WO2017191787A1 - Method for manufacturing fuel cell, and fuel cell - Google Patents

Method for manufacturing fuel cell, and fuel cell Download PDF

Info

Publication number
WO2017191787A1
WO2017191787A1 PCT/JP2017/016466 JP2017016466W WO2017191787A1 WO 2017191787 A1 WO2017191787 A1 WO 2017191787A1 JP 2017016466 W JP2017016466 W JP 2017016466W WO 2017191787 A1 WO2017191787 A1 WO 2017191787A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
insulating member
fuel cell
power generation
cell
Prior art date
Application number
PCT/JP2017/016466
Other languages
French (fr)
Japanese (ja)
Inventor
村田 貴
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to JP2018515704A priority Critical patent/JP6605721B2/en
Publication of WO2017191787A1 publication Critical patent/WO2017191787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell manufacturing method and a fuel cell.
  • fuel cells are known.
  • a pair of interconnectors, a cell body provided between the pair of interconnectors, and an air flow path and a fuel flow path are joined to the upper surface of the outer edge of the cell body.
  • a fuel cell comprising a separator that shuts off the battery is disclosed.
  • plate-shaped gas seal portions are provided on the air electrode side and the fuel electrode side of the separator, respectively.
  • the gas seal part is comprised with the mica (mica), for example.
  • a fuel cell described in Japanese Patent Application Laid-Open No. 2013-20886 also discloses a fuel cell including a pair of interconnectors and a seal member and an electrolyte electrode assembly provided between the pair of interconnectors.
  • the seal member is made of mica, for example.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is a fuel cell capable of suppressing cell deterioration caused by air entering from the outside during shutdown. And a fuel cell.
  • a method of manufacturing a fuel cell according to a first aspect of the present invention includes a cell having an anode formed on one surface and a cathode formed on the other surface, and surrounding the outside of the cell.
  • a plurality of power generation units each of which is provided and includes an insulating member having ceramic particles and amorphous glass, which suppresses mixing of fuel gas supplied to the anode and oxidant supplied to the cathode.
  • the fuel gas is provided so as to surround the outside of the cell, and the fuel gas supplied to the anode and the oxidant supplied to the cathode are mixed. And a step of laminating a plurality of power generation units including an insulating member having ceramic particles and amorphous glass.
  • the insulating member is configured to have ceramic particles and amorphous glass, the insulating member is not cleaved unlike the case where the insulating member is made of mica.
  • the insulating member has ceramic particles, the thickness of the insulating member is suppressed from becoming smaller than a predetermined thickness. Accordingly, it is possible to prevent the insulation from being unable to be ensured due to the reduction in the thickness of the insulating member, and it is possible to ensure the thickness so that the thickness of the power generation unit does not become too small. Moreover, even when the glass is softened by raising the temperature of the power generation unit, excessive flow of the glass can be suppressed by the ceramic particles. Moreover, since the insulating member has an amorphous glass, even when the insulating member has a crack, the crack is repaired by melting the glass by raising the temperature of the power generation unit. Can do. As a result, cracks can be eliminated.
  • the temperature of the plurality of stacked power generation units is raised to a second temperature lower than the first temperature prior to raising the temperature to the first temperature.
  • the method further includes the step of removing the binder from the insulating member before the temperature is raised to the first temperature. If comprised in this way, since it heats up or heats the laminated
  • the step of removing the binder includes a step of removing the binder contained in the insulating member before the temperature rise by maintaining a second temperature lower than the temperature at which the glass softens. If comprised in this way, since 2nd temperature is lower than the temperature which glass softens, a binder can be removed before glass softens.
  • the thermal decomposition start temperature or the burnout start temperature of the binder is lower than the temperature at which the glass softens. If comprised in this way, a binder can be easily removed before glass softens.
  • the step of removing the binder is performed on the insulating member after the step of removing the binder by removing the binder from the insulating member before raising the temperature to the first temperature.
  • the weight percent of the ceramic particles contained is 5 wt% or more and 30 wt% or less.
  • the weight percentage of the ceramic particles is too small, the flow of the glass becomes too large when the power generation unit is heated to soften the glass. That is, since the insulating member cannot withstand the load and the insulating member is crushed, the thickness adjusting member disposed below the anode of the cell is also crushed excessively.
  • the weight percentage of the ceramic particles is too large, even if the power generation unit is heated to soften the glass, the glass does not flow so much that cracks occur and it is difficult to adjust the thickness of the insulating member. Therefore, as described above, by setting the weight percent of the ceramic particles contained in the insulating member to 5 wt% or more and 30 wt% or less, excessive flow of the glass is suppressed, and therefore the insulating member is crushed. Excessive crushing of the thickness adjusting member to be performed can be suppressed. Moreover, generation
  • the method of manufacturing a fuel cell including the step of removing the binder, preferably provided between the step of adjusting the thickness of the insulating member and the step of removing the binder, while heating the plurality of stacked power generation units,
  • the method further includes a step of suppressing contraction of the insulating member by applying a second load smaller than the first load to a plurality of power generation units adjacent to each other in the stacking direction in a direction adjacent to each other. If comprised in this way, since a 2nd load is applied from the both sides of an insulating member, the deformation
  • the step of suppressing the shrinkage of the insulating member includes a step of applying a second load to the plurality of power generation units before the glass contained in the insulating member softens. If comprised in this way, since a 2nd load is applied before glass softens, the deformation
  • the power generation unit further includes a metal thickness adjusting member provided on the anode side of the cell, and after the step of removing the binder, The thickness of the oxidized thickness adjusting member is reduced by placing the thickness adjusting member under an atmosphere of reducing gas while raising the temperature to a third temperature that is higher than the first temperature and lower than the first temperature.
  • the method further includes a step of reducing the hardness of the adjustment member. If comprised in this way, since the hardness of a thickness adjustment member will become small, when adjusting the thickness of an insulating member by applying a 1st load, the thickness of a thickness adjustment member can also be adjusted. That is, the thickness of the power generation unit including the thickness adjusting member can be adjusted.
  • the particle size of the ceramic particles contained in the insulating member before the temperature rise is 10 ⁇ m or less. If comprised in this way, it can suppress that it becomes difficult to adjust the thickness of an insulating member resulting from the particle size of a ceramic particle being too large. That is, it becomes possible to prevent the thickness from being reduced.
  • a fuel cell according to a second aspect of the present invention includes a plurality of stacked power generation units, and the power generation unit includes a cell having an anode formed on one surface and a cathode formed on the other surface, and an outer side of the cell. And an insulating member having ceramic particles and amorphous glass that suppresses mixing of the fuel gas supplied to the anode and the oxidant supplied to the cathode.
  • the power generation unit is provided so as to surround the outside of the cell, and the fuel gas supplied to the anode and the oxidant supplied to the cathode are mixed. And an insulating member having ceramic particles and amorphous glass.
  • the insulating member is configured to have ceramic particles and amorphous glass, the insulating member is not cleaved unlike the case where the insulating member is made of mica.
  • the air passes through the insulating member from the outside of the fuel cell. never invade.
  • the insulating member has ceramic particles, it is possible to secure the thickness of the power generation unit, suppress excessive flow of glass, and repair cracks.
  • the insulating member preferably contains 5% by weight or more and 30% by weight or less of ceramic particles. If comprised in this way, since the excessive flow of glass is suppressed, the collapse of the thickness adjustment member resulting from a collapse of an insulating member can be suppressed. Moreover, generation
  • the power generation unit preferably further includes a metal thickness adjusting member provided on the anode side of the cell. If comprised in this way, the thickness of an electric power generation unit can be adjusted easily, ensuring the conduction
  • the elastic member is disposed on one end side in the stacking direction of the plurality of stacked power generation units and presses the cell toward the other end side in the stacking direction. Is further provided. If comprised in this way, since the contact failure with the cell each contained in the laminated
  • the insulating member preferably has a frame shape so as to surround the outside of the cell. If comprised in this way, an insulating member can be easily arrange
  • FIG. 1 is an exploded perspective view of a fuel cell according to an embodiment of the present invention. It is a disassembled perspective view of the electric power generation unit by one Embodiment of this invention. It is a disassembled perspective view of the separator by one Embodiment of this invention. It is typical sectional drawing of the fuel cell by one Embodiment of this invention. It is a typical sectional view of an insulating member by one embodiment of the present invention. It is typical sectional drawing of the insulating member before temperature rising by one Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the fuel cell (cell stack) by one Embodiment of this invention.
  • the fuel cell 100 is a solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • the fuel cell 100 is configured by stacking a plurality of power generation units 10.
  • the power generation unit 10 is configured to flow so that the fuel gas and the oxidant (air) face each other (counter flow).
  • the separator 20 As shown in FIG. 2, in the power generation unit 10, from the lower side (Z2 direction side), the separator 20, the insulating member 30, the foamed nickel 40 that is a metal porous body, the cell 50, and the cell presser 60 are They are stacked in this order.
  • the nickel foam 40 is an example of the “thickness adjusting member” in the claims.
  • the current collecting plate 21, the cathode plate 22, the separator body 23, the anode plate 24, and the cell holder 25 are stacked in this order from the lower side (Z2 direction side). Has been.
  • the current collecting plate 21 is configured to be in contact with the cathode 53 of the cell 50 (see FIG. 4).
  • the current collecting plate 21 is provided with a hole 21a through which fuel gas flows, and a hole 21b and hole 21c through which an oxidant flows.
  • the current collecting plate 21 is provided with a plurality of holes 21 d for guiding the oxidant to the cathode 53.
  • the cathode plate 22 is provided with a hole 22a through which the fuel gas flows, and a hole 22b and a hole 22c through which the oxidant flows.
  • the cathode plate 22 is provided with an oxidant flow path 22d along the X direction. Specifically, the oxidant flows on the lower surface side (Z2 direction side) of the flow path 22d.
  • the separator body 23 is provided with a hole 23a through which the fuel gas flows, and a hole 23b and a hole 23c through which the oxidant flows. Further, the surface of the separator body 23 is formed into a flat surface.
  • the anode plate 24 is provided with a hole 24a (and a hole 24d) through which fuel gas flows, and a hole 24b and a hole 24c through which oxidant flows.
  • the anode plate 24 is provided with a fuel gas flow path 24e along the X direction. The fuel gas flows through the upper surface side of the flow path 24e.
  • the current collecting plate 21, the cathode plate 22, the separator body 23, and the anode plate 24 are formed of conductive members.
  • the cell holder 25 is provided with a hole 25a through which fuel gas flows, and a hole 25b and hole 25c through which an oxidant flows. In addition, an opening 25d is provided at the center of the cell holder 25.
  • the insulating member 30 is provided with a hole 30e through which the fuel gas flows, and a hole 30b and a hole 30c through which the oxidant flows.
  • the insulating member 30 has a frame shape so as to surround the outside of the cell 50 (see FIG. 4).
  • An opening 30 d is provided at the center of the insulating member 30.
  • the insulating member 30 mixes the fuel gas supplied to the anode 51 through the hole 30e (opening 30d) and the oxidant supplied to the cathode 53 through the holes 30b and 30c. It is comprised so that this may be suppressed.
  • the insulating member 30 is configured to insulate between the cells 50 adjacent in the stacking direction.
  • the foamed nickel 40 is provided on the anode 51 side (Z2 direction side) of the cell 50.
  • the foamed nickel 40 has a substantially rectangular shape, and has substantially the same size (area) as an anode 51 and a solid electrolyte layer 52 described later of the cell 50.
  • the cell 50 includes an anode 51, a solid electrolyte layer 52, and a cathode 53.
  • the cathode 53 is formed on the surface on the Z1 direction side
  • the anode 51 is formed on the surface opposite to the surface on which the cathode 53 is formed (surface on the Z2 direction side).
  • the anode 51 is provided on substantially the entire surface of the solid electrolyte layer 52 on the Z2 direction side.
  • the cathode 53 is provided on a part of the surface of the solid electrolyte layer 52 on the Z1 direction side.
  • the cell retainer 60 is provided with a hole 60a through which the fuel gas flows, and a hole 60b and a hole 60c through which the oxidant flows.
  • an opening 60d is provided at the center of the cell presser 60.
  • the cell 50 is arrange
  • the cell retainer 60 is disposed so as to straddle the insulating member 30 and the solid electrolyte layer 52.
  • the cathode 53 is exposed from the opening 60 d of the cell presser 60.
  • the cathode 53 is electrically connected to the upper current collecting plate 21.
  • a separator 20a including a top plate but not including an anode plate is provided on the upper surface of the power generation unit 10 disposed at the uppermost position.
  • a separator 20b that includes a bottom plate but does not include a cathode plate is provided on the lower surface of the power generation unit 10 that is disposed at the lowermost position.
  • the fuel gas supplied to the anode 51 of the cell 50 flows from the hole 23 a on the X1 direction side of the separator body 23 to the upper surface side of the anode plate 24 through the hole 24 d of the anode plate 24. It flows into (Z1 direction side surface side).
  • the reacted fuel gas flows out through the hole 24a on the X2 direction side of the anode plate 24.
  • the oxidant (air) supplied to the cathode 53 of the cell 50 flows into the upper surface side (the lower surface side of the cathode plate 22) of the current collecting plate 21 from the hole 22 b on the X2 direction side of the cathode plate 22.
  • the oxidant after the reaction flows out through the hole 21c on the X1 direction side of the current collecting plate 21.
  • a cell stack 70 is constituted by a plurality of stacked power generation units 10.
  • a plurality of cell stacks 70 are stacked.
  • the elastic member 80 is arranged on one end side in the stacking direction of the cell stack 70 (the plurality of stacked power generation units 10) and presses the cell 50 toward the other end side in the stacking direction. Is provided.
  • the elastic member 80 is disposed between the stacked cell stacks 70 (the plurality of power generation units 10) so as to overlap the cells 50 of the power generation unit 10 in plan view.
  • the elastic member 80 has a substantially rectangular shape in plan view.
  • the elastic member 80 includes a ceramic fiber mat. The elastic member 80 presses the cell 50 when the fuel cell 100 is actually used after the cell stack 70 is completed, not when the fuel cell 100 (cell stack 70) described later is manufactured.
  • the intermediate member is disposed between the stacked cell stacks 70 (the plurality of power generation units 10) so as not to overlap the elastic member 80 on the outer peripheral side of the cell 50, and is an intermediate member that is harder than the elastic member 80.
  • a plate 81 is provided.
  • the intermediate plate 81 is made of metal harder than the elastic member 80 (for example, SUS: tainless steel).
  • the intermediate plate 81 has a frame shape, and the elastic member 80 is disposed in the opening 81 a of the frame-shaped intermediate plate 81.
  • an insulating intermediate insulating plate 82 is provided between the intermediate plate 81 and the cell stack 70 disposed below.
  • the intermediate insulating plate 82 is made of crystallized glass, for example. Crystallized glass is glass formed by reheating glass to precipitate crystals.
  • the intermediate insulating plate 82 has a frame shape, and the elastic member 80 is disposed in the opening 82 a of the frame-shaped intermediate insulating plate 82. That is, the opening 81a of the intermediate plate 81 and the opening 82a of the intermediate insulating plate 82 are provided so as to communicate with each other, and the elastic member 80 is disposed so as to straddle the opening 81a and the opening 82a. Yes.
  • the set of the elastic member 80, the intermediate plate 81, and the intermediate insulating plate 82 is disposed at a plurality of locations (between the cell stacks 70).
  • An end plate 83 is provided between the upper surface of the uppermost cell stack 70 and the set of the elastic member 80, the intermediate plate 81, and the intermediate insulating plate 82.
  • An insulating member 84 is provided on the upper surface of the set of the uppermost elastic member 80, the intermediate plate 81 and the intermediate insulating plate 82.
  • the insulating member 84 is made of mica, for example.
  • a pressing plate 90 is provided on the upper surface of the insulating member 84. Further, the pressing plate 90 is made of metal harder than the elastic member 80 (for example, SUS: Stainless steel).
  • a pressure member 91 for pressing the pressure plate 90 is provided on the upper surface of the pressure plate 90.
  • the pressurizing member 91 is composed of a plurality (five in this embodiment) of spring members 91a made of ceramic. The four corners of the substantially rectangular pressing plate 90 are pressed by the four spring members 91a, and the central portion of the approximately rectangular pressing plate 90 is pressed by the one spring member 91a.
  • the pressing plate 90 is provided with a recess 90a in which the spring member 91a is disposed.
  • a spring pressing plate 92 that presses the pressing member 91 (spring member 91a) is disposed above the pressing member 91 (Z1 direction side).
  • the spring pressing plate 92 is provided with a plurality of through holes 92a into which a plurality of rod-shaped members 93 are inserted.
  • the lower end of the rod-shaped member 93 is configured to be fixed to a rigid plate (not shown) or the like.
  • a plurality of rod-like members 93 are inserted into the through holes 92a of the spring pressing plate 92, the lower end is fixed, and the nut 94 is fastened to the upper end, whereby the spring pressing plate 92 is pressed downward.
  • the spring member 91 a is pressed, and the cell 50 is pressed via the pressing plate 90 and the elastic member 80.
  • an insulating member 95 made of, for example, crystallized glass is disposed below the cell stack 70 located at the lowest position.
  • the insulating member 95 is made of crystallized glass, for example.
  • the insulating member 30 includes ceramic particles 32 and amorphous glass 33. Specifically, the insulating member 30 includes 5 wt% or more and 30 wt% or less of ceramic particles 32.
  • the ceramic particles 32 are made of, for example, zirconia (zirconium dioxide: ZnO 2 ). In FIG. 5, the size of the ceramic particles 32 is emphasized and is larger than the actual size.
  • a cell stack 70 is configured by stacking a plurality of power generation units 10. As shown in FIG. 2, in the power generation unit 10, the separator 20, the insulating member 30, the foamed nickel 40, the cell 50, and the cell presser 60 are stacked in this order.
  • the insulating member 30 includes ceramic particles 32 and amorphous glass 33.
  • the insulating member 30 (insulating member 30a before the temperature rise) includes ceramic particles 32, glass 33, and a binder 34.
  • the particle size p of the ceramic particles 32 included in the insulating member 30a before the temperature rise is 10 ⁇ m or less.
  • the binder 34 is made of, for example, an acrylic copolymer.
  • the cell stack 70 (a plurality of stacked power generation units 10) is heated (heated) between time t0 and time t1.
  • the cell stack 70 is heated in an air atmosphere.
  • the cell stack 70 is heated in the air atmosphere from time t0 to time t4 described later.
  • the temperature prior to raising the temperature of the stacked power generation units 10 (cell stack 70) to a temperature T4 described later, the temperature is raised to a temperature T1 lower than the temperature T4, and the temperature T4 is increased.
  • the binder 34 in the insulating member 30a before the temperature rise is removed. Specifically, at time t1, the cell stack 70 is heated to the temperature T1. The temperature of the cell stack 70 is maintained at T1 between time t1 and time t2. Thereby, the binder 34 contained in the insulating member 30a is removed.
  • the temperature T4 is an example of the “first temperature” in the claims.
  • the temperature T1 is an example of the “second temperature” in the claims.
  • the binder 34 contained in the insulating member 30a before the temperature rise is removed by maintaining the temperature T1 lower than the temperature T2 at which the glass 33 softens. Specifically, the binder 34 is thermally decomposed and removed from the insulating member 30a. Further, the thermal decomposition start temperature or burnout start temperature of the binder 34 is lower than the temperature T2 at which the glass 33 is softened. Thereby, the glass 33 is not softened at the time t2.
  • the binder 34 is removed from the insulating member 30a before the temperature is raised to the temperature T4, so that the weight% of the ceramic particles 32 contained in the insulating member 30 after the step of removing the binder 34 is 5% by weight or more. 30% by weight or less. That is, the weight of the ceramic particles 32 with respect to the weight of the insulating member 30 after the binder 34 is removed (the weight of the ceramic particles 32 + the weight of the glass 33) is 5% or more and 30% or less.
  • a load F2 (to be described later) is used while increasing the temperature of the plurality of stacked power generation units 10 between the step of adjusting the thickness t of the insulating member 30 to be described later and the step of removing the binder 34. Is applied to the plurality of power generation units 10 adjacent to each other in the stacking direction. Thereby, contraction of the insulating member 30 is suppressed. Specifically, at time t2, the plurality of power generation units 10 are heated from the temperature T1. At time t2, a load F1 is applied to the plurality of power generation units 10. The state where the load F1 is applied is maintained from time t2 to time t5 described later.
  • the load F2 and the load F1 are examples of the “first load” and the “second load” in the claims, respectively.
  • the temperature of the plurality of power generation units 10 heated from time t2 reaches the temperature T2 at which the glass 33 softens at time t3.
  • the glass 33 contained in the insulating member 30 begins to soften at the time t3.
  • the glass 33 flows and the insulating member 30 is deformed. Therefore, in the present embodiment, the deformation of the insulating member 30 is suppressed by applying the load F1 to the plurality of power generation units 10 before the glass 33 included in the insulating member 30 is softened (time t2).
  • the plurality of power generation units 10 are heated to a temperature T3 that is higher than the temperature T1 and lower than a temperature T4 that will be described later.
  • reducing gas H 2 gas flow rate M1
  • H 2 gas flow rate M1 is placed under an atmosphere of.
  • the foamed nickel 40 is placed in an atmosphere of a reducing gas (H 2 gas), whereby the foamed nickel 40 in an oxidized state is reduced. And the hardness of the foaming nickel 40 becomes small.
  • the temperature T3 is an example of the “third temperature” in the claims.
  • the temperature of the power generation unit 10 (cell stack 70) reaches T3, and the state of temperature T3 is maintained until time t5.
  • the atmosphere is replaced with N 2 , and the power generation unit 10 is placed in an atmosphere of reducing gas (H 2 gas).
  • H 2 gas reducing gas
  • the foamed nickel 40 before being placed in the reducing gas (H 2 gas) atmosphere is oxidized, and the nickel in the oxidized state contained in the foamed nickel 40 by the reducing gas (H 2 gas). Is reduced to metallic nickel. Thereby, the hardness of the foamed nickel 40 becomes small.
  • the temperature of the plurality of stacked power generation units 10 is increased, and a load F2 is applied to the plurality of power generation units 10 adjacent to each other in the stacking direction so as to approach each other.
  • the thickness t is adjusted. Specifically, at time t5, the temperatures of the plurality of power generation units 10 are T3. At time t5, the flow rate of the reducing gas (H 2 gas) is decreased from M1 to M2. Then, a load F2 is applied to the plurality of power generation units 10 (cell stack 70) from time t5. Then, with the load F2 applied, the plurality of power generation units 10 are heated, and at time t6, the temperatures of the plurality of power generation units 10 become T4.
  • the temperature of the plurality of power generation units 10 is maintained at T4 with the load F2 applied until time t7. Since the temperature T4 is higher than the temperature T2 at which the glass 33 is softened, the glass 33 remains in a softened state from time t5, which is the time when the load F2 starts to be applied, to time t7. Thereby, the thickness t of the insulating member 30 can be adjusted.
  • the thickness t of the insulating member 30 is reduced from the thickness t1 in FIG. 7 to the thickness t2 in FIG.
  • the thickness of the foamed nickel 40 is also adjusted by the load F2. That is, the entire thickness of the plurality of power generation units 10 is adjusted by the load F2. That is, the thickness of each power generation unit 10 is adjusted.
  • the plurality of power generation units 10 are cooled. Specifically, the temperatures of the plurality of power generation units 10 are decreased stepwise from time t7 to time t8. Thereby, the several electric power generation unit 10 (cell stack 70) is completed.
  • the ceramic particles are provided so as to surround the outside of the cell 50 and suppress mixing of the fuel gas supplied to the anode 51 and the oxidant supplied to the cathode 53.
  • the insulating member 30 is configured to have the ceramic particles 32 and the amorphous glass 33, the insulating member 30 is cleaved unlike the case where the insulating member 30 is made of mica. There is no.
  • the insulating member 30 is passed through the insulating member 30 from the outside of the fuel cell 100. Air does not enter the fuel cell 100. As a result, it is possible to suppress the deterioration of the cell 50 due to air entering from the outside during shutdown.
  • the thickness t of the insulating member 30 is suppressed from being smaller than a predetermined thickness. Accordingly, it is possible to prevent the insulation from being unable to be ensured due to the decrease in the thickness t of the insulating member 30 and to secure the thickness so that the thickness of the power generation unit 10 is not too small. it can. Moreover, even when the glass 33 is softened by raising the temperature of the power generation unit 10, excessive flow of the glass 33 can be suppressed by the ceramic particles 32. In addition, since the insulating member 30 includes the amorphous glass 33, even when the insulating member 30 has cracks, the glass 33 is melted by raising the temperature of the power generation unit 10. Cracks can be repaired. As a result, cracks can be eliminated.
  • the temperature prior to raising the temperature of the plurality of stacked power generation units 10 to the temperature T4, the temperature is raised to the temperature T1 lower than the temperature T4, and the temperature is raised to the temperature T4.
  • a step of removing the binder 34 from the previous insulating member 30a is provided. Thereby, since the binder 34 is burnt down or thermally decomposed by raising the temperature of the stacked power generation units 10 to the temperature T1, the insulating member having the amorphous glass 33 and the ceramic particles 32 can be easily obtained. 30 can be formed.
  • the binder 34 contained in the insulating member 30a before the temperature rise is removed by maintaining the temperature T1 lower than the temperature T2 at which the glass 33 softens. Thereby, since the temperature T1 is lower than the temperature T2 at which the glass 33 is softened, the binder 34 can be removed before the glass 33 is softened.
  • the thermal decomposition start temperature or burnout start temperature of the binder 34 is lower than the temperature T2 at which the glass 33 softens. Thereby, the binder 34 can be easily removed before the glass 33 is softened.
  • the binder 34 is removed from the insulating member 30a before the temperature is raised to the temperature T4, so that the weight% of the ceramic particles 32 included in the insulating member 30 after the step of removing the binder 34 is reduced. 5 wt% or more and 30 wt% or less.
  • the weight percentage of the ceramic particles 32 is too small, the flow of the glass 33 becomes too large when the temperature of the power generation unit 10 is raised and the glass 33 is softened. That is, since the insulating member 30 cannot withstand the load and is crushed, the foamed nickel 40 disposed below the anode 51 of the cell 50 is also crushed excessively.
  • the weight percentage of the ceramic particles 32 is too large, even if the power generation unit 10 is heated and the glass 33 is softened, the flow of the glass 33 is small so that cracks occur and the thickness t of the insulating member 30 is adjusted. It becomes difficult to do. Therefore, as described above, by setting the weight% of the ceramic particles 32 included in the insulating member 30 to 5 wt% or more and 30 wt% or less, it is possible to suppress the flow of the glass 33 from being excessively increased. Excessive crushing of the foamed nickel 40 caused by the member 30 being crushed can be suppressed. Moreover, generation
  • the load is provided between the step of adjusting the thickness t of the insulating member 30 and the step of removing the binder 34 while raising the temperature of the plurality of stacked power generation units 10.
  • a step of suppressing contraction of the insulating member 30 by applying a load F1 smaller than F2 to a plurality of power generation units 10 adjacent to each other in the stacking direction in a direction adjacent to each other is provided.
  • the load F1 is applied to the plurality of power generation units 10 before the glass 33 included in the insulating member 30 is softened.
  • the load F1 is applied before the glass 33 softens, the deformation
  • the temperature is raised to a temperature T3 that is higher than the temperature T1 and lower than the temperature T4, and the foamed nickel 40 is placed in an atmosphere of reducing gas.
  • the step of reducing the hardness of the foamed nickel 40 by reducing the foamed nickel 40 in an oxidized state by arranging the foamed nickel 40 is provided.
  • the particle size p of the ceramic particles 32 contained in the insulating member 30 before the temperature rise is 10 ⁇ m or less. Therefore, it can be suppressed that the adjustment of the thickness t of the insulating member 30 is difficult due to the particle size p of the ceramic particles 32 being too large. That is, it is possible to prevent the thickness t from being reduced.
  • the power generation unit 10 includes the metallic foamed nickel 40 provided on the anode 51 side of the cell 50. Thereby, the thickness of the power generation unit 10 can be easily adjusted while ensuring conduction between the cells 50 by the metallic foamed nickel 40.
  • the elastic member 80 is disposed on one end side in the stacking direction of the plurality of stacked power generation units 10 and presses the cell 50 toward the other end side in the stacking direction. Is provided. Thereby, since the poor contact between the cell 50 included in each of the plurality of stacked power generation units 10 and the separator 20 (the member disposed between the cells 50 included in each adjacent power generation unit 10) is suppressed, An increase in the contact resistance between the cell 50 and the separator 20 can be suppressed.
  • the insulating member 30 has a frame shape so as to surround the outside of the cell 50. Thereby, the insulating member 30 can be easily disposed so as to surround the outside of the cell 50.
  • the fuel cell is a solid oxide fuel cell (SOFC)
  • SOFC solid oxide fuel cell
  • the fuel cell is a fuel cell other than a solid oxide fuel cell, such as a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonic acid fuel cell.
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • MCFC Molten Carbonate Fuel Cell
  • the insulating member includes zirconia as the ceramic particles
  • the present invention is not limited to this.
  • the insulating member may contain substances other than zirconia such as alumina (aluminum oxide) as ceramic particles.
  • the thickness of the insulating member may be adjusted by applying a one-stage load while suppressing deformation of the insulating member.
  • the present invention is not limited to this.
  • a thickness adjusting member other than the foamed nickel may be used.
  • the elastic member is made of a ceramic fiber mat (sheet) made of alumina.
  • the present invention is not limited to this.
  • the elastic member may be constituted by a member other than a ceramic fiber mat (sheet) made of alumina.
  • the cell is pressed by the spring member via the elastic member, but the present invention is not limited to this.
  • the cell may be pressed via an elastic member by a member other than a spring member such as a cushion material or a mat.
  • the fuel cell (power generation unit) is a counter flow fuel cell in which the fuel gas and the air flow so as to face each other.
  • the present invention is not limited to this.
  • the present invention can be applied to a cross-flow fuel cell in which fuel gas and air flow so as to intersect each other.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

This method for manufacturing a fuel cell (100) is provided with a step in which a plurality of power generation units (10) are heated to a first temperature (T4), and a first load (F2) is applied to adjacent pairs among the plurality of power generation units (10) in mutually approaching directions, whereby the thickness (t) of an insulating member (30) is adjusted.

Description

燃料電池の製造方法および燃料電池Fuel cell manufacturing method and fuel cell
 この発明は、燃料電池の製造方法および燃料電池に関する。 The present invention relates to a fuel cell manufacturing method and a fuel cell.
 従来、燃料電池が知られている。国際公開第2011/148769号には、一対のインターコネクタと、一対のインターコネクタの間に設けられる、セル本体と、セル本体の外縁部の上面に接合して、空気流路と燃料流路とを遮断するセパレータとを備える燃料電池が開示されている。また、セパレータの空気極側と燃料極側とには、それぞれ、板形状のガスシール部が設けられている。また、ガスシール部は、たとえば、マイカ(雲母)により構成されている。 Conventionally, fuel cells are known. In International Publication No. 2011/148769, a pair of interconnectors, a cell body provided between the pair of interconnectors, and an air flow path and a fuel flow path are joined to the upper surface of the outer edge of the cell body. A fuel cell comprising a separator that shuts off the battery is disclosed. In addition, plate-shaped gas seal portions are provided on the air electrode side and the fuel electrode side of the separator, respectively. Moreover, the gas seal part is comprised with the mica (mica), for example.
 また、特開2013-20886号公報に記載の燃料電池にも、一対のインターコネクタと、一対のインターコネクタの間に設けられる、シール部材および電解質電極接合体とを備える燃料電池が開示されている。また、シール部材は、たとえば、マイカにより構成されている。 Also, a fuel cell described in Japanese Patent Application Laid-Open No. 2013-20886 also discloses a fuel cell including a pair of interconnectors and a seal member and an electrolyte electrode assembly provided between the pair of interconnectors. . Moreover, the seal member is made of mica, for example.
国際公開第2011/148769号International Publication No. 2011/148769 特開2013-20886号公報JP 2013-20886 A
 ここで、国際公開第2011/148769号および特開2013-20886号公報に記載のような従来の燃料電池において、燃料電池がシャットダウンされた際、燃料電池の温度が低下する。このため、燃料電池内の空気の体積が小さくなる。そして、ガスシール部(シール部材)をマイカにより構成した場合、マイカはケイ素塩が積層された層状構造を有するため、劈開しやすい。このため、燃料電池内の空気の体積が小さくなり、燃料電池内の気圧が小さくなることに起因して、燃料電池の外部から薄いマイカの層の間の隙間を介して、空気が燃料電池内に侵入するという不都合がある。このため、シャットダウン時、たとえば400度以上の高温状態で空気がスタック内に侵入することによりセルが酸化して劣化するという問題点がある。 Here, in the conventional fuel cell as described in International Publication No. 2011/148769 and Japanese Patent Laid-Open No. 2013-20886, when the fuel cell is shut down, the temperature of the fuel cell decreases. For this reason, the volume of the air in a fuel cell becomes small. When the gas seal portion (seal member) is made of mica, the mica has a layered structure in which silicon salts are laminated, and thus is easily cleaved. For this reason, the volume of air in the fuel cell is reduced, and the air pressure in the fuel cell is reduced, so that the air passes through the gap between the thin mica layers from the outside of the fuel cell. There is an inconvenience of entering. For this reason, at the time of shutdown, there exists a problem that a cell oxidizes and deteriorates, when air penetrate | invades into a stack, for example in a high temperature state 400 degreeC or more.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、シャットダウン時に外部から侵入する空気に起因するセルの劣化を抑制することが可能な燃料電池の製造方法および燃料電池を提供することである。 The present invention has been made to solve the above-described problems, and one object of the present invention is a fuel cell capable of suppressing cell deterioration caused by air entering from the outside during shutdown. And a fuel cell.
 上記目的を達成するために、この発明の第1の局面による燃料電池の製造方法は、一方の表面にアノードが形成され他方の表面にカソードが形成されたセルと、セルの外側を取り囲むように設けられ、アノードに供給される燃料ガスとカソードに供給される酸化剤とが混合するのを抑制する、セラミック粒子と非晶質であるガラスとを有する絶縁部材とを含む発電ユニットを、複数積層する工程と、積層された複数の発電ユニットを第1の温度に昇温するとともに、積層方向に隣接する複数の発電ユニットに、互いに近接する方向に第1の荷重を加えることにより、絶縁部材の厚みを調整する工程と、を備える。 To achieve the above object, a method of manufacturing a fuel cell according to a first aspect of the present invention includes a cell having an anode formed on one surface and a cathode formed on the other surface, and surrounding the outside of the cell. A plurality of power generation units, each of which is provided and includes an insulating member having ceramic particles and amorphous glass, which suppresses mixing of fuel gas supplied to the anode and oxidant supplied to the cathode. And heating the plurality of stacked power generation units to a first temperature and applying a first load in a direction adjacent to each other to the plurality of power generation units adjacent to each other in the stacking direction. And a step of adjusting the thickness.
 この発明の第1の局面による燃料電池の製造方法では、上記のように、セルの外側を取り囲むように設けられ、アノードに供給される燃料ガスと、カソードに供給される酸化剤とが混合するのを抑制する、セラミック粒子と非晶質であるガラスとを有する絶縁部材とを含む発電ユニットを、複数積層する工程を備える。これにより、絶縁部材がセラミック粒子と非晶質であるガラスとを有するように構成されているので、絶縁部材がマイカから構成されている場合と異なり、絶縁部材が劈開することがない。その結果、燃料電池のシャットダウン時に、燃料電池内の温度が低下することにより、燃料電池内の空気の体積が小さくなった場合でも、燃料電池の外部から絶縁部材を介して、空気が燃料電池内に侵入することはない。その結果、シャットダウン時に外部から侵入する空気に起因するセルの劣化を抑制することができる。 In the fuel cell manufacturing method according to the first aspect of the present invention, as described above, the fuel gas is provided so as to surround the outside of the cell, and the fuel gas supplied to the anode and the oxidant supplied to the cathode are mixed. And a step of laminating a plurality of power generation units including an insulating member having ceramic particles and amorphous glass. Thereby, since the insulating member is configured to have ceramic particles and amorphous glass, the insulating member is not cleaved unlike the case where the insulating member is made of mica. As a result, even when the volume of the air in the fuel cell is reduced due to a decrease in the temperature in the fuel cell at the time of shutting down the fuel cell, the air passes through the insulating member from the outside of the fuel cell. Never invade. As a result, it is possible to suppress cell deterioration caused by air entering from the outside during shutdown.
 また、絶縁部材がセラミック粒子を有しているので、絶縁部材の厚みが、所定の厚みよりも小さくなることが抑制される。これにより、絶縁部材の厚みが小さくなることに起因して絶縁性が確保できなくなるのを抑制することができるとともに、発電ユニットの厚みが小さくなり過ぎないように厚みを確保することができる。また、発電ユニットを昇温させることにより、ガラスが軟化した場合でも、ガラスの過度な流動をセラミック粒子により抑制することができる。また、絶縁部材が非晶質であるガラスを有しているので、絶縁部材にクラックが生じている場合でも、発電ユニットを昇温することにより、ガラスが融解することによって、クラックを修復することができる。その結果、クラックをなくすことができる。 Further, since the insulating member has ceramic particles, the thickness of the insulating member is suppressed from becoming smaller than a predetermined thickness. Accordingly, it is possible to prevent the insulation from being unable to be ensured due to the reduction in the thickness of the insulating member, and it is possible to ensure the thickness so that the thickness of the power generation unit does not become too small. Moreover, even when the glass is softened by raising the temperature of the power generation unit, excessive flow of the glass can be suppressed by the ceramic particles. Moreover, since the insulating member has an amorphous glass, even when the insulating member has a crack, the crack is repaired by melting the glass by raising the temperature of the power generation unit. Can do. As a result, cracks can be eliminated.
 上記第1の局面による燃料電池の製造方法において、好ましくは、積層された複数の発電ユニットを第1の温度に昇温するのに先立って、第1の温度よりも低い第2の温度に昇温するとともに、第1の温度に昇温前の絶縁部材からバインダを取り除く工程をさらに備える。このように構成すれば、積層された複数の発電ユニットを第2の温度に昇温することで、バインダが焼失あるいは熱分解するので、容易に、非晶質であるガラスとセラミック粒子とを有する絶縁部材を形成することができる。 In the fuel cell manufacturing method according to the first aspect, preferably, the temperature of the plurality of stacked power generation units is raised to a second temperature lower than the first temperature prior to raising the temperature to the first temperature. The method further includes the step of removing the binder from the insulating member before the temperature is raised to the first temperature. If comprised in this way, since it heats up or heats the laminated | stacked several electric power generation unit to 2nd temperature, a binder will burn out or thermally decompose, Therefore It has an amorphous glass and ceramic particle | grain easily An insulating member can be formed.
 この場合、好ましくは、バインダを取り除く工程は、ガラスが軟化する温度よりも低い第2の温度を維持することにより、昇温前の絶縁部材に含まれるバインダを取り除く工程を含む。このように構成すれば、第2の温度が、ガラスが軟化する温度よりも低いので、ガラスが軟化する前にバインダを取り除くことができる。 In this case, preferably, the step of removing the binder includes a step of removing the binder contained in the insulating member before the temperature rise by maintaining a second temperature lower than the temperature at which the glass softens. If comprised in this way, since 2nd temperature is lower than the temperature which glass softens, a binder can be removed before glass softens.
 上記バインダを取り除く工程を備える燃料電池の製造方法において、好ましくは、バインダの熱分解開始温度または焼失開始温度は、ガラスが軟化する温度よりも低い。このように構成すれば、容易に、ガラスが軟化する前にバインダを取り除くことができる。 In the fuel cell manufacturing method including the step of removing the binder, preferably, the thermal decomposition start temperature or the burnout start temperature of the binder is lower than the temperature at which the glass softens. If comprised in this way, a binder can be easily removed before glass softens.
 上記バインダを取り除く工程を備える燃料電池の製造方法において、好ましくは、バインダを取り除く工程は、第1の温度に昇温前の絶縁部材からバインダを取り除くことにより、バインダを取り除く工程後の絶縁部材に含まれるセラミック粒子の重量%を、5重量%以上30重量%以下にする。ここで、セラミック粒子の重量%が少な過ぎると、発電ユニットを昇温させてガラスが軟化した場合に、ガラスの流動が大きくなり過ぎる。すなわち、絶縁部材が荷重に耐えることができずに絶縁部材が潰れてしまうので、セルのアノードの下方に配置される厚み調整部材も過度に潰れてしまう。また、セラミック粒子の重量%が多過ぎると、発電ユニットを昇温させてガラスを軟化させても、ガラスの流動が少ないので、クラックが生じるとともに、絶縁部材の厚みを調整しにくくなる。そこで、上記のように、絶縁部材に含まれるセラミック粒子の重量%を、5重量%以上30重量%以下にすることにより、ガラスの過度な流動が抑制されるので、絶縁部材が潰れることに起因する厚み調整部材の過度の潰れを抑制することができる。また、ガラスの流動が少な過ぎることに起因する、クラックの発生と、絶縁部材の厚みの調整が困難になることとを抑制することができる。 Preferably, in the method of manufacturing a fuel cell including the step of removing the binder, the step of removing the binder is performed on the insulating member after the step of removing the binder by removing the binder from the insulating member before raising the temperature to the first temperature. The weight percent of the ceramic particles contained is 5 wt% or more and 30 wt% or less. Here, when the weight percentage of the ceramic particles is too small, the flow of the glass becomes too large when the power generation unit is heated to soften the glass. That is, since the insulating member cannot withstand the load and the insulating member is crushed, the thickness adjusting member disposed below the anode of the cell is also crushed excessively. On the other hand, if the weight percentage of the ceramic particles is too large, even if the power generation unit is heated to soften the glass, the glass does not flow so much that cracks occur and it is difficult to adjust the thickness of the insulating member. Therefore, as described above, by setting the weight percent of the ceramic particles contained in the insulating member to 5 wt% or more and 30 wt% or less, excessive flow of the glass is suppressed, and therefore the insulating member is crushed. Excessive crushing of the thickness adjusting member to be performed can be suppressed. Moreover, generation | occurrence | production of a crack resulting from there being too little flow of glass, and the adjustment of the thickness of an insulating member can be suppressed.
 上記バインダを取り除く工程を備える燃料電池の製造方法において、好ましくは、絶縁部材の厚みを調整する工程とバインダを取り除く工程との間に設けられ、積層された複数の発電ユニットを昇温させながら、第1の荷重よりも小さい第2の荷重を、積層方向に隣接する複数の発電ユニットに、互いに近接する方向に加えることにより、絶縁部材の収縮を抑制する工程をさらに備える。このように構成すれば、絶縁部材の両側から第2の荷重が加えられるので、発電ユニットを昇温させることによるガラスの軟化に起因する、絶縁部材の変形を効果的に抑制することができる。 In the method of manufacturing a fuel cell including the step of removing the binder, preferably provided between the step of adjusting the thickness of the insulating member and the step of removing the binder, while heating the plurality of stacked power generation units, The method further includes a step of suppressing contraction of the insulating member by applying a second load smaller than the first load to a plurality of power generation units adjacent to each other in the stacking direction in a direction adjacent to each other. If comprised in this way, since a 2nd load is applied from the both sides of an insulating member, the deformation | transformation of an insulating member resulting from the softening of the glass by heating up a power generation unit can be suppressed effectively.
 この場合、好ましくは、絶縁部材の収縮を抑制する工程は、絶縁部材に含まれるガラスが軟化する前に、第2の荷重を複数の発電ユニットに加える工程を含む。このように構成すれば、ガラスが軟化する前に第2の荷重が加えられるので、発電ユニットを昇温させることによるガラスの軟化に起因する、絶縁部材の変形を確実に抑制することができる。 In this case, preferably, the step of suppressing the shrinkage of the insulating member includes a step of applying a second load to the plurality of power generation units before the glass contained in the insulating member softens. If comprised in this way, since a 2nd load is applied before glass softens, the deformation | transformation of an insulating member resulting from softening of glass by heating up an electric power generation unit can be suppressed reliably.
 上記バインダを取り除く工程を備える燃料電池の製造方法において、好ましくは、発電ユニットは、セルのアノード側に設けられる金属製の厚み調整部材をさらに含み、バインダを取り除く工程の後、第2の温度よりも高くかつ第1の温度よりも低い第3の温度に昇温するとともに、還元性ガスの雰囲気下に厚み調整部材を配置することにより、酸化した状態の厚み調整部材を還元することによって、厚み調整部材の硬さを小さくする工程をさらに備える。このように構成すれば、厚み調整部材の硬さが小さくなるので、第1の荷重を加えることにより、絶縁部材の厚みを調整する際に、厚み調整部材の厚みも調整することができる。すなわち、厚み調整部材を含む発電ユニットの厚みを調整することができる。 In the method of manufacturing a fuel cell including the step of removing the binder, preferably, the power generation unit further includes a metal thickness adjusting member provided on the anode side of the cell, and after the step of removing the binder, The thickness of the oxidized thickness adjusting member is reduced by placing the thickness adjusting member under an atmosphere of reducing gas while raising the temperature to a third temperature that is higher than the first temperature and lower than the first temperature. The method further includes a step of reducing the hardness of the adjustment member. If comprised in this way, since the hardness of a thickness adjustment member will become small, when adjusting the thickness of an insulating member by applying a 1st load, the thickness of a thickness adjustment member can also be adjusted. That is, the thickness of the power generation unit including the thickness adjusting member can be adjusted.
 上記第1の局面による燃料電池の製造方法において、好ましくは、昇温前の絶縁部材に含まれるセラミック粒子の粒径は、10μm以下である。このように構成すれば、セラミック粒子の粒径が大き過ぎることに起因して、絶縁部材の厚みの調整が困難になるのを抑制することができる。すなわち、厚みを小さくすることができなくなるのを抑制することができる。 In the fuel cell manufacturing method according to the first aspect, preferably, the particle size of the ceramic particles contained in the insulating member before the temperature rise is 10 μm or less. If comprised in this way, it can suppress that it becomes difficult to adjust the thickness of an insulating member resulting from the particle size of a ceramic particle being too large. That is, it becomes possible to prevent the thickness from being reduced.
 この発明の第2の局面による燃料電池は、積層された複数の発電ユニットを備え、発電ユニットは、一方の表面にアノードが形成され、他方の表面にカソードが形成されたセルと、セルの外側を取り囲むように設けられ、アノードに供給される燃料ガスと、カソードに供給される酸化剤とが混合するのを抑制する、セラミック粒子と非晶質であるガラスとを有する絶縁部材とを含む。 A fuel cell according to a second aspect of the present invention includes a plurality of stacked power generation units, and the power generation unit includes a cell having an anode formed on one surface and a cathode formed on the other surface, and an outer side of the cell. And an insulating member having ceramic particles and amorphous glass that suppresses mixing of the fuel gas supplied to the anode and the oxidant supplied to the cathode.
 この発明の第2の局面による燃料電池では、上記のように、発電ユニットは、セルの外側を取り囲むように設けられ、アノードに供給される燃料ガスと、カソードに供給される酸化剤とが混合するのを抑制する、セラミック粒子と非晶質であるガラスとを有する絶縁部材とを含む。これにより、絶縁部材がセラミック粒子と非晶質であるガラスとを有するように構成されているので、絶縁部材がマイカから構成されている場合と異なり、絶縁部材が劈開することがない。その結果、燃料電池のシャットダウン時に、燃料電池内の温度が低下することにより、燃料電池内の空気の体積が小さくなった場合でも、燃料電池の外部から絶縁部材を介して、空気が燃料電池内に侵入することはない。その結果、シャットダウン時に外部から侵入する空気に起因するセルの劣化を抑制することが可能な燃料電池を提供することができる。 In the fuel cell according to the second aspect of the present invention, as described above, the power generation unit is provided so as to surround the outside of the cell, and the fuel gas supplied to the anode and the oxidant supplied to the cathode are mixed. And an insulating member having ceramic particles and amorphous glass. Thereby, since the insulating member is configured to have ceramic particles and amorphous glass, the insulating member is not cleaved unlike the case where the insulating member is made of mica. As a result, even when the volume of the air in the fuel cell is reduced due to a decrease in the temperature in the fuel cell at the time of shutting down the fuel cell, the air passes through the insulating member from the outside of the fuel cell. Never invade. As a result, it is possible to provide a fuel cell capable of suppressing cell deterioration caused by air entering from the outside during shutdown.
 また、絶縁部材がセラミック粒子を有しているので、発電ユニットの厚みの確保、ガラスの過度な流動の抑制、および、クラックの修復を図ることができる。 Further, since the insulating member has ceramic particles, it is possible to secure the thickness of the power generation unit, suppress excessive flow of glass, and repair cracks.
 上記第2の局面による燃料電池において、好ましくは、絶縁部材は、5重量%以上30重量%以下のセラミック粒子を含む。このように構成すれば、ガラスの過度な流動が抑制されるので、絶縁部材が潰れることに起因する厚み調整部材の潰れを抑制することができる。また、ガラスの流動が少な過ぎることに起因する、クラックの発生と、絶縁部材の厚みの調整が困難になることとを抑制することができる。 In the fuel cell according to the second aspect, the insulating member preferably contains 5% by weight or more and 30% by weight or less of ceramic particles. If comprised in this way, since the excessive flow of glass is suppressed, the collapse of the thickness adjustment member resulting from a collapse of an insulating member can be suppressed. Moreover, generation | occurrence | production of a crack resulting from there being too little flow of glass, and the adjustment of the thickness of an insulating member can be suppressed.
 上記第2の局面による燃料電池において、好ましくは、発電ユニットは、セルのアノード側に設けられる金属製の厚み調整部材をさらに含む。このように構成すれば、容易に、セル間の導通を金属製の厚み調整部材により確保しながら、発電ユニットの厚みを調整することができる。 In the fuel cell according to the second aspect, the power generation unit preferably further includes a metal thickness adjusting member provided on the anode side of the cell. If comprised in this way, the thickness of an electric power generation unit can be adjusted easily, ensuring the conduction | electrical_connection between cells by metal thickness adjustment members.
 上記第2の局面による燃料電池において、好ましくは、積層された複数の発電ユニットの積層方向の一方の端部側に配置され、セルを積層方向の他方の端部側に向けて押圧する弾性部材をさらに備える。このように構成すれば、積層された複数の発電ユニットにそれぞれ含まれるセルとセパレータ(隣接する発電ユニットにそれぞれ含まれるセルの間に配置される部材)との接触不良が抑制されるので、セルとセパレータとの接触抵抗が大きくなるのを抑制することができる。 In the fuel cell according to the second aspect, preferably, the elastic member is disposed on one end side in the stacking direction of the plurality of stacked power generation units and presses the cell toward the other end side in the stacking direction. Is further provided. If comprised in this way, since the contact failure with the cell each contained in the laminated | stacked several electric power generation unit and a separator (The member arrange | positioned between each cell contained in an adjacent electric power generation unit) is suppressed, a cell And the contact resistance between the separator and the separator can be prevented from increasing.
 上記第2の局面による燃料電池において、好ましくは、絶縁部材は、セルの外側を取り囲むように枠形状を有する。このように構成すれば、容易に、セルの外側を取り囲むように絶縁部材を配置することができる。 In the fuel cell according to the second aspect, the insulating member preferably has a frame shape so as to surround the outside of the cell. If comprised in this way, an insulating member can be easily arrange | positioned so that the outer side of a cell may be surrounded.
 本発明によれば、上記のように、燃料電池のシャットダウン時に外部から侵入する空気に起因するセルの劣化を抑制することができる。 According to the present invention, as described above, it is possible to suppress cell deterioration caused by air entering from the outside when the fuel cell is shut down.
本発明の一実施形態による燃料電池の分解斜視図である。1 is an exploded perspective view of a fuel cell according to an embodiment of the present invention. 本発明の一実施形態による発電ユニットの分解斜視図である。It is a disassembled perspective view of the electric power generation unit by one Embodiment of this invention. 本発明の一実施形態によるセパレータの分解斜視図である。It is a disassembled perspective view of the separator by one Embodiment of this invention. 本発明の一実施形態による燃料電池の模式的な断面図である。It is typical sectional drawing of the fuel cell by one Embodiment of this invention. 本発明の一実施形態による絶縁部材の模式的な断面図である。It is a typical sectional view of an insulating member by one embodiment of the present invention. 本発明の一実施形態による昇温前の絶縁部材の模式的な断面図である。It is typical sectional drawing of the insulating member before temperature rising by one Embodiment of this invention. 本発明の一実施形態による燃料電池(セルスタック)の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the fuel cell (cell stack) by one Embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [本実施形態]
 (燃料電池の構成)
 図1~図5を参照して、本実施形態による燃料電池100の構成について説明する。なお、燃料電池100は、固体酸化物形燃料電池(SOFC)である。また、燃料電池100は、発電ユニット10を複数積層することにより構成されている。なお、発電ユニット10は、燃料ガスと酸化剤(空気)とが対向するように流れる(カウンタフロー)ように構成されている。
[This embodiment]
(Configuration of fuel cell)
The configuration of the fuel cell 100 according to the present embodiment will be described with reference to FIGS. The fuel cell 100 is a solid oxide fuel cell (SOFC). The fuel cell 100 is configured by stacking a plurality of power generation units 10. The power generation unit 10 is configured to flow so that the fuel gas and the oxidant (air) face each other (counter flow).
 図2に示すように、発電ユニット10では、下方側(Z2方向側)から、セパレータ20と、絶縁部材30と、金属多孔体である発泡ニッケル40と、セル50と、セル押さえ60とが、この順で積層されている。なお、発泡ニッケル40は、特許請求の範囲の「厚み調整部材」の一例である。 As shown in FIG. 2, in the power generation unit 10, from the lower side (Z2 direction side), the separator 20, the insulating member 30, the foamed nickel 40 that is a metal porous body, the cell 50, and the cell presser 60 are They are stacked in this order. The nickel foam 40 is an example of the “thickness adjusting member” in the claims.
 図3に示すように、セパレータ20では、下方側(Z2方向側)から、集電プレート21と、カソードプレート22と、セパレータ本体23と、アノードプレート24と、セルホルダ25とが、この順で積層されている。 As shown in FIG. 3, in the separator 20, the current collecting plate 21, the cathode plate 22, the separator body 23, the anode plate 24, and the cell holder 25 are stacked in this order from the lower side (Z2 direction side). Has been.
 集電プレート21は、セル50のカソード53に接触する(図4参照)ように構成されている。また、集電プレート21には、燃料ガスが流通する孔部21aと、酸化剤が流通する孔部21bおよび孔部21cとが設けられている。また、集電プレート21には、酸化剤をカソード53に導くための複数の孔部21dが設けられている。 The current collecting plate 21 is configured to be in contact with the cathode 53 of the cell 50 (see FIG. 4). The current collecting plate 21 is provided with a hole 21a through which fuel gas flows, and a hole 21b and hole 21c through which an oxidant flows. The current collecting plate 21 is provided with a plurality of holes 21 d for guiding the oxidant to the cathode 53.
 カソードプレート22には、燃料ガスが流通する孔部22aと、酸化剤が流通する孔部22bおよび孔部22cとが設けられている。また、カソードプレート22には、X方向に沿って、酸化剤の流路22dが設けられている。具体的には、酸化剤は、流路22dの下面側(Z2方向側)を流通する。 The cathode plate 22 is provided with a hole 22a through which the fuel gas flows, and a hole 22b and a hole 22c through which the oxidant flows. The cathode plate 22 is provided with an oxidant flow path 22d along the X direction. Specifically, the oxidant flows on the lower surface side (Z2 direction side) of the flow path 22d.
 また、セパレータ本体23には、燃料ガスが流通する孔部23aと、酸化剤が流通する孔部23bおよび孔部23cとが設けられている。また、セパレータ本体23の表面は、平坦面状に形成されている。 Further, the separator body 23 is provided with a hole 23a through which the fuel gas flows, and a hole 23b and a hole 23c through which the oxidant flows. Further, the surface of the separator body 23 is formed into a flat surface.
 また、アノードプレート24には、燃料ガスが流通する孔部24a(および孔部24d)と、酸化剤が流通する孔部24bおよび孔部24cとが設けられている。また、アノードプレート24には、X方向に沿って、燃料ガスの流路24eが設けられている。燃料ガスは、流路24eの上面側を流通する。なお、集電プレート21、カソードプレート22、セパレータ本体23およびアノードプレート24は、導電性の部材により形成されている。これにより、セパレータ20の上面側に配置されるセル50と、下面側に配置されるセル50とが導通する。すなわち、セパレータ20の上面側に配置されるセル50と、下面側に配置されるセル50とが電気的に接続される。 Further, the anode plate 24 is provided with a hole 24a (and a hole 24d) through which fuel gas flows, and a hole 24b and a hole 24c through which oxidant flows. The anode plate 24 is provided with a fuel gas flow path 24e along the X direction. The fuel gas flows through the upper surface side of the flow path 24e. The current collecting plate 21, the cathode plate 22, the separator body 23, and the anode plate 24 are formed of conductive members. Thereby, the cell 50 arrange | positioned at the upper surface side of the separator 20 and the cell 50 arrange | positioned at the lower surface side conduct | electrically_connect. That is, the cell 50 disposed on the upper surface side of the separator 20 and the cell 50 disposed on the lower surface side are electrically connected.
 また、セルホルダ25には、燃料ガスが流通する孔部25aと、酸化剤が流通する孔部25bおよび孔部25cとが設けられている。また、セルホルダ25の中央部には、開口部25dが設けられている。 The cell holder 25 is provided with a hole 25a through which fuel gas flows, and a hole 25b and hole 25c through which an oxidant flows. In addition, an opening 25d is provided at the center of the cell holder 25.
 また、絶縁部材30には、燃料ガスが流通する孔部30eと、酸化剤が流通する孔部30bおよび孔部30cとが設けられている。また、本実施形態では、絶縁部材30は、セル50の外側を取り囲むように(図4参照)、枠形状を有する。そして、絶縁部材30の中央部には、開口部30dが設けられている。絶縁部材30は、孔部30e(開口部30d)を流通してアノード51に供給される燃料ガスと、孔部30bおよび孔部30cを流通してカソード53に供給される酸化剤とが混合するのを抑制するように構成されている。また、絶縁部材30は、積層方向に隣接するセル50間を絶縁するように構成されている。 Further, the insulating member 30 is provided with a hole 30e through which the fuel gas flows, and a hole 30b and a hole 30c through which the oxidant flows. In the present embodiment, the insulating member 30 has a frame shape so as to surround the outside of the cell 50 (see FIG. 4). An opening 30 d is provided at the center of the insulating member 30. The insulating member 30 mixes the fuel gas supplied to the anode 51 through the hole 30e (opening 30d) and the oxidant supplied to the cathode 53 through the holes 30b and 30c. It is comprised so that this may be suppressed. The insulating member 30 is configured to insulate between the cells 50 adjacent in the stacking direction.
 また、図4に示すように、本実施形態では、発泡ニッケル40は、セル50のアノード51側(Z2方向側)に設けられている。また、発泡ニッケル40は、略矩形形状を有し、セル50の後述するアノード51および固体電界質層52と略同じ大きさ(面積)を有する。 Further, as shown in FIG. 4, in the present embodiment, the foamed nickel 40 is provided on the anode 51 side (Z2 direction side) of the cell 50. In addition, the foamed nickel 40 has a substantially rectangular shape, and has substantially the same size (area) as an anode 51 and a solid electrolyte layer 52 described later of the cell 50.
 図4に示すように、セル50は、アノード51、固体電界質層52、カソード53を含む。なお、セル50は、Z1方向側の面にカソード53が形成され、カソード53が形成される面とは反対側の面(Z2方向側の面)にアノード51が形成されている。また、アノード51は、固体電界質層52のZ2方向側表面の略全面上に設けられている。カソード53は、固体電界質層52のZ1方向側の表面の一部上に設けられている。 As shown in FIG. 4, the cell 50 includes an anode 51, a solid electrolyte layer 52, and a cathode 53. In the cell 50, the cathode 53 is formed on the surface on the Z1 direction side, and the anode 51 is formed on the surface opposite to the surface on which the cathode 53 is formed (surface on the Z2 direction side). The anode 51 is provided on substantially the entire surface of the solid electrolyte layer 52 on the Z2 direction side. The cathode 53 is provided on a part of the surface of the solid electrolyte layer 52 on the Z1 direction side.
 また、図3に示すように、セル押さえ60には、燃料ガスが流通する孔部60aと、酸化剤が流通する孔部60bおよび孔部60cとが設けられている。また、セル押さえ60の中央部には、開口部60dが設けられている。 As shown in FIG. 3, the cell retainer 60 is provided with a hole 60a through which the fuel gas flows, and a hole 60b and a hole 60c through which the oxidant flows. In addition, an opening 60d is provided at the center of the cell presser 60.
 そして、図4に示すように、セルホルダ25の開口部25d、および、絶縁部材30の開口部30d内にセル50が配置されている。また、セル押さえ60は、絶縁部材30と固体電界質層52とに跨るように配置されている。これにより、カソード53は、セル押さえ60の開口部60dから露出している。そして、カソード53は、上方側の集電プレート21に電気的に接続されている。 And as shown in FIG. 4, the cell 50 is arrange | positioned in the opening part 25d of the cell holder 25, and the opening part 30d of the insulating member 30. As shown in FIG. The cell retainer 60 is disposed so as to straddle the insulating member 30 and the solid electrolyte layer 52. As a result, the cathode 53 is exposed from the opening 60 d of the cell presser 60. The cathode 53 is electrically connected to the upper current collecting plate 21.
 また、図2に示すように、最も上方に配置される発電ユニット10の上面上には、トッププレートを含む一方アノードプレートは含まないセパレータ20aが設けられている。また、最も下方に配置される発電ユニット10の下面上には、ボトムプレートを含む一方カソードプレートは含まないセパレータ20bが設けられている。 Further, as shown in FIG. 2, a separator 20a including a top plate but not including an anode plate is provided on the upper surface of the power generation unit 10 disposed at the uppermost position. A separator 20b that includes a bottom plate but does not include a cathode plate is provided on the lower surface of the power generation unit 10 that is disposed at the lowermost position.
 図3に示すように、セル50のアノード51に供給される燃料ガスは、セパレータ本体23のX1方向側の孔部23aから、アノードプレート24の孔部24dを介して、アノードプレート24の上面側(Z1方向側面側)に流入する。また、反応後の燃料ガスは、アノードプレート24のX2方向側の孔部24aを介して流出する。また、セル50のカソード53に供給される酸化剤(空気)は、カソードプレート22のX2方向側の孔部22bから、集電プレート21の上面側(カソードプレート22の下面側)に流入する。また、反応後の酸化剤は、集電プレート21のX1方向側の孔部21cを介して流出する。 As shown in FIG. 3, the fuel gas supplied to the anode 51 of the cell 50 flows from the hole 23 a on the X1 direction side of the separator body 23 to the upper surface side of the anode plate 24 through the hole 24 d of the anode plate 24. It flows into (Z1 direction side surface side). The reacted fuel gas flows out through the hole 24a on the X2 direction side of the anode plate 24. Further, the oxidant (air) supplied to the cathode 53 of the cell 50 flows into the upper surface side (the lower surface side of the cathode plate 22) of the current collecting plate 21 from the hole 22 b on the X2 direction side of the cathode plate 22. Further, the oxidant after the reaction flows out through the hole 21c on the X1 direction side of the current collecting plate 21.
 また、図1に示すように、積層された複数の発電ユニット10により、セルスタック70が構成されている。また、燃料電池100では、セルスタック70が、複数積層されている。そして、本実施形態では、セルスタック70(積層された複数の発電ユニット10)の積層方向の一方の端部側に配置され、セル50を積層方向の他方の端部側に押圧する弾性部材80が設けられている。具体的には、弾性部材80は、平面視において、発電ユニット10のセル50に重なるように、積層されるセルスタック70(複数の発電ユニット10)の間に配置されている。また、弾性部材80は、平面視において、略矩形形状を有する。また、弾性部材80は、セラミックファイバーマットを含む。なお、弾性部材80は、後述する燃料電池100(セルスタック70)の製造時ではなく、セルスタック70が完成した後、燃料電池100が実際に使用される際に、セル50を押圧する。 Further, as shown in FIG. 1, a cell stack 70 is constituted by a plurality of stacked power generation units 10. In the fuel cell 100, a plurality of cell stacks 70 are stacked. In this embodiment, the elastic member 80 is arranged on one end side in the stacking direction of the cell stack 70 (the plurality of stacked power generation units 10) and presses the cell 50 toward the other end side in the stacking direction. Is provided. Specifically, the elastic member 80 is disposed between the stacked cell stacks 70 (the plurality of power generation units 10) so as to overlap the cells 50 of the power generation unit 10 in plan view. The elastic member 80 has a substantially rectangular shape in plan view. The elastic member 80 includes a ceramic fiber mat. The elastic member 80 presses the cell 50 when the fuel cell 100 is actually used after the cell stack 70 is completed, not when the fuel cell 100 (cell stack 70) described later is manufactured.
 また、平面視において、セル50の外周側に弾性部材80と重ならないように、積層されるセルスタック70(複数の発電ユニット10)の間に配置され、弾性部材80よりも硬い部材からなる中間プレート81が設けられている。また、中間プレート81は、弾性部材80よりも硬い金属製(たとえば、SUS:Stainless steel)である。中間プレート81は、額縁形状を有しており、弾性部材80は、額縁形状の中間プレート81の開口部81a内に配置されている。 Further, in a plan view, the intermediate member is disposed between the stacked cell stacks 70 (the plurality of power generation units 10) so as not to overlap the elastic member 80 on the outer peripheral side of the cell 50, and is an intermediate member that is harder than the elastic member 80. A plate 81 is provided. The intermediate plate 81 is made of metal harder than the elastic member 80 (for example, SUS: tainless steel). The intermediate plate 81 has a frame shape, and the elastic member 80 is disposed in the opening 81 a of the frame-shaped intermediate plate 81.
 また、中間プレート81と、下方に配置されるセルスタック70との間には、絶縁性の中間絶縁プレート82が設けられている。中間絶縁プレート82は、たとえば、結晶化ガラスからなる。なお、結晶化ガラスとは、ガラスを再加熱して、結晶を析出させることにより形成されたガラスである。中間絶縁プレート82は、額縁形状を有しており、弾性部材80は、額縁形状の中間絶縁プレート82の開口部82a内に配置されている。すなわち、中間プレート81の開口部81aと、中間絶縁プレート82の開口部82aとは連通するように設けられており、弾性部材80は、開口部81aと開口部82aとに跨るように配置されている。 Further, an insulating intermediate insulating plate 82 is provided between the intermediate plate 81 and the cell stack 70 disposed below. The intermediate insulating plate 82 is made of crystallized glass, for example. Crystallized glass is glass formed by reheating glass to precipitate crystals. The intermediate insulating plate 82 has a frame shape, and the elastic member 80 is disposed in the opening 82 a of the frame-shaped intermediate insulating plate 82. That is, the opening 81a of the intermediate plate 81 and the opening 82a of the intermediate insulating plate 82 are provided so as to communicate with each other, and the elastic member 80 is disposed so as to straddle the opening 81a and the opening 82a. Yes.
 また、弾性部材80、中間プレート81および中間絶縁プレート82の組は、複数の箇所(セルスタック70の間)に配置されている。また、最上段のセルスタック70の上面上と、弾性部材80、中間プレート81および中間絶縁プレート82の組との間には、エンドプレート83が設けられている。また、最上段の弾性部材80、中間プレート81および中間絶縁プレート82の組の上面上に、絶縁部材84が設けられている。絶縁部材84は、たとえば、マイカにより構成されている。 Further, the set of the elastic member 80, the intermediate plate 81, and the intermediate insulating plate 82 is disposed at a plurality of locations (between the cell stacks 70). An end plate 83 is provided between the upper surface of the uppermost cell stack 70 and the set of the elastic member 80, the intermediate plate 81, and the intermediate insulating plate 82. An insulating member 84 is provided on the upper surface of the set of the uppermost elastic member 80, the intermediate plate 81 and the intermediate insulating plate 82. The insulating member 84 is made of mica, for example.
 また、絶縁部材84の上面上に押圧プレート90が設けられている。また、押圧プレート90は、弾性部材80よりも硬い金属製(たとえば、SUS:Stainless steel)である。 Further, a pressing plate 90 is provided on the upper surface of the insulating member 84. Further, the pressing plate 90 is made of metal harder than the elastic member 80 (for example, SUS: Stainless steel).
 また、押圧プレート90の上面上に、押圧プレート90を加圧する加圧部材91が設けられている。具体的には、加圧部材91は、セラミックから形成されている複数(本実施形態では5個)のばね部材91aからなる。そして、4個のばね部材91aにより、略矩形形状の押圧プレート90の4隅が加圧され、1個のばね部材91aにより、略矩形形状の押圧プレート90の中央部が加圧されている。また、押圧プレート90には、ばね部材91aが配置される凹部90aが設けられている。 Further, a pressure member 91 for pressing the pressure plate 90 is provided on the upper surface of the pressure plate 90. Specifically, the pressurizing member 91 is composed of a plurality (five in this embodiment) of spring members 91a made of ceramic. The four corners of the substantially rectangular pressing plate 90 are pressed by the four spring members 91a, and the central portion of the approximately rectangular pressing plate 90 is pressed by the one spring member 91a. The pressing plate 90 is provided with a recess 90a in which the spring member 91a is disposed.
 また、加圧部材91の上方(Z1方向側)には、加圧部材91(ばね部材91a)を押圧するばね押圧プレート92が配置されている。ばね押圧プレート92には、複数の棒状部材93が挿入される複数の貫通孔92aが設けられている。棒状部材93の下方端は、図示しない剛体プレートなどに固定されるように構成されている。そして、複数の棒状部材93が、ばね押圧プレート92の貫通孔92aに挿入され、下方端が固定されるとともに、上方端にナット94が締結されることにより、ばね押圧プレート92が下方に押圧される。これにより、ばね部材91aが押圧されて、押圧プレート90および弾性部材80を介して、セル50が押圧される。 Further, a spring pressing plate 92 that presses the pressing member 91 (spring member 91a) is disposed above the pressing member 91 (Z1 direction side). The spring pressing plate 92 is provided with a plurality of through holes 92a into which a plurality of rod-shaped members 93 are inserted. The lower end of the rod-shaped member 93 is configured to be fixed to a rigid plate (not shown) or the like. A plurality of rod-like members 93 are inserted into the through holes 92a of the spring pressing plate 92, the lower end is fixed, and the nut 94 is fastened to the upper end, whereby the spring pressing plate 92 is pressed downward. The As a result, the spring member 91 a is pressed, and the cell 50 is pressed via the pressing plate 90 and the elastic member 80.
 また、最も下方に位置するセルスタック70の下方には、たとえば、結晶化ガラスからなる絶縁部材95が配置されている。絶縁部材95は、たとえば結晶化ガラスから構成されている。 Further, an insulating member 95 made of, for example, crystallized glass is disposed below the cell stack 70 located at the lowest position. The insulating member 95 is made of crystallized glass, for example.
 (絶縁部材の詳細な構造)
 次に、絶縁部材30の詳細な構造について説明する。
(Detailed structure of insulation member)
Next, the detailed structure of the insulating member 30 will be described.
 本実施形態では、図5に示すように、絶縁部材30は、セラミック粒子32と非晶質であるガラス33とを有する。具体的には、絶縁部材30は、5重量%以上30重量%以下のセラミック粒子32を含んでいる。また、セラミック粒子32は、たとえば、ジルコニア(二酸化ジルコニウム:ZnO)からなる。なお、図5では、セラミック粒子32の大きさが強調されて、実際よりも大きく記載されている。 In the present embodiment, as shown in FIG. 5, the insulating member 30 includes ceramic particles 32 and amorphous glass 33. Specifically, the insulating member 30 includes 5 wt% or more and 30 wt% or less of ceramic particles 32. The ceramic particles 32 are made of, for example, zirconia (zirconium dioxide: ZnO 2 ). In FIG. 5, the size of the ceramic particles 32 is emphasized and is larger than the actual size.
 (燃料電池の製造方法)
 次に、図1、図2および、図5~図7を参照して、燃料電池100(セルスタック70)の製造方法について説明する。なお、図7では、セラミック粒子32およびバインダ34の大きさが強調されて、実際よりも大きく記載されている。
(Fuel cell manufacturing method)
Next, a method for manufacturing the fuel cell 100 (cell stack 70) will be described with reference to FIGS. 1, 2, and 5 to 7. FIG. In FIG. 7, the sizes of the ceramic particles 32 and the binder 34 are emphasized and shown larger than the actual size.
 まず、図1に示すように、発電ユニット10が、複数積層されることにより、セルスタック70が構成される。図2に示すように、発電ユニット10は、セパレータ20と、絶縁部材30と、発泡ニッケル40と、セル50と、セル押さえ60とが、この順で積層されている。また、絶縁部材30は、セラミック粒子32と非晶質であるガラス33とを有する。 First, as shown in FIG. 1, a cell stack 70 is configured by stacking a plurality of power generation units 10. As shown in FIG. 2, in the power generation unit 10, the separator 20, the insulating member 30, the foamed nickel 40, the cell 50, and the cell presser 60 are stacked in this order. The insulating member 30 includes ceramic particles 32 and amorphous glass 33.
 具体的には、図6に示すように、絶縁部材30(昇温前の絶縁部材30a)には、セラミック粒子32、ガラス33およびバインダ34が含まれている。ここで、本実施形態では、昇温前の絶縁部材30aに含まれるセラミック粒子32の粒径pは、10μm以下である。また、バインダ34は、たとえば、アクリル共重合体からなる。 Specifically, as shown in FIG. 6, the insulating member 30 (insulating member 30a before the temperature rise) includes ceramic particles 32, glass 33, and a binder 34. Here, in the present embodiment, the particle size p of the ceramic particles 32 included in the insulating member 30a before the temperature rise is 10 μm or less. The binder 34 is made of, for example, an acrylic copolymer.
 次に、図7に示すように、時刻t0~時刻t1の間において、セルスタック70(複数積層された発電ユニット10)が昇温(加熱)される。セルスタック70は、空気雰囲気下において昇温される。なお、時刻t0から、後述する時刻t4まで、空気雰囲気下においてセルスタック70が昇温される。 Next, as shown in FIG. 7, the cell stack 70 (a plurality of stacked power generation units 10) is heated (heated) between time t0 and time t1. The cell stack 70 is heated in an air atmosphere. The cell stack 70 is heated in the air atmosphere from time t0 to time t4 described later.
 そして、本実施形態では、積層された複数の発電ユニット10(セルスタック70)を後述する温度T4に昇温するのに先立って、温度T4よりも低い温度T1に昇温するとともに、温度T4に昇温前の絶縁部材30aのうちのバインダ34を取り除く。具体的には、時刻t1において、セルスタック70は、温度T1に昇温される。そして、時刻t1~時刻t2の間において、セルスタック70の温度は、T1に維持される。これにより、絶縁部材30aに含まれるバインダ34が取り除かれる。なお、温度T4は、特許請求の範囲の「第1の温度」の一例である。また、温度T1は、特許請求の範囲の「第2の温度」の一例である。 In the present embodiment, prior to raising the temperature of the stacked power generation units 10 (cell stack 70) to a temperature T4 described later, the temperature is raised to a temperature T1 lower than the temperature T4, and the temperature T4 is increased. The binder 34 in the insulating member 30a before the temperature rise is removed. Specifically, at time t1, the cell stack 70 is heated to the temperature T1. The temperature of the cell stack 70 is maintained at T1 between time t1 and time t2. Thereby, the binder 34 contained in the insulating member 30a is removed. The temperature T4 is an example of the “first temperature” in the claims. The temperature T1 is an example of the “second temperature” in the claims.
 また、本実施形態では、ガラス33が軟化する温度T2よりも低い温度T1を維持することにより、昇温前の絶縁部材30aに含まれるバインダ34が取り除かれる。具体的には、バインダ34が熱分解されることにより、絶縁部材30aから取り除かれる。また、バインダ34の熱分解開始温度または焼失開始温度温は、ガラス33が軟化する温度T2よりも低い。これにより、時刻t2では、ガラス33は軟化していない。 In this embodiment, the binder 34 contained in the insulating member 30a before the temperature rise is removed by maintaining the temperature T1 lower than the temperature T2 at which the glass 33 softens. Specifically, the binder 34 is thermally decomposed and removed from the insulating member 30a. Further, the thermal decomposition start temperature or burnout start temperature of the binder 34 is lower than the temperature T2 at which the glass 33 is softened. Thereby, the glass 33 is not softened at the time t2.
 また、本実施形態では、温度T4に昇温前の絶縁部材30aからバインダ34を取り除くことにより、バインダ34を取り除く工程後の絶縁部材30に含まれるセラミック粒子32の重量%を、5重量%以上30重量%以下にする。すなわち、バインダ34が取り除かれた後の絶縁部材30の重量(セラミック粒子32の重量+ガラス33の重量)に対するセラミック粒子32の重量が、5%以上30%以下となる。 In the present embodiment, the binder 34 is removed from the insulating member 30a before the temperature is raised to the temperature T4, so that the weight% of the ceramic particles 32 contained in the insulating member 30 after the step of removing the binder 34 is 5% by weight or more. 30% by weight or less. That is, the weight of the ceramic particles 32 with respect to the weight of the insulating member 30 after the binder 34 is removed (the weight of the ceramic particles 32 + the weight of the glass 33) is 5% or more and 30% or less.
 次に、本実施形態では、後述する絶縁部材30の厚みtを調整する工程とバインダ34を取り除く工程との間に、積層された複数の発電ユニット10を昇温させながら、後述する荷重F2よりも小さい荷重F1を、積層方向に隣接する複数の発電ユニット10に、互いに近接する方向に加える。これにより、絶縁部材30の収縮が抑制される。具体的には、時刻t2において、複数の発電ユニット10が温度T1より昇温される。そして、時刻t2において、複数の発電ユニット10に、荷重F1が加えられる。なお、荷重F1が加えられた状態は、時刻t2から後述する時刻t5まで維持される。なお、荷重F2および荷重F1は、それぞれ、特許請求の範囲の「第1の荷重」および「第2の荷重」の一例である。 Next, in the present embodiment, a load F2 (to be described later) is used while increasing the temperature of the plurality of stacked power generation units 10 between the step of adjusting the thickness t of the insulating member 30 to be described later and the step of removing the binder 34. Is applied to the plurality of power generation units 10 adjacent to each other in the stacking direction. Thereby, contraction of the insulating member 30 is suppressed. Specifically, at time t2, the plurality of power generation units 10 are heated from the temperature T1. At time t2, a load F1 is applied to the plurality of power generation units 10. The state where the load F1 is applied is maintained from time t2 to time t5 described later. The load F2 and the load F1 are examples of the “first load” and the “second load” in the claims, respectively.
 時刻t2から昇温された複数の発電ユニット10の温度は、時刻t3において、ガラス33が軟化する温度T2に達する。これにより、時刻t3において、絶縁部材30に含まれるガラス33が軟化し始める。ここで、ガラス33が軟化することにより、ガラス33が流動して、絶縁部材30が変形する。そこで、本実施形態では、絶縁部材30に含まれるガラス33が軟化する前(時刻t2)に、荷重F1を複数の発電ユニット10に加えることにより、絶縁部材30の変形が抑制される。 The temperature of the plurality of power generation units 10 heated from time t2 reaches the temperature T2 at which the glass 33 softens at time t3. Thereby, the glass 33 contained in the insulating member 30 begins to soften at the time t3. Here, when the glass 33 is softened, the glass 33 flows and the insulating member 30 is deformed. Therefore, in the present embodiment, the deformation of the insulating member 30 is suppressed by applying the load F1 to the plurality of power generation units 10 before the glass 33 included in the insulating member 30 is softened (time t2).
 次に、本実施形態では、バインダ34を取り除く工程の後、複数の発電ユニット10(セルスタック70)が、温度T1よりも高くかつ後述する温度T4よりも低い温度T3に昇温されるとともに、還元性ガス(Hガス、流量M1)の雰囲気下に配置される。これにより、発泡ニッケル40が還元性ガス(Hガス)の雰囲気下に配置されることにより、酸化した状態の発泡ニッケル40が還元される。そして、発泡ニッケル40の硬さを小さくなる。なお、温度T3は、特許請求の範囲の「第3の温度」の一例である。 Next, in the present embodiment, after the step of removing the binder 34, the plurality of power generation units 10 (cell stacks 70) are heated to a temperature T3 that is higher than the temperature T1 and lower than a temperature T4 that will be described later. reducing gas (H 2 gas flow rate M1) is placed under an atmosphere of. Thus, the foamed nickel 40 is placed in an atmosphere of a reducing gas (H 2 gas), whereby the foamed nickel 40 in an oxidized state is reduced. And the hardness of the foaming nickel 40 becomes small. The temperature T3 is an example of the “third temperature” in the claims.
 具体的には、時刻t4において、発電ユニット10(セルスタック70)の温度がT3となり、時刻t5まで、温度T3の状態が維持される。そして、時刻t3において、Nで雰囲気を置換するとともに、発電ユニット10が還元性ガス(Hガス)の雰囲気下に配置される。ここで、還元性ガス(Hガス)の雰囲気下に配置される前の発泡ニッケル40は酸化しており、還元性ガス(Hガス)により、発泡ニッケル40に含まれる酸化した状態のニッケルが、金属のニッケルに還元される。これにより、発泡ニッケル40の硬さが小さくなる。 Specifically, at time t4, the temperature of the power generation unit 10 (cell stack 70) reaches T3, and the state of temperature T3 is maintained until time t5. At time t3, the atmosphere is replaced with N 2 , and the power generation unit 10 is placed in an atmosphere of reducing gas (H 2 gas). Here, the foamed nickel 40 before being placed in the reducing gas (H 2 gas) atmosphere is oxidized, and the nickel in the oxidized state contained in the foamed nickel 40 by the reducing gas (H 2 gas). Is reduced to metallic nickel. Thereby, the hardness of the foamed nickel 40 becomes small.
 次に、本実施形態では、積層された複数の発電ユニット10を昇温するとともに、積層方向に隣接する複数の発電ユニット10に、互いに近接する方向に荷重F2を加えることにより、絶縁部材30の厚みtを調整する。具体的には、時刻t5では、複数の発電ユニット10の温度は、T3である。また、時刻t5において、還元性ガス(Hガス)の流量がM1からM2に減少される。そして、時刻t5から、複数の発電ユニット10(セルスタック70)に、荷重F2が加えられる。そして、荷重F2が加えられた状態で、複数の発電ユニット10が昇温され、時刻t6において、複数の発電ユニット10の温度が、T4となる。その後、時刻t7まで、荷重F2が加えられた状態で、複数の発電ユニット10の温度がT4に維持される。温度T4は、ガラス33が軟化する温度T2よりも大きいため、荷重F2が加えられ始めた時刻である時刻t5から、時刻t7までは、ガラス33は軟化したままの状態である。これにより、絶縁部材30の厚みtが調整可能になる。 Next, in the present embodiment, the temperature of the plurality of stacked power generation units 10 is increased, and a load F2 is applied to the plurality of power generation units 10 adjacent to each other in the stacking direction so as to approach each other. The thickness t is adjusted. Specifically, at time t5, the temperatures of the plurality of power generation units 10 are T3. At time t5, the flow rate of the reducing gas (H 2 gas) is decreased from M1 to M2. Then, a load F2 is applied to the plurality of power generation units 10 (cell stack 70) from time t5. Then, with the load F2 applied, the plurality of power generation units 10 are heated, and at time t6, the temperatures of the plurality of power generation units 10 become T4. Thereafter, the temperature of the plurality of power generation units 10 is maintained at T4 with the load F2 applied until time t7. Since the temperature T4 is higher than the temperature T2 at which the glass 33 is softened, the glass 33 remains in a softened state from time t5, which is the time when the load F2 starts to be applied, to time t7. Thereby, the thickness t of the insulating member 30 can be adjusted.
 具体的には、絶縁部材30の厚みtが、図7の厚みt1の状態から、図5の厚みt2の状態に小さくされる。なお、発泡ニッケル40が還元されることにより、硬さが小さくされているため、荷重F2により、発泡ニッケル40の厚みも調整される。すなわち、荷重F2により、複数の発電ユニット10の全体の厚みが調整される。つまり、各々の発電ユニット10の厚みが調整される。 Specifically, the thickness t of the insulating member 30 is reduced from the thickness t1 in FIG. 7 to the thickness t2 in FIG. In addition, since the hardness is reduced by reducing the foamed nickel 40, the thickness of the foamed nickel 40 is also adjusted by the load F2. That is, the entire thickness of the plurality of power generation units 10 is adjusted by the load F2. That is, the thickness of each power generation unit 10 is adjusted.
 そして、時刻t7以降、複数の発電ユニット10が降温される。具体的には、複数の発電ユニット10の温度は、時刻t7から時刻t8の間で、段階的に降温される。これにより、複数の発電ユニット10(セルスタック70)が完成する。 And after time t7, the plurality of power generation units 10 are cooled. Specifically, the temperatures of the plurality of power generation units 10 are decreased stepwise from time t7 to time t8. Thereby, the several electric power generation unit 10 (cell stack 70) is completed.
 (本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
(Effect of this embodiment)
In the present embodiment, the following effects can be obtained.
 本実施形態では、上記のように、セル50の外側を取り囲むように設けられ、アノード51に供給される燃料ガスと、カソード53に供給される酸化剤とが混合するのを抑制する、セラミック粒子32と非晶質であるガラス33とを有する絶縁部材30とを含む発電ユニット10を、複数積層する工程を備える。これにより、絶縁部材30がセラミック粒子32と非晶質であるガラス33とを有するように構成されているので、絶縁部材30がマイカから構成されている場合と異なり、絶縁部材30が劈開することがない。その結果、燃料電池100のシャットダウン時に、燃料電池100内の温度が低下することにより、燃料電池100内の空気の体積が小さくなった場合でも、燃料電池100の外部から絶縁部材30を介して、空気が燃料電池100内に侵入することはない。その結果、シャットダウン時に外部から侵入する空気に起因するセル50の劣化を抑制することができる。 In the present embodiment, as described above, the ceramic particles are provided so as to surround the outside of the cell 50 and suppress mixing of the fuel gas supplied to the anode 51 and the oxidant supplied to the cathode 53. A step of laminating a plurality of power generation units 10 each including the insulating member 30 having 32 and amorphous glass 33. Thereby, since the insulating member 30 is configured to have the ceramic particles 32 and the amorphous glass 33, the insulating member 30 is cleaved unlike the case where the insulating member 30 is made of mica. There is no. As a result, even when the volume of air in the fuel cell 100 is reduced due to a decrease in the temperature in the fuel cell 100 when the fuel cell 100 is shut down, the insulating member 30 is passed through the insulating member 30 from the outside of the fuel cell 100. Air does not enter the fuel cell 100. As a result, it is possible to suppress the deterioration of the cell 50 due to air entering from the outside during shutdown.
 また、絶縁部材30がセラミック粒子32を有しているので、絶縁部材30の厚みtが、所定の厚みよりも小さくなることが抑制される。これにより、絶縁部材30の厚みtが小さくなることに起因して絶縁性が確保できなくなるのを抑制することができるとともに、発電ユニット10の厚みが小さくなり過ぎないように厚みを確保することができる。また、発電ユニット10を昇温させることにより、ガラス33が軟化した場合でも、ガラス33の過度な流動をセラミック粒子32により抑制することができる。また、絶縁部材30が非晶質であるガラス33を有しているので、絶縁部材30にクラックが生じている場合でも、発電ユニット10を昇温することにより、ガラス33が融解することによって、クラックを修復することができる。その結果、クラックをなくすことができる。 Further, since the insulating member 30 has the ceramic particles 32, the thickness t of the insulating member 30 is suppressed from being smaller than a predetermined thickness. Accordingly, it is possible to prevent the insulation from being unable to be ensured due to the decrease in the thickness t of the insulating member 30 and to secure the thickness so that the thickness of the power generation unit 10 is not too small. it can. Moreover, even when the glass 33 is softened by raising the temperature of the power generation unit 10, excessive flow of the glass 33 can be suppressed by the ceramic particles 32. In addition, since the insulating member 30 includes the amorphous glass 33, even when the insulating member 30 has cracks, the glass 33 is melted by raising the temperature of the power generation unit 10. Cracks can be repaired. As a result, cracks can be eliminated.
 また、本実施形態では、上記のように、積層された複数の発電ユニット10を温度T4に昇温するのに先立って、温度T4よりも低い温度T1に昇温するとともに、温度T4に昇温前の絶縁部材30aのうちのバインダ34を取り除く工程を備える。これにより、積層された複数の発電ユニット10を温度T1に昇温することで、バインダ34が焼失または熱分解するので、容易に、非晶質であるガラス33とセラミック粒子32とを有する絶縁部材30を形成することができる。 In the present embodiment, as described above, prior to raising the temperature of the plurality of stacked power generation units 10 to the temperature T4, the temperature is raised to the temperature T1 lower than the temperature T4, and the temperature is raised to the temperature T4. A step of removing the binder 34 from the previous insulating member 30a is provided. Thereby, since the binder 34 is burnt down or thermally decomposed by raising the temperature of the stacked power generation units 10 to the temperature T1, the insulating member having the amorphous glass 33 and the ceramic particles 32 can be easily obtained. 30 can be formed.
 また、本実施形態では、上記のように、ガラス33が軟化する温度T2よりも低い温度T1を維持することにより、昇温前の絶縁部材30aに含まれるバインダ34を取り除く。これにより、温度T1が、ガラス33が軟化する温度T2よりも低いので、ガラス33が軟化する前にバインダ34を取り除くことができる。 In the present embodiment, as described above, the binder 34 contained in the insulating member 30a before the temperature rise is removed by maintaining the temperature T1 lower than the temperature T2 at which the glass 33 softens. Thereby, since the temperature T1 is lower than the temperature T2 at which the glass 33 is softened, the binder 34 can be removed before the glass 33 is softened.
 また、本実施形態では、上記のように、バインダ34の熱分解開始温度または焼失開始温度は、ガラス33が軟化する温度T2よりも低い。これにより、容易に、ガラス33が軟化する前にバインダ34を取り除くことができる。 In the present embodiment, as described above, the thermal decomposition start temperature or burnout start temperature of the binder 34 is lower than the temperature T2 at which the glass 33 softens. Thereby, the binder 34 can be easily removed before the glass 33 is softened.
 また、本実施形態では、上記のように、温度T4に昇温前の絶縁部材30aからバインダ34を取り除くことにより、バインダ34を取り除く工程後の絶縁部材30に含まれるセラミック粒子32の重量%を、5重量%以上30重量%以下にする。ここで、セラミック粒子32の重量%が少な過ぎると、発電ユニット10を昇温させてガラス33が軟化した場合に、ガラス33の流動が大きくなり過ぎる。すなわち、絶縁部材30が荷重に耐えることができずに潰れてしまうので、セル50のアノード51の下方に配置される発泡ニッケル40も過度に潰れてしまう。また、セラミック粒子32の重量%が多過ぎると、発電ユニット10を昇温させてガラス33を軟化させても、ガラス33の流動が少ないので、クラックが生じるとともに、絶縁部材30の厚みtを調整しにくくなる。そこで、上記のように、絶縁部材30に含まれるセラミック粒子32の重量%を、5重量%以上30重量%以下にすることにより、ガラス33の流動が大きくなり過ぎることが抑制されるので、絶縁部材30が潰れることに起因する発泡ニッケル40の過度の潰れを抑制することができる。また、ガラス33の流動が少な過ぎることに起因する、クラックの発生と、絶縁部材30の厚みtの調整が困難になることとを抑制することができる。 In the present embodiment, as described above, the binder 34 is removed from the insulating member 30a before the temperature is raised to the temperature T4, so that the weight% of the ceramic particles 32 included in the insulating member 30 after the step of removing the binder 34 is reduced. 5 wt% or more and 30 wt% or less. Here, if the weight percentage of the ceramic particles 32 is too small, the flow of the glass 33 becomes too large when the temperature of the power generation unit 10 is raised and the glass 33 is softened. That is, since the insulating member 30 cannot withstand the load and is crushed, the foamed nickel 40 disposed below the anode 51 of the cell 50 is also crushed excessively. On the other hand, when the weight percentage of the ceramic particles 32 is too large, even if the power generation unit 10 is heated and the glass 33 is softened, the flow of the glass 33 is small so that cracks occur and the thickness t of the insulating member 30 is adjusted. It becomes difficult to do. Therefore, as described above, by setting the weight% of the ceramic particles 32 included in the insulating member 30 to 5 wt% or more and 30 wt% or less, it is possible to suppress the flow of the glass 33 from being excessively increased. Excessive crushing of the foamed nickel 40 caused by the member 30 being crushed can be suppressed. Moreover, generation | occurrence | production of the crack resulting from there being too little flow of the glass 33, and the adjustment of the thickness t of the insulating member 30 can be suppressed.
 また、本実施形態では、上記のように、絶縁部材30の厚みtを調整する工程とバインダ34を取り除く工程との間に設けられ、積層された複数の発電ユニット10を昇温させながら、荷重F2よりも小さい荷重F1を、積層方向に隣接する複数の発電ユニット10に、互いに近接する方向に加えることにより、絶縁部材30の収縮を抑制する工程を備える。これにより、絶縁部材30の両側から荷重F1が加えられるので、発電ユニット10を昇温させることによるガラス33の軟化に起因する、絶縁部材30の変形を効果的に抑制することができる。 Further, in the present embodiment, as described above, the load is provided between the step of adjusting the thickness t of the insulating member 30 and the step of removing the binder 34 while raising the temperature of the plurality of stacked power generation units 10. A step of suppressing contraction of the insulating member 30 by applying a load F1 smaller than F2 to a plurality of power generation units 10 adjacent to each other in the stacking direction in a direction adjacent to each other is provided. Thereby, since the load F1 is applied from both sides of the insulating member 30, deformation of the insulating member 30 due to softening of the glass 33 caused by raising the temperature of the power generation unit 10 can be effectively suppressed.
 また、本実施形態では、上記のように、絶縁部材30に含まれるガラス33が軟化する前に、荷重F1を複数の発電ユニット10に加える。これにより、ガラス33が軟化する前に荷重F1が加えられるので、発電ユニット10を昇温させることによるガラス33の軟化に起因する、絶縁部材30の変形を確実に抑制することができる。 In the present embodiment, as described above, the load F1 is applied to the plurality of power generation units 10 before the glass 33 included in the insulating member 30 is softened. Thereby, since the load F1 is applied before the glass 33 softens, the deformation | transformation of the insulating member 30 resulting from the softening of the glass 33 by heating up the electric power generation unit 10 can be suppressed reliably.
 また、本実施形態では、上記のように、バインダ34を取り除く工程の後、温度T1よりも高くかつ温度T4よりも低い温度T3に昇温するとともに、還元性ガスの雰囲気下に発泡ニッケル40を配置することにより、酸化した状態の発泡ニッケル40を還元することによって、発泡ニッケル40の硬さを小さくする工程を備える。これにより、発泡ニッケル40の硬さが小さくなるので、荷重F2を加えることにより、絶縁部材30の厚みtを調整する際に、発泡ニッケル40の厚みも調整することができる。すなわち、発泡ニッケル40を含む発電ユニット10の厚みを調整することができる。 In the present embodiment, as described above, after the step of removing the binder 34, the temperature is raised to a temperature T3 that is higher than the temperature T1 and lower than the temperature T4, and the foamed nickel 40 is placed in an atmosphere of reducing gas. The step of reducing the hardness of the foamed nickel 40 by reducing the foamed nickel 40 in an oxidized state by arranging the foamed nickel 40 is provided. Thereby, since the hardness of the foamed nickel 40 becomes small, the thickness of the foamed nickel 40 can be adjusted when the thickness t of the insulating member 30 is adjusted by applying the load F2. That is, the thickness of the power generation unit 10 including the foamed nickel 40 can be adjusted.
 また、本実施形態では、上記のように、昇温前の絶縁部材30に含まれるセラミック粒子32の粒径pは、10μm以下である。これにより、セラミック粒子32の粒径pが大き過ぎることに起因して、絶縁部材30の厚みtの調整が困難になるのを抑制することができる。すなわち、厚みtを小さくすることができなくなるのを抑制することができる。 In the present embodiment, as described above, the particle size p of the ceramic particles 32 contained in the insulating member 30 before the temperature rise is 10 μm or less. Thereby, it can be suppressed that the adjustment of the thickness t of the insulating member 30 is difficult due to the particle size p of the ceramic particles 32 being too large. That is, it is possible to prevent the thickness t from being reduced.
 また、本実施形態では、上記のように、発電ユニット10は、セル50のアノード51側に設けられる金属製の発泡ニッケル40を含む。これにより、容易に、セル50間の導通を金属製の発泡ニッケル40により確保しながら、発電ユニット10の厚みを調整することができる。 In the present embodiment, as described above, the power generation unit 10 includes the metallic foamed nickel 40 provided on the anode 51 side of the cell 50. Thereby, the thickness of the power generation unit 10 can be easily adjusted while ensuring conduction between the cells 50 by the metallic foamed nickel 40.
 また、本実施形態では、上記のように、積層された複数の発電ユニット10の積層方向の一方の端部側に配置され、セル50を積層方向の他方の端部側に押圧する弾性部材80を備える。これにより、積層された複数の発電ユニット10にそれぞれ含まれるセル50とセパレータ20(隣接する発電ユニット10にそれぞれ含まれるセル50の間に配置される部材)との接触不良が抑制されるので、セル50とセパレータ20との接触抵抗が大きくなるのを抑制することができる。 In the present embodiment, as described above, the elastic member 80 is disposed on one end side in the stacking direction of the plurality of stacked power generation units 10 and presses the cell 50 toward the other end side in the stacking direction. Is provided. Thereby, since the poor contact between the cell 50 included in each of the plurality of stacked power generation units 10 and the separator 20 (the member disposed between the cells 50 included in each adjacent power generation unit 10) is suppressed, An increase in the contact resistance between the cell 50 and the separator 20 can be suppressed.
 また、本実施形態では、上記のように、絶縁部材30は、セル50の外側を取り囲むように枠形状を有する。これにより、容易に、セル50の外側を取り囲むように絶縁部材30を配置することができる。 In this embodiment, as described above, the insulating member 30 has a frame shape so as to surround the outside of the cell 50. Thereby, the insulating member 30 can be easily disposed so as to surround the outside of the cell 50.
 [変形例]
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments and examples but by the scope of claims for patent, and includes all modifications (modifications) within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記実施形態では、燃料電池が、固体酸化物形燃料電池(SOFC)である例を示したが、本発明はこれに限られない。たとえば、燃料電池が、固体酸化物形燃料電池以外の燃料電池である、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、りん酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)などでもよい。 For example, in the above embodiment, an example in which the fuel cell is a solid oxide fuel cell (SOFC) is shown, but the present invention is not limited to this. For example, the fuel cell is a fuel cell other than a solid oxide fuel cell, such as a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonic acid fuel cell. A salt fuel cell (MCFC: Molten Carbonate Fuel Cell) may be used.
 また、上記実施形態では、絶縁部材に、セラミック粒子としてジルコニアが含まれる例を示したが、本発明はこれに限られない。たとえば、絶縁部材に、セラミック粒子として、たとえば、アルミナ(酸化アルミニウム)などのジルコニア以外の物質が含まれていてもよい。 In the above embodiment, the example in which the insulating member includes zirconia as the ceramic particles is shown, but the present invention is not limited to this. For example, the insulating member may contain substances other than zirconia such as alumina (aluminum oxide) as ceramic particles.
 また、上記実施形態では、酸化した状態の発泡ニッケルを還元することによって、発泡ニッケルの硬さを小さくする工程が行われる例を示したが、本発明はこれに限られない。たとえば、発泡ニッケルの硬さを小さくする必要がなければ、この工程を行わなくてもよい。 In the above embodiment, an example is shown in which the step of reducing the hardness of the foamed nickel by reducing the oxidized nickel foam is performed, but the present invention is not limited to this. For example, if it is not necessary to reduce the hardness of the nickel foam, this step may not be performed.
 また、上記実施形態では、セルスタックに2段階の荷重(荷重F1および荷重F2)が加えられる例を示したが、本発明はこれに限られない。たとえば、1段階の荷重を加えることにより、絶縁部材の変形を抑制しながら、絶縁部材の厚みを調整してもよい。 In the above embodiment, an example in which two-stage loads (load F1 and load F2) are applied to the cell stack has been shown, but the present invention is not limited to this. For example, the thickness of the insulating member may be adjusted by applying a one-stage load while suppressing deformation of the insulating member.
 また、上記実施形態では、厚み調整部材として、発泡ニッケルを用いる例を示したが、本発明はこれに限られない。本発明では、発泡ニッケル以外の厚み調整部材を用いてもよい。 In the above embodiment, the example in which the foamed nickel is used as the thickness adjusting member is shown, but the present invention is not limited to this. In the present invention, a thickness adjusting member other than the foamed nickel may be used.
 また、上記実施形態では、弾性部材が、アルミナからなるセラミックファイバーマット(シート)から構成されている例を示したが、本発明はこれに限られない。たとえば、アルミナからなるセラミックファイバーマット(シート)以外の部材により弾性部材を構成してもよい。 In the above embodiment, the elastic member is made of a ceramic fiber mat (sheet) made of alumina. However, the present invention is not limited to this. For example, the elastic member may be constituted by a member other than a ceramic fiber mat (sheet) made of alumina.
 また、上記実施形態では、ばね部材により、弾性部材を介してセルを押圧する例を示したが、本発明はこれに限られない。たとえば、クッション材、マットなどのばね部材以外の部材により、弾性部材を介してセルを押圧してもよい。 In the above embodiment, an example is shown in which the cell is pressed by the spring member via the elastic member, but the present invention is not limited to this. For example, the cell may be pressed via an elastic member by a member other than a spring member such as a cushion material or a mat.
 また、上記実施形態では、燃料電池(発電ユニット)が、燃料ガスと空気とが対向するように流れるカウンタフローの燃料電池である例を示したが、本発明はこれに限られない。たとえば、燃料ガスと空気とが交差するように流れるクロスフローの燃料電池にも、本発明を適用することが可能である。 In the above embodiment, the fuel cell (power generation unit) is a counter flow fuel cell in which the fuel gas and the air flow so as to face each other. However, the present invention is not limited to this. For example, the present invention can be applied to a cross-flow fuel cell in which fuel gas and air flow so as to intersect each other.
 10 発電ユニット
 30 絶縁部材
 32 ガラス
 33 セラミック粒子
 34 バインダ
 40 発泡ニッケル(厚み調整部材)
 50 セル
 51 アノード
 53 カソード
 80 弾性部材
 100 燃料電池
 F1 荷重(第2の荷重)
 F2 荷重(第1の荷重)
 t 厚み
 T1 温度(第2の温度)
 T3 温度(第3の温度)
 T4 温度(第1の温度)
DESCRIPTION OF SYMBOLS 10 Power generation unit 30 Insulating member 32 Glass 33 Ceramic particle 34 Binder 40 Foam nickel (thickness adjustment member)
50 cells 51 anode 53 cathode 80 elastic member 100 fuel cell F1 load (second load)
F2 load (first load)
t thickness T1 temperature (second temperature)
T3 temperature (third temperature)
T4 temperature (first temperature)

Claims (14)

  1.  一方の表面にアノードが形成され他方の表面にカソードが形成されたセルと、前記セルの外側を取り囲むように設けられ、前記アノードに供給される燃料ガスと前記カソードに供給される酸化剤とが混合するのを抑制する、セラミック粒子と非晶質であるガラスとを有する絶縁部材とを含む発電ユニットを、複数積層する工程と、
     積層された前記複数の発電ユニットを第1の温度に昇温するとともに、積層方向に隣接する前記複数の発電ユニットに、互いに近接する方向に第1の荷重を加えることにより、前記絶縁部材の厚みを調整する工程と、を備える、燃料電池の製造方法。
    A cell having an anode formed on one surface and a cathode formed on the other surface, and a fuel gas provided to surround the outside of the cell and supplied to the anode and an oxidant supplied to the cathode A step of laminating a plurality of power generation units each including an insulating member having ceramic particles and amorphous glass that suppresses mixing; and
    The temperature of the plurality of power generation units stacked is increased to a first temperature, and the first load is applied to the plurality of power generation units adjacent to each other in the stacking direction so as to approach each other. And a step of adjusting the fuel cell manufacturing method.
  2.  積層された前記複数の発電ユニットを前記第1の温度に昇温するのに先立って、前記第1の温度よりも低い第2の温度に昇温するとともに、前記第1の温度に昇温前の前記絶縁部材からバインダを取り除く工程をさらに備える、請求項1に記載の燃料電池の製造方法。 Prior to raising the temperature of the plurality of stacked power generation units to the first temperature, the temperature is raised to a second temperature lower than the first temperature, and before raising the temperature to the first temperature. The method of manufacturing a fuel cell according to claim 1, further comprising a step of removing a binder from the insulating member.
  3.  前記バインダを取り除く工程は、前記ガラスが軟化する温度よりも低い前記第2の温度を維持することにより、昇温前の前記絶縁部材に含まれる前記バインダを取り除く工程を含む、請求項2に記載の燃料電池の製造方法。 The step of removing the binder includes the step of removing the binder contained in the insulating member before the temperature rise by maintaining the second temperature lower than a temperature at which the glass softens. Fuel cell manufacturing method.
  4.  前記バインダの熱分解開始温度または焼失開始温度は、前記ガラスが軟化する温度よりも低い、請求項2に記載の燃料電池の製造方法。 The fuel cell manufacturing method according to claim 2, wherein a thermal decomposition start temperature or a burnout start temperature of the binder is lower than a temperature at which the glass softens.
  5.  前記バインダを取り除く工程は、前記第1の温度に昇温前の前記絶縁部材から前記バインダを取り除くことにより、前記バインダを取り除く工程後の前記絶縁部材に含まれる前記セラミック粒子の重量%を、5重量%以上30重量%以下にする、請求項2に記載の燃料電池の製造方法。 The step of removing the binder comprises removing 5% of the ceramic particles contained in the insulating member after the step of removing the binder by removing the binder from the insulating member before raising the temperature to the first temperature. The method for producing a fuel cell according to claim 2, wherein the fuel cell content is not less than 30% by weight and not more than 30% by weight.
  6.  前記絶縁部材の厚みを調整する工程と前記バインダを取り除く工程との間に設けられ、積層された前記複数の発電ユニットを昇温させながら、前記第1の荷重よりも小さい第2の荷重を、積層方向に隣接する前記複数の発電ユニットに、互いに近接する方向に加えることにより、前記絶縁部材の収縮を抑制する工程をさらに備える、請求項2に記載の燃料電池の製造方法。 A second load smaller than the first load is provided between the step of adjusting the thickness of the insulating member and the step of removing the binder while raising the temperature of the stacked power generation units. The method for manufacturing a fuel cell according to claim 2, further comprising a step of suppressing contraction of the insulating member by adding the plurality of power generation units adjacent to each other in a stacking direction in a direction close to each other.
  7.  前記絶縁部材の収縮を抑制する工程は、前記絶縁部材に含まれる前記ガラスが軟化する前に、前記第2の荷重を前記複数の発電ユニットに加える工程を含む、請求項6に記載の燃料電池の製造方法。 The fuel cell according to claim 6, wherein the step of suppressing contraction of the insulating member includes a step of applying the second load to the plurality of power generation units before the glass included in the insulating member is softened. Manufacturing method.
  8.  前記発電ユニットは、前記セルの前記アノード側に設けられる金属製の厚み調整部材をさらに含み、
     前記バインダを取り除く工程の後、前記第2の温度よりも高くかつ前記第1の温度よりも低い第3の温度に昇温するとともに、還元性ガスの雰囲気下に前記厚み調整部材を配置することにより、酸化した状態の前記厚み調整部材を還元することによって、前記厚み調整部材の硬さを小さくする工程をさらに備える、請求項2に記載の燃料電池の製造方法。
    The power generation unit further includes a metal thickness adjusting member provided on the anode side of the cell,
    After the step of removing the binder, the temperature is raised to a third temperature that is higher than the second temperature and lower than the first temperature, and the thickness adjusting member is disposed in a reducing gas atmosphere. The method of manufacturing a fuel cell according to claim 2, further comprising reducing the hardness of the thickness adjusting member by reducing the thickness adjusting member in an oxidized state.
  9.  昇温前の前記絶縁部材に含まれる前記セラミック粒子の粒径は、10μm以下である、請求項1に記載の燃料電池の製造方法。 2. The method of manufacturing a fuel cell according to claim 1, wherein a particle size of the ceramic particles contained in the insulating member before the temperature rise is 10 μm or less.
  10.  積層された複数の発電ユニットを備え、
     前記発電ユニットは、
     一方の表面にアノードが形成され、他方の表面にカソードが形成されたセルと、
     前記セルの外側を取り囲むように設けられ、前記アノードに供給される燃料ガスと、前記カソードに供給される酸化剤とが混合するのを抑制する、セラミック粒子と非晶質であるガラスとを有する絶縁部材とを含む、燃料電池。
    It has a plurality of power generation units stacked,
    The power generation unit is
    A cell having an anode formed on one surface and a cathode formed on the other surface;
    The ceramic particles and the amorphous glass are provided so as to surround the outside of the cell and suppress mixing of the fuel gas supplied to the anode and the oxidant supplied to the cathode. A fuel cell comprising an insulating member.
  11.  前記絶縁部材は、5重量%以上30重量%以下の前記セラミック粒子を含む、請求項10に記載の燃料電池。 11. The fuel cell according to claim 10, wherein the insulating member includes 5 wt% or more and 30 wt% or less of the ceramic particles.
  12.  前記発電ユニットは、前記セルの前記アノード側に設けられる金属製の厚み調整部材をさらに含む、請求項10に記載の燃料電池。 The fuel cell according to claim 10, wherein the power generation unit further includes a metal thickness adjusting member provided on the anode side of the cell.
  13.  積層された前記複数の発電ユニットの積層方向の一方の端部側に配置され、前記セルを前記積層方向の他方の端部側に向けて押圧する弾性部材をさらに備える、請求項10に記載の燃料電池。 The elastic member that is disposed on one end side in the stacking direction of the plurality of stacked power generation units and that presses the cell toward the other end side in the stacking direction. Fuel cell.
  14.  前記絶縁部材は、前記セルの外側を取り囲むように枠形状を有する、請求項10に記載の燃料電池。 The fuel cell according to claim 10, wherein the insulating member has a frame shape so as to surround the outside of the cell.
PCT/JP2017/016466 2016-05-06 2017-04-26 Method for manufacturing fuel cell, and fuel cell WO2017191787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018515704A JP6605721B2 (en) 2016-05-06 2017-04-26 Fuel cell manufacturing method and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-092978 2016-05-06
JP2016092978 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017191787A1 true WO2017191787A1 (en) 2017-11-09

Family

ID=60203001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016466 WO2017191787A1 (en) 2016-05-06 2017-04-26 Method for manufacturing fuel cell, and fuel cell

Country Status (2)

Country Link
JP (1) JP6605721B2 (en)
WO (1) WO2017191787A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349950B2 (en) 2020-03-30 2023-09-25 大阪瓦斯株式会社 Seal member repair method and fuel cell system
JP7399013B2 (en) 2020-03-30 2023-12-15 大阪瓦斯株式会社 Seal member repair method and fuel cell system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111845A (en) * 1991-04-30 1994-04-22 Tonen Corp Manufacture of solid electrolytic type fuel cell and fuel cell assembly
JPH0757748A (en) * 1993-07-23 1995-03-03 Mitsubishi Heavy Ind Ltd Gasket material for high temperature and manufacture thereof
JP2000235862A (en) * 1998-12-15 2000-08-29 Haldor Topsoe As Sealing material for use at high temperature
JP2008060072A (en) * 2006-07-14 2008-03-13 Topsoee Fuel Cell As Compression assembly, solid oxide fuel cell stack, compression method of solid oxide fuel cell, and its use
JP2008525304A (en) * 2004-12-28 2008-07-17 テクニカル ユニバーシティ オブ デンマーク A method of producing a metal-to-metal, metal-to-metal or ceramic-to-ceramic connection.
JP2010219046A (en) * 2009-03-13 2010-09-30 Topsoee Fuel Cell As Fuel cell stack
JP2011168480A (en) * 2010-02-15 2011-09-01 Schott Ag High-temperature glass solder and its use
JP2012531375A (en) * 2009-07-03 2012-12-10 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Glass composition for gaskets of devices operating at high temperatures and assembly method using them
JP2013065497A (en) * 2011-09-20 2013-04-11 Sumitomo Precision Prod Co Ltd Cell stack for fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039573A (en) * 2002-07-05 2004-02-05 Tokyo Gas Co Ltd Sealing material for low-temperature operation solid oxide fuel cell
JP5128203B2 (en) * 2007-08-22 2013-01-23 日本山村硝子株式会社 Glass composition for sealing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111845A (en) * 1991-04-30 1994-04-22 Tonen Corp Manufacture of solid electrolytic type fuel cell and fuel cell assembly
JPH0757748A (en) * 1993-07-23 1995-03-03 Mitsubishi Heavy Ind Ltd Gasket material for high temperature and manufacture thereof
JP2000235862A (en) * 1998-12-15 2000-08-29 Haldor Topsoe As Sealing material for use at high temperature
JP2008525304A (en) * 2004-12-28 2008-07-17 テクニカル ユニバーシティ オブ デンマーク A method of producing a metal-to-metal, metal-to-metal or ceramic-to-ceramic connection.
JP2008060072A (en) * 2006-07-14 2008-03-13 Topsoee Fuel Cell As Compression assembly, solid oxide fuel cell stack, compression method of solid oxide fuel cell, and its use
JP2010219046A (en) * 2009-03-13 2010-09-30 Topsoee Fuel Cell As Fuel cell stack
JP2012531375A (en) * 2009-07-03 2012-12-10 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Glass composition for gaskets of devices operating at high temperatures and assembly method using them
JP2011168480A (en) * 2010-02-15 2011-09-01 Schott Ag High-temperature glass solder and its use
JP2013065497A (en) * 2011-09-20 2013-04-11 Sumitomo Precision Prod Co Ltd Cell stack for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349950B2 (en) 2020-03-30 2023-09-25 大阪瓦斯株式会社 Seal member repair method and fuel cell system
JP7399013B2 (en) 2020-03-30 2023-12-15 大阪瓦斯株式会社 Seal member repair method and fuel cell system

Also Published As

Publication number Publication date
JPWO2017191787A1 (en) 2019-01-10
JP6605721B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
KR101903863B1 (en) Fuel cell and method for manufacturing same
KR101603398B1 (en) Solid oxide fuel cell and inter-connector
US20140170522A1 (en) Fuel cell and fuel cell stack
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
JP6605721B2 (en) Fuel cell manufacturing method and fuel cell
US8968962B2 (en) Solid oxide fuel cell, and assembling method of the same
JP5881594B2 (en) Fuel cell stack and manufacturing method thereof
JP5255327B2 (en) Reactor
JP5295959B2 (en) Repeating unit of stack of electrochemical cell, stack arrangement, and method of manufacturing repeating unit
JP5727915B2 (en) Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell
JP2010055859A (en) Assembling method of solid oxide fuel cell
JP6003812B2 (en) Manufacturing method of fuel cell
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
US10249887B2 (en) Fuel cell
EP2157651B1 (en) Sheet body of solid oxide fuel cell, and solid oxide fuel cell
JP5368062B2 (en) Solid oxide fuel cell
JP2015204261A (en) Fuel battery stack
JP6435785B2 (en) Fuel cell separator and fuel cell stack
JP2022125885A (en) Fuel battery cell and fuel battery stack
JP6844476B2 (en) How to make cells for fuel cells
CN104577156A (en) Bonding apparatus of fuel cell stack and method thereof
WO2017026447A1 (en) Fuel cell
US20170162879A1 (en) Fuel cell unit
JP7042783B2 (en) Electrochemical reaction cell stack
JP5840983B2 (en) Solid oxide fuel cell and fuel cell unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018515704

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792720

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792720

Country of ref document: EP

Kind code of ref document: A1