WO2017193976A1 - 资源配置方法、装置及基站 - Google Patents

资源配置方法、装置及基站 Download PDF

Info

Publication number
WO2017193976A1
WO2017193976A1 PCT/CN2017/084008 CN2017084008W WO2017193976A1 WO 2017193976 A1 WO2017193976 A1 WO 2017193976A1 CN 2017084008 W CN2017084008 W CN 2017084008W WO 2017193976 A1 WO2017193976 A1 WO 2017193976A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
type
transmission
resource
r1set
Prior art date
Application number
PCT/CN2017/084008
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
鲁照华
陈宪明
杨维维
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to ES17795594T priority Critical patent/ES2894249T3/es
Priority to JP2018559997A priority patent/JP2019521573A/ja
Priority to KR1020187036216A priority patent/KR102166401B1/ko
Priority to EP17795594.5A priority patent/EP3393167B1/en
Publication of WO2017193976A1 publication Critical patent/WO2017193976A1/zh
Priority to US15/872,944 priority patent/US10554367B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a resource configuration method, apparatus, and base station.
  • MTC UE Machine Type Communication
  • M2M Machine to Machine
  • MTC UE Machine Type Communication
  • MTC UE User Equipment
  • M2M Machine to Machine
  • the main application form Several techniques for cellular level Internet of Things are disclosed in the 3GPP Technical Report TR45.820V200, where the NB-IoT technology is the most compelling.
  • terminals supported such as terminals that support only a single subcarrier baseband processing capability and terminals that can support multiple subcarrier baseband processing capabilities. If the physical channel resources configured for different terminals are conflicted and how to resolve the conflict, NB-IoT technology currently lacks an effective solution.
  • the embodiments of the present disclosure provide a resource configuration method, apparatus, and base station, to at least solve the problem of how to avoid conflicting channel resources configured for different terminals in the related art.
  • a resource configuration method including: when a first type of channel resource allocated for a first terminal and a second type of channel resource allocated for a second terminal satisfy a specified condition, The time domain location of the first resource in the second type of channel resource is delayed.
  • the first type of channel includes: a random access channel; and/or the second type of channel includes one of: an uplink data channel; an uplink traffic channel; an uplink control channel; Automatically retransmit the channel requesting HARQ response information; the sounding channel.
  • the first type of channel is a random access channel
  • the random access signal repeated transmission R1 sent on the random access channel is greater than or equal to the first threshold R1set
  • the first type of channel transmission is configured.
  • the value of the R1set is determined by using at least one of the following: R1set adopts a default configuration; R1set adopts a default configuration; and a value of R1set is selected from a set of values of R1; a value of R1set is configured by signaling; The value of R1set is configured by signaling and the value of R1set is selected from the set of values of R1; R1set is the largest integer that satisfies T_Unit1*R1set is less than or equal to or less than the second threshold T1set, where T_Unit1 is a random access signal once.
  • T1set adopts the default configuration; or the value of T1set is configured by signaling; the value of R1set is selected by the set of values of R1, and the set of values of R1set is R1 that satisfies T_Unit1*R1set less than or equal to or less than The maximum value of T1set, where T_Unit1 is the time length for which the random access signal is transmitted once; T1set adopts the default configuration; or the value of T1set is configured by signaling.
  • the specified condition includes at least one of: when there is an overlapping area between the first type of channel resource and the second type of channel resource; a time domain location where the first type of channel resource is located The time domain locations where the second type of channel resources are located overlap or partially overlap, and the frequency domain location where the second type of channel resources are located is included in the frequency domain location where the first type of channel resources are located; the first type of channel resources The time domain location is overlapped or partially overlapped with the time domain location where the second type of channel resource is located, and the frequency domain location where the first type of channel resource is located and the frequency domain location where the second type of channel resource is located When the interval is less than or equal to or less than A Hz, where A is greater than 0; when the second type of channel frequency domain resource overlaps with the first type of channel frequency domain resource, the proportion of the second type channel frequency domain bandwidth is greater than or equal to c%
  • the value of the default configuration c% or the value of c% is configured by signaling; the length of the time domain overlap region of the second type
  • A is m times the subcarrier spacing S1 of the first type of channel, where m is greater than zero.
  • the default configuration of m is 1 or 2; or the value of m is configured by signaling, and is selected from ⁇ 0, 1, 2, 3 ⁇ ; or the value of m is configured by signaling, and is from ⁇ 0 , 1, 2, 4 ⁇ ; or the value of m is configured by signaling, and is selected from ⁇ 1, 2, 3, 4 ⁇ .
  • A is n times the subcarrier spacing S2 of the second type of channel, where n is greater than zero.
  • n is configured by default to 1 or 2; or the value of n is configured by signaling and is selected from ⁇ 0, 1, 2, 3 ⁇ ; or the value of n is configured by signaling, and is from ⁇ 0 , 1, 2, 4 ⁇ ; or the value of n is configured by signaling and is selected from ⁇ 1, 2, 3, 4 ⁇ .
  • n is configured by default to 1 or 2; or the value of n is configured by signaling and selected from ⁇ 0, 1 ⁇ ; or the value of n is configured by signaling, and is from ⁇ 1, 2 ⁇ select.
  • the time domain location of the first resource in the second type of channel resource is deferred according to the following manner: the start of the time domain location where the first resource is located in the delayed second channel resource
  • the first type of channel transmission end time End1 is at least one of the following: a time when the random access signal transmission sent on the random access channel ends; When the guard time GT ends; when multiple GTs are configured for random access channel transmission, End1 is the end time of the last GT; when the transmission interval is configured for random access channel transmission, End1 is the end time of the transmission interval; random access When the transmission interval is configured in the channel transmission, End1 is the time when the random access signal transmitted on the random access channel ends; when the transmission interval is configured in the random access channel transmission, End1 is the ending time of the GT; the random access signal When the transmission interval is configured in the channel transmission, End1 is the end time of the last GT; when multiple transmission intervals are configured in the random access channel transmission, End1 is the end time of the last transmission interval; and multiple transmissions are configured in the random access channel transmission. At the interval, End1 is the time when the random access signal transmitted on the random access channel ends; when multiple transmission intervals are configured in the random access channel transmission, End1 is configured in the random access channel transmission.
  • the first type of channel transmission end time End1 is determined by a start time Start1 of the first type of channel transmission and a first type of channel transmission time length T_Length1.
  • the transmission time length T_Length1 of the first type of channel is determined by at least one of the following parameters: a time length T_Unit1 of the basic unit of the first type of channel transmission; and a repetition of the basic unit of the first type of channel transmission The number of transmissions R1; the protection time GT1 of the first type of channel transmission.
  • the first resource includes: (Nj) resource units starting from a resource unit RU(j) with an index of j and ending with a resource unit RU(N-1) with an index of N-1, where
  • the second type of channel resource is composed of N RUs, and the index of the RU is 0 to N-1.
  • the RU(j) is the first RU that satisfies the specified condition; or the RU(j) is the RU with the smallest index among the RUs that satisfy the specified condition.
  • the time domain length of the RU is P first measurement units; or the time domain length of the RU is the time domain length of the resources occupied by the second type channel, and P is a positive integer.
  • the value of P is one of the following: 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, 32 ms.
  • the frequency domain length of the RU is Q subcarriers or subchannels.
  • the value of Q includes at least one of the following: 1, 3, 6, 9, and 12.
  • the value of Q is the number of subcarriers or subchannels allocated by the second type of channel.
  • the N of the RUs that constitute the second type of channel resource including the transmission interval occupied by the second type of channel Said RU.
  • the RU(j) includes: a first RU that satisfies the condition that the specified condition is met, and is not occupied by the second type of channel transmission interval; and the smallest index of the RU that satisfies the following condition: The specified condition is not the RU occupied by the second type of channel transmission interval.
  • the RU(j) is the first RU that meets the specified condition; or the RU(j) is that the specified condition is met.
  • the smallest RU is indexed in the RU, where the first type of channel resource does not include resources occupied by the transmission interval of the first type of channel.
  • the method further includes: when the RU(j) is not present, the second type of channel does not need to delay transmission.
  • the first measurement unit or the index of the first measurement unit in which the start time of the transmission interval Gap1 is located, k is greater than or equal to 0; or when the transmission interval Gap1 is configured in the first type of channel,
  • the first measurement unit or the index of the first measurement unit in which the first transmission interval Gap1 is located, k is greater than or equal to zero.
  • the second type of channel resource that does not overlap with the first type of channel resource to send a bearer on the second type of channel.
  • a ratio of a frequency domain bandwidth occupied by the second type channel to the frequency domain bandwidth of the second type channel configuration is less than or equal to c1%
  • the second type of channel resource that does not overlap with the first type of channel resource sends data or service or information or signal carried on the second type of channel, where c1 is greater than or equal to zero.
  • a length of a time domain overlap region of the second type of channel resource and the first type of channel resource is less than or equal to d in a time domain length of the second type of channel resource.
  • d is greater than or equal to zero.
  • the length of the time domain overlap region is W1 first measurement units; or the length of the time domain overlap region is W2 time domain lengths of resources occupied by the second type channel.
  • the second type of channel does not need to be delayed, wherein the predetermined level index adopts a default configuration. Or configured by signaling.
  • the second type of channel does not need to be delayed, wherein the predetermined value adopts a default configuration.
  • the predetermined value is configured by signaling.
  • the second type of channel is a channel that carries hybrid automatic repeat request response information.
  • the first terminal is one terminal or multiple terminals.
  • the first terminal meets one of the following conditions: the coverage enhancement level is the same; the random access signal repeats the transmission level is the same; the random access signal is repeatedly sent. the same.
  • a resource configuration apparatus including: a delay module configured to satisfy a designation of a first type of channel resource allocated for a first terminal and a second type of channel resource allocated for a second terminal The condition is that the time domain location of the first resource in the second type of channel resource is delayed.
  • the first type of channel includes: a random access channel; and/or the second type of channel includes one of: an uplink data channel; an uplink traffic channel; an uplink control channel; and a hybrid automatic repeat request HARQ Channel for answering information; sounding channel.
  • the specified condition includes at least one of: when there is an overlapping area between the first type of channel resource and the second type of channel resource; a time domain location where the first type of channel resource is located The time domain locations where the second type of channel resources are located overlap or partially overlap, and the frequency domain location where the second type of channel resources are located is included in the frequency domain location where the first type of channel resources are located; the first type of channel resources The time domain location is overlapped or partially overlapped with the time domain location where the second type of channel resource is located, and the frequency domain location where the first type of channel resource is located and the frequency domain location where the second type of channel resource is located When the interval is less than or equal to or less than A Hz, where A is greater than 0; when the second type of channel frequency domain resource overlaps with the first type of channel frequency domain resource, the proportion of the second type channel frequency domain bandwidth is greater than or equal to c%
  • the value of the default configuration c% or the value of c% is configured by signaling; the length of the time domain overlap region of the second type
  • a base station including the above content Any of the resource configuration devices provided.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: when the first type of channel resource allocated for the first terminal and the second type of channel resource allocated for the second terminal satisfy the specified condition The time domain location of the first resource in the channel resource is delayed.
  • the time domain position of the first resource in the second type channel resource is delayed, and the time domain is reached.
  • the resources configured on different terminals are not processed at the same time. Therefore, the problem of how to avoid conflicting channel resources configured for different terminals in the related art can be solved, thereby avoiding conflicts of channel resources and improving communication efficiency.
  • FIG. 1 is an architectural diagram of a hardware structure in accordance with an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a resource configuration method according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of a resource configuration apparatus according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram 1 of a transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 5 is a first schematic diagram of a 64th repetition transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 6 is a second schematic diagram of a 64th repetition transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 7 is a third schematic diagram of a 64-fold repeated transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram 4 of a 64-fold repeated transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram 5 of a 64-times repeat transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure.
  • FIG. 10 is a first schematic diagram of a location of PUSCH transmission according to an embodiment of the present disclosure.
  • FIG. 11 is a first schematic diagram of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • FIG. 12 is a second schematic diagram of a location of PUSCH transmission according to an embodiment of the present disclosure.
  • FIG. 13 is a second schematic diagram of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • FIG. 14 is a third schematic diagram of a location of PUSCH transmission according to an embodiment of the present disclosure.
  • FIG. 15 is a third schematic diagram of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • 16 is a sixth diagram of a 64-fold repeated transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • 17 is a schematic diagram 4 of a location of PUSCH transmission according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram 4 of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • 19 is a schematic diagram 7 of a 64-fold repeated transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • 20 is a schematic diagram 5 of a location of PUSCH transmission according to an embodiment of the present disclosure.
  • 21 is a schematic diagram 5 of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • FIG. 22 is a second schematic diagram of a transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure.
  • 23 is a schematic diagram 8 of a 64th repetition transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 24 is a first schematic diagram of a slot structure in accordance with an embodiment of the present disclosure.
  • FIG. 25 is a first schematic diagram 1 of a transmission structure of a PUSCH according to an embodiment of the present disclosure
  • FIG. 26 is a resource occupied by PUSCH and PRACH transmission according to an embodiment of the present disclosure.
  • FIG. 27 is a schematic diagram 6 of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • 29 is a third schematic diagram of a transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure.
  • FIG. 30 is a schematic diagram IX of a 64-fold repeated transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 31 is a second schematic diagram of a slot structure in accordance with an embodiment of the present disclosure.
  • FIG. 32 is a second schematic diagram of a transmission structure of a PUSCH according to an embodiment of the present disclosure.
  • FIG. 33 is a second schematic diagram of resources occupied when PUSCH and PRACH are transmitted according to an embodiment of the present disclosure.
  • FIG. 34 is a schematic diagram 7 of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • FIG. 35 is a second schematic diagram of slot 99 to slot 128 transmission after delay according to an embodiment of the present disclosure.
  • 36 is a fourth schematic diagram of a transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 37 is a schematic diagram of a 64th repetition transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 39 is a third schematic diagram of a transmission structure of a PUSCH according to an embodiment of the present disclosure.
  • FIG. 40 is a third schematic diagram of resources occupied when PUSCH and PRACH are transmitted according to an embodiment of the present disclosure.
  • 41 is a schematic diagram of slot 99 overlapping with PRACH resources according to an embodiment of the present disclosure.
  • FIG. 42 is a schematic diagram 8 of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • 43 is a schematic diagram 5 of a transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • 44 is a first schematic diagram of a 16th repetition transmission structure of a basic unit of Preamble transmission according to an embodiment of the present disclosure
  • 45 is a schematic diagram of a resource location of a PUSCH transmission when a modulation coding mode of data carried by a PUSCH is QPSK 1/2 according to an embodiment of the present disclosure
  • FIG. 46 is a schematic diagram 6 of a transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure.
  • FIG. 47 is a second schematic diagram of a 16th repetition transmission structure of a basic unit of Preamble transmission according to an embodiment of the present disclosure.
  • FIG. 48 is a schematic diagram 7 of a transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure.
  • 49 is a schematic diagram XI of a 64th repetition transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 50 is a schematic diagram 4 of a slot structure according to an embodiment of the present disclosure.
  • FIG. 51 is a schematic diagram 4 of a transmission structure of a PUSCH according to an embodiment of the present disclosure.
  • FIG. 52 is a fourth schematic diagram of resources occupied when PUSCH and PRACH are transmitted according to an embodiment of the present disclosure.
  • FIG. 53 is a schematic diagram IX of PUSCH transmission after delay according to an embodiment of the present disclosure.
  • FIG. 54 is a schematic diagram VIII of a transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure
  • FIG. 55 is a schematic diagram 12 of a 64-times repeat transmission structure of a basic unit of a Preamble according to an embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing the hardware structure of an operation device of a resource configuration method according to an embodiment of the present disclosure.
  • computing device 10 may include one or more (only one of which is shown) processor 102 (processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • a memory 104 for storing data
  • a transmission device 106 for communication functions.
  • computing device 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be used to store software programs and modules of application software, such as program instructions/modules corresponding to the resource configuration method in the embodiment of the present disclosure, and the processor 102 executes various programs by running software programs and modules stored in the memory 104. Functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 may further include memory remotely located relative to processor 102, which may be coupled to computing device 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the computing device 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • NIC Network Interface Controller
  • the transmission device 106 can be a radio frequency (RF) module for communicating with the Internet by wireless.
  • RF radio frequency
  • FIG. 2 is a flowchart of a resource configuration method according to an embodiment of the present disclosure. As shown in FIG. 2, the process includes the following steps:
  • Step S202 determining that the first type of channel resource allocated for the first terminal and the second type of channel resource allocated for the second terminal meet the specified condition
  • Step S204 Perform delay processing on the time domain location where the first resource is located in the second type of channel resource when the specified condition is met.
  • the time domain location of the first resource in the second type of channel resource is delayed, and the different terminals are reached.
  • the configured resources are not used for the purpose of simultaneous processing. Therefore, it is possible to solve the problem of how to avoid conflicts of channel resources configured for different terminals in the related art, thereby avoiding conflicts of channel resources and improving communication efficiency.
  • step S202 is an optional step, that is, it is not necessary to perform the step every time, and the specified condition can be determined in advance, and each time after the execution, step S204 is directly executed.
  • the execution body of the foregoing steps may be a base station, a terminal, or the like, but is not limited thereto.
  • the foregoing first type of channel may include: a random access channel.
  • the second type channel may include one of the following: an uplink data channel; an uplink traffic channel; an uplink control channel; and a hybrid automatic repeat reQuest (HARQ) response.
  • HARQ hybrid automatic repeat reQuest
  • the first type of channel is a random access channel
  • the random access signal repeated transmission R1 sent on the random access channel is greater than or equal to the first threshold R1set
  • the first type of channel transmission interval Gap1 is configured.
  • the value of the first threshold R1set may be determined by at least one of the following:
  • Method 1 R1set adopts the default configuration.
  • R1set adopts the default configuration and the value of R1set is selected from the set of values of R1.
  • R1set is the largest integer that satisfies T_Unit1*R1set less than or equal to or less than the second threshold T1set.
  • T_Unit1 is a time length corresponding to the random access signal being sent once; T1set adopts a default configuration; or the value of T1set is configured by signaling.
  • the value of R1set is selected from the set of values of R1, and the set of values of R1set R1 satisfies the maximum value of T_Unit1*R1set less than or equal to or less than T1set.
  • T_Unit1 is the time length for the random access signal to be sent once; T1set adopts the default configuration; or the value of T1set is configured by signaling.
  • the specified condition includes at least one of the following:
  • the resources in the first type of channel resource and the second type of channel resource include two dimensions, a time domain and a frequency domain.
  • the overlap region includes all or part of the first type of channel resource; and/or all or part of the second type of channel resource.
  • the time domain location where the first type of channel resource is located overlaps or partially overlaps with the time domain location where the second type of channel resource is located, and the frequency domain location where the second type of channel resource is located is included in the frequency domain where the first type of channel resource is located In the location.
  • the time domain location where the first type of channel resource is located overlaps or partially overlaps with the time domain location where the second type of channel resource is located, and the frequency domain location where the first type of channel resource is located and the frequency domain location where the second type of channel resource is located When the interval between is less than or equal to A Hertz (Hz), where A Greater than 0.
  • Hz Hertz
  • the length of the time domain overlap region of the second type of channel resource and the first type of channel resource is greater than or equal to d% in the time domain length of the second type of channel resource; wherein the length of the time domain overlap region is W1
  • the first measurement unit; or the length of the time domain overlap region is the time domain length of the resources occupied by the W2 second type channels, and W1 and W2 are integers greater than 0, and d is greater than 0.
  • the second type of channel may support one or more repeated transmissions.
  • A is m times the subcarrier spacing S1 of the first type of channel, where m is greater than zero.
  • m is configured by default to be 1 or 2; or the value of m is configured by signaling, and is from ⁇ 0, 1, 2, 3 ⁇ Select; or the value of m is configured by signaling and is selected from ⁇ 0, 1, 2, 4 ⁇ ; or the value of m is configured by signaling, and is selected from ⁇ 1, 2, 3, 4 ⁇ .
  • S1 3.75 kHz.
  • A is n times the subcarrier spacing S2 of the second type of channel, where n is greater than zero.
  • n is configured by default to be 1 or 2; or the value of n is configured by signaling, and is from ⁇ 0, 1, 2, 3 ⁇ Select; or the value of n is configured by signaling and is selected from ⁇ 0, 1, 2, 4 ⁇ ; or the value of n is configured by signaling, and is selected from ⁇ 1, 2, 3, 4 ⁇ .
  • S2 3.75 kHz.
  • the time domain location of the first resource in the second type of channel resource is deferred according to the following manner: the time domain location of the first resource in the delayed second channel resource
  • End1 may be a decimal, that is, may not be an integer number of first units of measure.
  • the first unit of measure may be seconds (s), milliseconds (ms), sub-frames, frames, slots, or other time units.
  • the slot length is 1 ms; when the subcarrier spacing of the second type channel is 3.75 kHz, the slot length is 2 ms.
  • the first type of channel transmission end time End1 is at least one of the following:
  • End1 is the end time of the last GT.
  • End1 is the end time of the transmission interval.
  • End1 is the time at which the transmission of the random access signal transmitted on the random access channel ends.
  • End1 is the end time of the GT.
  • End1 is the end time of the last GT.
  • End1 is the end time of the last transmission interval.
  • End1 is a random access channel. The time at which the transmission of the random access signal transmitted ends.
  • End1 is the end time of the GT.
  • End1 is the end time of the last GT.
  • End1 may also be a decimal, that is, may not be an integer number of first measurement units.
  • the first type of channel transmission end time End1 is determined by the start time Start1 of the first type of channel transmission and the first type of channel transmission time length T_Length1.
  • End1 Start1+T_Length1.
  • the transmission time length T_Length1 of the first type of channel is determined by at least one of the following parameters: a time length of the basic unit of the first type of channel transmission T_Unit1; a number of repeated transmissions of the basic unit of the type of channel transmission R1; protection time GT1 of the first type of channel transmission.
  • the first type of channel transmission time length T_Length1 is determined by at least one of the following parameters: a time length of the basic unit of the first type of channel transmission T_Unit1; a number of repeated transmission times of the basic unit of the type of channel transmission R1 The protection time GT1 of the first type of channel transmission; the interval Gap1 of the first type of channel transmission.
  • T_Length1 is determined by one of the following ways:
  • R1 is configured by the base station through signaling.
  • R1set adopts the default configuration, or R1set adopts the default configuration and the value of R1set is selected from the set of values of R1; or the value of R1set is configured by signaling, or the value of R1set is configured by signaling and the value of R1set Select from the set of values of R1; R1set is the largest integer that satisfies T_Unit1*R1set less than or equal to T1set; or the value of R1set is selected from the set of values of R1, and the set of values of R1set is R1 that satisfies T_Unit1*R1set is smaller than Or equal to the maximum value of T1set.
  • T1set adopts the default configuration; or the value of T1set is configured by signaling.
  • R1 is configured by the base station through signaling.
  • R1set adopts the default configuration, or R1set adopts the default configuration and the value of R1set is selected from the set of values of R1; or the value of R1set is configured by signaling, or the value of R1set is configured by signaling and the value of R1set Select from the set of values of R1; R1set is the largest integer that satisfies T_Unit1*R1set less than or equal to T1set; or the value of R1set is selected from the set of values of R1, and the set of values of R1set is R1 that satisfies T_Unit1*R1set is smaller than Or equal to the maximum value of T1set.
  • T1set adopts the default configuration; or the value of T1set is configured by signaling.
  • R1 is configured by the base station through signaling.
  • R1set adopts the default configuration, or R1set adopts the default configuration and the value of R1set is selected from the set of values of R1; or the value of R1set is configured by signaling, or the value of R1set is configured by signaling and the value of R1set Select from the set of values of R1; R1set is the largest integer that satisfies T_Unit1*R1set less than or equal to T1set; or the value of R1set is selected from the set of values of R1, and the set of values of R1set is R1 that satisfies T_Unit1*R1set is smaller than Or equal to the maximum value of T1set.
  • T1set adopts the default configuration; or the value of T1set is configured by signaling.
  • R1 is configured by the base station through signaling.
  • R1set adopts the default configuration, or R1set adopts the default configuration and the value of R1set is selected from the set of values of R1; or the value of R1set is configured by signaling, or the value of R1set is configured by signaling and the value of R1set Select from the set of values of R1; R1set is the largest integer that satisfies T_Unit1*R1set less than or equal to T1set; or the value of R1set is selected from the set of values of R1, and the set of values of R1set is R1 that satisfies T_Unit1*R1set is smaller than Or equal to the maximum value of T1set.
  • T1set adopts the default configuration; or the value of T1set is configured by signaling.
  • e can be selected from ⁇ 0/8, 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 1 ⁇ .
  • the time domain location of the first resource in the second type of channel resource needs to be delayed, and the first resource includes: starting from a resource unit with index j (ie, Resource Unit j, RU(j)) a (Nj) resource unit that ends with a resource unit of index N-1 (ie, Resource Unit N-1, RU(N-1)), where the second type of channel resource is composed of N RUs, and the index of the RU is 0 to N-1.
  • RU(j) is the first RU that satisfies the specified condition; or RU(j) is the RU with the smallest index among the RUs that satisfy the specified condition.
  • the time domain length of the RU is P first measurement units; or the time domain length of the RU is the time domain length of the resources occupied by the second type channel, and P is a positive integer.
  • the second type of channel can support one or more repeated transmissions.
  • the value of P is one of the following: 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, 32 ms.
  • the frequency domain length of the RU is Q subcarriers or subchannels.
  • the value of Q includes at least one of the following: 1, 3, 6, 9, and 12.
  • the value of Q is the number of subcarriers or subchannels allocated for the second type of channel.
  • the transmission interval of the second type of channel when the transmission interval of the second type of channel needs to be configured in the transmission process of the second type of channel, the transmission interval of the second type of channel includes the transmission interval of the second type of channel. RU.
  • the RU(j) includes: a first RU that satisfies the specified condition: an RU that is not occupied by the second type of channel transmission interval; and an index that satisfies the following conditions: the smallest: Specifies the condition and is not the RU occupied by the second type of channel transmission interval.
  • the RU(j) when the transmission interval of the first type of channel needs to be configured in the first type of channel transmission, the RU(j) is the first RU that meets the specified condition; or the RU(j) is satisfied.
  • the second type of channel does not require delayed transmission when RU(j) is not present.
  • the first measurement unit or the index of the first measurement unit, k is greater than or equal to 0; or, when the transmission interval Gap1 is configured in the first type of channel, the first resource in the delayed second type channel resource is located
  • the index of the first unit of measurement or the first unit of measure at which the start time of the interval Gap1 is located, k is greater than or equal to zero.
  • the second type of channel resource is a resource that does not perform a delay operation.
  • the second type of channel resource that does not overlap with the first type of channel resource is used to send the following One: data, business, information, signals.
  • the ratio of the frequency domain bandwidth occupied by the second type channel to the frequency domain bandwidth of the second type channel configuration is less than or equal to c1%
  • the data or service or information or signal carried on the second type of channel is transmitted using a second type of channel resource that does not overlap with the first type of channel resource, where c1 is greater than or equal to zero.
  • the length of the time domain overlap region length of the second type of channel resource and the first type of channel resource is less than or equal to d% in the time domain length of the second type of channel resource.
  • the second type of channel does not require delayed transmission, where d is greater than or equal to zero.
  • the length of the time domain overlap region is W1 first measurement units; or the length of the time domain overlap region is the time domain length of the resources occupied by the W2 second type channels.
  • the second type of channel can support one or more repeated transmissions.
  • the second type of channel when the specified condition is met, and the level index of the second terminal is greater than or equal to a predetermined level index, the second type of channel does not need to be delayed, wherein the predetermined level index adopts a default configuration, or passes Signaling configuration.
  • the second terminal is divided into one or more sets, and the number of repeated transmissions configured when the second terminal in the different set sends the second type of channel is different; or the second terminal is divided into one or more sets, in different sets.
  • the coverage enhancement target value (coverage enhancement target interval) corresponding to the second terminal is different; the repeated transmission times of the second type channel corresponding to different coverage enhancement target values (coverage enhancement target intervals) are different.
  • the second type of channel when the specified condition is met, and the number of repeated transmissions of the second type of channel is greater than or equal to a predetermined value, the second type of channel does not need to be delayed, where The default value is set by default, or the predetermined value is configured by signaling.
  • the second type of channel is a channel that carries Hybrid Automatic Repeat reQuest (HARQ) response information.
  • HARQ Hybrid Automatic Repeat reQuest
  • the first terminal when the first type of channel is a random access channel, the first terminal is followed by one terminal or multiple terminals.
  • the first terminal when the first terminal is a plurality of terminals, the first terminal satisfies one of the following conditions: the coverage enhancement level is the same; the random access signal repeats the transmission level is the same; the random access signal repeats the transmission times the same .
  • a resource configuration device is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a resource configuration apparatus according to an embodiment of the present disclosure. As shown in FIG. 3, the apparatus includes:
  • the determining module 31 is configured to determine that the first type of channel resource allocated for the first terminal and the second type of channel resource allocated for the second terminal meet the specified condition;
  • the delay module 33 is connected to the determining module 31, and is set to meet the specified condition.
  • the time domain location of the first resource in the second type of channel resource is delayed.
  • the time domain location of the first resource in the second type channel resource is delayed, and the different terminals are reached.
  • the configured resources are not used for the purpose of simultaneous processing. Therefore, it is possible to solve the problem of how to avoid conflicts of channel resources configured for different terminals in the related art, thereby avoiding conflicts of channel resources and improving communication efficiency.
  • the determining module 31 is an optional module, that is, it is not necessary to call the module every time, and the specified condition can be determined in advance, and the delay module 33 is directly called each time after the call.
  • the foregoing first type of channel may include: a random access channel.
  • the second type channel may include one of the following: an uplink data channel; an uplink traffic channel; an uplink control channel; and a hybrid automatic repeat reQuest (HARQ) response.
  • HARQ hybrid automatic repeat reQuest
  • the specified condition includes at least one of the following: when the first type of channel resource and the second type of channel resource have overlapping regions; the time domain location where the first type of channel resource is located and the second type of channel resource The time domain locations overlap or partially overlap, and the frequency domain location where the second type of channel resources are located is included in the frequency domain location where the first type of channel resources are located; the time domain location of the first type of channel resources and the second type of channel resources Where the time domain locations overlap or partially overlap, and the interval between the frequency domain location where the first type of channel resource is located and the frequency domain location where the second type of channel resource is located is less than or equal to A Hz, where A is greater than 0; When the proportion of the frequency band of the second type of channel and the frequency domain of the first type of channel occupies the bandwidth of the second type of channel is greater than or equal to c%, the default configuration of c% or c% The value is configured by signaling; the length of the time domain overlapping area of the second type of channel resource and the
  • a base station is also provided.
  • the base station includes any of the resource configuration devices provided by the foregoing content of the embodiments of the present disclosure.
  • the upstream system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz, and the PRACH subcarrier spacing ⁇ f is 3.75 kHz.
  • a total of 12 PRACH subcarriers are configured, respectively, Subcarrior 0. ⁇ Subcarrior 11.
  • Group 1 to Group 4 are defined as the basic unit (Unit) that constitutes a random access signal (Preamble). Group 1 to Group 4 are respectively sent on different subcarriers; each group includes one cyclic prefix (CP) and five Preamble symbols (symbol), and one Preamble symbol time domain symbol length. (millisecond).
  • CP cyclic prefix
  • symbol symbol time domain symbol length. (millisecond).
  • the length of the CP is 0.2667ms
  • the length of the CP is 0.0667ms
  • the CP length is 0.2667 ms, and the unit length is 6.4 ms.
  • the subcarrier index of Group 2 , Group 3 , and Group 4 can be determined according to the subcarrier index of Group 1 .
  • the terminal selects the Subcarrior sent by Group 1 as Subcarrior0, the Subcarrior sent by Group 2 is Subcarrior1, the Subcarrior sent by Group 3 is Subcarrior7, and the Subcarrior sent by Group 4 is Subcarrior6, as shown in Figure 4.
  • the time length T_Unit1 of the basic unit of the random access signal (Preamble) is 6.4 ms.
  • the transmission period of the random access signal (Preamble) transmitted on the PRACH is 1280 ms; the starting position offset of the Preamble transmission is 128 ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the number of repeated transmissions of the basic unit of the Preamble transmission is greater than R1set, after the transmission of the R1set secondary Preamble basic unit is completed, the Preamble transmission interval Gap1 needs to be introduced, and the Preamble is not transmitted during the Gap1 time.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 5, and the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the 64-time repeat transmission structure of the basic unit of the Preamble is as shown in FIG. 6.
  • the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz
  • the PRACH subcarrier spacing is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured.
  • the transmission period of the random access signal (Preamble) transmitted on the PRACH is 1280 ms;
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 7.
  • the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the 64-time repeat transmission structure of the basic unit of Preamble is shown in Figure 8. It is shown that the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • GT 0.2667 ms or 1.2 ms.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz
  • the PRACH subcarrier spacing is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured.
  • the transmission period of the random access signal (Preamble) transmitted on the PRACH is 1280 ms;
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 9.
  • the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz
  • the PRACH subcarrier spacing is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured.
  • the preamble transmission period is 640 ms
  • the initial position offset of the Preamble transmission is 32 ms
  • the Preamble transmission time is 6.4 ms
  • the Preamble transmission repetition number is 32.
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal is transmitted by using a single subcarrier.
  • the subcarrier spacing is 3.75 kHz
  • the PUSCH resource allocated by the base station to the terminal includes 8 units.
  • the unit size is (1 subcarrier * 32ms).
  • the PUSCH configured by the base station for the terminal occupies 8 units, which are respectively Unit1 to Unit8, and the location where the PUSCH is transmitted is as shown in FIG.
  • the PUSCH transmission after the delay is as shown in FIG. 11.
  • the start time of the delayed transmission of Unit7 and Unit8 is Start2, where Start2 is the time after the PRACH time length T_Length1 and the first value is the integer millisecond.
  • T_Length1 PRACH(204.8ms)+GT(0.2667ms).
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz
  • the PRACH subcarrier spacing is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured.
  • the transmission period of the random access signal (Preamble) is 640 ms
  • the offset of the starting position transmitted by the Preamble is 32 ms
  • the length of the Preamble transmission is 6.4 ms
  • the number of repetitions sent by the Preamble is 32.
  • the total length of the Preamble of 32 repetitions is 204.8 ms
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal is transmitted by using a single subcarrier.
  • the subcarrier spacing is 3.75 kHz
  • the PUSCH resource allocated by the base station to the terminal includes 8 units.
  • the unit size is (1 subcarrier * 32ms).
  • the PUSCH configured by the base station for the terminal occupies 8 units, which are respectively Unit1 to Unit8, and the location where the PUSCH is transmitted is as shown in FIG.
  • Unit6, Unit7, and Unit8 overlap with PRACH resources in the PUSCH resource, Unit6, Unit7, and Unit8 need to be delayed.
  • the PUSCH transmission after the delay is as shown in FIG. 13, and the starting time of the delayed transmission of Unit6, Unit7, and Unit8 is Start2, where Start2 is the time after the PRACH time length T_Length1 and the first value is the integer millisecond.
  • T_Length1 PRACH(204.8ms)+GT(1.2ms).
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz
  • the PRACH subcarrier spacing is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured.
  • the preamble transmission period is 640 ms
  • the initial position offset of the Preamble transmission is 32 ms
  • the Preamble transmission time is 6.4 ms
  • the Preamble transmission repetition number is 32.
  • the 32 repetitions of the Preamble total length are 32 times. It is 204.8ms.
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal is transmitted by using a single subcarrier.
  • the subcarrier spacing is 3.75 kHz
  • the PUSCH resource allocated by the base station to the terminal includes 8 units.
  • the unit size is (1 subcarrier * 32ms).
  • the PUSCH configured by the base station for the terminal occupies 8 units, which are respectively Unit1 to Unit8, and the location where the PUSCH is transmitted is as shown in FIG. 14.
  • Unit6, Unit7, and Unit8 overlap with PRACH resources in the PUSCH resource, Unit6, Unit7, and Unit8 need to be delayed.
  • the PUSCH transmission after the delay is as shown in FIG. 15.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies 45 kHz
  • the PRACH subcarrier spacing is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured.
  • the transmission period of the random access signal (Preamble) transmitted on the PRACH is 1280 ms.
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 16.
  • the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal is transmitted by using a single subcarrier.
  • the subcarrier spacing is 3.75 kHz
  • the PUSCH resources allocated by the base station for the terminal include 32 units.
  • the unit size is (1 subcarrier * 2ms).
  • the PUSCH configured by the base station for the terminal occupies 32 units, which are respectively Unit1 to Unit32, and the location where the PUSCH is transmitted is as shown in FIG. 17.
  • the PUSCH transmission after the delay is as shown in FIG. 18, and the start time of the delayed transmission of Unit 30 to Unit 32 is Start2, where Start2 is the time after the PRACH time length T_Length1 and the first value is the integer millisecond.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz
  • the PRACH subcarrier spacing is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured.
  • the transmission period of the random access signal (Preamble) transmitted on the PRACH is 1280 ms;
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the number of repeated transmissions of the basic unit of the Preamble transmission is greater than R1set, after the transmission of the R1set secondary Preamble basic unit is completed, the Preamble transmission interval Gap1 needs to be introduced, and the Preamble is not transmitted during the Gap1 time.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 19, and the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the base station uses a single sub-port for the uplink traffic channel (PUSCH) configured by the terminal.
  • the subcarrier spacing is 3.75 kHz
  • the PUSCH resources allocated by the base station for the terminal include 32 units.
  • the unit size is (1 subcarrier * 2ms).
  • the PUSCH configured by the base station for the terminal occupies 32 units, which are respectively Unit1 to Unit32, and the location where the PUSCH is transmitted is as shown in FIG. 20.
  • Unit 30 to Unit 32 Since Unit 30 to Unit 32 overlap with PRACH resources in the PUSCH resource, Unit 30 to Unit 32 need to be delayed.
  • the PUSCH transmission after the delay is as shown in FIG. 21, and the start time of the delayed transmission of Unit 30 to Unit 32 is Start2, where Start2 is the time after the last GT and the first value is the integer millisecond.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz, and the PRACH subcarrier spacing ⁇ f is 3.75 kHz.
  • a total of 12 PRACH subcarriers are configured, respectively, which are Subcarrior 0. ⁇ Subcarrior 11.
  • Group 1 to Group 4 are defined as the basic unit (Unit) that constitutes a random access signal (Preamble). Group 1 to Group 4 are respectively sent on different subcarriers; each group
  • the length of the CP is 0.2667ms
  • the length of the CP is 0.0667ms
  • the CP length is 0.2667 ms, and the unit length is 6.4 ms;
  • the subcarrier index of Group 2 , Group 3 , and Group 4 can be determined according to the subcarrier index of Group 1 .
  • the terminal selects the Subcarrior sent by Group 1 as Subcarrior0, the Subcarrior sent by Group 2 is Subcarrior1, the Subcarrior sent by Group 3 is Subcarrior7, and the Subcarrior sent by Group 4 is Subcarrior6, as shown in Figure 22.
  • the length of the base unit of the random access signal (Preamble) T_Unit1 It is 6.4ms.
  • the transmission period of the random access signal (Preamble) transmitted on the PRACH is 1280 ms.
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the number of repeated transmissions of the basic unit of the Preamble transmission is greater than R1set, after the transmission of the R1set secondary Preamble basic unit is completed, the Preamble transmission interval Gap1 needs to be introduced, and the Preamble is not transmitted during the Gap1 time.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 23, and the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the PUSCH transmission interval Gap2 needs to be introduced, and the length of Gap2 is Y slots.
  • the PUSCH is not transmitted.
  • the slot length is 2 ms
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal is transmitted by using a single subcarrier, and the subcarrier spacing is 3.75 kHz.
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal occupies one resource unit.
  • Resource Unit, RU Resource Unit
  • the RU size is (1 subcarrier * 32 ms)
  • the RU time domain length is 16 slots.
  • the resources occupied when the PUSCH and the PRACH are transmitted are as shown in FIG. 26.
  • slot 99 to slot 128 overlap with the PRACH resource in the PUSCH resource, slot 99 to slot 128 need to be delayed.
  • the slot 99 to slot 128 transmission after the delay may also be as shown in FIG. 28, and the start time of slot 99 to slot 128 delayed transmission is Start2, where Start2 is the start time of the first slot after the last GT.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies 45 kHz
  • the PRACH subcarrier spacing ⁇ f is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured, respectively, Subcarrior 0. ⁇ Subcarrior 11.
  • Group 1 to Group 4 are defined as the basic unit (Unit) that constitutes a random access signal (Preamble). Group 1 to Group 4 are respectively sent on different subcarriers; each group includes one cyclic prefix (CP) and five Preamble symbols (symbol), and one Preamble symbol time domain symbol length. (millisecond).
  • CP cyclic prefix
  • symbol symbol time domain symbol length. (millisecond).
  • the length of the CP is 0.2667ms
  • the CP length is 0.2667 ms, and the unit length is 6.4 ms.
  • the subcarrier index of Group 2 , Group 3 , and Group 4 can be determined according to the subcarrier index of Group 1 .
  • the terminal selects the Subcarrior sent by Group 1 as Subcarrior0, the Subcarrior sent by Group 2 is Subcarrior1, the Subcarrior sent by Group 3 is Subcarrior7, and the Subcarrior sent by Group 4 is Subcarrior6, as shown in Figure 29.
  • the time length T_Unit1 of the basic unit of the random access signal (Preamble) is 6.4 ms.
  • the transmission period of the random access signal (Preamble) transmitted on the PRACH is 1280 ms.
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the number of repeated transmissions of the basic unit of the Preamble transmission is greater than R1set, after the transmission of the R1set secondary Preamble basic unit is completed, the Preamble transmission interval Gap1 needs to be introduced, and the Preamble is not transmitted during the Gap1 time.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 30, and the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the PUSCH transmission interval Gap2 needs to be introduced, and the length of Gap2 is Y slots. During the Gap2 time, the PUSCH is not transmitted.
  • the slot length is 1 ms
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal is transmitted by using a single subcarrier, and the subcarrier spacing is 15 kHz.
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal occupies one resource unit (RU), wherein the RU size is (1 subcarrier * 8 ms), that is, the length of the RU time domain is 8 slots.
  • the resources occupied when the PUSCH and the PRACH are transmitted are as shown in FIG.
  • slot 101 to slot 128 need to be delayed.
  • the PUSCH transmission after the delay is as shown in FIG. 34, and the start time of the slot 101 to slot 128 delayed transmission is Start2, where Start2 is the time after the last GT and the first value is the integer millisecond, or Start2 is the last GT. The starting moment of the first slot.
  • the slot 101 to slot 128 after the delay transmission may also be as shown in FIG. 35, and the start time of the delayed transmission of slot 101 to slot 128 is Start2, where Start2 is the first value after the first GT in the PRACH transmission.
  • the time corresponding to the integer millisecond, or Start2 is the start time of the first slot after the first GT in the PRACH transmission.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies 45 kHz
  • the PRACH subcarrier spacing ⁇ f is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured.
  • Group 1 to Group 4 are defined as the basic unit (Unit) that constitutes a random access signal (Preamble). Group 1 to Group 4 are respectively sent on different subcarriers; each group includes one cyclic prefix (CP) and five Preamble symbols (symbol), and one Preamble symbol time domain symbol length. (millisecond).
  • CP cyclic prefix
  • symbol symbol time domain symbol length. (millisecond).
  • the length of the CP is 0.2667ms
  • the length of the CP is 0.0667ms
  • the CP length is 0.2667 ms, and the unit length is 6.4 ms.
  • the subcarrier index of Group 2 , Group 3 , and Group 4 can be determined according to the subcarrier index of Group 1 .
  • the terminal selects the Subcarrior sent by Group 1 as Subcarrior0, the Subcarrior sent by Group 2 is Subcarrior1, the Subcarrior sent by Group 3 is Subcarrior7, and the Subcarrior sent by Group 4 is Subcarrior6, as shown in Figure 36.
  • the time length T_Unit1 of the basic unit of the random access signal (Preamble) is 6.4 ms.
  • the transmission period of the random access signal (Preamble) sent on the PRACH is 1280 ms;
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms;
  • the Preamble transmission interval Gap1 needs to be introduced. Preamble is not transmitted during Gap1.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 37
  • the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the PUSCH transmission interval Gap2 needs to be introduced, and the length of Gap2 is Y slots.
  • the PUSCH is not transmitted.
  • the slot length is 2 ms
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal is transmitted by using a single subcarrier, and the subcarrier spacing is 3.75 kHz.
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal occupies one resource unit (RU), wherein the RU size is (1 subcarrier * 32 ms), that is, the length of the RU time domain is 16 slots.
  • the resources occupied when the PUSCH and the PRACH are transmitted are as shown in FIG. 40.
  • the slots 100 to slot 128 overlap with the PRACH resources in the PUSCH resource, and half of the slots in the slot 99 overlap with the PRACH resources.
  • the slot 99 and the PRACH resources overlap as shown in FIG. 41.
  • the subsequent PUSCH transmission is as shown in FIG. 42.
  • the start time of the second half of slot 99 and the delayed transmission of slot 100 to slot 128 is Start2, where Start2 is the time after the last PRACH Gap and the first value is the integer millisecond.
  • the structure of the Slot A is the same as the structure of the first 1 ms in the slot 99 in FIG. 41, and the symbol 3 is not transmitted.
  • the structure of the Slot B is the same as that of the last 1 ms in the slot 99 in FIG. 41, and the symbol 3 is not transmitted.
  • the PUSCH resource When the PUSCH resource does not overlap with the PRACH resource, but the interval between the frequency domain locations between the PUSCH resource and the PRACH resource is less than (or less than or equal to) A hertz (Hz), the PUSCH resource needs to have the same time domain location as the PRACH resource.
  • the scheme of delayed transmission and delayed transmission is the same as that of the embodiments 7 to 14.
  • A is n times the subcarrier spacing S1 of the PRACH; n is configured by default to 1 or 2; or the value of n is configured by signaling, and is selected from ⁇ 0, 1, 2, 3 ⁇ ; or The value is configured by signaling and is selected from ⁇ 0, 1, 2, 4 ⁇ ; or the value of n is configured by signaling and is selected from ⁇ 1, 2, 3, 4 ⁇ .
  • S1 3.75 kHz.
  • A may also be n times the subcarrier spacing S2 of the PUSCH; n is configured by default to 1 or 2; or the value of n is configured by signaling, and is selected from ⁇ 0, 1, 2, 3 ⁇ Or the value of n is configured by signaling and is selected from ⁇ 0, 1, 2, 4 ⁇ ; or the value of n is configured by signaling and is selected from ⁇ 1, 2, 3, 4 ⁇ .
  • S2 3.75 kHz.
  • A may also be n times the subcarrier spacing S2 of the PUSCH; n is configured by default to 1 or 2; or the value of n is configured by signaling and selected from ⁇ 0, 1 ⁇ ; or n The value is configured by signaling and is selected from ⁇ 1, 2 ⁇ .
  • S2 15 kHz.
  • the PUSCH resource having the same time domain position as the PRACH resource (including all frequency domain resources of the PUSCH in the frequency domain) needs to be delayed, and the delay transmission is in the schemes of Embodiments 7 to 14.
  • the plan is the same.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz, and the PRACH subcarrier spacing ⁇ f is 3.75 kHz.
  • a total of 12 PRACH subcarriers are configured, respectively, which are Subcarrior 0. ⁇ Subcarrior 11.
  • Group 1 to Group 4 are defined as the basic unit (Unit) that constitutes a random access signal (Preamble). Group 1 to Group 4 are respectively sent on different subcarriers; each group includes one cyclic prefix (CP) and five Preamble symbols (symbol), and one Preamble symbol time domain symbol length. (millisecond).
  • CP cyclic prefix
  • symbol symbol time domain symbol length. (millisecond).
  • the length of the CP is 0.2667ms
  • the length of the CP is 0.0667ms
  • the CP length is 0.2667 ms, and the unit length is 6.4 ms;
  • the subcarrier index of Group 2 , Group 3 , and Group 4 can be determined according to the subcarrier index of Group 1 .
  • the terminal selects the Subcarrior sent by Group 1 as Subcarrior0, the Subcarrior sent by Group 2 is Subcarrior1, the Subcarrior sent by Group 3 is Subcarrior7, and the Subcarrior sent by Group 4 is Subcarrior6, as shown in Figure 43.
  • the time length of the basic unit of the random access signal (Preamble) T_Unit1 is 6.4 ms;
  • the transmission period of the random access signal (Preamble) sent on the PRACH is 1280 ms;
  • the starting position offset of the Preamble transmission is 128ms.
  • R1, R1 is selected from ⁇ 1, 2, 4, 8, 16, 32
  • the 16 consecutive transmissions of the basic unit of the Preamble transmission have a total length of 102.4 ms, and the structure is as shown in FIG.
  • the PUSCH resource and the PRACH resource partially overlap.
  • the PUSCH resource that is not overlapped with the PRACH resource is used to transmit the data of the PUSCH. Since the available PUSCH resources are reduced, the rate matching adjustment PUSCH modulation and coding mode is required to carry the original data. In this embodiment, the modulation is performed.
  • the encoding method is adjusted to QPSK3/4.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies 45 kHz
  • the PRACH subcarrier spacing ⁇ f is 3.75 kHz
  • a total of 12 PRACH subcarriers are configured, respectively, Subcarrior 0. ⁇ Subcarrior 11.
  • Group 1 to Group 4 are defined as the basic unit (Unit) that constitutes a random access signal (Preamble). Group 1 to Group 4 are respectively sent on different subcarriers; each group includes one cyclic prefix (CP) and five Preamble symbols (symbol), and one Preamble symbol time domain symbol length. (millisecond).
  • CP cyclic prefix
  • symbol symbol time domain symbol length. (millisecond).
  • the length of the CP is 0.2667ms
  • the length of the CP is 0.0667ms
  • the CP length is 0.2667 ms, and the unit length is 6.4 ms;
  • the subcarrier index of Group 2 , Group 3 , and Group 4 can be determined according to the subcarrier index of Group 1 .
  • the terminal selects the Subcarrior sent by Group 1 as Subcarrior0, the Subcarrior sent by Group 2 is Subcarrior1, the Subcarrior sent by Group 3 is Subcarrior7, and the Subcarrior sent by Group 4 is Subcarrior6, as shown in Figure 46.
  • the time length T_Unit1 of the basic unit of the random access signal (Preamble) is 6.4 ms.
  • the transmission period of the random access signal (Preamble) sent on the PRACH is 1280 ms;
  • the starting position offset of the Preamble transmission is 128ms.
  • the 16 consecutive transmissions of the basic unit of the Preamble transmission have a total length of 102.4 ms, and the structure is as shown in FIG.
  • the PUSCH resource occupies N RUs, and the size of each RU is (3 subcarriers * 4 ms), and the interval of each subcarrier is 15 kHz.
  • the PUSCH resource that does not overlap with the PRACH resource is used to transmit the data carried by the PUSCH, since available The PUSCH resource is reduced. Therefore, the rate matching is required to adjust the modulation and coding mode of the PUSCH to carry the original data.
  • the modulation and coding mode is adjusted to QPSK3/4.
  • the PUSCH resource occupies N RUs, and the size of each RU is (3 subcarriers * 4 ms), and the interval of each subcarrier is 15 kHz.
  • the ratio of the frequency domain bandwidth occupied by the PUSCH to the frequency domain bandwidth of the PUSCH frequency domain resource is greater than or greater than c%, the PUSCH resource having the same time domain location as the PRACH resource (including the PUSCH in the frequency domain) All frequency domain resources need to be delayed, and the scheme of delayed transmission is the same as that in Embodiments 7 to 14.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz, and the PRACH subcarrier spacing ⁇ f is 3.75 kHz.
  • a total of 12 PRACH subcarriers are configured, respectively, which are Subcarrior 0. ⁇ Subcarrior 11.
  • Group 1 to Group 4 are defined as the basic unit (Unit) that constitutes a random access signal (Preamble). Group 1 to Group 4 are respectively sent on different subcarriers; each group includes one cyclic prefix (CP) and five Preamble symbols (symbol), and one Preamble symbol time domain symbol length. (millisecond).
  • CP cyclic prefix
  • symbol symbol time domain symbol length. (millisecond).
  • the length of the CP is 0.2667ms
  • the length of the CP is 0.0667ms
  • the CP length is 0.2667 ms, and the unit length is 6.4 ms;
  • the subcarrier index of Group 2 , Group 3 , and Group 4 can be determined according to the subcarrier index of Group 1 .
  • the terminal selects the Subcarrior sent by Group 1 as Subcarrior0, the Subcarrior sent by Group 2 is Subcarrior1, the Subcarrior sent by Group 3 is Subcarrior7, and the Subcarrior sent by Group 4 is Subcarrior6, as shown in Figure 48.
  • the time length T_Unit1 of the basic unit of the random access signal (Preamble) is 6.4 ms.
  • the transmission period of the random access signal (Preamble) sent on the PRACH is 1280 ms;
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the number of repeated transmissions of the basic unit of the Preamble transmission is greater than R1set, after the transmission of the R1set secondary Preamble basic unit is completed, the Preamble transmission interval Gap1 needs to be introduced, and the Preamble is not transmitted during the Gap1 time.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 49
  • the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the PUSCH transmission interval Gap2 needs to be introduced, and the length of Gap2 is Y slots. During the Gap2 time, the PUSCH is not transmitted.
  • the slot length is 2 ms, and the slot structure is shown in FIG. 50.
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal is transmitted by using a single subcarrier, and the subcarrier spacing is 3.75 kHz.
  • the uplink traffic channel (PUSCH) configured by the base station for the terminal occupies one resource unit (RU), wherein the RU size is (1 subcarrier * 32 ms), that is, the length of the RU time domain is 16 slots.
  • the resources occupied when the PUSCH and the PRACH are transmitted are as shown in FIG. 52.
  • Start2-1 is the start of the first slot in the first PRACH Gap of the time domain position after slot 99. Time; or Start2-1 is the start time of the first complete millisecond in the first PRACH Gap of the time domain position after slot 99; or Start2-1 is the end time of the first GT after the time domain position is after slot99 Then the start time of the first slot; or Start2-1 is the start time of the first complete millisecond after the end time of the first GT after slot 99 in the time domain position.
  • Start 2-2 is The domain location is the start time of the first slot in the second PRACH Gap after slot 99; or Start2-2 is the start time of the first complete millisecond in the second PRACH Gap of the time domain location after slot 99; Or Start2-2 is the start time of the first slot after the end time of the second GT after slot 99 in the time domain position; or Start2-2 is the time domain position after the end time of the second GT after slot99 The starting moment of a full millisecond.
  • the uplink system bandwidth is 180 kHz.
  • the uplink access bandwidth (PRACH) configured by the base station occupies an uplink bandwidth of 45 kHz, and the PRACH subcarrier spacing ⁇ f is 3.75 kHz.
  • a total of 12 PRACH subcarriers are configured, respectively, which are Subcarrior 0. ⁇ Subcarrior 11.
  • Group 1 to Group 4 are defined as the basic unit (Unit) that constitutes a random access signal (Preamble). Group 1 to Group 4 are respectively sent on different subcarriers; each group includes one cyclic prefix (CP) and five Preamble symbols (symbol), and one Preamble symbol time domain symbol length. (millisecond).
  • CP cyclic prefix
  • symbol symbol time domain symbol length. (millisecond).
  • the length of the CP is 0.2667ms
  • the length of the CP is 0.0667ms
  • the CP length is 0.2667 ms, and the unit length is 6.4 ms.
  • the subcarrier index of Group 2 , Group 3 , and Group 4 can be determined according to the subcarrier index of Group 1 .
  • the terminal selects the Subcarrior sent by Group 1 as Subcarrior0, the Subcarrior sent by Group 2 is Subcarrior1, the Subcarrior sent by Group 3 is Subcarrior7, and the Subcarrior sent by Group 4 is Subcarrior6, as shown in Figure 54.
  • the time length T_Unit1 of the basic unit of the random access signal (Preamble) is 6.4 ms.
  • the transmission period of the random access signal (Preamble) transmitted on the PRACH is 1280 ms.
  • the starting position offset of the Preamble transmission is 128ms.
  • the 64-time repeated transmission of the basic unit of the Preamble transmission has a total length of 409.6 ms.
  • the number of repeated transmissions of the basic unit of the Preamble transmission is greater than R1set, after the transmission of the R1set secondary Preamble basic unit is completed, the Preamble transmission interval Gap1 needs to be introduced, and the Preamble is not transmitted during the Gap1 time.
  • the 64-time repeated transmission structure of the basic unit of the Preamble is as shown in FIG. 55
  • the 64-time repeated transmission length T_Length1 of the basic unit of the Preamble is calculated according to the following formula:
  • the random access response message (RAR) is detected, as shown in FIG. 55, where “the detection time of the RAR is The window is a transmission location of control information for transmitting a RAR message or scheduling a RAR message for the base station.
  • the interval between the start position of the “RAR detection time window” and the PRACH resource end position is k milliseconds.
  • the k millisecond refers to the interval between the start position of the "detection time window of the RAR" and the transmission interval Gap1 of the PRACH end configuration.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: when the first type of channel resource allocated for the first terminal and the second type of channel resource allocated for the second terminal satisfy the specified condition The time domain location of the first resource in the channel resource is delayed.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the time domain location of the first resource in the second type of channel resource is delayed.
  • the purpose of processing resources of different terminals is not processed at the same time. Therefore, it is possible to solve the problem of how to avoid collision of channel resources configured for different terminals in the related art, thereby avoiding conflicts of channel resources and improving communication efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种资源配置方法、装置及基站。其中,该方法包括:在为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件时,对第二类信道资源中第一资源所在的时域位置进行延迟处理通过本公开实施例,解决了相关技术中如何避免为不同终端配置的信道资源发生冲突的问题,进而避免了信道资源的冲突,提高了通信效率。

Description

资源配置方法、装置及基站 技术领域
本公开涉及通信领域,具体而言,涉及一种资源配置方法、装置及基站。
背景技术
机器类型通信(Machine Type Communication,简称MTC)用户终端(User Equipment,简称UE)(以下简称为MTC UE),又称机器到机器(Machine to Machine,简称M2M)用户终端,是现阶段物联网的主要应用形式。在3GPP技术报告TR45.820V200中公开了几种适用于蜂窝级物联网的技术,其中,NB-IoT技术最为引人注目。考虑到物联网中支持的用户通信设备的数量是非常巨大的,支持的终端类型也会非常多,例如存在仅仅支持单个子载波基带处理能力的终端以及可以支持多个子载波基带处理能力的终端。如果为不同终端配置的物理信道资源如果冲突后,如何进行冲突解决,NB-IoT技术目前还缺乏一个有效的解决方案。
针对相关技术中如何避免为不同终端配置的信道资源发生冲突的问题,尚无有效的解决方案。
发明内容
本公开实施例提供了一种资源配置方法、装置及基站,以至少解决相关技术中如何避免为不同终端配置的信道资源发生冲突的问题。
根据本公开实施例的一个实施例,提供了一种资源配置方法,包括:在为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件时,对所述第二类信道资源中第一资源所在的时域位置进行延迟处理。
可选地,所述第一类信道包括:随机接入信道;和/或所述第二类信道包括以下之一:上行数据信道;上行业务信道;上行控制信道;承载混合 自动重传请求HARQ应答信息的信道;探测信道。
可选地,当所述第一类信道为随机接入信道,随机接入信道上发送的随机接入信号重复发送次数R1大于或等于第一阈值R1set时,所述第一类信道传输中配置第一类信道传输间隔Gap1。
可选地,所述R1set的取值通过以下至少之一方式确定:R1set采用默认配置;R1set采用默认配置且R1set的取值从R1的取值集合中选择;R1set的取值由信令配置;R1set的取值由信令配置且R1set的取值从R1的取值集合中选择;R1set为满足T_Unit1*R1set小于等于或小于第二阈值T1set的最大整数,其中,T_Unit1为随机接入信号1次发送对应的时间长度,T1set采用默认配置;或者T1set的取值由信令配置;R1set的取值由R1的取值集合中选择,且R1set为R1的取值集合满足T_Unit1*R1set小于等于或小于T1set的最大值,其中,T_Unit1为随机接入信号1次发送对应的时间长度;T1set采用默认配置;或者T1set的取值由信令配置。
可选地,所述指定条件包括以下至少之一:所述第一类信道资源与所述第二类信道资源存在重叠区域时;所述第一类信道资源所在的时域位置与所述第二类信道资源所在的时域位置重叠或部分重叠,且所述第二类信道资源所在的频域位置包含在所述第一类信道资源所在的频域位置中;所述第一类信道资源所在的时域位置与所述第二类信道资源所在的时域位置重叠或部分重叠,且第一类信道资源所在的频域位置与所述第二类信道资源所在的频域位置之间的间隔小于等于或小于A赫兹时,其中,A大于0;当第二类信道频域资源与第一类信道频域资源重叠的部分占用第二类信道频域带宽的比例大于等于或大于c%时,其中,默认配置c%的取值或者c%的取值由信令配置;所述第二类信道资源与所述第一类信道资源的时域重叠区域长度在所述第二类信道资源的时域长度中的比例大于或大于等于d%时;其中,所述时域重叠区域长度为W1个第一度量单位;或所述时域重叠区域长度为W2个所述第二类信道一次发送占用的资源的时域长度,W1和W2为大于0的整数,d大于0。
可选地,A为所述第一类信道的子载波间隔S1的m倍,其中,m大于0。
可选地,m默认配置为1或2;或者m的取值由信令配置,且从{0,1,2,3}中选择;或者m的取值由信令配置,且从{0,1,2,4}中选择;或者m的取值由信令配置,且从{1,2,3,4}中选择。
可选地,S1=3.75kHz。
可选地,A为所述第二类信道的子载波间隔S2的n倍,其中,n大于0。
可选地,n默认配置为1或2;或者n的取值由信令配置,且从{0,1,2,3}中选择;或者n的取值由信令配置,且从{0,1,2,4}中选择;或者n的取值由信令配置,且从{1,2,3,4}中选择。
可选地,S2=3.75kHz。
可选地,n默认配置为1或2;或者n的取值由信令配置,且从{0,1}中选择;或者n的取值由信令配置,且从{1,2}中选择。
可选地,S2=15kHz。
可选地,按照以下方式对所述第二类信道资源中第一资源所在的时域位置进行延迟处理:延迟后的所述第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为所述第一类信道传输结束时刻End1所在的第一度量单位或第一度量单位的索引,k为整数。
可选地,当所述第一类信道为随机接入信道时,所述第一类信道传输结束时刻End1为以下至少之一:随机接入信道上发送的随机接入信号传输结束的时刻;保护时间GT结束的时刻;随机接入信道发送中配置多个GT时,End1为最后一个GT的结束时刻;随机接入信道发送中配置传输间隔时,End1为传输间隔的结束时刻;随机接入信道发送中配置传输间隔时,End1为随机接入信道上发送的随机接入信号传输结束的时刻;随机接入信道发送中配置传输间隔时,End1为GT的结束时刻;随机接入信 道发送中配置传输间隔时,End1为最后一个GT的结束时刻;随机接入信道发送中配置多个传输间隔时,End1为最后一个传输间隔的结束时刻;随机接入信道发送中配置多个传输间隔时,End1为随机接入信道上发送的随机接入信号传输结束的时刻;随机接入信道发送中配置多个传输间隔时,End1为GT的结束时刻;随机接入信道发送中配置多个传输间隔时,End1为最后一个GT的结束时刻。
可选地,所述第一类信道传输结束时刻End1由所述第一类信道传输的起始时刻Start1以及所述第一类信道传输时间长度T_Length1确定。
可选地,所述第一类信道的传输时间长度T_Length1通过以下至少之一参数确定:所述第一类信道传输的基本单元的时间长度T_Unit1;所述第一类信道传输的基本单元的重复发送次数R1;所述第一类信道传输的保护时间GT1。
可选地,所述第一类信道传输时间长度T_Length1还通过以下之一方式确定:T_Length1=T_Unit1*R1;T_Length1=T_Unit1*R1+GT。
可选地,T_Length1通过以下之一方式确定:1)当R1小于等于或小于R1set时,或T_Unit1*R1小于等于或小于T1set时,T_Length1=T_Unit1*R1;或者T_Length1=T_Unit1*R1+GT;2)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或大于T1set时,
Figure PCTCN2017084008-appb-000001
其中,Num=R1/R1set,R1_subsetj=R1set,j=1~Num,Gap1j=Gap1;3)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或大于T1set时,
Figure PCTCN2017084008-appb-000002
其中, Num=R1/R1set,R1_subsetj=R1set,j=1~Num;Gap1j=Gap1,j=1~Num,或者Gap1j=GT1,j=Num。
可选地,T_Length1还通过以下方式确定:4)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或大于T1set时,
Figure PCTCN2017084008-appb-000003
Figure PCTCN2017084008-appb-000004
其中,
Figure PCTCN2017084008-appb-000005
R1_subsetj=R1set,j=1~Num-1;或者,R1_subsetj=R1-R1set*(Num-1),j=Num。
可选地,当R1不能被R1set整除时,Gap1j=Gap1,j=1~Num-1;或者,Gap1j=0,j=Num。
可选地,当R1_subsetj小于R1set时,Gap1j=0,j=Num。
可选地,当R1_subsetj小于或等于e×R1set时,Gap1j=0,j=Num,e为常数。
可选地,0<e<1,或者,0≤e≤1。
可选地,所述第一资源包括:从索引为j的资源单元RU(j)开始到索引为N-1的资源单元RU(N-1)结束的(N-j)个资源单元,其中,所述第二类信道资源由N个RU组成,所述RU的索引为0~N-1。
可选地,RU(j)为满足所述指定条件的第一个RU;或RU(j)为满足所述指定条件的RU中索引最小的RU。
可选地,RU的时域长度为P个第一度量单位;或RU的时域长度为所述第二类信道一次发送占用的资源的时域长度,P为正整数。
可选地,P的取值为以下之一:1ms,2ms,4ms,8ms,16ms,32ms。
可选地,当第二类信道分配的频域子载波间隔为3.75kHz时,P=32ms; 当所述第二类信道分配的频域子载波间隔为15kHz时,P=8ms;当所述第二类信道分配的频域子载波间隔为3.75kHz,且所述第二类信道采用单个子载波发送时,P=32ms;当所述第二类信道分配的频域子载波间隔为15kHz,且所述第二类信道采用单个子载波发送时,P=8ms;当所述第二类信道分配的频域子载波间隔为15kHz,且所述第二类信道采用多个子载波发送时,P=1ms或P=2ms或P=4ms;当所述第二类信道分配的频域子载波间隔为3.75kHz,且所述第二类信道采用单个子载波发送时,P=8ms;当所述第二类信道分配的频域子载波间隔为15kHz,且所述第二类信道采用单个子载波发送时,P=2ms。
可选地,RU的频域长度为Q个子载波或子信道。
可选地,Q的取值包括以下至少之一:1,3,6,9,12。
可选地,Q的取值为第二类信道分配的子载波或子信道的数量。
可选地,当第二类信道发送过程中需要配置第二类信道的发送间隔时,组成第二类信道资源的N个所述RU中,包括所述第二类信道的发送间隔占用的所述RU。
可选地,RU(j)包括:满足以下条件的第一个RU:满足所述指定条件,且不是所述第二类信道发送间隔占用的RU;满足以下条件的索引最小的RU:满足所述指定条件,且不是所述第二类信道发送间隔占用的RU。
可选地,当第一类信道发送过程中需要配置第一类信道的发送间隔时,RU(j)为满足所述指定条件的第一个RU;或RU(j)为满足所述指定条件的RU中索引最小的RU,其中,所述第一类信道资源不包括所述第一类信道的发送间隔占用的资源。
可选地,所述方法还包括:当RU(j)不存在时,第二类信道不需要延迟发送。
可选地,按照以下方式对所述第二类信道资源中第一资源所在的时域位置进行延迟处理:当所述第一类信道中配置了传输间隔Gap1时,延迟 后的所述第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为所述第二类信道资源结束时刻End2之后第一个所述传输间隔Gap1的起始时刻所在的第一度量单位或第一度量单位的索引,k大于或等于0;或者当所述第一类信道中配置了所述传输间隔Gap1时,延迟后的所述第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为所述资源单元RU(j)的结束时刻之后第一个所述传输间隔Gap1的起始时刻所在的第一度量单位或第一度量单位的索引,k大于或等于0。
可选地,所述第一类信道资源与所述第二类信道资源有部分重叠时,使用与所述第一类信道资源不重叠的所述第二类信道资源发送第二类信道上承载的以下之一:数据、业务、信息、信号。
可选地,当第二类信道占用的频域带宽与所述第一类信道频域资源重叠的部分占用所述第二类信道配置的频域带宽的比例小于等于或小于c1%时,使用与所述第一类信道资源不重叠的所述第二类信道资源发送第二类信道上承载的数据或业务或信息或信号,其中,c1大于或大于等于0。
可选地,当满足指定条件,且所述第二类信道资源与所述第一类信道资源的时域重叠区域长度在所述第二类信道资源的时域长度中的比例小于或等于d%时,第二类信道不需要延迟发送,其中,d大于或大于等于0。
可选地,所述时域重叠区域长度为W1个第一度量单位;或所述时域重叠区域长度为W2个所述第二类信道一次发送占用的资源的时域长度。
可选地,当满足所述指定条件,且所述第二终端的等级索引大于或大于等于预定等级索引时,所述第二类信道不需要延迟发送,其中,所述预定等级索引采用默认配置,或者通过信令配置。
可选地,当满足所述指定条件,且所述第二类信道的重复发送次数大于或大于等于预定值时,所述第二类信道不需要延迟发送,其中,所述预定值采用默认配置,或者所述预定值通过信令配置。
可选地,所述第二类信道为承载混合自动重传请求应答信息的信道。
可选地,当所述第一类信道为随机接入信道时,所述第一终端为1个终端或多个终端。
可选地,在所述第一终端为所述多个终端时,所述第一终端满足以下条件之一:覆盖增强等级相同;随机接入信号重复发送等级相同;随机接入信号重复发送次数相同。
根据本公开的另一个实施例,提供了一种资源配置装置,包括:延迟模块,设置为在为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件时,对所述第二类信道资源中第一资源所在的时域位置进行延迟处理。
可选地,所述第一类信道包括:随机接入信道;和/或所述第二类信道包括以下之一:上行数据信道;上行业务信道;上行控制信道;承载混合自动重传请求HARQ应答信息的信道;探测信道。
可选地,所述指定条件包括以下至少之一:所述第一类信道资源与所述第二类信道资源存在重叠区域时;所述第一类信道资源所在的时域位置与所述第二类信道资源所在的时域位置重叠或部分重叠,且所述第二类信道资源所在的频域位置包含在所述第一类信道资源所在的频域位置中;所述第一类信道资源所在的时域位置与所述第二类信道资源所在的时域位置重叠或部分重叠,且第一类信道资源所在的频域位置与所述第二类信道资源所在的频域位置之间的间隔小于等于或小于A赫兹时,其中,A大于0;当第二类信道频域资源与第一类信道频域资源重叠的部分占用第二类信道频域带宽的比例大于等于或大于c%时,其中,默认配置c%的取值或者c%的取值由信令配置;所述第二类信道资源与所述第一类信道资源的时域重叠区域长度在所述第二类信道资源的时域长度中的比例大于或大于等于d%时;其中,所述时域重叠区域长度为W1个第一度量单位;或所述时域重叠区域长度为W2个所述第二类信道一次发送占用的资源的时域长度,W1和W2为大于0的整数,d大于0。
根据本公开实施例的另一个实施例,提供了一种基站,包括上述内容 所提供的任一种所述资源配置装置。
根据本公开实施例的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:在为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件时,对所述第二类信道资源中第一资源所在的时域位置进行延迟处理。
通过本公开实施例,由于在不同终端的第一类信道资源与第二类信道资源满足指定条件的情况下,对第二类信道资源中第一资源所在的时域位置进行延迟处理,达到了对不同终端配置的资源不进行同时处理的目的,因此,可以解决相关技术中如何避免为不同终端配置的信道资源发生冲突的问题,进而避免了信道资源的冲突,提高了通信效率。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的硬件结构的架构图;
图2是根据本公开实施例的一种资源配置方法的流程图;
图3是根据本公开实施例的一种资源配置装置的结构框图;
图4是根据本公开实施例的一种Preamble的基本单元的传输结构示意图一;
图5是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图一;
图6是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图二;
图7是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图三;
图8是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图四;
图9是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图五;
图10是根据本公开实施例的PUSCH发送的位置的示意图一;
图11是根据本公开实施例的延迟之后的PUSCH发送示意图一;
图12是根据本公开实施例的PUSCH发送的位置的示意图二;
图13是根据本公开实施例的延迟之后的PUSCH发送示意图二;
图14是根据本公开实施例的PUSCH发送的位置的示意图三;
图15是根据本公开实施例的延迟之后的PUSCH发送示意图三;
图16是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图六;
图17是根据本公开实施例的PUSCH发送的位置的示意图四;
图18是根据本公开实施例的延迟之后的PUSCH发送示意图四;
图19是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图七;
图20是根据本公开实施例的PUSCH发送的位置的示意图五;
图21是根据本公开实施例的延迟之后的PUSCH发送示意图五;
图22是根据本公开实施例的一种Preamble的基本单元的传输结构示意图二;
图23是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图八;
图24是根据本公开实施例的slot结构的示意图一;
图25是根据本公开实施例的PUSCH的传输结构的示意图一;
图26是根据本公开实施例的PUSCH和PRACH发送时占用的资源的 示意图一;
图27是根据本公开实施例的延迟之后的PUSCH发送示意图六;
图28是根据本公开实施例的延迟之后的slot99~slot128发送的示意图一;
图29是根据本公开实施例的一种Preamble的基本单元的传输结构示意图三;
图30是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图九;
图31是根据本公开实施例的slot结构的示意图二;
图32是根据本公开实施例的PUSCH的传输结构的示意图二;
图33是根据本公开实施例的PUSCH和PRACH发送时占用的资源的示意图二;
图34是根据本公开实施例的延迟之后的PUSCH发送示意图七;
图35是根据本公开实施例的延迟之后的slot99~slot128发送的示意图二;
图36是根据本公开实施例的一种Preamble的基本单元的传输结构示意图四;
图37是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图十;
图38是根据本公开实施例的slot结构的示意图三;
图39是根据本公开实施例的PUSCH的传输结构的示意图三;
图40是根据本公开实施例的PUSCH和PRACH发送时占用的资源的示意图三;
图41是根据本公开实施例的slot99与PRACH资源重叠的示意图;
图42是根据本公开实施例的延迟之后的PUSCH发送示意图八;
图43是根据本公开实施例的一种Preamble的基本单元的传输结构示意图五;
图44是根据本公开实施例的Preamble传输的基本单元的16次重复传输结构的示意图一;
图45是根据本公开实施例的当PUSCH承载的数据的调制编码方式为QPSK1/2,PUSCH发送的资源位置的示意图;
图46是根据本公开实施例的一种Preamble的基本单元的传输结构示意图六;
图47是根据本公开实施例的Preamble传输的基本单元的16次重复传输结构的示意图二;
图48是根据本公开实施例的一种Preamble的基本单元的传输结构示意图七;
图49是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图十一;
图50是根据本公开实施例的slot结构的示意图四;
图51是根据本公开实施例的PUSCH的传输结构的示意图四;
图52是根据本公开实施例的PUSCH和PRACH发送时占用的资源的示意图四;
图53是根据本公开实施例的延迟之后的PUSCH发送示意图九;
图54是根据本公开实施例的一种Preamble的基本单元的传输结构示意图八;
图55是根据本公开实施例的Preamble的基本单元的64次重复传输结构的示意图十二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是, 在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供的方法实施例可以在运算装置、计算机终端或者类似的运算装置中执行。以运行在上述运算装置上为例,图1是本公开实施例的一种资源配置方法的运算装置的硬件结构框图。如图1所示,运算装置10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器104、以及用于通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,运算装置10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储应用软件的软件程序以及模块,如本公开实施例中的资源配置方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至运算装置10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括运算装置10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例 中,传输装置106可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述运算装置的方法,图2是根据本公开实施例的一种资源配置方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件;
步骤S204,在满足指定条件时,对第二类信道资源中第一资源所在的时域位置进行延迟处理。
通过上述步骤,在不同终端的第一类信道资源与第二类信道资源满足指定条件的情况下,对第二类信道资源中第一资源所在的时域位置进行延迟处理,达到了对不同终端配置的资源不进行同时处理的目的,因此,可以解决相关技术中如何避免为不同终端配置的信道资源发生冲突的问题,进而避免了信道资源的冲突,提高了通信效率。
需要说明的是,步骤S202是一个可选的步骤,即不必每次均执行该步骤,可以预先确定满足指定条件,以后每次执行时,直接执行步骤S204。
可选地,上述步骤的执行主体可以为基站、终端等,但不限于此。
可选地,在本公开实施例中,上述第一类信道可以包括:随机接入信道。
进一步可选地,在本公开实施例中,上述第二类信道可以包括以下之一:上行数据信道;上行业务信道;上行控制信道;承载混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)应答信息的信道;探测信道(sounding channel)。
在本公开的一个实施例中,当第一类信道为随机接入信道,随机接入信道上发送的随机接入信号重复发送次数R1大于等于或大于第一阈值R1set时,第一类信道传输中配置第一类信道传输间隔Gap1。
在本公开的一个实施例中,第一阈值R1set的取值可以通过以下至少之一方式确定:
方式一:R1set采用默认配置。
方式二:R1set采用默认配置且R1set的取值从R1的取值集合中选择。
方式三:R1set的取值由信令配置。
方式四:R1set的取值由信令配置且R1set的取值从R1的取值集合中选择。
方式五:R1set为满足T_Unit1*R1set小于等于或小于第二阈值T1set的最大整数。
在上述方式五中,T_Unit1为随机接入信号1次发送对应的时间长度;T1set采用默认配置;或者T1set的取值由信令配置。
方式六:R1set的取值由R1的取值集合中选择,且R1set为R1的取值集合满足T_Unit1*R1set小于等于或小于T1set的最大值。
在上述方式六中,T_Unit1为随机接入信号1次发送对应的时间长度;T1set采用默认配置;或者T1set的取值由信令配置。
在本公开的一个实施例中,上述指定条件包括以下至少之一:
1,第一类信道资源与第二类信道资源存在重叠区域时。
具体地,第一类信道资源和第二类信道资源中的资源包括时域和频域两个维度。重叠区域包括第一类信道资源的全部或部分;和/或第二类信道资源的全部或部分。
2,第一类信道资源所在的时域位置与第二类信道资源所在的时域位置重叠或部分重叠,且第二类信道资源所在的频域位置包含在第一类信道资源所在的频域位置中。
3,第一类信道资源所在的时域位置与第二类信道资源所在的时域位置重叠或部分重叠,且第一类信道资源所在的频域位置与第二类信道资源所在的频域位置之间的间隔小于等于或小于A赫兹(Hz)时,其中,A 大于0。
4,当第二类信道频域资源与第一类信道频域资源重叠的部分占用第二类信道频域带宽的比例大于等于或大于c%时,其中,默认配置c%的取值或者c%的取值由信令配置。
5,第二类信道资源与第一类信道资源的时域重叠区域长度在第二类信道资源的时域长度中的比例大于或大于等于d%时;其中,时域重叠区域长度为W1个第一度量单位;或时域重叠区域长度为W2个第二类信道一次发送占用的资源的时域长度,W1和W2为大于0的整数,d大于0。
在本公开实施例中,第二类信道可以支持一次或者多次重复发送。
在本公开的一个实施例中,A为第一类信道的子载波间隔S1的m倍,其中,m大于0。
可选地,当A为第一类信道的子载波间隔S1的m倍时,m默认配置为1或2;或者m的取值由信令配置,且从{0,1,2,3}中选择;或者m的取值由信令配置,且从{0,1,2,4}中选择;或者m的取值由信令配置,且从{1,2,3,4}中选择。进一步可选地,在本公开实施例中,S1=3.75kHz。
在本公开的一个实施例中,A为第二类信道的子载波间隔S2的n倍,其中,n大于0。
可选地,当A为第二类信道的子载波间隔S2的n倍时,n默认配置为1或2;或者n的取值由信令配置,且从{0,1,2,3}中选择;或者n的取值由信令配置,且从{0,1,2,4}中选择;或者n的取值由信令配置,且从{1,2,3,4}中选择。进一步可选地,在本公开实施例中,S2=3.75kHz。
可选地,当A为第二类信道的子载波间隔S2的n倍时,n默认配置为1或2;或者n的取值由信令配置,且从{0,1}中选择;或者n的取值由信令配置,且从{1,2}中选择。进一步可选地,在本公开实施例中,S2=15kHz。
在本公开的一个实施例中,按照以下方式对第二类信道资源中第一资源所在的时域位置进行延迟处理:延迟后的第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为第一类信道传输结束时刻End1所在的第一度量单位或第一度量单位的索引,k为整数。
在本公开实施例中,End1可以为小数,即可以不是整数个第一度量单位。第一度量单位可以是秒(s),毫秒(ms),子帧(Subframe),帧(frame),时隙(slot)或者其他时间单位都可以。
其中,当第二类信道的子载波间隔为15kHz时,slot长度为1ms;当第二类信道的子载波间隔为3.75kHz时,slot长度为2ms。
在本公开的一个实施例中,当第一类信道为随机接入信道时,第一类信道传输结束时刻End1为以下至少之一:
1,随机接入信道上发送的随机接入信号传输结束的时刻。
2,保护时间GT(Guard Time)结束的时刻。
3,随机接入信道发送中配置多个GT时,End1为最后一个GT的结束时刻。
4,随机接入信道发送中配置传输间隔时,End1为传输间隔的结束时刻。
5,随机接入信道发送中配置传输间隔时,End1为随机接入信道上发送的随机接入信号传输结束的时刻。
6,随机接入信道发送中配置传输间隔时,End1为GT的结束时刻。
7,随机接入信道发送中配置传输间隔时,End1为最后一个GT的结束时刻。
8,随机接入信道发送中配置多个传输间隔时,End1为最后一个传输间隔的结束时刻。
9,随机接入信道发送中配置多个传输间隔时,End1为随机接入信道 上发送的随机接入信号传输结束的时刻。
10,随机接入信道发送中配置多个传输间隔时,End1为GT的结束时刻。
11,随机接入信道发送中配置多个传输间隔时,End1为最后一个GT的结束时刻。
同样的,在本公开实施例中,End1也可以为小数,即可以不是整数个第一度量单位。
在本公开的一个实施例中,第一类信道传输结束时刻End1由第一类信道传输的起始时刻Start1以及第一类信道传输时间长度T_Length1确定。
可选地,在本公开实施例中,End1=Start1+T_Length1。
在本公开的一个实施例中,第一类信道的传输时间长度T_Length1通过以下至少之一参数确定:第一类信道传输的基本单元的时间长度T_Unit1;一类信道传输的基本单元的重复发送次数R1;第一类信道传输的保护时间GT1。
在本公开的一个实施例中,第一类信道传输时间长度T_Length1还可以通过以下之一方式确定:T_Length1=T_Unit1*R1;T_Length1=T_Unit1*R1+GT。
上述实施例也即,第一类信道传输时间长度T_Length1通过T_Length1=T_Unit1*R1确定,或者,通过T_Length1=T_Unit1*R1+GT确定。
在本公开的一个实施例中,第一类信道传输时间长度T_Length1通过以下至少之一参数确定:第一类信道传输的基本单元的时间长度T_Unit1;一类信道传输的基本单元的重复发送次数R1;第一类信道传输的保护时间GT1;第一类信道传输的间隔Gap1。
在本公开的一个实施例中,T_Length1通过以下之一方式确定:
1)当R1小于等于或小于R1set时,或T_Unit1*R1小于等于或小于 T1set时,T_Length1=T_Unit1*R1;或者T_Length1=T_Unit1*R1+GT。
其中,R1的取值由基站通过信令配置。
其中,R1set采用默认配置,或者R1set采用默认配置且R1set的取值从R1的取值集合中选择;或者R1set的取值由信令配置,或者R1set的取值由信令配置且R1set的取值从R1的取值集合中选择;R1set为满足T_Unit1*R1set小于或等于T1set的最大整数;或R1set的取值从R1的取值集合中选择,且R1set为R1的取值集合满足T_Unit1*R1set小于或等于T1set的最大值。
其中,T1set采用默认配置;或者T1set的取值由信令配置。
2)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或大于T1set时,
Figure PCTCN2017084008-appb-000006
其中,Num=R1/R1set,R1_subsetj=R1set,j=1~Num,Gap1j=Gap1。
其中,R1的取值由基站通过信令配置。
其中,R1set采用默认配置,或者R1set采用默认配置且R1set的取值从R1的取值集合中选择;或者R1set的取值由信令配置,或者R1set的取值由信令配置且R1set的取值从R1的取值集合中选择;R1set为满足T_Unit1*R1set小于或等于T1set的最大整数;或R1set的取值从R1的取值集合中选择,且R1set为R1的取值集合满足T_Unit1*R1set小于或等于T1set的最大值。
其中,T1set采用默认配置;或者T1set的取值由信令配置。
可选地,在本公开实施例中,Gap1j=0,j=Num。
3)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或大于T1set时,
Figure PCTCN2017084008-appb-000007
其中,Num=R1/R1set,R1_subsetj=R1set,j=1~Num。
其中,R1的取值由基站通过信令配置。
其中,R1set采用默认配置,或者R1set采用默认配置且R1set的取值从R1的取值集合中选择;或者R1set的取值由信令配置,或者R1set的取值由信令配置且R1set的取值从R1的取值集合中选择;R1set为满足T_Unit1*R1set小于或等于T1set的最大整数;或R1set的取值从R1的取值集合中选择,且R1set为R1的取值集合满足T_Unit1*R1set小于或等于T1set的最大值。
其中,T1set采用默认配置;或者T1set的取值由信令配置。
可选地,在本公开实施例中,Gap1j=GT1,j=Num,或者,Gap1j=Gap1,j=1~Num。
4)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或大于T1set时,
Figure PCTCN2017084008-appb-000008
其中,
Figure PCTCN2017084008-appb-000009
R1_subsetj=R1set,j=1~Num-1;或者,R1_subsetj=R1-R1set*(Num-1),j=Num。
其中,R1的取值由基站通过信令配置。
其中,R1set采用默认配置,或者R1set采用默认配置且R1set的取值从R1的取值集合中选择;或者R1set的取值由信令配置,或者R1set的取值由信令配置且R1set的取值从R1的取值集合中选择;R1set为满足T_Unit1*R1set小于或等于T1set的最大整数;或R1set的取值从R1的取值集合中选择,且R1set为R1的取值集合满足T_Unit1*R1set小于或等于T1set的最大值。
其中,T1set采用默认配置;或者T1set的取值由信令配置。
在本公开的一个实施例中,当R1不能被R1set整除时,Gap1j=Gap1,j=1~Num-1;或者,Gap1j=0,j=Num。
在本公开的一个实施例中,当R1_subsetj小于R1set时,Gap1j=0,j=Num。
在本公开的一个实施例中,当R1_subsetj小于或等于e×R1set时,Gap1j=0,j=Num,e为常数。
在本公开的一个实施例中,0<e<1,或者,0≤e≤1。
例如,e可以从{0/8,1/8,2/8,3/8,4/8,5/8,6/8,7/8,1}中选择。
在本公开的一个实施例中,第二类信道资源中第一资源所在的时域位置需要延迟,第一资源包括:从索引为j的资源单元(即Resource Unit j,RU(j))开始到索引为N-1的资源单元(即Resource Unit N-1,RU(N-1))结束的(N-j)个资源单元,其中,第二类信道资源由N个RU组成,RU的索引为0~N-1。
在本公开的一个实施例中,RU(j)为满足指定条件的第一个RU;或RU(j)为满足指定条件的RU中索引最小的RU。
在本公开的一个实施例中,RU的时域长度为P个第一度量单位;或RU的时域长度为第二类信道一次发送占用的资源的时域长度,P为正整数。
需要说明的是,第二类信道可以支持一次或多次重复发送。
在本公开的一个实施例中,P的取值为以下之一:1ms,2ms,4ms,8ms,16ms,32ms。
在本公开的一个实施例中,当第二类信道分配的频域子载波间隔为3.75kHz时,P=32ms;当第二类信道分配的频域子载波间隔为15kHz时,P=8ms;当第二类信道分配的频域子载波间隔为3.75kHz,且第二类信道采用单个子载波发送时,P=32ms;当第二类信道分配的频域子载波间隔为15kHz,且第二类信道采用单个子载波发送时,P=8ms;当第二类信道分配的频域子载波间隔为15kHz,且第二类信道采用多个子载波发送时,P=1ms或P=2ms或P=4ms;当第二类信道分配的频域子载波间隔为3.75kHz,且第二类信道采用单个子载波发送时,P=8ms;当第二类信道分 配的频域子载波间隔为15kHz,且第二类信道采用单个子载波发送时,P=2ms。
在本公开的一个实施例中,RU的频域长度为Q个子载波或子信道。
可选地,在本公开的一个实施例中,Q的取值包括以下至少之一:1,3,6,9,12。
在本公开的一个实施例中,Q的取值为第二类信道分配的子载波或子信道的数量。
在本公开的一个实施例中,当第二类信道发送过程中需要配置第二类信道的发送间隔时,组成第二类信道资源的N个RU中,包括第二类信道的发送间隔占用的RU。
在本公开的一个实施例中,RU(j)包括:满足以下条件的第一个RU:满足指定条件,且不是第二类信道发送间隔占用的RU;满足以下条件的索引最小的RU:满足指定条件,且不是第二类信道发送间隔占用的RU。
在本公开的一个实施例中,当第一类信道发送过程中需要配置第一类信道的发送间隔时,RU(j)为满足指定条件的第一个RU;或RU(j)为满足指定条件的RU中索引最小的RU,其中,第一类信道资源不包括第一类信道的发送间隔占用的资源。
在本公开的一个实施例中,当RU(j)不存在时,第二类信道不需要延迟发送。
在本公开的一个实施例中,按照以下方式对第二类信道资源中第一资源所在的时域位置进行延迟处理:当第一类信道中配置了传输间隔Gap1时,延迟后的第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为第二类信道资源结束时刻End2之后第一个传输间隔Gap1的起始时刻所在的第一度量单位或第一度量单位的索引,k大于或等于0;或者,当第一类信道中配置了传输间隔Gap1时,延迟后的第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为资源单元RU(j)的结束时刻之后第一个传 输间隔Gap1的起始时刻所在的第一度量单位或第一度量单位的索引,k大于或等于0。
需要说明的是,第二类信道资源为没有进行延迟操作的资源。
在本公开的一个实施例中,第一类信道资源与第二类信道资源有部分重叠时,使用与第一类信道资源不重叠的第二类信道资源发送第二类信道上承载的以下之一:数据、业务、信息、信号。
在本公开的一个实施例中,当第二类信道占用的频域带宽与第一类信道频域资源重叠的部分占用第二类信道配置的频域带宽的比例小于等于或小于c1%时,使用与第一类信道资源不重叠的第二类信道资源发送第二类信道上承载的数据或业务或信息或信号,其中,c1大于或大于等于0。
在本公开的一个实施例中,当满足指定条件,且第二类信道资源与第一类信道资源的时域重叠区域长度在第二类信道资源的时域长度中的比例小于或等于d%时,第二类信道不需要延迟发送,其中,d大于或大于等于0。
在本公开的一个实施例中,时域重叠区域长度为W1个第一度量单位;或时域重叠区域长度为W2个第二类信道一次发送占用的资源的时域长度。
需要说明的是,第二类信道可以支持一次或多次重复发送。
在本公开的一个实施例中,当满足指定条件,且第二终端的等级索引大于或大于等于预定等级索引时,第二类信道不需要延迟发送,其中,预定等级索引采用默认配置,或者通过信令配置。
其中,第二终端被划分到一个或多个集合,不同集合中的第二终端发送第二类信道时配置的重复发送次数不同;或者第二终端被划分到一个或多个集合,不同集合中的第二终端对应的覆盖增强目标值(覆盖增强目标区间)不同;不同的覆盖增强目标值(覆盖增强目标区间)对应的第二类信道发送时的重复发送次数不同。
在本公开的一个实施例中,当满足指定条件,且第二类信道的重复发送次数大于或大于等于预定值时,第二类信道不需要延迟发送,其中,预 定值采用默认配置,或者预定值通过信令配置。
在本公开的一个实施例中,第二类信道为承载混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)应答信息的信道。
在本公开的一个实施例中,当第一类信道为随机接入信道时,第一终端随为1个终端或多个终端。
在本公开的一个实施例中,在第一终端为多个终端时,第一终端满足以下条件之一:覆盖增强等级相同;随机接入信号重复发送等级相同;随机接入信号重复发送次数相同。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种资源配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本公开实施例的一种资源配置装置的结构框图,如图3所示,该装置包括:
确定模块31,设置为确定为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件;
延迟模块33,与上述确定模块31连接,设置为在满足指定条件时, 对第二类信道资源中第一资源所在的时域位置进行延迟处理。
通过上述模块,在不同终端的第一类信道资源与第二类信道资源满足指定条件的情况下,对第二类信道资源中第一资源所在的时域位置进行延迟处理,达到了对不同终端配置的资源不进行同时处理的目的,因此,可以解决相关技术中如何避免为不同终端配置的信道资源发生冲突的问题,进而避免了信道资源的冲突,提高了通信效率。
需要说明的是,确定模块31是一个可选的模块,即不必每次均调用该模块,可以预先确定满足指定条件,以后每次调用时,直接调用延迟模块33。
可选地,在本公开实施例中,上述第一类信道可以包括:随机接入信道。
进一步可选地,在本公开实施例中,上述第二类信道可以包括以下之一:上行数据信道;上行业务信道;上行控制信道;承载混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)应答信息的信道;探测信道(sounding channel)。
在本公开的一个实施例中,指定条件包括以下至少之一:第一类信道资源与第二类信道资源存在重叠区域时;第一类信道资源所在的时域位置与第二类信道资源所在的时域位置重叠或部分重叠,且第二类信道资源所在的频域位置包含在第一类信道资源所在的频域位置中;第一类信道资源所在的时域位置与第二类信道资源所在的时域位置重叠或部分重叠,且第一类信道资源所在的频域位置与第二类信道资源所在的频域位置之间的间隔小于等于或小于A赫兹时,其中,A大于0;当第二类信道频域资源与第一类信道频域资源重叠的部分占用第二类信道频域带宽的比例大于等于或大于c%时,其中,默认配置c%的取值或者c%的取值由信令配置;第二类信道资源与第一类信道资源的时域重叠区域长度在第二类信道资源的时域长度中的比例大于或大于等于d%时;其中,时域重叠区域长度为W1个第一度量单位;或时域重叠区域长度为W2个第二类信道一次发 送占用的资源的时域长度,W1和W2为大于0的整数,d大于0。
实施例3
根据本公开实施例,还提供了一种基站。该基站包括本公开实施例上述内容所提供的任一种资源配置装置。
实施例4
在NB-IoT***中,上行***带宽为180kHz。如图4所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔△f为3.75kHz,一共配置12个PRACH子载波,分别为Subcarrior 0~Subcarrior 11。
定义Group1~Group4作为组成随机接入信号(Preamble)的基本单元(Unit)。其中,Group1~Group4分别在不同的子载波上发送;每个Group上包括1个循环前缀(CP)和5个Preamble符号(symbol),一个Preamble symbol时域符号长度
Figure PCTCN2017084008-appb-000010
(毫秒)。
当CP长度为0.2667ms时,每个Group长度为0.2667+0.2667*5=1.6ms,Unit长度为1.6*4=6.4ms;
当CP长度为0.0667ms时,每个Group长度为0.0667+0.2667*5=1.4ms,Unit长度为1.4*4=5.6ms;
本实施例中,CP长度为0.2667ms,则Unit长度为6.4ms。
根据Group1的子载波索引可以确定Group2、Group3、Group4的子载波索引。当终端选择Group1发送的Subcarrior为Subcarrior0时,Group2发送的 Subcarrior为Subcarrior1,Group3发送的Subcarrior为Subcarrior7,Group4发送的Subcarrior为Subcarrior6,如图4所示。
随机接入信号(Preamble)的基本单元(Unit)的时间长度T_Unit1为6.4ms。
在本实施例中,PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms;Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的重复发送次数,R1,R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
Preamble传输的保护时间(Guard Time),GT1=1.2ms;
本实施例中,Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=20ms,则Preamble的基本单元的64次重复传输结构如图5所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000011
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中j=1~Num;
Gap1j=Gap1,其中,j=1~Num。
除本实施例外,Preamble的基本单元的64次重复传输结构如图6所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000012
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中,j=1~Num;
Gap1j=Gap1,其中,j=1~Num-1;
Gap1j=0,其中,j=Num。
实施例5
NB-IoT***中,上行***带宽为180kHz。如图7所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔为3.75kHz,一共配置12个PRACH子载波。
PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms;
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的时间长度T_Unit1=6.4ms;
Preamble传输的基本单元的重复发送次数,R1,R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=20.2ms,则Preamble的基本单元的64次重复传输结构如图7所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000013
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中,j=1~Num;
Gap1j=Gap1,其中,j=1~Num;
除本实施例外,Preamble的基本单元的64次重复传输结构如图8所 示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000014
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中j=1~Num;
Gap1j=Gap1,其中j=1~Num-1;
Gap1j=GT,其中j=Num;
本实施例中GT=0.2667ms或1.2ms。
实施例6
NB-IoT***中,上行***带宽为180kHz。如图9所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔为3.75kHz,一共配置12个PRACH子载波。
PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms;
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的时间长度T_Unit1=6.4ms;
Preamble传输的基本单元的重复发送次数,R1、R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=30,则Preamble的基本单元的64次重复传输结构如图9所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000015
其中,
Figure PCTCN2017084008-appb-000016
R1_subsetj=R1set,其中,j=1~Num-1;
R1_subsetj=R1-R1set*(Num-1),其中,j=Num;
当R1不能整除R1set时,Gap1j=Gap1=20ms,j=1~Num-1;或者Gap1j=GT=0.4ms,j=Num。
实施例7
NB-IoT***中,上行***带宽为180kHz。如图10所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔为3.75kHz,一共配置12个PRACH子载波。随机接入信号(Preamble)发送周期为640ms,Preamble发送的起始位置偏移量为32ms,Preamble一次发送的时间长度为6.4ms,Preamble发送的重复次数为32,则32次重复的Preamble一共长度为204.8ms;保护时间GT=0.2667ms。
本实施例中,基站为终端配置的上行业务信道(PUSCH)采用单个子载波发送。子载波间隔为3.75kHz,基站为终端分配的PUSCH资源包括8个单元(Unit)。Unit大小为(1个子载波*32ms)。基站为终端配置的PUSCH占用8个Unit,分别为Unit1~Unit8,且PUSCH发送的位置如图10所示。
由于PUSCH资源中Unit7和Unit8与PRACH资源重叠,则需要将Unit7和Unit8延迟发送。延迟之后的PUSCH发送如图11所示,Unit7和Unit8延迟发送的起始时刻为Start2,其中,Start2为PRACH时间长度T_Length1之后第一个取值为整数毫秒对应的时刻。其中,T_Length1=PRACH(204.8ms)+GT(0.2667ms)。
实施例8
NB-IoT***中,上行***带宽为180kHz。如图12所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔为3.75kHz,一共配置12个PRACH子载波。随机接入信号(Preamble)发送周期为640ms,Preamble发送的起始位置偏移量为32ms,Preamble一次发送的时间长度为6.4ms,Preamble发送的重复次数为32, 则32次重复的Preamble一共长度为204.8ms;保护时间GT=1.2ms。
本实施例中,基站为终端配置的上行业务信道(PUSCH)采用单个子载波发送。子载波间隔为3.75kHz,基站为终端分配的PUSCH资源包括8个单元(Unit)。Unit大小为(1个子载波*32ms)。基站为终端配置的PUSCH占用8个Unit,分别为Unit1~Unit8,且PUSCH发送的位置如图12所示。
由于PUSCH资源中Unit6、Unit7和Unit8与PRACH资源重叠,则需要将Unit6、Unit7和Unit8延迟发送。延迟之后的PUSCH发送如图13所示,Unit6、Unit7和Unit8延迟发送的起始时刻为Start2,其中,Start2为PRACH时间长度T_Length1之后第一个取值为整数毫秒对应的时刻。其中,T_Length1=PRACH(204.8ms)+GT(1.2ms)。
实施例9
NB-IoT***中,上行***带宽为180kHz。如图14所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔为3.75kHz,一共配置12个PRACH子载波。随机接入信号(Preamble)发送周期为640ms,Preamble发送的起始位置偏移量为32ms,Preamble一次发送的时间长度为6.4ms,Preamble发送的重复次数为32,则32次重复的Preamble一共长度为204.8ms。
本实施例中,基站为终端配置的上行业务信道(PUSCH)采用单个子载波发送。子载波间隔为3.75kHz,基站为终端分配的PUSCH资源包括8个单元(Unit)。Unit大小为(1个子载波*32ms)。基站为终端配置的PUSCH占用8个Unit,分别为Unit1~Unit8,且PUSCH发送的位置如图14所示。
由于PUSCH资源中Unit6、Unit7和Unit8与PRACH资源重叠,则需要将Unit6、Unit7和Unit8延迟发送。延迟之后的PUSCH发送如图15所示,Unit6、Unit7和Unit8延迟发送的起始时刻为Start2,其中,Start2为PRACH时间长度T_Length1之后第一个取值为整数毫秒对应的时刻。其中,T_Length1=PRACH(204.8ms)。
实施例10
NB-IoT***中,上行***带宽为180kHz。如图16所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔为3.75kHz,一共配置12个PRACH子载波。
PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms。
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的时间长度T_Unit1=6.4ms;
Preamble传输的基本单元的重复发送次数,R1、R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
Preamble传输的保护时间(Guard Time),GT1=1.2ms;
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=20ms,则Preamble的基本单元的64次重复传输结构如图16所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000017
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中,j=1~Num;
Gap1j=Gap1,其中,j=1~Num;
本实施例中,基站为终端配置的上行业务信道(PUSCH)采用单个子载波发送。子载波间隔为3.75kHz,基站为终端分配的PUSCH资源包括32个单元(Unit)。Unit大小为(1个子载波*2ms)。基站为终端配置的PUSCH占用32个Unit,分别为Unit1~Unit32,且PUSCH发送的位置如图17所示。
由于PUSCH资源中Unit30~Unit32与PRACH资源重叠,则需要将 Unit30~Unit32延迟发送。延迟之后的PUSCH发送如图18所示,Unit30~Unit32延迟发送的起始时刻为Start2,其中,Start2为PRACH时间长度T_Length1之后第一个取值为整数毫秒对应的时刻。
实施例11
NB-IoT***中,上行***带宽为180kHz。如图19所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔为3.75kHz,一共配置12个PRACH子载波。
PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms;
Preamble发送的起始位置偏移量为128ms。
Preamble的CP长度为0.2667ms,Preamble传输的基本单元的时间长度T_Unit1=6.4ms。
Preamble传输的基本单元的重复发送次数,R1、R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64。
Preamble传输的保护时间(Guard Time),GT1=1.2ms。
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=20ms,则Preamble的基本单元的64次重复传输结构如图19所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000018
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中j=1~Num;
Gap1j=Gap1,其中j=1~Num。
本实施例中,基站为终端配置的上行业务信道(PUSCH)采用单个子 载波发送。子载波间隔为3.75kHz,基站为终端分配的PUSCH资源包括32个单元(Unit)。Unit大小为(1个子载波*2ms)。基站为终端配置的PUSCH占用32个Unit,分别为Unit1~Unit32,且PUSCH发送的位置如图20所示。
由于PUSCH资源中Unit30~Unit32与PRACH资源重叠,则需要将Unit30~Unit32延迟发送。延迟之后的PUSCH发送如图21所示,Unit30~Unit32延迟发送的起始时刻为Start2,其中,Start2为最后一个GT之后第一个取值为整数毫秒对应的时刻。
实施例12
NB-IoT***中,上行***带宽为180kHz。如图22所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔△f为3.75kHz,一共配置12个PRACH子载波,分别为Subcarrior 0~Subcarrior 11。
定义Group1~Group4作为组成随机接入信号(Preamble)的基本单元(Unit)。其中,Group1~Group4分别在不同的子载波上发送;每个Group
Figure PCTCN2017084008-appb-000019
当CP长度为0.2667ms时,每个Group长度为0.2667+0.2667*5=1.6ms,Unit长度为1.6*4=6.4ms;
当CP长度为0.0667ms时,每个Group长度为0.0667+0.2667*5=1.4ms,Unit长度为1.4*4=5.6ms;
本实施例中,CP长度为0.2667ms,则Unit长度为6.4ms;
根据Group1的子载波索引可以确定Group2、Group3、Group4的子载波索引。当终端选择Group1发送的Subcarrior为Subcarrior0时,Group2发送的Subcarrior为Subcarrior1,Group3发送的Subcarrior为Subcarrior7,Group4发送的Subcarrior为Subcarrior6,如图22所示。
随机接入信号(Preamble)的基本单元(Unit)的时间长度T_Unit1 为6.4ms。
本实施例中,PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms。
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的重复发送次数,R1、R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
Preamble传输的保护时间(Guard Time),GT1=1.2ms;
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=20ms,则Preamble的基本单元的64次重复传输结构如图23所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000020
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中,j=1~Num;
Gap1j=Gap1,其中,j=1~Num。
上行业务信道(PUSCH)的传输时间大于或大于等于X个slot时,需要引入PUSCH传输间隔Gap2,Gap2长度为Y个slot。在Gap2时间内,并不传输PUSCH。其中,PUSCH使用的子载波间隔为3.75kHz时,slot长度为2ms,slot结构如图24所示,1个slot中包含7个符号(符号0~符号6)以及1个保护时间GT2;本实施例中,X=100,Y=10。
基站为终端配置的上行业务信道(PUSCH)采用单个子载波发送,子载波间隔为3.75kHz。
基站为终端配置的上行业务信道(PUSCH)占用1个资源单元 (Resource Unit,RU),其中,RU大小为(1个子载波*32ms),即RU时域长度为16个slot。本实施例中PUSCH需要重复8次发送,即PUSCH传输的时域长度为16*8=128个slot。
本实施例中,由于PUSCH传输的时域长度大于X=100个slot时,需要引入PUSCH传输间隔Gap2,Gap2长度为Y=10个slot。则PUSCH的传输结构如图25所示。
本实施例中,当PUSCH和PRACH发送时占用的资源如图26所示。
由于PUSCH资源中slot99~slot128与PRACH资源重叠,则需要将slot99~slot128延迟发送。延迟之后的PUSCH发送如图27所示,slot99~slot128延迟发送的起始时刻为Start2,其中,Start2=m+k,其中,m为最后一个PRACH Gap的结束时刻所在的slot索引,k=1。即Start2为最后一个PRACH Gap之后的第一个slot的起始时刻。
除本实施例外,延迟之后的slot99~slot128发送还可以如图28所示,slot99~slot128延迟发送的起始时刻为Start2,其中,Start2为最后一个GT之后的第一个slot的起始时刻。
实施例13
NB-IoT***中,上行***带宽为180kHz。如图29所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔△f为3.75kHz,一共配置12个PRACH子载波,分别为Subcarrior 0~Subcarrior 11。
定义Group1~Group4作为组成随机接入信号(Preamble)的基本单元(Unit)。其中,Group1~Group4分别在不同的子载波上发送;每个Group上包括1个循环前缀(CP)和5个Preamble符号(symbol),一个Preamble symbol时域符号长度
Figure PCTCN2017084008-appb-000021
(毫秒)。
当CP长度为0.2667ms时,每个Group长度为0.2667+0.2667*5=1.6ms,Unit长度为1.6*4=6.4ms;
当CP长度为0.0667ms时,每个Group长度为0.0667+0.2667*5=1.4ms, Unit长度为1.4*4=5.6ms;
本实施例中,CP长度为0.2667ms,则Unit长度为6.4ms。
根据Group1的子载波索引可以确定Group2、Group3、Group4的子载波索引。当终端选择Group1发送的Subcarrior为Subcarrior0时,Group2发送的Subcarrior为Subcarrior1,Group3发送的Subcarrior为Subcarrior7,Group4发送的Subcarrior为Subcarrior6,如图29所示。
随机接入信号(Preamble)的基本单元(Unit)的时间长度T_Unit1为6.4ms。
本实施例中,PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms。
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的重复发送次数,R1、R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
Preamble传输的保护时间(Guard Time),GT1=1.2ms;
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=40ms,则Preamble的基本单元的64次重复传输结构如图30所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000022
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中,j=1~Num;
Gap1j=Gap1,其中j=1~Num。
上行业务信道(PUSCH)的传输时间大于或大于等于X个slot时, 需要引入PUSCH传输间隔Gap2,Gap2长度为Y个slot。在Gap2时间内,并不传输PUSCH。其中,PUSCH使用的子载波间隔为15kHz时,slot长度为1ms,slot结构如图31所示,1个slot中包含14个符号(符号0~符号13);本实施例中,X=100,Y=20。
基站为终端配置的上行业务信道(PUSCH)采用单个子载波发送,子载波间隔为15kHz。
基站为终端配置的上行业务信道(PUSCH)占用1个资源单元(Resource Unit,RU),其中,RU大小为(1个子载波*8ms),即RU时域长度为8个slot。本实施例中PUSCH需要重复16次发送,即PUSCH传输的时域长度为8*16=128个slot;
本实施例中,由于PUSCH传输的时域长度大于X=100个slot时,需要引入PUSCH传输间隔Gap2,Gap2长度为Y=20个slot。则PUSCH的传输结构如图32所示。
本实施例中,当PUSCH和PRACH发送时占用的资源如图33所示。
由于PUSCH资源中slot101~slot128与PRACH资源重叠,则需要将slot101~slot128延迟发送。延迟之后的PUSCH发送如图34所示,slot101~slot128延迟发送的起始时刻为Start2,其中,Start2为最后一个GT之后第一个取值为整数毫秒对应的时刻,或Start2为最后一个GT之后的第一个slot的起始时刻。
除本实施例外,延迟之后的slot101~slot128发送还可以如图35所示,slot101~slot128延迟发送的起始时刻为Start2,其中,Start2为PRACH发送中第一个GT之后第一个取值为整数毫秒对应的时刻,或Start2为PRACH发送中第一个GT之后的第一个slot的起始时刻。
实施例14
NB-IoT***中,上行***带宽为180kHz。如图36所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔△f为3.75kHz,一共配置12个PRACH子载波,分别为 Subcarrior 0~Subcarrior 11。
定义Group1~Group4作为组成随机接入信号(Preamble)的基本单元(Unit)。其中,Group1~Group4分别在不同的子载波上发送;每个Group上包括1个循环前缀(CP)和5个Preamble符号(symbol),一个Preamble symbol时域符号长度
Figure PCTCN2017084008-appb-000023
(毫秒)。
当CP长度为0.2667ms时,每个Group长度为0.2667+0.2667*5=1.6ms,Unit长度为1.6*4=6.4ms;
当CP长度为0.0667ms时,每个Group长度为0.0667+0.2667*5=1.4ms,Unit长度为1.4*4=5.6ms;
本实施例中,CP长度为0.2667ms,则Unit长度为6.4ms。
根据Group1的子载波索引可以确定Group2、Group3、Group4的子载波索引。当终端选择Group1发送的Subcarrior为Subcarrior0时,Group2发送的Subcarrior为Subcarrior1,Group3发送的Subcarrior为Subcarrior7,Group4发送的Subcarrior为Subcarrior6,如图36所示。
随机接入信号(Preamble)的基本单元(Unit)的时间长度T_Unit1为6.4ms。
本实施例中,PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms;
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的重复发送次数,R1;R1由{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
Preamble传输的保护时间(Guard Time),GT1=1.2ms;
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms;
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在 Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=20ms,则Preamble的基本单元的64次重复传输结构如图37所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000024
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中,j=1~Num;
Gap1j=Gap1,其中,j=1~Num。
上行业务信道(PUSCH)的传输时间大于或大于等于X个slot时,需要引入PUSCH传输间隔Gap2,Gap2长度为Y个slot。在Gap2时间内,并不传输PUSCH。其中,PUSCH使用的子载波间隔为3.75kHz时,slot长度为2ms,slot结构如图38所示,1个slot中包含7个符号(符号0~符号6)以及1个保护时间GT2;本实施例中,X=100,Y=10。
基站为终端配置的上行业务信道(PUSCH)采用单个子载波发送,子载波间隔为3.75kHz。
基站为终端配置的上行业务信道(PUSCH)占用1个资源单元(Resource Unit,RU),其中,RU大小为(1个子载波*32ms),即RU时域长度为16个slot。本实施例中PUSCH需要重复8次发送,即PUSCH传输的时域长度为16*8=128个slot;
本实施例中,由于PUSCH传输的时域长度大于X=100个slot时,需要引入PUSCH传输间隔Gap2,Gap2长度为Y=10个slot。则PUSCH的传输结构如图39所示。
本实施例中,当PUSCH和PRACH发送时占用的资源如图40所示。
由于PUSCH资源中slot100~slot128与PRACH资源重叠,且slot99中有半个slot与PRACH资源重叠,其中,slot99与PRACH资源重叠如图41所示。
则需要将slot99中后半个slot以及slot100~slot128延迟发送。延迟之 后的PUSCH发送如图42所示,slot99中后半个slot以及slot100~slot128延迟发送的起始时刻为Start2,其中,Start2为最后一个PRACH Gap之后第一个取值为整数毫秒对应的时刻。
其中,图42中,Slot A的结构如图41中的slot99中前1ms的结构一致,且符号3是不发送的。
其中,图42中,Slot B的结构如图41中slot99中后1ms的结构一致,且符号3是不发送的。
实施例15
当PUSCH资源并不与PRACH资源重叠,但PUSCH资源与PRACH资源之间频域位置之间的间隔小于(或小于等于)A赫兹(Hz)时,与PRACH资源具有相同时域位置的PUSCH资源需要延迟发送,延迟发送的方案与实施例7~14中的方案相同。
其中,A为PRACH的子载波间隔S1的n倍;n默认配置为1或2;或者n的取值由信令配置,且从{0,1,2,3}中选择;或者n的取值由信令配置,且从{0,1,2,4}中选择;或者n的取值由信令配置,且从{1,2,3,4}中选择。
在本实施例中,S1=3.75kHz。
除本实施例外,A还可以是PUSCH的子载波间隔S2的n倍;n默认配置为1或2;或者n的取值由信令配置,且从{0,1,2,3}中选择;或者n的取值由信令配置,且从{0,1,2,4}中选择;或者n的取值由信令配置,且从{1,2,3,4}中选择。
在本实施例中,S2=3.75kHz。
除本实施例外,A还可以是PUSCH的子载波间隔S2的n倍;n默认配置为1或2;或者n的取值由信令配置,且从{0,1}中选择;或者n的取值由信令配置,且从{1,2}中选择。
在本实施例中,S2=15kHz。
实施例16
当PUSCH资源与PRACH资源有部分重叠时,与PRACH资源具有相同时域位置的PUSCH资源(频域上包括PUSCH的全部频域资源)需要延迟发送,延迟发送的方案与实施例7~14中的方案相同。
实施例17
NB-IoT***中,上行***带宽为180kHz。如图43所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔△f为3.75kHz,一共配置12个PRACH子载波,分别为Subcarrior 0~Subcarrior 11。
定义Group1~Group4作为组成随机接入信号(Preamble)的基本单元(Unit)。其中,Group1~Group4分别在不同的子载波上发送;每个Group上包括1个循环前缀(CP)和5个Preamble符号(symbol),一个Preamble symbol时域符号长度
Figure PCTCN2017084008-appb-000025
(毫秒)。
当CP长度为0.2667ms时,每个Group长度为0.2667+0.2667*5=1.6ms,Unit长度为1.6*4=6.4ms;
当CP长度为0.0667ms时,每个Group长度为0.0667+0.2667*5=1.4ms,Unit长度为1.4*4=5.6ms;
本实施例中,CP长度为0.2667ms,则Unit长度为6.4ms;
根据Group1的子载波索引可以确定Group2、Group3、Group4的子载波索引。当终端选择Group1发送的Subcarrior为Subcarrior0时,Group2发送的Subcarrior为Subcarrior1,Group3发送的Subcarrior为Subcarrior7,Group4发送的Subcarrior为Subcarrior6,如图43所示。
随机接入信号(Preamble)的基本单元(Unit)的时间长度T_Unit1为6.4ms;
本实施例中,PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms;
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的重复发送次数,R1、R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=16;
Preamble传输的保护时间(Guard Time),GT1=0.6ms;
本实施例中Preamble传输的基本单元的16次重复发送一共长度为102.4ms,结构如图44所示。
当PUSCH承载的数据的调制编码方式为QPSK1/2,PUSCH发送的资源位置如图45所示,则PUSCH资源与PRACH资源有部分重叠。本实施例中,使用与PRACH资源不重叠的PUSCH资源发送PUSCH承载的数据,由于可用的PUSCH资源减少了,所以需要进行速率匹配调整PUSCH的调制编码方式来承载原来的数据,本实施例中调制编码方式调整为QPSK3/4。
实施例18
NB-IoT***中,上行***带宽为180kHz。如图46所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔△f为3.75kHz,一共配置12个PRACH子载波,分别为Subcarrior 0~Subcarrior 11。
定义Group1~Group4作为组成随机接入信号(Preamble)的基本单元(Unit)。其中,Group1~Group4分别在不同的子载波上发送;每个Group上包括1个循环前缀(CP)和5个Preamble符号(symbol),一个Preamble symbol时域符号长度
Figure PCTCN2017084008-appb-000026
(毫秒)。
当CP长度为0.2667ms时,每个Group长度为0.2667+0.2667*5=1.6ms,Unit长度为1.6*4=6.4ms;
当CP长度为0.0667ms时,每个Group长度为0.0667+0.2667*5=1.4ms,Unit长度为1.4*4=5.6ms;
本实施例中,CP长度为0.2667ms,则Unit长度为6.4ms;
根据Group1的子载波索引可以确定Group2、Group3、Group4的子载波索引。当终端选择Group1发送的Subcarrior为Subcarrior0时,Group2发送的Subcarrior为Subcarrior1,Group3发送的Subcarrior为Subcarrior7,Group4发送的Subcarrior为Subcarrior6,如图46所示。
随机接入信号(Preamble)的基本单元(Unit)的时间长度T_Unit1为6.4ms。
本实施例中,PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms;
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的重复发送次数,R1;R1由{1,2,4,8,16,32,64,128}中选择,本实施例中R1=16;
Preamble传输的保护时间(Guard Time),GT1=0.6ms;
本实施例中Preamble传输的基本单元的16次重复发送一共长度为102.4ms,结构如图47所示。
当PUSCH承载的数据的调制编码方式为QPSK1/2,PUSCH资源占用N个RU,每个RU的大小为(3个子载波*4ms),每个子载波间隔为15kHz。当PUSCH占用的频域带宽与PRACH频域资源重叠的部分占用PUSCH配置的频域带宽的比例小于或小于等c%时,使用与PRACH资源不重叠的PUSCH资源发送PUSCH承载的数据,由于可用的PUSCH资源减少了,所以需要进行速率匹配调整PUSCH的调制编码方式来承载原来的数据,本实施例中调制编码方式调整为QPSK3/4。
当PUSCH承载的数据的调制编码方式为QPSK1/2,PUSCH资源占用N个RU,每个RU的大小为(3个子载波*4ms),每个子载波间隔为15kHz。当PUSCH占用的频域带宽与PRACH频域资源重叠的部分占用PUSCH配置的频域带宽的比例大于或大于等c%时,与PRACH资源具有相同时域位置的PUSCH资源(频域上包括PUSCH的全部频域资源)需要延迟发送,延迟发送的方案与实施例7~14中的方案相同。
实施例19
NB-IoT***中,上行***带宽为180kHz。如图48所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔△f为3.75kHz,一共配置12个PRACH子载波,分别为Subcarrior 0~Subcarrior 11。
定义Group1~Group4作为组成随机接入信号(Preamble)的基本单元(Unit)。其中,Group1~Group4分别在不同的子载波上发送;每个Group上包括1个循环前缀(CP)和5个Preamble符号(symbol),一个Preamble symbol时域符号长度
Figure PCTCN2017084008-appb-000027
(毫秒)。
当CP长度为0.2667ms时,每个Group长度为0.2667+0.2667*5=1.6ms,Unit长度为1.6*4=6.4ms;
当CP长度为0.0667ms时,每个Group长度为0.0667+0.2667*5=1.4ms,Unit长度为1.4*4=5.6ms;
本实施例中,CP长度为0.2667ms,则Unit长度为6.4ms;
根据Group1的子载波索引可以确定Group2、Group3、Group4的子载波索引。当终端选择Group1发送的Subcarrior为Subcarrior0时,Group2发送的Subcarrior为Subcarrior1,Group3发送的Subcarrior为Subcarrior7,Group4发送的Subcarrior为Subcarrior6,如图48所示。
随机接入信号(Preamble)的基本单元(Unit)的时间长度T_Unit1为6.4ms。
本实施例中,PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms;
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的重复发送次数,R1、R1从{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
Preamble传输的保护时间(Guard Time),GT1=1.2ms;
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=20ms,则Preamble的基本单元的64次重复传输结构如图49所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000028
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中,j=1~Num;
Gap1j=Gap1,其中,j=1~Num。
上行业务信道(PUSCH)的传输时间大于或大于等于X个slot时,需要引入PUSCH传输间隔Gap2,Gap2长度为Y个slot。在Gap2时间内,并不传输PUSCH。其中,PUSCH使用的子载波间隔为3.75kHz时,slot长度为2ms,slot结构图50所示,1个slot中包含7个符号(符号0~符号6)以及1个保护时间GT2;本实施例中,X=100,Y=10。
基站为终端配置的上行业务信道(PUSCH)采用单个子载波发送,子载波间隔为3.75kHz。
基站为终端配置的上行业务信道(PUSCH)占用1个资源单元(Resource Unit,RU),其中,RU大小为(1个子载波*32ms),即RU时域长度为16个slot。本实施例中PUSCH需要重复8次发送,即PUSCH传输的时域长度为16*8=128个slot。
本实施例中,由于PUSCH传输的时域长度大于X=100个slot时,需要引入PUSCH传输间隔Gap2,Gap2长度为Y=10个slot。则PUSCH的传输结构如图51所示。
本实施例中,当PUSCH和PRACH发送时占用的资源如图52所示。
由于PUSCH资源中slot99~slot128与PRACH资源重叠,则需要将slot99~slot128延迟发送。延迟之后的PUSCH发送如图53所示,slot99~slot128延迟发送的起始时刻为Start2-1,其中Start2-1为时域位置在slot99之后的第一个PRACH Gap中第一个slot的起始时刻;或Start2-1为时域位置在slot99之后的第一个PRACH Gap中第一个完整的毫秒的起始时刻;或Start2-1为时域位置在slot99之后的第一个GT的结束时刻之后第一个slot的起始时刻;或Start2-1为时域位置在slot99之后的第一个GT的结束时刻之后第一个完整的毫秒的起始时刻。
本实施例中,从Start2-1开始的第一个PRACH Gap中只能发送2个slot,即slot99和slot100;因此slot101~slot128延迟发送的起始时刻为Start2-2,其中Start2-2为时域位置在slot99之后的第二个PRACH Gap中第一个slot的起始时刻;或Start2-2为时域位置在slot99之后的第二个PRACH Gap中第一个完整的毫秒的起始时刻;或Start2-2为时域位置在slot99之后的第二个GT的结束时刻之后第一个slot的起始时刻;或Start2-2为时域位置在slot99之后的第二个GT的结束时刻之后第一个完整的毫秒的起始时刻。
实施例20
NB-IoT***中,上行***带宽为180kHz。如图54所示,本实施例中,基站配置的随机接入信道(PRACH)占用的上行带宽为45kHz,PRACH子载波间隔△f为3.75kHz,一共配置12个PRACH子载波,分别为Subcarrior 0~Subcarrior 11。
定义Group1~Group4作为组成随机接入信号(Preamble)的基本单元(Unit)。其中,Group1~Group4分别在不同的子载波上发送;每个Group上包括1个循环前缀(CP)和5个Preamble符号(symbol),一个Preamble symbol时域符号长度
Figure PCTCN2017084008-appb-000029
(毫秒)。
当CP长度为0.2667ms时,每个Group长度为0.2667+0.2667*5=1.6ms,Unit长度为1.6*4=6.4ms;
当CP长度为0.0667ms时,每个Group长度为0.0667+0.2667*5=1.4ms,Unit长度为1.4*4=5.6ms;
本实施例中,CP长度为0.2667ms,则Unit长度为6.4ms。
根据Group1的子载波索引可以确定Group2、Group3、Group4的子载波索引。当终端选择Group1发送的Subcarrior为Subcarrior0时,Group2发送的Subcarrior为Subcarrior1,Group3发送的Subcarrior为Subcarrior7,Group4发送的Subcarrior为Subcarrior6,如图54所示。
随机接入信号(Preamble)的基本单元(Unit)的时间长度T_Unit1为6.4ms。
本实施例中,PRACH上发送的随机接入信号(Preamble)的发送周期为1280ms。
Preamble发送的起始位置偏移量为128ms。
Preamble传输的基本单元的重复发送次数,R1;R1由{1,2,4,8,16,32,64,128}中选择,本实施例中R1=64;
Preamble传输的保护时间(Guard Time),GT1=1.2ms。
本实施例中Preamble传输的基本单元的64次重复发送一共长度为409.6ms。
当Preamble传输的基本单元的重复传输次数大于R1set时,完成R1set次Preamble基本单元的传输后,需要引入Preamble传输间隔Gap1,在Gap1时间内,并不传输Preamble。本实施例中R1set=32,Gap1=20ms,则Preamble的基本单元的64次重复传输结构如图55所示,Preamble的基本单元的64次重复传输长度T_Length1按照下面的公式计算:
Figure PCTCN2017084008-appb-000030
其中,Num=R1/R1set=64/32=2;
R1_subsetj=R1set,其中,j=1~Num;
Gap1j=Gap1,其中,j=1~Num。
本实施例中,当终端在随机接入信道上完成随机接入信号发送之后,就会去检测随机接入响应消息(Random Access Response,RAR),如图55所示,其中“RAR的检测时间窗”为基站发送RAR消息或调度RAR消息的控制信息的发送位置。其中,所述“RAR的检测时间窗”的起始位置与PRACH资源结束位置之间间隔k毫秒。当PRACH结束配置了传输间隔Gap1时,所述k毫秒是指“RAR的检测时间窗”的起始位置与PRACH结束配置的传输间隔Gap1之间的间隔。
实施例21
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:在为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件时,对所述第二类信道资源中第一资源所在的时域位置进行延迟处理。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于 本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
在本公开实施例中,由于在不同终端的第一类信道资源与第二类信道资源满足指定条件的情况下,对第二类信道资源中第一资源所在的时域位置进行延迟处理,达到了对不同终端配置的资源不进行同时处理的目的,因此,可以解决相关技术中如何避免为不同终端配置的信道资源发生冲突的问题,进而避免了信道资源的冲突,提高了通信效率。

Claims (51)

  1. 一种资源配置方法,包括:
    在为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件时,对所述第二类信道资源中第一资源所在的时域位置进行延迟处理。
  2. 根据权利要求1所述的方法,其中,
    所述第一类信道包括:随机接入信道;和/或
    所述第二类信道包括以下之一:上行数据信道;上行业务信道;上行控制信道;承载混合自动重传请求HARQ应答信息的信道;探测信道。
  3. 根据权利要求1所述的方法,其中,
    当所述第一类信道为随机接入信道,随机接入信道上发送的随机接入信号重复发送次数R1大于或等于第一阈值R1set时,所述第一类信道传输中配置第一类信道传输间隔Gap1。
  4. 根据权利要求3所述的方法,其中,所述R1set的取值通过以下至少之一方式确定:
    R1set采用默认配置;
    R1set采用默认配置且R1set的取值从R1的取值集合中选择;
    R1set的取值由信令配置;
    R1set的取值由信令配置且R1set的取值从R1的取值集合中选择;
    R1set为满足T_Unit1*R1set小于等于或小于第二阈值T1set的最大整数,其中,T_Unit1为随机接入信号1次发送对应的时间长度, T1set采用默认配置;或者T1set的取值由信令配置;
    R1set的取值由R1的取值集合中选择,且R1set为R1的取值集合满足T_Unit1*R1set小于等于或小于T1set的最大值,其中,T_Unit1为随机接入信号1次发送对应的时间长度;T1set采用默认配置;或者T1set的取值由信令配置。
  5. 根据权利要求1所述的方法,其中,所述指定条件包括以下至少之一:
    所述第一类信道资源与所述第二类信道资源存在重叠区域时;
    所述第一类信道资源所在的时域位置与所述第二类信道资源所在的时域位置重叠或部分重叠,且所述第二类信道资源所在的频域位置包含在所述第一类信道资源所在的频域位置中;
    所述第一类信道资源所在的时域位置与所述第二类信道资源所在的时域位置重叠或部分重叠,且第一类信道资源所在的频域位置与所述第二类信道资源所在的频域位置之间的间隔小于等于或小于A赫兹时,其中,A大于0;
    当第二类信道频域资源与第一类信道频域资源重叠的部分占用第二类信道频域带宽的比例大于等于或大于c%时,其中,默认配置c%的取值或者c%的取值由信令配置;
    所述第二类信道资源与所述第一类信道资源的时域重叠区域长度在所述第二类信道资源的时域长度中的比例大于或大于等于d%时;其中,所述时域重叠区域长度为W1个第一度量单位;或所述时域重叠区域长度为W2个所述第二类信道一次发送占用的资源的时域长度,W1和W2为大于0的整数,d大于0。
  6. 根据权利要求5所述的方法,其中,A为所述第一类信道的 子载波间隔S1的m倍,其中,m大于0。
  7. 根据权利要求6所述的方法,其中,m默认配置为1或2;或者m的取值由信令配置,且从{0,1,2,3}中选择;或者m的取值由信令配置,且从{0,1,2,4}中选择;或者m的取值由信令配置,且从{1,2,3,4}中选择。
  8. 根据权利要求7所述的方法,其中,S1=3.75kHz。
  9. 根据权利要求5所述的方法,其中,A为所述第二类信道的子载波间隔S2的n倍,其中,n大于0。
  10. 根据权利要求9所述的方法,其中,n默认配置为1或2;或者n的取值由信令配置,且从{0,1,2,3}中选择;或者n的取值由信令配置,且从{0,1,2,4}中选择;或者n的取值由信令配置,且从{1,2,3,4}中选择。
  11. 根据权利要求10所述的方法,其中,S2=3.75kHz。
  12. 根据权利要求9所述的方法,其中,n默认配置为1或2;或者n的取值由信令配置,且从{0,1}中选择;或者n的取值由信令配置,且从{1,2}中选择。
  13. 根据权利要求12所述的方法,其中,S2=15kHz。
  14. 根据权利要求1所述的方法,其中,按照以下方式对所述第二类信道资源中第一资源所在的时域位置进行延迟处理:
    延迟后的所述第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为所述第一类信道传输结束时刻End1所在的第一度量单位或第一度量单位的索引,k为整数。
  15. 根据权利要求14所述的方法,其中,当所述第一类信道为随机接入信道时,所述第一类信道传输结束时刻End1为以下至少之一:
    随机接入信道上发送的随机接入信号传输结束的时刻;
    保护时间GT结束的时刻;
    随机接入信道发送中配置多个GT时,End1为最后一个GT的结束时刻;
    随机接入信道发送中配置传输间隔时,End1为传输间隔的结束时刻;
    随机接入信道发送中配置传输间隔时,End1为随机接入信道上发送的随机接入信号传输结束的时刻;
    随机接入信道发送中配置传输间隔时,End1为GT的结束时刻;
    随机接入信道发送中配置传输间隔时,End1为最后一个GT的结束时刻;
    随机接入信道发送中配置多个传输间隔时,End1为最后一个传输间隔的结束时刻;
    随机接入信道发送中配置多个传输间隔时,End1为随机接入信道上发送的随机接入信号传输结束的时刻;
    随机接入信道发送中配置多个传输间隔时,End1为GT的结束时刻;
    随机接入信道发送中配置多个传输间隔时,End1为最后一个GT的结束时刻。
  16. 根据权利要求14所述的方法,其中,所述第一类信道传输结束时刻End1由所述第一类信道传输的起始时刻Start1以及所述第一类信道传输时间长度T_Length1确定。
  17. 根据权利要求1所述的方法,其中,所述第一类信道的传输时间长度T_Length1通过以下至少之一参数确定:
    所述第一类信道传输的基本单元的时间长度T_Unit1;
    所述第一类信道传输的基本单元的重复发送次数R1;
    所述第一类信道传输的保护时间GT1。
  18. 根据权利要求17所述的方法,其中,所述第一类信道传输时间长度T_Length1还通过以下之一方式确定:
    T_Length1=T_Unit1*R1;
    T_Length1=T_Unit1*R1+GT。
  19. 根据权利要求17所述的方法,其中,T_Length1通过以下之一方式确定:
    1)当R1小于等于或小于R1set时,或T_Unit1*R1小于等于或小于T1set时,T_Length1=T_Unit1*R1;或者T_Length1=T_Unit1*R1+GT;
    2)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或大于T1set时,
    Figure PCTCN2017084008-appb-100001
    Figure PCTCN2017084008-appb-100002
    其中,Num=R1/R1set,R1_subsetj=R1set,j=1~Num,Gap1j=Gap1;
    3)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或 大于T1set时,
    Figure PCTCN2017084008-appb-100003
    其中,Num=R1/R1set,R1_subsetj=R1set,j=1~Num;
    Gap1j=Gap1,j=1~Num,或者Gap1j=GT1,j=Num。
  20. 根据权利要求16所述的方法,其中,T_Length1还通过以下方式确定:
    4)当R1大于等于或大于R1set时,或T_Unit1*R1大于等于或大于T1set时,
    Figure PCTCN2017084008-appb-100004
    其中,
    Figure PCTCN2017084008-appb-100005
    R1_subsetj=R1set,j=1~Num‐1;或者,R1_subsetj=R1-R1set*(Num-1),j=Num。
  21. 根据权利要求20所述的方法,其中,
    当R1不能被R1set整除时,
    Gap1j=Gap1,j=1~Num-1;或者,
    Gap1j=0,j=Num。
  22. 根据权利要求20所述的方法,其中,
    当R1_subsetj小于R1set时,Gap1j=0,j=Num。
  23. 根据权利要求20所述的方法,其中,
    当R1_subsetj小于或等于e×R1set时,Gap1j=0,j=Num,e为常数。
  24. 根据权利要求23所述的方法,其中,0<e<1,或者,0≤e≤1。
  25. 根据权利要求1所述的方法,其中,所述第一资源包括:
    从索引为j的资源单元RU(j)开始到索引为N-1的资源单元RU(N-1)结束的(N-j)个资源单元,其中,所述第二类信道资源由N个RU组成,所述RU的索引为0~N-1。
  26. 根据权利要求25所述的方法,其中,
    RU(j)为满足所述指定条件的第一个RU;或RU(j)为满足所述指定条件的RU中索引最小的RU。
  27. 根据权利要求25所述的方法,其中,
    RU的时域长度为P个第一度量单位;或RU的时域长度为所述第二类信道一次发送占用的资源的时域长度,P为正整数。
  28. 根据权利要求27所述的方法,其中,P的取值为以下之一:1ms,2ms,4ms,8ms,16ms,32ms。
  29. 根据权利要求28所述的方法,其中,
    当第二类信道分配的频域子载波间隔为3.75kHz时,P=32ms;
    当所述第二类信道分配的频域子载波间隔为15kHz时,P=8ms;
    当所述第二类信道分配的频域子载波间隔为3.75kHz,且所述第二类信道采用单个子载波发送时,P=32ms;
    当所述第二类信道分配的频域子载波间隔为15kHz,且所述第二类信道采用单个子载波发送时,P=8ms;
    当所述第二类信道分配的频域子载波间隔为15kHz,且所述第二类信道采用多个子载波发送时,P=1ms或P=2ms或P=4ms;
    当所述第二类信道分配的频域子载波间隔为3.75kHz,且所述第二类信道采用单个子载波发送时,P=8ms;
    当所述第二类信道分配的频域子载波间隔为15kHz,且所述第二类信道采用单个子载波发送时,P=2ms。
  30. 根据权利要求25所述的方法,其中,RU的频域长度为Q个子载波或子信道。
  31. 根据权利要求30所述的方法,其中,Q的取值包括以下至少之一:1,3,6,9,12。
  32. 根据权利要求30所述的方法,其中,Q的取值为第二类信道分配的子载波或子信道的数量。
  33. 根据权利要求25所述的方法,其中,当第二类信道发送过程中需要配置第二类信道的发送间隔时,组成第二类信道资源的N个所述RU中,包括所述第二类信道的发送间隔占用的所述RU。
  34. 根据权利要求33所述的方法,其中,RU(j)包括:
    满足以下条件的第一个RU:满足所述指定条件,且不是所述第二类信道发送间隔占用的RU;
    满足以下条件的索引最小的RU:满足所述指定条件,且不是所述第二类信道发送间隔占用的RU。
  35. 根据权利要求25所述的方法,其中,
    当第一类信道发送过程中需要配置第一类信道的发送间隔时,RU(j)为满足所述指定条件的第一个RU;或RU(j)为满足所述指定条件的RU中索引最小的RU,其中,所述第一类信道资源不包括所述第一类信道的发送间隔占用的资源。
  36. 根据权利要求25所述的方法,其中,所述方法还包括:
    当RU(j)不存在时,第二类信道不需要延迟发送。
  37. 根据权利要求25至36中任一项所述的方法,其中,按照以下方式对所述第二类信道资源中第一资源所在的时域位置进行延迟处理:
    当所述第一类信道中配置了传输间隔Gap1时,延迟后的所述第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为所述第二类信道资源结束时刻End2之后第一个所述传输间隔Gap1的起始时刻所在的第一度量单位或第一度量单位的索引,k大于或等于0;或者
    当所述第一类信道中配置了所述传输间隔Gap1时,延迟后的所述第二类信道资源中第一资源所在的时域位置的起始时刻为Start2,且,Start2=m+k,其中,m为所述资源单元RU(j)的结束时刻之后第一个所述传输间隔Gap1的起始时刻所在的第一度量单位或第一度量单位的索引,k大于或等于0。
  38. 根据权利要求1所述的方法,其中,
    所述第一类信道资源与所述第二类信道资源有部分重叠时,使用与所述第一类信道资源不重叠的所述第二类信道资源发送第二类信道上承载的以下之一:数据、业务、信息、信号。
  39. 根据权利要求1所述的方法,其中,
    当第二类信道占用的频域带宽与所述第一类信道的频域资源重叠的部分占用所述第二类信道配置的频域带宽的比例小于等于或小于c1%时,使用与所述第一类信道资源不重叠的所述第二类信道资源发送第二类信道上承载的数据或业务或信息或信号,其中,c1大于或大于等于0。
  40. 根据权利要求1所述的方法,其中,
    当满足指定条件,且所述第二类信道资源与所述第一类信道资源的时域重叠区域长度在所述第二类信道资源的时域长度中的比例小于或等于d%时,第二类信道不需要延迟发送,其中,d大于或大于等于0。
  41. 根据权利要求40所述的方法,其中,
    所述时域重叠区域长度为W1个第一度量单位;或所述时域重叠 区域长度为W2个所述第二类信道一次发送占用的资源的时域长度。
  42. 根据权利要求1所述的方法,其中,当满足所述指定条件,且所述第二终端的等级索引大于或大于等于预定等级索引时,所述第二类信道不需要延迟发送,其中,所述预定等级索引采用默认配置,或者通过信令配置。
  43. 根据权利要求1所述的方法,其中,当满足所述指定条件,且所述第二类信道的重复发送次数大于或大于等于预定值时,所述第二类信道不需要延迟发送,其中,所述预定值采用默认配置,或者所述预定值通过信令配置。
  44. 根据权利要求42或者43所述的方法,其中,所述第二类信道为承载混合自动重传请求应答信息的信道。
  45. 根据权利要求1所述的方法,其中,
    当所述第一类信道为随机接入信道时,所述第一终端为1个终端或多个终端。
  46. 根据权利要求45所述的方法,其中,在所述第一终端为所述多个终端时,所述第一终端满足以下条件之一:
    覆盖增强等级相同;
    随机接入信号重复发送等级相同;
    随机接入信号重复发送次数相同。
  47. 一种资源配置装置,包括:
    延迟模块,设置为在为第一终端分配的第一类信道资源与为第二终端分配的第二类信道资源满足指定条件时,对所述第二类信道资源中第一资源所在的时域位置进行延迟处理。
  48. 根据权利要求47所述的装置,其中,
    所述第一类信道包括:随机接入信道;和/或
    所述第二类信道包括以下之一:上行数据信道;上行业务信道;上行控制信道;承载混合自动重传请求HARQ应答信息的信道;探测信道。
  49. 根据权利要求47所述的装置,其中,所述指定条件包括以下至少之一:
    所述第一类信道资源与所述第二类信道资源存在重叠区域时;
    所述第一类信道资源所在的时域位置与所述第二类信道资源所在的时域位置重叠或部分重叠,且所述第二类信道资源所在的频域位置包含在所述第一类信道资源所在的频域位置中;
    所述第一类信道资源所在的时域位置与所述第二类信道资源所在的时域位置重叠或部分重叠,且第一类信道资源所在的频域位置与所述第二类信道资源所在的频域位置之间的间隔小于等于或小于A赫兹时,其中,A大于0;
    当第二类信道频域资源与第一类信道频域资源重叠的部分占用第二类信道频域带宽的比例大于等于或大于c%时,其中,默认配置c%的取值或者c%的取值由信令配置;
    所述第二类信道资源与所述第一类信道资源的时域重叠区域长度在所述第二类信道资源的时域长度中的比例大于或大于等于d%时;其中,所述时域重叠区域长度为W1个第一度量单位;或所述时域重叠区域长度为W2个所述第二类信道一次发送占用的资源的时域长度,W1和W2为大于0的整数,d大于0。
  50. 一种基站,包括:权利要求47-49中任一项所述的装置。
  51. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求1至46任一项中所述的方法。
PCT/CN2017/084008 2016-05-13 2017-05-11 资源配置方法、装置及基站 WO2017193976A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES17795594T ES2894249T3 (es) 2016-05-13 2017-05-11 Método y dispositivo de asignación de recursos y estación base
JP2018559997A JP2019521573A (ja) 2016-05-13 2017-05-11 リソース設定のための方法及び装置、並びに基地局
KR1020187036216A KR102166401B1 (ko) 2016-05-13 2017-05-11 자원 구성을 위한 방법 및 장치와 기지국
EP17795594.5A EP3393167B1 (en) 2016-05-13 2017-05-11 Resource allocation method and device, and base station
US15/872,944 US10554367B2 (en) 2016-05-13 2018-01-16 Narrowband uplink resource configuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610322408.X 2016-05-13
CN201610322408.XA CN107371184B (zh) 2016-05-13 2016-05-13 资源配置方法、装置及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/872,944 Continuation US10554367B2 (en) 2016-05-13 2018-01-16 Narrowband uplink resource configuration

Publications (1)

Publication Number Publication Date
WO2017193976A1 true WO2017193976A1 (zh) 2017-11-16

Family

ID=60266254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084008 WO2017193976A1 (zh) 2016-05-13 2017-05-11 资源配置方法、装置及基站

Country Status (8)

Country Link
US (1) US10554367B2 (zh)
EP (1) EP3393167B1 (zh)
JP (2) JP2019521573A (zh)
KR (1) KR102166401B1 (zh)
CN (1) CN107371184B (zh)
ES (1) ES2894249T3 (zh)
PT (1) PT3393167T (zh)
WO (1) WO2017193976A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019198075A (ja) * 2018-05-10 2019-11-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける任意接続プリアンブルを送受信するための方法、及びこのための装置
EP3713139A4 (en) * 2017-11-17 2021-08-18 ZTE Corporation SIGNAL TRANSMISSION METHOD, DEVICE AND SYSTEM AND STORAGE MEDIUM

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107466111B (zh) * 2016-06-06 2020-11-06 华为技术有限公司 媒体接入控制方法及无线接入设备
JP7135088B2 (ja) 2017-12-26 2022-09-12 オッポ広東移動通信有限公司 データ伝送方法、装置及びコンピュータ記憶媒体
CN110798291B (zh) * 2018-08-02 2022-04-15 中兴通讯股份有限公司 一种信息传输的方法、装置、设备和计算机可读存储介质
CN111182630B (zh) * 2018-11-09 2022-11-11 华为技术有限公司 数据接收和发送的方法、设备及***
US11895699B2 (en) * 2019-02-11 2024-02-06 Qualcomm Incorporated Listen-before-talk (LBT) type and gap signaling for back-to-back grants and multi-transmission time interval (multi-TTI) grants
CN109982329B (zh) * 2019-03-20 2023-03-24 中国联合网络通信集团有限公司 一种数据传输方法和基站
CN111865510B (zh) 2019-04-30 2021-11-23 大唐移动通信设备有限公司 一种harq-ack的传输方法、用户设备及网络侧设备
CN114867127A (zh) * 2019-04-30 2022-08-05 华为技术有限公司 一种随机接入前导发送方法及通信装置
CN112260805B (zh) * 2019-07-22 2023-03-24 海能达通信股份有限公司 一种数据传输方法、装置及电子设备
US11910381B2 (en) * 2021-08-06 2024-02-20 Qualcomm Incorporated Multiplexing techniques for uplink transmissions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230302A1 (en) * 2011-03-10 2012-09-13 Futurewei Technologies, Inc. Method and System for Handling Congestion in a Communications System
CN104488206A (zh) * 2012-07-19 2015-04-01 高通股份有限公司 复用具有不同tdd配置的ue以及用于减轻ue对ue和基站对基站的干扰的一些技术
CN105122673A (zh) * 2013-04-04 2015-12-02 英特尔Ip公司 重配置控制信道资源映射冲突避免

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2429567C2 (ru) * 2007-02-12 2011-09-20 Эл Джи Электроникс Инк. Способы и процедуры для высокоскоростного доступа пользовательского оборудования
US9025455B2 (en) * 2011-04-26 2015-05-05 Industrial Technology Research Institute Prioritized random access method, resource allocation method and collision resolution method
EP3170276B1 (en) * 2014-07-18 2019-03-13 LG Electronics Inc. Uplink data transmission method in wireless communication system and apparatus for the same
WO2016072218A1 (ja) * 2014-11-06 2016-05-12 株式会社Nttドコモ ユーザ端末および無線通信システム
KR20220104072A (ko) * 2015-07-27 2022-07-25 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) Nb lte prach 설계

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230302A1 (en) * 2011-03-10 2012-09-13 Futurewei Technologies, Inc. Method and System for Handling Congestion in a Communications System
CN104488206A (zh) * 2012-07-19 2015-04-01 高通股份有限公司 复用具有不同tdd配置的ue以及用于减轻ue对ue和基站对基站的干扰的一些技术
CN105122673A (zh) * 2013-04-04 2015-12-02 英特尔Ip公司 重配置控制信道资源映射冲突避免

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3393167A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3713139A4 (en) * 2017-11-17 2021-08-18 ZTE Corporation SIGNAL TRANSMISSION METHOD, DEVICE AND SYSTEM AND STORAGE MEDIUM
CN114500214A (zh) * 2017-11-17 2022-05-13 中兴通讯股份有限公司 信号的发送方法及存储介质
US11381434B2 (en) 2017-11-17 2022-07-05 Zte Corporation Signal transmitting method, device and system, and storage medium
US11924012B2 (en) 2017-11-17 2024-03-05 Zte Corporation Signal transmitting method, device, and storage medium
JP2019198075A (ja) * 2018-05-10 2019-11-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける任意接続プリアンブルを送受信するための方法、及びこのための装置
US11617207B2 (en) 2018-05-10 2023-03-28 Lg Electronics Inc. Method for transmitting and receiving random access preamble in wireless communication system and device therefor

Also Published As

Publication number Publication date
EP3393167A4 (en) 2019-03-06
PT3393167T (pt) 2021-10-27
JP2020115689A (ja) 2020-07-30
EP3393167B1 (en) 2021-09-22
CN107371184A (zh) 2017-11-21
JP2019521573A (ja) 2019-07-25
KR20190018641A (ko) 2019-02-25
US20180145814A1 (en) 2018-05-24
KR102166401B1 (ko) 2020-10-16
US10554367B2 (en) 2020-02-04
EP3393167A1 (en) 2018-10-24
JP7209667B2 (ja) 2023-01-20
ES2894249T3 (es) 2022-02-14
CN107371184B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2017193976A1 (zh) 资源配置方法、装置及基站
US12022517B2 (en) Non-scheduling resource based data sending method and apparatus thereof
JP6938809B2 (ja) 新無線における間欠受信動作のための装置および方法
CN112969227B (zh) 执行和报告测量的方法和装置
KR20200090949A (ko) NR 비면허 스펙트럼의 광대역 동작을 위한 LBT(Listen Before Talk)
CN107294897B9 (zh) 下行信息发送、接收方法及装置
CN114451047A (zh) 无线通信***中的旁路资源确定、旁路信号发送和接收方法及装置
US20210160852A1 (en) Resource configuration method and terminal device
KR20180071271A (ko) 스케줄링 요청을 송수신하는 방법 및 장치
CN110932833A (zh) 信息传输方法和装置
WO2020025042A1 (zh) 资源配置的方法和终端设备
CN105144617B (zh) 一种信息传输方法、基站及用户设备
WO2009051403A2 (en) Method of allocating radio resource in broadband wireless access system
CN109219138B (zh) 传输处理的方法、装置、电子设备和存储介质
JP2023113833A (ja) リソース割り当て方法及び機器
CN113810873A (zh) 用于旁路资源确定的方法和终端
EP3771270B1 (en) Uplink transmission resource allocation method and apparatus
CN107347216B (zh) 一种5g大连接物联网中上下行资源的分配方法
WO2018141178A1 (zh) 信息传输、处理方法及装置、设备、终端和***、存储介质
US10291445B2 (en) Method and system for minimizing channel preservation time in cellular communications on un-licensed band
JP2020512742A (ja) 通信方法、端末装置及びネットワーク機器
CN114374468B (zh) Pdcch的监听方法及装置、存储介质、终端、基站
WO2022077518A1 (zh) 一种资源选择方法及装置
CN117835299A (zh) 基于信号的优先级测量信号的方法和设备
CN117063521A (zh) 载波选择方法、装置、终端及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017795594

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017795594

Country of ref document: EP

Effective date: 20180718

ENP Entry into the national phase

Ref document number: 2018559997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187036216

Country of ref document: KR

Kind code of ref document: A