WO2017185789A1 - 一种单光口多路并行光发射组件 - Google Patents

一种单光口多路并行光发射组件 Download PDF

Info

Publication number
WO2017185789A1
WO2017185789A1 PCT/CN2016/112633 CN2016112633W WO2017185789A1 WO 2017185789 A1 WO2017185789 A1 WO 2017185789A1 CN 2016112633 W CN2016112633 W CN 2016112633W WO 2017185789 A1 WO2017185789 A1 WO 2017185789A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
light
mirror
combined
Prior art date
Application number
PCT/CN2016/112633
Other languages
English (en)
French (fr)
Inventor
汤学胜
张玓
付永安
胡胜磊
周日凯
刘成刚
孙莉萍
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2017185789A1 publication Critical patent/WO2017185789A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4213Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being polarisation selective optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the invention belongs to the field of optical communication technologies, and in particular relates to a single optical port multiplexed parallel light emitting component.
  • the high-speed multi-channel parallel optical transceiver module is one of the high-bandwidth and large-capacity optical interconnection basic devices in data communication, and has great characteristics such as large communication capacity, low power consumption, and miniaturization.
  • High-speed multi-channel parallel optical emission components are currently mainly used to package multi-channel semiconductor lasers by wavelength division multiplexing/demultiplexing (CWDM) technology in only one optical port output optical component, thereby improving single-ended light.
  • CWDM wavelength division multiplexing/demultiplexing
  • the transmission speed of the port For example, a 4x25Gbps single-mode optical transceiver module in the form of a QSFP28 module package uses four CWDM 25Gbps lasers of different wavelengths to be coupled by a coarse wavelength division multiplexing/demultiplexing technique and a single fiber to realize the transmission and transmission of a single fiber 100Gbps signal.
  • the various solutions used in the industry of wavelength division multiplexing/demultiplexing technologies include: arrayed waveguide grating (AWG) scheme and dielectric thin film filter scheme.
  • AWG arrayed waveguide grating
  • the advantage of AWG is that it has high integration and can be fabricated on the same substrate as the laser chip. It has great advantages in multiplexing and demultiplexing in 4 channels or more, but it has the disadvantages of high cost, high coupling difficulty and large insertion loss.
  • the dielectric film filter solution is currently a large-scale commercial solution with low material cost and good filtering characteristics.
  • the optical path structure of the 4-channel parallel light-emitting component currently used in the prior art in the prior art is shown in FIG. 1 .
  • the laser array 101 is composed of four laser chips of different wavelengths. Multi-channel array with equal channel spacing.
  • the band pass filter assembly 103 corresponds to the passband wavelength of each channel and the wavelength of each channel laser.
  • the band pass filter of each channel in the band pass filter assembly 103 transmits the wavelength in the channel, and the channel is The outer wavelength is reflected.
  • the total reflection mirror 105 totally reflects light of all wavelengths.
  • the glass substrate 104 is glass and other light transmissive materials having good light transmittance.
  • the band pass filter group 103 is mounted on one plane of the glass substrate 104, and the other plane of the glass substrate 104 is mounted with a total reflection mirror 105 that reflects the entire wavelength.
  • the laser array 101 emits four different wavelengths of light, respectively, through the collimating lens group 102 of each channel to become multi-channel collimated light parallel to each other, and the multi-channel collimated light is obliquely incident on the band pass filter group at a certain incident angle.
  • the band pass filters of the respective channels in 103 are transmitted into the glass substrate 104, reflected by the total reflection mirror 105, and reflected by the band pass filter group 103 for non-passband wavelength light, and the light is incident on the inner edge of the glass substrate 104.
  • the beams of all of the channels substantially coincide at the exit of the glass substrate 104, are incident on the coupled output lens 106, and are coupled into the optical fiber 107.
  • the above-mentioned multi-channel parallel light-emitting component structure based on the dielectric thin film filter scheme has a significant disadvantage: the optical path elapsed from the laser array to the coupling into the optical fiber has a large difference, and the optical waves and optical fibers of different channels are different. There are significant differences in coupling efficiency.
  • the present invention provides a single-port multi-channel parallel light emitting component, which has small optical path difference, high optical path coupling efficiency, small wavelength-dependent loss, relatively simple assembly process, and relatively low cost. It can be applied to the transmission of optical signals of various rate QSFP+ optical modules including 40Gb/S and 100Gb/S.
  • the main object of the present invention is to provide a single optical port multipath Parallel light emitting components.
  • the present invention provides a single optical port multiplexed parallel light emitting device, which is provided with a laser chip array, an optical path translating polygon mirror, a first mirror and a second mirror, a half wave plate, and a polarization beam combining mirror according to an optical path;
  • the laser chip arrays are arranged side by side in parallel according to the central wavelength, and emit optical signals ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 having the same polarization state corresponding to the four optical channels;
  • the optical path translating polygon mirror realizes beam cross-translation of the optical signal ⁇ 2 and the optical signal ⁇ 3 , and the first mirror and the second mirror respectively deflect the beam directions of the optical signal ⁇ 1 and the optical signal ⁇ 4 to make the optical signal ⁇ 1 and the optical signal ⁇ 3 are combined to form a combined optical signal [ ⁇ 1 , ⁇ 3 ], and the optical signal ⁇ 2 and the optical signal ⁇ 4 are combined to form a combined optical signal [ ⁇ 2 , ⁇ 4 ];
  • the polarization states of the combined optical signals [ ⁇ 1 , ⁇ 3 ] and the polarization states of the combined optical signals [ ⁇ 2 , ⁇ 4 ] are perpendicular to each other, and the combined optical signals are combined by the polarization beam combiner [ ⁇ ] 1 , ⁇ 3 ] is combined with the combined optical signals [ ⁇ 2 , ⁇ 4 ] to form a combined optical signal [ ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ].
  • the laser chip array is an array of a plurality of discrete different wavelength laser chips or an array of a plurality of light emitting unit laser chips having different wavelengths, and the wavelength of each optical channel satisfies IEEE 802.3ba.
  • the different CWDM wavelengths specified by the specification, or any other wavelengths having a larger wavelength interval, are arranged side by side in parallel in the order of long wavelength to short wavelength or from short wavelength to long wavelength.
  • a collimating lens array is further included, and the collimating lens array corresponds to the laser chip array, and the light beams for the optical signals of the respective optical channels are collimated.
  • the incident light-passing surface S1 and the incident light-passing surface S2 of the optical path translating polygon mirror respectively correspond to the optical signals ⁇ 2 and the optical signals ⁇ 3 emitted by the two lasers disposed in the middle of the laser chip array.
  • the optical signal ⁇ 2 and the optical signal ⁇ 3 are respectively refracted to realize the cross-translation, and then respectively projected to the outgoing light-passing surface S4 and the outgoing light-passing surface S3 of the optical path translating polygon mirror.
  • the reflective surface of the first mirror plated with the single polarization high-reflection film is parallel to the exit light-passing surface S4 of the optical path translating polygon mirror, and the optical signal ⁇ 4 is reflected by the first mirror Then, the projection point on the exiting light-passing surface S4 of the optical path translating polygon mirror and the optical signal ⁇ 2 are refracted by the incident light-passing surface S1 of the optical path translating polygon mirror and projected onto the projection point position on the outgoing light-passing surface S4.
  • the reflection surface of the second mirror coated with the single polarization high reflection film is parallel to the exit light passing surface S3 of the optical path translating polygon mirror, and the optical signal ⁇ 1 after the second mirror is reflected, the projection point on the exiting light-passing surface S3 of the optical path translating polygon mirror and the optical signal ⁇ 3 are refracted by the incident light-passing surface S2 of the optical path translating polygon mirror, and then projected to the exit
  • the projection points on the light-passing surface S3 are coincident to achieve the combination of the optical signal ⁇ 1 and the optical signal ⁇ 3 .
  • the incident light-passing surface S1 and the outgoing light-passing surface S4 of the optical path translation polygon mirror are parallel to each other, and the incident light-passing surface S1 corresponding to the optical signal ⁇ 2 is coated with an anti-reflection film, and the light-emitting surface is emitted.
  • S4 is plated with a low-pass filter film or a high-pass filter film, and the wavelengths of the optical signal ⁇ 2 and the optical signal ⁇ 4 are respectively located in the transmission band of the low-pass filter film or the high-pass filter film on the light-emitting surface S4.
  • the incident light-passing surface S2 and the outgoing light-passing surface S3 of the optical path translating polygon mirror are parallel to each other, and the incident light-passing surface S2 corresponding to the optical signal ⁇ 3 is coated with an anti-reflection film, and the outgoing light-passing surface S3 is plated with
  • the low-pass filter film or the high-pass filter film, the wavelengths of the optical signal ⁇ 1 and the optical signal ⁇ 3 are respectively located on the reflection band and the transmission band of the spectrum of the high-pass filter film or the low-pass filter film on the light-emitting surface S3.
  • the two light-passing surfaces of the half-wave plate are plated with an anti-reflection film, the main section of the optical axis and the combined optical signal [ ⁇ 1 , ⁇ 3 ] and the combined optical signal [ ⁇ 2
  • the polarization plane of ⁇ 4 ] is at an angle of 45°.
  • the incident surface S5 and the exit surface S8 of the polarization beam splitter are parallel to each other, and are coated with an anti-reflection film;
  • the reflective surface S6 corresponding to the half-wave plate is plated with a single polarization high-reflection film;
  • the polarization direction is perpendicular to the polarization direction of the optical signal emitted by the laser chip array;
  • the bonding plane S7 of the polarization beam combining mirror is plated with a polarization beam splitting film such that the polarization state is perpendicular to the optical signal emitted by the laser chip array.
  • the optical signal of the polarization direction is reflected at the bonding plane S7 such that the optical signal whose polarization state is parallel to the polarization direction of the optical signal emitted by the laser chip array is transmitted at the bonding plane S7.
  • the bonding plane S7 and the reflecting surface S6 of the polarization beam combining mirror are parallel to each other, and cooperatively translate the incident combined optical signal [ ⁇ 1 , ⁇ 3 ] and the combined optical signal [ ⁇ 2 , ⁇ 4 ] One, achieving polarization combining of the combined optical signal [ ⁇ 1 , ⁇ 3 ] and the combined optical signal [ ⁇ 2 , ⁇ 4 ] on the bonding plane S7.
  • the optical isolator is a polarization-independent optical isolator for performing reverse isolation of output light.
  • the invention has the beneficial effects that the optical path difference of each optical channel is small, the optical path coupling efficiency is high, the optical path coupling efficiency of each optical channel is similar, the wavelength dependent loss is small, the assembly process is relatively simple, and the invention is relatively low. the cost of.
  • FIG. 1 is a schematic diagram of an optical path structure of a prior art 4-channel parallel light emitting component
  • FIG. 2 is a schematic structural view of a preferred embodiment of the present invention.
  • 3 is a transmission spectrum curve of an optical path translating polygon mirror S4 according to an embodiment of the present invention.
  • 5 is a transmission spectrum curve of an optical path translating polygon mirror S3 according to an embodiment of the present invention.
  • 6 is a surface reflection spectrum curve of an optical path translating polygon mirror S3 according to an embodiment of the present invention.
  • Laser array 102 collimating lens group
  • the present invention provides a single optical port multi-channel parallel light emitting component, which will be 4 After the beams of the different wavelength LD illuminating units are collimated, the non-adjacent optical channels are first combined by the special wavelength division multiplexed optical paths, and then the polarization combining converges to the same optical output port.
  • FIG. 2 A preferred embodiment of the present invention is illustrated in Figure 2, including a laser chip array in accordance with the optical path setting Column 1, collimating lens array 2, optical path translating polygon mirror 3, mirrors 4 and 5, half wave plate 6 (HWP), polarization beam combining mirror 7 (PBC), optical isolator 8, coupled output lens 9 and coupled output Optical fiber 10.
  • HWP half wave plate 6
  • PBC polarization beam combining mirror 7
  • optical isolator 8 coupled output lens 9 and coupled output Optical fiber 10.
  • the laser chip array 1 is four lasers (LD) arranged side by side, and the center wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 are arranged in parallel from the long wave to the short wave or from the short wave to the long wave, and the polarization state thereof is parallel to the laser chip array. 1 side by side plane.
  • LD lasers
  • the collimating lens array 2 corresponds to the laser chip array 1 and is used for collimation of the outgoing beams of the lasers of the respective channels.
  • the optical path translating polygon mirror 3 is disposed between the collimating lens array 2 and the half wave plate 6/polarizing beam combining mirror 7, and the two light passing surfaces S1 and S2 of the optical path translating polygon mirror 3 are respectively disposed in the middle of the laser chip array 1.
  • the optical signals of the wavelengths ⁇ 2 and ⁇ 3 emitted by the two lasers correspond to the cross-translation of the beams of the collimated optical signals ⁇ 2 and ⁇ 3 .
  • the high-reverse faces of the mirror 4 and the mirror 5 respectively correspond to the optical signals of the wavelengths ⁇ 4 and ⁇ 1 emitted from the two lasers disposed on both sides of the laser chip array 1 for reflecting the collimated optical signal ⁇ 4 And ⁇ 1 .
  • the high side of the mirror 4 is further parallel with the light signal ⁇ 2 exit surface S4 of the optical path translating polygon mirror 3
  • the high back surface of the mirror 5 is parallel to the light signal ⁇ 3 exit surface S3 of the optical path translating polygon mirror 3. .
  • the mirror 4 and the optical path translating polygon mirror 3 cooperate to combine the optical signals ⁇ 1 and ⁇ 3 into optical signals [ ⁇ 1 , ⁇ 3 ]; the mirror 5 and the optical path translating polygon mirror 3 cooperate to combine the optical signals ⁇ 2 And ⁇ 4 are combined into an optical signal [ ⁇ 2 , ⁇ 4 ].
  • the half-wave plate 6 is placed on the side of the reflecting surface S6 of the polarization beam combining mirror 7, corresponding to the combined optical signal [ ⁇ 1 , ⁇ 3 ] or the combined optical signal [ ⁇ 2 , ⁇ 4 ], as shown in FIG. 2 half-wave plate 6 and the combined optical signal [ ⁇ 1, ⁇ 3] corresponding to an example, the optical path of the combined light signal [ ⁇ 1, ⁇ 3] to enter the polarization beam mirror 7, a combination of the optical signal passes through half wave plate 6 [ ⁇ 2 , ⁇ 4 ] does not pass through the half-wave plate 6 and directly enters the polarization beam combining mirror 7.
  • the polarization beam combining mirror 7 is disposed between the half wave plate 6 and the optical isolator 8, and realizes that the combined optical signals [ ⁇ 1 , ⁇ 3 ] are combined with the combined optical signals [ ⁇ 2 , ⁇ 4 ].
  • the combined optical signals [ ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ] enter the optical isolator 8 and are coupled into the coupled output optical fiber 10 via a coupling output lens 9.
  • the laser chip array 1 has a light emitting unit, wherein the laser chip array 1 is an array composed of a plurality of discrete different wavelength laser chips or an array of a plurality of light emitting unit laser chips having different wavelengths, each channel
  • the wavelength may be a different CWDM wavelength that satisfies the IEEE802.3ba specification, or any other wavelength with a larger wavelength interval, from long wave to short wave or from short wave to long wave in parallel.
  • the light-passing surfaces S1 and S4 of the optical path translating polygon mirror 3 are parallel to each other, the incident light-passing surface S1 corresponding to the optical signal ⁇ 2 is coated with an anti-reflection film, and the outgoing light-passing surface S4 is plated with a low-pass (SWP: Short Wave) Pass) or high-pass filter (LWP: Long Wave Pass), the optical signals ⁇ 2 and ⁇ 4 are respectively located in the transmission band and the reflection band of the filter film spectrum at the operating wavelength ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4
  • the transmittance curve and the reflectance curve are as shown in FIGS. 3 and 4, respectively.
  • the light-passing surfaces S2 and S3 of the optical path translating polygon mirror 3 are parallel to each other, the incident light-passing surface S2 corresponding to the optical signal ⁇ 3 is coated with an anti-reflection film, and the outgoing light-passing surface S3 is plated with a high-pass or low-pass filter film.
  • the optical signals ⁇ 3 and ⁇ 1 are respectively located in the transmission band and the reflection band of the filter film spectrum, and the working wavelength ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3 ⁇ ⁇ 4 is taken as an example for description, and the outgoing light-passing surface S3 is plated with high pass and low reverse.
  • the film, the transmittance curve and the reflectance curve are shown in Figures 5 and 6, respectively.
  • the exit light-passing surface S4 is plated with a high-pass low-reflection film, and the outgoing light-passing surface S3 is plated with a low-pass high-reflection film.
  • the high-reverse surface of the mirror 4 is plated with a single-polarization high-reflection film, and the reflected light on the high-reverse surface is substantially unchanged from the incident light.
  • the high-reverse surface of the mirror 4 is parallel to the light-transmitting surface S4 of the optical signal ⁇ 2 on the optical path translating polygon mirror 3.
  • the position of the mirror 4 is configured in the following positional relationship: after the optical signal ⁇ 4 is reflected by the mirror 4, the reflected light is projected on the light-passing surface S4 of the optical path translating polygon mirror 3 and the optical signal ⁇ 2 is translated by the optical path.
  • the positions of the light spots projected onto the light-passing surface S4 after the light-passing surface S1 of the mirror 3 is refracted substantially coincide.
  • the high-reverse surface of the mirror 5 is plated with a single-polarization high-reflection film, and the reflected light on the high-reverse surface is substantially unchanged from the incident light.
  • the high-reverse surface of the mirror 5 is parallel to the light-transmitting surface S3 of the optical signal ⁇ 3 on the optical path translating polygon mirror 3.
  • the position of the mirror 5 is configured in the following positional relationship: after the optical signal ⁇ 1 is reflected by the mirror 5, the reflected light is projected on the light-passing surface S3 of the optical path translating polygon mirror 3 and the optical signal ⁇ 3 is translated by the optical path.
  • the positions of the light spots projected onto the light-passing surface S3 after the light-passing surface S2 of the mirror 3 is refracted substantially coincide.
  • the two light-passing surfaces of the half-wave plate 6 are plated with an anti-reflection film, and the front and rear surfaces of the two light-passing plates are plated with an anti-reflection film, so that the main section of the optical axis of the half-wave plate 6 and the combined optical signal are [
  • the polarization planes of ⁇ 1 , ⁇ 3 ] and [ ⁇ 2 , ⁇ 4 ] are at an angle of 45°, so that when linearly polarized light is incident perpendicularly to the half-wave plate 6, the transmitted light is still linearly polarized, if linearly polarized at the time of incidence
  • the angle between the vibration surface and the main section of the crystal of the half-wave plate 6 is ⁇ (45°), and the vibration plane of the transmitted linearly polarized light is rotated by the 2 ⁇ angle (90°) from the original orientation.
  • the half-wave plate 6 in Fig. 2 is used to rotate the polarization state of the combined optical signal [ ⁇ 1 , ⁇ 3 ] into a polarization of the substantially vertically combined optical signal [ ⁇ 2 , ⁇ 4 ].
  • the combined optical signal [ ⁇ 1 , ⁇ 3 ] passing through the half-wave plate 6 is the S-polarized state
  • the combined optical signal that has not passed through the half-wave plate 6 [ ⁇ ] 2 , ⁇ 4 ] is a P polarization state.
  • the incident surface S5 and the exit surface S8 of the polarization beam combining mirror 7 are parallel to each other, and are coated with an anti-reflection film.
  • the reflective surface S6 corresponding to the half-wave plate 6 is plated with a S-state single polarization high-reflection film, which is substantially unchanged.
  • the bonding plane S7 is plated with a polarization splitting film, and the optical signal (S-polarized state) whose polarization state is perpendicular to the light-emitting unit of the laser chip array 1 is reflected on the surface, and the polarization state is parallel to the optical signal of the light-emitting unit of the laser chip array 1 ( The P polarization state is completely transmitted on the surface.
  • the polarization beam combining mirror 7 and the bonding plane S7 and the reflecting surface S6 are parallel to each other, cooperatively translate the incident combined optical signal [ ⁇ 1 , ⁇ 3 ], and realize the combined optical signal [ ⁇ 1 , ⁇ 3 ] and the combined optical signal [ ⁇ ] 2 , ⁇ 4 ] is combined on the gluing plane S7.
  • the optical isolator 8 is a polarization-independent optical isolator for realizing reverse isolation of output light.
  • the laser chip array 1 emits four different wavelength optical signals whose polarization states are parallel to the side-by-side plane of the laser chip array, such as the P-polarization state.
  • the optical signal ⁇ 1 is deflected on the reflected light path of the mirror 5, and the reflected light is projected onto the surface of the light-passing surface S3 of the optical path translating polygon mirror 3; the optical signal ⁇ 3 is also refracted through the optical path translating polygon mirror light-emitting surface S2 Smooth surface S3.
  • the position of the projection point of the optical signal ⁇ 1 and the optical signal ⁇ 3 substantially coincides on the light-passing surface S3 of the optical path translating polygon mirror.
  • the exit light-passing surface S3 is plated with a low-pass or high-pass filter film, and the wavelengths of the light signals ⁇ 3 and ⁇ 1 are respectively located in the transmission band and the reflection band of the spectrum of the filter film, so that the light signal ⁇ is reflected on the surface of the light-passing surface S3. 1 and the refracted optical signal ⁇ 3 are easily combined to form a combined optical signal [ ⁇ 1 , ⁇ 3 ].
  • the optical signal ⁇ 4 and the optical signal ⁇ 2 have the same combining process: the optical signal ⁇ 4 is deflected on the reflected light path of the mirror 4, and the reflected light is projected onto the surface of the light-transmitting surface S4 of the optical path translating polygon mirror 3; the optical signal ⁇ 2 Then, the light-passing surface S1 of the optical path translating polygon mirror 3 is refracted and projected onto the surface of the light-passing surface S4. The position of the projection point of the optical signal ⁇ 4 and the optical signal ⁇ 2 on the light-passing surface S4 of the optical path translating polygon mirror 3 substantially coincides.
  • the exit light-passing surface S4 is plated with a low-pass or high-pass filter film, and the wavelengths of the light signals ⁇ 3 and ⁇ 1 are respectively located in the transmission band and the reflection band of the filter film spectrum, and the reflected light signal ⁇ 4 and the refracted light signal ⁇ 2 Combining is performed on the outgoing light-passing surface S4 to form a combined optical signal [ ⁇ 1 , ⁇ 3 ].
  • the polarization state is converted into the S polarization state, and the combined optical signal [ ⁇ 1 , ⁇ 3 ] is deflected on the high-reflection surface S6 of the polarization beam splitter 7 to be deflected, and the reflected light is projected onto the bonding plane S7 of the polarization beam combining mirror 7;
  • the combined optical signal [ ⁇ 2 , ⁇ 4 ] is refracted onto the bonding plane S7 via the incident surface S5 of the polarization beam combining mirror 7.
  • the combined light signals [ ⁇ 1 , ⁇ 3 ] on the bonding plane S7 of the polarization beam combining mirror 7 and the projection point positions of the combined light signals [ ⁇ 2 , ⁇ 4 ] substantially coincide.
  • the polarization beam combiner mirror 7 is coated with a polarization splitting film, and the combined light signal [ ⁇ 1 , ⁇ 3 ] of the S polarization state and the combined light signal [ ⁇ 2 , ⁇ 4 ] of the P polarization state are combined.
  • the combined optical signals [ ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 ] enter the optical isolator 8 and are finally coupled into the coupled output fiber 10 through the coupling output lens 9.
  • the wavelength interval of the combined optical signals can be effectively increased, which is advantageous for filtering the light reflections of the light-passing surfaces S3 and S4 of the polygon mirror 3 in the optical path.
  • the film has a higher signal-to-noise suppression ratio; the convergence of the polarization beam to the same light output port can simplify the assembly difficulty, reduce the optical path difference of each optical channel, and improve the optical path coupling efficiency.
  • the present invention provides a single-port multi-channel parallel light emitting component, which has small optical path difference, high optical path coupling efficiency, small wavelength-dependent loss, and relatively simple assembly process. Has a relatively low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Polarising Elements (AREA)

Abstract

一种单光口多路并行光发射组件,包括激光器芯片阵列(1)、准直透镜阵列(2)、光路平移多面镜(3)、反射镜(4,5)、半波片(6)、偏振合束镜(7)、光隔离器(8)、耦合输出透镜(9)和耦合输出光纤(10);将4路不同波长激光器发光单元的光束准直后,先将非相邻光通道经特殊波分复用光路两两合束,再进行偏振合束会聚到同一光输出端口,综合利用了光路平移多面镜(3)上两个通光面的滤光膜、反射镜(4,5)和偏振合束镜(7)偏振合波功能实现了4个不同波长光信号的合波,各通道光信号的光程差异小,光路耦合效率高,波长相关损耗小,装配工艺简单,成本较低,可以应用于包括40Gb/S、100Gb/S在内的各种速率QSFP+光模块光信号的发射。

Description

一种单光口多路并行光发射组件 技术领域
本发明属于光通讯技术领域,尤其涉及一种单光口多路并行光发射组件。
背景技术
随着数据通讯向着高速大容量方向发展,并行光发射和接收技术近几年发展迅速。高速多通道并行光收发模块,作为数据通讯中高带宽大容量的光互连基础器件之一,具有大通信容量、低能耗、小型化等特点大受业界青睐。
高速多通道并行光发射组件目前主要采用将多通道半导体激光器通过波分复用/解复用(coarse wavelength division multiplexing,CWDM)技术封装在只有一个光口输出光组件里,从而提高了单端光口的传输速度。例如采用QSFP28模块封装形式的4x25Gbps单模光收发模块将4个CWDM不同波长的25Gbps的激光器利用粗波分复用/解复用技术和单根光纤耦合,以实现单根光纤100Gbps信号的发射传输。
目前,业内波分复用/解复用技术多采用的方案有:阵列波导光栅(arrayed waveguide grating,AWG)方案和介质薄膜滤光片方案等。AWG的优点在于集成度高,可与激光器芯片同基板制备,应用在4通道以上复用和解复用具有较大优势,但是存在成本高、耦合难度较高及插损大等缺点。介质薄膜滤光片方案是目前被规模化商用方案,物料成本低、滤波特性好,目前业内现有技术中多采用的4通道并行光发射组件光路结构如图1。其中激光器阵列101是由4个不同波长的的激光器芯片组成 的多通道阵列,通道间隔相等。带通滤光片组件103在各个通道的通带波长和各通道激光器的波长相对应,带通滤光片组件103中各个通道的带通滤光片实现对通道内的波长进行透射,对通道外的波长进行反射。全反射镜105对所有波长的光全部反射。玻璃基板104是具有良好透光率的玻璃和其它透光材料。带通滤光片组103安装在玻璃基板104的一个平面上,玻璃基板104的另一平面上安装有对全波长反射的全反射镜105。激光器阵列101发射4个不同波长的光分别通过各个通道的准直透镜组102变成多通道互相平行的准直光,多通道准直光以一定的入射角斜入射到带通滤光片组103中各个通道的带通滤光片上并透射到玻璃基板104内,经过全反射镜105的反射和带通滤光片组103对非通带波长光的反射,光线在玻璃基板104内沿Z形或W形前行,具体光路图如图1中的箭头所示。最终所有通道的光束在玻璃基板104的出口处基本重合,入射到耦合输出透镜106,耦合进入光纤107。
上述基于介质薄膜滤光片方案的多通道并行光发射组件结构的存在一个明显缺点:各光通道从激光器阵列出射到耦合进光纤所经历的光程存在较大的差异,不同通道的光波与光纤耦合效率存在明显的不同。
为了解决上述技术问题,本发明提出了一种单光口多路并行光发射组件,各光通道光程差异小,光路耦合效率高,波长相关损耗小,装配工艺相对简单,具有相对低的成本,可以应用于包括40Gb/S、100Gb/S在内的各种速率QSFP+光模块光信号的发射。
发明内容
为解决上述技术问题,本发明的主要目的在于提供一种单光口多路 并行光发射组件。
本发明提供一种单光口多路并行光发射组件,其依光路设置有激光器芯片阵列、光路平移多面镜、第一反射镜和第二反射镜、半波片、偏振合束镜;其中,
所述激光器芯片阵列按中心波长大小依次并排平行设置,发出与四个光通道对应的具有相同偏振态的光信号λ1234
所述光路平移多面镜实现光信号λ2和光信号λ3的光束交叉平移,所述第一反射镜和第二反射镜分别实现光信号λ1和光信号λ4的光束方向偏折,使得光信号λ1和光信号λ3合束成为组合光信号[λ13],并且使得光信号λ2和光信号λ4合束成为组合光信号[λ24];
通过所述半波片使得组合光信号[λ13]的偏振态与组合光信号[λ24]的偏振态相互垂直,由所述偏振合束镜将组合光信号[λ13]与组合光信号[λ24]进行偏振合束,合束成为组合光信号[λ1234]。
在上述技术方案中,所述激光器芯片阵列是多个分立的不同波长激光器芯片构成阵列或是单片具有不同波长的多个发光单元激光器芯片构成的阵列,各个光通道的波长是满足IEEE 802.3ba规范的不同的CWDM波长,或者是波长间隔更大的其他任意波长,以长波长到短波长的次序或由短波长到长波长的次序依次并排平行设置。
在上述技术方案中,进一步包括准直透镜阵列,所述准直透镜阵列与所述激光器芯片阵列对应,用于各个光通道的光信号的光束准直。
在上述技术方案中,所述光路平移多面镜的入射通光面S1和入射通光面S2分别与设置于所述激光器芯片阵列中间的两个激光器出射的光信 号λ2和光信号λ3相对应,分别将光信号λ2和光信号λ3折射以实现交叉平移后分别投射到所述光路平移多面镜的出射通光面S4和出射通光面S3出射。
在上述技术方案中,镀有单偏振高反膜的所述第一反射镜的反射面与所述光路平移多面镜的出射通光面S4平行,光信号λ4经过所述第一反射镜反射后在所述光路平移多面镜的出射通光面S4上的投射点与光信号λ2经所述光路平移多面镜的入射通光面S1折射后投射到出射通光面S4上的投射点位置重合,以实现光信号λ2和光信号λ4合束;镀有单偏振高反膜的所述第二反射镜的反射面与所述光路平移多面镜的出射通光面S3平行,光信号λ1经过所述第二反射镜反射后在所述光路平移多面镜的出射通光面S3上的投射点与光信号λ3经所述光路平移多面镜的入射通光面S2折射后投射到出射通光面S3上的投射点位置重合,以实现光信号λ1和光信号λ3合束。
在上述技术方案中,所述的光路平移多面镜的入射通光面S1和出射通光面S4相互平行,光信号λ2所对应的入射通光面S1镀有增透膜,出射通光面S4镀有低通滤光膜或高通滤光膜,光信号λ2和光信号λ4的波长分别位于出射通光面S4上的低通滤光膜或高通滤光膜的光谱的透过带和反射带;所述的光路平移多面镜的入射通光面S2和出射通光面S3相互平行,光信号λ3所对应的入射通光面S2镀有增透膜,出射通光面S3镀有低通滤光膜或高通滤光膜,光信号λ1和光信号λ3的波长分别位于出射通光面S3上的高通滤光膜或低通滤光膜的光谱的反射带和透过带。
在上述技术方案中,所述半波片的两个通光面上均镀有增透膜,其光轴所在的主截面与组合光信号[λ13]和组合光信号[λ24]的偏振 平面成45°角。
在上述技术方案中,所述偏振合束镜的入射面S5和出射面S8相互平行,均镀有增透膜;与所述半波片相对应的反射面S6镀有单偏振高反膜;其偏振方向与所述激光器芯片阵列发射的光信号的偏振方向垂直;所述偏振合束镜的胶合平面S7镀有偏振分束膜,使得偏振态垂直于所述激光器芯片阵列发射的光信号的偏振方向的光信号在所述胶合平面S7被反射,使得偏振态平行于所述激光器芯片阵列发射的光信号的偏振方向的光信号在所述胶合平面S7被透射。
在上述技术方案中,所述偏振合束镜的胶合平面S7与反射面S6相互平行,协作平移入射的组合光信号[λ13]和组合光信号[λ24]中的一个,实现组合光信号[λ13]与组合光信号[λ24]在所述胶合平面S7上的偏振合束。
在上述技术方案中,进一步包括光隔离器、耦合输出透镜和耦合输出光纤;组合光信号[λ1234]进入所述光隔离器通过所述耦合输出透镜耦合进所述耦合输出光纤;所述光隔离器为偏振无关光隔离器,用于实现输出光的反向隔离。
本发明与现有技术相比,其有益的效果是:各光通道光程差异小,光路耦合效率高并且各光通道的光路耦合效率相近,波长相关损耗小,装配工艺相对简单,具有相对低的成本。
附图说明
图1为现有技术的4通道并行光发射组件光路结构示意图;
图2为本发明较佳实施例的结构示意图;
图3为本发明实施例的光路平移多面镜S4面透射光谱曲线;
图4为本发明实施例的光路平移多面镜S4面反射光谱曲线;
图5为本发明实施例的光路平移多面镜S3面透射光谱曲线;
图6为本发明实施例的光路平移多面镜S3面反射光谱曲线;
其中:
1、激光器芯片阵列       2、准直透镜阵列
3、光路平移多面镜       4、反射镜
5、反射镜               6、半波片(HWP)
7、偏振合束镜(PBC)      8、光隔离器
9、耦合输出透镜         10、耦合输出光纤
101、激光器阵列         102、准直透镜组
103、带通滤光片组件     104、玻璃基板
105、全反射镜           106、耦合输出透镜
107、光纤
具体实施方式
下面结合具体实施例及附图对本发明作进一步详细说明。
为了解决现有技术中多通道并行光发射组件的各光通道光程存在较大差异、光波耦合效率存在明显差异的问题,本发明提供了一种单光口多路并行光发射组件,将4路不同波长LD发光单元光束准直后,将非相邻光通道先经特殊波分复用光路两两合束,再进行偏振合束会聚到同一光输出端口。
本发明的较优实施例在附图2中示出,依光路设置包括激光器芯片阵 列1、准直透镜阵列2、光路平移多面镜3、反射镜4和5、半波片6(HWP)、偏振合束镜7(PBC)、光隔离器8、耦合输出透镜9和耦合输出光纤10。
激光器芯片阵列1为4个并列设置的激光器(LD),中心波长λ1234由长波到短波或由短波到长波依次并排平行设置,其偏振态平行于激光器芯片阵列1的并排平面。
准直透镜阵列2与激光器芯片阵列1相对应,用于各通道激光器出射光束的准直。
光路平移多面镜3置于准直透镜阵列2和半波片6/偏振合束镜7之间,光路平移多面镜3的两个通光面S1和S2分别与设置于激光器芯片阵列1中间的两个激光器出射的波长λ2和λ3的光信号相对应,实现准直后的光信号λ2和λ3的光束交叉平移。
反射镜4和反射镜5的高反面分别与设置于激光器芯片阵列1两侧的两个激光器出射的波长λ4和λ1的光信号相对应,用于反射实现准直后的光信号λ4和λ1。如图2所示,反射镜4的高反面进一步与光路平移多面镜3上光信号λ2出射面S4平行,反射镜5的高反面与光路平移多面镜3上光信号λ3出射面S3平行。通过上述设置方式,反射镜4和光路平移多面镜3协作将光信号λ1和λ3组合成光信号[λ13];反射镜5和光路平移多面镜3协作将光信号λ2和λ4组合成光信号[λ24]。
半波片6放置于偏振合束镜7的反射面S6所在一侧,与组合光信号[λ13]或组合光信号[λ24]相对应,如图2所示以半波片6与组合光信号[λ13]相对应为例,光路中组合光信号[λ13]通过半波片6进入偏振合束镜7,组合光信号[λ24]则不通过半波片6,直接进入偏振合束镜7。
偏振合束镜7设置于半波片6和光隔离器8之间,实现组合光信号[λ13]与组合光信号[λ24]偏振合束。组合光信号[λ1234]进入光隔离器8通过耦合输出透镜9耦合进耦合输出光纤10。
所述的激光器芯片阵列1具有发光单元,其中该激光器芯片阵列1是由多个分立的不同波长激光器芯片构成阵列或是由单片具有不同波长的多个发光单元激光器芯片构成的阵列,各通道的波长可以是满足IEEE802.3ba规范的不同的CWDM波长,也可以波长间隔更大的其他任意波长,由长波到短波或由短波到长波依次并排平行设置。
所述的光路平移多面镜3的通光面S1和S4相互平行,光信号λ2所对应的入射通光面S1镀有增透膜,出射通光面S4镀有低通(SWP:Short Wave Pass)或高通滤光膜(LWP:Long Wave Pass),光信号λ2和λ4分别位于滤光膜光谱的透过带和反射带,以工作波长λ1234为例进行说明,当出射通光面S4镀低通高反膜时,其透过率曲线和反射率曲线分别如图3和图4所示。
所述的光路平移多面镜3的通光面S2和S3相互平行,光信号λ3所对应的入射通光面S2镀有增透膜,出射通光面S3镀有高通或低通滤光膜,光信号λ3和λ1分别位于滤光膜光谱的透过带和反射带,以工作波长λ1234为例进行说明,出射通光面S3镀高通低反膜,其透过率曲线和反射率曲线分别如图5和图6所示。
同样地,当工作波长λ1234时,出射通光面S4镀高通低反膜,出射通光面S3镀低通高反膜。
所述的反射镜4的高反面上镀有单偏振高反膜,高反面上反射光线相对于入射光线,偏振态基本不变。所述的反射镜4高反面与光路平移多 面镜3上光信号λ2出射通光面S4相平行。
所述的反射镜4的位置按以下位置关系配置:光信号λ4经反射镜4反射后,反射光线在光路平移多面镜3的通光面S4上投射点与光信号λ2经光路平移多面镜3的通光面S1折射后投射到通光面S4上的光点位置大致重合。
所述的反射镜5的高反面上镀有单偏振高反膜,高反面上反射光线相对于入射光,偏振态基本不变。所述的反射镜5高反面与光路平移多面镜3上光信号λ3出射通光面S3相平行。
所述的反射镜5的位置按以下位置关系配置:光信号λ1经反射镜5反射后,反射光线在光路平移多面镜3的通光面S3上投射点与光信号λ3经光路平移多面镜3的通光面S2折射后投射到通光面S3上的光点位置大致重合。
所述的半波片6的两个通光面上均镀有增透膜,前后两个通光的表面镀增透膜,使得半波片6的光轴所在的主截面与组合光信号[λ13]和[λ24]偏振平面成45°角,这样当线偏振光垂直入射到半波片6时,透射光仍为线偏振光,假如入射时线偏振光的振动面和得半波片6晶体主截面之间的夹角为θ(45°),则透射出来的线偏振光的振动面从原来的方位转过2θ角(90°)。图2中半波片6用于将组合光信号[λ13]的偏振态旋转成大体上垂直组合光信号[λ24]的偏振。例如,当激光器芯片阵列1的激光器出射光为P偏振态时,经过半波片6的组合光信号[λ13]为S偏振态,未经过半波片6的组合光信号[λ24]为P偏振态。
所述的偏振合束镜7的入射面S5和出射面S8相互平行,均镀有增透膜,与半波片6相对应的反射面S6镀有S态单偏振高反膜,基本不改变 入射光的偏振态。胶合平面S7镀有偏振分束膜,偏振态垂直于激光器芯片阵列1的发光单元的光信号(S偏振态)在该表面被反射,偏振态平行于激光器芯片阵列1的发光单元的光信号(P偏振态)在该表面则完全透射。
所述的偏振合束镜7和胶合平面S7和反射面S6相互平行,协作平移入射组合光信号[λ13],实现组合光信号[λ13]与组合光信号[λ24]的在胶合平面S7上的合束。
所述的光隔离器8为偏振无关光隔离器,用于实现输出光的反向隔离。
所述的一种单光口多路并行光发射组件合波的具体过程描述为:
激光器芯片阵列1发出4个不同波长光信号,其偏振态平行于激光器芯片阵列并排平面,例如P偏振态。
光信号λ1在反射镜5上反射光路发生偏折,反射光线投射到光路平移多面镜3的通光面S3表面;光信号λ3则经光路平移多面镜通光面S2折射也投射到通光面S3表面。在光路平移多面镜的通光面S3上光信号λ1与光信号λ3的投射点位置基本重合。出射通光面S3镀有低通或高通滤光膜,光信号λ3和λ1的波长分别位于该滤光膜光谱的透过带和反射带,所以通光面S3表面上反射光信号λ1和折射光信号λ3很容易实现合束,形成组合光信号[λ13]。
光信号λ4和光信号λ2有相同的合束过程:光信号λ4在反射镜4上反射光路发生偏折,反射光线投射到光路平移多面镜3的通光面S4表面;光信号λ2则经光路平移多面镜3的通光面S1折射投射到通光面S4表面。在光路平移多面镜3的通光面S4上光信号λ4与光信号λ2的投射点位置 大致重合。出射通光面S4镀有低通或高通滤光膜,光信号λ3和λ1的波长分别位于该滤光膜光谱的透过带和反射带,反射光信号λ4和折射光信号λ2在出射通光面S4上实现合束,形成组合光信号[λ13]。
如图2所示,组合光信号[λ13]通过半波片6后,其偏振态旋转成大体上与组合光信号[λ24]的偏振态相垂直,即从P偏振态转换为S偏振态,组合光信号[λ13]在偏振合束镜7的高反面S6上反射光路发生偏折,反射光线投射到偏振合束镜7的胶合平面S7上;组合光信号[λ24]则经偏振合束镜7的入射面S5折射投射到胶合平面S7上。在偏振合束镜7的胶合平面S7上组合光信号[λ13]与组合光信号[λ24]的投射点位置基本重合。偏振合束镜7胶合平面S7镀有偏振分束膜,S偏振态的组合光信号[λ13]与P偏振态的组合光信号[λ24]实现了合束。
组合光信号[λ1234]进入光学隔离器8后,最后通过耦合输出透镜9耦合进耦合输出光纤10。
通过上述这种将非相邻光通道的光信号进行两两合束可以有效增加进行合束的光信号的波长间隔,有利于在光路平移多面镜3的通光面S3和S4的滤光反射膜上具有更高的信噪抑制比;再通过偏振合束会聚到同一光输出端口可以有效简化装配难度,减小各光通道的光程差异,提高光路耦合效率。由此本领域技术人员应当理解光路平移多面镜3和偏振合束镜7的具体具体结构和构成可以依据上述功能进行选择和替代,并不局限于图2中所示出的光路形式。
综上所述,本发明提出了一种单光口多路并行光发射组件,各光通道光程差异小,光路耦合效率高,波长相关损耗小,装配工艺相对简单, 具有相对低的成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种单光口多路并行光发射组件,其特征在于:依光路设置有激光器芯片阵列(1)、光路平移多面镜(3)、第一反射镜(4)和第二反射镜(5)、半波片(6)、偏振合束镜(7);其中,
    所述激光器芯片阵列(1)按中心波长大小依次并排平行设置,发出与四个光通道对应的具有相同偏振态的光信号λ1234
    所述光路平移多面镜(3)实现光信号λ2和光信号λ3的光束交叉平移,所述第一反射镜(4)和第二反射镜(5)分别实现光信号λ1和光信号λ4的光束方向偏折,使得光信号λ1和光信号λ3合束成为组合光信号[λ13],并且使得光信号λ2和光信号λ4合束成为组合光信号[λ24];
    通过所述半波片(6)使得组合光信号[λ13]的偏振态与组合光信号[λ24]的偏振态相互垂直,由所述偏振合束镜(7)将组合光信号[λ13]与组合光信号[λ24]进行偏振合束,合束成为组合光信号[λ1234]。
  2. 如权利要求1所述的单光口多路并行光发射组件,其特征在于:所述激光器芯片阵列(1)是多个分立的不同波长激光器芯片构成阵列或是单片具有不同波长的多个发光单元激光器芯片构成的阵列,各个光通道的波长是满足IEEE 802.3ba规范的不同的CWDM波长,或者是波长间隔更大的其他任意波长,以长波长到短波长的次序或由短波长到长波长的次序依次并排平行设置。
  3. 如权利要求1或2所述的单光口多路并行光发射组件,其特征在于:进一步包括准直透镜阵列(2),所述准直透镜阵列(2)与所述激光器芯片阵列(1)对应,用于各个光通道的光信号的光束准直。
  4. 如权利要求1-3中任一项所述的单光口多路并行光发射组件,其特征在于:所述光路平移多面镜(3)的入射通光面S1和入射通光面S2分别与设置于所述激光器芯片阵列(1)中间的两个激光器出射的光信号λ2和光信号λ3相对应,分别将光信号λ2和光信号λ3折射以实现交叉平移后分别投射到所述光路平移多面镜(3)的出射通光面S4和出射通光面S3出射。
  5. 如权利要求4所述的单光口多路并行光发射组件,其特征在于:镀有单偏振高反膜的所述第一反射镜(4)的反射面与所述光路平移多面镜(3)的出射通光面S4平行,光信号λ4经过所述第一反射镜(4)反射后在所述光路平移多面镜(3)的出射通光面S4上的投射点与光信号λ2经所述光路平移多面镜(3)的入射通光面S1折射后投射到出射通光面S4上的投射点位置重合,以实现光信号λ2和光信号λ4合束;镀有单偏振高反膜的所述第二反射镜(5)的反射面与所述光路平移多面镜(3)的出射通光面S3平行,光信号λ1经过所述第二反射镜(5)反射后在所述光路平移多面镜(3)的出射通光面S3上的投射点与光信号λ3经所述光路平移多面镜(3)的入射通光面S2折射后投射到出射通光面S3上的投射点位置重合,以实现光信号λ1和光信号λ3合束。
  6. 如权利要求4-5中任一项所述的单光口多路并行光发射组件,其特征在于:所述的光路平移多面镜(3)的入射通光面S1和出射通光面S4相互平行,光信号λ2所对应的入射通光面S1镀有增透膜,出射通光面S4镀有低通滤光膜或高通滤光膜,光信号λ2和光信号λ4的波长分别位于出射通光面S4上的低通滤光膜或高通滤光膜的光谱的透过带和反射带;所述的光路平移多面镜(3)的入射通光面S2和出射通光面S3 相互平行,光信号λ3所对应的入射通光面S2镀有增透膜,出射通光面S3镀有低通滤光膜或高通滤光膜,光信号λ1和光信号λ3的波长分别位于出射通光面S3上的高通滤光膜或低通滤光膜的光谱的反射带和透过带。
  7. 如权利要求1-6中任一项所述的单光口多路并行光发射组件,其特征在于:所述半波片(6)的两个通光面上均镀有增透膜,其光轴所在的主截面与组合光信号[λ13]和组合光信号[λ24]的偏振平面成45°角。
  8. 如权利要求7所述的单光口多路并行光发射组件,其特征在于:所述偏振合束镜(7)的入射面S5和出射面S8相互平行,均镀有增透膜;与所述半波片(6)相对应的反射面S6镀有单偏振高反膜;其偏振方向与所述激光器芯片阵列(1)发射的光信号的偏振方向垂直;所述偏振合束镜(7)的胶合平面S7镀有偏振分束膜,使得偏振态垂直于所述激光器芯片阵列(1)发射的光信号的偏振方向的光信号在所述胶合平面S7被反射,使得偏振态平行于所述激光器芯片阵列(1)发射的光信号的偏振方向的光信号在所述胶合平面S7被透射。
  9. 如权利要求8所述的单光口多路并行光发射组件,其特征在于:所述偏振合束镜(7)的胶合平面S7与反射面S6相互平行,协作平移入射的组合光信号[λ13]和组合光信号[λ24]中的一个,实现组合光信号[λ13]与组合光信号[λ24]在所述胶合平面S7上的偏振合束。
  10. 如权利要求1-9中任一项所述的单光口多路并行光发射组件,其特征在于:进一步包括光隔离器(8)、耦合输出透镜(9)和耦合输出光纤(10);组合光信号[λ1234]进入所述光隔离器(8)通过所 述耦合输出透镜(9)耦合进所述耦合输出光纤(10);所述光隔离器(8)为偏振无关光隔离器,用于实现输出光的反向隔离。
PCT/CN2016/112633 2016-04-25 2016-12-28 一种单光口多路并行光发射组件 WO2017185789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610259483.6 2016-04-25
CN201610259483.6A CN105717589B (zh) 2016-04-25 2016-04-25 一种单光口多路并行光发射组件

Publications (1)

Publication Number Publication Date
WO2017185789A1 true WO2017185789A1 (zh) 2017-11-02

Family

ID=56161595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112633 WO2017185789A1 (zh) 2016-04-25 2016-12-28 一种单光口多路并行光发射组件

Country Status (2)

Country Link
CN (1) CN105717589B (zh)
WO (1) WO2017185789A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051892A (zh) * 2018-01-19 2018-05-18 广东瑞谷光网通信股份有限公司 一种微结构光波分复用器
CN112909725A (zh) * 2021-01-13 2021-06-04 华中科技大学 基于星形反射的蓝光半导体激光器波长合束装置及方法
CN113064138A (zh) * 2021-03-15 2021-07-02 深圳煜炜光学科技有限公司 一种基于多波长配置的多线激光雷达
CN114384643A (zh) * 2020-10-19 2022-04-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN114966987A (zh) * 2022-06-10 2022-08-30 深圳市砺芯科技有限公司 一种光波导芯片混合集成分波-合波器
WO2023065468A1 (zh) * 2021-10-19 2023-04-27 昂纳信息技术(深圳)有限公司 光信号传输***
CN117381212A (zh) * 2023-11-23 2024-01-12 江阴创可激光技术有限公司 一种双激光器出光的激光加工装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717589B (zh) * 2016-04-25 2018-06-26 武汉光迅科技股份有限公司 一种单光口多路并行光发射组件
CN105954835B (zh) * 2016-07-15 2019-03-01 成都聚芯光科通信设备有限责任公司 一种密集多波长合波的光学模块
MX2019008009A (es) * 2017-01-05 2019-09-10 Ipg Photonics Corp Sistemas y metodos de mecanizado por laser de aditivo.
CN109839700A (zh) * 2017-11-29 2019-06-04 中兴通讯股份有限公司 光收发器件
CN111290089A (zh) * 2020-04-14 2020-06-16 东莞铭普光磁股份有限公司 一种多波长耦合光发射装置
CN112379490B (zh) * 2020-11-16 2022-03-29 河北华美光电子有限公司 光模块
CN114553316A (zh) * 2020-11-26 2022-05-27 华为技术有限公司 光发送组件、光收发组件以及光线路终端
CN113376751B (zh) * 2021-07-05 2023-07-25 武汉联特科技股份有限公司 一种多通道并行光组件
CN114234131A (zh) * 2021-11-18 2022-03-25 晶影光学技术(常熟)有限公司 一种合束分光照明***
CN114460698B (zh) * 2022-03-14 2023-08-29 武汉光迅科技股份有限公司 一种光发射模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885077A (zh) * 2005-06-24 2006-12-27 上海未来宽带技术及应用工程研究中心有限公司 基于微机电***芯片技术的光开关及其光路切换方法
US20090324224A1 (en) * 2008-06-30 2009-12-31 Chongjin Xie System, method and apparatus to suppress inter-channel nonlinearities in WDM systems with coherent detection
CN202713311U (zh) * 2012-06-06 2013-01-30 苏州旭创科技有限公司 应用于高速并行长距离传输的新型波分复用解复用光组件
CN104991320A (zh) * 2015-07-24 2015-10-21 福州百讯光电有限公司 一种多波长单纤双向光收发模块及其工作方法
CN204925459U (zh) * 2015-07-24 2015-12-30 福州百讯光电有限公司 一种多波长单纤双向光收发模块
CN105717589A (zh) * 2016-04-25 2016-06-29 武汉光迅科技股份有限公司 一种单光口多路并行光发射组件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010194B2 (en) * 2002-10-07 2006-03-07 Coherent, Inc. Method and apparatus for coupling radiation from a stack of diode-laser bars into a single-core optical fiber
JP2007025422A (ja) * 2005-07-20 2007-02-01 Alps Electric Co Ltd 波長分岐フィルタ及び光通信モジュール
JP2013145356A (ja) * 2011-12-13 2013-07-25 Sumitomo Electric Ind Ltd 光通信モジュール
JP6395357B2 (ja) * 2013-04-05 2018-09-26 住友電工デバイス・イノベーション株式会社 光モジュール
CN203385903U (zh) * 2013-08-23 2014-01-08 福州高意通讯有限公司 一种用于40g的光收发组件
CN104459904B (zh) * 2013-09-18 2016-05-04 福州高意通讯有限公司 一种单纤双向bosa结构
JP6446955B2 (ja) * 2013-10-09 2019-01-09 住友電気工業株式会社 光送信モジュール
CN104020527A (zh) * 2014-06-11 2014-09-03 武汉电信器件有限公司 一种多通道集成光波分复用/解复用的组件结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885077A (zh) * 2005-06-24 2006-12-27 上海未来宽带技术及应用工程研究中心有限公司 基于微机电***芯片技术的光开关及其光路切换方法
US20090324224A1 (en) * 2008-06-30 2009-12-31 Chongjin Xie System, method and apparatus to suppress inter-channel nonlinearities in WDM systems with coherent detection
CN202713311U (zh) * 2012-06-06 2013-01-30 苏州旭创科技有限公司 应用于高速并行长距离传输的新型波分复用解复用光组件
CN104991320A (zh) * 2015-07-24 2015-10-21 福州百讯光电有限公司 一种多波长单纤双向光收发模块及其工作方法
CN204925459U (zh) * 2015-07-24 2015-12-30 福州百讯光电有限公司 一种多波长单纤双向光收发模块
CN105717589A (zh) * 2016-04-25 2016-06-29 武汉光迅科技股份有限公司 一种单光口多路并行光发射组件

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051892A (zh) * 2018-01-19 2018-05-18 广东瑞谷光网通信股份有限公司 一种微结构光波分复用器
CN114384643A (zh) * 2020-10-19 2022-04-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN114384643B (zh) * 2020-10-19 2023-08-15 青岛海信宽带多媒体技术有限公司 一种光模块
CN112909725A (zh) * 2021-01-13 2021-06-04 华中科技大学 基于星形反射的蓝光半导体激光器波长合束装置及方法
CN113064138A (zh) * 2021-03-15 2021-07-02 深圳煜炜光学科技有限公司 一种基于多波长配置的多线激光雷达
CN113064138B (zh) * 2021-03-15 2024-02-02 深圳煜炜光学科技有限公司 一种基于多波长配置的多线激光雷达
WO2023065468A1 (zh) * 2021-10-19 2023-04-27 昂纳信息技术(深圳)有限公司 光信号传输***
CN114966987A (zh) * 2022-06-10 2022-08-30 深圳市砺芯科技有限公司 一种光波导芯片混合集成分波-合波器
CN117381212A (zh) * 2023-11-23 2024-01-12 江阴创可激光技术有限公司 一种双激光器出光的激光加工装置
CN117381212B (zh) * 2023-11-23 2024-05-10 江阴创可激光技术有限公司 一种双激光器出光的激光加工装置

Also Published As

Publication number Publication date
CN105717589B (zh) 2018-06-26
CN105717589A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2017185789A1 (zh) 一种单光口多路并行光发射组件
US9042731B2 (en) Optical module having a plurality of optical sources
WO2016065865A1 (zh) 微型同波长单芯双向光收发模块
JP7169708B2 (ja) 単芯双方向光送受信アセンブリ
CN110554463B (zh) 光整合器件及环形器
CN213457454U (zh) 一种具有合波耦合功能的多通道光发射组件
CN106908912B (zh) 用于高速收发***的单纤双向bosa光学结构
JP5623675B2 (ja) 光信号多重化方法および光多重化装置
CN109613654B (zh) 多通道并行波分复用/解复用分光组件及其光器件
WO2023236679A1 (zh) 光收发模块
US20160238790A1 (en) Multiplexer
WO2016112576A1 (zh) 波分复用/解复用器以及光发射组件
CN211603625U (zh) 一种用于高速bosa器件的小型集成化光组件
CN102662215B (zh) 一种波分复用光电发射模块
WO2023065468A1 (zh) 光信号传输***
WO2021047159A1 (zh) 一种光波分复用器
CN210572867U (zh) 一种光波分复用器
CN210835308U (zh) 一种波长敏感偏振器件及用其制作的光器件
CN109802745B (zh) 一种用于200g/400g光收发模块的8通道波分复用/解复用器件
CN109799619B (zh) 一种8通道偏振合波器
CN209086496U (zh) 一种具有多个波长信号通道的光发射组件
CN217561774U (zh) 一种微型的自由空间多通道合波组件
CN215264115U (zh) 一种反射式光环行器
US7116479B1 (en) Array polarization beamsplitter and combiner
CN216670324U (zh) 一种带波分功能的光环形器组件

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900293

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900293

Country of ref document: EP

Kind code of ref document: A1