WO2017183512A1 - Switch device for in-vehicle power supply, and in-vehicle power supply system - Google Patents

Switch device for in-vehicle power supply, and in-vehicle power supply system Download PDF

Info

Publication number
WO2017183512A1
WO2017183512A1 PCT/JP2017/014767 JP2017014767W WO2017183512A1 WO 2017183512 A1 WO2017183512 A1 WO 2017183512A1 JP 2017014767 W JP2017014767 W JP 2017014767W WO 2017183512 A1 WO2017183512 A1 WO 2017183512A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
storage device
vehicle
power storage
power supply
Prior art date
Application number
PCT/JP2017/014767
Other languages
French (fr)
Japanese (ja)
Inventor
広世 前川
裕通 安則
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2017183512A1 publication Critical patent/WO2017183512A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to an on-vehicle power supply switch device and an on-vehicle power supply system.
  • Patent Document 1 describes an in-vehicle power supply device.
  • This in-vehicle power supply device includes an alternator, a lead storage battery, a lithium ion storage battery, a first switch, a second switch, and an electric load.
  • the electric load is a load mounted on the vehicle.
  • the first switch is connected between the lead storage battery and the electric load, and the second switch is connected between the lithium ion storage battery and the electric load.
  • the alternator is directly connected to the lead storage battery, and is connected to the lithium ion storage battery via the first switch and the second switch.
  • the alternator generates electricity with the rotation of the vehicle engine and charges the lead storage battery and the lithium ion storage battery.
  • Patent Document 1 a configuration in which each of an alternator and a lead storage battery and a lithium ion storage battery are short-circuited is considered.
  • the alternator can charge the lithium ion storage battery without going through the first switch and the second switch.
  • an object of the present invention is to provide a switch device for in-vehicle power supply that can easily maintain power supply to a vehicle load even when a ground fault occurs.
  • a first aspect of the switch device for in-vehicle power supply is a switch device for in-vehicle power supply, which is connected between the first vehicle load (5A, 5B) and the first power storage device (21). (31A, 31B), a second switch (32A, 32B) connected between the first vehicle load and the second power storage device (22), the first power storage device (21), and the second power storage A separation switch (33) connected to the device (22), wherein the first switch and the second switch are connected in series between the first power storage device and the second power storage device The separation switch is connected in parallel to the set of the first switch and the second switch.
  • a second aspect of the switch device for in-vehicle power supply is the switch device for in-vehicle power supply according to the first aspect, and is between the first power storage device (21) and the first switch (31A, 31B).
  • the first vehicle connected between the first fuse (41A, 41B) for the first vehicle load, and between the second power storage device (22) and the second switch (32A, 32B).
  • a second fuse (42A, 42B) for loading is further provided.
  • a third aspect of the on-vehicle power supply switch device is the on-vehicle power supply switch device according to the first or second aspect, wherein the first power storage device (21) and the second vehicle load (5B) A third switch (31B) connected in between, and a fourth switch (32B) connected between the second power storage device (22) and the second vehicle load, The fourth switch is connected in series between the first power storage device and the second power storage device, and one set of the third switch and the fourth switch is connected in parallel to the separation switch Is done.
  • a fourth aspect of the switch device for in-vehicle power supply is the switch device for in-vehicle power supply according to any one of the first to third aspects, and the ground on the first power storage device side than the first switch. The presence or absence of a fault is determined, and when it is determined that the ground fault has occurred, the first switch and the separation switch are turned off and the second switch is turned on.
  • a fifth aspect of the switch device for in-vehicle power supply is a switch device for in-vehicle power supply according to any one of the first to third aspects, wherein the first switch is turned off, the second switch is turned on, A control circuit that turns on the first switch and turns off the second switch when the separation switch is turned off from the state in which the separation switch is turned on and the potential on the separation switch side of the first switch increases; Prepare.
  • An aspect of the on-vehicle power supply system according to the present invention includes the on-vehicle power supply switch device according to any one of the first to fifth aspects and the second power storage device.
  • the switch device for in-vehicle power supply when a ground fault occurs on the first power storage device side with respect to the first switch, the first switch and the separation switch are turned off and the second switch is turned on. Thus, electric power can be supplied to the first vehicle load.
  • a ground fault occurs on the second power storage device side with respect to the second switch, power can be supplied to the first vehicle load by turning off the second switch and the separation switch and turning on the first switch.
  • FIG. 1 is a diagram schematically showing an example of an in-vehicle power supply system. It is a figure which shows an example of the internal structure of a relay unit. It is a figure which shows roughly an example of the vehicle-mounted power supply system when a ground fault generate
  • FIG. 1 is a diagram schematically showing an example of the configuration of the in-vehicle power supply system 100.
  • the in-vehicle power supply system 100 is mounted on a vehicle.
  • This in-vehicle power supply system 100 includes a generator 1, power storage devices 21, 22, a switch device 10 for in-vehicle power supply, and vehicle loads 5A and 5B.
  • the in-vehicle power supply system 100 may further include fuse groups 61 and 62.
  • the power storage device 21 is, for example, a lead battery, and is connected to the generator 1 and the switch device 10 via, for example, a fuse group 61.
  • the fuse group 61 is, for example, a fuse battery terminal, and is attached to the output terminal of the power storage device 21.
  • the fuse group 61 includes fuses 611 to 613.
  • the power storage device 21 is connected to the switch device 10 via the fuses 611 and 612, and is connected to the generator 1 via the fuse 613.
  • the generator 1 is an alternator, for example, and generates electric power and outputs a DC voltage as the vehicle engine rotates. In the illustration of FIG. 1, the generator 1 is described as “ALT”. The generator 1 can charge the power storage devices 21 and 22.
  • the power storage device 22 is, for example, a lithium ion battery, a nickel metal hydride battery, or a capacitor, and is connected to the switch device 10 via, for example, a fuse group 62.
  • the fuse group 62 is, for example, a fuse battery terminal, and is connected to the output terminal of the power storage device 22.
  • the fuse group 62 includes fuses 621 and 622.
  • the power storage device 22 is connected to the switch device 10 via fuses 621 and 622.
  • Switch device 10 appropriately connects power storage devices 21 and 22 to vehicle loads 5A and 5B.
  • the switch device 10 includes switches 31A, 32A, 31B, 32B and a separation switch 33.
  • the switches 31A, 32A, 31B, 32B and the separation switch 33 are relays, for example.
  • the switch device 10 includes fuse boxes 4A and 4B, which will be described later.
  • the switch 31A is connected between the power storage device 21 and the vehicle load 5A.
  • one end of the switch 31A is connected to the power storage device 21 via the fuse 611, and the other end is connected to the vehicle load 5A.
  • Switch 32A is connected between power storage device 22 and vehicle load 5A.
  • one end of the switch 32A is connected to the power storage device 22 via the fuse 622, and the other end is connected to the vehicle load 5A.
  • the switches 31A and 32A are connected in series between the power storage devices 21 and 22.
  • the separation switch 33 is connected in parallel to a pair of switches 31A and 32A.
  • one end of the separation switch 33 is connected to the power storage device 21 via a fuse 612, and the other end is connected to the power storage device 22 via a fuse 621.
  • the switch 31B is connected between the power storage device 21 and the vehicle load 5B.
  • one end of the switch 31B is connected to the power storage device 21 via the fuse 611, and the other end is connected to the vehicle load 5B.
  • Switch 32B is connected between power storage device 22 and vehicle load 5B.
  • one end of the switch 32B is connected to the power storage device 22 via the fuse 622, and the other end is connected to the vehicle load 5B.
  • switches 31B and 32B are connected in series between power storage devices 21 and 22.
  • the separation switch 33 is also connected in parallel to a pair of switches 31B and 32B.
  • the vehicle loads 5A and 5B are loads mounted on the vehicle.
  • the vehicle load 5A is a brake device (for example, an electric motor or an ECU) or a steering device (for example, an electric motor or an ECU), and the vehicle load 5B is a body control. It is a module.
  • the body control module can control the entire vehicle.
  • the vehicle load 5 ⁇ / b> B may control the switches 31 ⁇ / b> A, 32 ⁇ / b> A, 31 ⁇ / b> B, 32 ⁇ / b> B and the separation switch 33 according to the state of the vehicle (for example, power running, regeneration, etc.).
  • the fuse box 4A includes fuses 41A and 42A for a vehicle load 5A.
  • the fuse 41A is connected between the power storage device 21 and the switch 31A. In the illustration of FIG. 1, the fuse 41A is connected between the fuse 611 and the switch 31A.
  • the fuse 42A is connected between the power storage device 22 and the switch 32A. In the illustration of FIG. 1, the fuse 42A is connected between the fuse 622 and the switch 32A.
  • the fuse box 4A also includes fuses other than the fuses 41A and 42A.
  • the fuse box 4A of FIG. 1 two fuses having one end connected to the power storage device 21 are shown, and two fuses having one end connected to the power storage device 22 are shown. The other end of each of these fuses is connected to a vehicle load (not shown).
  • fuse box 4A has a function of distributing power from power storage devices 21 and 22 to a plurality of vehicle loads.
  • the fuse box 4B includes fuses 41B and 42B for the vehicle load 5B.
  • the fuse 41B is connected between the power storage device 21 and the switch 31B. In the illustration of FIG. 1, the fuse 41B is connected between the fuse 611 and the switch 31B.
  • the fuse 42B is connected between the power storage device 22 and the switch 32B. In the illustration of FIG. 1, the fuse 42B is connected between the fuse 622 and the switch 32B.
  • the fuse box 4B also includes fuses other than the fuses 41B and 42B.
  • fuses other than the fuses 41B and 42B For example, two fuses having one end connected to the power storage device 21 are shown, and two fuses having one end connected to the power storage device 22 are shown. The other end of each of these fuses is connected to a vehicle load (not shown).
  • fuse box 4B has a function of distributing power from power storage devices 21 and 22 to a plurality of vehicle loads.
  • FIG. 2 is a diagram schematically showing an example of the internal configuration of the relay unit 3A.
  • the relay unit 3A includes a control circuit 301, voltage detection circuits 302 and 303, and current detection circuits 304 and 305 in addition to the switches 31A and 32A.
  • the voltage detection circuit 302 detects a voltage generated in the wiring L1 closer to the power storage device 21 than the switch 31A, and outputs the detected value to the control circuit 301.
  • Voltage detection circuit 303 detects a voltage generated in wiring L ⁇ b> 2 on the power storage device 22 side with respect to switch 32 ⁇ / b> A, and outputs the detected value to control circuit 301.
  • the current detection circuit 304 detects the current flowing through the switch 31 ⁇ / b> A and outputs the detected value to the control circuit 301.
  • the current detection circuit 305 detects the current flowing through the switch 32A and outputs the detected value to the control circuit 301.
  • the control circuit 301 receives the instruction from the vehicle load 5B, for example, and controls the switches 31A and 32A and the separation switch 33.
  • the control circuit 301 includes a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program.
  • the storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible.
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program.
  • control circuit 301 is not limited to this, and various procedures executed by the control circuit 301 or various means or various functions to be realized may be realized by hardware.
  • control circuit 301 can determine whether or not a ground fault has occurred based on the detection values of the voltage detection circuits 302 and 303. For example, it may be determined that a ground fault has occurred when the detection values of the voltage detection circuits 302 and 303 are below a predetermined value in a state where the switches 31A and 32A and the separation switch 33 are on. . Alternatively, the control circuit 301 causes a ground fault when the detection values of the voltage detection circuits 302 and 303 are below a predetermined value and the detection values of the current detection circuits 304 and 305 exceed the predetermined value. It may be determined that When it is determined that a ground fault has occurred, the control circuit 301 controls the switches 31A and 32A and the separation switch 33 as follows in preference to the instruction of the vehicle load 5B.
  • FIG. 3 is a diagram schematically showing an example of the in-vehicle power supply system 100.
  • the fuses 41B and 42B, the switches 31B and 32B, and the vehicle load 5B are not shown for simplicity.
  • a ground fault G1 is generated in the wiring between the fuse 41A and the switch 31A.
  • the control circuit 301 turns off the switch 31A and the separation switch 33 and turns on the switch 32A when determining that a ground fault (for example, ground fault G1) has occurred on the power storage device 21 side of the switch 31. Thereby, even if the ground fault G1 occurs, the power storage device 22 can supply power to the vehicle load 5A. In FIG. 3, this power supply is indicated by a block arrow.
  • a ground fault for example, ground fault G1
  • this ground fault (for example, ground fault G1) can be detected as follows, for example.
  • the ground fault G1 can be detected when the detection value of the voltage detection circuit 302 falls below a predetermined value with the switch 31A and the separation switch 33 turned off.
  • this ground fault it is desirable to turn on the switch 32A so as to supply power to the vehicle load 5A.
  • the switch pattern employed for detecting the ground fault is the same as the switch pattern employed in response to the detection of the ground fault.
  • FIG. 4 is a diagram schematically illustrating an example of the in-vehicle power supply system 100.
  • a ground fault G2 is generated between the fuse 42A and the switch 32A.
  • the control circuit 301 turns off the switch 32A and the separation switch 33, and turns on the switch 31A.
  • this power supply is indicated by block arrows.
  • a ground fault (for example, ground fault G2) closer to the power storage device 22 than the switch 32A is, for example, when the detection value of the voltage detection circuit 303 falls below a predetermined value in a state where the switch 32A and the separation switch 33 are turned off. Can be detected.
  • the ground fault it is desirable to turn on the switch 31A so as to supply power to the vehicle load 5A.
  • the switch pattern employed for detecting the ground fault is the same as the switch pattern employed in response to the detection of the ground fault.
  • the in-vehicle power supply system 100 even if a ground fault occurs, the power supply to the vehicle load 5A can be maintained.
  • the generator 1 is connected via the separation switch 33 by turning on the separation switch 33 when charging the power storage device 22 when no ground fault occurs.
  • the power storage device 22 can be charged.
  • the generator 1 charges the power storage device 22 via both the switches 31A and 31B. Will do.
  • the power storage device 22 is charged via the two switches 31A and 31B.
  • the power storage device 22 can be charged via one separation switch 33. Therefore, the power storage device 22 can be charged via fewer switches.
  • the resistance value of the separation switch 33 is less than or equal to the series connection of the switches 31A and 32A, the power storage device 22 can be charged with a smaller resistance value, so that the chargeability of the power storage device 22 can be improved.
  • the separation switch 33 is a simple wiring (a structure in which a short circuit is removed in accordance with FIG. 1)
  • the switch Regardless of the on / off state of 31A, 32A, current flows from power storage devices 21, 22 to the ground fault. In this case, power cannot be supplied to the vehicle load 5A.
  • the separation switch 33 is turned off when the ground fault G1 or the ground fault G2 occurs, one of the switches 31A and 32A (one corresponding to the ground fault) is turned off.
  • electric power can be supplied to the vehicle load 5A.
  • the ground fault is detected based on the detection values of the voltage detection circuits 302 and 303 (or further of the current detection circuits 304 and 305). The presence or absence of occurrence was judged. Accordingly, one of the switches 31A and 32A is turned off, the other is turned on, and from the state where the separation switch 33 is turned on, it is determined whether or not a ground fault has occurred based only on the detection values of the voltage detection circuits 302 and 303. May be.
  • the switch 31A in a state where the switch 31A is turned off and the switch 32A and the separation switch 33 are turned on, for example, when the detection value of the voltage detection circuit 303 falls below a reference value, it may be determined that a ground fault has occurred. . Since the separation switch 33 is on, the detection value of the voltage detection circuit 302 is theoretically the same as that of the voltage detection circuit 303. Therefore, when the detection value of the voltage detection circuit 303 falls below the reference value, It may be determined that an entanglement has occurred.
  • the control circuit 301 turns off the separation switch 33 when determining that a ground fault has occurred. If a ground fault occurs on the power storage device 21 side with respect to the separation switch 33, the power storage device 22 is cut off from the ground fault by turning off the separation switch 33. Therefore, the potential on the side of the separation switch 33 of the switch 32A (that is, the detection value of the voltage detection circuit 303) becomes higher than the reference value. Conversely, if a ground fault occurs on the power storage device 22 side with respect to the separation switch 33, the detected value of the voltage detection circuit 303 is lower than the reference value even when the separation switch 33 is turned off.
  • the control circuit 301 maintains the current switch pattern, and the detection value of the voltage detection circuit 303 is lower than the reference value.
  • the switch 31A is turned on and the switch 32A is turned off.
  • the power storage device 21 or the power storage device 22 can supply power to the vehicle load 5A according to the location where the ground fault occurs.
  • the switch 31A is turned on. Turns on and turns off the switch 32A.
  • the operation may be started with the switch 31A and the separation switch 33 turned on and the switch 32A turned off. This is because the switches 31A and 32A are connected in series between the wirings L1 and L2 on the side opposite to the separation switch 33.
  • the switches 31B and 32B are also connected in series between the wirings L1 and L2 on the opposite side to the separation switch 33 in the same manner as the switches 31A and 32A. Therefore, in order to detect and deal with the above-mentioned ground fault, one of the switches 31B and 32B needs to be turned off so that the separation switch 33 is not turned off and the function of separating the wirings L1 and L2 is not disturbed. There is.
  • fuses 41A and 42A for the vehicle load 5A are provided on the side opposite to the vehicle load 5A than the switches 31A and 32A (that is, the power storage devices 21 and 22 side).
  • FIG. 5 shows an in-vehicle power supply system 101 according to a comparative example.
  • fuses 410A and 420A for the vehicle load 5A are provided on the vehicle load 5A side of the switches 31A and 32A.
  • the in-vehicle power supply system 100 even if the ground fault G1 occurs in the wiring between the fuse 41A and the switch 31A, the switch 31A and the separation switch 33 are turned off and the switch 32A is turned on.
  • the power storage device 22 can supply power to the vehicle load 5A.
  • the in-vehicle power supply system 100 if a ground fault occurs in the wiring on the vehicle load 5A side than the switches 31A and 32A, power cannot be supplied to the vehicle load 5A. Therefore, the shortening of the wiring is preferable in that the possibility of occurrence of a ground fault is reduced. According to the in-vehicle power supply system 100, the fuses 41A and 42A are not provided between the switches 31A and 32A and the vehicle load 5A. The wiring connecting 32A and the vehicle load 5A can be shortened.
  • the switches 31A and 32A and the fuses 41A and 42A on the vehicle load 5A side have been described.
  • the switches 31B and 32B and the fuses 41B and 42B on the vehicle load 5B side have the same effect.
  • Vehicle load (first vehicle load / second vehicle load) 5B Vehicle load (second vehicle load / first vehicle load) 10 switch device 21, 22 power storage device (first power storage device, second power storage device) 31A switch (first switch / third switch) 31B switch (third switch / first switch) 32A switch (second switch / fourth switch) 32B switch (4th switch / 2nd switch) 33 Separation switch 41A, 41B Fuse (first fuse) 42A, 42B fuse (second fuse) 301 Control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a switch device for an in-vehicle power supply, said switch device making it possible to easily maintain power supply to a vehicle load. A first switch is connected between a vehicle load and a first electricity storage device. A second switch is connected between the vehicle load and a second electricity storage device. The first switch and the second switch are connected in series to each other between the first electricity storage device and the second electricity storage device. A separation switch is connected in parallel to a pair configured from the first switch and the second switch.

Description

車載電源用のスイッチ装置および車載用電源システムIn-vehicle power supply switch device and in-vehicle power supply system
 この発明は、車載電源用のスイッチ装置および車載用電源システムに関する。 The present invention relates to an on-vehicle power supply switch device and an on-vehicle power supply system.
 特許文献1には、車載用電源装置が記載されている。この車載用電源装置はオルタネータと鉛蓄電池とリチウムイオン蓄電池と第1スイッチと第2スイッチと電気負荷とを備えている。電気負荷は車両に搭載される負荷である。第1スイッチは、鉛蓄電池と電気負荷との間に接続されており、第2スイッチは、リチウムイオン蓄電池と電気負荷との間に接続されている。オルタネータは鉛蓄電池と直接に接続され、第1スイッチおよび第2スイッチを介してリチウムイオン蓄電池に接続されている。オルタネータは、車両のエンジンの回転に伴って発電し、鉛蓄電池およびリチウムイオン蓄電池を充電する。 Patent Document 1 describes an in-vehicle power supply device. This in-vehicle power supply device includes an alternator, a lead storage battery, a lithium ion storage battery, a first switch, a second switch, and an electric load. The electric load is a load mounted on the vehicle. The first switch is connected between the lead storage battery and the electric load, and the second switch is connected between the lithium ion storage battery and the electric load. The alternator is directly connected to the lead storage battery, and is connected to the lithium ion storage battery via the first switch and the second switch. The alternator generates electricity with the rotation of the vehicle engine and charges the lead storage battery and the lithium ion storage battery.
特開2014-34288号公報JP 2014-34288 A
 特許文献1において、オルタネータおよび鉛蓄電池の各々と、リチウムイオン蓄電池とを短絡接続する構成を考慮する。このような構成では、オルタネータは第1スイッチおよび第2スイッチを経由せずに、リチウムイオン蓄電池を充電することができる。 In Patent Document 1, a configuration in which each of an alternator and a lead storage battery and a lithium ion storage battery are short-circuited is considered. In such a configuration, the alternator can charge the lithium ion storage battery without going through the first switch and the second switch.
 しかるに、このような構成では、例えば鉛蓄電池と第1配線との間に地絡が生じると、鉛蓄電池およびリチウム蓄電池から、その地絡箇所へと地絡電流が流れるので、電気負荷へと電力を供給できない。 However, in such a configuration, for example, when a ground fault occurs between the lead storage battery and the first wiring, a ground fault current flows from the lead storage battery and the lithium storage battery to the ground fault location. Can not supply.
 そこで本発明は、地絡発生した場合でも車両負荷への電力の供給を維持しやすい車載電源用のスイッチ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a switch device for in-vehicle power supply that can easily maintain power supply to a vehicle load even when a ground fault occurs.
 車載電源用のスイッチ装置の第1の態様は、車載電源用のスイッチ装置であって、第1車両負荷(5A,5B)と第1蓄電装置(21)との間に接続される第1スイッチ(31A,31B)と、前記第1車両負荷と第2蓄電装置(22)との間に接続される第2スイッチ(32A,32B)と、前記第1蓄電装置(21)と前記第2蓄電装置(22)との間に接続される分離スイッチ(33)とを備え、前記第1スイッチと前記第2スイッチとは、前記第1蓄電装置と前記第2蓄電装置との間で直列に接続され、前記分離スイッチは前記第1スイッチおよび前記第2スイッチの一組に対して並列に接続される。 A first aspect of the switch device for in-vehicle power supply is a switch device for in-vehicle power supply, which is connected between the first vehicle load (5A, 5B) and the first power storage device (21). (31A, 31B), a second switch (32A, 32B) connected between the first vehicle load and the second power storage device (22), the first power storage device (21), and the second power storage A separation switch (33) connected to the device (22), wherein the first switch and the second switch are connected in series between the first power storage device and the second power storage device The separation switch is connected in parallel to the set of the first switch and the second switch.
 車載電源用のスイッチ装置の第2の態様は、第1の態様にかかる車載電源用のスイッチ装置であって、前記第1蓄電装置(21)と前記第1スイッチ(31A,31B)との間に接続される前記第1車両負荷用の第1ヒューズ(41A,41B)と、前記第2蓄電装置(22)と前記第2スイッチ(32A,32B)との間に接続される前記第1車両負荷用の第2ヒューズ(42A,42B)とを更に備える。 A second aspect of the switch device for in-vehicle power supply is the switch device for in-vehicle power supply according to the first aspect, and is between the first power storage device (21) and the first switch (31A, 31B). The first vehicle connected between the first fuse (41A, 41B) for the first vehicle load, and between the second power storage device (22) and the second switch (32A, 32B). A second fuse (42A, 42B) for loading is further provided.
 車載電源用のスイッチ装置の第3の態様は、第1または第2の態様にかかる車載電源用のスイッチ装置であって、前記第1蓄電装置(21)と第2車両負荷(5B)との間に接続される第3スイッチ(31B)と、前記第2蓄電装置(22)と前記第2車両負荷との間に接続される第4スイッチ(32B)とを更に備え、前記第3スイッチおよび前記第4スイッチは、前記第1蓄電装置と前記第2蓄電装置との間において、相互に直列に接続され、前記第3スイッチおよび前記第4スイッチの一組は、前記分離スイッチに並列に接続される。 A third aspect of the on-vehicle power supply switch device is the on-vehicle power supply switch device according to the first or second aspect, wherein the first power storage device (21) and the second vehicle load (5B) A third switch (31B) connected in between, and a fourth switch (32B) connected between the second power storage device (22) and the second vehicle load, The fourth switch is connected in series between the first power storage device and the second power storage device, and one set of the third switch and the fourth switch is connected in parallel to the separation switch Is done.
 車載電源用のスイッチ装置の第4の態様は、第1から第3のいずれか1つの態様にかかる車載電源用のスイッチ装置であって、前記第1スイッチよりも前記第1蓄電装置側における地絡の有無を判断し、前記地絡が発生したと判断したときに、前記第1スイッチおよび前記分離スイッチをオフし、前記第2スイッチをオンする。 A fourth aspect of the switch device for in-vehicle power supply is the switch device for in-vehicle power supply according to any one of the first to third aspects, and the ground on the first power storage device side than the first switch. The presence or absence of a fault is determined, and when it is determined that the ground fault has occurred, the first switch and the separation switch are turned off and the second switch is turned on.
 車載電源用のスイッチ装置の第5の態様は、第1から第3のいずれか1つの態様にかかる車載電源用のスイッチ装置であって、前記第1スイッチをオフ、前記第2スイッチをオン、前記分離スイッチがオンした状態から、前記分離スイッチをオフして、前記第1スイッチの分離スイッチ側の電位が上昇した場合、前記第1スイッチをオン、前記第2スイッチをオフする制御回路を更に備える。 A fifth aspect of the switch device for in-vehicle power supply is a switch device for in-vehicle power supply according to any one of the first to third aspects, wherein the first switch is turned off, the second switch is turned on, A control circuit that turns on the first switch and turns off the second switch when the separation switch is turned off from the state in which the separation switch is turned on and the potential on the separation switch side of the first switch increases; Prepare.
 本発明にかかる車載用電源システムの態様は、第1から第5のいずれか一つの態様にかかる車載電源用のスイッチ装置と、前記第2蓄電装置とを備える。 An aspect of the on-vehicle power supply system according to the present invention includes the on-vehicle power supply switch device according to any one of the first to fifth aspects and the second power storage device.
 車載電源用のスイッチ装置の第1の態様によれば、第1スイッチよりも第1蓄電装置側において地絡が生じたときには、第1スイッチおよび分離スイッチをオフし、第2スイッチをオンすることで、第1車両負荷に電力を供給できる。第2スイッチよりも第2蓄電装置側において地絡が生じたときには、第2スイッチおよび分離スイッチをオフし、第1スイッチをオンすることで、第1車両負荷に電力を供給できる。 According to the first aspect of the switch device for in-vehicle power supply, when a ground fault occurs on the first power storage device side with respect to the first switch, the first switch and the separation switch are turned off and the second switch is turned on. Thus, electric power can be supplied to the first vehicle load. When a ground fault occurs on the second power storage device side with respect to the second switch, power can be supplied to the first vehicle load by turning off the second switch and the separation switch and turning on the first switch.
車載用電源システムの一例を概略的に示す図である。1 is a diagram schematically showing an example of an in-vehicle power supply system. リレーユニットの内部構成の一例を示す図である。It is a figure which shows an example of the internal structure of a relay unit. 地絡が発生したときの車載用電源システムの一例を概略的に示す図である。It is a figure which shows roughly an example of the vehicle-mounted power supply system when a ground fault generate | occur | produces. 地絡が発生したときの車載用電源システムの一例を概略的に示す図である。It is a figure which shows roughly an example of the vehicle-mounted power supply system when a ground fault generate | occur | produces. 比較例にかかる車載用電源システムを概略的に示す図である。It is a figure which shows roughly the vehicle-mounted power supply system concerning a comparative example.
 <構成>
 図1は、車載用電源システム100の構成の一例を概略的に示す図である。車載用電源システム100は車両に搭載される。この車載用電源システム100は発電機1と蓄電装置21,22と車載電源用のスイッチ装置10と車両負荷5A,5Bを備えている。また図1の例示するように、車載用電源システム100はヒューズ群61,62を更に備えていてもよい。
<Configuration>
FIG. 1 is a diagram schematically showing an example of the configuration of the in-vehicle power supply system 100. The in-vehicle power supply system 100 is mounted on a vehicle. This in-vehicle power supply system 100 includes a generator 1, power storage devices 21, 22, a switch device 10 for in-vehicle power supply, and vehicle loads 5A and 5B. In addition, as illustrated in FIG. 1, the in-vehicle power supply system 100 may further include fuse groups 61 and 62.
 蓄電装置21は例えば鉛バッテリであり、例えばヒューズ群61を介して発電機1およびスイッチ装置10に接続されている。ヒューズ群61は例えばヒューズバッテリターミナルであり、蓄電装置21の出力端子に取り付けられる。図1の例示では、ヒューズ群61はヒューズ611~613を備えている。蓄電装置21は、ヒューズ611,612を介してスイッチ装置10に接続されており、ヒューズ613を介して発電機1に接続されている。 The power storage device 21 is, for example, a lead battery, and is connected to the generator 1 and the switch device 10 via, for example, a fuse group 61. The fuse group 61 is, for example, a fuse battery terminal, and is attached to the output terminal of the power storage device 21. In the illustration of FIG. 1, the fuse group 61 includes fuses 611 to 613. The power storage device 21 is connected to the switch device 10 via the fuses 611 and 612, and is connected to the generator 1 via the fuse 613.
 発電機1は例えばオルタネータであって、車両のエンジンの回転に伴って発電して直流電圧を出力する。図1の例示では、発電機1は「ALT」と表記されている。発電機1は蓄電装置21,22を充電することができる。 The generator 1 is an alternator, for example, and generates electric power and outputs a DC voltage as the vehicle engine rotates. In the illustration of FIG. 1, the generator 1 is described as “ALT”. The generator 1 can charge the power storage devices 21 and 22.
 蓄電装置22は例えばリチウムイオンバッテリ、ニッケル水素バッテリまたはキャパシタであって、例えばヒューズ群62を介してスイッチ装置10に接続されている。ヒューズ群62は例えばヒューズバッテリターミナルであり、蓄電装置22の出力端子に接続されている。図1の例示では、ヒューズ群62はヒューズ621,622を備えている。蓄電装置22はヒューズ621,622を介してスイッチ装置10に接続されている。 The power storage device 22 is, for example, a lithium ion battery, a nickel metal hydride battery, or a capacitor, and is connected to the switch device 10 via, for example, a fuse group 62. The fuse group 62 is, for example, a fuse battery terminal, and is connected to the output terminal of the power storage device 22. In the illustration of FIG. 1, the fuse group 62 includes fuses 621 and 622. The power storage device 22 is connected to the switch device 10 via fuses 621 and 622.
 スイッチ装置10は蓄電装置21,22を車両負荷5A,5Bに適宜に接続する。スイッチ装置10はスイッチ31A,32A,31B,32Bおよび分離スイッチ33を備えている。スイッチ31A,32A,31B,32Bおよび分離スイッチ33は例えばリレーである。なお図1の例示では、スイッチ装置10はヒューズボックス4A,4Bを備えているものの、これらについては後に述べる。 Switch device 10 appropriately connects power storage devices 21 and 22 to vehicle loads 5A and 5B. The switch device 10 includes switches 31A, 32A, 31B, 32B and a separation switch 33. The switches 31A, 32A, 31B, 32B and the separation switch 33 are relays, for example. In the illustration of FIG. 1, the switch device 10 includes fuse boxes 4A and 4B, which will be described later.
 スイッチ31Aは蓄電装置21と車両負荷5Aとの間に接続されている。図1の例示では、スイッチ31Aの一端はヒューズ611を介して蓄電装置21に接続され、他端は車両負荷5Aに接続されている。スイッチ32Aは蓄電装置22と車両負荷5Aとの間に接続されている。図1の例示では、スイッチ32Aの一端はヒューズ622を介して蓄電装置22に接続されており、他端は車両負荷5Aに接続されている。 The switch 31A is connected between the power storage device 21 and the vehicle load 5A. In the illustration of FIG. 1, one end of the switch 31A is connected to the power storage device 21 via the fuse 611, and the other end is connected to the vehicle load 5A. Switch 32A is connected between power storage device 22 and vehicle load 5A. In the illustration of FIG. 1, one end of the switch 32A is connected to the power storage device 22 via the fuse 622, and the other end is connected to the vehicle load 5A.
 この構成においては、スイッチ31A,32Aは蓄電装置21,22の間において相互に直列に接続される。分離スイッチ33はスイッチ31A,32Aの一組に対して並列に接続されている。図1の例示では、分離スイッチ33の一端はヒューズ612を介して蓄電装置21に接続され、他端はヒューズ621を介して蓄電装置22に接続されている。 In this configuration, the switches 31A and 32A are connected in series between the power storage devices 21 and 22. The separation switch 33 is connected in parallel to a pair of switches 31A and 32A. In the example of FIG. 1, one end of the separation switch 33 is connected to the power storage device 21 via a fuse 612, and the other end is connected to the power storage device 22 via a fuse 621.
 スイッチ31Bは蓄電装置21と車両負荷5Bとの間に接続されている。図1の例示では、スイッチ31Bの一端はヒューズ611を介して蓄電装置21に接続され、他端は車両負荷5Bに接続されている。スイッチ32Bは蓄電装置22と車両負荷5Bとの間に接続されている。図1の例示では、スイッチ32Bの一端はヒューズ622を介して蓄電装置22に接続されており、他端は車両負荷5Bに接続されている。この構成においては、スイッチ31B,32Bは蓄電装置21,22の間において相互に直列に接続される。分離スイッチ33はスイッチ31B,32Bの一組に対しても並列に接続される。 The switch 31B is connected between the power storage device 21 and the vehicle load 5B. In the illustration of FIG. 1, one end of the switch 31B is connected to the power storage device 21 via the fuse 611, and the other end is connected to the vehicle load 5B. Switch 32B is connected between power storage device 22 and vehicle load 5B. In the illustration of FIG. 1, one end of the switch 32B is connected to the power storage device 22 via the fuse 622, and the other end is connected to the vehicle load 5B. In this configuration, switches 31B and 32B are connected in series between power storage devices 21 and 22. The separation switch 33 is also connected in parallel to a pair of switches 31B and 32B.
 車両負荷5A,5Bは車両に搭載される負荷であって、例えば、車両負荷5Aはブレーキの装置(例えば電動機またはECU)またはステアリングの装置(例えば電動機またはECU)であり、車両負荷5Bはボディコントロールモジュールである。ボディコントロールモジュールは車両の全体を制御することができる。例えば車両負荷5Bは車両の状態(例えば力行、回生など)に応じて、スイッチ31A,32A,31B,32Bおよび分離スイッチ33を制御してもよい。 The vehicle loads 5A and 5B are loads mounted on the vehicle. For example, the vehicle load 5A is a brake device (for example, an electric motor or an ECU) or a steering device (for example, an electric motor or an ECU), and the vehicle load 5B is a body control. It is a module. The body control module can control the entire vehicle. For example, the vehicle load 5 </ b> B may control the switches 31 </ b> A, 32 </ b> A, 31 </ b> B, 32 </ b> B and the separation switch 33 according to the state of the vehicle (for example, power running, regeneration, etc.).
 ヒューズボックス4Aは車両負荷5A用のヒューズ41A,42Aを備えている。ヒューズ41Aは蓄電装置21とスイッチ31Aとの間に接続される。図1の例示では、ヒューズ41Aはヒューズ611とスイッチ31Aとの間に接続されている。ヒューズ42Aは蓄電装置22とスイッチ32Aとの間に接続される。図1の例示では、ヒューズ42Aはヒューズ622とスイッチ32Aとの間に接続されている。 The fuse box 4A includes fuses 41A and 42A for a vehicle load 5A. The fuse 41A is connected between the power storage device 21 and the switch 31A. In the illustration of FIG. 1, the fuse 41A is connected between the fuse 611 and the switch 31A. The fuse 42A is connected between the power storage device 22 and the switch 32A. In the illustration of FIG. 1, the fuse 42A is connected between the fuse 622 and the switch 32A.
 図1の例示では、ヒューズボックス4Aはヒューズ41A,42A以外のヒューズも備えている。図1のヒューズボックス4Aでは、蓄電装置21に接続される一端を有するヒューズが2つ示され、蓄電装置22に接続される一端を有するヒューズが2つ示されている。これらのヒューズの各々の他端は、不図示の車両負荷に接続される。この場合、ヒューズボックス4Aは、蓄電装置21,22からの電力を複数の車両負荷に分配する機能を有する。 In the illustration of FIG. 1, the fuse box 4A also includes fuses other than the fuses 41A and 42A. In the fuse box 4A of FIG. 1, two fuses having one end connected to the power storage device 21 are shown, and two fuses having one end connected to the power storage device 22 are shown. The other end of each of these fuses is connected to a vehicle load (not shown). In this case, fuse box 4A has a function of distributing power from power storage devices 21 and 22 to a plurality of vehicle loads.
 ヒューズボックス4Bは車両負荷5B用のヒューズ41B,42Bを備えている。ヒューズ41Bは蓄電装置21とスイッチ31Bとの間に接続されている。図1の例示では、ヒューズ41Bはヒューズ611とスイッチ31Bとの間に接続されている。ヒューズ42Bは蓄電装置22とスイッチ32Bとの間に接続されている。図1の例示では、ヒューズ42Bはヒューズ622とスイッチ32Bとの間に接続されている。 The fuse box 4B includes fuses 41B and 42B for the vehicle load 5B. The fuse 41B is connected between the power storage device 21 and the switch 31B. In the illustration of FIG. 1, the fuse 41B is connected between the fuse 611 and the switch 31B. The fuse 42B is connected between the power storage device 22 and the switch 32B. In the illustration of FIG. 1, the fuse 42B is connected between the fuse 622 and the switch 32B.
 図1の例示では、ヒューズボックス4Bはヒューズ41B,42B以外のヒューズも備えている。例えば蓄電装置21に接続される一端を有するヒューズが2つ示され、蓄電装置22に接続される一端を有するヒューズが2つ示されている。これらのヒューズの各々の他端は、不図示の車両負荷に接続される。この場合、ヒューズボックス4Bは、蓄電装置21,22からの電力を複数の車両負荷に分配する機能を有する。 In the illustration of FIG. 1, the fuse box 4B also includes fuses other than the fuses 41B and 42B. For example, two fuses having one end connected to the power storage device 21 are shown, and two fuses having one end connected to the power storage device 22 are shown. The other end of each of these fuses is connected to a vehicle load (not shown). In this case, fuse box 4B has a function of distributing power from power storage devices 21 and 22 to a plurality of vehicle loads.
 スイッチ31A,32Aはリレーユニット3Aを構成し、スイッチ31B,32Bはリレーユニット3Bを構成してもよい。リレーユニット3A,3Bは互いに同様の構成を有するので、以下では代表的に、リレーユニット3Aについて述べる。図2はリレーユニット3Aの内部構成の一例を概略的に示す図である。例えばリレーユニット3Aは、スイッチ31A,32Aの他、制御回路301、電圧検出回路302,303および電流検出回路304,305を備えている。 The switches 31A and 32A may constitute the relay unit 3A, and the switches 31B and 32B may constitute the relay unit 3B. Since the relay units 3A and 3B have the same configuration, the relay unit 3A will be typically described below. FIG. 2 is a diagram schematically showing an example of the internal configuration of the relay unit 3A. For example, the relay unit 3A includes a control circuit 301, voltage detection circuits 302 and 303, and current detection circuits 304 and 305 in addition to the switches 31A and 32A.
 電圧検出回路302は、スイッチ31Aよりも蓄電装置21側の配線L1に生じる電圧を検出し、その検出値を制御回路301へと出力する。電圧検出回路303は、スイッチ32Aよりも蓄電装置22側の配線L2に生じる電圧を検出し、その検出値を制御回路301へと出力する。電流検出回路304は、スイッチ31Aを流れる電流を検出し、その検出値を制御回路301へと出力する。電流検出回路305は、スイッチ32Aを流れる電流を検出し、その検出値を制御回路301へと出力する。 The voltage detection circuit 302 detects a voltage generated in the wiring L1 closer to the power storage device 21 than the switch 31A, and outputs the detected value to the control circuit 301. Voltage detection circuit 303 detects a voltage generated in wiring L <b> 2 on the power storage device 22 side with respect to switch 32 </ b> A, and outputs the detected value to control circuit 301. The current detection circuit 304 detects the current flowing through the switch 31 </ b> A and outputs the detected value to the control circuit 301. The current detection circuit 305 detects the current flowing through the switch 32A and outputs the detected value to the control circuit 301.
 制御回路301は、例えば車両負荷5Bからの指示を受けて、スイッチ31A,32Aおよび分離スイッチ33を制御する。またここでは、制御回路301はマイクロコンピュータと記憶装置を含んで構成される。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable Programmable ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御回路301はこれに限らず、制御回路301によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。 The control circuit 301 receives the instruction from the vehicle load 5B, for example, and controls the switches 31A and 32A and the separation switch 33. Here, the control circuit 301 includes a microcomputer and a storage device. The microcomputer executes each processing step (in other words, a procedure) described in the program. The storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible. The storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized. In addition, the control circuit 301 is not limited to this, and various procedures executed by the control circuit 301 or various means or various functions to be realized may be realized by hardware.
 また制御回路301は、電圧検出回路302,303の検出値に基づいて、地絡の発生の有無を判断することができる。例えば、スイッチ31A,32Aおよび分離スイッチ33がオンしている状態で、各電圧検出回路302,303の検出値が所定値を下回ったときに、地絡が発生していると判断してもよい。あるいは、制御回路301は各電圧検出回路302,303の検出値が所定値を下回った状態において、更に各電流検出回路304,305の検出値が所定値を超えたときに、地絡が発生していると判断してもよい。制御回路301は地絡が発生したと判断したときには、車両負荷5Bの指示よりも優先して、以下のようにスイッチ31A,32Aおよび分離スイッチ33を制御する。 Further, the control circuit 301 can determine whether or not a ground fault has occurred based on the detection values of the voltage detection circuits 302 and 303. For example, it may be determined that a ground fault has occurred when the detection values of the voltage detection circuits 302 and 303 are below a predetermined value in a state where the switches 31A and 32A and the separation switch 33 are on. . Alternatively, the control circuit 301 causes a ground fault when the detection values of the voltage detection circuits 302 and 303 are below a predetermined value and the detection values of the current detection circuits 304 and 305 exceed the predetermined value. It may be determined that When it is determined that a ground fault has occurred, the control circuit 301 controls the switches 31A and 32A and the separation switch 33 as follows in preference to the instruction of the vehicle load 5B.
 例えば、スイッチ31Aよりも蓄電装置21側(例えば配線L1)に地絡が発生した場合について述べる。図3は、車載用電源システム100の一例を概略的に示す図である。図3の例示では、簡単のために、ヒューズ41B,42B、スイッチ31B,32Bおよび車両負荷5Bの図示を省略している。図3の例示では、ヒューズ41Aとスイッチ31Aとの間の配線に地絡G1が発生している。 For example, a case where a ground fault occurs on the power storage device 21 side (for example, the wiring L1) from the switch 31A will be described. FIG. 3 is a diagram schematically showing an example of the in-vehicle power supply system 100. In the illustration of FIG. 3, the fuses 41B and 42B, the switches 31B and 32B, and the vehicle load 5B are not shown for simplicity. In the illustration of FIG. 3, a ground fault G1 is generated in the wiring between the fuse 41A and the switch 31A.
 制御回路301は、スイッチ31よりも蓄電装置21側に地絡(例えば地絡G1)が発生していると判断したときには、スイッチ31Aおよび分離スイッチ33をオフとし、スイッチ32Aをオンとする。これにより、たとえ地絡G1が生じたとしても、蓄電装置22が車両負荷5Aへと電力を供給することができる。図3では、この電力の供給をブロック矢印で示している。 The control circuit 301 turns off the switch 31A and the separation switch 33 and turns on the switch 32A when determining that a ground fault (for example, ground fault G1) has occurred on the power storage device 21 side of the switch 31. Thereby, even if the ground fault G1 occurs, the power storage device 22 can supply power to the vehicle load 5A. In FIG. 3, this power supply is indicated by a block arrow.
 なおこの地絡(例えば地絡G1)は、例えば次のようにして検出することができる。例えば、スイッチ31Aおよび分離スイッチ33をオフした状態において、電圧検出回路302の検出値が所定値よりも下回ったときに、当該地絡G1を検出できる。またこの地絡の検出時に、車両負荷5Aにも電力を供給すべく、スイッチ32Aをオンすることが望ましい。このようにして当該地絡を検出する場合には、当該地絡の検出のために採用されるスイッチパターンが、当該地絡の検出に応答して採用されるスイッチパターンと同じになる。 Note that this ground fault (for example, ground fault G1) can be detected as follows, for example. For example, the ground fault G1 can be detected when the detection value of the voltage detection circuit 302 falls below a predetermined value with the switch 31A and the separation switch 33 turned off. In addition, when this ground fault is detected, it is desirable to turn on the switch 32A so as to supply power to the vehicle load 5A. When detecting the ground fault in this way, the switch pattern employed for detecting the ground fault is the same as the switch pattern employed in response to the detection of the ground fault.
 次に、スイッチ32Aよりも蓄電装置22側(例えば配線L2)に地絡が生じた場合について述べる。図4は、車載用電源システム100の一例を概略的に示す図である。図4の例示では、ヒューズ42Aとスイッチ32Aとの間に地絡G2が発生している。このとき、制御回路301はスイッチ32Aおよび分離スイッチ33をオフし、スイッチ31Aをオンする。これにより、たとえ地絡G2が生じたとしても、蓄電装置21が車両負荷5Aへと電力を供給することができる。図4ではこの電力の供給をブロック矢印で示している。 Next, a case where a ground fault occurs on the power storage device 22 side (for example, the wiring L2) from the switch 32A will be described. FIG. 4 is a diagram schematically illustrating an example of the in-vehicle power supply system 100. In the example of FIG. 4, a ground fault G2 is generated between the fuse 42A and the switch 32A. At this time, the control circuit 301 turns off the switch 32A and the separation switch 33, and turns on the switch 31A. Thereby, even if the ground fault G2 occurs, the power storage device 21 can supply power to the vehicle load 5A. In FIG. 4, this power supply is indicated by block arrows.
 なお、スイッチ32Aよりも蓄電装置22側の地絡(例えば地絡G2)は、例えば、スイッチ32Aおよび分離スイッチ33をオフした状態において、電圧検出回路303の検出値が所定値よりも下回ったときに、検出できる。また当該地絡検出時に、車両負荷5Aにも電力を供給すべく、スイッチ31Aをオンすることが望ましい。このようにして当該地絡を検出する場合には、当該地絡の検出のために採用されるスイッチパターンが、当該地絡の検出に応答して採用されるスイッチパターンと同じになる。 Note that a ground fault (for example, ground fault G2) closer to the power storage device 22 than the switch 32A is, for example, when the detection value of the voltage detection circuit 303 falls below a predetermined value in a state where the switch 32A and the separation switch 33 are turned off. Can be detected. In addition, when the ground fault is detected, it is desirable to turn on the switch 31A so as to supply power to the vehicle load 5A. When detecting the ground fault in this way, the switch pattern employed for detecting the ground fault is the same as the switch pattern employed in response to the detection of the ground fault.
 以上のように、本車載用電源システム100によれば、地絡が生じたとしても、車両負荷5Aへの電力供給を維持することができる。 As described above, according to the in-vehicle power supply system 100, even if a ground fault occurs, the power supply to the vehicle load 5A can be maintained.
 しかも、本車載用電源システム100によれば、地絡が発生していないときに蓄電装置22を充電する際に、分離スイッチ33をオンすることで、発電機1は分離スイッチ33を経由して蓄電装置22を充電できる。本構造とは異なり、分離スイッチ33が設けられない構造(図1に即して言えば開放除去された構造)では、発電機1はスイッチ31A,31Bの両方を経由して蓄電装置22を充電することになる。しかるにこの経路では、スイッチ31A,31Bという2つのスイッチを経由して蓄電装置22が充電される。一方で、本構造では、一つの分離スイッチ33を経由して蓄電装置22を充電できる。したがって、より少ないスイッチを経由して蓄電装置22を充電できる。分離スイッチ33の抵抗値がスイッチ31A,32Aの直列接続と同程度以下である場合、より小さい抵抗値で蓄電装置22を充電できるので、蓄電装置22の充電性を向上することができる。 Moreover, according to the in-vehicle power supply system 100, the generator 1 is connected via the separation switch 33 by turning on the separation switch 33 when charging the power storage device 22 when no ground fault occurs. The power storage device 22 can be charged. Unlike the present structure, in a structure in which the separation switch 33 is not provided (a structure in which the separation switch 33 is opened and removed according to FIG. 1), the generator 1 charges the power storage device 22 via both the switches 31A and 31B. Will do. However, in this route, the power storage device 22 is charged via the two switches 31A and 31B. On the other hand, in this structure, the power storage device 22 can be charged via one separation switch 33. Therefore, the power storage device 22 can be charged via fewer switches. When the resistance value of the separation switch 33 is less than or equal to the series connection of the switches 31A and 32A, the power storage device 22 can be charged with a smaller resistance value, so that the chargeability of the power storage device 22 can be improved.
 また本構造とは異なって、分離スイッチ33が単なる配線である構造(図1に即して言えば短絡除去された構造)では、配線L1,L2のいずれか一方に地絡が生じると、スイッチ31A,32Aのオン/オフに関わらず、蓄電装置21,22から当該地絡へと電流が流れる。この場合、車両負荷5Aへと電力を供給できない。一方で、本構造によれば、上述のように地絡G1または地絡G2の発生時に分離スイッチ33をオフした上で、スイッチ31A,32Aの一方(地絡に応じた一方)をオフすることで、車両負荷5Aへと電力を供給することができる。 Unlike the present structure, in the structure in which the separation switch 33 is a simple wiring (a structure in which a short circuit is removed in accordance with FIG. 1), if a ground fault occurs in either one of the wirings L1 and L2, the switch Regardless of the on / off state of 31A, 32A, current flows from power storage devices 21, 22 to the ground fault. In this case, power cannot be supplied to the vehicle load 5A. On the other hand, according to this structure, as described above, after the separation switch 33 is turned off when the ground fault G1 or the ground fault G2 occurs, one of the switches 31A and 32A (one corresponding to the ground fault) is turned off. Thus, electric power can be supplied to the vehicle load 5A.
 なお、上述の例では、スイッチ31A,32Aおよび分離スイッチ33がオンしている状態から、電圧検出回路302,303の(あるいは更に電流検出回路304,305の)検出値に基づいて、地絡の発生の有無を判断した。しかるに、スイッチ31A,32Aのいずれか一方をオフにし、他方をオンにし、分離スイッチ33がオンした状態から、電圧検出回路302,303の検出値のみに基づいて地絡の発生の有無を判断してもよい。 In the above example, since the switches 31A and 32A and the separation switch 33 are on, the ground fault is detected based on the detection values of the voltage detection circuits 302 and 303 (or further of the current detection circuits 304 and 305). The presence or absence of occurrence was judged. Accordingly, one of the switches 31A and 32A is turned off, the other is turned on, and from the state where the separation switch 33 is turned on, it is determined whether or not a ground fault has occurred based only on the detection values of the voltage detection circuits 302 and 303. May be.
 例えば、スイッチ31Aがオフし、スイッチ32Aおよび分離スイッチ33がオンしている状態において、例えば電圧検出回路303の検出値が基準値を下回ったときに、地絡が発生したと判断されてもよい。分離スイッチ33がオンしているのであるから、電圧検出回路302の検出値は原理的には電圧検出回路303のそれと等しいので、電圧検出回路303の検出値が基準値を下回ったときに、地絡が発生したと判断されてもよい。 For example, in a state where the switch 31A is turned off and the switch 32A and the separation switch 33 are turned on, for example, when the detection value of the voltage detection circuit 303 falls below a reference value, it may be determined that a ground fault has occurred. . Since the separation switch 33 is on, the detection value of the voltage detection circuit 302 is theoretically the same as that of the voltage detection circuit 303. Therefore, when the detection value of the voltage detection circuit 303 falls below the reference value, It may be determined that an entanglement has occurred.
 制御回路301は地絡が発生したと判断したときに、分離スイッチ33をオフする。もし分離スイッチ33よりも蓄電装置21側に地絡が生じていれば、分離スイッチ33のオフにより、蓄電装置22が当該地絡から遮断される。よって、スイッチ32Aの分離スイッチ33側の電位(つまり電圧検出回路303の検出値)が基準値よりも高くなる。逆に、分離スイッチ33よりも蓄電装置22側において地絡が生じていれば、分離スイッチ33をオフしても、電圧検出回路303の検出値は基準値よりも低い。よって、制御回路301は、分離スイッチ33のオフの後の電圧検出回路303の検出値が基準値よりも高いときには、現状のスイッチパターンを維持し、電圧検出回路303の検出値が基準値よりも低いときには、スイッチ31Aをオンし、スイッチ32Aをオフする。これにより、地絡の発生個所に応じて蓄電装置21または蓄電装置22が車両負荷5Aへと電力を供給することができる。 The control circuit 301 turns off the separation switch 33 when determining that a ground fault has occurred. If a ground fault occurs on the power storage device 21 side with respect to the separation switch 33, the power storage device 22 is cut off from the ground fault by turning off the separation switch 33. Therefore, the potential on the side of the separation switch 33 of the switch 32A (that is, the detection value of the voltage detection circuit 303) becomes higher than the reference value. Conversely, if a ground fault occurs on the power storage device 22 side with respect to the separation switch 33, the detected value of the voltage detection circuit 303 is lower than the reference value even when the separation switch 33 is turned off. Therefore, when the detection value of the voltage detection circuit 303 after the separation switch 33 is turned off is higher than the reference value, the control circuit 301 maintains the current switch pattern, and the detection value of the voltage detection circuit 303 is lower than the reference value. When it is low, the switch 31A is turned on and the switch 32A is turned off. As a result, the power storage device 21 or the power storage device 22 can supply power to the vehicle load 5A according to the location where the ground fault occurs.
 あるいは分離スイッチ33のオフの後の電圧検出回路302の検出値が基準値よりも低いときには、現状のスイッチパターンを維持し、電圧検出回路302の検出値が基準値よりも高いときには、スイッチ31Aをオンし、スイッチ32Aをオフする。 Alternatively, when the detection value of the voltage detection circuit 302 after the separation switch 33 is turned off is lower than the reference value, the current switch pattern is maintained, and when the detection value of the voltage detection circuit 302 is higher than the reference value, the switch 31A is turned on. Turns on and turns off the switch 32A.
 また、スイッチ31Aおよび分離スイッチ33をオンし、スイッチ32Aをオフした状態で動作を開始してもよい。スイッチ31A,32Aは配線L1,L2の間で分離スイッチ33とは反対側で直列に接続されるからである。 Alternatively, the operation may be started with the switch 31A and the separation switch 33 turned on and the switch 32A turned off. This is because the switches 31A and 32A are connected in series between the wirings L1 and L2 on the side opposite to the separation switch 33.
 但し、スイッチ31B,32Bもスイッチ31A,32Aと同様に配線L1,L2の間で分離スイッチ33とは反対側で直列に接続される。よって上記の地絡の検出及び対応を行うためには、分離スイッチ33がオフして配線L1,L2を分離する機能を阻害しないように、スイッチ31B,32Bのいずれか一方がオフしている必要がある。 However, the switches 31B and 32B are also connected in series between the wirings L1 and L2 on the opposite side to the separation switch 33 in the same manner as the switches 31A and 32A. Therefore, in order to detect and deal with the above-mentioned ground fault, one of the switches 31B and 32B needs to be turned off so that the separation switch 33 is not turned off and the function of separating the wirings L1 and L2 is not disturbed. There is.
 <ヒューズの位置>
 図1の例示では、車両負荷5A用のヒューズ41A,42Aはそれぞれスイッチ31A,32Aよりも車両負荷5Aとは反対側(つまり蓄電装置21,22側)に設けられている。
<Fuse position>
In the illustration of FIG. 1, the fuses 41A and 42A for the vehicle load 5A are provided on the side opposite to the vehicle load 5A than the switches 31A and 32A (that is, the power storage devices 21 and 22 side).
 図5は比較例にかかる車載用電源システム101を示している。車載用電源システム101においては、車両負荷5A用のヒューズ410A,420Aが、スイッチ31A,32Aよりも車両負荷5A側に設けられている。この車載用電源システム101では、スイッチ31Aとヒューズ410Aとの間の配線に地絡G3が生じた場合には、車両負荷5Aへと適切に電力を供給できない(図において、電力の供給を示すブロック矢印に×を付けて表現した)。なぜなら、蓄電装置21を地絡G3から分離すべくスイッチ31A、及び分離スイッチ33をオフしても、蓄電装置22から電力を供給すべくスイッチ32Aをオンすると、蓄電装置22からスイッチ32A及びヒューズ410A,420Aを介して当該地絡に電流が流れるからである。 FIG. 5 shows an in-vehicle power supply system 101 according to a comparative example. In the in-vehicle power supply system 101, fuses 410A and 420A for the vehicle load 5A are provided on the vehicle load 5A side of the switches 31A and 32A. In the in-vehicle power supply system 101, when a ground fault G3 occurs in the wiring between the switch 31A and the fuse 410A, it is not possible to appropriately supply power to the vehicle load 5A (in the figure, a block indicating power supply) The arrow is marked with an x.) This is because even if the switch 31A and the separation switch 33 are turned off to isolate the power storage device 21 from the ground fault G3, if the switch 32A is turned on to supply power from the power storage device 22, the switch 32A and the fuse 410A from the power storage device 22 are turned on. , 420A, current flows through the ground fault.
 一方で、本車載用電源システム100によれば、ヒューズ41Aとスイッチ31Aとの間の配線に地絡G1が生じても、スイッチ31Aおよび分離スイッチ33をオフし、スイッチ32Aをオンにすることで、蓄電装置22が車両負荷5Aに電力を供給できる。 On the other hand, according to the in-vehicle power supply system 100, even if the ground fault G1 occurs in the wiring between the fuse 41A and the switch 31A, the switch 31A and the separation switch 33 are turned off and the switch 32A is turned on. The power storage device 22 can supply power to the vehicle load 5A.
 なお、本車載用電源システム100において、スイッチ31A,32Aよりも車両負荷5A側の配線に地絡が生じると、車両負荷5Aへと電力を供給できない。よって当該配線の短縮化は、地絡が発生する可能性を低減するという点で好適である。そして、本車載用電源システム100によれば、ヒューズ41A,42Aが、スイッチ31A,32Aの各々と車両負荷5Aとの間に設けられていないので、車載用電源システム101と比べて、スイッチ31A,32Aと車両負荷5Aとを繋ぐ配線を短くすることができる。 In the in-vehicle power supply system 100, if a ground fault occurs in the wiring on the vehicle load 5A side than the switches 31A and 32A, power cannot be supplied to the vehicle load 5A. Therefore, the shortening of the wiring is preferable in that the possibility of occurrence of a ground fault is reduced. According to the in-vehicle power supply system 100, the fuses 41A and 42A are not provided between the switches 31A and 32A and the vehicle load 5A. The wiring connecting 32A and the vehicle load 5A can be shortened.
 上述の例では、車両負荷5A側のスイッチ31A,32Aおよびヒューズ41A,42Aについて述べたものの、車両負荷5B側のスイッチ31B,32Bおよびヒューズ41B,42Bでも同様の効果を招来する。 In the above-described example, the switches 31A and 32A and the fuses 41A and 42A on the vehicle load 5A side have been described. However, the switches 31B and 32B and the fuses 41B and 42B on the vehicle load 5B side have the same effect.
 上記各実施形態及び各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせることができる。 The configurations described in the above embodiments and modifications can be combined as appropriate as long as they do not contradict each other.
 以上のようにこの発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail as described above, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 5A 車両負荷(第1車両負荷/第2車両負荷)
 5B 車両負荷(第2車両負荷/第1車両負荷)
 10 スイッチ装置
 21,22 蓄電装置(第1蓄電装置、第2蓄電装置)
 31A スイッチ(第1スイッチ/第3スイッチ)
 31B スイッチ(第3スイッチ/第1スイッチ)
 32A スイッチ(第2スイッチ/第4スイッチ)
 32B スイッチ(第4スイッチ/第2スイッチ)
 33 分離スイッチ
 41A,41B ヒューズ(第1ヒューズ)
 42A,42B ヒューズ(第2ヒューズ)
 301 制御回路
5A Vehicle load (first vehicle load / second vehicle load)
5B Vehicle load (second vehicle load / first vehicle load)
10 switch device 21, 22 power storage device (first power storage device, second power storage device)
31A switch (first switch / third switch)
31B switch (third switch / first switch)
32A switch (second switch / fourth switch)
32B switch (4th switch / 2nd switch)
33 Separation switch 41A, 41B Fuse (first fuse)
42A, 42B fuse (second fuse)
301 Control circuit

Claims (6)

  1.  車載電源用のスイッチ装置であって、
     第1車両負荷と第1蓄電装置との間に接続される第1スイッチと、
     前記第1車両負荷と第2蓄電装置との間に接続される第2スイッチと、
     前記第1蓄電装置と前記第2蓄電装置との間に接続される分離スイッチと
    を備え、
     前記第1スイッチと前記第2スイッチとは、前記第1蓄電装置と前記第2蓄電装置との間で直列に接続され、
     前記分離スイッチは前記第1スイッチおよび前記第2スイッチの一組に対して並列に接続される、車載電源用のスイッチ装置。
    A switch device for in-vehicle power supply,
    A first switch connected between the first vehicle load and the first power storage device;
    A second switch connected between the first vehicle load and the second power storage device;
    A separation switch connected between the first power storage device and the second power storage device;
    The first switch and the second switch are connected in series between the first power storage device and the second power storage device,
    The separation switch is a switch device for in-vehicle power supply, which is connected in parallel to the set of the first switch and the second switch.
  2.  請求項1に記載の車載電源用のスイッチ装置であって、
     前記第1蓄電装置と前記第1スイッチとの間に接続される前記第1車両負荷用の第1ヒューズと、
     前記第2蓄電装置と前記第2スイッチとの間に接続される前記第1車両負荷用の第2ヒューズと
    を更に備える、車載電源用のスイッチ装置。
    It is a switch device for in-vehicle power supplies according to claim 1,
    A first fuse for the first vehicle load connected between the first power storage device and the first switch;
    A switch device for on-vehicle power supply, further comprising: a second fuse for the first vehicle load connected between the second power storage device and the second switch.
  3.  請求項1または請求項2に記載の車載電源用のスイッチ装置であって、
     前記第1蓄電装置と第2車両負荷との間に接続される第3スイッチと、
     前記第2蓄電装置と前記第2車両負荷との間に接続される第4スイッチと
    を更に備え、
     前記第3スイッチおよび前記第4スイッチは、前記第1蓄電装置と前記第2蓄電装置との間において、相互に直列に接続され、
     前記第3スイッチおよび前記第4スイッチの一組は、前記分離スイッチに並列に接続される、車載電源用のスイッチ装置。
    The switch device for on-vehicle power supply according to claim 1 or 2,
    A third switch connected between the first power storage device and the second vehicle load;
    A fourth switch connected between the second power storage device and the second vehicle load;
    The third switch and the fourth switch are connected in series between the first power storage device and the second power storage device,
    One set of the third switch and the fourth switch is a switch device for in-vehicle power supply, which is connected in parallel to the separation switch.
  4.  請求項1から請求項3のいずれか1項に記載の車載電源用のスイッチ装置であって、
     前記第1スイッチよりも前記第1蓄電装置側における地絡の有無を判断し、前記地絡が発生したと判断したときに、前記第1スイッチおよび前記分離スイッチをオフし、前記第2スイッチをオンする制御回路を更に備える、車載電源用のスイッチ装置。
    The switch device for on-vehicle power supply according to any one of claims 1 to 3,
    It is determined whether or not there is a ground fault on the first power storage device side than the first switch, and when it is determined that the ground fault has occurred, the first switch and the separation switch are turned off, and the second switch is turned on. A switch device for in-vehicle power supply, further comprising a control circuit for turning on.
  5.  請求項1から請求項3のいずれか1項に記載の車載電源用のスイッチ装置であって、
     前記第1スイッチをオフ、前記第2スイッチをオン、前記分離スイッチがオンした状態から、前記分離スイッチをオフして、前記第1スイッチの分離スイッチ側の電位が上昇した場合、前記第1スイッチをオン、前記第2スイッチをオフする制御回路を更に備える、車載電源用のスイッチ装置。
    The switch device for on-vehicle power supply according to any one of claims 1 to 3,
    When the first switch is turned off, the second switch is turned on, and the separation switch is turned on, when the separation switch is turned off and the potential on the separation switch side of the first switch rises, the first switch A switch device for in-vehicle power supply, further comprising a control circuit for turning on and turning off the second switch.
  6.  請求項1から請求項5のいずれか1項に記載の車載電源用のスイッチ装置と、
     前記第2蓄電装置と
    を備える、車載用電源システム。
    A switch device for in-vehicle power supply according to any one of claims 1 to 5,
    An in-vehicle power supply system comprising the second power storage device.
PCT/JP2017/014767 2016-04-18 2017-04-11 Switch device for in-vehicle power supply, and in-vehicle power supply system WO2017183512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-082760 2016-04-18
JP2016082760A JP2017195653A (en) 2016-04-18 2016-04-18 Switch device for in-vehicle power supply and in-vehicle power supply system

Publications (1)

Publication Number Publication Date
WO2017183512A1 true WO2017183512A1 (en) 2017-10-26

Family

ID=60116812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014767 WO2017183512A1 (en) 2016-04-18 2017-04-11 Switch device for in-vehicle power supply, and in-vehicle power supply system

Country Status (2)

Country Link
JP (1) JP2017195653A (en)
WO (1) WO2017183512A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7362691B2 (en) 2021-04-30 2023-10-17 矢崎総業株式会社 power system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200324719A1 (en) * 2019-04-09 2020-10-15 Byton North America Corporation Vehicle isolation switch for low voltage power supplies
JP2021029093A (en) 2019-08-13 2021-02-25 矢崎総業株式会社 Power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338577A (en) * 2003-05-16 2004-12-02 Hitachi Ltd Power supply device and method for vehicle
WO2010026715A1 (en) * 2008-09-08 2010-03-11 株式会社オートネットワーク技術研究所 Power supply device for vehicle
JP2015204699A (en) * 2014-04-15 2015-11-16 株式会社デンソー battery unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338577A (en) * 2003-05-16 2004-12-02 Hitachi Ltd Power supply device and method for vehicle
WO2010026715A1 (en) * 2008-09-08 2010-03-11 株式会社オートネットワーク技術研究所 Power supply device for vehicle
JP2015204699A (en) * 2014-04-15 2015-11-16 株式会社デンソー battery unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7362691B2 (en) 2021-04-30 2023-10-17 矢崎総業株式会社 power system
US11863012B2 (en) 2021-04-30 2024-01-02 Yazaki Corporation Power supply system

Also Published As

Publication number Publication date
JP2017195653A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6662178B2 (en) Switch device for in-vehicle power supply
JP6597371B2 (en) In-vehicle power supply switch device and in-vehicle power supply device
CN107949972B (en) Switching device and control device for vehicle-mounted power supply
JP6367805B2 (en) Vehicle power supply system
JP6330691B2 (en) Vehicle power supply
WO2014068918A1 (en) Power supply device for vehicles
JP6635304B2 (en) Relay device and in-vehicle system
WO2017051812A1 (en) In-car power supply device and method for controlling same
JP2014030281A (en) Power-supply system
WO2017183512A1 (en) Switch device for in-vehicle power supply, and in-vehicle power supply system
JP6958090B2 (en) Overcurrent detector and power storage device
JP6402486B2 (en) Automotive power supply
CN108377655B (en) Vehicle-mounted power supply device
JP2016107877A (en) Vehicular power supply system
JP6176186B2 (en) Automotive power supply
JP6541414B2 (en) Power supply device
CN108698548B (en) Charge rate monitoring device for vehicle-mounted power supply and vehicle-mounted power supply system
JP2015221594A (en) Power source device of automobile
WO2017183437A1 (en) Automotive power supply device and automotive power supply system
WO2015015549A1 (en) Battery system monitoring device
JP2015012685A (en) Power storage system
JP7437231B2 (en) Power system control device and control method
JP7172977B2 (en) Control device for in-vehicle power supply
WO2017175575A1 (en) Switch device for on-vehicle power supply and on-vehicle power supply system
JP2021090235A (en) Power storage system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785851

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785851

Country of ref document: EP

Kind code of ref document: A1