JPH06111845A - Manufacture of solid electrolytic type fuel cell and fuel cell assembly - Google Patents

Manufacture of solid electrolytic type fuel cell and fuel cell assembly

Info

Publication number
JPH06111845A
JPH06111845A JP3124415A JP12441591A JPH06111845A JP H06111845 A JPH06111845 A JP H06111845A JP 3124415 A JP3124415 A JP 3124415A JP 12441591 A JP12441591 A JP 12441591A JP H06111845 A JPH06111845 A JP H06111845A
Authority
JP
Japan
Prior art keywords
gas
solid electrolyte
manifold
cell
gas leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3124415A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshida
利彦 吉田
Takayuki Hoshina
孝幸 保科
Atsushi Tsunoda
淳 角田
Satoshi Sakurada
智 櫻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP3124415A priority Critical patent/JPH06111845A/en
Publication of JPH06111845A publication Critical patent/JPH06111845A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To make an assembly easily and inexpensively, by forming respective members into multistage cells through interposing a gas leak preventive sealing agent to be housed in a manifold, and using the sealing agent in a connection position. CONSTITUTION:The electrodes of cathodes 12 and anodes 13 are formed by plasma flame spraying or applying on both surfaces of a solid electrolyte plate 11 to be adopted as an electrode-attached solid electrolyte plate 11. A separator 14, in which plural parallel grooves are formed on both surfaces of a dense conductive plate having no gas leak to be adopted as flow passages, is made, and moreover parallel grooves for gas flow passages are formed on the one-side surfaces of two other conductive plates, making both outside terminal plates 15. Glass paste having a softening point of 800 deg.C is applied to both surfaces of the electrolyte plate, a resultant is accumulated together with the separator 14 and the terminal plates 15 to make a main body housed in a manifold 16 in which groove-working is applied to a cylinder part. All the contact surface between the manifold and a cell is sealed by the glass paste. The paste is softened at the operating temperature of the cell to prevent leak.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、組立容易で、製作工程
が簡単である、新規な固体電解質型燃料電池の製造方法
及び該方法を用いて製作した固体電解質型燃料電池組立
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for manufacturing a solid oxide fuel cell which is easy to assemble and has a simple manufacturing process, and a solid oxide fuel cell assembly manufactured by using the method. is there.

【0002】[0002]

【従来の技術】燃料電池は、水素、一酸化炭素、炭化水
素等の燃焼性化学物質やそれを含有する燃料を活物質に
用い、該化学物質や燃料の酸化反応を電気化学的に行わ
せ、酸化過程におけるエネルギー変化を直接的に電気エ
ネルギーに変換させる電池であって、高いエネルギー変
換効率を期待しうるものである。
2. Description of the Related Art A fuel cell uses a combustible chemical substance such as hydrogen, carbon monoxide, or hydrocarbon or a fuel containing the same as an active material and causes an oxidation reaction of the chemical substance or the fuel to be performed electrochemically. A battery that directly converts energy changes in the oxidation process into electric energy, and is expected to have high energy conversion efficiency.

【0003】中でも特に高い効率を期待しうるものとし
て、近年、第一世代のリン酸型、第二世代の溶融炭酸塩
型に続く第三世代の固体電解質型燃料電池、中でも集積
度の高い平板型のものが注目されている。
Among them, particularly high efficiency can be expected, and in recent years, the third generation solid oxide fuel cell following the first generation phosphoric acid type and the second generation molten carbonate type, especially the flat plate having a high degree of integration The type is drawing attention.

【0004】これまで、平板型固体電解質型燃料電池に
ついては、その個々の構成部材、例えばセパレータや電
極等の改良技術の提案が種々なされているが、該電池全
体の製造プロセスについての報告は余りされていないの
が実状である。
Up to now, various proposals have been made to improve the individual components of the flat panel solid oxide fuel cell, such as separators and electrodes. However, there are few reports on the manufacturing process of the whole cell. The reality is that it has not been done.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
事情の下、簡単な製作工程で組立容易かつ安価に固体電
解質型燃料電池を製造する方法を提供することを目的と
してなされたものである。
SUMMARY OF THE INVENTION Under these circumstances, the present invention has been made with the object of providing a method for manufacturing a solid oxide fuel cell with a simple manufacturing process and at a low cost. is there.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の好
ましい特徴を有する固体電解質型燃料電池を開発するた
めに種々研究を重ねた結果、固体電解質板の両面にプラ
ズマ溶射あるいは塗布により電極を形成させて電極付き
固体電解質板を作成し、ガスリークのないち密な導電板
の両面にグラインデイングにより複数の平行溝を互いに
交差方向に形成してそれぞれ燃料ガス及び酸化剤ガスの
ガス流路としたセパレータを作成し、さらに別にガスリ
ークのないち密な2枚の導電板の片面にグラインデイン
グにより複数の平行溝を形成させてそれぞれ酸化剤ガス
のガス流路及び燃料ガスのガス流路とした両外部端子板
を作成したのち、これら各部材を所定の順にガスリーク
防止用封止剤を介在させて積層して多段セルとし、次い
でこれをマニホールド内に収納し、多段セルとマニホー
ルドとの接合所要箇所にガスリーク防止用封止剤を介在
させることにより、その目的を達成しうることを見出
し、この知見に基づいて本発明を完成するに至った。
The inventors of the present invention have conducted various studies to develop a solid oxide fuel cell having the above-mentioned preferable features, and as a result, plasma spraying or coating electrodes on both sides of a solid electrolyte plate. To form a solid electrolyte plate with an electrode, and to form a plurality of parallel grooves in the intersecting direction by grinding on both sides of a dense conductive plate with no gas leak to form a gas flow path for fuel gas and oxidant gas, respectively. Separately, a plurality of parallel grooves were formed by grinding on one surface of two dense conductive plates having no gas leak, respectively, to form a gas flow path for an oxidant gas and a gas flow path for a fuel gas, respectively. After creating the external terminal board, stack each of these members in the prescribed order with a gas leak prevention sealant in between to form a multi-stage cell. It was found that the object can be achieved by storing the gas in a container and placing a sealant for gas leak prevention at a required joint between the multi-stage cell and the manifold, and based on this finding, the present invention was completed. It was

【0007】すなわち、本発明は、少なくとも2枚の固
体電解質板の両面にプラズマ溶射あるいは塗布により一
対の電極を一体に形成させることにより電極付き固体電
解質板を作成し、別に上記固体電解質板の枚数より1枚
少ない、ガスリークのないち密な導電板の両面にグライ
ンデイングにより複数の平行溝加工を片面と他面の溝が
互いに交差方向となるように施してそれぞれ燃料ガス及
び酸化剤ガスのガス流路を形成させたセパレータを作成
し、さらに別にガスリークのないち密な2枚の導電板の
片面にグラインデイングにより複数の平行溝加工を施し
てそれぞれ酸化剤ガスのガス流路及び燃料ガスのガス流
路を形成させることにより両外部端子板を作成したの
ち、これら各部材を所定の順にガスリーク防止用封止剤
を介在させて積層して多段セルとし、次いでこれをマニ
ホールド内に収納し、多段セルとマニホールドとの接合
所要箇所にガスリーク防止用封止剤を介在させることを
特徴とする固体電解質型燃料電池の製造方法を提供する
ものである。
That is, according to the present invention, a solid electrolyte plate with electrodes is formed by integrally forming a pair of electrodes on both surfaces of at least two solid electrolyte plates by plasma spraying or coating, and the number of the solid electrolyte plates is separately set. Grinding multiple parallel grooves on both sides of a dense conductive plate with less gas leakage and less gas leak, so that the grooves on one side and the other side are in the intersecting direction, and the gas flow of fuel gas and oxidant gas respectively. Create a separator with a channel formed on it, and then make multiple parallel grooves by grinding on one side of two dense conductive plates with no gas leaks. After forming both the external terminal boards by forming the path, these members are laminated in a predetermined order with the gas leak prevention sealant interposed. A method for producing a solid oxide fuel cell, which is characterized in that a multi-stage cell is formed, and then this is housed in a manifold, and a sealant for gas leak prevention is interposed at a required joining point between the multi-stage cell and the manifold. is there.

【0008】本発明方法においては、先ず、電池の各部
材である電極付き固体電解質板、セパレータ及び端子板
をそれぞれ作成する。すなわち、電極付き固体電解質板
は、少なくとも2枚の固体電解質板の両面にプラズマ溶
射あるいは塗布により一対の電極を一体に形成させて作
成される。
In the method of the present invention, first, a solid electrolyte plate with electrodes, a separator and a terminal plate, which are each member of a battery, are prepared. That is, the solid electrolyte plate with electrodes is formed by integrally forming a pair of electrodes by plasma spraying or coating on both surfaces of at least two solid electrolyte plates.

【0009】上記固体電解質板は酸素イオン伝導性を有
するものであれば特に制限されず、例えばイットリア安
定化ジルコニア(YSZ)、カルシア安定化ジルコニア
(CSZ)のような安定化ジルコニアなどの公知の固体
電解質材料、あるいは金属酸化物が主として安定化ジル
コニアの粒内に存在する安定化ジルコニアと金属酸化物
からなる多結晶焼結体固体電解質材料で作った板状物な
どであり、その厚さは通常0.05〜0.3mm程度、
好ましくは0.08〜0.25mm程度が適当である。
この厚さが0.05mmよりも薄いと強度が低下する
し、また0.3mmを超えると電流路が長くなりすぎて
好ましくない。
The solid electrolyte plate is not particularly limited as long as it has oxygen ion conductivity, and known solids such as yttria-stabilized zirconia (YSZ) and calcia-stabilized zirconia (CSZ) are known. Electrolyte material, or a metal oxide is a plate-like material made of a polycrystalline sintered solid electrolyte material composed of stabilized zirconia and metal oxide, which is mainly present in the grains of stabilized zirconia, and its thickness is usually About 0.05-0.3 mm,
It is preferably about 0.08 to 0.25 mm.
If the thickness is less than 0.05 mm, the strength will decrease, and if it exceeds 0.3 mm, the current path becomes too long, which is not preferable.

【0010】本発明に用いる電極としてのカソード及び
アノードは高温下でそれぞれ酸化剤ガス及び燃料ガスに
対して耐食性のある導電性材料であれば特に制限されな
いが、有利には固体電解質板と同様の形状とし、La
Sr1−xMnOをカソード材、Ni‐ZrOサー
メットをアノード材とするのが好ましい。これらの電極
は、上記固体電解質板の各面に所定の粉末をはけ塗り法
やスクリーン印刷法などで塗布する方法の他、プラズマ
溶射法を用いて被着される。この塗布により形成させた
電極は乾燥あるいはバーンアウトしてバインダー及び/
又は媒体を除去するようにする。
The cathode and the anode as the electrodes used in the present invention are not particularly limited as long as they are electrically conductive materials having corrosion resistance to the oxidant gas and the fuel gas, respectively, at a high temperature, but are preferably the same as those of the solid electrolyte plate. Shape, La x
It is preferable to use Sr 1-x MnO 3 as the cathode material and Ni-ZrO 2 cermet as the anode material. These electrodes are deposited by a plasma spraying method, as well as a method of applying a predetermined powder to each surface of the solid electrolyte plate by a brush coating method or a screen printing method. The electrode formed by this coating is dried or burned out, and the binder and / or
Alternatively, remove the medium.

【0011】また、電極形成時には、あらかじめ固体電
解質板の表面にジルコニアなどの固体電解質材料あるい
は電極材料をプラズマ溶射することにより、凹凸を形成
させるのが好ましい。このようにすると、凹凸によるア
ンカー効果により凹凸上に形成された電極の付着力や接
合力を高めることができる。
Further, when forming the electrodes, it is preferable to form the irregularities by plasma spraying a solid electrolyte material such as zirconia or an electrode material on the surface of the solid electrolyte plate in advance. By doing so, the adhesion effect and the bonding force of the electrodes formed on the unevenness can be enhanced by the anchor effect of the unevenness.

【0012】固体電解質板の形状は、平板状であり、通
常方形状、好ましくは正方形状に作られる他、円形状と
してもよい。
The solid electrolyte plate has a flat plate shape, and is usually formed in a square shape, preferably a square shape, or may be a circular shape.

【0013】またセパレータは、上記固体電解質板の枚
数より1枚少ない、ガスリークのないち密な導電板の両
面にグラインデイングにより複数の平行溝加工を片面と
他面の溝が互いに交差方向となるように施してそれぞれ
燃料ガス及び酸化剤ガスのガス流路を形成させて作成さ
れる。さらに端子板は、ガスリークのないち密な2枚の
導電板の片面にグラインデイングにより複数の平行溝加
工を施してそれぞれ酸化剤ガスのガス流路及び燃料ガス
のガス流路を形成させて作成される。
In addition, the separator has one less than the number of solid electrolyte plates described above, and a plurality of parallel grooves are machined on both sides of a dense conductive plate having no gas leak so that the grooves on one side and the grooves on the other side are in the intersecting direction. Is formed by forming the gas flow paths of the fuel gas and the oxidant gas, respectively. Further, the terminal board is produced by forming a plurality of parallel grooves by grinding on one surface of two dense conductive plates having no gas leak and forming a gas flow path of an oxidant gas and a gas flow path of a fuel gas, respectively. It

【0014】このように、セパレータは隣接する単セル
の電極間を電気的に接続するとともに、両面に燃料ガス
及び酸化剤ガスの流路となる溝が形成され、各流路はそ
れぞれセルのカソード側及びアノード側における各ガス
の通路を構成する。各ガス通路となる溝は平行に複数配
設され、片面の溝と他面の溝とは互いに交差方向、好ま
しくは直角方向に配置される。このように配置すれば、
セルを集積後、燃料ガスの入口及び出口、酸化剤ガスの
入口及び出口をそれぞれ同じ側端面上に配置することが
でき、集積セルとしてガス供給・排出系の構成を簡単か
つ容易とすることができる。
In this way, the separator electrically connects the electrodes of the adjacent single cells, and has grooves on both sides which serve as flow passages for the fuel gas and the oxidant gas, and each flow passage has its own cathode. The passages of each gas on the anode side and the anode side. A plurality of grooves to be the respective gas passages are arranged in parallel, and the groove on one surface and the groove on the other surface are arranged in a direction intersecting with each other, preferably in a right angle direction. If you place it like this,
After the cells are integrated, the inlet and outlet of the fuel gas and the inlet and the outlet of the oxidant gas can be arranged on the same side end face, respectively, and the configuration of the gas supply / exhaust system as an integrated cell can be made simple and easy. it can.

【0015】また、セパレータ及び外部端子板を矩形状
とした場合には、片面に長辺に沿ってすなわち長辺方向
に長い燃料ガス流路が、また他面に短辺に沿ってすなわ
ち短辺方向に短い酸化剤ガス流路を設けたものが好まし
く、特に有利には酸化剤ガス流路の深さを燃料ガスの入
り口側に対応する側においては浅くし、それより燃料ガ
スの出口側に対応する側に向かうにつれて次第に深くす
るようにしたものが、酸化剤ガスの圧損を軽減でき、酸
化剤ガスによる燃料ガス出口側付近の冷却効率が高めら
れ、温度分布の幅も縮小しうるので、好ましい。
When the separator and the external terminal plate are rectangular, the fuel gas passage is long on one side along the long side, that is, in the long side direction, and on the other side along the short side, that is, the short side. It is preferable to provide a short oxidant gas flow channel in the direction, and particularly preferably, the depth of the oxidant gas flow channel is shallow on the side corresponding to the fuel gas inlet side, and on the fuel gas outlet side. The one that is gradually deepened toward the corresponding side can reduce the pressure loss of the oxidant gas, improve the cooling efficiency near the fuel gas outlet side by the oxidant gas, and reduce the width of the temperature distribution. preferable.

【0016】セパレータ及び端子板に用いる上記導電板
としては、ニッケル、コバルトなどの金属、ニッケル、
クロム、コバルトなどを含む合金、各種焼結体、例えば
アルカリ土類金属及びCo、Ni、Fe、Znその他金
属をドープしたランタンクロマイト系複合酸化物、炭化
ケイ素、ケイ素化モリブデン、ケイ素化クロムなどの導
電性セラミックスや、ニッケル金属、ニッケル基合金、
コバルト金属又はコバルト基合金と、アルミナ、シリ
カ、チタニア、酸化インジウム、酸化第二スズ、炭化ケ
イ素及び窒化ケイ素の中から選ばれた少なくとも1種の
無機系化合物あるいはランタンクロマイト系複合酸化物
やイットリウムクロマイト系複合酸化物などの導電性無
機酸化物とを非酸化性雰囲気、例えば還元雰囲気下ある
いは真空中で焼成した焼結体などが挙げられる。上記ニ
ッケル基合金としては、Ni‐Cr系合金、Ni‐Cr
‐Fe系合金、Ni‐Cr‐Mo系合金、Ni‐Cr‐
Mo‐Co系合金、Ni‐Cr‐Mo‐Fe系合金など
が、またコバルト基合金としては、Co‐Cr系合金、
Co‐Cr‐Fe系合金、Co‐Cr‐W系合金、Co
‐Cr‐Ni‐W系合金などが挙げられる。
As the conductive plate used for the separator and the terminal plate, a metal such as nickel or cobalt, nickel,
Alloys containing chromium, cobalt, etc., various sintered bodies such as lanthanum chromite composite oxides doped with alkaline earth metals and Co, Ni, Fe, Zn and other metals, silicon carbide, molybdenum silicide, chromium silicide, etc. Conductive ceramics, nickel metal, nickel-based alloy,
Cobalt metal or cobalt-based alloy and at least one inorganic compound selected from alumina, silica, titania, indium oxide, stannic oxide, silicon carbide and silicon nitride, or lanthanum chromite complex oxide or yttrium chromite. Examples thereof include a sintered body obtained by firing a conductive inorganic oxide such as a complex oxide with a non-oxidizing atmosphere, for example, in a reducing atmosphere or in a vacuum. Examples of the nickel-based alloy include Ni-Cr alloys and Ni-Cr
-Fe alloy, Ni-Cr-Mo alloy, Ni-Cr-
Mo-Co alloys, Ni-Cr-Mo-Fe alloys, etc., and cobalt-based alloys include Co-Cr alloys,
Co-Cr-Fe alloys, Co-Cr-W alloys, Co
-Cr-Ni-W type alloys and the like can be mentioned.

【0017】セパレータの形状は電解質板の形状と同じ
であって、正方形や矩形などの方形状、円形状などであ
る。
The shape of the separator is the same as that of the electrolyte plate, and is a square shape such as a square or a rectangle, or a circular shape.

【0018】次いで、本発明方法においては、これら電
極付き固体電解質板、セパレータ、及び外部端子板を用
い、所定の固体電解質板の片面及び他面にそれぞれカソ
ード及びアノードを形成して成る3層構造板を所定のセ
パレータを介して積層し単セルの多段直列構造体を形成
し、単セルの積層数を適宜調整し、両端に外部端子板を
それぞれ設けることにより、多数の単セルからなる直列
型の積層多段セルからなる電池本体を組み立てる。その
際、固体電解質板の片面及び他面に配設された電極すな
わちカソード、アノードとセパレータあるいは一方又は
他方の電極と外部端子板との間にセパレータあるいは外
部端子板の溝方向に沿う端縁部において封止剤を介在さ
せてガス漏れ(ガスリーク)しないように封止(シー
ル)する。
Next, in the method of the present invention, a solid electrolyte plate with an electrode, a separator, and an external terminal plate are used, and a cathode and an anode are formed on one surface and the other surface of a predetermined solid electrolyte plate, respectively. A series type consisting of a large number of single cells is formed by stacking the plates through a predetermined separator to form a multi-stage series structure of single cells, appropriately adjusting the number of stacked single cells, and providing external terminal boards at both ends. Assemble the battery body consisting of the stacked multi-stage cells of. At that time, the electrodes arranged on one surface and the other surface of the solid electrolyte plate, that is, between the cathode, the anode and the separator or one or the other electrode and the external terminal plate, and the edge portion along the groove direction of the separator or the external terminal plate. In (1), a sealant is interposed and sealing is performed so that gas does not leak (gas leak).

【0019】これら電解質板、セパレータ及び外部端子
板を前記したように積層して電池本体を形成する際に用
いられる前記封止剤は、電池の作動温度において軟化状
態となるか、あるいは該作動温度以上の軟化温度を有
し、該作動温度で固化するものであって、しかも該作動
温度で燃料ガスや酸化剤ガス等の原料ガス及び発生ガス
に対して耐食性があるもの、例えば燃料ガスに水素、酸
化剤ガスに酸素又は空気を用いた場合、耐還元性、耐酸
化性及び耐水蒸気性があるものであれば特に制限されな
いが、軟化点が500℃以上好ましくは600℃〜12
00℃のガラスが好ましい。このようなガラスとして
は、例えばソーダライムガラス、硼酸塩ガラス、硼ケイ
酸ガラス、アルミノケイ酸ガラスなどが挙げられる。こ
れらのガラスは板状、フェルト状として用いる他、有機
バインダーなどの有機物質に分散させてペースト状と
し、これを所要の封止部に塗布し、電池を組み立てたの
ち、該有機物質をバーンアウトして該ガラスを復元させ
るようにしてもよい。
The encapsulant used when forming the battery body by laminating the electrolyte plate, the separator and the external terminal plate as described above is in a softened state at the operating temperature of the battery or at the operating temperature. Those that have the above softening temperature and solidify at the operating temperature, and that have corrosion resistance to the source gas and the generated gas such as the fuel gas and the oxidant gas at the operating temperature, for example, the fuel gas is hydrogen. When oxygen or air is used as the oxidant gas, it is not particularly limited as long as it has resistance to reduction, resistance to oxidation and resistance to water vapor, but has a softening point of 500 ° C or higher, preferably 600 ° C to 12 ° C.
Glass at 00 ° C is preferred. Examples of such glass include soda lime glass, borate glass, borosilicate glass, and aluminosilicate glass. These glasses are used in the form of plates and felts, or they are dispersed in an organic material such as an organic binder to form a paste, which is applied to the required sealing part, and after assembling a battery, the organic material is burned out. Then, the glass may be restored.

【0020】軟化点が電池の作動温度(900〜110
0℃)以下のガラスとしては、電池の作動温度で粘度が
10〜10ポアズであるものが望ましい。また、軟
化点が電池の作動温度(900〜1100℃)以上のガ
ラスの場合には、一度軟化点以上の温度まで昇温した
後、作動温度まで降温して固化した状態でガスをシール
する。この場合、ガラスの熱膨張係数は6×10−6
12×10−6cm−1が望ましい。また、高温下、長
期間の使用とともにガラス相からより安定な結晶相へ相
転位するものであってもよい。
The softening point is the operating temperature of the battery (900 to 110).
It is desirable that the glass having a temperature of 0 ° C. or less has a viscosity of 10 2 to 10 7 poise at the operating temperature of the battery. In the case of glass having a softening point higher than the operating temperature of the battery (900 to 1100 ° C.), the temperature is once raised to the softening point or higher, and then the temperature is lowered to the operating temperature to solidify the gas. In this case, the coefficient of thermal expansion of glass is 6 × 10 −6
12 × 10 −6 cm −1 is desirable. Further, it may be one that undergoes a phase transition from a glass phase to a more stable crystal phase with long-term use at high temperature.

【0021】上記封止剤の介在手段としては、例えば電
極を形成した固体電解質板及びセパレータの少なくとも
一方の表面に上記ペースト状のガラスすなわちガラスペ
ーストを塗布して積層する手段、電極を形成した固体電
解質板とセパレータの間に上記ガラスを挟持して積層す
る手段、電極を形成した固体電解質板及びセパレータの
少なくとも一方の表面に上記ガラスペーストを塗布し、
これらの間に上記ガラスを介在させて積層する手段など
が挙げられる。
Means for interposing the above-mentioned sealant include, for example, means for applying and laminating the above paste-like glass, that is, glass paste, on at least one surface of a solid electrolyte plate and a separator on which electrodes are formed, and a solid for which electrodes are formed. Means for sandwiching and laminating the glass between the electrolyte plate and the separator, applying the glass paste on at least one surface of the solid electrolyte plate and the separator on which the electrode is formed,
Means for laminating with the glass interposed therebetween may be used.

【0022】また、ガスリーク防止用封止剤を有機物質
に分散させてペースト状として用いる場合には、該ペー
スト状物を所要の封止部に塗布し、電池を組み立てたの
ち、該有機物質を乾燥、蒸発あるいはバーンアウトによ
り除去してガスリーク防止用封止材を復元させるように
する。
When the sealing agent for preventing gas leak is dispersed in an organic substance to be used as a paste, the paste is applied to a required sealing portion to assemble a battery, and then the organic substance is added. The sealing material for gas leak prevention is restored by removing it by drying, evaporation or burnout.

【0023】次に、本発明方法においては、こうして組
み立てられた電池本体すなわち積層多段セルはマニホー
ルド内へ収容される。このマニホールドは、その内面
と、これに内接するセルの周面とにより仕切られた四室
が燃料ガス及び酸化剤ガスの供給、排出空間となってガ
ス通路の形成部材となるとともに外壁にもなる構造を有
する。
Next, in the method of the present invention, the battery body thus assembled, that is, the laminated multi-stage cell is housed in the manifold. In this manifold, four chambers, which are partitioned by the inner surface of the manifold and the peripheral surface of the cell inscribed therein, serve as a space for supplying and discharging the fuel gas and the oxidant gas, which serves as a gas passage forming member and also serves as an outer wall. Have a structure.

【0024】マニホールドは通常筒部と筒部を受ける底
部と蓋からなるが、筒部と底部を一体化してもよい。マ
ニホールドの筒部の形状は電池本体の形状に応じ適宜選
定されるが、通常はセルが正方形状であるので、円筒状
であり、その他、矩形状セルに対しては円筒状の他、横
断面が長円状、楕円状、紡錘状のものなどが用いられ、
また円形状セルに対しては正方形状のものが用いられ
る。
The manifold is usually composed of a tubular portion, a bottom portion for receiving the tubular portion, and a lid, but the tubular portion and the bottom portion may be integrated. The shape of the cylinder part of the manifold is appropriately selected according to the shape of the battery main body, but since the cells are usually square, it is cylindrical, and for rectangular cells, other than cylindrical, cross-section is also possible. Are oval, elliptical, spindle-shaped, etc.
A square cell is used for the circular cell.

【0025】セル形状が方形状のものの場合には、マニ
ホールドの筒部内側に直接あるいは付設した部材を介し
て間接的に溝を設けるのが好ましい。このように、筒部
内面あるいは付設部材に設けられた溝にセルの四隅がは
まり込みセルがマニホールドに嵌装状態で納められる。
このように、マニホールド内面あるいはマニホールドに
付設した部材面に溝を設けてセルとの接触シールを面間
で行わせることにより、ガスシール性及びシール材の保
持性を高めることができる。
When the cell has a rectangular shape, it is preferable to form the groove directly inside the cylindrical portion of the manifold or indirectly through a member attached thereto. In this manner, the four corners of the cell are fitted into the groove provided on the inner surface of the tubular portion or the additional member, and the cell is fitted into the manifold and stored.
As described above, by providing the groove on the inner surface of the manifold or the surface of the member attached to the manifold to perform the contact sealing with the cell between the surfaces, the gas sealing property and the retention property of the sealing material can be improved.

【0026】また、マニホールドの蓋は特に制限され
ず、例えば筒部の上端に載置し封止するタイプのものな
どでもよいが、好ましくは落し蓋が用いられる。落し蓋
とすると、セルの高さにかかわらず、セルとマニホール
ドの蓋との間にすきまが生じないため、ガスシールが良
好になる上に、セルの積層段数の増減にも対応すること
ができる。さらに落し蓋の上から荷重をかけることによ
り、セル本体に荷重を伝達することが可能となり、セル
部材間の接触性を向上し、抵抗を低減することにより、
セル出力の向上を図ることができる。この落し蓋には筒
部の溝に対応してはまり込むように突起が設けられる
か、あるいは溝を設けた部材の形状に対応するように切
込みが加工されている。さらに、ガスシールをより完全
なものとするため、マニホールドの筒部内面と落し蓋の
周縁部の間に封止剤を介在させるのがよい。また、底部
には筒部等の互いに隣合う溝のほぼ中間に位置するよう
に各ガスの供給及び排出管を設けるのが好ましい。
The lid of the manifold is not particularly limited, and may be, for example, a type that is placed on the upper end of the tubular portion and sealed, but a drop lid is preferably used. When the drop lid is used, a gap is not created between the cell and the lid of the manifold regardless of the height of the cell, so that the gas seal is improved and the number of stacked layers of the cell can be increased or decreased. By applying a load from the top of the drop lid, it becomes possible to transfer the load to the cell body, improve the contact between the cell members, and reduce the resistance.
The cell output can be improved. The drop lid is provided with a protrusion so as to fit into the groove of the cylindrical portion, or a notch is formed so as to correspond to the shape of the member provided with the groove. Furthermore, in order to make the gas seal more complete, it is preferable to interpose a sealant between the inner surface of the cylindrical portion of the manifold and the peripheral portion of the drop lid. Further, it is preferable to provide a supply and discharge pipe for each gas in the bottom portion so as to be positioned approximately in the middle of adjacent grooves such as a cylindrical portion.

【0027】また、本発明は上記の本発明方法で製作し
た固体電解質型燃料電池組立体も包含する。
The present invention also includes a solid oxide fuel cell assembly manufactured by the above method of the present invention.

【0028】[0028]

【実施例】本発明の実施例を図面について説明すると、
図1において、電解質板11にはイットリアを3モル%
添加したジルコニアである部分安定化ジルコニアからな
る厚さ0.2mm、大きさ50×50mmの板状物を用
い、この片面にニッケルとジルコニアとの混合粉末(重
量比1:1)をプラズマ溶射材としてプラズマ電流40
0アンペア、溶射圧力300トールで溶射したのち、そ
の溶射層の上にニッケル−ジルコニア サーメット(N
i:ジルコニア=10:1重量比)を塗布してアノード
13とした。また、他面に3モル%のイットリウムを含
むジルコニアの粉末をプラズマ溶射材としてアノード側
と同一条件で溶射したのち、その溶射層の上にLa
0.9r0.1MnO粉末を塗布してカソード12
とした。
Embodiments of the present invention will now be described with reference to the drawings.
In FIG. 1, the electrolyte plate 11 contains 3 mol% of yttria.
A plate-like material having a thickness of 0.2 mm and a size of 50 × 50 mm made of partially stabilized zirconia which is added zirconia was used, and a mixed powder of nickel and zirconia (weight ratio 1: 1) was plasma-sprayed on one surface of the plate-shaped material. Plasma current as 40
After spraying at 0 ampere and a spraying pressure of 300 Torr, nickel-zirconia cermet (N
i: zirconia = 10: 1 weight ratio) was applied to form the anode 13. After zirconia powder containing 3 mol% of yttrium was sprayed on the other surface as a plasma spray material under the same conditions as on the anode side, La was deposited on the sprayed layer.
0.9 S r0.1 MnO 3 powder was applied to the cathode 12
And

【0029】また、セパレータ14及び外部端子板15
はニツケル基合金からなる板状物を用い、これをグライ
ンデイング加工して所要の複数の平行な溝を形成した。
Further, the separator 14 and the external terminal plate 15
Used a plate-like material made of nickel-base alloy and grinded it to form a plurality of required parallel grooves.

【0030】各電極を一体形成した電解質板の両面には
軟化点が約800℃のガラスペーストを塗布し、これを
セパレータ14及び外部端子板15と共に図1の集合様
式に従い集積して、3段直列セルからなる積層型燃料電
池本体を作製した。
A glass paste having a softening point of about 800 ° C. is applied to both surfaces of an electrolyte plate integrally formed with each electrode, which is integrated with a separator 14 and an external terminal plate 15 in accordance with the assembly mode of FIG. A laminated fuel cell body composed of series cells was produced.

【0031】こうして積層したセルを円筒部に溝加工を
施したマニホールドに収容した。
The cells thus laminated were housed in a manifold whose cylindrical portion was grooved.

【0032】図2にこのマニホールドの各部分の形状を
示す。円筒部21の内面はセルの四面が納まるような溝
加工部分22が形成されている。落し蓋23は円筒部2
1の溝加工部分22に対応してはまり込むように突起部
24が設けられている。底部25は互いに隣合う溝のほ
ぼ中間に位置するように各ガスの供給及び排出用の管2
6が設けられている。
FIG. 2 shows the shape of each part of this manifold. Grooved portions 22 are formed on the inner surface of the cylindrical portion 21 so that the four surfaces of the cell can be accommodated. The dropping lid 23 is the cylindrical portion 2.
A protruding portion 24 is provided so as to fit into the grooved portion 22 of No. 1. The bottom part 25 is located approximately in the middle of the grooves adjacent to each other so that the gas supply and discharge pipes 2
6 is provided.

【0033】図3にセルが納まる溝33を設けた部品3
2を円筒部31に設置した別のマニホールドの各部分の
形状を示す。落し蓋34は溝を設けた部材32の形状に
対応するように切込み35が加工されている。底部36
は互いに隣合う溝付き部材32のほぼ中間に位置するよ
うに各ガスの供給及び排出用の管37が設けられてい
る。
A component 3 having a groove 33 for accommodating a cell in FIG.
2 shows the shape of each part of another manifold in which 2 is installed in the cylindrical portion 31. The drop lid 34 is formed with a notch 35 so as to correspond to the shape of the member 32 having the groove. Bottom 36
Is provided with a pipe 37 for supplying and discharging each gas so as to be located approximately in the middle of the grooved members 32 adjacent to each other.

【0034】図4に円筒部43にセル41の四隅がはま
り込むような溝加工を施したマニホールドを用いた場合
のセルの設置方式の1例を示す。積層型セル41を底面
42の中央部に設置する。セルの四隅は円筒部43の溝
加工部分44にはまり込むようにする。これに上部より
落し蓋45を載せる。落し蓋45は円筒部43の加工部
分44に対応してはまり込むように突起部46が加工さ
れている。落し蓋45を用いることによってセル41の
高さとマニホールド円筒部43の高さは必ずしも一致さ
せなくてもガスの封止が可能になり、セルの積層段数の
変化にも対応することができる。
FIG. 4 shows an example of a cell installation method in the case of using a manifold in which grooves are formed in the cylindrical portion 43 so that the four corners of the cell 41 are fitted. The stacked cell 41 is installed at the center of the bottom surface 42. The four corners of the cell are fitted into the grooved portions 44 of the cylindrical portion 43. The lid 45 is dropped from above and placed on it. The drop lid 45 is formed with a protrusion 46 so as to fit into the processed portion 44 of the cylindrical portion 43. By using the drop cover 45, the gas can be sealed even if the height of the cell 41 and the height of the manifold cylindrical portion 43 do not necessarily match, and it is possible to cope with a change in the number of stacked layers of the cell.

【0035】マニホールドとセルの接触面はすべてガラ
スで封止される。底面42とセル41間、落し蓋45と
セル41間及び円筒部43の溝加工部分44とセル41
間との封止には電解質板とセパレータの間の封止と同様
に軟化点が約800℃のガラスペーストを挟み込んだ。
ガラスはセルの作動温度の1000℃付近で軟化し、ガ
スのリークを防ぐ。溝加工していない場合よりも封止材
の保持性が向上し、ガスのリークが減少する。電気の取
り出し部には白金リード線を溶接し、電気的に接続し
た。
All the contact surfaces of the manifold and the cells are sealed with glass. Between the bottom surface 42 and the cell 41, between the drop lid 45 and the cell 41, and between the grooved portion 44 of the cylindrical portion 43 and the cell 41.
Similar to the sealing between the electrolyte plate and the separator, a glass paste having a softening point of about 800 ° C. was sandwiched between the space and the space.
The glass softens near the cell operating temperature of 1000 ° C. to prevent gas leakage. The retention of the sealing material is improved and the gas leakage is reduced as compared with the case where the groove is not processed. A platinum lead wire was welded to the electrical outlet to electrically connect it.

【0036】このようにして作製した固体電解質型燃料
電池を加熱した。室温から350℃までは5℃/min
で昇温させ、ガラスペーストの溶媒、塗布電極の溶媒を
蒸発させた。350℃以上では水素通路側にアノードの
酸化を防止するため、窒素ガスを流し、5℃/minで
1000℃まで昇温した。その後、1000℃に保持し
てアノード側に水素、カソード側に酸素を流し、発電を
開始した。開放電圧は3.8Vでガスクロスリークは水
素の0.1%以下であった。最大出力は10Wであっ
た。このセルの抵抗は180mΩであった。
The solid oxide fuel cell thus manufactured was heated. 5 ℃ / min from room temperature to 350 ℃
The temperature of the glass paste and the solvent of the coating electrode were evaporated. At 350 ° C. or higher, in order to prevent oxidation of the anode on the hydrogen passage side, nitrogen gas was flown and the temperature was raised to 1000 ° C. at 5 ° C./min. Then, the temperature was maintained at 1000 ° C., hydrogen was flown to the anode side and oxygen was flown to the cathode side to start power generation. The open circuit voltage was 3.8 V, and the gas cross leak was 0.1% or less of hydrogen. The maximum output was 10W. The resistance of this cell was 180 mΩ.

【0037】[0037]

【発明の効果】本発明方法によれば、簡単な製作工程で
組立容易かつ安価に固体電解質型燃料電池を作製するこ
とができる。また、ガスシール性も良好である。
According to the method of the present invention, a solid oxide fuel cell can be manufactured easily and inexpensively by a simple manufacturing process. Moreover, the gas sealing property is also good.

【図面の簡単な説明】[Brief description of drawings]

【図1】 3段直列セル及びマニホールドの集合様式の
1例の説明図。
FIG. 1 is an explanatory diagram of an example of an assembly mode of a three-stage series cell and a manifold.

【図2】 円筒面に溝加工を施したマニホールドの1例
の説明図。
FIG. 2 is an explanatory view of an example of a manifold in which a cylindrical surface is grooved.

【図3】 溝加工を施した付設部材を有するマニホール
ドの1例の説明図。
FIG. 3 is an explanatory view of an example of a manifold having a grooved attachment member.

【図4】 セルをマニホールドに収納して完成品とした
燃料電池の説明図。
FIG. 4 is an explanatory view of a fuel cell, which is a completed product in which cells are housed in a manifold.

【符号の説明】[Explanation of symbols]

11 電解質板 12 カソード 13 アノード 14 セパレータ 15 外部端子板 16,21,31,43 円筒部 22,33,44 溝加工部分 18,23,34,45 落し蓋 24,46 突起部 17,25,36,42 底部 32 溝付き部材 35 切込み 41 セル 11 Electrolyte plate 12 Cathode 13 Anode 14 Separator 15 External terminal plate 16, 21, 31, 43 Cylindrical part 22, 33, 44 Groove processing part 18, 23, 34, 45 Dropping lid 24, 46 Projection part 17, 25, 36, 42 Bottom 32 Grooved member 35 Notch 41 Cell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻田 智 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Sakurada 1-3-1, Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Tonen Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2枚の固体電解質板の両面に
プラズマ溶射あるいは塗布により一対の電極を一体に形
成させることにより電極付き固体電解質板を作成し、別
に上記固体電解質板の枚数より1枚少ない、ガスリーク
のないち密な導電板の両面にグラインデイングにより複
数の平行溝加工を片面と他面の溝が互いに交差方向とな
るように施してそれぞれ燃料ガス及び酸化剤ガスのガス
流路を形成させたセパレータを作成し、さらに別にガス
リークのないち密な2枚の導電板の片面にグラインデイ
ングにより複数の平行溝加工を施してそれぞれ酸化剤ガ
スのガス流路及び燃料ガスのガス流路を形成させること
により両外部端子板を作成したのち、これら各部材を所
定の順にガスリーク防止用封止剤を介在させて積層して
多段セルとし、次いでこれをマニホールド内に収納し、
多段セルとマニホールドとの接合所要箇所にガスリーク
防止用封止剤を介在させることを特徴とする固体電解質
型燃料電池の製造方法。
1. A solid electrolyte plate with electrodes is formed by integrally forming a pair of electrodes on both surfaces of at least two solid electrolyte plates by plasma spraying or coating, and the solid electrolyte plate is made one less than the number of solid electrolyte plates. Grinding multiple parallel grooves on both sides of a dense conductive plate with no gas leak so that the grooves on one side and the other side are in the intersecting direction to form gas flow paths for fuel gas and oxidant gas, respectively. Separately, a plurality of parallel grooves are formed by grinding on one surface of two dense conductive plates with no gas leak to form a gas flow path for oxidant gas and a gas flow path for fuel gas, respectively. After making both external terminal boards by doing so, these respective members are laminated in a predetermined order with a gas leak preventing sealant interposed to form a multi-stage cell. Then store this in the manifold,
A method for manufacturing a solid oxide fuel cell, characterized in that a sealant for preventing gas leak is interposed at a required position for joining the multi-stage cell and the manifold.
【請求項2】 ガスリーク防止用封止剤が軟化温度50
0℃以上、作動温度における粘度10〜10ポイズ
のガラスである請求項1記載の方法。
2. The softening temperature of the sealant for preventing gas leakage is 50.
The method according to claim 1, which is a glass having a viscosity of 10 2 to 10 7 poise at an operating temperature of 0 ° C. or higher.
【請求項3】 ガスリーク防止用封止剤が作動温度以上
の軟化温度を有し、作動温度で固化するガラスである請
求項1記載の方法。
3. The method according to claim 1, wherein the sealant for preventing gas leak is glass having a softening temperature equal to or higher than an operating temperature and solidifying at the operating temperature.
【請求項4】 ガスリーク防止用封止剤が、それを有機
物質に分散させたペースト状のものを所要の封止部に塗
布し、電池を組み立てたのち、該有機物質を乾燥、蒸発
あるいはバーンアウトにより除去して復元される請求項
1、2又は3記載の方法。
4. A sealant for gas leak prevention, which is a paste in which an organic substance is dispersed, is applied to a required sealing portion to assemble a battery, and then the organic substance is dried, evaporated or burned. The method according to claim 1, 2 or 3, wherein the method is to remove and restore by out.
【請求項5】 塗布により形成させた電極を乾燥、蒸発
あるいはバーンアウトしてバインダー及び/又は媒体を
除去する請求項1ないし4のいずれかに記載の方法。
5. The method according to claim 1, wherein the electrode formed by coating is dried, evaporated or burned out to remove the binder and / or the medium.
【請求項6】 少なくとも2枚の固体電解質板の両面に
プラズマ溶射あるいは塗布により一対の電極を一体に形
成させることにより電極付き固体電解質板を作成し、別
に上記固体電解質板の枚数より1枚少ない、ガスリーク
のないち密な導電板の両面にグラインデイングにより複
数の平行溝加工を片面と他面の溝が互いに交差方向とな
るように施してそれぞれ燃料ガス及び酸化剤ガスのガス
流路を形成させたセパレータを作成し、さらに別にガス
リークのないち密な2枚の導電板の片面にグラインデイ
ングにより複数の平行溝加工を施してそれぞれ酸化剤ガ
スのガス流路及び燃料ガスのガス流路を形成させること
により両外部端子板を作成したのち、これら各部材を所
定の順にガスリーク防止用封止剤を介在させて積層して
多段セルとし、次いでこれをマニホールド内に収納し、
多段セルとマニホールドとの接合所要箇所にガスリーク
防止用封止剤を介在させて製作した固体電解質型燃料電
池組立体。
6. A solid electrolyte plate with electrodes is formed by integrally forming a pair of electrodes by plasma spraying or coating on both surfaces of at least two solid electrolyte plates, and the number of the solid electrolyte plates is one less than the above. Grinding multiple parallel grooves on both sides of a dense conductive plate with no gas leak so that the grooves on one side and the other side are in the intersecting direction to form gas flow paths for fuel gas and oxidant gas, respectively. Separately, a plurality of parallel grooves are formed by grinding on one surface of two dense conductive plates with no gas leak to form a gas flow path for oxidant gas and a gas flow path for fuel gas, respectively. After making both external terminal boards by doing so, these respective members are laminated in a predetermined order with a gas leak preventing sealant interposed to form a multi-stage cell. Then store this in the manifold,
A solid oxide fuel cell assembly manufactured by interposing a gas leak preventing sealant at a required position for joining a multi-stage cell and a manifold.
JP3124415A 1991-04-30 1991-04-30 Manufacture of solid electrolytic type fuel cell and fuel cell assembly Pending JPH06111845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3124415A JPH06111845A (en) 1991-04-30 1991-04-30 Manufacture of solid electrolytic type fuel cell and fuel cell assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3124415A JPH06111845A (en) 1991-04-30 1991-04-30 Manufacture of solid electrolytic type fuel cell and fuel cell assembly

Publications (1)

Publication Number Publication Date
JPH06111845A true JPH06111845A (en) 1994-04-22

Family

ID=14884914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3124415A Pending JPH06111845A (en) 1991-04-30 1991-04-30 Manufacture of solid electrolytic type fuel cell and fuel cell assembly

Country Status (1)

Country Link
JP (1) JPH06111845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191787A1 (en) * 2016-05-06 2017-11-09 住友精密工業株式会社 Method for manufacturing fuel cell, and fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191787A1 (en) * 2016-05-06 2017-11-09 住友精密工業株式会社 Method for manufacturing fuel cell, and fuel cell
JPWO2017191787A1 (en) * 2016-05-06 2019-01-10 住友精密工業株式会社 Fuel cell manufacturing method and fuel cell

Similar Documents

Publication Publication Date Title
US7740966B2 (en) Electrochemical cell stack assembly
JP4515028B2 (en) Fuel cell
JP4236298B2 (en) Solid oxide fuel cell with honeycomb integrated structure
JPH0660891A (en) Sealing material for fuel cell
JP3166888B2 (en) Solid oxide fuel cell stack
JP3547062B2 (en) Sealing material for fuel cells
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JPH06111845A (en) Manufacture of solid electrolytic type fuel cell and fuel cell assembly
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JPH05174846A (en) Solid electrolyte type fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH06150958A (en) Solid electrolyte fuel cell
JPH06196186A (en) High temperature type fuel cell
JP3301558B2 (en) Flat solid electrolyte fuel cell
JPH05174844A (en) Solid electrolyte type fuel cell
JPH11297342A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JPH0412468A (en) High-temperature fuel cell
JPH10189023A (en) Solid electrolyte fuel cell having honeycomb monolithic structure
JP3105052B2 (en) Method of forming fuel electrode for solid oxide fuel cell
JPH06111846A (en) High-temperature type fuel cell
JPH05174836A (en) Forming method for fuel electrode of solid electrolytic fuel cell
JP2000306590A (en) Solid electrolyte fuel cell
JP3101358B2 (en) Solid oxide fuel cell separator
JPH0412467A (en) High-temperature type fuel cell