WO2016112576A1 - 波分复用/解复用器以及光发射组件 - Google Patents

波分复用/解复用器以及光发射组件 Download PDF

Info

Publication number
WO2016112576A1
WO2016112576A1 PCT/CN2015/073253 CN2015073253W WO2016112576A1 WO 2016112576 A1 WO2016112576 A1 WO 2016112576A1 CN 2015073253 W CN2015073253 W CN 2015073253W WO 2016112576 A1 WO2016112576 A1 WO 2016112576A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
optical
light
component
optical signals
Prior art date
Application number
PCT/CN2015/073253
Other languages
English (en)
French (fr)
Inventor
陈思乡
杨石泉
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2016112576A1 publication Critical patent/WO2016112576A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • G02B6/29383Adding and dropping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a wavelength division multiplexing/demultiplexing device and a light emitting component.
  • Wavelength division multiplexing technology is a method of combining two or more different optical carrier signals at a transmitting end through a multiplexer and coupling them to the same optical fiber for transmission, and at the receiving end, the demultiplexer A technique for separating optical signals of different wavelengths. Therefore, for a fiber-optic communication network with a transmission rate of 40/100 Gbps, the currently widely used solution is to transmit four optical signals of different wavelengths to the single-mode fiber for transmission at the transmitting end, and then demultiplex at the receiving end. Out of these 4 wavelengths.
  • FIG. 1 is a multiplexer provided by the prior art.
  • a conventional multiplexer includes a rhombic prism, one side of which is coated with an anti-reflection film (as shown in black in FIG. 1 ) and a high anti - film (as shown in FIG. 1 ).
  • an anti-reflection film as shown in black in FIG. 1
  • a high anti - film as shown in FIG. 1 .
  • four thin film filters labeleled T1-T4 in sequence
  • the antireflection film increases the transmission of light
  • the high reflection film enhances the reflection of light
  • the filtering characteristics of the thin film filter allow light of a specific wavelength to pass, and light of a specific wavelength is not reflected, and the four thin film filters have mutual The same filtering characteristics.
  • the incident light ⁇ 1 , the incident light ⁇ 2 , the incident light ⁇ 3 and the incident light ⁇ 4 are four specific wavelengths of light to be combined, and the incident light ⁇ 1 is incident on the oblique prism from the thin film filter T1, in the high-reverse
  • the film is reflected to the other thin film filter T2, and is reflected by the other thin film filter T2 toward the high reflective film, and the incident light ⁇ 2 is incident from the thin film filter T2 into the oblique prism, the incident light ⁇ 1 and the incident light ⁇ 2 is merged into one light at the film filter T2;
  • the combined incident light ⁇ 1 , the incident light ⁇ 2 is directed toward the high reflective film, is reflected at the high reflective film to the other thin film filter T3, and is subjected to another film
  • the filter T3 is reflected toward the high reflective film, and the incident light ⁇ 3 is incident on the oblique prism from the thin film filter T3, and the incident light ⁇ 1 , the incident light
  • the above prior art realizes combining four channels of different wavelengths into one light, there are six light reflection points in the combiner, the incident light ⁇ 1 is reflected six times, and the incident light ⁇ 2 is reflected four times.
  • the incident light ⁇ 3 is reflected twice, and the four channels of light have a total of twelve reflections, and the light is reflected more frequently in the combiner.
  • the incident angle incident on the high-reflection film will be offset, and the angular difference between the incident light and the normal will be reflected between the reflected light and the normal, that is, how much the incident angle is offset, and the reflection
  • the angle is also offset, resulting in an angular difference between the incident light and the reflected light being twice the angular difference.
  • the cumulative offset of the angular difference will be very large, and the incident position after the reflection will be A large offset occurs, which is not conducive to the merging of subsequent optical paths.
  • Embodiments of the present invention provide a wavelength division multiplexing/demultiplexing device and a light emitting component for reducing the number of reflections of an optical signal and improving the combination of optical paths.
  • An embodiment of the present invention provides a wavelength division multiplexing/demultiplexing device, which is configured to multiplex at least four optical signals into one optical signal, where the wavelength division multiplexing/demultiplexing device includes: an optical path changing component, a first filter combining element, a second filtering combining element, and a third filtering combining element;
  • the optical path changing component is configured to reflect a first optical signal of the at least four optical signals and input the first filtered light combining component;
  • the first filtering light combining component is configured to reflect a second optical signal of the at least four optical signals, and transmit the input first optical signal, so that the second optical signal is The first optical signals are combined into a mixed light including two optical signals, and input to the second filtered light combining element;
  • the second filter combining component is configured to reflect a third optical signal of the at least four optical signals, and transmit the mixed light including the two optical signals, so that the third path
  • the optical signal and the mixed light including the two optical signals are combined into a mixed light including three optical signals, and input to the third filtered light combining element;
  • the third filter combining component is configured to transmit a fourth optical signal of the at least four optical signals, and reflect the mixed light including the three optical signals, so that the fourth path The optical signal and the mixed light including the three optical signals are combined into a mixed light including four optical signals.
  • the embodiment of the invention further provides a light emitting component, comprising: a first laser chip, a second laser chip, a third laser chip, a fourth laser chip, and the foregoing, for multiplexing at least four optical signals into one light Wavelength division multiplexing/demultiplexer of signals;
  • the first laser chip is configured to output the first optical signal to the optical path changing component
  • the second laser chip is configured to output the second optical signal to the first filtered light combining component
  • the third laser chip is configured to output the third optical signal to the second filtered light combining component
  • the fourth laser chip is configured to output the fourth optical signal to the third filtered light combining component.
  • a wavelength division multiplexing/demultiplexing device and an optical transmitting component provided by the embodiment of the present invention, wherein the optical path changing component in the wavelength division multiplexing/demultiplexing device reflects the incident first optical signal to the first a filtering light combining element, the first filtering light combining element reflects the incident second light signal, and merges with the transmitted first light signal into a mixed light containing two optical signals, and is incident on the second filtering light combining element.
  • the second filter combining element is incident on the third
  • the road light signal is reflected and combined with the transmitted two-way mixed light signal to form a mixed light containing three optical signals incident on the third filtering light combining element, and the third filtering light combining element transmits the incident fourth light signal And combining the reflected mixed light including the three optical signals into a mixed light including four optical signals.
  • the wavelength division multiplexing/demultiplexing device in the embodiment of the present invention implements multiplexing at least four optical signals into one optical signal, and at the same time, the first optical signal passes through the optical path changing component and the third filtering.
  • the four-way optical signal has a total of six reflections.
  • the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention reduces the number of reflections on the optical signal; further Because of the decrease in the number of reflections of the optical signal, the cumulative offset of the difference between the angle of the incident light and the reflected light is reduced, and the offset of the incident position after the reflection is also reduced, thereby providing a combination of subsequent optical paths.
  • FIG. 1 is a schematic diagram of a wavelength division multiplexing/demultiplexing device provided by the prior art
  • FIG. 2 is a schematic diagram of multiplexing a different wavelength optical signal by a wavelength division multiplexing/demultiplexing device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of separating a light signal of different wavelengths by a wavelength division multiplexing/demultiplexing device according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of another wavelength division multiplexing/demultiplexing device for multiplexing optical signals of different wavelengths according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of another wavelength division multiplexing/demultiplexing device for multiplexing optical signals of different wavelengths according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing another different wavelength division multiplexing/demultiplexing device according to an embodiment of the present invention. Schematic diagram of multiplexing optical signals of wavelengths;
  • FIG. 7 is a schematic diagram of separating a light signal of different wavelengths by a wavelength division multiplexing/demultiplexing device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a light emitting component according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another light emitting component according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a light receiving component according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another light receiving component according to an embodiment of the present invention.
  • the embodiment of the invention provides a wavelength division multiplexing/demultiplexing device. As shown in FIG. 2, the wavelength division multiplexing/demultiplexing device is configured to multiplex at least four optical signals into one optical signal, the wave.
  • the sub-multiplexer/demultiplexer includes an optical path changing element 21, a first filter combining element 22, a second filtering combining element 23, and a third filtering combining element 24.
  • the optical path changing component 21 is configured to reflect the first optical signal 1 of the at least four optical signals, and input to the first filtered light combining component 22;
  • the first filter combining element 22 is configured to reflect the second optical signal 2 of the at least four optical signals, and transmit the input first optical signal 1 such that the second optical signal 2 and the first path
  • the optical signal 1 is combined into a mixed light comprising two optical signals, and input to the second filtered light combining element 23;
  • the second filter combining element 23 is configured to reflect the third optical signal 3 of the at least four optical signals, and transmit the mixed light including the two optical signals, so that the third optical signal 3 and the two paths are included
  • the mixed light of the optical signal is combined into a mixed light comprising three optical signals, and input to the third filter combining element 24;
  • the third filter combining element 24 is configured to use a fourth optical signal among the at least four optical signals No. 4 transmits, and the mixed light including the three optical signals is reflected, so that the fourth optical signal 4 and the mixed light including the three optical signals are combined into a mixed light including four optical signals.
  • the wavelength division multiplexing/demultiplexing device can also be used to separate mixed light including at least four optical signals into four optical signals.
  • the third filter combining element 24 is further configured to transmit the fourth optical signal 4 of the mixed light including at least four optical signals, and reflect the mixed light including the remaining optical signals. And input to the second filter combining element 23;
  • the second filter combining component 23 is further configured to reflect the third optical signal 3 of the input mixed light including the remaining optical signals, transmit the mixed light including the remaining two optical signals, and input the first filtering.
  • the first filter combining element 22 is further configured to reflect the second optical signal 2 of the input mixed light including the remaining two optical signals, transmit the first optical signal 1 , and input to the optical path changing component 21 . ;
  • the optical path changing element 21 is also used to reflect the first optical signal 1.
  • the optical path changing component 21, the first filtering light combining component 22, the second filtering light combining component 23, and the third filtering light combining component 24 can be realized by plating different film layers on the glass substrate.
  • the optical path changing element 21 can be realized by plating a highly reflective film or a total reflection film on one side of the glass substrate, and the first filter combining element 22 and the second filtering combining element 23 can pass through one side of the glass substrate.
  • the plating is performed with a low transmissive high-reflection film, and the third filter combining element 24 can be realized by plating a highly transparent low-reflection film on one side of the glass substrate.
  • the optical path changing component 21 and the first filtering light combining component 22 are disposed on opposite sides of the first substrate 31, and the second filtering light combining component 23 and the third filtering light combining component 24 are disposed at The opposite sides of the second substrate 32.
  • Only the optical path diagram for multiplexing four optical signals into one optical signal is shown in FIG. 4.
  • the optical path diagram for separating the mixed optical light including four optical signals into four optical signals can be referred to FIG.
  • the first optical signal 1 is incident on the first substrate 31 and is coated with an anti-reflection film for increasing transmission
  • the third optical signal 3 is incident on the third optical signal 3.
  • the second substrate 32 is plated with an anti-reflection film for increasing transmission
  • the mixed light containing four optical signals is plated with an anti-reflection film for increasing transmission from the exit of the second substrate 32.
  • the wavelength division multiplexing/demultiplexing device further includes: a third substrate 33; wherein the first substrate 31 and the second substrate 32 are fixed on the third substrate 33.
  • the above-mentioned multiplexing of "at least four optical signals" into one optical signal is stipulated by an optical communication protocol. If multiple optical signals need to be multiplexed into one optical signal, the path of the multiple optical signals The number needs to be a multiple of four.
  • the first substrate 31 and the second substrate 32 are both diamond-shaped glass of 45°
  • the third substrate 33 is a glass substrate M
  • the first substrate 31 is represented by B1.
  • the second substrate 32 is indicated by B2, and the diamond glass B1 and the diamond glass B2 are placed on the glass substrate M.
  • the optical path changing element 21 is a thin film filter TFF1
  • a first filtered light combining element 22 is a thin film filter TFF2
  • a second filtered light combining element 23 is a thin film filter TFF3
  • a third filtered light combining element 24 is a thin film filter TFF4.
  • the optical path changing component 21 and the first filtering light combining component 22 are plated (or pasted) on opposite sides of the first substrate 31, and the second filtering light combining component 23 and the third filtering light combining component 24 are plated (or pasted). On opposite sides of the second substrate 32.
  • an optical signal having a wavelength of ⁇ 1 is incident on a side of the diamond glass B1 on which the film layer TFF1 is plated, and the film layer TFF1 reflects an optical signal having a wavelength of ⁇ 1 and is input to the diamond glass B1 and is coated with a film layer.
  • the film layer TFF2 transmits the optical signal of the wavelength ⁇ 1
  • the optical signal of the wavelength ⁇ 2 is incident on the diamond glass B1 at a suitable angle on the film layer TFF2
  • the film layer TFF2 has a wavelength of ⁇ 2 .
  • the optical signal is reflected such that the reflected optical signal of wavelength ⁇ 2 and the transmitted optical signal of wavelength ⁇ 1 are combined into one optical signal; a mixture of optical signals having a wavelength of ⁇ 1 and optical signals of wavelength ⁇ 2 Light is incident on the side of the diamond glass B2 plated with the film layer TFF3, and the film layer TFF3 transmits the light signal of the wavelength ⁇ 1 and the light signal of the wavelength ⁇ 2 , and the light signal of the wavelength ⁇ 3 is incident at an appropriate angle.
  • the wavelength division multiplexing/demultiplexer when used to separate optical signals including a plurality of wavelengths, it is only necessary to change the positions of the incident point and the exit point to achieve the above separation function. As shown in FIG.
  • the specific process for separating the mixed light including the optical signal having the wavelength ⁇ 1 , the optical signal having the wavelength ⁇ 2 , the optical signal having the wavelength ⁇ 3 , and the optical signal having the wavelength ⁇ 4 is : a mixed light including an optical signal having a wavelength of ⁇ 1 , an optical signal having a wavelength of ⁇ 2 , an optical signal having a wavelength of ⁇ 3 , and an optical signal having a wavelength of ⁇ 4 is incident on the diamond-coated glass B2 and coated on the film layer TFF4.
  • the film layer TFF4 transmits an optical signal having a wavelength of ⁇ 4 , and reflects an optical signal having a wavelength of ⁇ 1 , an optical signal having a wavelength of ⁇ 2 , and an optical signal having a wavelength of ⁇ 3 ; and the reflected wavelength includes ⁇ 1 .
  • the mixed light of the optical signal, the optical signal of wavelength ⁇ 2 and the optical signal of wavelength ⁇ 3 is incident on the diamond glass B2 and is coated on the film layer TFF3, and the film layer TFF3 reflects the optical signal of the wavelength ⁇ 3 ,
  • the optical signal having the wavelength ⁇ 1 and the optical signal having the wavelength ⁇ 2 are transmitted; the mixed light of the reflected optical signal including the optical signal of the wavelength ⁇ 1 and the optical signal of the wavelength ⁇ 2 is incident on the diamond glass B1 and coated with the film.
  • the film layer TFF2 reflects the optical signal of wavelength ⁇ 2 for the wavelength
  • the optical signal of ⁇ 1 is transmitted; the optical signal of wavelength ⁇ 1 is incident on the diamond-shaped glass B1 and is coated on the film layer TFF1, and the film layer TFF1 reflects the optical signal of the wavelength ⁇ 1 , so that it is realized that
  • the mixed light of an optical signal having a wavelength of ⁇ 1 , an optical signal having a wavelength of ⁇ 2 , an optical signal having a wavelength of ⁇ 3 , and an optical signal having a wavelength of ⁇ 4 is separated into four optical signals.
  • the film layer TFF1 described above may be a high-reflection film or a total reflection film, and both the film layer TFF2 and the film layer TFF3 are low-transparent high-reflection films, and the film layer TFF4 is a high-transparent low-reflection film.
  • a wavelength division multiplexing/demultiplexing device provided by an embodiment of the present invention, the wavelength division multiplexing/solution
  • the optical path changing component in the multiplexer reflects the incident first optical signal to the first filtering light combining component, and the first filtering light combining component reflects the incident second optical signal and is the same as the transmitted first optical signal.
  • the combined light including the two optical signals is incident on the second filtering light combining element, and the second filtering light combining element reflects the incident third optical signal, and combines the transmitted two mixed optical signals into three paths.
  • the mixed light of the optical signal is incident on the third filter combining element, and the third filtered combining element transmits the incident fourth optical signal and combines with the reflected mixed light including the three optical signals to form four optical signals.
  • Mixed light is incident on the third filter combining element, and the third filtered combining element transmits the incident fourth optical signal and combines with the reflected mixed light including the three optical signals to form four optical signals.
  • the wavelength division multiplexing/demultiplexing device in the embodiment of the present invention implements multiplexing at least four optical signals into one optical signal, and at the same time, the first optical signal passes through the optical path changing component and the third filtering. Secondary reflection of the optical element, secondary reflection of the second optical signal through the first filter combining element and the third filtering combining element, third optical signal second filtering combining element and third filtering combining element The second reflection, therefore, the four-way optical signal has a total of six reflections.
  • the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention reduces the number of reflections on the optical signal; further Because of the decrease in the number of reflections of the optical signal, the cumulative offset of the difference between the angle of the incident light and the reflected light is reduced, and the offset of the incident position after the reflection is also reduced, thereby providing a combination of subsequent optical paths.
  • An embodiment of the present invention provides a light emitting component.
  • the light emitting component includes: a first laser chip 41, a second laser chip 42, a third laser chip 43, a fourth laser chip 44, and an implementation.
  • a wavelength division multiplexing/demultiplexing device for multiplexing optical signals of different wavelengths according to any of the preceding claims.
  • FIG. 8 is an example in which a wavelength division multiplexing/demultiplexing device shown in FIG. 6 multiplexes different optical signals into one optical signal.
  • the first laser chip 41 is configured to output the first optical signal 1 to the optical path changing component 21;
  • the second laser chip 42 is configured to output the second optical signal 2 to the first filtered combining component 22;
  • the chip 43 is used to output the third optical signal 3 to the second filtered light combining element 23;
  • the fourth laser chip 44 is used to output the fourth optical signal 4 to the third filtered light combining element 24.
  • the light emitting assembly further includes four collimating elements, a first collimating element 51, a second collimating element 52, a third collimating element 53, and a fourth collimating element 54.
  • the first collimating element 51 is configured to collimate the first optical signal before the first optical signal is input to the optical path changing component 21;
  • the second collimating component 52 is configured to input the second optical signal to the first filtering Before the light combining element 22, the second optical signal is collimated;
  • the third collimating element 53 is used for collimating the third optical signal before the third optical signal is input to the second filtered light combining element 23;
  • the collimating element 54 is for collimating the fourth optical signal before the fourth optical signal is input to the third filtered combining element 24.
  • the four collimating components collimate the optical signals on the respective optical paths, so that the directionality of the collimated optical signals is better, and the optical energy is more concentrated.
  • Each of the above four collimating elements may be a collimating
  • the light emitting component further includes: a focusing lens 61 and an isolator 62; the focusing lens 61 and the isolator 62 are sequentially disposed on the third filtering light combining component 24 to output a mixture of four optical signals.
  • the focusing lens 61 is used to focus the mixed light including the four optical signals for better coupling into the optical fiber; the isolator 62 is used to reduce the return loss.
  • the displacement prism 63 may be disposed between the third filter combining element 24 and the focus lens 61, such as As shown in FIG. 9, the shift prism 63 shifts the mixed light including the four optical signals output from the third filter combining element 24 to input the mixed light including the four optical signals into the focus lens 61.
  • Embodiments of the present invention provide a light emitting component including a wavelength division multiplexing/demultiplexing device for multiplexing at least four optical signals into one optical signal, wherein the wavelength division multiplexing/ The optical path changing element in the demultiplexer reflects the incident first path optical signal to the first filtered combining element, and the first filtering combining element reflects the incident second path optical signal and is the same as the transmitted first light
  • the signals are combined into a mixed light containing two optical signals
  • the second filter combining light element is incident on the second filtered light combining element, and the incident third light signal is reflected, and the mixed two-way mixed light signal is combined into a mixed light containing three optical signals to be incident on the third filter.
  • the light combining element, the third filter combining element transmits the incident fourth optical signal, and combines the reflected mixed light including the three optical signals into a mixed light including four optical signals.
  • the wavelength division multiplexing/demultiplexing device in the embodiment of the present invention implements multiplexing at least four optical signals into one optical signal, and at the same time, the first optical signal passes through the optical path changing component and the third filtering. Secondary reflection of the optical element, secondary reflection of the second optical signal through the first filter combining element and the third filtering combining element, third optical signal second filtering combining element and third filtering combining element The second reflection, therefore, the four-way optical signal has a total of six reflections.
  • the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention reduces the number of reflections on the optical signal; further Because of the decrease in the number of reflections of the optical signal, the cumulative offset of the difference between the angle of the incident light and the reflected light is reduced, and the offset of the incident position after the reflection is also reduced, thereby providing a combination of subsequent optical paths.
  • An embodiment of the present invention provides a light emitting component.
  • the light emitting component includes: a first photodetector 71, a second photodetector 72, a third photodetector 73, and a fourth photodetector. 74.
  • the wavelength division multiplexing/demultiplexer for separating optical signals of different wavelengths according to any of the first embodiments.
  • FIG. 10 illustrates an example in which the mixed optical signal is separated by the wavelength division multiplexing/demultiplexing device shown in FIG. 7.
  • the fourth photodetector 74 is configured to receive the fifth optical signal 5 transmitted by the third filtered light combining component 24; the third photodetector 73 is configured to receive the sixth optical signal reflected by the second filtered light combining component 23.
  • the second photodetector 72 is configured to receive the seventh optical signal 7 reflected by the first filtering light combining element 22; the first photodetector 71 is configured to receive the eighth optical signal 8 reflected by the optical path changing component 21.
  • the first filtering light combining component 22, the second filtering light combining component 23, and the third filtering light combining component 24 refer to the first embodiment, I will not repeat them here.
  • the light receiving assembly further includes four focus lenses: a first focus lens 81, a second focus lens 82, a third focus lens 83, and a fourth focus lens 84.
  • the fourth focusing lens 84 is configured to focus the fifth optical signal 5 before the fifth optical signal 5 is input to the fourth photodetector 74; the third focusing lens 83 is used for the sixth optical signal 6
  • the sixth optical signal 6 is focused before being input to the third photodetector 73;
  • the second focusing lens 82 is used for the seventh optical signal before the seventh optical signal 7 is input to the second photodetector 72. 7 is focused;
  • the first focus lens 81 is used to focus the eighth optical signal 8 before the eighth optical signal 8 is input to the first photodetector 71.
  • the light receiving component further includes: a collimating lens 91; the collimating lens 91 is disposed on the mixed light inputting the at least four optical signals to the wavelength division multiplexing/demultiplexing device
  • the optical path of the triple filter combining element 24 is used for collimating the input mixed light including at least four optical signals, so that the directionality of the collimated mixed light including at least four optical signals is better. The energy is more concentrated.
  • the collimating lens 91 and the wavelength division multiplexing/demultiplexing device can be used.
  • a displacement prism 92 is disposed between the displacement prism 92 for aligning the mixed light including at least four optical signals aligned by the straight lens 91 for input to the wavelength division multiplexing/solution.
  • the third filter of the multiplexer combines the light combining elements 24.
  • Embodiments of the present invention provide a light receiving component including a wavelength division multiplexing/demultiplexing device for separating mixed light including at least four optical signals, the wavelength division multiplexing/demultiplexing
  • the third filter combining element in the device transmits the fourth optical signal of the mixed light including the at least four optical signals, and inputs to the fourth photodetector, and reflects the remaining optical signals and inputs the second filtering.
  • the second filtering light combining component reflects the third optical signal of the remaining optical signals, and inputs the optical signal to the third photodetector, and transmits the remaining optical signal to the first filtering and combining component
  • a filter combining component reflects the second optical signal of the remaining optical signals, and inputs the second optical signal to the second photodetector, transmits the first optical signal, and inputs the optical signal to the optical path changing component, and the optical path changing component pairs The light signal is reflected and input to the first photodetector.
  • the wavelength division multiplexing/demultiplexing device in the embodiment of the present invention implements a function of separating mixed light including at least four optical signals, and at the same time, the first optical signal passes through the third filtered optical combining element. And the secondary reflection of the optical path changing component, the second optical signal passes through the secondary reflection of the third filtered light combining component and the first filtered light combining component, and the third optical signal passes through the third filtered light combining component and the first filtered light combination The secondary reflection of the component, therefore, the four-way optical signal has a total of six reflections.
  • the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention reduces the number of reflections on the optical signal.
  • the cumulative offset of the angle difference between the incident ray and the reflected ray is reduced, and the offset of the incident position after the reflection is also reduced, thereby providing the merging of the subsequent optical paths.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明实施例提供了一种波分复用/解复用器以及光发射组件,涉及光通信技术领域,用以减少对光信号的反射次数,提高光路的合并。该波分复用/解复用器用于将至少四路光信号复用成一路光信号,通过光路改变元件、第一滤波合光元件、第二滤波合光元件、第三滤波合光元件,对不同光信号进行反射或透射,实现将不同波长的光信号复用成一路光信号。

Description

波分复用/解复用器以及光发射组件
本申请要求于2015年1月14日提交中国专利局、申请号为201510019078.2、发明名称为“波分复用/解复用器以及光发射组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信技术领域,尤其涉及一种波分复用/解复用器以及光发射组件。
背景技术
随着光纤通信技术的不断发展,人们对光纤的传输速率和传输数量的要求也越来越高,波分复用技术也应运而生。波分复用技术是一种将两种或多种不同的光载波信号在发送端经复用器汇合在一起,并耦合到同一根光纤中进行传输,在接收端经解复用器将各个不同波长的光信号分离的技术。因此,对于传输速率为40/100Gbps的光纤通信网络,目前普遍采用的解决方案是将4路不同波长的光信号在发送端复用于单模光纤中进行传输,然后在接收端再解复用出这4个波长。
图1为现有技术提供的一种合波器。如图1所示,现有的一种合波器包括一斜方棱镜,斜方棱镜的一侧面镀有增透膜(如图1黑色所示部分)及高反膜(如图1中斜线所示部分),斜方棱镜的另一侧面贴有四个薄膜滤波片(依次标记为T1-T4)。其中,增透膜增加光的透过,高反膜增强光的反射;薄膜滤波片的滤波特性使得特定波长的光可以通过,而非特定波长的光被反射,四个薄膜滤波片具有互不相同的滤波特性。
其中,入射光λ1、入射光λ2、入射光λ3及入射光λ4为待合并的四路特定波长光,入射光λ1从薄膜滤波片T1处射入斜方棱镜,在高反膜处被反射向另一薄膜滤波片T2,并被另一薄膜滤波片T2反射向高反膜,入射光λ2从薄膜滤波片T2处射入斜方棱镜,入射光λ1及入 射光λ2在薄膜滤波片T2处合并为一路光;合并后的入射光λ1、入射光λ2射向高反膜,在高反膜处被反射向另一薄膜滤波片T3,并被另一薄膜滤波片T3反射向高反膜,入射光λ3从薄膜滤波片T3处射入斜方棱镜,入射光λ1、入射光λ2及入射光λ3在薄膜滤波片T3处合并为一路光;合并后的入射光λ1、入射光λ2、入射光λ3射向高反膜,在高反膜处被反射向另一薄膜滤波片T3,并被另一薄膜滤波片T3反射向高反膜,入射光λ4从薄膜滤波片T4处射入斜方棱镜,入射光λ1、入射光λ2、入射光λ3及入射光λ4在薄膜滤波片T4处合并为一路光,合并后的入射光λ1、入射光λ2、入射光λ3及入射光λ4射向增透膜并从增透膜处出射。
上述现有技术虽然实现了将四路不同波长的光合为一路光,但合波器中存在六个光反射点,入射光λ1经过了六次反射,入射光λ2经过了四次反射,入射光λ3经过了两次反射,四路光总共发生了十二次反射,光在合波器中的反射次数较多。同时,由于误差的存在,入射到高反膜的入射角度会有偏移,而入射光线与法线之间的角度差会体现在反射光线与法线之间,即入射角偏移多少,反射角亦偏移多少,导致入射光线与反射光线的角度偏移值为两倍的角度差,那么,经过多次反射后,这种角度差的累计偏移会非常大,反射后的入射位置会发生较大偏移,这不利于后续光路的合并。
发明内容
本发明的实施例提供一种波分复用/解复用器以及光发射组件,用以减少对光信号的反射次数,提高光路的合并。
为达到上述目的,本发明的实施例采用如下技术方案:
本发明实施例提供了一种波分复用/解复用器,用于将至少四路光信号复用成一路光信号,所述波分复用/解复用器包括:光路改变元件、第一滤波合光元件、第二滤波合光元件、第三滤波合光元件;
所述光路改变元件,用于对所述至少四路光信号中的第一路光信号进行反射,并输入到所述第一滤波合光元件;
所述第一滤波合光元件,用于对所述至少四路光信号中的第二路光信号进行反射,并对输入的第一路光信号进行透射,使得所述第二路光信号与所述第一路光信号合并成包含两路光信号的混合光,并输入到所述第二滤波合光元件;
所述第二滤波合光元件,用于对所述至少四路光信号中的第三路光信号进行反射,并对所述包含两路光信号的混合光进行透射,使得所述第三路光信号和所述包含两路光信号的混合光合并成包含三路光信号的混合光,并输入到所述第三滤波合光元件;
所述第三滤波合光元件,用于对所述至少四路光信号中的第四路光信号进行透射,并对所述包含三路光信号的混合光进行反射,使得所述第四路光信号与所述包含三路光信号的混合光合并成包含四路光信号的混合光。
本发明实施例还提供了一种光发射组件,包括:第一激光器芯片、第二激光器芯片、第三激光器芯片、第四激光器芯片,以及上述用于将至少四路光信号复用成一路光信号的波分复用/解复用器;
所述第一激光器芯片,用于输出所述第一路光信号至所述光路改变元件;
所述第二激光器芯片,用于输出所述第二路光信号至所述第一滤波合光元件;
所述第三激光器芯片,用于输出所述第三路光信号至所述第二滤波合光元件;
所述第四激光器芯片,用于输出所述第四路光信号至所述第三滤波合光元件。
本发明实施例提供的一种波分复用/解复用器以及光发射组件,其中,该波分复用/解复用器中的光路改变元件对入射的第一路光信号反射至第一滤波合光元件,第一滤波合光元件对入射的第二路光信号进行反射,并同透射的第一光信号合并成包含两路光信号的混合光入射到第二滤波合光元件,第二滤波合光元件对入射的第三 路光信号进行反射,并同透射的两路混合光信号合并成包含三路光信号的混合光入射到第三滤波合光元件,第三滤波合光元件对入射的第四路光信号进行透射,并同反射的包含三路光信号的混合光合并成包含四路光信号的混合光。根据上述描述,本发明实施例中的波分复用/解复用器实现了将至少四路光信号复用成一路光信号,同时,第一路光信号经过光路改变元件和第三滤波合光元件的二次反射,第二路光信号经过第一滤波合光元件和第三滤波合光元件的二次反射,第三路光信号第二滤波合光元件和第三滤波合光元件的二次反射,因此,四路光信号总共发生了六次反射,与现有技术而言,本发明实施例所提供的波分复用/解复用器减少了对光信号的反射次数;进一步的,由于对光信号反射次数的减少,入射光线与反射光线角度差的累计偏移会减小,反射后入射位置的偏移也会减小,进而提供后续光路的合并。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的一种波分复用/解复用器的示意图;
图2为本发明实施例提供的一种波分复用/解复用器对不同波长的光信号进行复用的示意图;
图3为本发明实施例提供的一种波分复用/解复用器对不同波长的光信号进行分离的示意图;
图4为本发明实施例提供的另一种波分复用/解复用器对不同波长的光信号进行复用的示意图;
图5为本发明实施例提供的另一种波分复用/解复用器对不同波长的光信号进行复用的示意图;
图6为本发明实施例提供的另一种波分复用/解复用器对不同 波长的光信号进行复用的示意图;
图7为本发明实施例提供的一种波分复用/解复用器对不同波长的光信号进行分离的示意图;
图8为本发明实施例提供的一种光发射组件示意图;
图9为本发明实施例提供的另一种光发射组件示意图;
图10为本发明实施例提供的一种光接收组件示意图;
图11为本发明实施例提供的另一种光接收组件示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明实施例提供了一种波分复用/解复用器,如图2所示,该波分复用/解复用器用于将至少四路光信号复用成一路光信号,该波分复用/解复用器包括:光路改变元件21、第一滤波合光元件22、第二滤波合光元件23、第三滤波合光元件24。
其中,光路改变元件21用于对至少四路光信号中的第一路光信号1进行反射,并输入到第一滤波合光元件22;
第一滤波合光元件22用于对至少四路光信号中的第二路光信号2进行反射,并对输入的第一路光信号1进行透射,使得第二路光信号2与第一路光信号1合并成包含两路光信号的混合光,并输入到第二滤波合光元件23;
第二滤波合光元件23用于对至少四路光信号中的第三路光信号3进行反射,并对包含两路光信号的混合光进行透射,使得第三路光信号3和包含两路光信号的混合光合并成包含三路光信号的混合光,并输入到第三滤波合光元件24;
第三滤波合光元件24用于对至少四路光信号中的第四路光信 号4进行透射,并对包含三路光信号的混合光进行反射,使得第四路光信号4与包含三路光信号的混合光合并成包含四路光信号的混合光。
进一步的,根据光的可逆性原理,该波分复用/解复用器还可以用于将包含至少四路光信号的混合光分离成四路光信号。
具体的,如图3所示,第三滤波合光元件24还用于对包含至少四路光信号的混合光中的第四路光信号4进行透射,对包含其余光信号的混合光进行反射,并输入到第二滤波合光元件23;
第二滤波合光元件23还用于对输入的包含其余光信号的混合光中的第三路光信号3进行反射,对包含其余二路光信号的混合光进行透射,并输入到第一滤波合光元件22;
第一滤波合光元件22还用于对输入的包含其余二路光信号的混合光中的第二路光信号2进行反射,对第一路光信号1进行透射,并输入到光路改变元件21;
光路改变元件21还用于对第一路光信号1进行反射。
可选的,上述光路改变元件21、第一滤波合光元件22、第二滤波合光元件23和第三滤波合光元件24可以通过在玻璃基板上镀不同的膜层得以实现。示例的,光路改变元件21可以通过在玻璃基板的一侧上镀高反射膜或者全反射膜来实现,第一滤波合光元件22和第二滤波合光元件23可以通过在玻璃基板的一侧上镀有低透高反膜来实现,第三滤波合光元件24可以通过在玻璃基板的一侧上镀有高透低反膜来实现。
进一步的,如图4所示,该光路改变元件21和第一滤波合光元件22设置在第一基板31相对的两侧,第二滤波合光元件23和第三滤波合光元件24设置在第二基板32相对的两侧。图4中仅示出了将四路光信号复用成一路光信号的光路图,对于将包含四路光信号的混合光分离成四路光信号的光路图可以参考图3所示。
为了减小光信号能量的损失,在第一路光信号1入射到第一基板31处镀有起增加透射作用的增透膜,在第三路光信号3入射到 第二基板32处镀有起增加透射作用的增透膜,以及在包含有四路光信号的混合光从第二基板32的出射处镀有起增加透射作用的增透膜。
进一步的,如图5所示,该波分复用/解复用器还包括:第三基板33;其中,第一基板31和第二基板32固定在第三基板33上。
需要说明的是,上述将“至少四路光信号”复用成一路光信号,是光通信协议所规定的,若需要将多路光信号复用成一路光信号,该多路光信号的路数需为四的倍数。
如图6所示的波分复用/解复用器,以第一基板31和第二基板32均为45°的菱形玻璃,第三基板33为玻璃基板M,第一基板31以B1表示,第二基板32以B2表示,且菱形玻璃B1和菱形玻璃B2放置于玻璃基板M上。同时,光路改变元件21以薄膜滤波片TFF1、第一滤波合光元件22以薄膜滤波片TFF2、第二滤波合光元件23以薄膜滤波片TFF3、第三滤波合光元件24以薄膜滤波片TFF4实现,且光路改变元件21和第一滤波合光元件22镀(或贴)在第一基板31相对的两侧,第二滤波合光元件23和第三滤波合光元件24镀(或贴)在第二基板32相对的两侧。
具体的,波长为λ1的光信号入射到菱形玻璃B1上镀有膜层TFF1的一侧,膜层TFF1对波长为λ1的光信号进行反射,并输入到菱形玻璃B1上镀有膜层TFF2上,膜层TFF2对波长为λ1的光信号进行透射,波长为λ2的光信号以合适的角度入射到菱形玻璃B1上镀有膜层TFF2上,膜层TFF2对波长为λ2的光信号进行反射,使得反射的波长为λ2的光信号与透射的波长为λ1的光信号合并成一路光信号;包含有波长为λ1的光信号和波长为λ2的光信号的混合光入射到菱形玻璃B2上镀有膜层TFF3的一侧,膜层TFF3对波长为λ1的光信号和波长为λ2的光信号进行透射,波长为λ3的光信号以合适的角度入射到菱形玻璃B2上镀有膜层TFF3上,膜层TFF3对波长为λ3的光信号进行反射,使得与透射的波长为λ1的光信号、波长为λ2的光信号合并 成一路光信号;包含有波长为λ1的光信号、波长为λ2的光信号、波长为λ3的光信号的混合光入射到菱形玻璃B2上镀有膜层TFF4的一侧,膜层TFF4对波长为λ1的光信号、波长为λ2的光信号、波长为λ3的光信号进行反射,波长为λ4的光信号以合适的角度入射到菱形玻璃B2上镀有膜层TFF4上,膜层TFF4对波长为λ4的光信号进行透射,以和波长为λ1的光信号、波长为λ2的光信号、波长为λ3的光信号合并成一路光信号,这样,就实现了将波长为λ1的光信号、波长为λ2的光信号、波长为λ3的光信号、波长为λ4的光信号复用成一路光信号。
根据光的可逆性原理,当波分复用/解复用器用于对包含有多个波长的光信号进行分离时,只需要变更入射点和出射点的位置,即可实现上述分离功能。如图7所示,当对包含有波长为λ1的光信号、波长为λ2的光信号、波长为λ3的光信号和波长为λ4的光信号的混合光进行分离的具体过程为:包含有波长为λ1的光信号、波长为λ2的光信号、波长为λ3的光信号和波长为λ4的光信号的混合光入射到菱形玻璃B2上镀有膜层TFF4上,膜层TFF4对波长为λ4的光信号进行透射,对波长为λ1的光信号、波长为λ2的光信号和波长为λ3的光信号进行反射;反射后的包含有波长为λ1的光信号、波长为λ2的光信号和波长为λ3的光信号的混合光入射到菱形玻璃B2上镀有膜层TFF3上,膜层TFF3对波长为λ3的光信号进行反射,对波长为λ1的光信号和波长为λ2的光信号进行透射;反射后的包含有波长为λ1的光信号和波长为λ2的光信号的混合光入射到菱形玻璃B1上镀有膜层TFF2上,膜层TFF2对波长为λ2的光信号进行反射,对波长为λ1的光信号进行透射;波长为λ1的光信号入射到菱形玻璃B1上镀有膜层TFF1上,膜层TFF1对波长为λ1的光信号进行反射,这样,就实现了将包含有波长为λ1的光信号、波长为λ2的光信号、波长为λ3的光信号和波长为λ4的光信号的混合光分离成四路光信号。
上述所述的膜层TFF1可以是高反射膜,也可以是全反射膜,膜层TFF2和膜层TFF3均为低透高反膜,膜层TFF4为高透低反膜。
本发明实施例提供的一种波分复用/解复用器,该波分复用/解 复用器中的光路改变元件对入射的第一路光信号反射至第一滤波合光元件,第一滤波合光元件对入射的第二路光信号进行反射,并同透射的第一光信号合并成包含两路光信号的混合光入射到第二滤波合光元件,第二滤波合光元件对入射的第三路光信号进行反射,并同透射的两路混合光信号合并成包含三路光信号的混合光入射到第三滤波合光元件,第三滤波合光元件对入射的第四路光信号进行透射,并同反射的包含三路光信号的混合光合并成包含四路光信号的混合光。根据上述描述,本发明实施例中的波分复用/解复用器实现了将至少四路光信号复用成一路光信号,同时,第一路光信号经过光路改变元件和第三滤波合光元件的二次反射,第二路光信号经过第一滤波合光元件和第三滤波合光元件的二次反射,第三路光信号第二滤波合光元件和第三滤波合光元件的二次反射,因此,四路光信号总共发生了六次反射,与现有技术而言,本发明实施例所提供的波分复用/解复用器减少了对光信号的反射次数;进一步的,由于对光信号反射次数的减少,入射光线与反射光线角度差的累计偏移会减小,反射后入射位置的偏移也会减小,进而提供后续光路的合并。
实施例二
本发明实施例提供了一种光发射组件,如图8所示,该光发射组件包括:第一激光器芯片41、第二激光器芯片42、第三激光器芯片43、第四激光器芯片44,以及实施例一中任一所述的用于对不同波长的光信号进行复用的波分复用/解复用器。
图8仅以图6所示的波分复用/解复用器对不同的光信号复用成一路光信号为例进行说明。其中,第一激光器芯片41用于输出所述第一路光信号1至光路改变元件21;第二激光器芯片42用于输出第二路光信号2至第一滤波合光元件22;第三激光器芯片43用于输出第三路光信号3至第二滤波合光元件23;第四激光器芯片44用于输出第四路光信号4至第三滤波合光元件24。对于光路改 变元件21、第一滤波合光元件22、第二滤波合光元件23、第三滤波合光元件24对四路光信号的反射或者透射,具体可以参考实施例一中所述的,在此不再赘述。
进一步的,如图9所示,该光发射组件还包括四个准直元件,第一准直元件51、第二准直元件52、第三准直元件53、第四准直元件54。其中,第一准直元件51用于在第一光信号输入到光路改变元件21之前,对第一光信号进行准直;第二准直元件52用于在第二光信号输入到第一滤波合光元件22之前,对第二光信号进行准直;第三准直元件53用于在第三光信号输入到第二滤波合光元件23之前,对第三光信号进行准直;第四准直元件54用于在第四光信号输入到第三滤波合光元件24之前,对第四光信号进行准直。四个准直元件通过对各自所在光路上的光信号进行准直,使得经过准直后的光信号的方向性更好,光能量更为集中。上述四个准直元件均可以为准直透镜。
进一步的,如图9所示,该光发射组件还包括:聚焦透镜61和隔离器62;聚焦透镜61和隔离器62依次设置在第三滤波合光元件24输出的包含四路光信号的混合光所在的光路上。其中,聚焦透镜61用于对包含四路光信号的混合光进行聚焦,以更好的耦合进入到光纤中;隔离器62用于减少回波损耗。
若第三滤波合光元件24输出的包含四路光信号的混合光无法准确的入射到聚焦透镜61时,可以通过在第三滤波合光元件24和聚焦透镜61之间设置位移棱镜63,如图9所示,该位移棱镜63对第三滤波合光元件24输出的包含四路光信号的混合光进行位移,以将包含四路光信号的混合光输入到聚焦透镜61中。
本发明实施例提供了一种光发射组件,该光发射组件包括用于将至少四路光信号复用成一路光信号的波分复用/解复用器,其中,该波分复用/解复用器中的光路改变元件对入射的第一路光信号反射至第一滤波合光元件,第一滤波合光元件对入射的第二路光信号进行反射,并同透射的第一光信号合并成包含两路光信号的混合光 入射到第二滤波合光元件,第二滤波合光元件对入射的第三路光信号进行反射,并同透射的两路混合光信号合并成包含三路光信号的混合光入射到第三滤波合光元件,第三滤波合光元件对入射的第四路光信号进行透射,并同反射的包含三路光信号的混合光合并成包含四路光信号的混合光。根据上述描述,本发明实施例中的波分复用/解复用器实现了将至少四路光信号复用成一路光信号,同时,第一路光信号经过光路改变元件和第三滤波合光元件的二次反射,第二路光信号经过第一滤波合光元件和第三滤波合光元件的二次反射,第三路光信号第二滤波合光元件和第三滤波合光元件的二次反射,因此,四路光信号总共发生了六次反射,与现有技术而言,本发明实施例所提供的波分复用/解复用器减少了对光信号的反射次数;进一步的,由于对光信号反射次数的减少,入射光线与反射光线角度差的累计偏移会减小,反射后入射位置的偏移也会减小,进而提供后续光路的合并。
实施例三
本发明实施例提供了一种光发射组件,如图10所示,该光发射组件包括:第一光电探测器71、第二光电探测器72、第三光电探测器73、第四光电探测器74,以及实施例一中任一所述的用于对不同波长的光信号进行分离的波分复用/解复用器。
图10仅以图7所示的波分复用/解复用器对混合光信号分离为例进行说明。其中,第四光电探测器74用于接收第三滤波合光元件24透射的第五路光信号5;第三光电探测器73用于接收第二滤波合光元件23反射的第六路光信号6;第二光电探测器72用于接收第一滤波合光元件22反射的第七路光信号7;第一光电探测器71用于接收光路改变元件21反射的第八路光信号8。对于光路改变元件21、第一滤波合光元件22、第二滤波合光元件23、第三滤波合光元件24对四路光信号的反射或者透射,具体可以参考实施例一中所述的,在此不再赘述。
进一步的,如图11所示,该光接收组件还包括四个聚焦透镜:第一聚焦透镜81、第二聚焦透镜82、第三聚焦透镜83和第四聚焦透镜84。其中,第四聚焦透镜84用于在第五路光信号5输入到第四光电探测器74之前,对第五路光信号5进行聚焦;第三聚焦透镜83用于在第六路光信号6输入到第三光电探测器73之前,对第六路光信号6进行聚焦;第二聚焦透镜82用于在第七路光信号7输入到第二光电探测器72之前,对第七路光信号7进行聚焦;第一聚焦透镜81用于在第八路光信号8输入到第一光电探测器71之前,对第八路光信号8进行聚焦。
进一步的,如图11所示,该光接收组件还包括:准直透镜91;该准直透镜91设置在包含至少四路光信号的混合光输入到波分复用/解复用器的第三滤波合光元件24的光路上,用于对输入的包含至少四路光信号的混合光进行准直,使得经过准直后的包含至少四路光信号的混合光的方向性更好,光能量更为集中。
若包含四路光信号的混合光无法准确的输入到波分复用/解复用器的第三滤波合光元件24时,可以在准直透镜91与波分复用/解复用器之间设置位移棱镜92,如图11所示,该位移棱镜92用于对准直透镜91准直后的包含至少四路光信号的混合光进行位移,以输入到所述波分复用/解复用器的第三滤波合光元件24。
本发明实施例提供了一种光接收组件,该光接收组件包括用于将包含至少四路光信号的混合光分离的波分复用/解复用器,该波分复用/解复用器中的第三滤波合光元件对包含至少四路光信号的混合光中的第四路光信号进行透射,并输入到第四光电探测器,对其余光信号进行反射并输入到第二滤波合光元件,第二滤波合光元件对其余光信号中的第三路光信号进行反射,并输入到第三光电探测器,对其余光信号进行透射并输入到第一滤波合光元件,第一滤波合光元件对其余光信号中的第二路光信号进行反射,并输入到第二光电探测器,对第一路光信号进行透射,并输入到光路改变元件,光路改变元件对第一光信号进行反射,并输入到第一光电探测器。 根据上述描述,本发明实施例中的波分复用/解复用器实现了将包含至少四路光信号的混合光进行分离的功能,同时,第一路光信号经过第三滤波合光元件和光路改变元件的二次反射,第二路光信号经过第三滤波合光元件和第一滤波合光元件的二次反射,第三路光信号经过第三滤波合光元件和第滤波合光元件的二次反射,因此,四路光信号总共发生了六次反射,与现有技术而言,本发明实施例所提供的波分复用/解复用器减少了对光信号的反射次数;进一步的,由于对光信号反射次数的减少,入射光线与反射光线角度差的累计偏移会减小,反射后入射位置的偏移也会减小,进而提供后续光路的合并。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

  1. 一种波分复用/解复用器,其特征在于,用于将至少四路光信号复用成一路光信号,所述波分复用/解复用器包括:光路改变元件、第一滤波合光元件、第二滤波合光元件、第三滤波合光元件;
    所述光路改变元件,用于对所述至少四路光信号中的第一路光信号进行反射,并输入到所述第一滤波合光元件;
    所述第一滤波合光元件,用于对所述至少四路光信号中的第二路光信号进行反射,并对输入的第一路光信号进行透射,使得所述第二路光信号与所述第一路光信号合并成包含两路光信号的混合光,并输入到所述第二滤波合光元件;
    所述第二滤波合光元件,用于对所述至少四路光信号中的第三路光信号进行反射,并对所述包含两路光信号的混合光进行透射,使得所述第三路光信号和所述包含两路光信号的混合光合并成包含三路光信号的混合光,并输入到所述第三滤波合光元件;
    所述第三滤波合光元件,用于对所述至少四路光信号中的第四路光信号进行透射,并对所述包含三路光信号的混合光进行反射,使得所述第四路光信号与所述包含三路光信号的混合光合并成包含四路光信号的混合光。
  2. 根据权利要求1所述的波分复用/解复用器,其特征在于,所述波分复用/解复用器还包括:第一基板和第二基板;
    所述光路改变元件和所述第一滤波合光元件设置在所述第一基板相对的两侧,所述第二滤波合光元件和所述第三滤波合光元件设置在所述第二基板相对的两侧。
  3. 根据权利要求2所述的波分复用/解复用器,其特征在于,所述波分复用/解复用器还包括:第三基板;所述第一基板和所述第二基板固定在所述第三基板上。
  4. 一种光发射组件,其特征在于,包括:第一激光器芯片、第二激光器芯片、第三激光器芯片、第四激光器芯片,以及权利要求1-3任一项所述的波分复用/解复用器;
    所述第一激光器芯片,用于输出所述第一路光信号至所述光路改变元件;
    所述第二激光器芯片,用于输出所述第二路光信号至所述第一滤波合光元件;
    所述第三激光器芯片,用于输出所述第三路光信号至所述第二滤波合光元件;
    所述第四激光器芯片,用于输出所述第四路光信号至所述第三滤波合光元件。
  5. 根据权利要求4所述的光发射器件,其特征在于,所述光发射组件还包括:第一准直元件、第二准直元件、第三准直元件、第四准直元件;
    所述第一准直元件,用于在所述第一光信号输入到所述光路改变元件之前,对所述第一光信号进行准直;
    所述第二准直元件,用于在所述第二光信号输入到所述第一滤波合光元件之前,对所述第二光信号进行准直;
    所述第三准直元件,用于在所述第三光信号输入到所述第二滤波合光元件之前,对所述第三光信号进行准直;
    所述第四准直元件,用于在所述第四光信号输入到所述第三滤波合光元件之前,对所述第四光信号进行准直。
  6. 根据权利要求4或5所述的光发射组件,其特征在于,所述光发射组件还包括:聚焦透镜和隔离器;
    所述聚焦透镜和所述隔离器依次设置在所述第四光路改变元件输出的所述包含四路光信号的混合光所在的光路上。
  7. 根据权利要求6所述的光发射组件,其特征在于,所述光发射组件还包括:位移棱镜;
    所述位移棱镜设置在所述第四光路改变元件和所述聚焦透镜之间,用于对所述第四光路改变元件输出的所述包含四路光信号的混合光进行位移,以输入到所述聚焦透镜中。
PCT/CN2015/073253 2015-01-14 2015-02-25 波分复用/解复用器以及光发射组件 WO2016112576A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510019078.2A CN104597569A (zh) 2015-01-14 2015-01-14 波分复用/解复用器以及光发射组件
CN201510019078.2 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016112576A1 true WO2016112576A1 (zh) 2016-07-21

Family

ID=53123469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073253 WO2016112576A1 (zh) 2015-01-14 2015-02-25 波分复用/解复用器以及光发射组件

Country Status (2)

Country Link
CN (1) CN104597569A (zh)
WO (1) WO2016112576A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051892A (zh) * 2018-01-19 2018-05-18 广东瑞谷光网通信股份有限公司 一种微结构光波分复用器
EP3699573A1 (en) * 2019-02-22 2020-08-26 Sysmex Corporation Sample measurement device and sample measurement method
CN113900196A (zh) * 2021-09-30 2022-01-07 深圳市埃尔法光电科技有限公司 一种光通信装置及***
CN114578483A (zh) * 2020-11-30 2022-06-03 北极光电(深圳)有限公司 一种大间距多通道波分复用组件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467536B (zh) * 2016-01-05 2017-09-29 武汉光迅科技股份有限公司 一种光接收组件
CN106950708A (zh) * 2016-01-07 2017-07-14 苏州旭创科技有限公司 光分波合波器件
CN111025484A (zh) * 2019-10-30 2020-04-17 宁波环球广电科技有限公司 一种多通道微型波分复用高速光器件
CN111025494A (zh) * 2019-12-19 2020-04-17 宁波环球广电科技有限公司 一种新型的cwdm tosa结构及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274415A1 (en) * 2008-04-30 2009-11-05 Graham Alan C Compact, Low-Loss Optical Wavelength Multiplexer/Demultiplexer
US20110243502A1 (en) * 2010-04-01 2011-10-06 Furukawa Electric Co., Ltd. Optical multiplexer/demultiplexer module and prism using for the same
CN202771036U (zh) * 2012-09-26 2013-03-06 福建中策光电科技有限公司 一种cwdm波分复用器
CN103502859A (zh) * 2013-02-27 2014-01-08 索尔思光电(成都)有限公司 多通道光发射器件及其制造和使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184216A (ja) * 1984-03-02 1985-09-19 Oki Electric Ind Co Ltd 混成型光合分波器
US6441934B1 (en) * 1998-02-13 2002-08-27 Apa Optics, Inc. Multiplexer and demultiplexer for single mode optical fiber communication links
JP2001333015A (ja) * 2000-05-22 2001-11-30 Fujitsu Ltd 光合波装置および光合波方法
CN103257403B (zh) * 2013-05-20 2016-01-20 武汉锐奥特科技有限公司 一种波分复用光器件及波分解复用光器件
CN203422497U (zh) * 2013-09-18 2014-02-05 福州高意通讯有限公司 一种紧凑型波分复用光学结构及光发射模块
CN203732758U (zh) * 2014-03-17 2014-07-23 苏州旭创科技有限公司 波分复用解复用装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274415A1 (en) * 2008-04-30 2009-11-05 Graham Alan C Compact, Low-Loss Optical Wavelength Multiplexer/Demultiplexer
US20110243502A1 (en) * 2010-04-01 2011-10-06 Furukawa Electric Co., Ltd. Optical multiplexer/demultiplexer module and prism using for the same
CN202771036U (zh) * 2012-09-26 2013-03-06 福建中策光电科技有限公司 一种cwdm波分复用器
CN103502859A (zh) * 2013-02-27 2014-01-08 索尔思光电(成都)有限公司 多通道光发射器件及其制造和使用方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051892A (zh) * 2018-01-19 2018-05-18 广东瑞谷光网通信股份有限公司 一种微结构光波分复用器
EP3699573A1 (en) * 2019-02-22 2020-08-26 Sysmex Corporation Sample measurement device and sample measurement method
US11333605B2 (en) 2019-02-22 2022-05-17 Sysmex Corporation Sample measurement device and sample measurement method
CN114578483A (zh) * 2020-11-30 2022-06-03 北极光电(深圳)有限公司 一种大间距多通道波分复用组件
CN113900196A (zh) * 2021-09-30 2022-01-07 深圳市埃尔法光电科技有限公司 一种光通信装置及***

Also Published As

Publication number Publication date
CN104597569A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2016112576A1 (zh) 波分复用/解复用器以及光发射组件
CN105717589B (zh) 一种单光口多路并行光发射组件
US9939592B2 (en) Micro single-fiber bidirectional optical transceiver module of the same wavelength
CN203301489U (zh) 具有多路波长通道的光发射器件、光接收器件及光模块
US7843644B1 (en) Compact free-space WDM device with one-sided input/output ports
WO2020186926A1 (zh) 一种单光纤双向光收发组件
CN204925459U (zh) 一种多波长单纤双向光收发模块
CN105891959B (zh) 一种波长复用光学装置
US9645315B2 (en) Multiplexer
WO2018098858A1 (zh) 一种用于高速光模块的光分波合波器光口装置
KR101807684B1 (ko) 필터, 필터 제조 방법, 및 레이저 파장 모니터링 장치
CN109917516A (zh) 一种紧凑型波分复用器
CN204331200U (zh) 微型同波长单芯双向光收发模块
CN109212670A (zh) 一种波分复用器件以及相应的光模块
WO2012106886A1 (zh) 分光装置、光复用装置及方法、光分插复用设备
CN107065076A (zh) 一种微型结构的光波分复用集成器件及其制作方法
TWI238269B (en) Fabry-Perot optical filter device
US20230007943A1 (en) Optical fiber connector, single-fiber bidirectional optical assembly, and optical fiber transmission system
CN109802745B (zh) 一种用于200g/400g光收发模块的8通道波分复用/解复用器件
CN100559745C (zh) 用于处理光信号的装置
US20010055442A1 (en) Optical wavelength-division multiplexing and demultiplexing by using a common optical bandpass filter for adding, dropping, or excanging one or more channels
CN104155763B (zh) 分光装置、光复用装置及方法、光分插复用设备
CN211061792U (zh) 基于滤光片的四波长光路结构
CN218240468U (zh) 一种多通道波分复用器及光学装置
WO2013176182A1 (ja) 光合波器及び光合波方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877494

Country of ref document: EP

Kind code of ref document: A1