することができる。 Moreover, in the growth method of this embodiment, the effective period of the above-mentioned fertilizer or soil improvement agent is the range shown by the above-mentioned <use method of a fertilizer or soil improvement agent>, and promotes the growth of a plant over a long period of time. be able to. In addition, since the fertilizer application amount and the number of application times can be reduced as compared with the conventional case, it is not time-consuming and the cost can be reduced.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[実施例1]
(1)微生物によるポリヒドロキシ酪酸(PHB)の製造
 PHB生産菌として、カプリアビダス・ネケータ(C.necator)を用いた。予め、NR培地を用いて、カプリアビダス・ネケータを37℃で8時間培養した。続いて、カプリアビダス・ネケータを1.0×10_cells/mLとなるように、パームオイルを唯一の炭素源として含有するミネラル培地10Lに添加し、30℃で10時間培養した。
[Example 1]
(1) Production of polyhydroxybutyric acid (PHB) by microorganisms Capriavidas necator (C. necator) was used as a PHB-producing bacterium. In advance, CAP medium was cultured for 8 hours at 37 ° C. using NR medium. Subsequently, a Cupriavidus-Neketa so that 1.0 × 10 _ cells / mL, was added to palm oil to only mineral medium 10L containing as a carbon source, and incubated 10 hours at 30 ° C..
 使用したミネラル培地の組成は以下の通りである。窒素源として、終濃度0.5%の尿素、炭素源として、終濃度5%のパームオイル、4.0g/L NaHPO、4.6g/L NaHPO、0.45g/L KSO、0.39g/L MgSO、62mg/L CaClを混合し、さらに1mL/Lの微量元素溶液(15g/L FeSO・7HO、2.4g/L MnSO・HO、2.4g/L ZnSO・7HO、0.48g/L CuSO・5HOを0.1M HCLにて溶解したもの)を加えて、10Lのミネラル培地を調製した。続いて、カプリアビダス・ネケータを含む培養液を、121℃、30分間オートクレーブをかけた。続いて、カプリアビダス・ネケータを含む培養液を4℃で8,000回転の条件で8分間遠心分離を行った。続いて、蒸留水を用いて、カプリアビダス・ネケータの菌体を洗浄した後、-20℃にて保存し、凍結乾燥した。 The composition of the used mineral medium is as follows. As a nitrogen source, urea having a final concentration of 0.5%, and as a carbon source, palm oil having a final concentration of 5%, 4.0 g / L NaH 2 PO 4 , 4.6 g / L Na 2 HPO 4 , 0.45 g / L K 2 SO 4 , 0.39 g / L MgSO 4 , 62 mg / L CaCl 2 were mixed, and a 1 mL / L trace element solution (15 g / L FeSO 4 .7H 2 O, 2.4 g / L MnSO 4 .H 2 O, 2.4 g / L ZnSO 4 .7H 2 O, 0.48 g / L CuSO 4 .5H 2 O dissolved in 0.1 M HCL) was added to prepare a 10 L mineral medium. Subsequently, the culture solution containing Capriavidas necator was autoclaved at 121 ° C. for 30 minutes. Subsequently, the culture broth containing Capriavidas nexa was centrifuged at 4 ° C. and 8,000 rpm for 8 minutes. Subsequently, the cells of Capriavidas neketa were washed with distilled water, stored at −20 ° C., and freeze-dried.
(2)PHBの精製
 PHBをカプリアビダス・ネケータの菌体内から簡易に精製するために、(1)において凍結乾燥したカプリアビダス・ネケータの菌体を、生物的精製方法として、ミールワームを用いて消化させ、精製した(参考文献:スウェーデン特許出願公開第1400578号明細書)。
2kgのカプリアビダス・ネケータの菌体重量に対し、同重量となるミールワームを加え数日間放置した。ミールワームの重量は、一日あたり約10%程度増加した。ミールワームは白色の糞便を固形物として排出し、排出物を集めることで、菌体中の結晶化PHBはほぼ100%回収することができた。この生物的部分精製工程を経た後、回収された結晶化PHBに1%SDS溶液に添加し、50℃で緩やかに撹拌することで、混在している不純物を取り除いた。続いて、蒸留水を用いて洗浄した後、60℃に設定した乾燥機を用いて乾燥し、精製PHB粉末を得た。
(2) Purification of PHB In order to easily purify PHB from the cells of Capriavidas / Necata, the cells of Capriavidas / Necata lyophilized in (1) are digested using a mealworm as a biological purification method. (Reference: Swedish Patent Application No. 1400578).
A meal worm having the same weight was added to the cell weight of 2 kg of Capriavidas neketa and allowed to stand for several days. The weight of the mealworm increased by about 10% per day. The mealworms discharged white stool as solids and collected the effluents, so that almost 100% of the crystallized PHB in the cells could be recovered. After passing through this biological partial purification step, the collected crystallization PHB was added to a 1% SDS solution and gently mixed at 50 ° C. to remove the mixed impurities. Then, after wash | cleaning using distilled water, it dried using the dryer set to 60 degreeC, and purified PHB powder was obtained.
(3)オイルパーム繊維物の製造
 植物由来の細胞外マトリクスとして、オールパームの幹から繊維物を製造した。
 伐採されたオイルパーム幹は、外側を取り巻く固い樹皮と黄白色の木質部とからなる。まず、オイルパーム幹の樹皮を除いて、木質部を圧搾した後、固形残渣を60℃で1日から3日間乾燥させた。続いて、乾燥物を乳鉢で軽く粉砕後、篩により分画し、パウダー状の細かい粒子である柔組織、(直径約30μm~50μmとなる固形分)と、維管束とに分別した(図2の工程A参照)。柔組織及び維管束の画像を図1に示す。柔組織及び維管束の分量は、木質部の約50~60%が柔組織で、残りが維管束であった。このうち、維管束をオイルパーム繊維物として用いた。
(3) Production of oil palm fiber product A fiber product was produced from the trunk of all palm as a plant-derived extracellular matrix.
The felled oil palm trunk consists of hard bark surrounding the outside and yellowish white wood. First, after removing the bark of the oil palm trunk and pressing the wood part, the solid residue was dried at 60 ° C. for 1 to 3 days. Subsequently, the dried product was lightly pulverized in a mortar, and fractionated with a sieve, and separated into soft tissues, which were fine powdery particles (solid content having a diameter of about 30 μm to 50 μm), and vascular bundles (FIG. 2). Step A). Images of soft tissue and vascular bundles are shown in FIG. As for the amount of soft tissue and vascular bundle, about 50 to 60% of the wood part was soft tissue and the rest was vascular bundle. Among these, the vascular bundle was used as an oil palm fiber thing.
(4)肥料(精製PHBとオイルパーム繊維物との混合円盤プレート(PHB/繊維))の製造
 (2)で精製した精製PHBと(3)で製造したオイルパーム繊維物との混合円盤プレート(PHB/繊維)を製造するために、重量比が精製PHB:オイルパーム繊維物=70:30となるように混合した(図2の工程B参照)。続いて、ツインスクリュー機器を用いて、130℃で15分間加温し(図2及び図3の工程C参照)、PHBとオイルパーム繊維物とからなるPHB-オイルパーム繊維物複合体を製造した。続いて、ホットプレートを用いて、130℃で15分間、5Mpaの圧力でプレスし(図3の工程D参照)、精製PHBとオイルパーム繊維物との混合円盤プレート(PHB/繊維)を製造した。プレート一つの重量は約16~18g/個であった。
(4) Manufacture of fertilizer (mixed disc plate (PHB / fiber) of refined PHB and oil palm fiber product) Mixed disc plate of refined PHB purified in (2) and oil palm fiber product produced in (3) ( In order to produce (PHB / fiber), the mixture was mixed so that the weight ratio was purified PHB: oil palm fiber product = 70: 30 (see step B in FIG. 2). Subsequently, using a twin screw device, the mixture was heated at 130 ° C. for 15 minutes (see step C in FIGS. 2 and 3) to produce a PHB-oil palm fiber composite comprising PHB and oil palm fiber. . Subsequently, using a hot plate, pressing was performed at 130 ° C. for 15 minutes at a pressure of 5 Mpa (see Step D in FIG. 3) to produce a mixed disc plate (PHB / fiber) of purified PHB and oil palm fiber material. . The weight of one plate was about 16-18 g / piece.
[実施例2]
(1)肥料(精製PHBの円盤プレート(PHB))の製造
 重量比が精製PHB:オイルパーム繊維物=70:30の混合物を用いる代わりに、精製PHBのみを用いた以外は、実施例1の(4)と同様の方法を用いて、精製PHBの円盤プレート(PHB)を製造した。
[Example 2]
(1) Manufacture of fertilizer (refined PHB disk plate (PHB)) Example 1 except that only a purified PHB was used instead of using a mixture of purified PHB: oil palm fiber = 70: 30. Using a method similar to (4), a disk plate (PHB) of purified PHB was produced.
[実施例3]
(1)肥料(精製PHBと有機肥料との混合円盤プレート(PHB/有機肥料))の製造
 重量比が精製PHB:オイルパーム繊維物=70:30の混合物を用いる代わりに、重量比が精製PHB:有機肥料=91:9の混合物を用いた以外は、実施例1の(4)と同様の方法を用いて、精製PHBと有機肥料との混合円盤プレート(PHB/有機肥料)を製造した。なお、市販有機肥料(商品名:TAF Yellow Manufacturer、販売会社名:Twin Arrow Fertilizer Sdn Bhd. マレーシア国)を用いた。前記市販有機肥料の組成は、窒素:リン:カリウム:酸化マグネシウム=15:15:15:4の割合で含むものであった。
[Example 3]
(1) Manufacture of fertilizer (mixed disc plate of refined PHB and organic fertilizer (PHB / organic fertilizer)) The weight ratio is refined PHB instead of using a mixture of refined PHB: oil palm fiber = 70: 30 A mixed disc plate (PHB / organic fertilizer) of purified PHB and organic fertilizer was produced using the same method as in (4) of Example 1 except that the mixture of organic fertilizer = 91: 9 was used. A commercially available organic fertilizer (trade name: TAF Yellow Manufacturer, sales company name: Twin Arrow Fertilizer Sdn Bhd. Malaysia) was used. The composition of the commercially available organic fertilizer included nitrogen: phosphorus: potassium: magnesium oxide = 15: 15: 15: 4.
[実施例4]
(1)肥料(精製PHBとオイルパーム繊維物と有機肥料との混合円盤プレート(PHB/繊維/有機肥料))の製造
 重量比が精製PHB:オイルパーム繊維物=70:30の混合物を用いる代わりに、重量比が精製PHB:繊維:有機肥料=62:29:9の混合物を用いた以外は、実施例1の(4)と同様の方法を用いて、精製PHBとオイルパーム繊維物と有機肥料との混合円盤プレート(PHB/繊維/有機肥料)を製造した。
[Example 4]
(1) Manufacture of fertilizer (mixed disc plate (PHB / fiber / organic fertilizer) of refined PHB, oil palm fiber and organic fertilizer) Instead of using a mixture with a weight ratio of refined PHB: oil palm fiber = 70: 30 In addition, using the same method as in (4) of Example 1 except that a mixture having a weight ratio of refined PHB: fiber: organic fertilizer = 62: 29: 9 was used, refined PHB, oil palm fiber, and organic Mixed disc plates with fertilizer (PHB / fiber / organic fertilizer) were produced.
[試験例1]オイルパーム苗木の植物生育試験
(1)オイルパーム苗木の生育
 生育開始時に1度だけ実施例1~4で製造した肥料を土壌に投与し、オイルパームを生育した(図4参照)。各肥料は、円盤型であり、図4に示すように、苗木の周りを取り囲むような形状であった。また、比較例1として、水以外何も投与していない水のみ投与区、比較例2として、前記市販有機肥料を1ヶ月おきに、3g土壌へ直接投与した市販有機肥料投与区、比較例3として、市販緩効性有機肥料(SRF)(商品名:Base Polymer coated fertilize Manufacturer、販売会社:G.Planter Sdn Bhd. マレーシア国)を生育開始時に1度だけ3g投与した緩効性肥料(SRF)投与区、比較例4として、オイルパーム繊維物のみを生育開始時に1度だけ約18g投与した繊維のみ投与区も準備した(図4参照)。なお、比較例4で使用したオイルパーム繊維物は、オイル搾汁後の線維をハンマーミルで砕き、60℃にて乾燥させたものを使用した。生育試験は3ヶ月間実施した。
[Test Example 1] Plant growth test of oil palm seedling (1) Growth of oil palm seedling The fertilizer produced in Examples 1 to 4 was administered to the soil only once at the start of growth to grow oil palm (see FIG. 4). ). Each fertilizer was disk-shaped and had a shape surrounding the seedling as shown in FIG. In addition, as Comparative Example 1, a group in which only water other than water was administered was administered, and as Comparative Example 2, a commercially available organic fertilizer administration group in which the commercially available organic fertilizer was directly administered to 3 g soil every other month, Comparative Example 3 As a slow-release fertilizer (SRF) obtained by administering 3 g of a commercial slow-release organic fertilizer (SRF) (trade name: Base Polymer coated ferritizer Manufacturer, sales company: G. Plant Sdn Bhd. Malaysia) once at the start of growth As an administration group and Comparative Example 4, a fiber-only administration group was prepared in which about 18 g of oil palm fiber product was administered only once at the start of growth (see FIG. 4). In addition, the oil palm fiber used in Comparative Example 4 was obtained by crushing the fiber after oil squeezing with a hammer mill and drying at 60 ° C. The growth test was conducted for 3 months.
 使用したオイルパーム苗木は、マレーシア国のGuan Soon Realty Sdn Bhdから購入した。また、各試験区において、苗木を5つずつ使用した。また、苗木は、いずれも発芽後、1ヶ月の苗木を用いた。 The used oil palm seedlings were purchased from Guan Soon Reality Sdn Bhd, Malaysia. Moreover, five seedlings were used in each test section. In addition, seedlings of one month after germination were used as seedlings.
(2)苗木の生育評価
 試験項目としては、苗木の高さ、苗木の葉の枚数、苗木の葉緑体数、土壌pH、苗木の茎の太さ、及び苗木の成長によるバイオマス重量の6項目について、試験開始時、1ヶ月後、2ヶ月後、3ヶ月後に測定し(苗木の茎の太さは、試験開始から2ヶ月後及び3ヶ月後にのみ測定し、バイオマス重量は、試験開始から3ヶ月後にのみ測定した。)、評価した。各評価項目の評価方法について、以下に説明する。
(2) Seedling growth evaluation As test items, about the six items of seedling height, the number of seedling leaves, the number of chloroplasts of seedlings, soil pH, the thickness of the seedling stem, and the biomass weight by the growth of the seedling, Measured at the start of the test, 1 month, 2 months, and 3 months later (The thickness of the stem of the seedling is measured only after 2 and 3 months from the start of the test, and the biomass weight is measured 3 months after the start of the test. Only measured). The evaluation method for each evaluation item will be described below.
(2-1)苗木の高さ
 苗木の高さには、土壌から苗木植物の生長点一番上までの高さに関して定規を用いて、測定を行った(図5の(2-1)参照)。さらに、各試験区の5つの苗木の平均値を算出した。結果を図6に示す。図6において、肥料無とは「比較例1」を示し、肥料ありとは「比較例2」を示し、SRFとは「比較例3」を示し、PHBとは「実施例2」を示し、繊維とは「比較例4」を示し、PHB/肥料とは「実施例3」を示し、PHB/繊維とは「実施例1」を示し、PHB/繊維/肥料とは「実施例4」を示す。また、以下の図7~11においても、上記用語は、同様の意味を示す。
(2-1) Seedling Height The height of the seedling was measured using a ruler with respect to the height from the soil to the top of the growth point of the seedling plant (see (2-1) in FIG. 5). ). Furthermore, the average value of five seedlings in each test section was calculated. The results are shown in FIG. In FIG. 6, “without fertilizer” indicates “Comparative Example 1”, “with fertilizer” indicates “Comparative Example 2”, SRF indicates “Comparative Example 3”, and PHB indicates “Example 2”. The fiber indicates “Comparative Example 4”, the PHB / fertilizer indicates “Example 3”, the PHB / fiber indicates “Example 1”, and the PHB / fiber / fertilizer indicates “Example 4”. Show. Also, in the following FIGS. 7 to 11, the terms have the same meaning.
(2-2)苗木の葉の枚数
 苗木の葉の枚数は、苗木植物の根元から分岐して、明確に葉と観察できる枚数のみをカウントした。さらに、各試験区の5つの苗木の平均値を算出した。結果を図7に示す。
(2-2) Number of leaves of seedlings The number of leaves of seedlings was counted only from the number of leaves that could be clearly observed as leaves after branching from the roots of the seedling plants. Furthermore, the average value of five seedlings in each test section was calculated. The results are shown in FIG.
(2-3)苗木の葉緑体数
 苗木の葉緑体数は、簡易葉緑体計測器(SPAD-502クロロフィルメーター、ミノルタ社製)を用いて、葉から直接的に計測した(図5の(2-3)参照)。異なる3つのポイントを計測し、その平均値を求めた。さらに、各試験区の5つの苗木の平均値を算出した。結果を図8に示す。
(2-3) Number of Chloroplasts of Seedlings The number of chloroplasts of seedlings was measured directly from the leaves using a simple chloroplast measuring instrument (SPAD-502 chlorophyll meter, manufactured by Minolta) (( See 2-3)). Three different points were measured and the average value was obtained. Furthermore, the average value of five seedlings in each test section was calculated. The results are shown in FIG.
(2-4)土壌pH
 土壌pHは、各試験区の土壌10gを一部取り、20mLの蒸留水に懸濁した。続いて、その一部をとり、簡易pHメーター(Mettler Toledo AG CH-8630)を用いて、測定を行った。測定は3回繰り返し、測定値の平均値を求めた。さらに、各試験区の5つの苗木の平均値を算出した。結果を図9に示す。
(2-4) Soil pH
As for soil pH, a part of 10 g of soil in each test section was taken and suspended in 20 mL of distilled water. Subsequently, a portion thereof was taken and measured using a simple pH meter (Mettler Toledo AG CH-8630). The measurement was repeated three times, and the average value of the measured values was obtained. Furthermore, the average value of five seedlings in each test section was calculated. The results are shown in FIG.
(2-5)苗木の茎の太さ
 苗木の茎の太さは、土壌から1センチ上部の部分の茎の太さに関して、簡易デジタル副尺計を用いて、測定を行った(図5の(2-5)参照)。さらに、各試験区の5つの苗木の平均値を算出した。結果を図10に示す。
(2-5) Thickness of the stem of the seedling The thickness of the stem of the seedling was measured with respect to the thickness of the stem 1 cm above the soil using a simple digital vernier scale (see FIG. 5). (See (2-5)). Furthermore, the average value of five seedlings in each test section was calculated. The results are shown in FIG.
(2-6)苗木の成長によるバイオマス重量
 苗木の成長によるバイオマス重量は、以下のようにして測定した。まず、試験開始から3ヶ月後のそれぞれの試験区の苗木は土壌を優しく取り除き、蒸留水の中に浸すことで付着している土壌を取り除いた。続いて、ペーパータオルにおいて余分な水分を取り除き、植物体の重量を測定し、この重量をバイオマス重量とした。重量の測定には、島津製作所社製 AX120の重量計を用いた。測定は3回繰り返し、測定値の平均値を求めた。さらに、各試験区の5つの苗木の平均値を算出した。結果を図11に示す。
(2-6) Biomass weight by seedling growth The biomass weight by seedling growth was measured as follows. First, the seedlings in each test section three months after the start of the test were gently removed from the soil, and the soil adhering to the seedling was removed by immersing in distilled water. Subsequently, excess water was removed from the paper towel, the weight of the plant was measured, and this weight was defined as biomass weight. For the measurement of the weight, an AX120 weighing scale manufactured by Shimadzu Corporation was used. The measurement was repeated three times, and the average value of the measured values was obtained. Furthermore, the average value of five seedlings in each test section was calculated. The results are shown in FIG.
 図6~8及び図10、11から、水のみ投与した試験区と比較して、繊維のみを投与した試験区以外の全ての試験区において、有意に苗木が生育していた。
また、市販有機肥料、又は市販緩効性有機肥料を投与した試験区である肥料あり、又はSRF(「比較例2」及び「比較例3」)においては、日数を重ねるごとに生育していることが認められる。一方、有機肥料を加えていないPHB(「実施例2」)においては、明確な肥料がないにもかかわらず、市販有機肥料、又は市販緩効性有機肥料を投与した試験区である肥料あり、又はSRF(「比較例2」及び「比較例3」)と同等な生育が観察された。
As shown in FIGS. 6 to 8 and FIGS. 10 and 11, seedlings were significantly grown in all test plots other than the test plot administered with only fiber compared to the test plot administered with water alone.
Moreover, in the organic fertilizer which is the test area which administered the commercially available organic fertilizer or the commercially available slow-release organic fertilizer, or in SRF ("Comparative example 2" and "Comparative example 3"), it grows every time it accumulates. It is recognized that On the other hand, in PHB to which no organic fertilizer is added (“Example 2”), there is a fertilizer that is a test section to which a commercially available organic fertilizer or a commercially available slow-release organic fertilizer is administered, even though there is no clear fertilizer. Or the growth equivalent to SRF ("Comparative example 2" and "Comparative example 3") was observed.
また、PHBと繊維とを投与した対象区(「実施例1」)においても、市販有機肥料、又は市販緩効性有機肥料を投与した試験区である肥料あり、又はSRF(「比較例2」及び「比較例3」)と何ら遜色ない結果となった。
反対に繊維のみを投与した試験区(「比較例4」)では、生育阻害が認められる結果となった。
In addition, in the target area ("Example 1") to which PHB and fiber were administered, there was a fertilizer that was a test area to which a commercially available organic fertilizer or a commercially available slow-release organic fertilizer was administered, or SRF ("Comparative Example 2") And “Comparative Example 3”).
On the contrary, in the test group ("Comparative Example 4") in which only the fiber was administered, growth inhibition was observed.
 また、図9から、市販有機肥料を投与した試験区(「比較例2」)では、土壌pHが経時的に上昇しているのに対し、それ以外の試験区では試験期間を通して、大きな土壌pHの変化が見られなかった。 Moreover, from FIG. 9, in the test plot ("Comparative Example 2") to which the commercially available organic fertilizer was administered, the soil pH increased with time, while in other test plots, a large soil pH was obtained throughout the test period. The change of was not seen.
 以上の結果から、PHBのみでも有機肥料や緩効性有機肥料と同等、若しくはそれ以上の植物成長促進効果があることが明らかとなった。
これらの結果は、有機肥料を用いずとも、プラスチック素材として用いられてきたPHBが、肥料と同等の役割をしていることを示唆しており、PHBを土壌に散布することで、生分解し、その分解成分により土壌中の微生物の活動を活発にさせる作用があると考えられる。
From the above results, it has been clarified that PHB alone has a plant growth promoting effect equivalent to or higher than that of organic fertilizer and slow-release organic fertilizer.
These results suggest that PHB, which has been used as a plastic material without using organic fertilizer, plays the same role as fertilizer, and biodegraded by spraying PHB onto the soil. Therefore, it is thought that the decomposition component has the effect of activating the activity of microorganisms in the soil.
[実施例5]
(1)肥料(精製PHBと有機肥料との混合円盤プレート(PHB/有機肥料)2)の製造
 重量比が精製PHB:オイルパーム繊維物=70:30の混合物を用いる代わりに、重量比が精製PHB:有機肥料=50:50の混合物を用いた以外は、実施例1の(4)と同様の方法を用いて、精製PHBと有機肥料との混合円盤プレート(PHB/有機肥料)2を製造した。なお、市販有機肥料の組成は、窒素:リン:カリウム=120.4:55.5:79.5の割合で含むものであった。
[Example 5]
(1) Manufacture of fertilizer (mixed disc plate of refined PHB and organic fertilizer (PHB / organic fertilizer) 2) Weight ratio is refined instead of using a mixture of refined PHB: oil palm fiber = 70:30 PHB: Organic fertilizer = A mixed disc plate (PHB / organic fertilizer) 2 of purified PHB and organic fertilizer is manufactured using the same method as in (4) of Example 1 except that a mixture of 50:50 is used. did. In addition, the composition of the commercially available organic fertilizer included nitrogen: phosphorus: potassium = 120.4: 55.5: 79.5.
[実施例6]
(1)肥料(精製PHBと有機肥料との混合円盤プレート(PHB/有機肥料)3)の製造
 重量比が精製PHB:オイルパーム繊維物=70:30の混合物を用いる代わりに、重量比が精製PHB:有機肥料=40:60の混合物を用いた以外は、実施例1の(4)と同様の方法を用いて、精製PHBと有機肥料との混合円盤プレート(PHB/有機肥料)3を製造した。なお、市販有機肥料の組成は、窒素:リン:カリウム=120.4:55.5:79.5の割合で含むものであった。
[Example 6]
(1) Manufacture of fertilizer (mixed disc plate of refined PHB and organic fertilizer (PHB / organic fertilizer) 3) Weight ratio is refined instead of using a mixture of refined PHB: oil palm fiber = 70:30 A mixed disc plate (PHB / organic fertilizer) 3 of purified PHB and organic fertilizer is manufactured using the same method as in (4) of Example 1 except that a mixture of PHB: organic fertilizer = 40: 60 is used. did. In addition, the composition of the commercially available organic fertilizer included nitrogen: phosphorus: potassium = 120.4: 55.5: 79.5.
[試験例2]
(1)水稲の生育
 水稲として、マレーシア産であるMR220 CL2系統を用いた。また、水稲の土壌は、マレーシアのBalik Pulauにある農業局より得た。水稲の発芽苗は水を浸したコットンシート状で15日間培養した後、土壌ポットに植え替えた。
生育開始時及び1ヶ月に1度、実施例2、5及び6で製造した肥料を土壌に投与し、水稲を生育した。各肥料は、円盤型であり、水稲の苗の周りを取り囲むような形状であった。また、比較例5として、前記市販有機肥料を1ヶ月おきに、3g土壌へ直接投与した市販有機肥料投与区、比較例6として、水以外何も投与していない水のみ投与区も準備した。生育試験は3ヶ月間実施した。
[Test Example 2]
(1) Growth of paddy rice MR220 CL2 line produced in Malaysia was used as paddy rice. The paddy rice soil was obtained from the Agriculture Bureau in Balik Pulau, Malaysia. The germinated seedlings of paddy rice were cultured for 15 days in the form of a cotton sheet soaked in water, and then replanted in a soil pot.
The fertilizer produced in Examples 2, 5 and 6 was administered to the soil at the start of growth and once a month to grow rice. Each fertilizer was disk-shaped and shaped to surround the paddy rice seedlings. In addition, as Comparative Example 5, a commercially available organic fertilizer administration group in which the above-mentioned commercially available organic fertilizer was directly administered to 3 g of soil every other month, and as Comparative Example 6, a water-only administration group in which nothing other than water was administered were also prepared. The growth test was conducted for 3 months.
(2)水稲の生育評価
 試験項目としては、水稲の高さ、水稲の葉緑体数、土壌pH及び水稲の成長によるバイオマス重量の3項目について、上記試験例1と同様の方法を用いて、試験開始時、1ヶ月後、2ヶ月後、3ヶ月後に測定し(バイオマス重量は、試験開始から3ヶ月後にのみ測定した。)、評価した。また、3ヶ月後の各試験区の水稲の画像を図12に示す。
(2) Growth evaluation of paddy rice As test items, for the three items of paddy rice height, paddy rice chloroplast number, soil pH, and biomass weight by paddy rice growth, the same method as in Test Example 1 above, It was measured at the start of the test, 1 month later, 2 months later, 3 months later (the biomass weight was measured only 3 months after the start of the test) and evaluated. Moreover, the image of the paddy rice in each test section after 3 months is shown in FIG.
 図12、並びに、水稲の高さ、水稲の葉緑体数及び水稲の成長の評価結果から、実施例2、5及び6で製造した肥料の投与区は、比較例5の試験例2における市販有機肥料投与区及び比較例6の水のみ投与区と比較して、水苗の高さ、葉緑体数及びバイオマス重量が有意に高かった。 From the evaluation results of FIG. 12 and the height of paddy rice, the number of chloroplasts in paddy rice, and the growth of paddy rice, the fertilizer administration groups produced in Examples 2, 5 and 6 are commercially available in Test Example 2 of Comparative Example 5. Compared with the organic fertilizer administration group and the water-only administration group of Comparative Example 6, the height of the seedlings, the number of chloroplasts and the biomass weight were significantly higher.
 本実施例では、パーム苗木及び水稲を一例として取り上げたが、基本的に、他の植物、例えばトウモロコシ、サトウキビ、小麦、大麦、綿、大豆、菜種(植物性油脂植物)、馬鈴薯等の芋類、トマト、タマネギ、バナナ等、多くの植物において、PHBを土壌散布することで成長促進効果があると考えられる。 In this example, palm seedlings and paddy rice were taken as examples, but basically other plants such as corn, sugar cane, wheat, barley, cotton, soybeans, rapeseed (vegetable oily plant), potatoes and other moss In many plants such as tomatoes, onions and bananas, it is considered that PHB is applied to the soil to promote growth.
 本実施形態の肥料又は土壌改良剤は、より効率的且つ効果的であり、簡便に製造することができる。また、本実施形態の肥料又は土壌改良剤は、散布対象となる植物の種類の制限がなく、また環境負荷が低減されたものである。 The fertilizer or soil conditioner of the present embodiment is more efficient and effective and can be easily produced. Moreover, the fertilizer or the soil conditioner of this embodiment has no restriction on the type of plant to be sprayed, and the environmental load is reduced.

Claims (5)

  1.  肥料成分を実質的に含まず、生分解性能を有する有機高分子化合物、又は前記有機高分子化合物を含む微生物を有効成分として含有することを特徴とする肥料又は土壌改良剤。 A fertilizer or soil conditioner characterized by containing as an active ingredient an organic polymer compound having substantially no fertilizer component and having biodegradability or a microorganism containing the organic polymer compound.
  2.  前記有機高分子化合物がポリヒドロキシアルカン酸、又はその誘導体である請求項1に記載の肥料又は土壌改良剤。 The fertilizer or soil improver according to claim 1, wherein the organic polymer compound is polyhydroxyalkanoic acid or a derivative thereof.
  3.  さらに、植物由来の細胞外マトリクスを含む請求項1又は2に記載の肥料又は土壌改良剤。 The fertilizer or soil conditioner according to claim 1 or 2, further comprising a plant-derived extracellular matrix.
  4.  形状が円盤型である請求項1~3のいずれか一項に記載の肥料又は土壌改良剤。 The fertilizer or soil conditioner according to any one of claims 1 to 3, wherein the shape is a disk shape.
  5.  請求項1~4のいずれか一項に記載の肥料又は土壌改良剤を植物に与えることを特徴とする植物の生育方法。 A method for growing a plant, characterized by providing the plant with the fertilizer or soil conditioner according to any one of claims 1 to 4.
PCT/JP2017/017395 2016-05-13 2017-05-08 Fertilizer or soil conditioner and plant growth method WO2017195732A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018517005A JPWO2017195732A1 (en) 2016-05-13 2017-05-08 Fertilizer or soil conditioner, and plant growth method
CN201780028500.8A CN109563006A (en) 2016-05-13 2017-05-08 Fertilizer or soil conditioner and the breeding method of plant
PH12018502317A PH12018502317A1 (en) 2016-05-13 2018-11-05 Fertilizer or soil conditioner and plant growth method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016097309 2016-05-13
JP2016-097309 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017195732A1 true WO2017195732A1 (en) 2017-11-16

Family

ID=60267935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017395 WO2017195732A1 (en) 2016-05-13 2017-05-08 Fertilizer or soil conditioner and plant growth method

Country Status (4)

Country Link
JP (1) JPWO2017195732A1 (en)
CN (1) CN109563006A (en)
PH (1) PH12018502317A1 (en)
WO (1) WO2017195732A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781985A (en) * 2018-07-10 2018-11-13 烟台市稻香商贸有限公司 A method of preventing cherry maggot
WO2020218565A1 (en) * 2019-04-26 2020-10-29 株式会社フューエンス Polyhydroxyalkanoic acid and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200949A1 (en) * 2020-03-31 2021-10-07
KR102314179B1 (en) * 2020-04-29 2021-10-18 경상국립대학교산학협력단 Fertilizer composition for reducing methane emission comprising ethephon and uses thereof
CN111699945A (en) * 2020-06-15 2020-09-25 长沙华脉新材料有限公司 Porous composite material fused with soil-base matrix and preparation method thereof
CN115250930B (en) * 2022-08-31 2023-12-12 防城港市畜牧站 Ecological cycle cultivation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183782A (en) * 1990-11-19 1992-06-30 Shimadzu Corp Soil improver
JPH11146727A (en) * 1997-11-17 1999-06-02 Kanebo Ltd Soil conditioner
JP2000044946A (en) * 1998-07-27 2000-02-15 Kanebo Ltd Particulate soil conditioner
JP2000301104A (en) * 1999-04-22 2000-10-31 Kanebo Ltd Method for disposing fibrous structure and method for producing soil improvement material
WO2005049692A1 (en) * 2003-11-21 2005-06-02 Kaneka Corporation Process for producing polyhydroxyalkanoate crystal
US20140223978A1 (en) * 2013-02-08 2014-08-14 Chunghwa Picture Tubes, Ltd. Particle of microbial fertilizer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254533C (en) * 2003-06-02 2006-05-03 中国农业大学 Engineering strain of Brasil diazotrophic spirillum DraT* containing multiple copied nifA gene
KR101246655B1 (en) * 2010-09-01 2013-03-25 정명용 A Fixing Pin for Planting Mat
CN102212497B (en) * 2011-05-17 2012-12-19 中国农业科学院农业资源与农业区划研究所 Rhizobium strain and application thereof
US9949444B2 (en) * 2013-01-23 2018-04-24 Xf Technologies B.V. Pre-vegetated vegetation element
CN103172444B (en) * 2013-03-11 2015-05-20 华映视讯(吴江)有限公司 Particulate microbial fertilizer
CN104726365B (en) * 2015-01-19 2017-10-17 山西农业大学 Genuine Radix Astragali nitrogen-fixing bacteria new strains t21 and zymotic fluid preparation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183782A (en) * 1990-11-19 1992-06-30 Shimadzu Corp Soil improver
JPH11146727A (en) * 1997-11-17 1999-06-02 Kanebo Ltd Soil conditioner
JP2000044946A (en) * 1998-07-27 2000-02-15 Kanebo Ltd Particulate soil conditioner
JP2000301104A (en) * 1999-04-22 2000-10-31 Kanebo Ltd Method for disposing fibrous structure and method for producing soil improvement material
WO2005049692A1 (en) * 2003-11-21 2005-06-02 Kaneka Corporation Process for producing polyhydroxyalkanoate crystal
US20140223978A1 (en) * 2013-02-08 2014-08-14 Chunghwa Picture Tubes, Ltd. Particle of microbial fertilizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781985A (en) * 2018-07-10 2018-11-13 烟台市稻香商贸有限公司 A method of preventing cherry maggot
WO2020218565A1 (en) * 2019-04-26 2020-10-29 株式会社フューエンス Polyhydroxyalkanoic acid and method for producing same
JPWO2020218565A1 (en) * 2019-04-26 2021-09-27 株式会社 フューエンス Polyhydroxyalkanoate and its production method
JP7063513B2 (en) 2019-04-26 2022-05-09 株式会社 フューエンス Polyhydroxyalkanoate and its manufacturing method
JP2022093402A (en) * 2019-04-26 2022-06-23 株式会社 フューエンス Polyhydroxyalkanoate and method for producing the same

Also Published As

Publication number Publication date
PH12018502317A1 (en) 2019-04-29
JPWO2017195732A1 (en) 2019-03-28
CN109563006A (en) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2017195732A1 (en) Fertilizer or soil conditioner and plant growth method
González et al. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material
Singhal et al. Industrial production, processing, and utilization of sago palm-derived products
CN1179627C (en) Environment Protection type bioactive plant-growing container
KR101383445B1 (en) A soil conditioner for salt damaged area and a method of manufacturing the same
Riggi et al. Bio-based and biodegradable plastics for use in crop production
TW201431489A (en) Particle of microbial fertilizer
CN102531786A (en) Multi-element high-activity biological preparation
Rahim et al. Utilization of cocoa pod husk waste composting by tremella sp and pleurotus sp as a medium to growth of cocoa seedling
CN111302855A (en) Oligosaccharide organic peptide fertilizer and preparation method thereof
Weiß et al. A biobased, bioactive, low CO 2 impact coating for soil improvers
Raj et al. Applications of biopolymers in agriculture with special reference to role of plant derived biopolymers in crop protection
US11632960B2 (en) Plant growth promoter
CN110606789B (en) Anti-facility strawberry continuous cropping soil conditioner and preparation method thereof
CZ2017406A3 (en) Reclamation of sandy soils under difficult climatic conditions
US10865160B2 (en) Nutrient-containing porous biodegradable bead
Marshall et al. Controlled Delivery of Pesticides through Synthetic Biodegradable Polymer Compositions
CN113698749A (en) Biodegradable mulching film and preparation method thereof
Boyandin et al. Application of Polyhydroxyalkanoates for Development of Targeted forms of Pecticides
JPH0315319A (en) Planting material for horticultural pot and soil improver
RU2549293C2 (en) Method of preparation of potato seed pieces to planting
KR102641467B1 (en) Medium for tomato nutrient solution cultivation
Kaya-Celiker et al. Agricultural Applications of Biodegradable Films
NL2021946B1 (en) Controlled-release device in agriculture
JP2004256579A (en) Cellulose material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796093

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796093

Country of ref document: EP

Kind code of ref document: A1