WO2017188108A1 - Etchant, and method for producing electronic substrate - Google Patents

Etchant, and method for producing electronic substrate Download PDF

Info

Publication number
WO2017188108A1
WO2017188108A1 PCT/JP2017/015834 JP2017015834W WO2017188108A1 WO 2017188108 A1 WO2017188108 A1 WO 2017188108A1 JP 2017015834 W JP2017015834 W JP 2017015834W WO 2017188108 A1 WO2017188108 A1 WO 2017188108A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
acid
nickel
etching
etching solution
Prior art date
Application number
PCT/JP2017/015834
Other languages
French (fr)
Japanese (ja)
Inventor
俊貴 児島
祥平 佐藤
勝川 吉隆
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to KR1020187028592A priority Critical patent/KR101988817B1/en
Priority to CN201780013656.9A priority patent/CN108699706B/en
Priority to JP2018514544A priority patent/JP6818017B2/en
Publication of WO2017188108A1 publication Critical patent/WO2017188108A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/067Etchants

Definitions

  • the present invention relates to an etching solution capable of selectively removing copper and / or a copper alloy from a base material having copper and / or a copper alloy and nickel and / or a nickel alloy, and an electronic substrate using the etching solution. It is related with the manufacturing method.
  • Integrated circuit manufacturing is composed of various processing steps in multiple stages. In the manufacturing process, deposition of various materials, lithography, etching, and the like are repeated many times. Among them, etching is an important process. Certain materials must be selectively etched, and other materials must remain without being corroded. In some cases, it is required to remove only a predetermined layer while leaving layers made of similar metal species or layers made of a more corrosive material. The size of wirings and integrated circuits in a semiconductor substrate is becoming increasingly smaller, and the importance of performing accurate etching without corroding the members to be left is increasing.
  • a process in which copper is used as an electrode includes a process of forming a hole in a silicon substrate and forming a barrier metal layer such as a silicon oxide film and titanium on the inner wall of the hole.
  • Patent Document 1 an etchant in which toluenesulfonic acid is added
  • Patent Document 2 an etchant made of an acid and an oxidizing agent such as a mixed solution of sulfuric acid and hydrogen peroxide
  • Patent Document 3 An etchant containing no cupric chloride or ferric chloride without containing a peroxide
  • An object of this invention is to provide the etching liquid which can selectively remove copper and / or a copper alloy from the base material which has copper and / or a copper alloy, and nickel and / or a nickel alloy.
  • etching solution of the present invention copper and / or copper alloy can be etched rapidly, and nickel and / or nickel alloy is not substantially corroded. Therefore, by using the etching solution of the present invention, copper and / or a copper alloy can be selectively etched from copper and / or a copper alloy and a substrate having nickel and / or a nickel alloy.
  • FIG. 6 is a process chart schematically showing an example of a resist resin removing process in the method for manufacturing an electronic substrate of the present invention.
  • FIG. 7 is a process diagram schematically showing an example of an etching process in the method for manufacturing an electronic substrate of the present invention.
  • FIG. 8 is a process diagram schematically showing an example of a barrier metal layer removing process in the method for manufacturing an electronic substrate of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing a cross section of the test base material of the example.
  • FIG. 10 is a cross-sectional view schematically showing the test substrate after etching.
  • FIG. 11 is a cross-sectional view schematically showing a test base material in which a nickel layer is eroded by etching.
  • the etching solution of the present invention is an etching solution containing an organic acid (A) and an oxidizing agent (B), and the acid dissociation constant (pKa) of the organic acid (A) is ⁇ 1.10 to 2.60.
  • the first corrosion potential measured using nickel as the working electrode, Ag / AgCl filled with a saturated KCl solution as the reference electrode, and the etching solution as the electrolyte solution is 0.1 V or more and 0.5 V or less. It is characterized by being.
  • the etching solution of the present invention is used for a substrate having copper and / or a copper alloy and nickel or a nickel alloy.
  • the base material include a base material having copper and / or a copper alloy and nickel or a nickel alloy on the surface of a silicon substrate such as an electronic substrate used for a semiconductor substrate and a flat panel display.
  • the copper and / or copper alloy which the base material has is a silicon substrate or the like by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), or plating.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • nickel and / or nickel alloy is formed on the surface of a silicon substrate or the like by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), or plating. can do.
  • the upper limit of the first corrosion potential measured using the etching solution of the present invention as the electrolyte solution, using nickel as the working electrode, and Ag / AgCl filled with a saturated KCl solution as the reference electrode is 0.5V, preferably 0.4V, and the lower limit is 0.1V, preferably 0.2V, and more preferably 0.3V.
  • the first corrosion potential is in the above range, the etching rate of copper and / or copper alloy is improved.
  • the acid dissociation constant (pKa) of the organic acid (A) is ⁇ 1.10 to 2.60.
  • the acid dissociation constant (pKa) of the organic acid (A) is preferably ⁇ 0.90 to 2.40, more preferably ⁇ 0.80 to 2 .30.
  • the “acid dissociation constant (pKa) of the organic acid” in this specification means the acid dissociation constant when the organic acid is ionized in the first stage. Means.
  • the value of the acid dissociation constant (pKa) of the organic acid is shown in Chemical Handbook (February 2004, Chemical Handbook, Basic Edition, Rev. 5 Edition, p.332-343), EVANS pKa Table (http: //evans.rc.fas.harvard) .Edu / pdf / evans_pKa_table.pdf) and the like, and the organic acids (A) may be organic acids exemplified below having the above acid dissociation constants.
  • Salts hydroxyethylethylenediaminetriacetic acid and its salt, nitrilotriacetic acid and its salt, 1,3-propanediaminetetraacetic acid and its salt, 1,3-diamino-2-hydroxypropanetetraacetic acid and its salt, hydroxyethyliminodi Examples include acetic acid and a salt thereof, glycol ether diamine tetraacetic acid and a salt thereof, dicarboxymethyl glutamic acid and a salt thereof, and ethylenediamine disuccinic acid and a salt thereof.
  • Examples of the organic acid (A-4) containing a carboxy group and a phosphono group and a salt thereof include phosphonobutanetricarboxylic acid and a salt thereof, 1-carboxyheptylphosphonic acid and a salt thereof, and the like.
  • Examples of the organic acid (A-5) having at least one sulfo group in the molecule and salts thereof include 10-camphor-sulfonic acid (CSA) and salts thereof.
  • CSA 10-camphor-sulfonic acid
  • organic acids (A-1) containing phosphono groups and salts thereof organic acids containing phosphate groups (A-2) and salts thereof.
  • organic acid (A-3) containing a carboxy group and a salt thereof more preferably an organic acid (A-1) containing a phosphono group and a salt thereof.
  • the etching solution of the present invention may contain one or more organic acids (A).
  • the content of the organic acid (A) is from the viewpoint of improving the etching rate of copper and / or copper alloy, and inhibiting corrosion of nickel and / or nickel alloy. Based on the total weight of the etching solution in use, it is preferably 0.1 to 50% by weight, more preferably 0.5 to 30% by weight, and particularly preferably 1 to 20% by weight.
  • the oxidizing agent (B) is hydrogen peroxide, AgNO 3 , KAuCl 4 , HAuCl 4 , K 2 PtCl 6 , H 2 PtCl 6 , Fe (NO 3 ) 3 , Ni (NO 3 ) 2.
  • nitric acid and its salts nitrous acid and its salts, hypochlorous acid and its salts, chlorous acid and its salts, chloric acid and its salts, perchloric acid and its salts, permanganic acid And a salt thereof, at least selected from the group consisting of persulfuric acid and a salt thereof, chromic acid and a salt thereof, dichromic acid and a salt thereof, peracetic acid and a salt thereof, percarbonate and a salt thereof, and urea peroxide and a salt thereof
  • One oxidant is preferred.
  • hydrogen peroxide is more preferable.
  • an aqueous solution of hydrogen peroxide can be used as the hydrogen peroxide. Hydrogen peroxide can increase the etching rate of copper and suppress the etching rate of nickel.
  • the content of the oxidizing agent (B) is selected from the viewpoints of improving the etching rate of copper and / or copper alloy and suppressing corrosion of nickel and / or nickel alloy. From 0.5 to 20% by weight, more preferably from 1 to 10% by weight, particularly preferably from 3 to 6% by weight, based on the total weight of the etching solution in use. is there.
  • the amine compound (C) is selected from the group consisting of a chain amine (C-1), a cyclic compound (C-2) containing one or more nitrogen atoms, and an amine alkylene oxide adduct (C-3).
  • a chain amine (C-1) include pentaethylated products of pentaethylenehexamine, hexamethylenediamine and triethylenetetramine.
  • amine oxide oxide adduct examples include cyclohexylamine propylene oxide 2 mol adduct, cyclohexylamine propylene oxide 10 mol adduct, aniline propylene oxide 5 mol adduct, triethanolamine, 1,2-bis [di (hydroxyethyl) amino] ethane, laurylamine EO 9 mol adduct, cyclohexylamine ethylene oxide 2 mol adduct, and the like.
  • the weight ratio of the oxidizing agent (B) to the amine compound (C) is the etching rate of copper and / or copper alloy, copper and / or Alternatively, from the viewpoint of the etching rate ratio between the copper alloy and nickel and / or nickel alloy and the foaming, it is preferably 0.1 to 1000, more preferably 1 to 500, and still more preferably 3 to 150.
  • antioxidant examples include catechin, tocopherol, catechol, methyl catechol, ethyl catechol, tert-butyl catechol, phenols such as gallic acid, methyl gallate, propyl gallate, 3-hydroxyflavone, ascorbic acid and the like.
  • pH adjuster examples include basic compounds. Specific examples include ammonia, tetraalkylammonium hydroxide, and nitrogen-containing heterocyclic compounds.
  • antifoaming agent examples include a silicone antifoaming agent, a long-chain alcohol defoaming agent, a fatty acid ester defoaming agent, a metal soap defoaming agent, and an ethylene oxide propylene oxide copolymer.
  • the manufacturing method of the electronic substrate of this invention includes an etching process, as long as the effect of this invention is not impaired, it may include what kind of other processes.
  • FIGS. 1A to 1C are process diagrams schematically showing an example of a substrate preparation process in the method for manufacturing an electronic substrate of the present invention.
  • a silicon substrate 10 having a planar portion 11 is prepared.
  • a hole is made in the flat part 11 of the silicon substrate 10, and the hole part 12 comprised from the bottom face 12a and the side surface 12b is formed.
  • the method for forming the hole 12 is not particularly limited, and a normal method such as a laser processing method or a drill processing method can be employed.
  • a silicon oxide layer 20 is formed on the flat surface portion 11 of the silicon substrate 10 and the bottom surface 12a and the side surface 12b of the hole 12, and a titanium layer 30 and a copper seed are formed thereon.
  • Layers 40 are sequentially stacked.
  • the silicon oxide layer 20, the titanium layer 30, and the copper seed layer 40 are sequentially formed in the hole 12, and the concave portion 2 having the copper seed layer 40 as the bottom surface 2a and the side surface 2b is formed.
  • the base material 1 in which the silicon oxide layer 20, the titanium layer 30, and the copper seed layer 40 are formed and the recess 2 is formed can be prepared.
  • FIG. 2 is a process chart schematically showing an example of a resist resin formation process in the method for manufacturing an electronic substrate of the present invention.
  • a resist is applied to the surface of the copper seed layer 40 so that the surface of the copper seed layer 40 between the edge 2 c of the recess 2 and a certain distance D 1 toward the outside of the recess 2 is exposed.
  • Resin 50 is formed.
  • the exposed portion of the copper seed layer 40 is denoted by reference numeral 41.
  • FIG. 3 is a process figure which shows typically an example of the copper plating layer formation process in the manufacturing method of the electronic substrate of this invention. Next, as shown in FIG. 3, copper plating is performed so that the concave portion 2 is filled and the exposed portion 41 of the copper seed layer 40 is covered, thereby forming a copper plating layer 60.
  • FIG. 4 is a process chart schematically showing an example of a nickel layer forming process in the method of manufacturing an electronic substrate of the present invention.
  • a nickel layer 70 is formed on the surface of the copper plating layer 60.
  • FIG. 6 is a process diagram schematically showing an example of the resist resin removal process in the method for manufacturing an electronic substrate of the present invention.
  • the resist resin 50 is removed.
  • the bump 90 which consists of the copper plating layer 60, the nickel layer 70, and the gold layer 80 is formed.
  • FIG. 7 is a process chart schematically showing an example of an etching process in the method for manufacturing an electronic substrate of the present invention.
  • the copper seed layer 40 is etched by causing the etching solution of the present invention to act on the substrate 1.
  • the titanium layer 30 is exposed.
  • the temperature of the etching solution used in this step is not particularly limited, but is preferably in the range of 10 to 100 ° C., more preferably 20 to 80 ° C. If the temperature of the etching solution is 10 ° C. or higher, it is preferable in terms of improving the etching rate, and if the temperature is 100 ° C. or lower, it is preferable in that the etching rate does not vary.
  • the time required for etching is preferably less than 10 minutes.
  • FIG. 8 is a process chart schematically showing an example of the barrier metal layer removal process in the method for manufacturing an electronic substrate of the present invention.
  • the titanium layer 30 is removed.
  • the bump 91 composed of the titanium layer 30, the copper seed layer 40, the copper plating layer 60, the nickel layer 70, and the gold layer 80 can be formed.
  • the base material 1 on which the bumps 91 are formed becomes the electronic substrate 100.
  • Examples 1 to 8 and Comparative Examples 1 to 4 According to Examples 1 to 8 and Comparative Examples 1 to 4, organic acids (A) of the types listed in Table 1, an oxidizing agent (B), an amine compound (C) and water were mixed in a polypropylene container. An etchant was obtained.
  • the measurement of the corrosion potential, the etching time of the copper seed layer, the etching amount of the copper seed layer and the corrosion amount of the nickel layer were performed by the following methods.
  • etching time of copper seed layer was evaluated by the time (min) until the gloss of the copper seed layer disappeared by the following operation method.
  • the resist resin removal step was performed to prepare a test substrate.
  • FIG. 9 is a cross-sectional view schematically showing a cross section of the test base material of the example.
  • the test base material 105 includes the base material 101 on which the pump 190 is formed.
  • the base material 101 is composed of a silicon base material 110 having a flat surface portion 111 and a hole portion 112, a silicon oxide layer 120, a titanium layer 130, and a copper seed layer 140.
  • a layer 120, a titanium layer 130, and a copper seed layer 140 are sequentially formed.
  • a recess 102 having a copper seed layer 140 as a bottom surface 102a and a side surface 102b is formed inside the hole 112. Further, the recess 102 is filled with a copper plating layer 160.
  • the copper plating layer 160 protrudes from the substrate 101 so as to cover the surface 141 of the copper seed layer 140 between the edge 102c of the concave portion 102 to a certain distance D 2 toward the outside of the recess 102. Further, a nickel layer 170 is laminated on the copper plating layer 160. The copper plating layer 160 and the nickel layer 170 protruding from the base material 101 form bumps 190.
  • the thickness of the copper seed layer 140 was 1 ⁇ m. Further, the width W 1 of the bump 190 was about 30 ⁇ m, and the height H 1 of the bump 190 was about 30 ⁇ m. The thickness of the nickel layer 170 was about 20 ⁇ m.
  • FIG. 10 is a cross-sectional view schematically showing the test substrate after etching.
  • the copper seed layer 140 constituting the bump 192 may be eroded and a void 145 may be generated. It is preferable that there is no such gap 145. That is, it is preferable that the copper seed layer 140 constituting the bump 192 is not eroded by etching.
  • the width of the gap 145 when the test substrate 105 was etched using the etching solution according to each example and each comparative example was measured and evaluated by the following operation methods.
  • test substrate 105 was prepared by the same method as described above in ⁇ Evaluation of etching time of copper seed layer>.
  • the etching solution according to each example and each comparative example was placed in a polypropylene container, and the test substrate 105 was immersed therein and stirred with a magnetic stirrer.
  • the surface of the test base material 105 is visually observed while being immersed in the liquid while stirring, and the gloss of copper on the entire surface of the copper seed layer 140 disappears, and the time 2 until the titanium layer 130 is visible.
  • the test substrate 105 was taken out from the etching solution after being immersed in the solution for twice the time.
  • FIG. 11 is a cross-sectional view schematically showing a test base material in which a nickel layer is eroded by etching.
  • the nickel layer 170 may be corroded (the broken line portion in FIG. 11 indicates the corroded nickel layer).
  • the nickel layer 170 is preferably not corroded by etching.
  • the corrosion amount of the nickel layer when the test substrate 105 was etched using the etching solution according to each example and each comparative example was measured and evaluated by the following operation methods.
  • a test substrate 105 was prepared by the same method as described above in ⁇ Evaluation of etching time of copper seed layer>.
  • the etching liquid according to each example and each comparative example was put in a container made of polypropylene, and the test substrate 105 was immersed therein and stirred with a magnetic stirrer.
  • the surface of the test base material 105 is visually observed while being immersed in the liquid while stirring, and the gloss of copper on the entire surface of the copper seed layer 140 disappears, and the time 2 until the titanium layer 130 is visible.
  • the test substrate 105 was taken out from the etching solution after being immersed in the solution for twice the time.
  • ⁇ ANAi ( ⁇ m) (thickness A1 of the nickel layer of the test substrate before immersion) ⁇ (thickness A2 of the nickel layer of the test substrate after immersion) (2)
  • the evaluation criteria are as follows. The results are shown in Table 1. A: Less than 0.1 ⁇ m ⁇ : 0.1 ⁇ m or more and less than 0.5 ⁇ m X: 0.5 ⁇ m or more
  • the copper seed layer can be etched quickly and in a sufficient amount. Furthermore, no substantial corrosion of the nickel layer was observed. Therefore, the copper seed layer could be selectively etched.
  • the etching solution of the present invention is excellent in that etching of copper and / or copper alloy can be selectively performed on a substrate having copper and / or copper alloy and nickel and / or nickel alloy. Therefore, it is useful as a chemical for a process when manufacturing an electronic substrate such as a printed wiring board, a flat panel display, a MEMS, and a semiconductor device.
  • Base material 2 102 Recess 2a, 102a Recess bottom 2b, 102b Recess side 2c, 102c Recess edge 10, 110 Silicon substrate 12, 112 Hole 12a, 112a Hole bottom 12b, 112b Hole side 20 , 120 Silicon oxide layer 30, 130 Titanium layer 40, 140 Copper seed layer 41 Exposed portion 50 of copper seed layer Resist resin 60, 160 Copper plating layer 70, 170 Nickel layer 80 Gold layer 90, 91, 190 Bump 105 Test substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)

Abstract

The purpose of the present invention is to provide an etchant which can be used to selectively remove copper and/or a copper alloy from a substrate including copper and/or a copper alloy, and nickel and/or a nickel alloy. The etchant according to the present invention is for etching a substrate having copper and/or a copper alloy, and nickel and/or a nickel alloy, to remove the copper and/or the copper alloy, and contains an organic acid (A) and an oxidizer (B). The organic acid (A) has an acid dissociation constant (pKa) of -1.10 to 2.60. A first corrosion potential as measured using nickel as a working electrode, Ag/AgCl filled with a saturated KCl solution as a reference electrode, and the etchant as an electrolyte solution is 0.1-0.5 V.

Description

エッチング液及び電子基板の製造方法Etching solution and method for manufacturing electronic substrate
本発明は、銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する基材から、銅及び/又は銅合金を選択的に除去することができるエッチング液及び該エッチング液を用いた電子基板の製造方法に関するものである。 The present invention relates to an etching solution capable of selectively removing copper and / or a copper alloy from a base material having copper and / or a copper alloy and nickel and / or a nickel alloy, and an electronic substrate using the etching solution. It is related with the manufacturing method.
集積回路の製造は多段階の様々な加工工程で構成されている。その製造過程では、様々な材料の堆積、リソグラフィ、エッチング等が幾度も繰り返される。なかでも、エッチングは重要なプロセスとなる。特定の材料を選択的にエッチングし、その他の材料については腐食させることなく残存させなければならない。場合によっては、類似した金属種からなる層同士や、より腐食性の高い材料からなる層を残す形態で所定の層のみを除去することが求められる。半導体基板内の配線や集積回路のサイズは益々小さくなり、残すべき部材を腐食することなく正確にエッチングを行う重要性は高まっている。 Integrated circuit manufacturing is composed of various processing steps in multiple stages. In the manufacturing process, deposition of various materials, lithography, etching, and the like are repeated many times. Among them, etching is an important process. Certain materials must be selectively etched, and other materials must remain without being corroded. In some cases, it is required to remove only a predetermined layer while leaving layers made of similar metal species or layers made of a more corrosive material. The size of wirings and integrated circuits in a semiconductor substrate is becoming increasingly smaller, and the importance of performing accurate etching without corroding the members to be left is increasing.
半導体デバイスの配線形成のTSV(Through Silicon Via)技術において銅を電極とする場合の工程は、シリコン基板に孔を空け、孔の内壁にシリコン酸化膜、チタン等のバリヤメタル層を作成する工程と、有機金属気相成長法や物理的気相成長法により銅シ-ド層を作成する工程と、電極を形成する部位以外の銅シ-ド層の上にレジスト樹脂により保護膜を形成する工程と、保護膜が形成されていない部分に銅などの金属を埋め込みバンプの形成を行う工程からなる。銅シ-ド層とバリヤメタル層はシリコン基板の孔の内部だけでなくシリコン基板表面にも形成されており、レジストを除去した後も残ったままである。このため、シリコン基板表面から銅シ-ド層とバリヤメタル層を、エッチング液により除去しなければならない。 In the TSV (Through Silicon Via) technology for forming a wiring of a semiconductor device, a process in which copper is used as an electrode includes a process of forming a hole in a silicon substrate and forming a barrier metal layer such as a silicon oxide film and titanium on the inner wall of the hole. A step of forming a copper seed layer by metal organic vapor phase epitaxy or physical vapor deposition, and a step of forming a protective film by a resist resin on the copper seed layer other than the portion where the electrode is to be formed; And a step of forming a bump by embedding a metal such as copper in a portion where the protective film is not formed. The copper seed layer and the barrier metal layer are formed not only inside the hole of the silicon substrate but also on the surface of the silicon substrate, and remain after the resist is removed. For this reason, the copper seed layer and the barrier metal layer must be removed from the surface of the silicon substrate with an etching solution.
このようなエッチング液として、硝酸および塩酸に加え、トルエンスルホン酸を加えたエッチング液(特許文献1)、硫酸と過酸化水素混合液などの酸と酸化剤からなるエッチング液(特許文献2)、過酸化物を含まず塩化第二銅や塩化第二鉄を含むエッチング液(特許文献3)等が知られている。 As such an etchant, in addition to nitric acid and hydrochloric acid, an etchant in which toluenesulfonic acid is added (Patent Document 1), an etchant made of an acid and an oxidizing agent such as a mixed solution of sulfuric acid and hydrogen peroxide (Patent Document 2), An etchant containing no cupric chloride or ferric chloride without containing a peroxide (Patent Document 3) is known.
国際公開第2012/125401号International Publication No. 2012/125401 特開2000-286531号公報JP 2000-286531 A 国際公開第2013/5631号International Publication No. 2013/5631
しかしながら特許文献1~3のようなエッチング方法では、電子基板に形成された銅シード層をバンプ形成後にエッチングする場合、バンプ形成のために使用したニッケルも腐食されてしまうため、バンプが変形するという問題があった。 However, in the etching methods as described in Patent Documents 1 to 3, when the copper seed layer formed on the electronic substrate is etched after the bump formation, the nickel used for the bump formation is also corroded, so that the bump is deformed. There was a problem.
本発明は、銅及び/又は銅合金、並びに、ニッケル及び/又はニッケル合金を有する基材から、銅及び/又は銅合金を選択的に除去することができるエッチング液の提供を目的とする。 An object of this invention is to provide the etching liquid which can selectively remove copper and / or a copper alloy from the base material which has copper and / or a copper alloy, and nickel and / or a nickel alloy.
本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
すなわち、本発明のエッチング液は、銅及び/又は銅合金とニッケル又はニッケル合金とを有する基材から、前記銅及び/又は銅合金をエッチングするエッチング液であって、前記エッチング液は、有機酸(A)及び酸化剤(B)を含有し、前記有機酸(A)の酸解離定数(pKa)が-1.10~2.60であり、作用電極としてニッケルを用い、参照電極として飽和KCl溶液で充填したAg/AgClを用い、電解質溶液として前記エッチング液を用いて測定した第1腐食電位が0.1V以上、0.5V以下であることを特徴とする。
本発明の電子基板の製造方法は、銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する電子基板の製造方法であって、銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する基材に、請求項1~7のいずれかに記載のエッチング液を用いて前記銅及び/又は銅合金をエッチングするエッチング工程を含むことを特徴とする。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the etching solution of the present invention is an etching solution for etching copper and / or a copper alloy from a base material having copper and / or a copper alloy and nickel or a nickel alloy, and the etching solution is an organic acid. (A) and an oxidizing agent (B), the acid dissociation constant (pKa) of the organic acid (A) is −1.10 to 2.60, nickel is used as a working electrode, and saturated KCl is used as a reference electrode. The first corrosion potential measured using the etching solution as an electrolyte solution using Ag / AgCl filled with a solution is 0.1 V or more and 0.5 V or less.
The method for producing an electronic substrate of the present invention is a method for producing an electronic substrate having copper and / or a copper alloy and nickel and / or a nickel alloy, wherein copper and / or a copper alloy and nickel and / or a nickel alloy are used. An etching step of etching the copper and / or copper alloy using the etching solution according to any one of claims 1 to 7 is included in the base material having the substrate.
本発明のエッチング液を使用すると、銅及び/又は銅合金を速やかにエッチングすることができ、また、ニッケル及び/又はニッケル合金は実質的に腐食されない。
したがって、本発明のエッチング液を使用することにより、銅及び/又は銅合金、並びに、ニッケル及び/又はニッケル合金を有する基材から、銅及び/又は銅合金を選択的にエッチングすることができる。
When the etching solution of the present invention is used, copper and / or copper alloy can be etched rapidly, and nickel and / or nickel alloy is not substantially corroded.
Therefore, by using the etching solution of the present invention, copper and / or a copper alloy can be selectively etched from copper and / or a copper alloy and a substrate having nickel and / or a nickel alloy.
図1(a)~(c)は、本発明の電子基板の製造方法における基材準備工程の一例を模式的に示す工程図である。1A to 1C are process diagrams schematically showing an example of a base material preparation process in the method for manufacturing an electronic substrate of the present invention. 図2は、本発明の電子基板の製造方法におけるレジスト樹脂形成工程の一例を模式的に示す工程図である。FIG. 2 is a process chart schematically showing an example of a resist resin forming process in the method for manufacturing an electronic substrate of the present invention. 図3は、本発明の電子基板の製造方法における銅めっき層形成工程の一例を模式的に示す工程図である。FIG. 3 is a process diagram schematically showing an example of a copper plating layer forming process in the method for manufacturing an electronic substrate of the present invention. 図4は、本発明の電子基板の製造方法におけるニッケル層形成工程の一例を模式的に示す工程図である。FIG. 4 is a process chart schematically showing an example of a nickel layer forming process in the method for manufacturing an electronic substrate of the present invention. 図5は、本発明の電子基板の製造方法における金層形成工程の一例を模式的に示す工程図である。FIG. 5 is a process diagram schematically showing an example of a gold layer forming process in the method for manufacturing an electronic substrate of the present invention. 図6は、本発明の電子基板の製造方法におけるレジスト樹脂除去工程の一例を模式的に示す工程図である。FIG. 6 is a process chart schematically showing an example of a resist resin removing process in the method for manufacturing an electronic substrate of the present invention. 図7は、本発明の電子基板の製造方法におけるエッチング工程の一例を模式的に示す工程図である。FIG. 7 is a process diagram schematically showing an example of an etching process in the method for manufacturing an electronic substrate of the present invention. 図8は、本発明の電子基板の製造方法におけるバリヤメタル層除去工程の一例を模式的に示す工程図である。FIG. 8 is a process diagram schematically showing an example of a barrier metal layer removing process in the method for manufacturing an electronic substrate of the present invention. 図9は、実施例のテスト基材の断面を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a cross section of the test base material of the example. 図10は、エッチング後のテスト基材を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing the test substrate after etching. 図11は、エッチングによりニッケル層が浸食されたテスト基材を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a test base material in which a nickel layer is eroded by etching.
本発明のエッチング液は、有機酸(A)及び酸化剤(B)を含有するエッチング液であって、前記有機酸(A)の酸解離定数(pKa)が-1.10~2.60であり、作用電極としてニッケルを用い、参照電極として飽和KCl溶液で充填したAg/AgClを用い、電解質溶液として前記エッチング液を用いて測定した第1腐食電位が0.1V以上、0.5V以下であることを特徴とする。 The etching solution of the present invention is an etching solution containing an organic acid (A) and an oxidizing agent (B), and the acid dissociation constant (pKa) of the organic acid (A) is −1.10 to 2.60. Yes, the first corrosion potential measured using nickel as the working electrode, Ag / AgCl filled with a saturated KCl solution as the reference electrode, and the etching solution as the electrolyte solution is 0.1 V or more and 0.5 V or less. It is characterized by being.
本発明のエッチング液は銅及び/又は銅合金とニッケル又はニッケル合金とを有する基材に使用される。
基材としては、半導体用基板及びフラットパネルディスプレ-に使用される電子基板等のシリコン基板等の表面に銅及び/又は銅合金とニッケル又はニッケル合金を有する基材等が挙げられる。
また、基材が有する銅及び/又は銅合金は、化学気相成長法(CVD法)、物理的気相成長法(PVD法)、原子層堆積法(ALD法)、めっき法によりシリコン基板等の表面に形成することができる。
また、ニッケル及び/又はニッケル合金は、化学気相成長法(CVD法)、物理的気相成長法(PVD法)、原子層堆積法(ALD法)、めっき法によりシリコン基板等の表面に形成することができる。
The etching solution of the present invention is used for a substrate having copper and / or a copper alloy and nickel or a nickel alloy.
Examples of the base material include a base material having copper and / or a copper alloy and nickel or a nickel alloy on the surface of a silicon substrate such as an electronic substrate used for a semiconductor substrate and a flat panel display.
Moreover, the copper and / or copper alloy which the base material has is a silicon substrate or the like by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), or plating. Can be formed on the surface.
Nickel and / or nickel alloy is formed on the surface of a silicon substrate or the like by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), or plating. can do.
本発明のエッチング液中に銅及び/又は銅合金等の金属を浸すと、酸化還元反応が生じ、銅及び/又は銅合金等の金属は腐食されることになる。 When a metal such as copper and / or copper alloy is immersed in the etching solution of the present invention, a redox reaction occurs, and the metal such as copper and / or copper alloy is corroded.
本発明のエッチング液に関し、電解質溶液として本発明のエッチング液を用い、作用電極としてニッケルを用い、参照電極として飽和KCl溶液で充填したAg/AgClを用いて測定した第1腐食電位の上限値は、0.5Vであり、好ましくは0.4Vであり、下限値は0.1Vであり、好ましくは0.2Vであり、さらに好ましくは0.3Vである。
第1腐食電位が上記範囲であると、銅及び/又は銅合金のエッチング速度が向上する。
Regarding the etching solution of the present invention, the upper limit of the first corrosion potential measured using the etching solution of the present invention as the electrolyte solution, using nickel as the working electrode, and Ag / AgCl filled with a saturated KCl solution as the reference electrode is 0.5V, preferably 0.4V, and the lower limit is 0.1V, preferably 0.2V, and more preferably 0.3V.
When the first corrosion potential is in the above range, the etching rate of copper and / or copper alloy is improved.
電解質溶液として本発明のエッチング液を用い、作用電極として銅を用い、参照電極として飽和KCl溶液で充填したAg/AgClを用いて測定した第2腐食電位は、第1腐食電位以下であることが望ましい。
また、第2腐食電位は、0.0V以上、0.2V以下であることが好ましい。
The second corrosion potential measured using the etching solution of the present invention as the electrolyte solution, copper as the working electrode, and Ag / AgCl filled with a saturated KCl solution as the reference electrode may be less than or equal to the first corrosion potential. desirable.
Further, the second corrosion potential is preferably 0.0 V or more and 0.2 V or less.
本発明のエッチング液は、酸化剤(B)を含有し、酸化剤(B)の含有量を調整することにより、第1腐食電位と第2腐食電位に差を生じさせる(すなわち、第2腐食電位を第1腐食電位以下にする)ことができる。
第1腐食電位と第2腐食電位との差としては、第1腐食電位が第2腐食電位より0.1V以上高いことが好ましく、0.2V以上高いことがより好ましく、0.3V以上高いことがさらに好ましい。
また、第1腐食電位と第2腐食電位との差が0.5Vを超えないことが好ましい。
第1腐食電位と、第2腐食電位との差が上記範囲であると、本発明のエッチング液を、銅及び/又は銅合金、並びに、ニッケル及び/又はニッケル合金を有する基材に使用した際に、銅及び/又は銅合金を選択的にエッチングすることができる。
The etching solution of the present invention contains an oxidizing agent (B), and adjusts the content of the oxidizing agent (B) to cause a difference between the first corrosion potential and the second corrosion potential (that is, the second corrosion potential). The potential can be less than or equal to the first corrosion potential).
As a difference between the first corrosion potential and the second corrosion potential, the first corrosion potential is preferably higher than the second corrosion potential by 0.1 V or more, more preferably 0.2 V or more, and higher by 0.3 V or more. Is more preferable.
It is also preferred that the difference between the first corrosion potential and the second corrosion potential does not exceed 0.5V.
When the difference between the first corrosion potential and the second corrosion potential is in the above range, the etching solution of the present invention is used for a substrate having copper and / or a copper alloy and nickel and / or a nickel alloy. In addition, copper and / or copper alloys can be selectively etched.
本発明のエッチング液は有機酸(A)を含有する。 The etching solution of the present invention contains an organic acid (A).
本発明のエッチング液では、有機酸(A)の酸解離定数(pKa)は、-1.10~2.60である。
銅及び/又は銅合金のエッチング速度の観点から、有機酸(A)の酸解離定数(pKa)は、-0.90~2.40であることが好ましく、さらに好ましくは-0.80~2.30である。
なお、有機酸(A)が、多段階で電離する場合、本明細書における「有機酸の酸解離定数(pKa)」とは、有機酸が、第1段階の電離をする際の酸解離定数を意味する。
有機酸の酸解離定数(pKa)の値は化学便覧(平成16年2月発行 化学便覧 基礎編 改訂5版 p.332-343)、EVANS pKa Table(http://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf)等に記載されており、有機酸(A)としては前記の酸解離定数を有する以下に例示する有機酸を用いることができる。
In the etching solution of the present invention, the acid dissociation constant (pKa) of the organic acid (A) is −1.10 to 2.60.
From the viewpoint of the etching rate of copper and / or copper alloy, the acid dissociation constant (pKa) of the organic acid (A) is preferably −0.90 to 2.40, more preferably −0.80 to 2 .30.
When the organic acid (A) is ionized in multiple stages, the “acid dissociation constant (pKa) of the organic acid” in this specification means the acid dissociation constant when the organic acid is ionized in the first stage. Means.
The value of the acid dissociation constant (pKa) of the organic acid is shown in Chemical Handbook (February 2004, Chemical Handbook, Basic Edition, Rev. 5 Edition, p.332-343), EVANS pKa Table (http: //evans.rc.fas.harvard) .Edu / pdf / evans_pKa_table.pdf) and the like, and the organic acids (A) may be organic acids exemplified below having the above acid dissociation constants.
本発明のエッチング液では、有機酸(A)は、銅及び/又は銅合金のエッチング速度の観点から、ホスホノ基、ホスフェート基、スルホ基及びカルボキシ基からなる群から選ばれる基を分子内に少なくとも1個有する有機酸又はその塩であることが好ましい。また、有機酸(A)は、エッチング液中で有機酸(A)として含有されていても、その塩として含有されていてもよい。 In the etching solution of the present invention, the organic acid (A) contains at least a group selected from the group consisting of a phosphono group, a phosphate group, a sulfo group and a carboxy group in the molecule from the viewpoint of the etching rate of copper and / or a copper alloy. One organic acid or a salt thereof is preferred. Further, the organic acid (A) may be contained as an organic acid (A) in the etching solution or as a salt thereof.
ホスホノ基を分子内に少なくとも1個有する有機酸(A-1)及びその塩としては、1-ヒドロキシエチリデン-1,1-ジホスホン酸及びその塩、エチレンジアミンテトラ(メチレンホスホン酸)及びその塩、ニトリロトリスメチレンホスホン酸及びその塩、メチルホスホン酸及びその塩、エチルホスホン酸及びその塩、プロピルホスホン酸及びその塩、1,4-ブチレンジホスホン酸及びその塩、1,3-プロピレンジホスホン酸及びその塩、イソプロピレンジホスホン酸及びその塩、メチレンジホスホン酸及びその塩等が挙げられる。 Examples of the organic acid (A-1) having at least one phosphono group in the molecule and salts thereof include 1-hydroxyethylidene-1,1-diphosphonic acid and salts thereof, ethylenediaminetetra (methylenephosphonic acid) and salts thereof, nitrilotri Smethylene phosphonic acid and its salt, methyl phosphonic acid and its salt, ethyl phosphonic acid and its salt, propyl phosphonic acid and its salt, 1,4-butylenediphosphonic acid and its salt, 1,3-propylene diphosphonic acid and its Salt, isopropylene diphosphonic acid and its salt, methylene diphosphonic acid and its salt, and the like.
ホスフェート基を分子内に少なくとも1個有する有機酸(A-2)及びその塩としては、リン酸メチル及びその塩、リン酸エチル及びその塩、リン酸プロピル及びその塩、リン酸ジメチル及びその塩、リン酸ジプロピル及びその塩等が挙げられる。 Examples of the organic acid (A-2) having at least one phosphate group in the molecule and salts thereof include methyl phosphate and its salt, ethyl phosphate and its salt, propyl phosphate and its salt, dimethyl phosphate and its salt , Dipropyl phosphate and salts thereof.
カルボキシ基を分子内に少なくとも1個有する有機酸(A-3)及びその塩としては、マレイン酸及びその塩、エチレンジアミンテトラ酢酸及びその塩、ジエチレントリアミンペンタ酢酸及びその塩、トリエチレンテトラミンヘキサ酢酸及びその塩、ヒドロキシエチルエチレンジアミン三酢酸及びその塩、ニトリロ三酢酸及びその塩、1,3-プロパンジアミンテトラ酢酸及びその塩、1,3-ジアミノ-2-ヒドロキシプロパンテトラ酢酸及びその塩、ヒドロキシエチルイミノ二酢酸及びその塩、グリコールエーテルジアミンテトラ酢酸及びその塩、ジカルボキシメチルグルタミン酸及びその塩、エチレンジアミンジコハク酸及びその塩等が挙げられる。 Examples of the organic acid (A-3) having at least one carboxy group in the molecule and salts thereof include maleic acid and salts thereof, ethylenediaminetetraacetic acid and salts thereof, diethylenetriaminepentaacetic acid and salts thereof, triethylenetetraminehexaacetic acid and salts thereof. Salts, hydroxyethylethylenediaminetriacetic acid and its salt, nitrilotriacetic acid and its salt, 1,3-propanediaminetetraacetic acid and its salt, 1,3-diamino-2-hydroxypropanetetraacetic acid and its salt, hydroxyethyliminodi Examples include acetic acid and a salt thereof, glycol ether diamine tetraacetic acid and a salt thereof, dicarboxymethyl glutamic acid and a salt thereof, and ethylenediamine disuccinic acid and a salt thereof.
カルボキシ基とホスホノ基とを含む有機酸(A-4)及びその塩としては、ホスホノブタントリカルボン酸及びその塩、1-カルボキシヘプチルホスホン酸及びその塩等が挙げられる。 Examples of the organic acid (A-4) containing a carboxy group and a phosphono group and a salt thereof include phosphonobutanetricarboxylic acid and a salt thereof, 1-carboxyheptylphosphonic acid and a salt thereof, and the like.
スルホ基を分子内に少なくとも1個有する有機酸(A-5)及びその塩としては、10-カンファ―スルホン酸(CSA)及びその塩等が挙げられる。 Examples of the organic acid (A-5) having at least one sulfo group in the molecule and salts thereof include 10-camphor-sulfonic acid (CSA) and salts thereof.
これらのうち、銅及び/又は銅合金のエッチング速度の観点から、より好ましいものはホスホノ基を含む有機酸(A-1)及びその塩、ホスフェート基を含む有機酸(A-2)及びその塩、並びに、カルボキシ基を含む有機酸(A-3)及びその塩であり、さらに好ましくはホスホノ基を含む有機酸(A-1)及びその塩である。
本発明のエッチング液は、有機酸(A)を1種又は2種以上を含有していてもよい。
Among these, from the viewpoint of the etching rate of copper and / or copper alloy, more preferable are organic acids (A-1) containing phosphono groups and salts thereof, organic acids containing phosphate groups (A-2) and salts thereof. And an organic acid (A-3) containing a carboxy group and a salt thereof, more preferably an organic acid (A-1) containing a phosphono group and a salt thereof.
The etching solution of the present invention may contain one or more organic acids (A).
本発明のエッチング液を使用してエッチングする場合における有機酸(A)の含有量は、銅及び/又は銅合金のエッチング速度の向上、並びに、ニッケル及び/又はニッケル合金の腐食抑制の観点から、使用時のエッチング液の合計重量に基づいて、好ましくは0.1~50重量%であり、さらに好ましくは0.5~30重量%であり、特に好ましくは1~20重量%である。 In the case of etching using the etching solution of the present invention, the content of the organic acid (A) is from the viewpoint of improving the etching rate of copper and / or copper alloy, and inhibiting corrosion of nickel and / or nickel alloy. Based on the total weight of the etching solution in use, it is preferably 0.1 to 50% by weight, more preferably 0.5 to 30% by weight, and particularly preferably 1 to 20% by weight.
本発明のエッチング液では、酸化剤(B)は、過酸化水素、AgNO、KAuCl、HAuCl、KPtCl、HPtCl、Fe(NO、Ni(NO、Mg(NO、硝酸及びその塩、亜硝酸及びその塩、次亜塩素酸及びその塩、亜塩素酸及びその塩、塩素酸及びその塩、過塩素酸及びその塩、過マンガン酸及びその塩、過硫酸及びその塩、クロム酸及びその塩、ニクロム酸及びその塩、過酢酸及びその塩、過炭酸及びその塩、並びに、過酸化尿素及びその塩からなる群から選択される少なくとも1種の酸化剤であることが好ましい。
これらの中では、過酸化水素がより好ましい。過酸化水素としては過酸化水素の水溶液を使用することができる。
過酸化水素は、銅のエッチング速度を高め、ニッケルのエッチング速度を抑制することができる。
In the etching solution of the present invention, the oxidizing agent (B) is hydrogen peroxide, AgNO 3 , KAuCl 4 , HAuCl 4 , K 2 PtCl 6 , H 2 PtCl 6 , Fe (NO 3 ) 3 , Ni (NO 3 ) 2. Mg (NO 3 ) 2 , nitric acid and its salts, nitrous acid and its salts, hypochlorous acid and its salts, chlorous acid and its salts, chloric acid and its salts, perchloric acid and its salts, permanganic acid And a salt thereof, at least selected from the group consisting of persulfuric acid and a salt thereof, chromic acid and a salt thereof, dichromic acid and a salt thereof, peracetic acid and a salt thereof, percarbonate and a salt thereof, and urea peroxide and a salt thereof One oxidant is preferred.
Among these, hydrogen peroxide is more preferable. As the hydrogen peroxide, an aqueous solution of hydrogen peroxide can be used.
Hydrogen peroxide can increase the etching rate of copper and suppress the etching rate of nickel.
本明細書のエッチング液を使用してエッチングする場合では、酸化剤(B)の含有量は、銅及び/又は銅合金のエッチング速度の向上、並びに、ニッケル及び/又はニッケル合金の腐食抑制の観点から、使用時のエッチング液の合計重量に基づいて、純分換算で好ましくは0.5~20重量%であり、さらに好ましくは1~10重量%であり、特に好ましくは3~6重量%である。 In the case of etching using the etching solution of the present specification, the content of the oxidizing agent (B) is selected from the viewpoints of improving the etching rate of copper and / or copper alloy and suppressing corrosion of nickel and / or nickel alloy. From 0.5 to 20% by weight, more preferably from 1 to 10% by weight, particularly preferably from 3 to 6% by weight, based on the total weight of the etching solution in use. is there.
本発明のエッチング液において、有機酸(A)と酸化剤(B)との重量比(有機酸(A)/酸化剤(B))は、好ましくは0.05~3.00であり、さらに好ましくは0.30~2.50、特に好ましくは0.50~2.00である。 In the etching solution of the present invention, the weight ratio of the organic acid (A) to the oxidizing agent (B) (organic acid (A) / oxidizing agent (B)) is preferably 0.05 to 3.00, It is preferably 0.30 to 2.50, particularly preferably 0.50 to 2.00.
本発明のエッチング液は、防錆性の観点から、さらにアミン化合物(C)を含有してもよい。 The etching solution of the present invention may further contain an amine compound (C) from the viewpoint of rust prevention.
アミン化合物(C)としては、鎖状アミン(C-1)、窒素原子を1つ以上含む環式化合物(C-2)及びアミンのアルキレンオキサイド付加物(C-3)からなる群から選ばれる1種以上のアミン等が挙げられる。
鎖状アミン(C-1)は、具体例として、ペンタエチレンヘキサミン、ヘキサメチレンジアミン及びトリエチレンテトラミンのヘキサエチル化物等が挙げられる。
窒素原子を1つ以上含む環式化合物(C-2)は、具体例として、シクロヘキシルアミン、2-メチルアニリン、1-アミノナフタレン、ベンゾトリアゾール及び4-メチルベンゾトリアゾール、イミダゾール、ベンゾイミダゾール及び2-メルカプトベンゾイミダゾール等が挙げられる。
アミンのアルキレンオキサイド付加物(C-3)は、具体例として、シクロヘキシルアミンのプロピレンオキサイド2モル付加物、シクロヘキシルアミンのプロピレンオキサイド10モル付加物、アニリンのプロピレンオキサイド5モル付加物、トリエタノールアミン、1,2-ビス[ジ(ヒドロキシエチル)アミノ]エタン、ラウリルアミンのEO9モル付加物及びシクロヘキシルアミンのエチレンオキサイド2モル付加物等が挙げられる。
The amine compound (C) is selected from the group consisting of a chain amine (C-1), a cyclic compound (C-2) containing one or more nitrogen atoms, and an amine alkylene oxide adduct (C-3). One or more amines and the like can be mentioned.
Specific examples of the chain amine (C-1) include pentaethylated products of pentaethylenehexamine, hexamethylenediamine and triethylenetetramine.
Specific examples of the cyclic compound (C-2) containing one or more nitrogen atoms include cyclohexylamine, 2-methylaniline, 1-aminonaphthalene, benzotriazole and 4-methylbenzotriazole, imidazole, benzimidazole and 2- Examples include mercaptobenzimidazole.
Specific examples of the amine oxide oxide adduct (C-3) include cyclohexylamine propylene oxide 2 mol adduct, cyclohexylamine propylene oxide 10 mol adduct, aniline propylene oxide 5 mol adduct, triethanolamine, 1,2-bis [di (hydroxyethyl) amino] ethane, laurylamine EO 9 mol adduct, cyclohexylamine ethylene oxide 2 mol adduct, and the like.
本発明のエッチング液における、酸化剤(B)とアミン化合物(C)との重量比(酸化剤(B)/アミン化合物(C))は、銅及び/又は銅合金のエッチング速度、銅及び/又は銅合金とニッケル及び/又はニッケル合金のエッチング速度比、並びに、泡立ちの観点から、好ましくは0.1~1000であり、より好ましくは1~500であり、さらに好ましくは3~150である。 In the etching solution of the present invention, the weight ratio of the oxidizing agent (B) to the amine compound (C) (oxidizing agent (B) / amine compound (C)) is the etching rate of copper and / or copper alloy, copper and / or Alternatively, from the viewpoint of the etching rate ratio between the copper alloy and nickel and / or nickel alloy and the foaming, it is preferably 0.1 to 1000, more preferably 1 to 500, and still more preferably 3 to 150.
さらに本発明のエッチング液を使用してエッチングする場合における、酸化剤(B)とアミン化合物(C)の含有量の配合範囲は、エッチングレート、並びに、銅及び/又は銅合金とニッケル及び/又はニッケル合金のエッチング速度比の観点から、使用時のエッチング液の合計重量に基づいて、酸化剤(B)が1~10重量%かつアミン化合物(C)が0.03~1重量%であり、さらに好ましくは酸化剤(B)が3~6重量%かつアミン化合物(C)が0.05~0.2重量%である。 Furthermore, in the case of etching using the etching solution of the present invention, the blending range of the contents of the oxidizing agent (B) and the amine compound (C) is the etching rate, and the copper and / or copper alloy and nickel and / or From the viewpoint of the etching rate ratio of the nickel alloy, the oxidizing agent (B) is 1 to 10% by weight and the amine compound (C) is 0.03 to 1% by weight, based on the total weight of the etching solution in use. More preferably, the oxidizing agent (B) is 3 to 6% by weight and the amine compound (C) is 0.05 to 0.2% by weight.
本発明のエッチング液は、水をさらに含有していてもよい。水としては、蒸留水やイオン交換水、あるいは超純水といった浄化処理を施された水が好ましく、半導体製造に使用される超純水を用いることが特に好ましい。水の濃度は特に限定されないが、エッチング液中、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが特に好ましい。 The etching solution of the present invention may further contain water. The water is preferably purified water such as distilled water, ion-exchanged water, or ultrapure water, and particularly preferably ultrapure water used for semiconductor manufacturing. The concentration of water is not particularly limited, but is preferably 10% by mass or more, more preferably 20% by mass or more, and particularly preferably 30% by mass or more in the etching solution.
本発明のエッチング液は、溶剤、腐食防止剤、酸化防止剤、pH調整剤及び消泡剤からなる群から選ばれる少なくとも1種以上を含有していても良い。
溶剤としては、非プロトン性極性有機溶媒が好ましい。
非プロトン性極性有機溶媒としては、ハロゲン化炭化水素化合物、エーテル化合物、エステル化合物、ケトン化合物、ニトリル化合物、アミド化合物、スルホキシド化合物等が挙げられる。
腐食防止剤としては、チオール化合物、チアゾール化合物、糖アルコール類等が挙げられる。
酸化防止剤としては、カテキン、トコフェロール、カテコール、メチルカテコール、エチルカテコール、tert-ブチルカテコール、没食子酸、没食子酸メチル、没食子酸プロピル等のフェノール類、3-ヒドロキシフラボン、アスコルビン酸等が挙げられる。
pH調整剤としては、塩基性化合物等が挙げられる。具体的には、アンモニア、テトラアルキルアンモニウムヒドロキシド、含窒素複素環式化合物等が挙げられる。
消泡剤としては、シリコーン消泡剤、長鎖アルコール消泡剤、脂肪酸エステル消泡剤、金属セッケン消泡剤、エチレンオキサイドプロピレンオキサイド共重合体等が挙げられる。
The etching solution of the present invention may contain at least one selected from the group consisting of a solvent, a corrosion inhibitor, an antioxidant, a pH adjuster and an antifoaming agent.
As the solvent, an aprotic polar organic solvent is preferable.
Examples of the aprotic polar organic solvent include halogenated hydrocarbon compounds, ether compounds, ester compounds, ketone compounds, nitrile compounds, amide compounds, sulfoxide compounds and the like.
Examples of the corrosion inhibitor include thiol compounds, thiazole compounds, sugar alcohols and the like.
Examples of the antioxidant include catechin, tocopherol, catechol, methyl catechol, ethyl catechol, tert-butyl catechol, phenols such as gallic acid, methyl gallate, propyl gallate, 3-hydroxyflavone, ascorbic acid and the like.
Examples of the pH adjuster include basic compounds. Specific examples include ammonia, tetraalkylammonium hydroxide, and nitrogen-containing heterocyclic compounds.
Examples of the antifoaming agent include a silicone antifoaming agent, a long-chain alcohol defoaming agent, a fatty acid ester defoaming agent, a metal soap defoaming agent, and an ethylene oxide propylene oxide copolymer.
次に、本発明のエッチング液を用いて電子基板を製造する本発明の電子基板の製造方法を説明する。
本発明の電子基板の製造方法は、銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する電子基板の製造方法であって、銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する基材に、本発明のエッチング液を用いて前記銅及び/又は銅合金をエッチングするエッチング工程を含む。
Next, the manufacturing method of the electronic substrate of the present invention for manufacturing the electronic substrate using the etching solution of the present invention will be described.
The method for producing an electronic substrate of the present invention is a method for producing an electronic substrate having copper and / or a copper alloy and nickel and / or a nickel alloy, wherein copper and / or a copper alloy and nickel and / or a nickel alloy are used. The base material has an etching step of etching the copper and / or copper alloy using the etching solution of the present invention.
本発明の電子基板の製造方法のエッチング工程では、本発明のエッチング液を用いるので、銅及び/又は銅合金を選択的にエッチングすることができる。
なお、本明細書において、「銅及び/又は銅合金を選択的にエッチングする」とは、銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する基材から、ニッケル及び/又はニッケル合金の機能が損なわれないように銅及び/又は銅合金をエッチングすることを意味する。
例えば、エッチング工程後のニッケル及び/又はニッケル合金の重量が、エッチング工程前のニッケル及び/又はニッケル合金の重量の95.0%以上であることが好ましい。
Since the etching solution of the present invention is used in the etching step of the method for manufacturing an electronic substrate of the present invention, copper and / or a copper alloy can be selectively etched.
In the present specification, “selectively etching copper and / or copper alloy” means nickel and / or nickel alloy from a base material having copper and / or copper alloy and nickel and / or nickel alloy. This means that copper and / or a copper alloy is etched so that the function of the material is not impaired.
For example, the weight of nickel and / or nickel alloy after the etching step is preferably 95.0% or more of the weight of nickel and / or nickel alloy before the etching step.
また、本発明の電子基板の製造方法は、エッチング工程を含めば、本発明の効果を損なわない限り、他にどのような工程を含んでいてもよい。 Moreover, if the manufacturing method of the electronic substrate of this invention includes an etching process, as long as the effect of this invention is not impaired, it may include what kind of other processes.
以下、本発明の電子基板の製造方法の一例を、図面を用いながら説明する。
本発明の電子基板の製造方法は、(1)基材準備工程、(2)レジスト樹脂形成工程、(3)銅めっき層形成工程、(4)ニッケル層形成工程、(5)金層形成工程、(6)レジスト樹脂除去工程、(7)エッチング工程及び(8)バリヤメタル層除去工程を含んでいてもよい。
Hereinafter, an example of a method for manufacturing an electronic substrate according to the present invention will be described with reference to the drawings.
The method for producing an electronic substrate of the present invention includes (1) a base material preparation step, (2) a resist resin formation step, (3) a copper plating layer formation step, (4) a nickel layer formation step, and (5) a gold layer formation step. (6) A resist resin removing step, (7) an etching step, and (8) a barrier metal layer removing step may be included.
(1)基材準備工程
図1(a)~(c)は、本発明の電子基板の製造方法における基材準備工程の一例を模式的に示す工程図である。
まず、図1(a)に示すように、平面部11を有するシリコン基板10を準備する。
(1) Substrate Preparation Process FIGS. 1A to 1C are process diagrams schematically showing an example of a substrate preparation process in the method for manufacturing an electronic substrate of the present invention.
First, as shown in FIG. 1A, a silicon substrate 10 having a planar portion 11 is prepared.
次に、図1(b)に示すように、シリコン基板10の平面部11に孔をあけ、底面12a及び側面12bから構成される孔部12を形成する。
孔部12を形成する方法は、特に限定されず、レーザー加工法、ドリル加工法等の通常の方法を採用することができる。
Next, as shown in FIG.1 (b), a hole is made in the flat part 11 of the silicon substrate 10, and the hole part 12 comprised from the bottom face 12a and the side surface 12b is formed.
The method for forming the hole 12 is not particularly limited, and a normal method such as a laser processing method or a drill processing method can be employed.
次に、図1(c)に示すように、シリコン基板10の平面部11並びに孔部12の底面12a及び側面12bに、シリコン酸化層20を形成し、その上に、チタン層30及び銅シード層40を順に積層する。
これにより、孔部12には、シリコン酸化層20、チタン層30及び銅シード層40が順に形成され、銅シード層40を底面2a及び側面2bとする凹部2が形成されることになる。
このようにして、シリコン酸化層20、チタン層30及び銅シード層40が形成され、かつ、凹部2が形成された基材1を準備することができる。
Next, as shown in FIG. 1C, a silicon oxide layer 20 is formed on the flat surface portion 11 of the silicon substrate 10 and the bottom surface 12a and the side surface 12b of the hole 12, and a titanium layer 30 and a copper seed are formed thereon. Layers 40 are sequentially stacked.
As a result, the silicon oxide layer 20, the titanium layer 30, and the copper seed layer 40 are sequentially formed in the hole 12, and the concave portion 2 having the copper seed layer 40 as the bottom surface 2a and the side surface 2b is formed.
Thus, the base material 1 in which the silicon oxide layer 20, the titanium layer 30, and the copper seed layer 40 are formed and the recess 2 is formed can be prepared.
(2)レジスト樹脂形成工程
図2は、本発明の電子基板の製造方法におけるレジスト樹脂形成工程の一例を模式的に示す工程図である。
次に、図2に示すように、凹部2の縁2cから凹部2の外側に向かう一定の距離Dまでの間の銅シード層40の表面が露出するように銅シード層40の表面にレジスト樹脂50を形成する。なお、図2中、銅シード層40の露出部を符号41で示す。
(2) Resist Resin Formation Process FIG. 2 is a process chart schematically showing an example of a resist resin formation process in the method for manufacturing an electronic substrate of the present invention.
Next, as shown in FIG. 2, a resist is applied to the surface of the copper seed layer 40 so that the surface of the copper seed layer 40 between the edge 2 c of the recess 2 and a certain distance D 1 toward the outside of the recess 2 is exposed. Resin 50 is formed. In FIG. 2, the exposed portion of the copper seed layer 40 is denoted by reference numeral 41.
(3)銅めっき層形成工程
図3は、本発明の電子基板の製造方法における銅めっき層形成工程の一例を模式的に示す工程図である。
次に、図3に示すように、凹部2が埋まり、かつ、銅シード層40の露出部41を覆うように銅めっきを行い、銅めっき層60を形成する。
(3) Copper plating layer formation process FIG. 3: is a process figure which shows typically an example of the copper plating layer formation process in the manufacturing method of the electronic substrate of this invention.
Next, as shown in FIG. 3, copper plating is performed so that the concave portion 2 is filled and the exposed portion 41 of the copper seed layer 40 is covered, thereby forming a copper plating layer 60.
(4)ニッケル層形成工程
図4は、本発明の電子基板の製造方法におけるニッケル層形成工程の一例を模式的に示す工程図である。
次に、図4に示すように、銅めっき層60の表面にニッケル層70を形成する。
(4) Nickel layer forming process FIG. 4 is a process chart schematically showing an example of a nickel layer forming process in the method of manufacturing an electronic substrate of the present invention.
Next, as shown in FIG. 4, a nickel layer 70 is formed on the surface of the copper plating layer 60.
(5)金層形成工程
図5は、本発明の電子基板の製造方法における金層形成工程の一例を模式的に示す工程図である。
次に、図5に示すように、ニッケル層70の表面に金層80を形成する。
(5) Gold Layer Forming Process FIG. 5 is a process chart schematically showing an example of the gold layer forming process in the method for manufacturing an electronic substrate of the present invention.
Next, as shown in FIG. 5, a gold layer 80 is formed on the surface of the nickel layer 70.
(6)レジスト樹脂除去工程
図6は、本発明の電子基板の製造方法におけるレジスト樹脂除去工程の一例を模式的に示す工程図である。
次に、図6に示すように、レジスト樹脂50を除去する。
これにより、銅めっき層60、ニッケル層70及び金層80からなるバンプ90が形成される。
(6) Resist Resin Removal Process FIG. 6 is a process diagram schematically showing an example of the resist resin removal process in the method for manufacturing an electronic substrate of the present invention.
Next, as shown in FIG. 6, the resist resin 50 is removed.
Thereby, the bump 90 which consists of the copper plating layer 60, the nickel layer 70, and the gold layer 80 is formed.
(7)エッチング工程
図7は、本発明の電子基板の製造方法におけるエッチング工程の一例を模式的に示す工程図である。
次に、図7に示すように、基材1に本発明のエッチング液を作用させ、銅シード層40をエッチングする。これにより、チタン層30が露出することになる。
本工程で使用するエッチング液の温度は、特に限定されないが、好ましくは10~100℃の範囲であり、さらに好ましくは20℃~80℃である。
エッチング液の温度が10℃以上であればエッチング速度が向上する点で好ましく、100℃以下の温度であればエッチング速度にバラツキが生じない点で好ましい。
また、エッチングに要する時間は、10分未満であることが好ましい。
(7) Etching Process FIG. 7 is a process chart schematically showing an example of an etching process in the method for manufacturing an electronic substrate of the present invention.
Next, as shown in FIG. 7, the copper seed layer 40 is etched by causing the etching solution of the present invention to act on the substrate 1. As a result, the titanium layer 30 is exposed.
The temperature of the etching solution used in this step is not particularly limited, but is preferably in the range of 10 to 100 ° C., more preferably 20 to 80 ° C.
If the temperature of the etching solution is 10 ° C. or higher, it is preferable in terms of improving the etching rate, and if the temperature is 100 ° C. or lower, it is preferable in that the etching rate does not vary.
The time required for etching is preferably less than 10 minutes.
(8)バリヤメタル層除去工程
図8は、本発明の電子基板の製造方法におけるバリヤメタル層除去工程の一例を模式的に示す工程図である。
次に、図8に示すように、チタン層30を除去する。
これにより、チタン層30、銅シード層40、銅めっき層60、ニッケル層70及び金層80からなるバンプ91を形成することができる。
また、バンプ91が形成された基材1は、電子基板100となる。
(8) Barrier Metal Layer Removal Process FIG. 8 is a process chart schematically showing an example of the barrier metal layer removal process in the method for manufacturing an electronic substrate of the present invention.
Next, as shown in FIG. 8, the titanium layer 30 is removed.
Thereby, the bump 91 composed of the titanium layer 30, the copper seed layer 40, the copper plating layer 60, the nickel layer 70, and the gold layer 80 can be formed.
Further, the base material 1 on which the bumps 91 are formed becomes the electronic substrate 100.
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example and a comparative example explain the present invention further, the present invention is not limited to these.
<実施例1~8及び比較例1~4>
表1に記載した種類の有機酸(A)、酸化剤(B)、アミン化合物(C)及び水をポリプロピレン製の容器中で混合して、実施例1~8及び比較例1~4に係るエッチング液を得た。
<Examples 1 to 8 and Comparative Examples 1 to 4>
According to Examples 1 to 8 and Comparative Examples 1 to 4, organic acids (A) of the types listed in Table 1, an oxidizing agent (B), an amine compound (C) and water were mixed in a polypropylene container. An etchant was obtained.
なお、表中の記号は以下の化合物を表す。また、表中記載の数値は下記化合物の配合量ではなく、純分の値(重量部)を示す。
(A-1-1):メチレンジホスホン酸(pKa=1.3)
(A-1-2):1-ヒドロキシエチリデン-1,1-ジホスホン酸(pKa=1.56)
(A-2-1):リン酸ジメチル(pKa=1.29)
(A-3-1):マレイン酸(pKa=1.92)
(A-3-2):トリエチレンテトラミンヘキサ酢酸(pKa=2.42)
(A-4-1):ホスホノブタントリカルボン酸(pKa=1.7)
(A-5-1):10-カンファ―スルホン酸(pKa=1.2)
(A’-3-1):クエン酸(pKa=3.09)
(A’-5-1):メタンスルホン酸(pKa=-1.2)
(B-1):過酸化水素水
(B-2):過マンガン酸カリウム
(C-1-1):トリエチレンテトラミン
(C-2-1):シクロヘキシルアミン
(C-2-2):ベンゾトリアゾール
(C-3-1):シクロヘキシルアミンのプロピレンオキサイド2モル付加物
In addition, the symbol in a table | surface represents the following compounds. Moreover, the numerical value described in a table | surface shows not the compounding quantity of the following compound but the value (weight part) of pure parts.
(A-1-1): Methylenediphosphonic acid (pKa = 1.3)
(A-1-2): 1-hydroxyethylidene-1,1-diphosphonic acid (pKa = 1.56)
(A-2-1): Dimethyl phosphate (pKa = 1.29)
(A-3-1): Maleic acid (pKa = 1.92)
(A-3-2): Triethylenetetramine hexaacetic acid (pKa = 2.42)
(A-4-1): Phosphonobutane tricarboxylic acid (pKa = 1.7)
(A-5-1): 10-camphor-sulfonic acid (pKa = 1.2)
(A′-3-1): citric acid (pKa = 3.09)
(A′-5-1): Methanesulfonic acid (pKa = −1.2)
(B-1): Hydrogen peroxide solution (B-2): Potassium permanganate (C-1-1): Triethylenetetramine (C-2-1): Cyclohexylamine (C-2-2): Benzo Triazole (C-3-1): propylamine oxide 2 mol adduct of cyclohexylamine
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
性能評価として、腐食電位の測定、銅シード層のエッチング時間、銅シード層のエッチング量及びニッケル層の腐食量を以下の方法で行った。 As the performance evaluation, the measurement of the corrosion potential, the etching time of the copper seed layer, the etching amount of the copper seed layer and the corrosion amount of the nickel layer were performed by the following methods.
<腐食電位の測定方法>
装置:VoltaLab PGP201 (Radiometer analytical社製)
基板:銅テストピース又はニッケルテストピース
測定手順は下記のとおりとした。
(1)作用電極(Working electrode)として上記テストピースをクリップする。
(2)参照電極(Reference electrode)として飽和KCl溶液で充填したAg/AgCl参照電極をクリップする。
(3)カウンター電極(Counter electrode)として白金対極をクリップする。
(4)測定溶液をセルに入れる。
(5)電位測定を開始する。
・測定条件
測定時間:3分
(6)測定結果から、腐食電位を読み取る。
<Measurement method of corrosion potential>
Apparatus: VoltaLab PGP201 (manufactured by Radiometer analytical)
Substrate: The copper test piece or nickel test piece measurement procedure was as follows.
(1) Clip the test piece as a working electrode.
(2) Clip the Ag / AgCl reference electrode filled with a saturated KCl solution as a reference electrode.
(3) Clip the platinum counter electrode as a counter electrode.
(4) Put the measurement solution into the cell.
(5) Start potential measurement.
-Measurement conditions Measurement time: 3 minutes (6) From the measurement results, read the corrosion potential.
<銅シード層のエッチング時間の評価>
銅シード層のエッチング時間を、以下の操作方法で銅シード層の光沢が消失するまでの時間(分)で評価した。
(i)上記本発明の電子基板の製造方法で説明した、(1)基材準備工程、(2)レジスト樹脂形成工程、(3)銅めっき層形成工程及び(4)ニッケル層形成工程を順に行い、(5)金層形成工程を行わずに(6)レジスト樹脂除去工程を行いテスト基材を作製した。
<Evaluation of etching time of copper seed layer>
The etching time of the copper seed layer was evaluated by the time (min) until the gloss of the copper seed layer disappeared by the following operation method.
(I) The electronic substrate manufacturing method of the present invention described above, (1) substrate preparation step, (2) resist resin formation step, (3) copper plating layer formation step, and (4) nickel layer formation step in order. (5) Without performing the gold layer formation step, (6) the resist resin removal step was performed to prepare a test substrate.
図9は、実施例のテスト基材の断面を模式的に示す断面図である。
図9に示すように、テスト基材105は、パンプ190が形成された基材101からなる。
基材101は、平面部111及び孔部112を有するシリコン基材110、シリコン酸化層120、チタン層130及び銅シード層140から構成されており、平面部111及び孔部112には、シリコン酸化層120、チタン層130及び銅シード層140が順に形成されている。孔部112の内側には、銅シード層140を底面102a及び側面102bとする凹部102が形成されている。
また、凹部102は、銅めっき層160により埋められている。さらに、銅めっき層160は、凹部102の縁102cから凹部102の外側に向かう一定の距離Dまでの間の銅シード層140の表面141を覆うように基材101から突出している。
また、銅めっき層160には、ニッケル層170が積層されている。
基材101から突出した銅めっき層160及びニッケル層170は、バンプ190を形成している。
FIG. 9 is a cross-sectional view schematically showing a cross section of the test base material of the example.
As shown in FIG. 9, the test base material 105 includes the base material 101 on which the pump 190 is formed.
The base material 101 is composed of a silicon base material 110 having a flat surface portion 111 and a hole portion 112, a silicon oxide layer 120, a titanium layer 130, and a copper seed layer 140. A layer 120, a titanium layer 130, and a copper seed layer 140 are sequentially formed. A recess 102 having a copper seed layer 140 as a bottom surface 102a and a side surface 102b is formed inside the hole 112.
Further, the recess 102 is filled with a copper plating layer 160. Furthermore, the copper plating layer 160 protrudes from the substrate 101 so as to cover the surface 141 of the copper seed layer 140 between the edge 102c of the concave portion 102 to a certain distance D 2 toward the outside of the recess 102.
Further, a nickel layer 170 is laminated on the copper plating layer 160.
The copper plating layer 160 and the nickel layer 170 protruding from the base material 101 form bumps 190.
テスト基材105では、銅シード層140の厚さは1μmであった。
また、バンプ190の幅Wは約30μmであり、バンプ190の高さHは約30μmであった。
またニッケル層170の厚さは、約20μmであった。
In the test substrate 105, the thickness of the copper seed layer 140 was 1 μm.
Further, the width W 1 of the bump 190 was about 30 μm, and the height H 1 of the bump 190 was about 30 μm.
The thickness of the nickel layer 170 was about 20 μm.
(ii)次に、各実施例及び各比較例に係るエッチング液をポリプロピレン製の容器に入れて、この中に上記のテスト基材105を浸漬し、マグネチックスターラーで撹拌した。 (Ii) Next, the etching liquid according to each example and each comparative example was put in a polypropylene container, and the test base material 105 was immersed therein and stirred with a magnetic stirrer.
(iii)撹拌しながら液中に浸漬した状態でテスト基材105の表面を目視で観察し、銅シード層140の全面の銅の光沢が消失し、チタン層130が見える状態までの時間(分)を測定し評価した。評価基準は以下の通りである。結果を表1に示す。
◎:3分未満
○:3分以上10分未満
×:10分以上
(Iii) The time (min) until the surface of the test substrate 105 is visually observed while being immersed in the liquid while stirring, the copper luster of the entire copper seed layer 140 disappears, and the titanium layer 130 is visible. ) Was measured and evaluated. The evaluation criteria are as follows. The results are shown in Table 1.
◎: Less than 3 minutes ○: 3 minutes or more and less than 10 minutes ×: 10 minutes or more
<銅シード層の浸食の評価>
図10は、エッチング後のテスト基材を模式的に示す断面図である。
図10に示すように、テスト基材150の銅シード層140をエッチングする際、バンプ192を構成する銅シード層140まで浸食され空隙145が生じる場合がある。このような空隙145は無い方が好ましい。すなわち、エッチングによりバンプ192を構成する銅シード層140は浸食されないことが好ましい。
各実施例及び各比較例に係るエッチング液を用いてテスト基材105をエッチングした際の空隙145の幅を、以下の操作方法で測定し評価した。
(i)上記<銅シード層のエッチング時間の評価>で説明した方法と同じ方法でテスト基材105を作製した。
(ii)各実施例及び各比較例に係るエッチング液をポリプロピレン製の容器に入れて、この中にテスト基材105を浸漬し、マグネチックスターラーで撹拌した。
(iii)撹拌しながら液中に浸漬した状態でテスト基材105の表面を目視で観察し、銅シード層140の全面の銅の光沢が消失し、チタン層130が見える状態までの時間の2倍の時間液中に浸漬し、その後テスト基材105をエッチング液から取り出した。
(iv)走査型電子顕微鏡(日立ハイテク社製S-4800)で、浸漬後のテスト基材105の空隙145の幅、すなわち、銅シード層140の水平方向の浸食の幅(図10中、矢印で示す幅)が確認できる側面の写真撮影をした。そして、写真画像から、空隙145の水平方向の幅(μm)を測定し評価した。
評価基準は以下の通りである。結果を表1に示す。
◎:3μm未満
○:3μm以上5μm未満
×:5μm以上
<Evaluation of copper seed layer erosion>
FIG. 10 is a cross-sectional view schematically showing the test substrate after etching.
As shown in FIG. 10, when etching the copper seed layer 140 of the test substrate 150, the copper seed layer 140 constituting the bump 192 may be eroded and a void 145 may be generated. It is preferable that there is no such gap 145. That is, it is preferable that the copper seed layer 140 constituting the bump 192 is not eroded by etching.
The width of the gap 145 when the test substrate 105 was etched using the etching solution according to each example and each comparative example was measured and evaluated by the following operation methods.
(I) A test substrate 105 was prepared by the same method as described above in <Evaluation of etching time of copper seed layer>.
(Ii) The etching solution according to each example and each comparative example was placed in a polypropylene container, and the test substrate 105 was immersed therein and stirred with a magnetic stirrer.
(Iii) The surface of the test base material 105 is visually observed while being immersed in the liquid while stirring, and the gloss of copper on the entire surface of the copper seed layer 140 disappears, and the time 2 until the titanium layer 130 is visible. The test substrate 105 was taken out from the etching solution after being immersed in the solution for twice the time.
(Iv) With a scanning electron microscope (S-4800 manufactured by Hitachi High-Tech), the width of the gap 145 of the test substrate 105 after immersion, that is, the width of erosion in the horizontal direction of the copper seed layer 140 (in FIG. 10, arrows I took a picture of the side where I can confirm the width. And the width (micrometer) of the horizontal direction of the space | gap 145 was measured and evaluated from the photograph image.
The evaluation criteria are as follows. The results are shown in Table 1.
A: Less than 3 μm ○: 3 μm or more and less than 5 μm X: 5 μm or more
<ニッケル層の腐食の評価>
図11は、エッチングによりニッケル層が浸食されたテスト基材を模式的に示す断面図である。
図11に示すように、テスト基材150の銅シード層140をエッチングする際、ニッケル層170が腐食(図11中、破線部分は、腐食されたニッケル層を示す)される場合がある。
しかし、ニッケル層170は、エッチングにより腐食されないことが好ましい。
各実施例及び各比較例に係るエッチング液を用いてテスト基材105をエッチングした際のニッケル層の腐食量を、以下の操作方法で測定し、評価した。
(1)上記<銅シード層のエッチング時間の評価>で説明した方法と同じ方法でテスト基材105を作製した。
(2)各実施例及び各比較例に係るエッチング液をポリプロピレン製の容器に入れて、この中にテスト基材105を浸漬し、マグネチックスターラーで撹拌した。
(3)撹拌しながら液中に浸漬した状態でテスト基材105の表面を目視で観察し、銅シード層140の全面の銅の光沢が消失し、チタン層130が見える状態までの時間の2倍の時間液中に浸漬し、その後テスト基材105をエッチング液から取り出した。
(4)走査型電子顕微鏡(日立ハイテクノロジー社製S-4800)で、浸漬前のテスト基材105と浸漬後のテスト基材105のそれぞれニッケル層170の厚さ方向の腐食の程度とその深さ(図11中、矢印で示す幅)が確認できる側面の写真撮影をした。そして、写真画像から、浸漬前のテスト基材105のニッケル層170の厚さA1(μm)と、浸漬後のテスト基材105のニッケル層170の厚さA2(μm)を測定した。
(5)ニッケルのエッチング量として、下記数式(2)で算出される浸漬前後のテスト基材のニッケル層の厚さの変化(差)ΔANiを算出した。
<Evaluation of nickel layer corrosion>
FIG. 11 is a cross-sectional view schematically showing a test base material in which a nickel layer is eroded by etching.
As shown in FIG. 11, when the copper seed layer 140 of the test substrate 150 is etched, the nickel layer 170 may be corroded (the broken line portion in FIG. 11 indicates the corroded nickel layer).
However, the nickel layer 170 is preferably not corroded by etching.
The corrosion amount of the nickel layer when the test substrate 105 was etched using the etching solution according to each example and each comparative example was measured and evaluated by the following operation methods.
(1) A test substrate 105 was prepared by the same method as described above in <Evaluation of etching time of copper seed layer>.
(2) The etching liquid according to each example and each comparative example was put in a container made of polypropylene, and the test substrate 105 was immersed therein and stirred with a magnetic stirrer.
(3) The surface of the test base material 105 is visually observed while being immersed in the liquid while stirring, and the gloss of copper on the entire surface of the copper seed layer 140 disappears, and the time 2 until the titanium layer 130 is visible. The test substrate 105 was taken out from the etching solution after being immersed in the solution for twice the time.
(4) The degree and depth of corrosion in the thickness direction of the nickel layer 170 of the test substrate 105 before immersion and the test substrate 105 after immersion using a scanning electron microscope (S-4800 manufactured by Hitachi High-Technology Corporation) The photograph of the side surface where the thickness (width indicated by the arrow in FIG. 11) can be confirmed was taken. And the thickness A1 (micrometer) of the nickel layer 170 of the test base material 105 before immersion and the thickness A2 (micrometer) of the nickel layer 170 of the test base material 105 after immersion were measured from the photograph image.
(5) As the nickel etching amount, a change (difference) ΔANi in the thickness of the nickel layer of the test substrate before and after immersion calculated by the following mathematical formula (2) was calculated.
ΔANi(μm)=(浸漬前のテスト基材のニッケル層の厚さA1)-(浸漬後のテスト基材のニッケル層の厚さA2)          (2)
評価基準は以下の通りである。結果を表1に示す。
◎:0.1μm未満
○:0.1μm以上0.5μm未満
×:0.5μm以上
ΔANAi (μm) = (thickness A1 of the nickel layer of the test substrate before immersion) − (thickness A2 of the nickel layer of the test substrate after immersion) (2)
The evaluation criteria are as follows. The results are shown in Table 1.
A: Less than 0.1 μm ○: 0.1 μm or more and less than 0.5 μm X: 0.5 μm or more
表1に示すように、実施例1~8のエッチング液を用いると、銅シード層を素早く、かつ、充分な量をエッチングすることができる。さらに、ニッケル層の実質的な腐食は、認められなかった。したがって、選択的に銅シード層をエッチングすることができた。 As shown in Table 1, when the etching solutions of Examples 1 to 8 are used, the copper seed layer can be etched quickly and in a sufficient amount. Furthermore, no substantial corrosion of the nickel layer was observed. Therefore, the copper seed layer could be selectively etched.
本発明のエッチング液は、銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する基材に対して、銅及び/又は銅合金のエッチングを選択的に行うことができるという点で優れているため、プリント配線基板、フラットパネルディスプレー、MEMS、半導体装置などの電子基板製造時の工程用薬剤として有用である。 The etching solution of the present invention is excellent in that etching of copper and / or copper alloy can be selectively performed on a substrate having copper and / or copper alloy and nickel and / or nickel alloy. Therefore, it is useful as a chemical for a process when manufacturing an electronic substrate such as a printed wiring board, a flat panel display, a MEMS, and a semiconductor device.
1 基材
2、102 凹部
2a、102a 凹部の底面
2b、102b 凹部の側面
2c、102c 凹部の縁
10、110 シリコン基板
12、112 孔部
12a、112a 孔部の底面
12b、112b 孔部の側面
20、120 シリコン酸化層
30、130 チタン層
40、140 銅シード層
41 銅シード層の露出部
50 レジスト樹脂
60、160 銅めっき層
70、170 ニッケル層
80 金層
90、91、190 バンプ
105 テスト基材

 
1 Base material 2, 102 Recess 2a, 102a Recess bottom 2b, 102b Recess side 2c, 102c Recess edge 10, 110 Silicon substrate 12, 112 Hole 12a, 112a Hole bottom 12b, 112b Hole side 20 , 120 Silicon oxide layer 30, 130 Titanium layer 40, 140 Copper seed layer 41 Exposed portion 50 of copper seed layer Resist resin 60, 160 Copper plating layer 70, 170 Nickel layer 80 Gold layer 90, 91, 190 Bump 105 Test substrate

Claims (8)

  1. 銅及び/又は銅合金とニッケル又はニッケル合金とを有する基材から、前記銅及び/又は銅合金をエッチングするエッチング液であって、前記エッチング液は、有機酸(A)及び酸化剤(B)を含有し、前記有機酸(A)の酸解離定数(pKa)が-1.10~2.60であり、作用電極としてニッケルを用い、参照電極として飽和KCl溶液で充填したAg/AgClを用い、電解質溶液として前記エッチング液を用いて測定した第1腐食電位が0.1V以上、0.5V以下であるエッチング液。 An etching solution for etching copper and / or a copper alloy from a substrate having copper and / or a copper alloy and nickel or a nickel alloy, the etching solution comprising an organic acid (A) and an oxidizing agent (B) The acid dissociation constant (pKa) of the organic acid (A) is −1.10 to 2.60, nickel is used as a working electrode, and Ag / AgCl filled with a saturated KCl solution is used as a reference electrode. An etching solution having a first corrosion potential of 0.1 V or more and 0.5 V or less measured using the etching solution as an electrolyte solution.
  2. 作用電極として銅を用い、参照電極として飽和KCl溶液で充填したAg/AgClを用い、電解質溶液として前記エッチング液を用いて測定した第2腐食電位が、前記第1腐食電位以下である請求項1に記載のエッチング液。 2. The second corrosion potential measured using copper as a working electrode, Ag / AgCl filled with a saturated KCl solution as a reference electrode, and the etching solution as an electrolyte solution is equal to or lower than the first corrosion potential. The etching liquid as described in.
  3. 前記第2腐食電位は、0.0V以上、0.2V以下である請求項2に記載のエッチング液。 The etching solution according to claim 2, wherein the second corrosion potential is 0.0 V or more and 0.2 V or less.
  4. 前記有機酸(A)と前記酸化剤(B)との重量比(有機酸(A)/酸化剤(B))が0.05~3.00である請求項1~3のいずれかに記載のエッチング液。 The weight ratio of the organic acid (A) to the oxidizing agent (B) (organic acid (A) / oxidizing agent (B)) is 0.05 to 3.00. Etching solution.
  5. 有機酸(A)が、ホスホノ基、ホスフェート基、スルホ基及びカルボキシ基からなる群から選ばれる基を分子内に少なくとも1個有する有機酸又はその塩である請求項1~4のいずれかに記載のエッチング液。 The organic acid (A) is an organic acid or a salt thereof having at least one group selected from the group consisting of a phosphono group, a phosphate group, a sulfo group and a carboxy group in the molecule. Etching solution.
  6. 前記酸化剤(B)は、過酸化水素、AgNO、KAuCl、HAuCl、KPtCl、HPtCl、Fe(NO、Ni(NO、Mg(NO、硝酸及びその塩、亜硝酸及びその塩、次亜塩素酸及びその塩、亜塩素酸及びその塩、塩素酸及びその塩、過塩素酸及びその塩、過マンガン酸及びその塩、過硫酸及びその塩、クロム酸及びその塩、ニクロム酸及びその塩、過酢酸及びその塩、過炭酸及びその塩、並びに、過酸化尿素及びその塩からなる群から選択される少なくとも1種の酸化剤である請求項1~5のいずれかに記載のエッチング液。 The oxidizing agent (B) is hydrogen peroxide, AgNO 3 , KAuCl 4 , HAuCl 4 , K 2 PtCl 6 , H 2 PtCl 6 , Fe (NO 3 ) 3 , Ni (NO 3 ) 2 , Mg (NO 3 ) 2 , nitric acid and its salt, nitrous acid and its salt, hypochlorous acid and its salt, chlorous acid and its salt, chloric acid and its salt, perchloric acid and its salt, permanganic acid and its salt, persulfuric acid And at least one oxidant selected from the group consisting of chromic acid and salts thereof, dichromic acid and salts thereof, peracetic acid and salts thereof, percarbonate and salts thereof, and urea peroxide and salts thereof. The etching solution according to any one of claims 1 to 5.
  7. さらにアミン化合物(C)を含有する請求項1~6のいずれかに記載のエッチング液。 The etching solution according to any one of claims 1 to 6, further comprising an amine compound (C).
  8. 銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する電子基板の製造方法であって、銅及び/又は銅合金とニッケル及び/又はニッケル合金とを有する基材に、請求項1~7のいずれかに記載のエッチング液を用いて前記銅及び/又は銅合金をエッチングするエッチング工程を含む電子基板の製造方法。 A method for producing an electronic board comprising copper and / or a copper alloy and nickel and / or a nickel alloy, wherein the base material comprising copper and / or a copper alloy and nickel and / or a nickel alloy is used. The manufacturing method of an electronic substrate including the etching process of etching the said copper and / or a copper alloy using the etching liquid in any one of.
PCT/JP2017/015834 2016-04-27 2017-04-20 Etchant, and method for producing electronic substrate WO2017188108A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187028592A KR101988817B1 (en) 2016-04-27 2017-04-20 Etching solution and method for manufacturing electronic substrate
CN201780013656.9A CN108699706B (en) 2016-04-27 2017-04-20 Etching solution and method for manufacturing electronic substrate
JP2018514544A JP6818017B2 (en) 2016-04-27 2017-04-20 Etching liquid and electronic substrate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016088689 2016-04-27
JP2016-088689 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017188108A1 true WO2017188108A1 (en) 2017-11-02

Family

ID=60160537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015834 WO2017188108A1 (en) 2016-04-27 2017-04-20 Etchant, and method for producing electronic substrate

Country Status (5)

Country Link
JP (1) JP6818017B2 (en)
KR (1) KR101988817B1 (en)
CN (1) CN108699706B (en)
TW (1) TWI724157B (en)
WO (1) WO2017188108A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803946A (en) * 2018-09-07 2018-11-13 蓝思科技(长沙)有限公司 A kind of flexibility narrow frame touch-control sensor and preparation method thereof
JP6458913B1 (en) * 2018-03-26 2019-01-30 三菱瓦斯化学株式会社 Etching solution
JP6485587B1 (en) * 2018-12-25 2019-03-20 三菱瓦斯化学株式会社 Etching solution
WO2020105605A1 (en) 2018-11-20 2020-05-28 三菱瓦斯化学株式会社 Etchant for selectively etching copper and copper alloy, and method for manufacturing semiconductor substrate using said etchant
JP2020079444A (en) * 2018-11-12 2020-05-28 三洋化成工業株式会社 Etchant for copper or copper alloy, and manufacturing method of electronic substrate
JP2022521951A (en) * 2019-03-01 2022-04-13 ハウメット エアロスペース インコーポレイテッド Metal substrate treatment methods and articles comprising a phosphonate functionalized layer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652805B (en) * 2019-03-01 2020-10-30 厦门明巍物资回收有限公司 Deplating liquid for removing copper-nickel coating and using method thereof
CN113956797A (en) * 2021-10-15 2022-01-21 清华大学 Jet polishing solution and polishing method for oxygen-free copper microstructure functional surface
CN114428064B (en) * 2021-12-31 2023-09-19 江苏和达电子科技有限公司 Method for detecting content of nitrate ions in copper etching solution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176115A (en) * 2002-11-26 2004-06-24 Kanto Chem Co Inc Liquid composition for etching metallic thin film consisting essentially of silver
JP2007005656A (en) * 2005-06-24 2007-01-11 Mitsubishi Gas Chem Co Inc Etchant composition for metal material and method of manufacturing semiconductor device using same
JP2009505388A (en) * 2005-08-12 2009-02-05 ビーエーエスエフ ソシエタス・ヨーロピア Stabilized etching solution for Cu and Cu / Ni layers
JP2015007271A (en) * 2013-06-25 2015-01-15 メック株式会社 Wiring forming method and etchant for use in the same
JP2015151593A (en) * 2014-02-17 2015-08-24 住友金属鉱山株式会社 Etching solution for metal layer laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286531A (en) 1999-03-31 2000-10-13 Matsushita Electric Works Ltd Manufacture of printed wiring board
JP2005105410A (en) * 2003-09-08 2005-04-21 Mitsubishi Chemicals Corp Copper etchant and etching method
US9177827B2 (en) * 2009-12-25 2015-11-03 Mitsubishi Gas Chemical Company, Inc. Etchant and method for manufacturing semiconductor device using same
JP6101421B2 (en) * 2010-08-16 2017-03-22 インテグリス・インコーポレーテッド Etching solution for copper or copper alloy
EP2683792B1 (en) 2011-03-11 2019-09-25 FujiFilm Electronic Materials USA, Inc. Novel etching composition
CN103649373B (en) 2011-07-04 2017-04-12 三菱瓦斯化学株式会社 Etching liquid for copper or compound having copper as primary component
JP5933950B2 (en) * 2011-09-30 2016-06-15 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Etching solution for copper or copper alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176115A (en) * 2002-11-26 2004-06-24 Kanto Chem Co Inc Liquid composition for etching metallic thin film consisting essentially of silver
JP2007005656A (en) * 2005-06-24 2007-01-11 Mitsubishi Gas Chem Co Inc Etchant composition for metal material and method of manufacturing semiconductor device using same
JP2009505388A (en) * 2005-08-12 2009-02-05 ビーエーエスエフ ソシエタス・ヨーロピア Stabilized etching solution for Cu and Cu / Ni layers
JP2015007271A (en) * 2013-06-25 2015-01-15 メック株式会社 Wiring forming method and etchant for use in the same
JP2015151593A (en) * 2014-02-17 2015-08-24 住友金属鉱山株式会社 Etching solution for metal layer laminate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458913B1 (en) * 2018-03-26 2019-01-30 三菱瓦斯化学株式会社 Etching solution
WO2019186624A1 (en) * 2018-03-26 2019-10-03 三菱瓦斯化学株式会社 Etchant
US11230668B2 (en) 2018-03-26 2022-01-25 Mitsubishi Gas Chemical Company, Inc. Etchant
CN108803946A (en) * 2018-09-07 2018-11-13 蓝思科技(长沙)有限公司 A kind of flexibility narrow frame touch-control sensor and preparation method thereof
JP2020079444A (en) * 2018-11-12 2020-05-28 三洋化成工業株式会社 Etchant for copper or copper alloy, and manufacturing method of electronic substrate
WO2020105605A1 (en) 2018-11-20 2020-05-28 三菱瓦斯化学株式会社 Etchant for selectively etching copper and copper alloy, and method for manufacturing semiconductor substrate using said etchant
KR20210093843A (en) 2018-11-20 2021-07-28 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Etching solution for selectively etching copper and copper alloy and method for manufacturing semiconductor substrate using same
US11821092B2 (en) 2018-11-20 2023-11-21 Mitsubishi Gas Chemical Company, Inc. Etchant for selectively etching copper and copper alloy, and method for manufacturing semiconductor substrate using said etchant
JP6485587B1 (en) * 2018-12-25 2019-03-20 三菱瓦斯化学株式会社 Etching solution
JP2019176128A (en) * 2018-12-25 2019-10-10 三菱瓦斯化学株式会社 Etchant
JP2022521951A (en) * 2019-03-01 2022-04-13 ハウメット エアロスペース インコーポレイテッド Metal substrate treatment methods and articles comprising a phosphonate functionalized layer
US12018380B2 (en) 2019-03-01 2024-06-25 Howmet Aerospace Inc. Metallic substrate treatment methods and articles comprising a phosphonate functionalized layer

Also Published As

Publication number Publication date
TW201807164A (en) 2018-03-01
CN108699706B (en) 2021-01-01
KR101988817B1 (en) 2019-06-12
JP6818017B2 (en) 2021-01-20
JPWO2017188108A1 (en) 2019-02-28
KR20180128418A (en) 2018-12-03
CN108699706A (en) 2018-10-23
TWI724157B (en) 2021-04-11

Similar Documents

Publication Publication Date Title
WO2017188108A1 (en) Etchant, and method for producing electronic substrate
JP5933950B2 (en) Etching solution for copper or copper alloy
TWI565834B (en) Etching solution for copper or copper alloy
KR101271414B1 (en) Etching solution for multilayer thin film having copper layer and molybdenum layer contained therein
KR101275757B1 (en) Remover compositions
JP2017031502A (en) Etching solution for etching multilayer thin film comprising copper layer and titanium layer and etching method using the same, and substrate obtained by using the etching method
KR102207306B1 (en) Cleaning composition for removing residue after etching
US20180355500A1 (en) Aqueous indium or indium alloy plating bath and process for deposition of indium or an indium alloy
JP2023171815A (en) Aqueous composition and cleaning method by use thereof
JP6285983B2 (en) Etching solution for copper or copper alloy
JP6913142B2 (en) Manufacturing method of etching solution for copper or copper alloy and electronic substrate
JP2014101560A (en) Etching solution for copper or copper alloy
JP2006210857A (en) Cleaning liquid composition for removal of impurity, and impurity removal method using the composition
JP2014101561A (en) Etching solution for copper or copper alloy
JP7367700B2 (en) Etching solution for selectively etching copper and copper alloys and method for manufacturing semiconductor substrates using the same
CN112005345A (en) Aqueous composition and cleaning method using the same
CN111902569A (en) Etching solution
JP2002025965A (en) Cleaning solution for semiconductor substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514544

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789391

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789391

Country of ref document: EP

Kind code of ref document: A1