WO2017194015A1 - 确定反馈时序的方法、装置、设备及存储介质 - Google Patents

确定反馈时序的方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2017194015A1
WO2017194015A1 PCT/CN2017/084245 CN2017084245W WO2017194015A1 WO 2017194015 A1 WO2017194015 A1 WO 2017194015A1 CN 2017084245 W CN2017084245 W CN 2017084245W WO 2017194015 A1 WO2017194015 A1 WO 2017194015A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
transmission
feedback
downlink
subframe
Prior art date
Application number
PCT/CN2017/084245
Other languages
English (en)
French (fr)
Inventor
胡丽洁
侯雪颖
沈晓冬
董静
Original Assignee
***通信有限公司研究院
***通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信有限公司研究院, ***通信集团公司 filed Critical ***通信有限公司研究院
Priority to JP2018559783A priority Critical patent/JP2019521564A/ja
Priority to EP17795633.1A priority patent/EP3454596B1/en
Priority to US16/300,946 priority patent/US10715280B2/en
Publication of WO2017194015A1 publication Critical patent/WO2017194015A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, an apparatus, a communication device, and a computer storage medium for determining a Hybrid Automatic Repeat ReQuest (HARQ) feedback timing.
  • HARQ Hybrid Automatic Repeat ReQuest
  • Hybrid Automatic Repeat ReQuest is a combination of automatic retransmission request ARQ and Forward Error Correction (FEC), which is a means of link adaptation in LTE systems.
  • the LTE system adopts the N-channel stop-and-wait HARQ protocol, that is, N processes exist at the same time, and each process uses the stop-and-arrival ARQ protocol to transmit.
  • N processes exist at the same time, and each process uses the stop-and-arrival ARQ protocol to transmit.
  • the sender After the sender sends a data packet, it temporarily stops and waits for the acknowledgement message of the receiver, etc. When the data arrives at the receiving end, it will detect the error. If the receiving is correct, it will feed back the ACK message to the sending end. Otherwise, it will feed back the NACK message to the sending end. When the sending end receives the ACK signal, it will send new data. Otherwise, it will be retransmitted. Secondary packets.
  • the parallel N processes are in the process of stopping, and other processes can utilize channel resource transmission.
  • the minimum RTT (Round Trip Time) of HARQ is defined as the completion time of a data packet transmission process, including the start of data packet transmission, the receiving end receiving and processing, performing ACK/NACK feedback, and the transmitting end receiving and demodulating and processing ACK/NACK. After the signal, the process of retransmitting the data or sending a new packet is determined.
  • the uplink and downlink transmissions are always continuous, and the ACK/NACK signal feedback or data retransmission can be performed in a fixed subframe.
  • TDD Frame structure since the uplink and downlink transmissions are time division multiplexed, a fixed and identical feedback time interval cannot be found for each subframe.
  • the time intervals of ACK/NACK feedback and retransmission are different for different subframes.
  • TTI Shorter Transmission Time Interval
  • a technical problem to be solved by embodiments of the present invention is to provide a method, apparatus, communication device, and computer storage medium for determining HARQ feedback timing to determine HARQ feedback timing in different TTI situations.
  • a configuration determining unit configured to determine a configuration of a currently adopted TDD frame structure, where the configuration of the TDD frame structure includes an uplink and downlink configuration and a special subframe ratio;
  • a TTI determining unit configured to determine a size of a currently used transmission time interval TTI
  • a location determining unit configured to determine, according to the configuration of the TDD frame structure and the size of the TTI, a relative positional relationship between the data transmission TTI and the feedback TTI in the HARQ process, or the first time The relative positional relationship between the transmission TTI, the feedback TTI, and the retransmission TTI.
  • the embodiment of the invention further provides a communication device, including:
  • a memory configured to store a computer program
  • a processor coupled to the memory, is configured to perform the method of determining a hybrid automatic repeat request HARQ feedback timing by executing the computer program.
  • a fourth aspect of the embodiments of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the foregoing method for determining a hybrid automatic repeat request HARQ feedback timing.
  • the method, the device, the communication device, and the storage medium for determining the HARQ feedback timing can meet the feedback TTI and the special TDD uplink and downlink configuration mode and the special subframe matching mode.
  • the interval between the initial transmission TTI is greater than the first threshold, and the interval between the retransmission TTI is greater than the second threshold, and the number of HARQ processes corresponding to different length TTIs is determined, and the HARQ feedback timing in the above case can be obtained.
  • This provides support for low latency transmissions.
  • the embodiment of the present invention can give a HARQ feedback timing for a shorter threshold value, so that a faster low-latency transmission can be further realized.
  • the embodiment of the present invention can also carry the HARQ feedback on the respective feedback TTIs as much as possible, so as to avoid excessive information carried on a certain/some feedback TTI.
  • FIG. 1 is a schematic diagram of FDD HARQ feedback in the prior art
  • FIGS. 2a and 2b are schematic flowcharts of a method for determining a timing of HARQ feedback according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for determining a timing of HARQ feedback according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a 0.5 ms TTI when different special subframes are matched in the TDD uplink and downlink configuration mode 0 according to an embodiment of the present invention
  • FIG. 5a and FIG. 5b are respectively a schematic diagram 1 and a schematic diagram 2 of a HARQ feedback timing of a 0.5 ms TTI when the TDD uplink and downlink configuration mode 0 and the special subframe ratio modes 0, 5, 9, and 10 are provided according to an embodiment of the present invention;
  • FIG. 6 is a schematic diagram of a 4/3 OS TTI when different special subframes are matched in the TDD uplink and downlink configuration mode 0 according to an embodiment of the present invention
  • FIG. 7a and FIG. 7b are respectively a schematic diagram 1 and a schematic diagram 2 of HARQ feedback timing of 4/3 OS TTI in case 1, TDD uplink and downlink configuration mode 0 and special subframe ratio mode 0 and 5 according to the embodiment of the present invention. ;
  • FIG. 8a and FIG. 8b are respectively a schematic diagram 1 and a schematic diagram 2 of HARQ feedback timing of 4/3 OS TTI in case 2, TDD uplink and downlink configuration mode 0, and special subframe ratio mode 0 and 5 according to the embodiment of the present invention. ;
  • FIG. 9 is a schematic diagram of a 2OS TTI when different special subframes are matched in the TDD uplink and downlink configuration mode 0 according to an embodiment of the present invention.
  • FIG. 10a and FIG. 10b are respectively a schematic diagram 1 and a schematic diagram 2 of a HARQ feedback timing of a 2OS TTI when the TDD uplink and downlink configuration mode 0 and the special subframe ratio mode 0 and 5 are provided according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of averaging HARQ feedback to respective feedback TTIs according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of averaging HARQ feedback to respective feedback TTIs based on a second constraint condition according to an embodiment of the present invention.
  • system and “network” are used interchangeably herein.
  • the method for determining the HARQ feedback timing provided by the embodiment of the present invention is applied to an LTE system adopting a TDD frame structure.
  • the HARQ described herein may be HARQ feedback for downlink data, where HARQ feedback is transmitted on the uplink TTI; the HARQ described herein may also be HARQ feedback for uplink data, and the HARQ feedback is downlink. Transfer on TTI.
  • the transmission TTI refers to a TTI for transmitting data, which may be uplink data or downlink data.
  • the transmission TTI has a transmission direction, such as an uplink direction or a downlink direction. Subsequent numbering processing is to number the TTIs of the same transmission direction.
  • the transmission TTI is also referred to as a data transmission TTI when used for transmitting data.
  • the feedback TTI refers to a TTI that feeds back control information of the transmission data on the data transmission TTI, and the control information may be information such as ACK/NACK.
  • the transmission TTI may be data on the PDCCH/EPDCCH that transmits the PDSCH or indicates the release of the SPS, and the corresponding feedback TTI may be the transmission ACK/NACK feedback information.
  • the transmission TTI of the initial transmission data may be referred to as the initial transmission TTI.
  • the feedback TTI refers to the TTI that feeds back the control information of the transmission data on the initial transmission TTI.
  • the transmission TTI that retransmits the data is called a retransmission TTI.
  • a method for determining HARQ feedback timing includes the following steps:
  • Step 11 Determine a configuration of a currently adopted TDD frame structure, where the configuration of the TDD frame structure includes an uplink and downlink configuration and a special subframe ratio.
  • step 12 the size of the currently used transmission time interval TTI is determined.
  • Step 13 Determine, according to the configuration of the TDD frame structure and the size of the TTI, the relative positional relationship between the data transmission TTI and the feedback TTI in the HARQ process, or the relative positional relationship between the initial transmission TTI, the feedback TTI, and the retransmission TTI.
  • the size of the TTI can be understood as the duration of the TTI.
  • the retransmitted TTI may be scheduled by the base station, so only the first relative positional relationship between the data transmission TTI and its feedback TTI needs to be determined;
  • the first relative positional relationship is the relative positional relationship between the initial TTI and the feedback TTI in the second relative positional relationship between the initial transmission TTI, the feedback TTI, and the retransmission TTI.
  • the second relative positional relationship will be mainly described as an example. Obtained In the second relative positional relationship, since the first relative positional relationship is included in the second relative positional relationship, the first relative positional relationship can be obtained.
  • the location of the initial transmission TTI of each HARQ process may be determined, and the feedback TTI and the retransmission TTI of the HARQ process are selected from the TDD frame structure according to a preset feedback retransmission timing relationship.
  • the feedback retransmission timing relationship is that the interval between the feedback TTI and the initial transmission TTI is greater than the first threshold, and the interval between the retransmission TTI is greater than the second threshold.
  • step 13 may specifically include:
  • Step 131 In the TDD frame structure, the first transmission TTI is used as the initial transmission TTI of the HARQ process, and the first feedback TTI that satisfies the preset feedback retransmission timing relationship and minimizes the interval between the initial transmission TTI and the retransmission TTI is determined. And retransmitting the location of the TTI, and determining the number n of transmission TTIs from the first transmission TTI to the end of the previous transmission TTI of the first retransmission TTI.
  • the preset feedback retransmission timing relationship is that the interval between the feedback TTI and the initial transmission TTI is greater than the first threshold, and the interval between the retransmission TTI is greater than the second threshold; the transmission TTI is an uplink transmission TTI or Downstream transmission TTI.
  • the first threshold and the second threshold may generally be set according to factors such as a data transmission delay and a time consuming processing of data by the device. For example, it can usually be a length of time of 3 to 4 TTIs.
  • Step 132 sequentially sequence the n same-direction transmission TTIs from the first transmission TTI, where the same direction refers to the downlink transmission or the uplink transmission, and the start from the first retransmission TTI.
  • the TTIs in the same direction are sequentially numbered, and the two transmission TTIs of the same number are the initial transmission TTI and the retransmission TTI of the HARQ process corresponding to the number.
  • the number of the transmitted TTI can be regarded as the number of the HARQ process.
  • the two transmission TTIs with the same number are the initial transmission TTI and the retransmission TTI of the same HARQ process.
  • Differently numbered transmission TTIs are transmission TTIs of different HARQ processes.
  • the TTIs are transmitted in the same direction from the first transmission TTI, and sequentially numbered.
  • each downlink transmission TTI starting from the first transmission TTI is numbered until the number of n transmission TTIs is completed.
  • each transmission TTI starting from the first retransmission TTI is sequentially numbered.
  • each downlink transmission TTI starting from the first transmission TTI is numbered until the number of n transmission TTIs is completed.
  • the starting number of the above two numbering processes may be 0 or 1, or other numbers, but the starting numbers in the two numbering processes should be the same to ensure that the transmission TTIs of the same process have the same number.
  • Step 133 Determine whether a feedback TTI exists between the initial transmission TTI and the retransmission TTI of each HARQ process to satisfy the preset feedback retransmission timing relationship. If yes, go to step 134, otherwise go to step 135.
  • Step 134 Determine the number of HARQ processes of the TDD frame structure as n, and obtain a relative positional relationship between the data transmission TTI and its feedback TTI in each HARQ process, or a relative positional relationship between the initial transmission TTI, the feedback TTI, and the retransmission TTI.
  • a 10 ms radio frame includes 10 1 ms subframes, and each subframe may include multiple TTIs.
  • all the TTIs included in the radio frame are sequentially numbered in each radio frame, and the TTIs in each radio frame are cyclically numbered.
  • the feedback TTI and the initial transmission TTI are performed.
  • the relative positional relationship between the two is: the TTI interval between the feedback TTI and the initial transmission TTI.
  • all the TTIs included in the subframe are sequentially numbered in each subframe, and the TTIs in each subframe are cyclically numbered.
  • the feedback TTI and the initial transmission TTI are performed.
  • the relative positional relationship between the feedback TTI and the initial transmission TTI is the number of the feedback TTI and the initial transmission TTI in the respective subframes.
  • step 135 the current value of n is incremented by 1, and the first retransmission TTI is moved to the next transmission TTI of the current location, and the process returns to step 132.
  • the embodiment of the present invention can finally obtain the number n of the HARQ processes, and obtain the locations of the initial transmission TTI, the feedback TTI, and the retransmission TTI in each HARQ process, where the above n is satisfied by the preset feedback retransmission.
  • the minimum number of HARQ processes under the condition of a time series relationship. It can be seen that the embodiment of the present invention can provide corresponding HARQ feedback timing for frame structure configurations of different TTI lengths, and provides support for low delay transmission. In addition, the embodiment of the present invention may also carry the HARQ feedback as evenly as possible on each feedback TTI.
  • the initial transmission TTI and the retransmission TTI of the same HARQ process may be determined, and the initial transmission TTI and the retransmission TTI located in the HARQ process are determined, and the preset feedback retransmission timing relationship is satisfied.
  • the optional location of the TTI is fed back by the HARQ process; then, according to the initial transmission TTI and the retransmission TTI location of each HARQ process, and the optional location of the feedback TTI, the relative position of the data transmission TTI of each HARQ process and its feedback TTI is obtained. Relationship, or the relative positional relationship between the initial transmission TTI, the feedback TTI, and the retransmission TTI.
  • the embodiment of the present invention may directly determine the location of the initial transmission TTI and the retransmission TTI of the HARQ process.
  • the feedback TTI of the HARQ process any optional location of the feedback TTI that satisfies the preset feedback retransmission timing relationship between the initial transmission TTI and the retransmission TTI of the HARQ process may be used as the HARQ process.
  • the TTI is fed back to obtain the position of the feedback TTI of the HARQ process, and the relative positional relationship between the feedback TTI and the initial transmission TTI is output.
  • the HARQ feedback of the bearers of the respective feedback TTIs is averaging as much as possible, and avoiding feedback in a small number of feedback TTIs to reduce the uplink feedback performance
  • the location of the initial transmission TTI and the retransmission TTI according to each HARQ process, and the feedback TTI may first determine the HARQ process.
  • the optional location of the TTI is fed back; then, when the HARQ feedback of the y HARQ processes needs to be performed on the x optional locations, the HARQ feedback of the y HARQ processes is evenly distributed to the x selectable locations.
  • the number of HARQ processes fed back at each optional location is z or z+1, and the position of the feedback TTI of each HARQ process is obtained, where z is a rounding down of y/x; and then according to each HARQ process
  • the initial transmission TTI, the feedback TTI, and the retransmission of the TTI are performed, and the relative positional relationship between the data transmission TTI of each HARQ process and its feedback TTI, or the relative positional relationship between the initial transmission TTI, the feedback TTI, and the retransmission TTI is output.
  • the embodiment of the present invention may further allocate the HARQ feedback of the y HARQ processes to the average based on the first constraint condition and/or the second constraint condition.
  • x optional locations.
  • the first constraint is: when the initial transmission time of the first HARQ process is earlier than the initial transmission of the second HARQ process, the HARQ feedback of the initial transmission of the first HARQ process is not later than the second HARQ feedback of the initial transmission of the HARQ process, where the second HARQ and the first HARQ process are different processes;
  • the second constraint is: when one transmission TTI of the first HARQ process and one transmission TTI of the third HARQ process are located at the same position in different uplink and downlink handover periods, one transmission TTI of the first HARQ process.
  • the HARQ feedback, the HARQ feedback of one transmission TTI of the third HARQ process is also located at another identical position in different uplink and downlink handover periods, where the third HARQ process is the same process or a different process as the first HARQ process.
  • one transmission TTI of the first HARQ process may be an initial transmission TTI or a retransmission TTI.
  • one transmission TTI of the third HARQ process may also be a primary transmission TTI or a retransmission TTI.
  • Each of the smallest squares in FIG. 12 represents one TTI, and each radio frame includes 20 TTIs from 0 to 19; " ⁇ n" indicates a downlink HARQ process n, and a square where " ⁇ n” is located indicates a downlink HARQ process.
  • ⁇ n indicates the uplink HARQ feedback of the downlink HARQ process n, and the square where " ⁇ n” is located indicates the TTI for transmitting the uplink HARQ feedback of the downlink HARQ process n;
  • ⁇ n An optional TTI representing the uplink HARQ feedback for transmitting the downlink HARQ process n.
  • FIG. 12 a schematic diagram of a HARQ feedback timing of the TDD uplink and downlink configuration mode 2 obtained under the second constraint condition at 0.5 ms TTI is shown.
  • the uplink and downlink switching period of the TDD uplink and downlink configuration mode 2 is 5 ms, and each uplink and downlink switching cycle includes 10 TTIs.
  • the HARQ process 0 is in the first TTI of the first uplink and downlink handover cycle
  • the HARQ process 7 is in the first TTI of the second uplink and downlink handover cycle, that is, one transmission TTI and process 7 of the HARQ process 0.
  • a transmission TTI is located at the same position in different uplink and downlink handover periods.
  • HARQ process 0 is on the first uplink and downlink.
  • the position of the feedback TTI of the first TTI of the handover cycle is: the fifth TTI of the first uplink and downlink handover cycle; and the location of the feedback TTI of the first TTI of the HARQ process 7 of the second uplink and downlink handover cycle is : The 5th TTI of the 2nd uplink and downlink switching cycle.
  • the HARQ process 1 and the HARQ process 8 also satisfy the above constraints
  • the HARQ process 2 and the HARQ process 9 also satisfy the above constraints.
  • Each of the smallest squares in FIG. 11 represents one TTI, and each radio frame includes 20 TTIs from 0 to 19; " ⁇ n" indicates a downlink HARQ process n, " ⁇ The square where n" indicates the TTI for the initial transmission or retransmission of data of the downlink HARQ process n; “ ⁇ n” indicates the uplink HARQ feedback of the downlink HARQ process n, and the square where " ⁇ n" is located indicates the downlink for transmission.
  • the TTI of the uplink HARQ feedback of the HARQ process n; " ⁇ n” represents the optional TTI of the uplink HARQ feedback for transmitting the downlink HARQ process n.
  • the downlink HARQ processes 2 to 9 have a total of 8 downlink HARQ processes, and the HARQ feedback needs to be performed on the uplink TTIs 13 to 15 in a total of three uplink TTIs, and the premise of satisfying the preset feedback retransmission timing relationship is satisfied.
  • Down according to the principle of even distribution, that is, there are 2 uplink TTIs It is necessary to carry three feedbacks respectively, and one TTI carries two feedbacks, so that a distribution method is obtained as shown in FIG. 11, and processes 2 to 4 are on TTI 13, processes 5 to 7 are on TTI 14, and process 8 is used.
  • the feedback on the TTI 15 can achieve the shortest average HARQ feedback delay when the HARQ feedback is distributed as evenly as possible on the continuous uplink TTI.
  • the first threshold and the second threshold in the preset feedback retransmission timing relationship are both 4 TTIs.
  • the embodiments of the present invention can be applied to various LTE TDD frame structures defined by the existing standards, such as a radio frame of the LTE TDD uplink and downlink configuration mode 0-6 defined in 3GPP TS 36.211 Table 4.2-2: Uplink-downlink configurations.
  • the uplink and downlink switching period is 5 ms for the uplink and downlink configuration modes 0 to 2, and 6, that is, each of the 10 ms radio frames includes 2 uplink and downlink switching periods; for the uplink and downlink configuration modes 3 to 5, the uplink and downlink are
  • the switching period is 10 ms, that is, each 10 ms radio frame includes 1 uplink and downlink switching period.
  • 3GPP TS 36.211 also defines special subframe matching modes 0 to 9, for special subframe matching modes 0 to 9.
  • a special subframe matching mode is further added, and the ratio of DwPTS:GP:UpPTS is:6:2:6.
  • the above-mentioned special subframe matching mode is referred to as a special subframe matching mode 10, that is, the DwPTS of the special subframe matching mode 10: GP:UpPTS ratio is: 6:2:6.
  • the embodiments of the present invention can be applied to various newly defined TDD frame structures.
  • the embodiments of the present invention provide three TDD frame structures that are not defined by the existing standard.
  • Table 1 shows a 10 ms radio frame structure of each of the above configuration modes. It can be seen that similar to the prior art, the radio frames of these configuration modes are also 10 ms. And includes 10 1ms subframes.
  • the uplink and downlink switching period is 5 ms, that is, each 10 ms radio frame includes two uplink and downlink switching periods; for the uplink and downlink configuration mode 2, the uplink and downlink The switching period is 10 ms, that is, each 10 ms radio frame includes 1 uplink and downlink switching period.
  • the radio frame structure of the new uplink and downlink configuration mode 1 is to replace the subframes 3, 4, 8, and 9 in the LTE TDD uplink and downlink configuration mode 2 with the downlink: GP: the uplink ratio is 7:1:6.
  • the first bidirectional subframe, and the DwPTS of the special subframe: the ratio of the GP:UpPTS is 9:1:4;
  • the radio frame structure of the new uplink and downlink configuration mode 2 is the subframe 3 in the LTE TDD uplink and downlink configuration mode 2, 4, 7, 8, and 9 are all replaced by the downlink: GP: the second bidirectional subframe with the uplink ratio of 11:1:2, and the DwPTS of the special subframe: the ratio of GP:UpPTS is 9:1:4;
  • the radio frame structure of the line configuration mode 3 is to replace the downlink subframes 3, 4, 8, and 9 in the LTE TDD uplink and downlink configuration mode 2 with the downlink: GP: the third bidirectional subframe with the uplink ratio
  • the embodiment of the present invention may further include the following steps before the foregoing step 131:
  • Step 130 Divide each subframe of the TDD frame structure into multiple TTIs according to a predetermined TTI length, and determine a transmission TTI and a feedback TTI in each TTI, where the feedback TTI is opposite to the transmission direction of the transmission TTI.
  • the transmission TTI is an uplink transmission TTI or a downlink transmission TTI.
  • the transmission TTIs are TTIs that have the same transmission direction and can be used for data transmission.
  • the transmission direction may be according to the duration of the uplink transmission or the downlink transmission and the system preset condition (for example, the system may define whether it can be used for uplink or downlink for each bidirectional TTI. transmission).
  • step 130 The specific implementation of the foregoing step 130 is described below for the TDD frame structure newly defined in the above various existing or inventive embodiments.
  • the frame configuration of any of the LTE TDD uplink and downlink configuration modes 0 to 6 may be a special subframe ratio of any one of the special subframe matching modes 0 to 10.
  • TTIs of different lengths used in the embodiments of the present invention are separately described below.
  • each subframe of the TDD frame structure is divided into multiple TTIs, specifically:
  • each normal subframe is divided into two TTIs, and the transmission direction of the TTI in each normal subframe is the same as the transmission direction of the normal subframe;
  • the special subframe is divided into two TTIs, as an implementation manner, corresponding to the special subframe matching mode 0 to 10, and the DwPTS in the 2 TTIs of the special subframe: GP: UpPTS
  • the ratios are:
  • the UpPTS in the special subframe is not allowed to be transmitted as the uplink feedback: in the special subframe matching mode 0, 5, 9, and 10, the first TTI in the 2 TTIs of the special subframe is used for downlink transmission. The second TTI is not used for data transmission. In the special subframe matching mode 1, 2, 3, 4, 6, 7, and 8, two TTIs of the special subframe are used for downlink transmission.
  • the UpPTS of the special subframe When the UpPTS of the special subframe is allowed to be transmitted as the uplink feedback: in the special subframe matching mode 0, 5, 9, and 10, the first TTI of the 2 TTIs of the special subframe is used for downlink transmission, and the second TTI For the uplink transmission; in the special subframe matching mode 1, 2, 3, 4, 6, 7, 8, the first TTI of the 2 TTIs of the special subframe is used for downlink transmission, and the second TTI is used for downlink transmission. Uplink transmission and/or downlink transmission.
  • each subframe of the TDD frame structure is divided into multiple TTIs, specifically:
  • each time slot of each normal subframe is divided into two TTIs each having a length of 4 OFDM symbols and 3 OFDM symbols; a transmission direction of the TTI in each normal subframe and the normal subframe The same direction of transmission;
  • the special subframe is divided into four TTIs of length 4 OFDM symbols, 3 OFDM symbols, 4 OFDM symbols, and 3 OFDM symbols, as an implementation manner, corresponding to the special subframe matching mode 0 to 10 , DwPTS in 4 TTIs of special subframes: GP: UpPTS ratios are:
  • the UpPTS in the special subframe is not allowed as the uplink feedback:
  • the 1-3th TTI of the 4 TTIs of the special subframe is used for downlink transmission, and the 4th TTI does not transmit data;
  • the 1-4th TTIs of the 4 TTIs of the special subframe are used for downlink transmission;
  • the 1-2th TTI of the 4 TTIs of the special subframe is used for downlink transmission, and the 3-4th TTI does not transmit data;
  • the 1-2th TTI of the 4 TTIs of the special subframe is used for downlink transmission, and the 4th TTI is used for uplink transmission;
  • the special subframe matching modes 0 and 5 only the first TTI of the special subframe is used for downlink transmission, the 2-3th TTI does not transmit data, and the fourth TTI is used for uplink transmission;
  • the 1-3th TTI of the 4 TTIs of the special subframe is used for downlink transmission, and the 4th TTI is used for uplink transmission;
  • the 1-3th TTI of the 4 TTIs of the special subframe is used for downlink transmission, and the 4th TTI is used for uplink transmission and/or downlink transmission;
  • the 1-2th TTI of the 4 TTIs of the special subframe is used for downlink transmission, and the 3rd TTI of the third TTI is not used for uplink transmission;
  • the 1-2th TTI of the 4 TTIs of the special subframe is used for downlink transmission, and the 3-4th TTI is used for uplink transmission.
  • each subframe of the TDD frame structure is divided into multiple TTIs, specifically:
  • each normal subframe is divided into 7 TTIs; each normal sub- The transmission direction of the TTI in the frame is the same as the transmission direction of the normal subframe;
  • the special subframe is divided into 7 TTIs, as an implementation manner, corresponding to the special subframe matching mode 0 to 10, and the DwPTS in the 7 TTIs of the special subframe: GP: UpPTS
  • the ratios are:
  • the special subframe matching modes 0 and 5 among the 7 TTIs of the special subframe, the 1-2th TTI is used for downlink transmission, the 3-6th TTI is not for transmitting data, and the 7th TTI is used for uplink. transmission;
  • the 1-5th TTI is used for downlink transmission
  • the sixth TTI is not for data transmission
  • the seventh TTI is used for uplink. transmission
  • the 1-6th TTI is used for downlink transmission
  • the 7th TTI is used for uplink transmission
  • the 1-3th TTI is used for downlink transmission, the 4th to 6th TTIs are not for transmitting data, and the 7th TTI is used for uplink transmission;
  • the special subframe matching mode 10 among the 7 TTIs of the special subframe, the 1-3th TTI is used. For downlink transmission, the 4th TTI does not transmit data, and the 5-7th TTI is used for uplink transmission.
  • step 130 The specific implementation of the foregoing step 130 is described in the scenario of adding a TDD frame structure of the uplink and downlink configuration modes 1 to 3 and a TTI length of 2 OFDM symbols.
  • the TDD frame structure of the above-mentioned new uplink and downlink configuration modes 1 to 3 can also adopt TTIs of other lengths, which is not described in detail for saving space.
  • the radio frame structure of the new uplink and downlink configuration mode 1 includes 10 1 ms subframes, which are downlink subframe, special subframe, uplink subframe, first bidirectional subframe, first bidirectional subframe, and downlink subroutine.
  • a frame, a special subframe, an uplink subframe, a first bidirectional subframe, and a first bidirectional subframe wherein a downlink in the first bidirectional subframe: GP: an uplink ratio of 7:1:6, the special sub-frame
  • the DwPTS of the frame: GP:UpPTS ratio is 9:1:4.
  • each subframe of the TDD frame structure is divided into multiple TTIs, specifically:
  • Each sub-frame is divided into 7 TTIs, where the transmission direction of the TTI in the uplink subframe or the downlink subframe is the same as the transmission direction of the subframe to which it belongs;
  • the DwPTS in the 7 TTIs of the first bidirectional subframe GP: UpPTS ratios are: 2:0:0, 2:0:0, 2:0:0, 1:1:0, 0:0:2. 0:0:2, 0:0:2, and the 1-4th TTI in the first bidirectional subframe is used for downlink transmission, and the 5-7th TTI is used for uplink transmission;
  • DwPTS in 7 TTIs of special subframes GP: UpPTS ratios are: 2:0:0, 2:0:0, 2:0:0, 2:0:0, 1:1:0, 0: 0:2, 0:0:2, and the 1-5th TTI in the special subframe is used for downlink transmission, and the 6-7th TTI is used for uplink transmission.
  • the radio frame structure of the new uplink and downlink configuration mode 2 includes 10 1 ms subframes, which are downlink subframes, special subframes, uplink subframes, second bidirectional subframes, and second bidirectional subframes.
  • a downlink subframe, a special subframe, a second bidirectional subframe, a second bidirectional subframe, and a second bidirectional subframe wherein a downlink in the second bidirectional subframe: GP: an uplink ratio of 11:1:2,
  • the DwPTS of the special subframe: GP:UpPTS ratio is 9:1:4;
  • each subframe of the TDD frame structure is divided into multiple TTIs, specifically:
  • Each sub-frame is divided into 7 TTIs, where the transmission direction of the TTI in the uplink subframe or the downlink subframe is the same as the transmission direction of the subframe to which it belongs;
  • the DwPTS in the 7 TTIs of the second bidirectional subframe GP: UpPTS ratio is: 2:0:0, 2:0:0, 2:0:0, 2:0:0, 2:0:0, 1:1:0, 0:0:2, and the 1-6th TTI in the second bidirectional subframe is used for downlink transmission, and the seventh TTI is used for uplink transmission;
  • DwPTS in 7 TTIs of special subframes GP: UpPTS ratios are: 2:0:0, 2:0:0, 2:0:0, 2:0:0, 1:1:0, 0: 0:2, 0:0:2, and the 1-5th TTI in the special subframe is used for downlink transmission, and the 6-7th TTI is used for uplink transmission.
  • the radio frame structure of the new uplink and downlink configuration mode 3 includes 10 1 ms subframes, which are a downlink subframe, a special subframe, an uplink subframe, a third bidirectional subframe, a third bidirectional subframe, and a downlink subroutine.
  • a frame, a special subframe, an uplink subframe, a third bidirectional subframe, and a third bidirectional subframe wherein a downlink in the third bidirectional subframe: GP: an uplink ratio of 6:2:6, the special sub The DwPTS of the frame: GP:UpPTS ratio is 6:2:6.
  • each subframe of the TDD frame structure is divided into multiple TTIs, specifically:
  • Each sub-frame is divided into 7 TTIs, where the transmission direction of the TTI in the uplink subframe or the downlink subframe is the same as the transmission direction of the subframe to which it belongs;
  • DwPTS in 7 TTIs of the third bidirectional subframe GP: UpPTS ratio is: 2:0:0, 2:0:0, 2:0:0, 0:2:0, 0:0:2 0:0:2, 0:0:2, and the 1-3th TTI in the second bidirectional subframe
  • the 4th TTI is not used for data transmission
  • the 5-7th TTI is used for uplink transmission
  • DwPTS in 7 TTIs of special subframes GP: UpPTS ratios are: 2:0:0, 2:0:0, 2:0:0, 0:2:0, 0:0:2, 0: 0:2, 0:0:2, and the 1-3th TTI in the special subframe is used for downlink transmission, the fourth TTI is not used for data transmission, and the 5-7th TTI is used for uplink transmission.
  • an apparatus for determining a HARQ feedback timing includes:
  • the configuration determining unit 21 is configured to determine a configuration of the currently adopted TDD frame structure, where the configuration of the TDD frame structure includes an uplink and downlink configuration and a special subframe ratio;
  • the TTI determining unit 22 is configured to determine a size of the currently used transmission time interval TTI;
  • the location determining unit 23 is configured to determine, according to the configuration of the TDD frame structure and the size of the TTI, a relative positional relationship between the data transmission TTI and the feedback TTI in the HARQ process, or between the initial transmission TTI, the feedback TTI, and the retransmission TTI. Relative positional relationship.
  • the location determining unit 23 is configured to determine a location of the initial transmission TTI of each HARQ process, and select a feedback TTI and a retransmission of the HARQ process from the TDD frame structure according to a preset feedback retransmission timing relationship.
  • the TTI obtains a relative positional relationship between the data transmission TTI of the HARQ process and its feedback TTI, or a relative positional relationship between the initial transmission TTI, the feedback TTI, and the retransmission TTI, where one TTI can transmit data of at most one HARQ process.
  • the preset feedback retransmission timing relationship is that the interval between the feedback TTI and the initial transmission TTI is greater than the first threshold, and the interval between the retransmission TTI is greater than the second threshold.
  • the location determining unit 23 includes:
  • the initial processing unit 231 is configured to determine, in the TDD frame structure, the first transmission transmission time interval TTI as the initial transmission TTI of the HARQ process, and determine that the preset feedback retransmission timing relationship is satisfied, and the initial transmission TTI and the retransmission TTI are performed.
  • the first feedback TTI and the location of the first retransmission TTI are separated, and determine the number n of transmission TTIs from the first transmission TTI to the end of the previous transmission TTI of the first retransmission TTI, wherein the preset
  • the feedback retransmission timing relationship is that the interval between the feedback TTI and the initial transmission TTI is greater than the first threshold, and the interval between the retransmission TTI Greater than the second threshold;
  • the transmission TTI is an uplink transmission TTI or a downlink transmission TTI;
  • the numbering unit 232 is configured to sequentially number the n same-direction transmission TTIs from the first transmission TTI, and sequentially number the n same-direction transmission TTIs from the first retransmission TTI, wherein the same number is preceded by two
  • the transmission TTI is the initial transmission TTI and the retransmission TTI of the HARQ process corresponding to the number respectively; determining whether a feedback TTI exists between the initial transmission TTI and the retransmission TTI of each HARQ process to satisfy the preset feedback retransmission timing relationship :
  • the timing determining unit 233 is configured to determine, when the determining unit determines that a feedback TTI meets the preset feedback retransmission timing relationship between the initial transmission TTI and the retransmission TTI of each HARQ process, determine the TDD frame structure.
  • the number of HARQ processes is n, and the relative positional relationship between the data transmission TTI and its feedback TTI in each HARQ process, or the relative positional relationship between the initial transmission TTI, the feedback TTI, and the retransmission TTI is obtained;
  • the loop control unit 234 is configured to add the current value of n when the determining unit determines that there is no feedback TTI between the initial transmission TTI and the retransmission TTI of any HARQ process that satisfies the preset feedback retransmission timing relationship. And moving the first retransmission TTI to a next transmission TTI in the same direction of the current location, and triggering the judging unit.
  • the timing determining unit includes:
  • the optional location obtaining unit is configured to determine, according to the initial transmission TTI of the same HARQ process and the location of the retransmission TTI, between the initial transmission TTI and the retransmission TTI of the HARQ process, and satisfy the preset feedback retransmission timing relationship.
  • the optional location of the feedback TTI for the HARQ process is configured to determine, according to the initial transmission TTI of the same HARQ process and the location of the retransmission TTI, between the initial transmission TTI and the retransmission TTI of the HARQ process, and satisfy the preset feedback retransmission timing relationship.
  • an obtaining unit configured to obtain a relative positional relationship between a data transmission TTI of each HARQ process and a feedback TTI according to a location of the initial transmission TTI and the retransmission TTI of each HARQ process, and an optional position of the feedback TTI, or the initial transmission TTI, feedback The relative positional relationship between TTI and retransmission TTI.
  • the obtaining unit includes:
  • a first determining unit configured to determine an optional location of a feedback TTI of each HARQ process
  • An allocation unit configured to: when HARQ feedback of y HARQ processes needs to be performed on x optional locations, distribute the HARQ feedback of the y HARQ processes to the x selectable locations, each of which may be The number of HARQ processes that are fed back in the selected location is z or z+1, and the position of the feedback TTI of each HARQ process is obtained, where z is a rounding down of y/x;
  • the output unit is configured to output a relative positional relationship between the data transmission TTI of each HARQ process and its feedback TTI according to the initial transmission TTI, the feedback TTI, and the retransmission TTI of each HARQ process, or the initial transmission TTI, the feedback TTI, and the retransmission TTI. The relative positional relationship between them.
  • the allocation unit is configured to:
  • the first constraint is: when the initial transmission time of the first HARQ process is earlier than the initial transmission of the second HARQ process, the HARQ feedback of the initial transmission of the first HARQ process is not later than the second HARQ process.
  • the second constraint is: when one transmission TTI of the first HARQ process and one transmission TTI of the third HARQ process are located at the same position in different uplink and downlink handover periods, one transmission TTI of the first HARQ process.
  • the HARQ feedback, the HARQ feedback of one transmission TTI of the third HARQ process is also located at another identical position in different uplink and downlink handover periods, where the third HARQ process is the same process or a different process as the first HARQ process.
  • the timing determining unit is specifically configured to: use any feedback TTI that satisfies the preset feedback retransmission timing relationship between the initial transmission TTI and the retransmission TTI of each HARQ process as the HARQ.
  • the feedback TTI of the process obtains the position of the feedback TTI of the HARQ process, and outputs a relative positional relationship between the feedback TTI and the initial transmission TTI.
  • all TTIs included in the radio frame are sequentially in each radio frame.
  • a sequence number; a relative positional relationship between the feedback TTI and the initial transmission TTI is: a TTI interval between the feedback TTI and the initial transmission TTI; or, in each subframe, all TTIs included in the subframe are sequentially numbered sequentially
  • the relative positional relationship between the feedback TTI and the initial transmission TTI is: a subframe interval between the feedback TTI and the initial transmission TTI, and a number of the feedback TTI and the initial transmission TTI in the respective subframes.
  • the above device further comprises the following unit (not shown in FIG. 3):
  • a dividing unit configured to determine a type of the TDD frame structure and a special subframe matching mode adopted by a special subframe in the TDD frame structure, and each sub-frame of the TDD frame structure according to a predetermined TTI length
  • the frame is divided into multiple TTIs, and the transmission TTI and the feedback TTI in each TTI are determined.
  • the feedback TTI is opposite to the transmission direction of the transmission TTI, and the transmission TTI is an uplink transmission TTI or a downlink transmission TTI.
  • the TDD frame structure is any one of the following frame structures: LTE TDD uplink and downlink configuration modes 0 to 6 defined in 3GPP TS 36.211, and new uplink and downlink configuration modes 1 to 3;
  • the special subframe matching mode includes a special subframe matching mode 0 to 9 defined in 3GPP TS 36.211 and a new special subframe matching mode 10, where the special subframe matching mode 10 is DwPTS: GP: The UpPTS ratio is 6:2:6.
  • the length of the TTI may be 0.5 ms, 4/3 OFDM symbols or 2 OFDM symbols.
  • each of the smallest squares represents one TTI; " ⁇ n” represents the downlink HARQ process n, and the TTI where " ⁇ n” is located represents the first time for the downlink HARQ process n TTI for transmitting or retransmitting data; “ ⁇ n” indicates the downlink HARQ process n Line HARQ feedback, the TTI where " ⁇ n” is located represents the TTI for transmitting the uplink HARQ feedback of the downlink HARQ process n; the TTI where " ⁇ n” is located represents the possible feedback position of the uplink HARQ feedback for transmitting the downlink HARQ process n; ⁇ ” indicates a special subframe; “ ⁇ ” indicates the uplink direction, “ ⁇ ” indicates the downlink direction; and a:b:c in the TTI indicates the DwPTS: GP:UpPTS ratio.
  • Example 1 TDD uplink and downlink configuration mode 0
  • the following describes the feedback timing determined by the method according to the embodiment of the present invention, in the TDD uplink and downlink configuration mode 0 (which corresponds to the TDD ratio DSUUUDSUUU) under different TTI lengths.
  • FIG. Figure 4 shows the normal CP case, and the TTIs are sequentially numbered 0 to 19 in the radio frame.
  • the TTI number in each subframe is 0 to 1.
  • FIG. 4 shows the direction of each TTI in the special subframe matching mode 0 to 9 and the DwPTS of the TTI in the special subframe: GP: UpPTS ratio.
  • the UpPTS in the special subframe cannot be configured to transmit the HARQ feedback information of the PDSCH, and in the case 2, the UpPTS in the special subframe can transmit the HARQ feedback information of the PDSCH.
  • the special subframe matching mode it can be divided into two categories, one is the special subframe matching mode 0, 5, 9 and 10. This type of setting does not perform downlink transmission in TTI 3, and the other is special. Subframe ratio modes 1, 2, 3, 4, 6, 7, 8, such settings enable downlink transmission in TTI 3.
  • the HARQ feedback timing of the PDSCH transmission or the PDCCH/EPDCCH indicating the SPS release is as shown in FIGS. 5a and 5b, and there are three downlink HARQ processes, and the RTT is 10 TTIs, 5 ms.
  • the RTT is 10 TTIs, 5 ms.
  • the PDSCH transmission or the indication SPS release in the downlink TTI 0 transmission The HARQ feedback of the released PDCCH/EPDCCH is in TTI 4, and FIGS. 5a and 5b respectively correspond to different TTI numbering modes.
  • 5a and 5b are the downlink HARQ process feedback timing of the TDD uplink and downlink configuration mode 0, the special subframe matching mode 0, 5, 9 and 10, and the corresponding 0.5 ms TTI, and the TTI in FIG. 5a is sequentially numbered in the radio frame;
  • the TTIs in 5b are sequentially numbered in each subframe.
  • the special subframe matching mode of case 1 is 1, 2, 3, 4, 6, 7, and 8: for the sake of space saving, it will not be described by the drawings.
  • case 2 whether the second slot of the special subframe can transmit ACK feedback does not affect the HARQ timing, and the HARQ feedback timing of the downlink process is the same as that of case 1.
  • M' represents the downlink transmission TTI fed back in a certain uplink feedback TTI according to the determined HARQ timing relationship Quantity.
  • the description of the table corresponding to the second numbering method of all other configurations below is the same. For the sake of simplicity of description, the description of some tables may be simplified, but the meaning of the parameters in the table is unchanged.
  • the TTI number since the uplink and downlink handover period is 5 ms, the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 9.
  • the configuration of the TDD frame structure is LTE TDD uplink and downlink configuration 0, and the UpPTS in the special subframe cannot be configured to transmit the HARQ feedback information of the PDSCH:
  • the downlink TTI nk, k ⁇ K' is transmitted in the uplink TTI n.
  • the PDSCH or the HARQ feedback of the PDCCH/EPDCCH indicating the SPS release, the value of the feedback timing K' is: the value of K' corresponding to the TTI 4, 5, 6, 14, 15, 16 is 4;
  • the downlink TTI nk is performed in the uplink TTI n.
  • the PDSCH transmitted in k ⁇ K′ or the HARQ feedback of the PDCCH/EPDCCH indicating SPS release, the value of the feedback timing K′ is: K′ corresponding to TTI 4, 5, 6, 7, 14, 15, 16, 17 The value is 4.
  • the second numbering mode that is, the method of numbering the TTI only in the subframe, when the UE is in the TTI j of the subframe nk, where k ⁇ K', j takes a value of 0 to J-1, and J is a
  • the number of TTIs in a 1ms subframe when a PDSCH transmission or a PDCCH/EPDCCH indicating downlink SPS release is detected, and a corresponding HARQ-ACK feedback is required, the TTI m in the subframe of the uplink subframe n is correspondingly performed.
  • the HARQ-ACK feedback corresponds to the feedback subframe n and the intra-subframe TTI m, and the corresponding (k, j) values are as shown in Table 3.
  • k ⁇ K'K' ⁇ k 0 , k 1 , ..., k M'-1 ⁇
  • M' represents the number of downlink subframes fed back in a certain uplink feedback TTI according to the determined HARQ timing relationship.
  • the second row corresponds to the number n of the subframe
  • the third row corresponds to the TTI number m in the subframe.
  • the description of the table corresponding to the second numbering method of all other configurations below is the same. For the sake of simplicity of description, the description of some tables may be simplified, but the meaning of the parameters in the table is unchanged.
  • the length of the TTI is 0.5 ms
  • the configuration of the TDD frame structure is LTE TDD uplink and downlink configuration 0
  • the UpPTS in the special subframe cannot be configured to transmit the HARQ feedback information of the PDSCH:
  • the downlink association set (k, j) of the feedback timing is: (k, j) corresponding to the TTI 0 of the subframe 2 is (2, 0), the subframe (k, j) corresponding to TTI 1 of 2 is (2, 1), and (k, j) corresponding to TTI 0 of subframe 3 is (2, 0), (k, j) corresponding to TTI 0 of subframe 7 is (2, 0), (k, j) corresponding to TTI 1 of subframe 7 is (2, 1), and (T, 0 corresponding to TTI 0 of subframe 8) , j) is
  • the TTI m in the subframe of the uplink subframe n corresponds to The PDSCH of the TTI j in the subframe nk or the HARQ feedback of the PDCCH/EPDCCH indicating the SPS release
  • the downlink association set (k, j) of the feedback timing is: (k, j) corresponding to the TTI 0 of the subframe 2 is (2) (0), (k, j) corresponding to TTI 1 of subframe 2 is (2, 1), (k, j) corresponding to TTI 0 of subframe 3 is (2, 0), and TTI 1 of subframe 3
  • Corresponding (k, j) is (2, 1), (k, j) corresponding to TTI 0 of subframe 7 is (2, 0), and (k, j) corresponding to TTI 1 of subframe 7 is (2, 0) (1),
  • the UpPTS in the special subframe cannot be configured to transmit the HARQ feedback information of the PDSCH, and in the case 2, the UpPTS in the special subframe can transmit the HARQ feedback information of the PDSCH.
  • Case 1 In the case 1, the UpPTS in the special subframe is set to fail to transmit the HARQ feedback information of the PDSCH.
  • the PDSCH transmission of the case 1 or the HARQ feedback timing of the PDCCH/EPDCCH indicating the SPS release is slightly different due to the different special subframe ratios. different;
  • FIG. 7a corresponds to the case where the TTIs after the shortened duration are sequentially numbered in one frame
  • FIG. 7b corresponds to the case where the TTIs after the shortened duration are sequentially numbered only in each subframe.
  • the RTT duration is 5ms.
  • the values of K' corresponding to different uplink TTIs are as shown in Table 4.
  • the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 19.
  • the values in [] in Table 4 represent the HARQ timing defined by the maximum feedback delay, and the values outside [] represent the HARQ timing defined by the principle of each uplink TTI equalization feedback.
  • the corresponding (k, j) values are as shown in Table 5.
  • the UpPTS in the special subframe is set to transmit the HARQ feedback information of the PDSCH.
  • the HARQ feedback can be faster for some downlink processes.
  • the special subframe matching modes 0 and 5 assuming that the TTI transmission downlink process consisting of the DwPTS OS and the GP, the TTI composed of the GP and the UpPTS OS can perform uplink feedback, and the downlink process and feedback are as shown in FIG. 8a and FIG. 8b. That is, the TTI of FIG. 8a is sequentially numbered within one frame, and the TTI of FIG.
  • the TDD TDD uplink and downlink configuration mode 0, 4/3 OS length TTI, the values of K' corresponding to different uplink TTIs are as shown in Table 6.
  • the uplink and downlink handover period is 5 ms, the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 19.
  • the corresponding (k, j) values are as shown in Table 7.
  • the existing one subframe 14 OSs are divided into 7 TTIs, and the TTI situation in one radio frame is as shown in FIG. 9.
  • the uplink and downlink switching period is 5ms, so the numbering of the first 5ms in the radio frame is given in Figure 9, and the TTI number is 34. If it is a radio intraframe sequence number, the TTI number is 69 in a radio frame. For the case where the subframe number is unchanged and the TTI is only numbered in the subframe, the TTI number in each subframe is 0 to 6.
  • the TTI composed of the downlink OS and the GP can transmit the downlink process, and the TTI composed of the GP and the uplink OS can feed back the ACK/NACK information of the downlink process.
  • special subframe matching modes 0 and 5 have the same process and feedback timing; special subframe matching modes 1, 2, 6, and 7 have the same downlink process and feedback timing; special subframe ratio 3 , 4, 8 have the same downstream process and feedback timing.
  • the downstream processes and feedback timings of the other configurations 9 and 10 are different.
  • the uplink and downlink switching of row configuration mode 0 is a 5 ms period. Only the first 5 ms HARQ timing of each radio frame is given. If the TTI number is used in units of 10 ms radio frames, the TTI number is from 0 to 69. In the case of a TTI number in a subframe, the subframe is 0 to 9, and the TTI in each subframe is 0 to 6. Only HARQ timings in TTI numbers 0 to 34 or subframes 0 to 4 are shown.
  • the downlink HARQ process and feedback are as shown in FIG. 10a and FIG. 10b, wherein the TTI of FIG. 10a is sequentially numbered in one frame, and the TTI of FIG. 10b is sequentially numbered only in each subframe. .
  • the downstream processes are numbered in the figure. Compared to the feedback position of “ ⁇ n”, “ ⁇ n” can obtain a lower feedback delay, but the feedback load of the same uplink subframe is larger.
  • the RTT duration is 5ms.
  • the values of K' corresponding to different uplink TTIs are as shown in Table 8.
  • the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 34.
  • the columns of TTI numbers 0 to 9, 30 to 44, and 65 to 69 that do not have a corresponding feedback relationship are omitted, and TTI n and n+35 having the same feedback timing are also merged; From the completeness of the table, it is possible to completely recover the table corresponding to the omitted TTI number, and to expand those TTI numbers that are merged.
  • Other configurations may be omitted, but the relative relationship between the feedback TTI and the corresponding downlink transmission is not affected.
  • the second numbering method that is, the method of numbering the TTI only within the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 9.
  • Example 2 TDD uplink and downlink configuration mode 1
  • the TDD uplink and downlink configuration mode 1 corresponding to the TDD ratio DSUUDDSUUD, is described in the method of the embodiment of the present invention to determine the feedback timing according to the TTI length of the 0.5 ms and 4/3 OFDM symbols.
  • the UpPTS in the special subframe cannot be configured to transmit the HARQ feedback information of the PDSCH, and in the case 2, the UpPTS in the special subframe can transmit the HARQ feedback information of the PDSCH.
  • the special subframe matching mode it can be divided into two categories, one is the special subframe matching mode 0, 5, 9 and 10. This type does not have downlink transmission in TTI3, and the other is special subframe. Proportion mode 1, 2, 3, 4, 6, 7, 8, this type has downlink transmission in TTI3. In order to save space, it will not be described in conjunction with the drawings.
  • the TDD uplink and downlink configuration mode 1 the 0.5 ms TTI length, and the K' corresponding to the different uplink TTIs are as shown in Table 10.
  • the uplink and downlink switching period is 5ms
  • the TTI number It can also correspond to only 5ms of the existing LTE, that is, the number is 0-9.
  • the second numbering method that is, the method of performing the TTI numbering only in the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 11.
  • the existing one slot 7 (SC-) OFDM symbols are divided into 2 TTIs, one of which has a length of 4 (SC-) OFDM symbols and another TTI length. It is 3 (SC-) OFDM symbols.
  • SC- 3
  • the UpPTS in the special subframe cannot be configured to transmit the HARQ feedback information of the PDSCH, and in the case 2, the UpPTS in the special subframe can transmit the HARQ feedback information of the PDSCH.
  • Case 1 In the case 1, the UpPTS in the special subframe is set to fail to transmit the HARQ feedback information of the PDSCH.
  • the PDSCH transmission of Case 1 or the HARQ feedback timing of the PDCCH/EPDCCH indicating SPS release is slightly different due to different special subframe ratios.
  • the values of K' corresponding to different uplink TTIs are as shown in Table 12.
  • the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 19.
  • the second numbering method that is, the method of numbering the TTI only within the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 13.
  • the UpPTS in the special subframe can be set to transmit the HARQ feedback information of the PDSCH.
  • the UpPTS can transmit the HARQ feedback information corresponding to the downlink transmission, the HARQ feedback can be faster for some downlink processes.
  • the values of K' corresponding to different uplink TTIs are as shown in Table 14.
  • the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 19.
  • the second numbering method that is, the method of performing the TTI numbering only in the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 15.
  • the uplink and downlink switching period is 5 ms. If it is a radio intraframe sequence number, the first 5 ms TTI number in the radio frame is 0 to 34, TTI. The number is 69 in a radio frame. And for the subframe number unchanged, In the case where the TTI is numbered only in a subframe, the TTI number in each subframe is 0 to 6.
  • the TTI composed of the downlink OS and the GP can transmit the downlink process, and the TTI composed of the GP and the uplink OS can feed back the ACK/NACK information of the downlink process.
  • the special subframe matching modes 0 and 5 have the same process.
  • the downstream processes and feedback timings of the other configurations 9 and 6:2:6 are different.
  • the following is a description of the HARQ feedback timing of the PDCCH/EPDCCH for the PDSCH transmission or the SPS release in the case of different special time slot configurations.
  • the uplink and downlink handover of the TDD uplink and downlink configuration mode 0 is a 5 ms period, only the 5 ms period is given here.
  • the TTI number is used in units of 10 ms radio frames, the TTI number is from 0 to 69.
  • the sub-frame is 0 to 9, each sub-frame.
  • the intra TTI is 0-6.
  • the values of K' corresponding to different uplink TTIs are as shown in Table 16.
  • the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 34.
  • "0/35" in the table indicates TTI 0 or TTI 35
  • "1/36" indicates TTI 1 or TTI 36. Since it is a cycle of 5 ms, each cycle includes 35 TTIs, so TTIs with 35 TTIs apart from each other have similar feedback timing.
  • the table below also has a similar representation.
  • the second numbering method that is, the method of performing the TTI numbering only in the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 17.
  • TTI of 0.5 ms that is, the number of (SC-) OFDM symbols included in one TTI is the same as that of the existing one slot, and is seven (the extended CP is six).
  • the extended CP is six.
  • the TTI number in each subframe is 0 to 1.
  • Case 1 The UpPTS in the special subframe cannot transmit the HARQ feedback information of the PDSCH
  • Case 2 The UpPTS in the special subframe can transmit the HARQ feedback information of the PDSCH.
  • the special subframe matching mode it can be further divided into two categories, one is the special subframe matching mode 0, 5, 9 and 10, such that there is no downlink transmission in the second TTI of the special subframe.
  • the other type is the special subframe matching mode 1, 2, 3, 4, 6, 7, 8, which has downlink transmission in the second TTI of the special subframe.
  • the special subframe of the case 1 is matched with the mode 0, 5, 9 and 10 PDSCH transmission or the HARQ feedback timing of the PDCCH/EPDCCH indicating the SPS release, and there are 5 downlink HARQ processes, and the RTT transmits 7 processes in 100 TTIs. It is about 7.143ms.
  • the special subframe of the case 1 is matched with the mode 1, 2, 3, 4, 6, 7, 8, and the PDSCH transmission or the HARQ feedback timing of the PDCCH/EPDCCH indicating the SPS release, and there are 12 downlink HARQ processes, and the RTT is 15 TTI, 7.5ms.
  • TDD uplink and downlink configuration mode 2 0.5 ms length TTI, case 1, the values of K' corresponding to different uplink TTIs are as shown in Table 18.
  • the uplink and downlink switching cycle is 5ms, Therefore, the TTI number can also correspond to only 5 ms of the existing LTE, that is, the number is 0-9.
  • the second numbering method that is, the method of numbering the TTI only within the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 19.
  • the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 9.
  • the second numbering method that is, the method of performing the TTI numbering only in the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 21.
  • the existing one slot 7 OS symbols are divided into two TTIs, one of which has a TTI length of 4OS and the other TTI has a length of 3OS.
  • the case is described as an example.
  • the first TTI in a slot is 4OS
  • the second TTI is 3OS
  • the first TTI is 3 OSs
  • the second is 4 OSs.
  • the TTI number in each subframe is 0 to 3.
  • Case 1 The UpPTS in the special subframe cannot transmit the HARQ feedback information of the PDSCH
  • Case 2 The UpPTS in the special subframe can transmit the HARQ feedback information of the PDSCH.
  • the special subframe matching mode 1 2, 3, 6, 7, 8, assuming that the TTI transmission downlink process consisting of the DwPTS OS and the GP, in the downlink process and feedback, there are 15 downlink HARQ processes, and the RTT is 5ms.
  • the special subframe matching mode 4 if it is assumed that the TTI corresponding to the DwPTS:GP:UpPTS is 1:1:1, the downlink process cannot be transmitted, and the configuration is matched with the special subframe mode 1, 2, 3, 6, The HARQ timing of 7,8 is the same, and if the TTI can transmit the downlink process, there are 16 downlink HARQ process processes in the downlink process and the HARQ sequence, and the RTT is 5 ms.
  • the RTT is 5 ms, and a total of 14 downlink HARQ processes.
  • the RTT is 5 ms and the process is 14.
  • the values of K' corresponding to different uplink TTIs are as shown in Table 22.
  • the TTI number can also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 19.
  • the second numbering method that is, the method of numbering the TTI only in the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 23.
  • the UpPTS can transmit the HARQ feedback information corresponding to the downlink transmission, the HARQ feedback can be faster for some downlink processes.
  • the following Special subframe matching mode for analysis For the TTI of 4/3 OS length, if the UpPTS can transmit the HARQ feedback information corresponding to the downlink transmission, the HARQ feedback can be faster for some downlink processes.
  • the special subframe matching mode 0 and 5 assumes that the TTI consisting of the DwPTS OS and the GP transmits the downlink process, and the TTI composed of the GP and the UpPTS OS can perform uplink feedback.
  • the downlink process and feedback a total of 13 downlink HARQ processes, RTT It is 5ms.
  • the TTI consisting of the DwPTS OS and the GP transmits the downlink process
  • the TTI composed of the GP and the UpPTS OS can perform uplink feedback, the downlink process and the feedback.
  • the TTI corresponding to the DwPTS:GP:UpPTS is 1:1:1, the downlink process cannot be transmitted, and the configuration is matched with the special subframe mode 1, 2, 3, 6, The HARQ timing of 7,8 is the same. If the TTI can transmit the downlink process and the uplink SC-OFDM symbol of the TTI can perform the HARQ feedback of the downlink process, the RTT is still 5 ms in the downlink process and the HARQ sequence. A total of 16 downlink HARQ processes.
  • the TTI consisting of the DwPTS OS and the GP transmits the downlink process
  • the TTI composed of the GP and the UpPTS OS can perform uplink feedback
  • the downlink process and the HARQ feedback a total of 14 downlink HARQ processes, RTT It is 5ms.
  • the TTI consisting of the DwPTS OS and the GP transmits the downlink process
  • the TTI composed of the GP and the UpPTS OS can perform uplink feedback
  • the downlink process and the HARQ feedback a total of 14 downlink HARQ processes, RTT It is 5ms.
  • the values of K' corresponding to different uplink TTIs are as shown in Table 24.
  • the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 19.
  • the second numbering mode that is, the method of numbering the TTI only within the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 25.
  • the TTI of two OSs 14 existing OSs of one subframe are divided into 7 TTIs.
  • the normal CP is taken as an example for description.
  • the uplink and downlink switching period is 5 ms, so the TTI number of the first 5 ms in the radio frame is 34, and if it is a radio intraframe sequence number, the TTI number is in one.
  • the maximum within the wireless frame is 69.
  • the TTI number in each subframe is 0 to 6;
  • the TTI composed of the downlink OS and the GP can transmit the downlink process, and the TTI composed of the GP and the uplink OS can feed back the ACK/NACK information of the downlink process.
  • the special subframe matching modes 0 and 5 have the same process.
  • the downstream processes and feedback timings of the other configurations 9 and 6:2:6 are different.
  • the HARQ feedback timing of the PDCCH/EPDCCH for the PDSCH transmission or the SPS release in the case of different special time slot configurations.
  • the uplink and downlink handover of the TDD uplink and downlink configuration mode 2 is a 5 ms period, only The first 5ms of the HARQ timing of the radio frame. If the TTI number is performed in units of 10 ms radio frames, the TTI number is from 0 to 69. For the case of the intra-subframe TTI number, the subframe is 0 to 9, and the TTI in each subframe is 0 to 6.
  • the RTT duration is 5 ms, and a total of 23 downlink HARQ processes.
  • the RTT duration is 5 ms, and a total of 26 downlink HARQ processes.
  • the RTT duration is 5 ms and 27 downlink HARQ processes.
  • the RTT duration is 5 ms and 24 downlink HARQ processes.
  • the RTT duration is 5 ms and 24 downlink HARQ processes.
  • the values of K' corresponding to different uplink TTIs are as shown in Table 26.
  • the TTI number may also correspond to only 5 ms of the existing LTE, that is, the number is 0 to 34.
  • the second numbering method that is, the method of performing the TTI numbering only in the subframe, corresponding to the feedback subframe n, the intra-subframe TTI m, and the corresponding (k, j) value is as shown in Table 27.
  • the corresponding downlink HARQ process design is performed, and 0.5 ms, 4/3 OS, and 2 OS length TTI can be obtained when the UE is in TTI nk, where k ⁇ K
  • the UE performs HARQ-ACK feedback in the uplink TTI n.
  • K' corresponding to different uplink TTIs. Only the case where the TTIs are sequentially numbered in the radio frame is given here. For the case where the TTI is numbered in the subframe, it can be obtained according to the correspondence between the subframe and the TTI number.
  • the HARQ feedback timing obtained after applying the method according to the embodiment of the present invention is given.
  • the first threshold and the second threshold in the preset feedback retransmission timing relationship are both TTIs
  • an example of the timing relationship of the HARQ of the TDD uplink and downlink configuration 2 and the 0.5 ms length TTI is given.
  • the downlink TTI nk, the PDSCH transmitted in k ⁇ K′ or the HARQ feedback of the PDCCH/EPDCCH indicating the SPS release are performed in the uplink TTI n, and the values of K′ are as shown in Table 34 (Case 1) and Table 35 (Case 2). Show.
  • the embodiment of the invention further provides a communication device, including:
  • a memory configured to store a computer program
  • a processor coupled to the memory, configured to perform the method of determining a hybrid automatic repeat request HARQ feedback timing provided by any one of the foregoing technical solutions by executing the computer program.
  • the processor here may include: an application processor AP (AP), a central processing unit (CPU), a digital signal processor (DSP), or a programmable gate array (FPGA, Field Programmable). Gate Array).
  • AP application processor
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA programmable gate array
  • FPGA Field Programmable
  • the memory can include a storage medium for non-transitory storage of a computer program.
  • the communication device herein may be the aforementioned base station.
  • the processor is coupled to the memory via a bus, and the bus may include an integrated circuit (IIC) bus or the like.
  • IIC integrated circuit
  • the embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the determined hybrid automatic repeat request HARQ feedback provided by any one of the foregoing embodiments. Timing method.
  • the storage medium provided in this embodiment may be various types of storage media, and may be a non-transitory storage medium.
  • the technical solution provided in the embodiment of the present invention determines the relative positional relationship between the data transmission TTI and the feedback TTI in the HARQ process according to the size of the transmission time interval TTI, or between the initial transmission TTI, the feedback TTI, and the retransmission TTI. Relative positional relationship, so that the number of HARQ processes corresponding to TTIs of different lengths can be determined, and the HARQ feedback timing in the above case can be obtained, thereby providing support for low-latency transmission and being active in the industry.
  • the technical solution provided by the present invention can be realized by injecting into the base station and the terminal through computer program instructions, and has the characteristics of being industrially simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明提供了一种确定混合自动重传请求反馈时序的方法及装置,所述方法包括:确定当前采用的TDD帧结构的配置,所述TDD帧结构的配置包括上下行配置以及特殊子帧配比;确定当前采用的传输时间间隔TTI的大小;根据所述TDD帧结构的配置以及TTI的大小,确定HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。本发明实施例还公开了一种通信设备及存储介质。

Description

确定反馈时序的方法、装置、设备及存储介质
本申请基于申请号为2016103194192、申请日为2016年05月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术领域,具体涉及一种确定混合自动重传请求(HARQ,hybrid Automatic Repeat reQuest)反馈时序的方法、装置、通信设备及计算机存储介质。
背景技术
混合自动重传请求(HARQ,hybrid Automatic Repeat reQuest)是自动重传请求ARQ与前向纠错码(FEC,Forward Error Correction)的结合,是LTE***链路自适应的一种手段。
LTE***采用N通道的停等式HARQ协议,即N个进程同时存在,每个进程内采用停等式ARQ协议传输,发送端发送完一个数据包后就暂时停下来等待接收端的确认消息,等数据到达接收端时,对其进行检错,如果接收正确就反馈ACK消息给发送端,否则,反馈NACK消息给发送端,发送端收到ACK信号时,再发送新的数据,否则重传上次的数据包。并行的N个进程是的在停等的过程中,其他进程能够利用信道资源传输。
HARQ的最小RTT(Round Trip Time)定义为一次数据包传输过程的完成时间,包括数据包开始发送,接收端接收并处理,进行ACK/NACK的反馈,发送端收到并解调处理ACK/NACK信号后,确定进行数据重传或是发送新数据包的过程。对于FDD的帧结构,上下行的传输总是连续的,可以在固定的子帧中进行ACK/NACK信号的反馈或是数据的重传。对于TDD 帧结构,由于上下行传输是时分复用的,无法为每个子帧找到固定且相同的反馈时间间隔。对于不同的TDD上下行(UL/DL)配置,不同的子帧,ACK/NACK反馈和重传的时间间隔都不相同。
随着通信业务的发展,更低延迟的业务需求要求通信***能够支持更低时延的数据传输,更短的传输时间间隔(TTI)成为实现低时延传输的一种主要方式。因此,亟需针对各种更短时长的TTI长度下下行PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序进行重新定义,从而能够确定更短TTI情况下的HARQ反馈时序关系。
发明内容
本发明实施例要解决的技术问题是提供一种确定HARQ反馈时序的方法、装置、通信设备及计算机存储介质,用以确定不同TTI情况下的的HARQ反馈时序。
本发明实施例提供的确定HARQ反馈时序的方法,包括:
确定当前采用的TDD帧结构的配置;
确定当前采用的传输时间间隔TTI的大小;
根据所述TDD帧结构的配置以及TTI的大小,确定HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
本发明实施例提供的确定HARQ反馈时序的装置,包括:
配置确定单元,配置为确定当前采用的TDD帧结构的配置,所述TDD帧结构的配置包括上下行配置以及特殊子帧配比;
TTI确定单元,配置为确定当前采用的传输时间间隔TTI的大小;
位置确定单元,配置为根据所述TDD帧结构的配置以及TTI的大小,确定HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次 传输TTI、反馈TTI及重传TTI之间的相对位置关系。
本发明实施例还提供一种通信设备,包括:
存储器,配置为存储计算机程序;
处理器,与所述存储器相连,配置为通过执行所述计算机程序,能够执行上述确定混合自动重传请求HARQ反馈时序的方法。
本发明实施例第四方面提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述确定混合自动重传请求HARQ反馈时序的方法。
与现有技术相比,本发明实施例提供的确定HARQ反馈时序的方法、装置、通信设备及存储介质,能够针对不同的TDD上下行配置模式和特殊子帧配比模式,在满足反馈TTI与初次传输TTI之间的间隔大于第一门限,与重传TTI之间的间隔大于第二门限的条件下,确定出不同长度TTI对应的HARQ进程的数量,并能够获得上述情况下的HARQ反馈时序,从而为低时延的传输提供了支持。另外,本发明实施例能够针对较短的上述门限值给出HARQ反馈时序,从而可以进一步实现更快的低时延传输。另外,本发明实施例还可以将HARQ反馈尽可能的平均承载在各个反馈TTI上,避免某个/某些反馈TTI上承载的信息过多。
附图说明
图1为现有技术的FDD HARQ反馈示意图;
图2a和图2b为本发明实施例提供的确定HARQ反馈时序的方法的流程示意图;
图3为本发明实施例提供的确定HARQ反馈时序的装置的结构示意图;
图4为本发明实施例给出的TDD上下行配置模式0下,不同特殊子帧配比时的0.5ms TTI的示意图;
图5a和图5b分别为本发明实施例给出的TDD上下行配置模式0、特殊子帧配比模式0,5,9和10时,0.5ms TTI的HARQ反馈时序的示意图一和示意图二;
图6为本发明实施例给出的TDD上下行配置模式0下,不同特殊子帧配比时的4/3OS TTI的示意图;
图7a和图7b分别为本发明实施例给出的情形1下,TDD上下行配置模式0、特殊子帧配比模式0和5时,4/3OS TTI的HARQ反馈时序的示意图一和示意图二;
图8a和图8b分别为本发明实施例给出的情形2下,TDD上下行配置模式0、特殊子帧配比模式0和5时,4/3OS TTI的HARQ反馈时序的示意图一和示意图二;
图9为本发明实施例给出的TDD上下行配置模式0下,不同特殊子帧配比时的2OS TTI的示意图;
图10a和图10b分别为本发明实施例给出的TDD上下行配置模式0、特殊子帧配比模式0和5时,2OS TTI的HARQ反馈时序的示意图一和示意图二;
图11为本发明实施例中将HARQ反馈平均分配到各个反馈TTI的示意图;
图12为本发明实施例中基于第二约束条件将HARQ反馈平均分配到各个反馈TTI的示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如可选地配 置和组件的特定细节仅仅是为了帮助全面理解本发明的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本发明的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本发明的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“***”和“网络”在本文中常可互换使用。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本发明实施例提供的确定HARQ反馈时序的方法,应用于采用TDD帧结构的LTE***中。应理解的是,本文所述的HARQ可以是针对下行数据的HARQ反馈,此时HARQ反馈在上行TTI上传输;本文所述的HARQ也可以是针对上行数据的HARQ反馈,此时HARQ反馈在下行TTI上传输。
本文中,传输TTI是指传输数据的TTI,该数据可以是上行数据或下行数据。传输TTI是具有传输方向的,例如是上行方向或者下行方向,本文 后续在进行编号处理是,都是对相同传输方向的TTI进行编号。本文中,传输TTI在用于传输数据时,又被称为数据传输TTI。反馈TTI是指反馈所述数据传输TTI上的传输数据的控制信息的TTI,该控制信息可以是ACK/NACK等信息。例如,以下行传输为例,传输TTI可以是传输PDSCH或指示SPS释放的PDCCH/EPDCCH上的数据,其对应的反馈TTI可以是传输ACK/NACK反馈信息。由于可能需要重传同一数据,本文中,初次传输数据的传输TTI又可以被称为初次传输TTI,此时,反馈TTI是指反馈所述初始传输TTI上的传输数据的控制信息的TTI;可选地,在需要重传数据时,重传该数据的传输TTI则被称为重传TTI。
请参照图2a,本发明实施例提供的一种确定HARQ反馈时序的方法,包括以下步骤:
步骤11,确定当前采用的TDD帧结构的配置,所述TDD帧结构的配置包括上下行配置以及特殊子帧配比。
步骤12,确定当前采用的传输时间间隔TTI的大小。
步骤13,根据所述TDD帧结构的配置以及TTI的大小,确定HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。其中,所述TTI的大小,可理解为:所述TTI的时长。
这里,由于数据可能传输成功,此时不需要重传TTI,或者对于异步的HARQ,重传的TTI可以由基站调度,因此仅需要确定数据传输TTI与其反馈TTI之间的第一相对位置关系;而在数据初次传输失败时,或是同步的HARQ时,则可能需要确定初次传输TTI、反馈TTI及重传TTI之间的第二相对位置关系。由于初次传输TTI、反馈TTI及重传TTI之间的第二相对位置关系中的初次TTI和反馈TTI的相对位置关系,就是所述第一相对位置关系。下文中将主要以第二相对位置关系为例进行说明。在获得了 第二相对位置关系时,由于第二相对位置关系中包括有第一相对位置关系,因此可以获得第一相对位置关系。
上述步骤13中,具体可以通过确定每个HARQ进程的初次传输TTI的位置,并根据预设反馈重传时序关系,从所述TDD帧结构中选择出该HARQ进程的反馈TTI和重传TTI,得到该HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系,其中,一个TTI最多能传输一个HARQ进程的数据,所述预设反馈重传时序关系是指反馈TTI与初次传输TTI之间的间隔大于第一门限,与重传TTI之间的间隔大于第二门限。
请参照图2b,上述步骤13具体可以包括:
步骤131,在TDD帧结构中,将第一传输TTI作为一HARQ进程的初次传输TTI,确定满足预设反馈重传时序关系,且使得初次传输TTI与重传TTI的间隔最小的第一反馈TTI和第一重传TTI的位置,并确定从第一传输TTI开始,到第一重传TTI的前一个传输TTI结束的传输TTI的数量n。
这里,所述预设反馈重传时序关系是指反馈TTI与初次传输TTI之间的间隔大于第一门限,与重传TTI之间的间隔大于第二门限;所述传输TTI为上行传输TTI或下行传输TTI。所述第一门限和第二门限通常可以根据数据传输时延以及设备对数据的处理耗时等因素来设置。例如,通常可以是3~4个TTI的时间长度。
步骤132,对从第一传输TTI开始的n个同方向传输TTI依次编号,所谓同方向指与第一传输TTI同是下行传输或同是上行传输,以及,对从第一重传TTI开始n个同方向传输TTI依次编号,其中,同一编号的前后两个传输TTI分别为该编号对应的HARQ进程的初次传输TTI和重传TTI。
这里,传输TTI的编号,可以看作是HARQ进程的编号。具有同一编号的前后两个传输TTI,分别是同一HARQ进程的初次传输TTI和重传TTI。 不同编号的传输TTI是不同HARQ进程的传输TTI。
在上述编号过程中,将从第一传输TTI开始的各个同方向传输TTI,依次进行编号。例如,以传输TTI的方向是下行方向为例,则对从第一传输TTI开始的各个下行传输TTI进行编号,直至完成对n个传输TTI的编号。类似的,将从第一重传TTI开始的各个传输TTI,依次进行编号。例如,以传输TTI的方向是下行方向为例,则对从第一传输TTI开始的各个下行传输TTI进行编号,直至完成对n个传输TTI的编号。上述两个编号过程的起始编号可以是0或者1,也可以是其他数字,但两个编号过程中起始编号应相同,以保证同一进程的传输TTI具有相同的编号。
步骤133,判断每个HARQ进程的初次传输TTI和重传TTI之间是否都存在一反馈TTI满足所述预设反馈重传时序关系,若是,进入步骤134,否则进入步骤135。
步骤134,确定TDD帧结构的HARQ进程数量为n,并得到每个HARQ进程中数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
这里,本发明实施例所述TDD帧结构中,一个10ms的无线帧包括10个1ms的子帧,每个子帧可以包括有多个TTI。
作为一种实现方式,本实施例可以在各个无线帧内,对该无线帧包含的所有TTI依次顺序编号,各个无线帧内的TTI进行循环编号,此时,所述反馈TTI与初次传输TTI之间的相对位置关系为:反馈TTI与初次传输TTI之间的TTI间隔。
作为另一种实现方式,本实施例可以在各个子帧内,对该子帧包含的所有TTI依次顺序编号,各个子帧内的TTI进行循环编号,此时,所述反馈TTI与初次传输TTI之间的相对位置关系为:反馈TTI与初次传输TTI之间的子帧间隔,反馈TTI与初次传输TTI在各自所属子帧内的编号。
步骤135,将n的当前值加1,并将所述第一重传TTI移动至当前位置的下一个传输TTI,并返回步骤132。
通过以上步骤,本发明实施例最终可以得到HARQ进程的数量n,并且得到每个HARQ进程中的初次传输TTI、反馈TTI和重传TTI的位置,上述n是在满足所述预设反馈重传时序关系的条件下的HARQ进程的数量的最小值。可以看出,本发明实施例能够为不同TTI长度的帧结构配置给出相应的HARQ反馈时序,为低时延的传输提供了支持。另外,本发明实施例还可以将HARQ反馈尽可能的平均承载在各个反馈TTI上。
在上述步骤134中,可以根据同一HARQ进程的初次传输TTI以及重传TTI的位置,确定位于该HARQ进程的初次传输TTI以及重传TTI之间,且满足所述预设反馈重传时序关系的该HARQ进程的反馈TTI的可选位置;然后,根据各HARQ进程的初次传输TTI和重传TTI的位置、以及反馈TTI的可选位置,获得各HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
本发明实施例在上述步骤134中,可以直接确定该HARQ进程的初次传输TTI和重传TTI的位置。而对于该HARQ进程的反馈TTI,则可以将该HARQ进程的初次传输TTI和重传TTI之间满足所述预设反馈重传时序关系的反馈TTI的任一可选位置,作为该HARQ进程的反馈TTI,从而得到该HARQ进程的反馈TTI的位置,并输出反馈TTI与初次传输TTI之间的相对位置关系。
考虑到使各个反馈TTI的承载的HARQ反馈尽可能平均,避免集中在少数反馈TTI中进行反馈降低上行反馈性能,这里,当根据各HARQ进程的初次传输TTI和重传TTI的位置、以及反馈TTI的可选位置,获得各HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系时,可以先确定各个HARQ进程的 反馈TTI的可选位置;然后,当需要在x个可选位置上进行y个HARQ进程的HARQ反馈时,将所述y个HARQ进程的HARQ反馈,平均分配到所述x个可选位置上,每个可选位置上反馈的HARQ进程的数量为z或z+1个,得到各个HARQ进程的反馈TTI的位置,其中,z为y/x的向下取整;进而根据各HARQ进程的初次传输TTI、反馈TTI以及重传TTI的位置,输出各HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
可选地,要保证在满足尽可能平均的基础上,本发明实施例还可以基于第一约束条件和/或第二约束条件,将所述y个HARQ进程的HARQ反馈,平均分配到所述x个可选位置上。
这里,所述第一约束条件为:在第一HARQ进程的初次传输时间早于第二HARQ进程的初次传输时,所述第一HARQ进程的初次传输的HARQ反馈,不迟于所述第二HARQ进程的初次传输的HARQ反馈,其中,第二HARQ与第一HARQ进程为不同进程;
所述第二约束条件为:在第一HARQ进程的一个传输TTI与第三HARQ进程的一个传输TTI位于不同的上下行切换周期中的相同位置时,所述第一HARQ进程的一个传输TTI的HARQ反馈,与第三HARQ进程的一个传输TTI的HARQ反馈,也位于不同的上下行切换周期中的另一相同位置,其中,第三HARQ进程与第一HARQ进程为同一进程或不同进程。这里的第一HARQ进程的一个传输TTI可以是初次传输TTI或重传TTI,类似的,第三HARQ进程的一个传输TTI也可以是初次传输TTI或重传TTI。关于上下行切换周期,可以参考后文的描述。
为帮助理解第二约束条件,现结合后文的附图12进行解释。图12中每个最小的方格表示一个TTI,每个无线帧包括0~19共20个TTI;“↓n”表示下行HARQ进程n,“↓n”所在的方格表示用于下行HARQ进程n的 初次传输或重传数据的TTI;“↑n”表示下行HARQ进程n的上行HARQ反馈,“↑n”所在的方格表示用于传输下行HARQ进程n的上行HARQ反馈的TTI;“▲n”表示传输下行HARQ进程n的上行HARQ反馈的可选TTI。
请参照图12,示出了按照上述第二约束条件得到的TDD上下行配置模式2在0.5ms TTI下的一种HARQ反馈时序的示意图。TDD上下行配置模式2的上下行切换周期为5ms,每个上下行切换周期包括有10个TTI。图12中,HARQ进程0在第1个上下行切换周期的第1个TTI,HARQ进程7在第2个上下行切换周期的第1个TTI,即HARQ进程0的一个传输TTI和进程7的一个传输TTI位于不同的上下行切换周期中的相同位置,此时,它们的反馈TTI也应在不同的上下行切换周期中的另一相同位置上,如,HARQ进程0在第1个上下行切换周期的第1个TTI的反馈TTI的位置是:第1个上下行切换周期的第5个TTI;而HARQ进程7在第2个上下行切换周期的第1个TTI的反馈TTI的位置是:第2个上下行切换周期的第5个TTI。类似的,HARQ进程1和HARQ进程8也满足上述约束条件,HARQ进程2和HARQ进程9也满足上述约束条件。
上述平均分配的一个例子如图11所示,图11中每个最小的方格表示一个TTI,每个无线帧包括0~19共20个TTI;“↓n”表示下行HARQ进程n,“↓n”所在的方格表示用于下行HARQ进程n的初次传输或重传数据的TTI;“↑n”表示下行HARQ进程n的上行HARQ反馈,“↑n”所在的方格表示用于传输下行HARQ进程n的上行HARQ反馈的TTI;“▲n”表示传输下行HARQ进程n的上行HARQ反馈的可选TTI。
可以看出,图11中,下行HARQ进程2~9共8个下行HARQ进程需要在上行TTI 13~15共3个上行TTI上进行HARQ反馈,在满足所述预设反馈重传时序关系的前提下,按照平均分配的原则分配,即有2个上行TTI 需要分别承载3个反馈,1个TTI承载2个反馈,从而得到的一种分配方式如图11所示,让进程2~4在TTI 13上,进程5~7在TTI 14上,进程8~9在TTI15上进行反馈,能够达到在HARQ反馈尽可能平均分布于连续上行TTI的情况下,平均的HARQ反馈时延最短。这里,假设所述预设反馈重传时序关系中的第一门限和第二门限均为4个TTI。
本发明实施例可以应用至现有标准定义的各种LTE TDD帧结构中,如3GPP TS 36.211Table 4.2-2:Uplink-downlink configurations中定义的LTE TDD上下行配置模式0~6的一个无线帧的结构,对于上下行配置模式0~2、6,其上下行切换周期为5ms,即每个10ms的无线帧内包括有2个上下行切换周期;对于上下行配置模式3~5,其上下行切换周期为10ms,即每个10ms的无线帧内包括有1上下行切换周期。3GPP TS 36.211还定义了特殊子帧配比模式0~9,对于特殊子帧配比模式0~9。本发明实施例还新增了一种特殊子帧配比模式,其DwPTS:GP:UpPTS比例为:6:2:6。为便于描述,将上述新增的特殊子帧配比模式称之为特殊子帧配比模式10,即,特殊子帧配比模式10的DwPTS:GP:UpPTS比例为:6:2:6。
另外,本发明实施例可以应用至各种新定义的TDD帧结构中,例如,本发明实施例提供了3种现有标准未定义的TDD帧结构,为便于描述,将其称之为新增上下行配置模式1~3,具体如表1所示,表1示出了上述各配置模式的一个10ms的无线帧结构,可以看出,与现有技术类似,这些配置模式的无线帧也是10ms,且包括有10个1ms的子帧。对于新增上下行配置模式1、3来说,其上下行切换周期为5ms,即每个10ms的无线帧内包括有2个上下行切换周期;对于上下行配置模式2来说,其上下行切换周期为10ms,即每个10ms的无线帧内包括有1上下行切换周期。
Figure PCTCN2017084245-appb-000001
表1
上述新增上下行配置模式1的无线帧结构是将上述LTE TDD上下行配置模式2中的子帧3、4、8、9均替换为下行:GP:上行的比例为7:1:6的第一双向子帧,且特殊子帧的DwPTS:GP:UpPTS比例为9:1:4;新增上下行配置模式2的无线帧结构是将LTE TDD上下行配置模式2中的子帧3、4、7、8、9均替换为下行:GP:上行比例为11:1:2的第二双向子帧,且特殊子帧的DwPTS:GP:UpPTS比例为9:1:4;新增上下行配置模式3的无线帧结构是将LTE TDD上下行配置模式2中的下行子帧3、4、8、9均替换为下行:GP:上行比例为6:2:6的第三双向子帧,且特殊子帧的DwPTS:GP:UpPTS比例为6:2:6。
为针对TDD帧结构进行HARQ反馈设计,本发明实施例在上述步骤131之前还可以包括以下步骤:
步骤130,根据预定的TTI长度,将所述TDD帧结构的各子帧划分为多个TTI,并确定各个TTI中的传输TTI以及反馈TTI,其中,所述反馈TTI与传输TTI的传输方向相反,所述传输TTI为上行传输TTI或下行传输TTI。
这里,传输TTI都是具有相同传输方向的、可以用于数据传输的TTI。对于既包括有上行传输又包括有下行传输的双向TTI,其传输方向可以根据上行传输或下行传输的时长大小以及***预设条件(如***可以针对各个双向TTI定义其是否能够用于上行或下行传输)。
下面,针对上述各种现有或本发明实施例新定义的TDD帧结构,描述上述步骤130的具体实现。
1)针对LTE TDD上下行配置模式0~6
LTE TDD上下行配置模式0~6中的任意一种帧结构,可以采用特殊子帧配比模式0~10中的任意一种的特殊子帧配比。
下面针对本发明实施例采用的不同长度的TTI分别进行描述。
A)采用长度为0.5ms的TTI
在采用0.5ms的TTI时,在上述步骤130中,将TDD帧结构的各子帧划分为多个TTI,具体为:
在所述TDD帧结构中,将每个普通子帧划分为2个TTI,每个普通子帧中的TTI的传输方向与该普通子帧的传输方向相同;
在所述TDD帧结构中,将特殊子帧划分为2个TTI,作为一种实现方式,对应于特殊子帧配比模式0~10,特殊子帧的2个TTI中的DwPTS:GP:UpPTS比例依次为:
特殊子帧配比模式0:3:4:0、0:6:1;
特殊子帧配比模式1:7:0:0、2:4:1;
特殊子帧配比模式2:7:0:0、3:3:1;
特殊子帧配比模式3:7:0:0、4:2:1;
特殊子帧配比模式4:7:0:0、5:1:1;
特殊子帧配比模式5:3:4:0、0:5:2;
特殊子帧配比模式6:7:0:0、2:3:2;
特殊子帧配比模式7:7:0:0、3:2:2;
特殊子帧配比模式8:7:0:0、4:1:2;
特殊子帧配比模式9:6:1:0、0:5:2;
特殊子帧配比模式10:6:1:0、0:1:6;
其中,在特殊子帧的UpPTS不允许作为传输上行反馈时:特殊子帧配比模式0、5、9、10中,特殊子帧的2个TTI中的第1个TTI用于下行传 输,第2个TTI不用于数据传输;特殊子帧配比模式1、2、3、4、6、7、8中,特殊子帧的2个TTI都用于下行传输。
在特殊子帧的UpPTS允许作为传输上行反馈时:特殊子帧配比模式0、5、9、10中,特殊子帧的2个TTI中的第1个TTI用于下行传输,第2个TTI用于上行传输;特殊子帧配比模式1、2、3、4、6、7、8中,特殊子帧的2个TTI中的第1个TTI用于下行传输,第2个TTI用于上行传输和/或下行传输。
B)采用长度为4/3OFDM符号的TTI
在采用4/3OFDM符号的TTI时,在上述步骤130中,将TDD帧结构的各子帧划分为多个TTI,具体为:
在所述TDD帧结构中,将每个普通子帧的每个时隙划分为2个长度分别为4OFDM符号和3OFDM符号的TTI;每个普通子帧中的TTI的传输方向与该普通子帧的传输方向相同;
在所述TDD帧结构中,将特殊子帧划分为4个长度分别为4OFDM符号、3OFDM符号、4OFDM符号和3OFDM符号的TTI,作为一种实现方式,对应于特殊子帧配比模式0~10,特殊子帧的4个TTI中的DwPTS:GP:UpPTS比例依次为:
特殊子帧配比模式0和5:3:1:0、0:3:0、0:4:0、0:2:1;
特殊子帧配比模式1、2、6和7:4:0:0、3:0:0、2:2:0、0:2:1;
特殊子帧配比模式3:4:0:0、3:0:0、0:4:0、0:2:1;
特殊子帧配比模式4:4:0:0、3:0:0、4:0:0、1:1:1;
特殊子帧配比模式8:4:0:0、3:0:0、4:0:0、0:1:2;
特殊子帧配比模式9:4:0:0、2:1:0、0:4:0、0:1:2;
特殊子帧配比模式10:4:0:0、2:1:0、0:1:3、0:0:3;
其中,在特殊子帧的UpPTS不允许作为传输上行反馈时:
特殊子帧配比模式0和5中,特殊子帧的4个TTI中仅第1个TTI用于下行传输,第2-4个TTI不传输数据;
特殊子帧配比模式1、2、3、6、7和8中,特殊子帧的4个TTI中的第1-3个TTI用于下行传输,第4个TTI不传输数据;
特殊子帧配比模式4中,特殊子帧的4个TTI中第1-4个TTI用于下行传输;
特殊子帧配比模式9中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3-4个TTI不传输数据;
特殊子帧配比模式10中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第4个TTI用于上行传输;
在特殊子帧的UpPTS允许作为传输上行反馈时:
特殊子帧配比模式0和5中,特殊子帧的4个TTI中仅第1个TTI用于下行传输,第2-3个TTI不传输数据,第4个TTI用于上行传输;
特殊子帧配比模式1、2、3、6、7和8中,特殊子帧的4个TTI中的第1-3个TTI用于下行传输,第4个TTI用于上行传输;
特殊子帧配比模式4中,特殊子帧的4个TTI中第1-3个TTI用于下行传输,第4个TTI用于上行传输和/或下行传输;
特殊子帧配比模式9中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3个TTI不传输数据第4个TTI用于上行传输;
特殊子帧配比模式10中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3-4个TTI用于上行传输。
C)采用长度为2OFDM符号的TTI
在采用2OFDM符号的TTI时,在上述步骤130中,将TDD帧结构的各子帧划分为多个TTI,具体为:
在所述TDD帧结构中,将每个普通子帧划分为7个TTI;每个普通子 帧中的TTI的传输方向与该普通子帧的传输方向相同;
在所述TDD帧结构中,将特殊子帧划分为7个TTI,作为一种实现方式,对应于特殊子帧配比模式0~10,特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:
配比0:2:0:0、1:1:0、0:2:0、0:2:0、0:2:0、0:2:0、0:1:1;
配比1:2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:2:0、0:1:1;
配比2:2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、0:2:0、0:1:1;
配比3:2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:1:1;
配比4:2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、0:1:1;
配比5:2:0:0、1:1:0、0:2:0、0:2:0、0:2:0、0:2:0、0:0:2;
配比6:2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:2:0、0:0:2;
配比7:2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、0:2:0、0:0:2;
配比8:2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2;
配比9:2:0:0、2:0:0、2:0:0、0:2:0、0:2:0、0:2:0、0:0:2;
配比10:2:0:0、2:0:0、2:0:0、0:2:0、0:0:2、0:0:2、0:0:2;
其中,特殊子帧配比模式0和5中,特殊子帧的7个TTI中,第1-2个TTI用于下行传输,第3-6个TTI不传输数据,第7个TTI用于上行传输;
特殊子帧配比模式1、2、6、7中,特殊子帧的7个TTI中,第1-5个TTI用于下行传输,第6个TTI不传输数据,第7个TTI用于上行传输;
特殊子帧配比模式3、4、8中,特殊子帧的7个TTI中,第1-6个TTI用于下行传输,第7个TTI用于上行传输;
特殊子帧配比模式9中,特殊子帧的7个TTI中,第1-3个TTI用于下行传输,第4-6个TTI不传输数据,第7个TTI用于上行传输;
特殊子帧配比模式10中,特殊子帧的7个TTI中,第1-3个TTI用于 下行传输,第4个TTI不传输数据,第5-7个TTI用于上行传输。
下面,针对新增上下行配置模式1~3的TDD帧结构,且TTI长度为2OFDM符号的场景,描述上述步骤130的具体实现。当然,上述新增上下行配置模式1~3的TDD帧结构还可以采用其他长度的TTI,为节约篇幅,不再赘述。
2)针对新增上下行配置模式1~3
2A)新增上下行配置模式1
如上所述,新增上下行配置模式1的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第一双向子帧、第一双向子帧、下行子帧、特殊子帧、上行子帧、第一双向子帧、第一双向子帧,其中,所述第一双向子帧中的下行:GP:上行比例为7:1:6,所述特殊子帧的DwPTS:GP:UpPTS比例为9:1:4。
在采用2OFDM符号的TTI时,在上述步骤130中,将TDD帧结构的各子帧划分为多个TTI,具体为:
将每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
第一双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2、0:0:2,且第一双向子帧中的第1-4个TTI用于下行传输,第5-7个TTI用于上行传输;
特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2,且特殊子帧中的第1-5个TTI用于下行传输,第6-7个TTI用于上行传输。
2B)新增上下行配置模式2
如上所述,新增上下行配置模式2的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第二双向子帧、第二双向子帧、 下行子帧、特殊子帧、第二双向子帧、第二双向子帧、第二双向子帧,其中,所述第二双向子帧中的下行:GP:上行比例为11:1:2,所述特殊子帧的DwPTS:GP:UpPTS比例为9:1:4;
在采用2OFDM符号的TTI时,在上述步骤130中,将TDD帧结构的各子帧划分为多个TTI,具体为:
将每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
第二双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2,且第二双向子帧中的第1-6个TTI用于下行传输,第7个TTI用于上行传输;
特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2,且特殊子帧中的第1-5个TTI用于下行传输,第6-7个TTI用于上行传输。
2C)新增上下行配置模式3
如上所述,新增上下行配置模式3的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第三双向子帧、第三双向子帧、下行子帧、特殊子帧、上行子帧、第三双向子帧、第三双向子帧,其中,所述第三双向子帧中的下行:GP:上行比例为6:2:6,所述特殊子帧的DwPTS:GP:UpPTS比例为6:2:6。
在采用2OFDM符号的TTI时,在上述步骤130中,将TDD帧结构的各子帧划分为多个TTI,具体为:
将每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
第三双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、0:2:0、0:0:2、0:0:2、0:0:2,且第二双向子帧中的第1-3个TTI 用于下行传输,第4个TTI不用于数据传输,第5-7个TTI用于上行传输;
特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、0:2:0、0:0:2、0:0:2、0:0:2,且特殊子帧中的第1-3个TTI用于下行传输,第4个TTI不用于数据传输,第5-7个TTI用于上行传输。
请参考图3,本发明实施例提供的确定HARQ反馈时序的装置,包括:
配置确定单元21,配置为确定当前采用的TDD帧结构的配置,所述TDD帧结构的配置包括上下行配置以及特殊子帧配比;
TTI确定单元22,配置为确定当前采用的传输时间间隔TTI的大小;
位置确定单元23,配置为根据所述TDD帧结构的配置以及TTI的大小,确定HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
这里,位置确定单元23,配置为该确定每个HARQ进程的初次传输TTI的位置,并根据预设反馈重传时序关系,从所述TDD帧结构中选择出该HARQ进程的反馈TTI和重传TTI,得到该HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系,其中,一个TTI最多能传输一个HARQ进程的数据,所述预设反馈重传时序关系是指反馈TTI与初次传输TTI之间的间隔大于第一门限,与重传TTI之间的间隔大于第二门限。
可选地,上述位置确定单元23包括:
初始处理单元231,配置为在TDD帧结构中,将第一传输传输时间间隔TTI作为一HARQ进程的初次传输TTI,确定满足预设反馈重传时序关系,且使得初次传输TTI与重传TTI的间隔最小的第一反馈TTI和第一重传TTI的位置,并确定从第一传输TTI开始,到第一重传TTI的前一个传输TTI结束的传输TTI的数量n,其中,所述预设反馈重传时序关系是指反馈TTI与初次传输TTI之间的间隔大于第一门限,与重传TTI之间的间隔 大于第二门限;所述传输TTI为上行传输TTI或下行传输TTI;
编号单元232,配置为对从第一传输TTI开始的n个同方向传输TTI依次编号,以及,对从第一重传TTI开始n个同方向传输TTI依次编号,其中,同一编号的前后两个传输TTI分别为该编号对应的HARQ进程的初次传输TTI和重传TTI;判断每个HARQ进程的初次传输TTI和重传TTI之间是否都存在一反馈TTI满足所述预设反馈重传时序关系:
时序确定单元233,用于在所述判断单元判断出每个HARQ进程的初次传输TTI和重传TTI之间都存在一反馈TTI满足所述预设反馈重传时序关系时,确定TDD帧结构的HARQ进程数量为n,并得到每个HARQ进程中数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系;
循环控制单元234,配置为在所述判断单元判断出任一HARQ进程的初次传输TTI和重传TTI之间不存在一反馈TTI满足所述预设反馈重传时序关系时,将n的当前值加1,并将所述第一重传TTI移动至当前位置的下一个同方向的传输TTI,并触发所述判断单元。
本发明实施例中,所述时序确定单元,包括:
可选位置获得单元,配置为根据同一HARQ进程的初次传输TTI以及重传TTI的位置,确定位于该HARQ进程的初次传输TTI以及重传TTI之间,且满足所述预设反馈重传时序关系的该HARQ进程的反馈TTI的可选位置;
获得单元,用于根据各HARQ进程的初次传输TTI和重传TTI的位置、以及反馈TTI的可选位置,获得各HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
可选地,所述获得单元包括:
第一确定单元,配置为确定各个HARQ进程的反馈TTI的可选位置;
分配单元,用于当需要在x个可选位置上进行y个HARQ进程的HARQ反馈时,将所述y个HARQ进程的HARQ反馈,平均分配到所述x个可选位置上,每个可选位置上反馈的HARQ进程的数量为z或z+1个,得到各个HARQ进程的反馈TTI的位置,其中,z为y/x的向下取整;
输出单元,配置为根据各HARQ进程的初次传输TTI、反馈TTI以及重传TTI的位置,输出各HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
这里,所述分配单元,配置为:
基于第一约束条件和/或第二约束条件,将所述y个HARQ进程的HARQ反馈,平均分配到所述x个可选位置上;
所述第一约束条件为:在第一HARQ进程的初次传输时间早于第二HARQ进程的初次传输时,所述第一HARQ进程的初次传输的HARQ反馈,不迟于所述第二HARQ进程的初次传输的HARQ反馈,其中,第二HARQ与第一HARQ进程为不同进程;
所述第二约束条件为:在第一HARQ进程的一个传输TTI与第三HARQ进程的一个传输TTI位于不同的上下行切换周期中的相同位置时,所述第一HARQ进程的一个传输TTI的HARQ反馈,与第三HARQ进程的一个传输TTI的HARQ反馈,也位于不同的上下行切换周期中的另一相同位置,其中,第三HARQ进程与第一HARQ进程为同一进程或不同进程。
作为一种实现方式,所述时序确定单元,具体用于:将每个HARQ进程的初次传输TTI和重传TTI之间满足所述预设反馈重传时序关系的任一反馈TTI,作为该HARQ进程的反馈TTI,得到该HARQ进程的反馈TTI的位置,输出反馈TTI与初次传输TTI之间的相对位置关系。
本发明实施例中,在各个无线帧内,对该无线帧包含的所有TTI依次 顺序编号;所述反馈TTI与初次传输TTI之间的相对位置关系为:反馈TTI与初次传输TTI之间的TTI间隔;或者,在各个子帧内,对该子帧包含的所有TTI依次顺序编号;所述反馈TTI与初次传输TTI之间的相对位置关系为:反馈TTI与初次传输TTI之间的子帧间隔,反馈TTI与初次传输TTI在各自所属子帧内的编号。
可选地,上述装置还包括以下单元(图3中未示出):
划分单元,配置为确定所述TDD帧结构的类型,以及所述TDD帧结构中的特殊子帧所采用的特殊子帧配比模式,根据预定的TTI长度,将所述TDD帧结构的各子帧划分为多个TTI,并确定各个TTI中的传输TTI以及反馈TTI,其中,所述反馈TTI与传输TTI的传输方向相反,所述传输TTI为上行传输TTI或下行传输TTI。
这里,所述TDD帧结构为以下帧结构中的任一种:3GPP TS 36.211中定义的LTE TDD上下行配置模式0~6、新增上下行配置模式1~3;
所述特殊子帧配比模式包括3GPP TS 36.211中定义的特殊子帧配比模式0~9以及新增的特殊子帧配比模式10,所述特殊子帧配比模式10中DwPTS:GP:UpPTS比例为6:2:6。
所述TTI的长度可以是0.5ms,4/3OFDM符号或2OFDM符号。
以上对本发明实施例的方法和装置进行了描述。为了帮助更好的理解本发明,下面结合几个可选地帧结构在应用本发明实施例所述方法后的HARQ反馈时序关系图,来对本发明实施例作更进一步的描述。需要指出的是,下文中的各个时序关系,均为本发明实施例的一个示例,不构成对本发明的限定。
以下示例所引用的附图中的反馈时序图中,每个最小的方格表示一个TTI;“↓n”表示下行HARQ进程n,“↓n”所在的TTI表示用于下行HARQ进程n的初次传输或重传数据的TTI;“↑n”表示下行HARQ进程n的上 行HARQ反馈,“↑n”所在的TTI表示用于传输下行HARQ进程n的上行HARQ反馈的TTI;“▲n”所在的TTI表示传输下行HARQ进程n的上行HARQ反馈的可能的反馈位置;“◆”表示特殊子帧;“↑”表示上行方向,“↓”表示下行方向;TTI中的a:b:c则表示DwPTS:GP:UpPTS比例。示例一:TDD上下行配置模式0
下面介绍TDD上下行配置模式0(其对应TDD配比DSUUUDSUUU)在不同TTI长度下,依据本发明实施例所述方法所确定的反馈时序。
A)0.5ms TTI
考虑0.5ms的TTI,即1个TTI所包含的(SC-)OFDM符号个数与现有的一个时隙(slot)的相同,normal CP的情况下为7个(扩展CP下则是6个);考虑与现有的LTE***兼容,则一个无线帧(frame)内的TTI情况如图4所示。图4给出的是normal CP的情况,且TTI在无线帧内依次顺序编号为0~19。对于子帧编号不变,TTI仅在子帧内编号的情况,每个子帧内的TTI编号是0~1。图4出了特殊子帧配比模式0~9下的各个TTI的方向以及特殊子帧内的TTI的DwPTS:GP:UpPTS比例。
考虑两种情形,情形1中设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息,情形2中设定特殊子帧中的UpPTS可以传输PDSCH的HARQ反馈信息。
根据特殊子帧配比模式,又可以划分为2类,一类是特殊子帧配比模式0,5,9和10,这类设定在TTI 3中不进行下行传输,另一类是特殊子帧配比模式1,2,3,4,6,7,8,这类设定在TTI 3中能够进行下行传输。
情形1的特殊子帧配比模式0,5,9和10时:
PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序如图5a和5b所示,共有3个下行HARQ进程,RTT为10个TTI,5ms。例如对于图中第1个进程,在下行TTI 0传输的PDSCH传输或指示SPS释 放的PDCCH/EPDCCH的HARQ反馈在TTI 4,图5a和5b分别对应不同的TTI编号方式。
图5a和5b为TDD上下行配置模式0,特殊子帧配比模式0,5,9和10,对应的0.5ms TTI的下行HARQ进程反馈时序,图5a中TTI在无线帧内顺序编号;图5b中TTI在各个子帧内顺序编号。
情形1的特殊子帧配比模式1,2,3,4,6,7和8时:为节约篇幅,不再通过附图说明。对于情形2,特殊子帧第二个slot是否能够传输ACK反馈不影响HARQ时序,下行进程的HARQ反馈时序与情形1相同。
相应的,对于TDD上下行配置模式0,0.5ms TTI长度的情况下,当UE在TTI n-k中,其中k∈K’,检测到PDSCH传输或是指示下行SPS释放的PDCCH/EPDCCH,并且需要进行相应的HARQ-ACK反馈时,则UE在上行TTI n中进行HARQ-ACK反馈。不同上行TTI对应的K’的取值如表2。这里k∈K’,K’:{k0,k1,…,kM’-1},M’表示根据确定出的HARQ时序关系,对应某一个上行反馈TTI内所反馈的下行传输TTI的数量。以下所有其他的配置的第二种编号方式对应的表格描述与此相同,为了描述简便,某些表格的描述可能会做出简化,但表格内参数的含义不变。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~9。
Figure PCTCN2017084245-appb-000002
表2
从表2可以看出,在所述TTI的长度为0.5ms,TDD帧结构的配置为LTE TDD上下行配置0,且预先设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息时:
若特殊子帧配比0,5,9和10,且采用在无线帧内对TTI从0开始顺序编号的编号方式,此时,在上行TTI n中进行下行TTI n-k,k∈K’中传输的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,其反馈时序K’的取值为:TTI 4、5、6、14、15、16对应的K’的取值均为4;
若特殊子帧配比1,2,3,4,6,7,8,且采用在无线帧内对TTI从0开始顺序编号的编号方式,此时,在上行TTI n中进行下行TTI n-k,k∈K’中传输的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,其反馈时序K’的取值为:TTI 4、5、6、7、14、15、16、17对应的K’的取值均为4。
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,当UE在子帧n-k的TTI j中,其中k∈K’,j取值为0~J-1,J为一个1ms子帧内的TTI个数,检测到PDSCH传输或是指示下行SPS释放的PDCCH/EPDCCH,并且需要进行相应的HARQ-ACK反馈时,在上行子帧 n的子帧内TTI m,进行相应的HARQ-ACK反馈,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表3所示。这里k∈K’K’:{k0,k1,…,kM’-1},M’表示根据确定出的HARQ时序关系,对应某一个上行反馈TTI内所反馈的下行子帧的数量,表格的行标题中,第二行对应子帧的编号n,第3行对应子帧内的TTI编号m。以下所有其他的配置的第二种编号方式对应的表格描述与此相同,为了描述简便,某些表格的描述可能会做出简化,但表格内参数的含义不变。
Figure PCTCN2017084245-appb-000003
表3
从表3可以看出,在所述TTI的长度为0.5ms,TDD帧结构的配置为LTE TDD上下行配置0,且预先设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息时:
若特殊子帧配比0,5,9和10,且采用在无线帧内对TTI从0开始顺序编号,此时,在上行子帧n的子帧内TTI m,对应子帧n-k内的TTI j的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,反馈时序的下行关联集合(k,j)为:子帧2的TTI 0对应的(k,j)为(2,0),子帧2的TTI 1对应的(k,j)为(2,1),子帧3的TTI 0对应的(k,j)为(2,0), 子帧7的TTI 0对应的(k,j)为(2,0),子帧7的TTI 1对应的(k,j)为(2,1),子帧8的TTI 0对应的(k,j)为(2,0)。
若特殊子帧配比1,2,3,4,6,7,8,且采用在无线帧内对TTI从0开始顺序编号,此时,在上行子帧n的子帧内TTI m,对应子帧n-k内的TTI j的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,反馈时序的下行关联集合(k,j)为:子帧2的TTI 0对应的(k,j)为(2,0),子帧2的TTI 1对应的(k,j)为(2,1),子帧3的TTI 0对应的(k,j)为(2,0),子帧3的TTI 1对应的(k,j)为(2,1),子帧7的TTI 0对应的(k,j)为(2,0),子帧7的TTI 1对应的(k,j)为(2,1),子帧8的TTI 0对应的(k,j)为(2,0),子帧8的TTI 1对应的(k,j)为(2,1);
后文中的各个表具有类似含义,将主要通过表格的形式进行说明,不再分别进行文字解释。另外,为节约篇幅,下文中可能仅展示表格中包含有HARQ进程信息的相关内容,对于不包含有HARQ进程信息的行列将予以省略。
B)4/3OS的TTI
1)考虑4/3(SC-)OFDM symbols的TTI,即将现有的一个时隙(slot)的7个(SC-)OFDM符号划分为2个TTI,其中一个TTI长度为4(SC-)OFDM symbols,另一个TTI长度为3(SC-)OFDM symbols。后面为了描述的方便,对于上/下行的SC-OFDM symbol/OFDM symbol统一描述为OS。一个无线帧frame内的TTI情况如图6所示。这里给出的是normal CP的情况,且一个slot内的第一个TTI是4OS,第2个TTI是3OS。而对于子帧编号不变,TTI仅在子帧内编号的情况,每个子帧内的TTI编号是0~3;
考虑两种情形,情形1中设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息,情形2中设定特殊子帧中的UpPTS可以传输PDSCH的HARQ反馈信息。
情形1:情形1中设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息.情形1的PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序由于不同特殊子帧配比而稍有所不同;
对于特殊子帧配比模式0和5:下行HARQ进程及时序如图7a和7b所示,图中对下行的进程进行了编号。相比于“↑n”的反馈位置,“▲n”能够获得更低的反馈时延,但同一上行子帧的反馈负载要大。图7a对应的是缩短时长后的TTI在一个frame内顺序编号的情况,图7b对应的是缩短时长后的TTI只在每个子帧内顺序编号的情况。RTT时长为5ms。
对于其他特殊子帧配比模式,为节约篇幅,不再通过图示进行说明。
相应的,上述情形1,对于TDD TDD上下行配置模式0,4/3OS长度TTI的情况下,不同上行TTI对应的K’的取值如表4所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~19。表4中[]内的数值表示的是以最多反馈时延为准则定义的HARQ时序,[]外的数值表示按照各上行TTI均衡反馈的原则定义的HARQ时序。
Figure PCTCN2017084245-appb-000004
Figure PCTCN2017084245-appb-000005
表4
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI,其对应的(k,j)值如表5所示。
Figure PCTCN2017084245-appb-000006
Figure PCTCN2017084245-appb-000007
表5
情形2:情形2中设定特殊子帧中的UpPTS可以传输PDSCH的HARQ反馈信息。对于4/3OS长度的TTI,如果UpPTS能够传输对应下行传输的HARQ反馈信息,对于某些下行进程,HARQ反馈能够更加快速。例如,对于特殊子帧配比模式0和5:假设由DwPTS OS和GP组成的TTI传输下行进程,由GP和UpPTS OS组成的TTI能够进行上行反馈,下行进程及反馈如图8a和图8b所示,其中,图8a的TTI在一个frame内顺序编号,图8b的TTI只在每个子帧内顺序编号。对于其他特殊子帧配比,为节约篇幅, 不再通过图示进行说明。相应的,对于TDD TDD上下行配置模式0,4/3OS长度TTI的情况下,不同上行TTI对应的K’的取值如表6所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~19。
Figure PCTCN2017084245-appb-000008
Figure PCTCN2017084245-appb-000009
Figure PCTCN2017084245-appb-000010
表6
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI,其对应的(k,j)值如表7所示。
Figure PCTCN2017084245-appb-000011
Figure PCTCN2017084245-appb-000012
Figure PCTCN2017084245-appb-000013
表7
C)2OS TTI
考虑2个OS的TTI,即将现有的一个子帧14个OS划分为7个TTI,一个无线帧frame内的TTI情况如图9所示。这里给出的是normal CP的情况,考虑到对于配置0,上下行切换周期是5ms,因此图9中给出了无线帧内前5ms的编号情况,TTI编号到了34。如果是一个无线帧内顺序编号,TTI编号在一个无线帧内最大是69。而对于子帧编号不变,TTI仅在子帧内编号的情况,每个子帧内的TTI编号是0~6。
这里,假设由下行OS和GP组成的TTI可以传输下行进程,由GP和上行OS组成的TTI可以反馈下行进程的ACK/NACK信息。在此假设下,特殊子帧配比模式0和5具有相同的进程和反馈时序;特殊子帧配比模式1,2,6,7具有相同的下行进程和反馈时序;特殊子帧配比3,4,8具有相同的下行进程和反馈时序。其他的配置9和10的配置的下行进程和反馈时序各不相同。下面就给出不同特殊时隙配置情况下PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序;同样的,考虑到TDD上下 行配置模式0的上下行切换是5ms周期,图中只给出了每个无线帧的前5ms的HARQ时序情况,如果以10ms无线帧为单位进行TTI编号,TTI的编号是从0~69。对于子帧内TTI编号的情况,子帧是0~9,每个子帧内TTI是0~6。图中只显示了TTI编号0~34或是子帧0~4内的HARQ时序情况。
对于特殊子帧配比模式0和5:下行HARQ进程及反馈如图10a和图10b所示,其中,图10a的TTI在一个frame内顺序编号,图10b的TTI只在每个子帧内顺序编号。图中对下行的进程进行了编号。相比于“↑n”的反馈位置,“▲n”能够获得更低的反馈时延,但同一上行子帧的反馈负载要大。RTT时长为5ms。
对于特殊子帧配比模式,为节约篇幅,不再通过图示进行说明。
相应的,对于TDD TDD上下行配置模式0,2OS长度TTI的情况下,不同上行TTI对应的K’的取值如表8所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~34。此处,由于篇幅的原因,对没有对应反馈关系的TTI编号0~9,30~44,65~69的列进行了省略,另外对于反馈时序相同的TTI n和n+35也进行了合并;从表格的完备性来讲,完全可以恢复出省略的TTI编号对应的表格,和展开合并的那些TTI编号。后面其他的配置也有可能进行省略,但不影响那些反馈TTI与对应的下行传输的相对关系。
Figure PCTCN2017084245-appb-000014
Figure PCTCN2017084245-appb-000015
表8
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表9所示。
Figure PCTCN2017084245-appb-000016
Figure PCTCN2017084245-appb-000017
表9
示例二:TDD上下行配置模式1
TDD上下行配置模式1,对应TDD配比DSUUDDSUUD,介绍在0.5ms和4/3OFDM符号的TTI长度下,依据本发明实施例所述方法确定其反馈时序。
A)0.5ms TTI
考虑0.5ms的TTI,即1个TTI所包含的(SC-)OFDM符号个数与现有的一个slot的相同,为7个(扩展CP是6个);
考虑两种情形,情形1中设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息,情形2中设定特殊子帧中的UpPTS可以传输PDSCH的HARQ反馈信息。
根据特殊子帧配比模式,又可以划分为2类,一类是特殊子帧配比模式0,5,9和10,这类在TTI3中不会有下行传输,另一类是特殊子帧配比模式1,2,3,4,6,7,8,这类在TTI3中有下行传输。为节约篇幅,不再结合附图进行描述。
相应的,对于TDD上下行配置模式1,0.5ms TTI长度,不同上行TTI对应的K’如表10所示。此处,由于上下行切换周期是5ms,因此TTI编号 也可以只对应现有LTE的5ms,即编号为0~9。
Figure PCTCN2017084245-appb-000018
表10
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表11所示。
Figure PCTCN2017084245-appb-000019
表11
B)4/3OS TTI
考虑4/3(SC-)OFDM symbols的TTI,即将现有的一个slot 7个(SC-)OFDM符号划分为2个TTI,其中一个TTI长度为4(SC-)OFDM symbols,另一个TTI长度为3(SC-)OFDM symbols。考虑两种情形,情形1中设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息,情形2中设定特殊子帧中的UpPTS可以传输PDSCH的HARQ反馈信息。
情形1:情形1中设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息。情形1的PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序由于不同特殊子帧配比而稍有所不同。
相应的,上述情形1,对于TDD TDD上下行配置模式1,4/3OS长度TTI的情况下,不同上行TTI对应的K’的取值如表12所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~19。
Figure PCTCN2017084245-appb-000020
Figure PCTCN2017084245-appb-000021
Figure PCTCN2017084245-appb-000022
表12
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表13所示。
Figure PCTCN2017084245-appb-000023
Figure PCTCN2017084245-appb-000024
表13
情形2:
情形2中设定特殊子帧中的UpPTS可以传输PDSCH的HARQ反馈信息。
对于4/3OS长度的TTI,如果UpPTS能够传输对应下行传输的HARQ反馈信息,对于某些下行进程,HARQ反馈能够更加快速。
相应的,对于TDD TDD上下行配置模式1,4/3OS长度TTI的情况下,不同上行TTI对应的K’的取值如表14所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~19。
Figure PCTCN2017084245-appb-000025
Figure PCTCN2017084245-appb-000026
Figure PCTCN2017084245-appb-000027
表14
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表15所示。
Figure PCTCN2017084245-appb-000028
Figure PCTCN2017084245-appb-000029
表15
C)2OS TTI
考虑2个OS的TTI,即将现有的一个子帧14个OS划分为7个TTI。这里举例给出的是normal CP的情况,考虑到对于上下行配置模式1,上下行切换周期是5ms,如果是一个无线帧内顺序编号,无线帧内前5ms的TTI编号为0~34,TTI编号在一个无线帧内最大是69。而对于子帧编号不变, TTI仅在子帧内编号的情况,每个子帧内的TTI编号是0~6。
假设由下行OS和GP组成的TTI可以传输下行进程,由GP和上行OS组成的TTI可以反馈下行进程的ACK/NACK信息,在此假设下,特殊子帧配比模式0和5具有相同的进程和反馈时序;特殊子帧配比模式1,2,6,7具有相同的下行进程和反馈时序;特殊子帧配比3,4,8具有相同的下行进程和反馈时序。其他的配置9和6:2:6的配置的下行进程和反馈时序各不相同。下面就给出不同特殊时隙配置情况下PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序;同样的,考虑到TDD上下行配置模式0的上下行切换是5ms周期,这里只给出了每个无线帧的前5ms的HARQ时序情况,如果以10ms无线帧为单位进行TTI编号,TTI的编号是从0~69.对于子帧内TTI编号的情况,子帧是0~9,每个子帧内TTI是0~6。
相应的,对于TDD TDD上下行配置模式1,2OS长度TTI的情况下,不同上行TTI对应的K’的取值如表16所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~34。表中“0/35”表示TTI 0或TTI 35,“1/36”表示TTI 1或TTI 36……。由于是5ms的一个周期,每个周期包括35个TTI,因此相互之间间隔35个TTI的TTI具有类似的反馈时序。后文中表格也有类似的表示。
Figure PCTCN2017084245-appb-000030
表16
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表17所示。
Figure PCTCN2017084245-appb-000031
Figure PCTCN2017084245-appb-000032
Figure PCTCN2017084245-appb-000033
表17
示例3上下行配置模式2
A)0.5ms TTI
考虑0.5ms的TTI,即1个TTI所包含的(SC-)OFDM符号个数与现有的一个slot的相同,为7个(扩展CP是6个)。这里给出的是normal CP的情况。对于子帧编号不变,TTI仅在子帧内编号的情况,每个子帧内的TTI编号是0~1。
考虑两种情形,情形1:特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息,情形2:特殊子帧中的UpPTS可以传输PDSCH的HARQ反馈信息。
根据特殊子帧配比模式,又可以划分为2类,一类是特殊子帧配比模式0,5,9和10,这类在特殊子帧的第二个TTI中不会有下行传输,另一类是特殊子帧配比模式1,2,3,4,6,7,8,这类在特殊子帧的第二个TTI中有下行传输。
情形1的特殊子帧配比模式0,5,9和10时PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序,共有5个下行HARQ进程,RTT为100个TTI中传输7个进程,约为7.143ms。
情形1的特殊子帧配比模式1,2,3,4,6,7,8,时PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序,共有12个下行HARQ进程,RTT为15个TTI,7.5ms。
相应的,对于TDD上下行配置模式2,0.5ms长度TTI,情形1,不同上行TTI对应的K’的取值如表18所示。此处,由于上下行切换周期是5ms, 因此TTI编号也可以只对应现有LTE的5ms,即编号为0~9。
Figure PCTCN2017084245-appb-000034
表18
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表19所示。
Figure PCTCN2017084245-appb-000035
表19
对于情形2,会多出一个能够进行上行反馈的的子帧,对于降低RTT时延有利。特殊子帧配比模式0,5,9和10时PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序中,共有9个下行进程,RTT约为6.43ms。
对于情形2,1,2,3,4,6,7,8,时PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序,共有12个下行HARQ进程,RTT为15个TTI,7.5ms。
相应的,对于TDD上下行配置模式2,0.5ms长度TTI,情形2,不同上行TTI对应的K’的取值如表20所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~9。
Figure PCTCN2017084245-appb-000036
表20
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表21所示。这里k∈K’,K’:{k0,k1,…,kM’-1},M’表示根据确定出的HARQ时序关系,对应某一个上行反馈TTI内所反馈的下行子帧的数量。
Figure PCTCN2017084245-appb-000037
表21
B)4/3OS TTI
考虑4/3OS的TTI,即将现有的一个slot 7个OS符号划分为2个TTI,其中一个TTI长度为4OS,另一个TTI长度为3OS。这里以normal CP的 情况为例进行说明,可以一个slot内的第一个TTI是4OS,第2个TTI是3OS,也可以第一个TTI是3个OS,第二个是4个OS。而对于子帧编号不变,TTI仅在子帧内编号的情况,每个子帧内的TTI编号是0~3。
考虑两种情形,情形1:特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息,情形2:特殊子帧中的UpPTS可以传输PDSCH的HARQ反馈信息。
情形1:
情形1的PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序由于不同特殊子帧配比而稍有所不同;
对于特殊子帧配比模式0和5,下行HARQ进程及时序中,共13个下行HARQ进程,RTT为5ms。
对于特殊子帧配比模式1,2,3,6,7,8,假设由DwPTS OS和GP组成的TTI传输下行进程的情况下,下行进程及反馈中,共15个下行HARQ进程,RTT为5ms。
对于特殊子帧配比模式4,若假设其对应DwPTS:GP:UpPTS为1:1:1的TTI不能传输下行进程,则该配置下与特殊子帧配比模式1,2,3,6,7,8的HARQ时序相同,而若假设该TTI可以传输下行进程,则其下行进程及HARQ时序中共16个下行HARQ进程进程,RTT为5ms。
对于特殊子帧配比模式9,假设由DwPTS OS和GP组成的TTI传输下行进程的情况下,下行进程及反馈中,RTT为5ms,共14个下行HARQ进程。
对于特殊子帧配比模式10,假设由DwPTS OS和GP组成的TTI传输下行进程的情况下,下行进程及反馈中,RTT为5ms,进程14个。
相应的,情形1,对于TDD TDD上下行配置模式2,4/3OS长度TTI的情况下,不同上行TTI对应的K’的取值如表22所示。此处,由于上下行 切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~19。
Figure PCTCN2017084245-appb-000038
Figure PCTCN2017084245-appb-000039
Figure PCTCN2017084245-appb-000040
表22
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表23所示。
Figure PCTCN2017084245-appb-000041
Figure PCTCN2017084245-appb-000042
表23
情形2:
对于4/3OS长度的TTI,如果UpPTS能够传输对应下行传输的HARQ反馈信息,对于某些下行进程,HARQ反馈能够更加快速。下面分别对各 特殊子帧配比模式进行分析。
特殊子帧配比模式0和5,假设由DwPTS OS和GP组成的TTI传输下行进程,由GP和UpPTS OS组成的TTI能够进行上行反馈,下行进程及反馈中,共13个下行HARQ进程,RTT为5ms。
对于特殊子帧配比模式1,2,3,6,7,8,假设由DwPTS OS和GP组成的TTI传输下行进程,由GP和UpPTS OS组成的TTI能够进行上行反馈,下行进程及反馈中,共15个下行HARQ进程,RTT为5ms。
对于特殊子帧配比模式4,若假设其对应DwPTS:GP:UpPTS为1:1:1的TTI不能传输下行进程,则该配置下与特殊子帧配比模式1,2,3,6,7,8的HARQ时序相同,而若假设该TTI可以传输下行进程,同时该TTI的一个上行SC-OFDM符号能够进行下行进程的HARQ反馈,则其下行进程及HARQ时序中,RTT仍为5ms,共16个下行HARQ进程。
对于特殊子帧配比模式9,假设由DwPTS OS和GP组成的TTI传输下行进程,由GP和UpPTS OS组成的TTI能够进行上行反馈,下行进程及HARQ反馈中,共14个下行HARQ进程,RTT为5ms。
对于特殊子帧配比模式10,假设由DwPTS OS和GP组成的TTI传输下行进程,由GP和UpPTS OS组成的TTI能够进行上行反馈,下行进程及HARQ反馈中,共14个下行HARQ进程,RTT为5ms。
相应的,对于TDD上下行配置模式0,4/3OS长度TTI的情况下,不同上行TTI对应的K’的取值如表24所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~19。
Figure PCTCN2017084245-appb-000043
Figure PCTCN2017084245-appb-000044
Figure PCTCN2017084245-appb-000045
表24
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表25所示。
Figure PCTCN2017084245-appb-000046
Figure PCTCN2017084245-appb-000047
Figure PCTCN2017084245-appb-000048
表25
C)2OS TTI
考虑2个OS的TTI,即将现有的一个子帧14个OS划分为7个TTI。这里以normal CP为例进行说明,考虑到对于上下行配置模式2,上下行切换周期是5ms,因此无线帧内前5ms的TTI编号到了34,如果是一个无线帧内顺序编号,TTI编号在一个无线帧内最大是69。而对于子帧编号不变,TTI仅在子帧内编号的情况,每个子帧内的TTI编号是0~6;
假设由下行OS和GP组成的TTI可以传输下行进程,由GP和上行OS组成的TTI可以反馈下行进程的ACK/NACK信息,在此假设下,特殊子帧配比模式0和5具有相同的进程和反馈时序;特殊子帧配比模式1,2,6,7具有相同的下行进程和反馈时序;特殊子帧配比3,4,8具有相同的下行进程和反馈时序。其他的配置9和6:2:6的配置的下行进程和反馈时序各不相同。
下面就给出不同特殊时隙配置情况下PDSCH传输或指示SPS释放的PDCCH/EPDCCH的HARQ反馈时序;同样的,考虑到TDD上下行配置模式2的上下行切换是5ms周期,只给出了每个无线帧的前5ms的HARQ时序情况。如果以10ms无线帧为单位进行TTI编号,TTI的编号是从0~69.对于子帧内TTI编号的情况,子帧是0~9,每个子帧内TTI是0~6。
对于特殊子帧配比模式0和5,下行HARQ进程及时序中,RTT时长为5ms,共23个下行HARQ进程。
对于特殊子帧配比模式1,2,6,7,下行HARQ进程及时序中,RTT时长为5ms,共26个下行HARQ进程。
对于特殊子帧配比模式3,4,8,下行HARQ进程及时序中,RTT时长为5ms,27个下行HARQ进程。
对于特殊子帧配比模式9,下行HARQ进程及时序中,RTT时长为5ms,24个下行HARQ进程。
对于特殊子帧配比模式10,下行HARQ进程及时序中,RTT时长为5ms,24个下行HARQ进程。
相应的,对于TDD TDD上下行配置模式0,2OS长度TTI的情况下,不同上行TTI对应的K’的取值如表26所示。此处,由于上下行切换周期是5ms,因此TTI编号也可以只对应现有LTE的5ms,即编号为0~34。
Figure PCTCN2017084245-appb-000049
表26
对于第二种编号方式,即只在子帧内部进行TTI的编号的方式,对应反馈子帧n,子帧内TTI m,其对应的(k,j)值如表27所示。
Figure PCTCN2017084245-appb-000050
Figure PCTCN2017084245-appb-000051
Figure PCTCN2017084245-appb-000052
表27
类似的,对于TDD上下行配置模式3、4、5、6,进行相应的下行HARQ进程设计,可以得到0.5ms,4/3OS,2OS长度TTI时,当UE在TTI n-k中,其中k∈K’,检测到PDSCH传输或是指示下行SPS释放的PDCCH/EPDCCH,并且需要进行相应的HARQ-ACK反馈时,则UE在上行TTI n中进行HARQ-ACK反馈。不同上行TTI对应的K’的取值。此处只给出了TTI在无线帧内顺序编号的情况,对于TTI在子帧内编号的情况,可根据子帧与TTI编号的对应关系对应得到。
A)0.5ms TTI
假设UpPTS中的OS不传输ACK的情况下,K’在不同TTI中的取值如表28所示
Figure PCTCN2017084245-appb-000053
Figure PCTCN2017084245-appb-000054
表28
假设UpPTS中的OS传输ACK的情况下,K’在不同TTI中的取值如表 29所示
Figure PCTCN2017084245-appb-000055
Figure PCTCN2017084245-appb-000056
表29
B)4/3OS TTI
假设UpPTS中的OS不传输ACK的情况下,K’在不同TTI中的取值如表30所示
Figure PCTCN2017084245-appb-000057
Figure PCTCN2017084245-appb-000058
Figure PCTCN2017084245-appb-000059
Figure PCTCN2017084245-appb-000060
Figure PCTCN2017084245-appb-000061
Figure PCTCN2017084245-appb-000062
Figure PCTCN2017084245-appb-000063
表30
假设UpPTS中的OS传输ACK的情况下,K’在不同TTI中的取值如表31所示
Figure PCTCN2017084245-appb-000064
Figure PCTCN2017084245-appb-000065
Figure PCTCN2017084245-appb-000066
Figure PCTCN2017084245-appb-000067
Figure PCTCN2017084245-appb-000068
Figure PCTCN2017084245-appb-000069
Figure PCTCN2017084245-appb-000070
表31
C)2OS TTI
假设UpPTS中的OS不传输ACK的情况下,K’在不同TTI中的取值如下表32所示:
Figure PCTCN2017084245-appb-000071
Figure PCTCN2017084245-appb-000072
Figure PCTCN2017084245-appb-000073
Figure PCTCN2017084245-appb-000074
Figure PCTCN2017084245-appb-000075
Figure PCTCN2017084245-appb-000076
Figure PCTCN2017084245-appb-000077
Figure PCTCN2017084245-appb-000078
Figure PCTCN2017084245-appb-000079
表32
然后,基于本发明实施例新增的三种上下行配置模式,给出在应用本发明实施例所述方法后得到的HARQ反馈时序。
对于这三种新增的上下行配置,2OS长度TTI的情况下,在上行TTI n中进行下行TTI n-k,k∈K’中传输的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,K’的取值如表33所示。
Figure PCTCN2017084245-appb-000080
Figure PCTCN2017084245-appb-000081
表33
最后,假设所述预设反馈重传时序关系中的第一门限和第二门限均为2个TTI的情况下,给出了TDD上下行配置2,0.5ms长度TTI的HARQ的时序关系示例。在上行TTI n中进行下行TTI n-k,k∈K’中传输的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,K’的取值如表34(情形1)和表35(情形2)所示。
Figure PCTCN2017084245-appb-000082
表34
Figure PCTCN2017084245-appb-000083
表35
本发明实施例还提供一种通信设备,包括:
存储器,配置为存储计算机程序;
处理器,与所述存储器相连,配置为通过执行所述计算机程序,能够执行前述任意一个技术方案提供的确定混合自动重传请求HARQ反馈时序的方法。
这里的处理器可包括:应用处理器AP(AP,Application Processor)、中央处理器(CPU,Central Processing Unit)、数字信号处理器(DSP,Digital Signal Processor)或可编程门阵列(FPGA,Field Programmable Gate Array)。
所述存储器可包括:用于非瞬间存储计算机程序的存储介质。
这里的通信设备可为前述的基站。
所述处理器通过总线与所述存储器连接,所述总线可包括:集成电路(IIC)总线等。
本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述任意一个实施例提供的提供的确定混合自动重传请求HARQ反馈时序的方法。
本实施例提供的存储介质可为各种类型的存储介质,可选为非瞬间存储介质。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。
工业实用性
本发明实施例中提供的技术方案,将会根据传输时间间隔TTI的大小,确定出HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系的,这样就可以实现确定出不同长度TTI对应的HARQ进程的数量,并能够获得上述情况下的HARQ反馈时序,从而为低时延的传输提供了支持,能够在工业上产生积极的效果,且通过计算机程序指令注入到基站和终端中,就可以实现本发明提供的技术方案,具有工业上实现简便的特点。

Claims (28)

  1. 一种确定混合自动重传请求HARQ反馈时序的方法,包括:
    确定当前采用的TDD帧结构的配置;
    确定当前采用的传输时间间隔TTI的大小;
    根据所述TDD帧结构的配置以及TTI的大小,确定HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
  2. 如权利要求1所述的方法,其中,
    所述根据所述TDD帧结构的配置以及TTI的大小,确定HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系,包括:
    确定每个HARQ进程的初次传输TTI的位置,并根据预设反馈重传时序关系,从所述TDD帧结构中选择出该HARQ进程的反馈TTI和重传TTI,得到该HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系,其中,一个TTI最多能传输一个HARQ进程的数据,所述预设反馈重传时序关系是指反馈TTI与初次传输TTI之间的间隔大于第一门限,与重传TTI之间的间隔大于第二门限。
  3. 如权利要求2所述的方法,其中,
    所述确定每个HARQ进程的初次传输TTI的位置,并根据预设反馈重传时序关系,从所述TDD帧结构中选择出该HARQ进程的反馈TTI和重传TTI,包括:
    在TDD帧结构中,将第一传输TTI作为一HARQ进程的初次传输TTI,确定满足所述预设反馈重传时序关系,且使得初次传输TTI与重传TTI的间隔最小的第一反馈TTI和第一重传TTI的位置,并确定从第一传输TTI 开始,到第一重传TTI的前一个传输TTI结束的传输TTI的数量n;所述第一传输TTI、第一重传TTI和传输TTI均为同一传输方向的TTI;
    对从第一传输TTI开始的n个同方向传输TTI依次编号,以及,对从第一重传TTI开始n个同方向传输TTI依次编号,其中,同一编号的前后两个传输TTI分别为该编号对应的HARQ进程的初次传输TTI和重传TTI;
    在每个HARQ进程的初次传输TTI和重传TTI之间都存在一反馈TTI满足所述预设反馈重传时序关系时,确定TDD帧结构的HARQ进程数量为n,并得到每个HARQ进程中数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系;
    在每个HARQ进程的初次传输TTI和重传TTI之间并不都存在一反馈TTI满足所述预设反馈重传时序关系时,将n的当前值加1,并将所述第一重传TTI移动至当前位置的下一个同方向的传输TTI,并返回所述对从第一传输TTI开始的n个同方向传输TTI依次编号,以及,对从第一重传TTI开始n个同方向传输TTI依次编号的步骤。
  4. 如权利要求3所述的方法,其中,
    所述得到每个HARQ进程中数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系,包括:
    根据同一HARQ进程的初次传输TTI以及重传TTI的位置,确定位于该HARQ进程的初次传输TTI以及重传TTI之间,且满足所述预设反馈重传时序关系的该HARQ进程的反馈TTI的可选位置;
    根据各HARQ进程的初次传输TTI和重传TTI的位置、以及反馈TTI的可选位置,获得各HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
  5. 如权利要求4所述的方法,其中,
    所述根据各HARQ进程的初次传输TTI和重传TTI的位置、以及反馈 TTI的可选位置,获得各HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系的步骤,包括:
    确定各个HARQ进程的反馈TTI的可选位置;
    当需要在x个可选位置上进行y个HARQ进程的HARQ反馈时,将所述y个HARQ进程的HARQ反馈,平均分配到所述x个可选位置上,每个可选位置上反馈的HARQ进程的数量为z或z+1个,得到各个HARQ进程的反馈TTI的位置,其中,z为y/x的向下取整;
    根据各HARQ进程的初次传输TTI、反馈TTI以及重传TTI的位置,输出各HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
  6. 如权利要求5所述的方法,其中,
    所述将所述y个HARQ进程的HARQ反馈,平均分配到所述x个可选位置上的步骤,包括:
    基于第一约束条件和/或第二约束条件,将所述y个HARQ进程的HARQ反馈,平均分配到所述x个可选位置上;
    所述第一约束条件为:在第一HARQ进程的初次传输时间早于第二HARQ进程的初次传输时,所述第一HARQ进程的初次传输的HARQ反馈,不迟于所述第二HARQ进程的初次传输的HARQ反馈,其中,第二HARQ与第一HARQ进程为不同进程;
    所述第二约束条件为:在第一HARQ进程的一个传输TTI与第三HARQ进程的一个传输TTI位于不同的上下行切换周期中的相同位置时,所述第一HARQ进程的一个传输TTI的HARQ反馈,与第三HARQ进程的一个传输TTI的HARQ反馈,也位于不同的上下行切换周期中的另一相同位置,其中,第三HARQ进程与第一HARQ进程为同一进程或不同进程。
  7. 如权利要求1至6任一项所述的方法,其中,
    在各个无线帧内,对该无线帧包含的所有TTI依次顺序编号;所述反馈TTI与初次传输TTI之间的相对位置关系为:反馈TTI与初次传输TTI之间的TTI间隔;
    或者,
    在各个子帧内,对该子帧包含的所有TTI依次顺序编号;所述反馈TTI与初次传输TTI之间的相对位置关系为:反馈TTI与初次传输TTI之间的子帧间隔,反馈TTI与初次传输TTI在各自所属子帧内的编号。
  8. 如权利要求3至6任一项所述的方法,其中,
    在所述将第一传输传输时间间隔TTI作为一HARQ进程的初次传输TTI,确定满足预设反馈重传时序关系,且使得初次传输TTI与重传TTI的间隔最小的第一反馈TTI和第一重传TTI的位置的步骤之前,还包括:
    根据预定的TTI长度,将所述TDD帧结构的各子帧划分为多个TTI,并确定各个TTI中的传输TTI以及反馈TTI,其中,所述反馈TTI与传输TTI的传输方向相反,所述传输TTI为上行传输TTI或下行传输TTI。
  9. 如权利要求1所述的方法,其中,
    所述TDD帧结构的配置包括:所述TDD帧结构的上下行配置和特殊子帧配比模式;其中,上下行配置为以下任一种:3GPP TS 36.211中定义的LTE TDD上下行配置模式0~6;所述特殊子帧配比模式包括3GPP TS36.211中定义的特殊子帧配比模式0~9以及新增的特殊子帧配比模式10中的至少一种,所述特殊子帧配比模式10中DwPTS:GP:UpPTS比例为6:2:6。
  10. 如权利要求1所述的方法,其中,
    在所述TTI的长度为0.5ms时:
    所述TDD帧结构中,每个普通子帧划分为2个TTI,每个普通子帧中的TTI的传输方向与该普通子帧的传输方向相同;
    所述TDD帧结构中,特殊子帧划分为2个TTI;
    其中,在特殊子帧的UpPTS不允许作为传输上行反馈时:特殊子帧配比模式0、5、9、10中,特殊子帧的2个TTI中的第1个TTI用于下行传输,第2个TTI不用于数据传输;特殊子帧配比模式1、2、3、4、6、7、8中,特殊子帧的2个TTI都用于下行传输;
    在特殊子帧的UpPTS允许作为传输上行反馈时:特殊子帧配比模式0、5、9、10中,特殊子帧的2个TTI中的第1个TTI用于下行传输,第2个TTI用于上行传输;特殊子帧配比模式1、2、3、4、6、7、8中,特殊子帧的2个TTI中的第1个TTI用于下行传输,第2个TTI用于上行传输和/或下行传输。
  11. 如权利要求1所述的方法,其中,
    在所述TTI的长度为0.5ms,TDD帧结构的配置为LTE TDD上行/下行配置0,且预先设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息时:
    若特殊子帧配比0,5,9和10,且采用在无线帧内对TTI从0开始顺序编号的编号方式,此时,当UE在TTI n-k中,其中k∈K’,检测到PDSCH传输或是指示下行SPS释放的PDCCH/EPDCCH,并且需要进行相应的HARQ-ACK反馈时,则UE在上行TTI n中进行HARQ-ACK反馈,不同反馈TTI对应的K’的取值为:TTI 4、5、6、14、15、16对应的K’的取值均为{4};
    若特殊子帧配比1,2,3,4,6,7,8,且采用在无线帧内对TTI从0开始顺序编号的编号方式,此时,当UE在TTI n-k中,其中k∈K’,检测到PDSCH传输或是指示下行SPS释放的PDCCH/EPDCCH,并且需要进行相应的HARQ-ACK反馈时,则UE在上行TTI n中进行HARQ-ACK反馈,不同反馈TTI对应的K’的取值为:TTI 4、5、6、7、14、15、16、17对应 的K’的取值均为{4};
    若特殊子帧配比0,5,9和10,且采用在各个子帧内对TTI从0开始顺序编号,此时,当UE在子帧n-k的TTI j中,其中k∈K’,j取值为0~J-1,J为一个1ms子帧内的TTI个数,检测到PDSCH传输或是指示下行SPS释放的PDCCH/EPDCCH,并且需要进行相应的HARQ-ACK反馈时,在上行子帧n的子帧内TTI m,进行相应的HARQ-ACK反馈,反馈时序的下行关联集合(k,j)为:子帧2、3、7、8的TTI 0对应的(k,j)为(2,0),子帧2、7的TTI 1对应的(k,j)为(2,1);
    若特殊子帧配比1,2,3,4,6,7,8,且采用在无线帧内对TTI从0开始顺序编号,此时,当UE在子帧n-k的TTI j中,其中k∈K’,j取值为0~J-1,J为一个1ms子帧内的TTI个数,检测到PDSCH传输或是指示下行SPS释放的PDCCH/EPDCCH,并且需要进行相应的HARQ-ACK反馈时,在上行子帧n的子帧内TTI m,进行相应的HARQ-ACK反馈,反馈时序的下行关联集合(k,j)为:子帧2、3、7、8的TTI 0对应的(k,j)为(2,0),子帧2、3、7、8的TTI 1对应的(k,j)为(2,1)。
  12. 如权利要求1所述的方法,其中,
    在所述TTI的长度为4个或3个OFDM符号时:
    所述TDD帧结构中,每个普通子帧的每个时隙划分为2个长度分别为4OFDM符号和3OFDM符号的TTI;每个普通子帧中的TTI的传输方向与该普通子帧的传输方向相同;
    所述TDD帧结构中,特殊子帧划分为4个长度分别为4OFDM符号、3OFDM符号、4OFDM符号和3OFDM符号的TTI;
    其中,在特殊子帧的UpPTS不允许作为传输上行反馈时:
    特殊子帧配比模式0和5中,特殊子帧的4个TTI中仅第1个TTI用于下行传输,第2-4个TTI不传输数据;
    特殊子帧配比模式1、2、3、6、7和8中,特殊子帧的4个TTI中的第1-3个TTI用于下行传输,第4个TTI不传输数据;
    特殊子帧配比模式4中,特殊子帧的4个TTI中第1-4个TTI用于下行传输;
    特殊子帧配比模式9中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3-4个TTI不传输数据;
    特殊子帧配比模式10中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第4个TTI用于上行传输;
    在特殊子帧的UpPTS允许作为传输上行反馈时:
    特殊子帧配比模式0和5中,特殊子帧的4个TTI中仅第1个TTI用于下行传输,第2-3个TTI不传输数据,第4个TTI用于上行传输;
    特殊子帧配比模式1、2、3、6、7和8中,特殊子帧的4个TTI中的第1-3个TTI用于下行传输,第4个TTI用于上行传输;
    特殊子帧配比模式4中,特殊子帧的4个TTI中第1-3个TTI用于下行传输,第4个TTI用于上行传输和/或下行传输;
    特殊子帧配比模式9中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3个TTI不传输数据第4个TTI用于上行传输;
    特殊子帧配比模式10中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3-4个TTI用于上行传输。
  13. 如权利要求1所述的方法,其中,
    在所述TTI的长度为2个OFDM符号时:
    所述TDD帧结构中,每个普通子帧划分为7个TTI;每个普通子帧中的TTI的传输方向与该普通子帧的传输方向相同;
    所述TDD帧结构中,特殊子帧划分为7个TTI,对应于特殊子帧配比模式0~10;
    其中,特殊子帧配比模式0和5中,特殊子帧的7个TTI中,第1-2个TTI用于下行传输,第3-6个TTI不传输数据,第7个TTI用于上行传输;
    特殊子帧配比模式1、2、6、7中,特殊子帧的7个TTI中,第1-5个TTI用于下行传输,第6个TTI不传输数据,第7个TTI用于上行传输;
    特殊子帧配比模式3、4、8中,特殊子帧的7个TTI中,第1-6个TTI用于下行传输,第7个TTI用于上行传输;
    特殊子帧配比模式9中,特殊子帧的7个TTI中,第1-3个TTI用于下行传输,第4-6个TTI不传输数据,第7个TTI用于上行传输;
    特殊子帧配比模式10中,特殊子帧的7个TTI中,第1-3个TTI用于下行传输,第4个TTI不传输数据,第5-7个TTI用于上行传输。
  14. 如权利要求1所述的方法,其中,
    所述TDD帧结构为新增上下行配置模式1,所述新增上下行配置模式1的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第一双向子帧、第一双向子帧、下行子帧、特殊子帧、上行子帧、第一双向子帧、第一双向子帧,其中,所述第一双向子帧中的下行:GP:上行比例为7:1:6,所述特殊子帧的DwPTS:GP:UpPTS比例为9:1:4;
    若所述TTI的长度为2个OFDM符号,则:
    每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
    第一双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2、0:0:2,且第一双向子帧中的第1-4个TTI用于下行传输,第5-7个TTI用于上行传输;
    特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2,且特殊子帧中的第1-5个TTI用于下行 传输,第6-7个TTI用于上行传输。
  15. 如权利要求1所述的方法,其中,
    所述TDD帧结构为:新增上下行配置模式2,所述新增上下行配置模式2的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第二双向子帧、第二双向子帧、下行子帧、特殊子帧、第二双向子帧、第二双向子帧、第二双向子帧,其中,所述第二双向子帧中的下行:GP:上行比例为11:1:2,所述特殊子帧的DwPTS:GP:UpPTS比例为9:1:4;
    若所述TTI的长度为2个OFDM符号,则:
    每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
    第二双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2,且第二双向子帧中的第1-6个TTI用于下行传输,第7个TTI用于上行传输;
    特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2,且特殊子帧中的第1-5个TTI用于下行传输,第6-7个TTI用于上行传输。
  16. 如权利要求1所述的方法,其中,
    所述TDD帧结构为:新增上下行配置模式3,所述新增上下行配置模式3的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第三双向子帧、第三双向子帧、下行子帧、特殊子帧、上行子帧、第三双向子帧、第三双向子帧,其中,所述第三双向子帧中的下行:GP:上行比例为6:2:6,所述特殊子帧的DwPTS:GP:UpPTS比例为6:2:6;
    若所述TTI的长度为2个OFDM符号,则:
    每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
    第三双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、0:2:0、0:0:2、0:0:2、0:0:2,且第二双向子帧中的第1-3个TTI用于下行传输,第4个TTI不用于数据传输,第5-7个TTI用于上行传输;
    特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、0:2:0、0:0:2、0:0:2、0:0:2,且特殊子帧中的第1-3个TTI用于下行传输,第4个TTI不用于数据传输,第5-7个TTI用于上行传输。
  17. 一种确定混合自动重传请求HARQ反馈时序的装置,包括:
    配置确定单元,配置为确定当前采用的TDD帧结构的配置;
    TTI确定单元,配置为确定当前采用的传输时间间隔TTI的大小;
    位置确定单元,配置为根据所述TDD帧结构的配置以及TTI的大小,确定HARQ进程中的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系。
  18. 如权利要求17所述的装置,其中,所述位置确定单元,配置为确定每个HARQ进程的初次传输TTI的位置,并根据预设反馈重传时序关系,从所述TDD帧结构中选择出该HARQ进程的反馈TTI和重传TTI,得到该HARQ进程的数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系,其中,一个TTI最多能传输一个HARQ进程的数据,所述预设反馈重传时序关系是指反馈TTI与初次传输TTI之间的间隔大于第一门限,与重传TTI之间的间隔大于第二门限。
  19. 如权利要求17所述的装置,其中,所述位置确定单元包括:
    初始处理单元,配置为在TDD帧结构中,将第一传输传输时间间隔TTI作为一HARQ进程的初次传输TTI,确定满足预设反馈重传时序关系,且使得初次传输TTI与重传TTI的间隔最小的第一反馈TTI和第一重传TTI的位置,并确定从第一传输TTI开始,到第一重传TTI的前一个传输TTI结束的传输TTI的数量n;所述第一传输TTI、第一重传TTI和传输TTI 均为同一传输方向的TTI;
    编号处理单元,配置为对从第一传输TTI开始的n个同方向传输TTI依次编号,以及,对从第一重传TTI开始n个同方向传输TTI依次编号,其中,同一编号的前后两个传输TTI分别为该编号对应的HARQ进程的初次传输TTI和重传TTI:
    时序确定单元,配置为在每个HARQ进程的初次传输TTI和重传TTI之间都存在一反馈TTI满足所述预设反馈重传时序关系时,确定TDD帧结构的HARQ进程数量为n,并得到每个HARQ进程中数据传输TTI与其反馈TTI的相对位置关系,或初次传输TTI、反馈TTI及重传TTI之间的相对位置关系;
    循环控制单元,配置为在任一HARQ进程的初次传输TTI和重传TTI之间不存在一反馈TTI满足所述预设反馈重传时序关系时,将n的当前值加1,并将所述第一重传TTI移动至当前位置的下一个同方向的传输TTI,并触发所述编号处理单元。
  20. 如权利要求17所述的装置,其中,
    所述TTI的长度为0.5ms;
    所述TDD帧结构中,每个普通子帧划分为2个TTI,每个普通子帧中的TTI的传输方向与该普通子帧的传输方向相同;
    所述TDD帧结构中,特殊子帧划分为2个TTI;
    其中,在特殊子帧的UpPTS不允许作为传输上行反馈时:特殊子帧配比模式0、5、9、10中,特殊子帧的2个TTI中的第1个TTI用于下行传输,第2个TTI不用于数据传输;特殊子帧配比模式1、2、3、4、6、7、8中,特殊子帧的2个TTI都用于下行传输;
    在特殊子帧的UpPTS允许作为传输上行反馈时:特殊子帧配比模式0、5、9、10中,特殊子帧的2个TTI中的第1个TTI用于下行传输,第2个 TTI用于上行传输;特殊子帧配比模式1、2、3、4、6、7、8中,特殊子帧的2个TTI中的第1个TTI用于下行传输,第2个TTI用于上行传输和/或下行传输。
  21. 如权利要求17所述的装置,其中,
    在所述TTI的长度为0.5ms,TDD帧结构的配置为LTE TDD上下行配置0,且预先设定特殊子帧中的UpPTS不能传输PDSCH的HARQ反馈信息时:
    若特殊子帧配比0,5,9和10,且采用在无线帧内对TTI从0开始顺序编号的编号方式,此时,在上行TTI n中进行下行TTI n-k,k∈K’中传输的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,反馈时序K’的取值为:TTI 4、5、6、14、15、16对应的K’的取值均为4;
    若特殊子帧配比1,2,3,4,6,7,8,且采用在无线帧内对TTI从0开始顺序编号的编号方式,此时,在上行TTI n中进行下行TTI n-k,k∈K’中传输的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,其反馈时序K’的取值为:TTI 4、5、6、7、14、15、16、17对应的K’的取值均为4;
    若特殊子帧配比0,5,9和10,且采用在各个子帧内对TTI从0开始顺序编号,此时,在上行子帧n的子帧内TTI m,对应子帧n-k内的TTI j的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,反馈时序的下行关联集合(k,j)为:子帧2、3、7、8的TTI 0对应的(k,j)为(2,0),子帧2、7的TTI 1对应的(k,j)为(2,1);
    若特殊子帧配比1,2,3,4,6,7,8,且采用在无线帧内对TTI从0开始顺序编号,此时,在上行子帧n的子帧内TTI m,对应子帧n-k内的TTI j的PDSCH或指示SPS释放的PDCCH/EPDCCH的HARQ反馈,反馈时序的下行关联集合(k,j)为:子帧2、3、7、8的TTI 0对应的(k,j) 为(2,0),子帧2、3、7、8的TTI 1对应的(k,j)为(2,1)。
  22. 如权利要求17所述的装置,其中,
    所述TTI的长度为4个或3个OFDM符号;
    所述TDD帧结构中,每个普通子帧的每个时隙划分为2个长度分别为4OFDM符号和3OFDM符号的TTI;每个普通子帧中的TTI的传输方向与该普通子帧的传输方向相同;将特殊子帧划分为4个长度分别为4OFDM符号、3OFDM符号、4OFDM符号和3OFDM符号的TTI;
    其中,在特殊子帧的UpPTS不允许作为传输上行反馈时:
    特殊子帧配比模式0和5中,特殊子帧的4个TTI中仅第1个TTI用于下行传输,第2-4个TTI不传输数据;
    特殊子帧配比模式1、2、3、6、7和8中,特殊子帧的4个TTI中的第1-3个TTI用于下行传输,第4个TTI不传输数据;
    特殊子帧配比模式4中,特殊子帧的4个TTI中第1-4个TTI用于下行传输;
    特殊子帧配比模式9中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3-4个TTI不传输数据;
    特殊子帧配比模式10中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第4个TTI用于上行传输;
    在特殊子帧的UpPTS允许作为传输上行反馈时:
    特殊子帧配比模式0和5中,特殊子帧的4个TTI中仅第1个TTI用于下行传输,第2-3个TTI不传输数据,第4个TTI用于上行传输;
    特殊子帧配比模式1、2、3、6、7和8中,特殊子帧的4个TTI中的第1-3个TTI用于下行传输,第4个TTI用于上行传输;
    特殊子帧配比模式4中,特殊子帧的4个TTI中第1-3个TTI用于下行传输,第4个TTI用于上行传输和/或下行传输;
    特殊子帧配比模式9中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3个TTI不传输数据第4个TTI用于上行传输;
    特殊子帧配比模式10中,特殊子帧的4个TTI中第1-2个TTI用于下行传输,第3-4个TTI用于上行传输。
  23. 如权利要求17所述的装置,其中,
    所述TTI的长度为2个OFDM符号;
    所述TDD帧结构中,每个普通子帧划分为7个TTI;每个普通子帧中的TTI的传输方向与该普通子帧的传输方向相同;特殊子帧划分为7个TTI,对应于特殊子帧配比模式0~10;
    其中,特殊子帧配比模式0和5中,特殊子帧的7个TTI中,第1-2个TTI用于下行传输,第3-6个TTI不传输数据,第7个TTI用于上行传输;
    特殊子帧配比模式1、2、6、7中,特殊子帧的7个TTI中,第1-5个TTI用于下行传输,第6个TTI不传输数据,第7个TTI用于上行传输;
    特殊子帧配比模式3、4、8中,特殊子帧的7个TTI中,第1-6个TTI用于下行传输,第7个TTI用于上行传输;
    特殊子帧配比模式9中,特殊子帧的7个TTI中,第1-3个TTI用于下行传输,第4-6个TTI不传输数据,第7个TTI用于上行传输;
    特殊子帧配比模式10中,特殊子帧的7个TTI中,第1-3个TTI用于下行传输,第4个TTI不传输数据,第5-7个TTI用于上行传输。
  24. 如权利要求17所述的装置,其中,
    所述TDD帧结构为:新增上下行配置模式1,所述新增上下行配置模式1的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第一双向子帧、第一双向子帧、下行子帧、特殊子帧、上行子帧、第一双向子帧、第一双向子帧,其中,所述第一双向子帧中的下行:GP: 上行比例为7:1:6,所述特殊子帧的DwPTS:GP:UpPTS比例为9:1:4;
    所述TTI的长度为2个OFDM符号;
    每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
    第一双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2、0:0:2,且第一双向子帧中的第1-4个TTI用于下行传输,第5-7个TTI用于上行传输;
    特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2,且特殊子帧中的第1-5个TTI用于下行传输,第6-7个TTI用于上行传输。
  25. 如权利要求17所述的装置,其中,
    所述TDD帧结构为:新增上下行配置模式2,所述新增上下行配置模式2的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第二双向子帧、第二双向子帧、下行子帧、特殊子帧、第二双向子帧、第二双向子帧、第二双向子帧,其中,所述第二双向子帧中的下行:GP:上行比例为11:1:2,所述特殊子帧的DwPTS:GP:UpPTS比例为9:1:4;
    所述TTI的长度为2个OFDM符号;
    每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
    第二双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2,且第二双向子帧中的第1-6个TTI用于下行传输,第7个TTI用于上行传输;
    特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、2:0:0、1:1:0、0:0:2、0:0:2,且特殊子帧中的第1-5个TTI用于下行传输,第6-7个TTI用于上行传输。
  26. 如权利要求17所述的装置,其中,
    所述TDD帧结构为:新增上下行配置模式3,所述新增上下行配置模式3的无线帧结构包括10个1ms子帧,依次为下行子帧、特殊子帧、上行子帧、第三双向子帧、第三双向子帧、下行子帧、特殊子帧、上行子帧、第三双向子帧、第三双向子帧,其中,所述第三双向子帧中的下行:GP:上行比例为6:2:6,所述特殊子帧的DwPTS:GP:UpPTS比例为6:2:6;
    所述TTI的长度为2个OFDM符号;
    每个子帧划分为7个TTI,其中,上行子帧或下行子帧中的TTI的传输方向与其所属子帧的传输方向相同;
    第三双向子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、0:2:0、0:0:2、0:0:2、0:0:2,且第二双向子帧中的第1-3个TTI用于下行传输,第4个TTI不用于数据传输,第5-7个TTI用于上行传输;
    特殊子帧的7个TTI中的DwPTS:GP:UpPTS比例依次为:2:0:0、2:0:0、2:0:0、0:2:0、0:0:2、0:0:2、0:0:2,且特殊子帧中的第1-3个TTI用于下行传输,第4个TTI不用于数据传输,第5-7个TTI用于上行传输。
  27. 一种通信设备,包括:
    存储器,配置为存储计算机程序;
    处理器,与所述存储器相连,配置为通过执行所述计算机程序,能够执行权利要求1至16任一项提供的确定混合自动重传请求HARQ反馈时序的方法。
  28. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至16任一项提供的确定混合自动重传请求HARQ反馈时序的方法。
PCT/CN2017/084245 2016-05-12 2017-05-12 确定反馈时序的方法、装置、设备及存储介质 WO2017194015A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018559783A JP2019521564A (ja) 2016-05-12 2017-05-12 フィードバック時間シーケンスを確定する方法、装置、機器及び記憶媒体
EP17795633.1A EP3454596B1 (en) 2016-05-12 2017-05-12 Method and apparatus for determining a feedback time sequence, and device and storage medium
US16/300,946 US10715280B2 (en) 2016-05-12 2017-05-12 Method and apparatus for determining a feedback time sequence, and device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610319419.2 2016-05-12
CN201610319419.2A CN107370576B (zh) 2016-05-12 2016-05-12 一种确定混合自动重传请求反馈时序的方法及装置

Publications (1)

Publication Number Publication Date
WO2017194015A1 true WO2017194015A1 (zh) 2017-11-16

Family

ID=60266719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084245 WO2017194015A1 (zh) 2016-05-12 2017-05-12 确定反馈时序的方法、装置、设备及存储介质

Country Status (5)

Country Link
US (1) US10715280B2 (zh)
EP (1) EP3454596B1 (zh)
JP (2) JP2019521564A (zh)
CN (1) CN107370576B (zh)
WO (1) WO2017194015A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10548118B2 (en) 2016-05-13 2020-01-28 Qualcomm Incorporated Multiple transmission time interval coordination with time division duplexing
WO2018026199A1 (en) * 2016-08-02 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for communicating in a wireless communication system
US11071127B2 (en) * 2016-11-04 2021-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Semi-persistent transmission scheduling
WO2019028703A1 (zh) * 2017-08-09 2019-02-14 Oppo广东移动通信有限公司 一种反馈应答信息的长度确定方法及相关产品
CN110034866B (zh) * 2018-01-12 2020-08-07 华为技术有限公司 一种用于反馈的方法、装置及计算机存储介质
EP3955601A4 (en) * 2019-04-09 2022-04-20 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR FORWARDING FEEDBACK FOR DIRECT CONNECTION COMMUNICATION, AND STORAGE MEDIUM
WO2020261389A1 (ja) * 2019-06-25 2020-12-30 株式会社Nttドコモ 端末及び無線通信方法
CN115516954A (zh) * 2020-03-26 2022-12-23 上海诺基亚贝尔股份有限公司 调度释放反馈
WO2022021205A1 (en) * 2020-07-30 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for processing of delays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888661A (zh) * 2009-05-11 2010-11-17 大唐移动通信设备有限公司 一种无线通信方法、***及装置
US20110211503A1 (en) * 2008-10-31 2011-09-01 Nokia Corporation Dynamic allocation of subframe scheduling for time divison duplex operation in a packet-based wireless communication system
CN102447538A (zh) * 2011-11-16 2012-05-09 中兴通讯股份有限公司 下行控制信息传输方法和***
CN102752089A (zh) * 2011-04-22 2012-10-24 北京三星通信技术研究有限公司 反馈ack/nack的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414900B (zh) * 2007-10-15 2011-08-31 电信科学技术研究院 时分双工***混合自动重传方法及装置
JP5932974B2 (ja) * 2011-05-12 2016-06-08 エルジー エレクトロニクス インコーポレイティド 制御情報を送信する方法及びそのための装置
AU2012391149B2 (en) * 2012-09-28 2017-09-28 Nokia Solutions And Networks Oy PUCCH resource allocation for E-PDCCH in communications system
EP3136644A4 (en) * 2014-05-15 2017-05-10 Huawei Technologies Co., Ltd. Data transmission apparatuses and methods
US10454624B2 (en) * 2016-03-31 2019-10-22 Innovative Technology Lab Co., Ltd. Method and apparatus for HARQ operation-supporting uplink data transmission in a special subframe in a wireless communication system
US10790942B2 (en) * 2016-04-01 2020-09-29 Samsung Electronics Co., Ltd Method and apparatus for feeding back HARQ-ACK information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110211503A1 (en) * 2008-10-31 2011-09-01 Nokia Corporation Dynamic allocation of subframe scheduling for time divison duplex operation in a packet-based wireless communication system
CN101888661A (zh) * 2009-05-11 2010-11-17 大唐移动通信设备有限公司 一种无线通信方法、***及装置
CN102752089A (zh) * 2011-04-22 2012-10-24 北京三星通信技术研究有限公司 反馈ack/nack的方法
CN102447538A (zh) * 2011-11-16 2012-05-09 中兴通讯股份有限公司 下行控制信息传输方法和***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 13)", 3GPPTS 36.211 V13.1.0, 29 March 2016 (2016-03-29), pages 1 - 155, XP055551198 *
See also references of EP3454596A4 *

Also Published As

Publication number Publication date
EP3454596A4 (en) 2019-06-26
CN107370576B (zh) 2019-11-19
JP2021036726A (ja) 2021-03-04
JP2019521564A (ja) 2019-07-25
US10715280B2 (en) 2020-07-14
CN107370576A (zh) 2017-11-21
US20190296863A1 (en) 2019-09-26
EP3454596A1 (en) 2019-03-13
EP3454596B1 (en) 2022-12-21
JP7203074B2 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2017194015A1 (zh) 确定反馈时序的方法、装置、设备及存储介质
USRE49490E1 (en) HARQ-ACK handling for unintended downlink sub-frames
CN101931514B (zh) 一种混合自动重传请求中的通信方法、***和设备
WO2017016351A1 (zh) 一种上行数据的传输方法及装置
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
TW201519680A (zh) 用於傳輸控制資訊的方法和設備
CN108574564A (zh) 混合自动重传请求方法与装置
WO2015043243A1 (zh) 一种频谱聚合的数据发送方法及装置
WO2015024248A1 (zh) 信息传输方法和设备
WO2013135018A1 (zh) 一种时分双工自适应帧结构的重传方法及网络侧设备
WO2018000373A1 (zh) 一种数据传输方法、设备及***
WO2015100959A1 (zh) 信息处理方法及装置
WO2018059370A1 (zh) 传输方法、移动通信终端及网络侧设备
WO2013120318A1 (zh) 一种子帧捆绑时实现上行子帧调度的方法和***
WO2014169868A1 (zh) 一种用户设备、节点设备及上行定时关系的确定方法
JP2017085415A (ja) 基地局装置、端末装置、通信方法及びプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795633

Country of ref document: EP

Effective date: 20181127