WO2015015549A1 - Battery system monitoring device - Google Patents

Battery system monitoring device Download PDF

Info

Publication number
WO2015015549A1
WO2015015549A1 PCT/JP2013/070451 JP2013070451W WO2015015549A1 WO 2015015549 A1 WO2015015549 A1 WO 2015015549A1 JP 2013070451 W JP2013070451 W JP 2013070451W WO 2015015549 A1 WO2015015549 A1 WO 2015015549A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power supply
system monitoring
battery system
line
Prior art date
Application number
PCT/JP2013/070451
Other languages
French (fr)
Japanese (ja)
Inventor
隼二 太田
彰彦 工藤
光敏 中根
光夫 野田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2015529237A priority Critical patent/JP6014764B2/en
Priority to PCT/JP2013/070451 priority patent/WO2015015549A1/en
Publication of WO2015015549A1 publication Critical patent/WO2015015549A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery system monitoring device.
  • Patent Document 1 a battery pack composed of a plurality of cell batteries connected in series and a circuit for detecting a cell voltage of each cell battery are connected via a plurality of voltage measurement lines, and each voltage measurement line is An apparatus provided with a fuse for current protection is known (Patent Document 1).
  • the battery system monitoring apparatus is connected to a battery pack in which a plurality of battery cells are connected in series to monitor the state of each battery cell, and includes a plurality of voltage measurement lines respectively connected to the battery cells An integrated circuit connected to the voltage measurement line and detecting the voltage of each battery cell via the voltage measurement line; a main power supply line connected to the positive electrode side of the uppermost battery cell in the assembled battery; A ground line connected to the negative side of the lower battery cell, a power supply connected between the main power supply line and the ground line to supply power to the integrated circuit from the assembled battery, and the main power supply line and the ground line And a current limiting element provided on at least one of the two.
  • the present invention is applied to a battery system monitoring apparatus that monitors a battery system used in a hybrid vehicle (HEV) or the like.
  • HEV hybrid vehicle
  • the application range of the battery system monitoring apparatus by this invention is not restricted to what monitors the battery system mounted in HEV.
  • the present invention can be widely applied to a device for monitoring a battery system mounted in a plug-in hybrid vehicle (PHEV), an electric vehicle (EV), a railway vehicle or the like.
  • a battery system monitoring apparatus is connected, and a predetermined output voltage range, for example, 3.0 to 4.2 V, as a minimum unit of a battery system (assembled battery) to be controlled and monitored.
  • a lithium ion battery having an output voltage range of (average output voltage: 3.6 V) is assumed.
  • the battery system monitoring apparatus may control and monitor a battery system configured using a storage and discharge device other than a lithium ion battery. That is, if it is necessary to limit its use when SOC (State Of Charge) is too high (overcharge) or too low (overdischarge), the battery system is configured using any storage / discharge device. May be In the following description, a storage and discharge device as a component of such a battery system is generically referred to as a battery cell.
  • FIG. 1 is a diagram showing the configuration of a battery system monitoring apparatus according to a comparative example.
  • the battery system monitoring apparatus shown in FIG. 1 is connected to the battery unit 1 which is a battery pack, and has an integrated circuit 2, a power supply unit 3, an RC filter 4, a discharge resistor 5, a noise reduction capacitor 6 and a fuse 7. There is.
  • the battery unit 1 is an assembled battery in which n-1 battery cells are connected in series, and functions as a battery system to be controlled and monitored by the battery monitoring system monitoring device of FIG.
  • Each battery cell of the battery unit 1 is connected to n voltage measurement lines SL1 to SLn and n balancing lines BL1 to BLn branched from the voltage measurement lines SL1 to SLn.
  • main power supply line MB is connected via a resistor to the positive electrode side of the battery cell disposed at the highest position, ie, the highest potential side in battery unit 1, and the lowest position in battery unit 1, ie, the most
  • the ground line GND is connected to the negative electrode side of the battery cell disposed on the low potential side.
  • FIG. 1 shows an example in which n-1 battery cells are connected in series in the battery unit 1, the number of battery cells constituting the battery unit 1 is not limited to this.
  • the integrated circuit 2 is connected to the voltage measurement lines SL1 to SLn, the balancing lines BL1 to BLn, the main power supply line MB and the ground line GND, and the voltages of the respective battery cells of the battery unit 1 via the voltage measurement lines SL1 to SLn
  • the battery monitoring system monitoring device of FIG. 1 executes a predetermined operation for controlling and monitoring the battery unit 1. For example, the state of charge (SOC) of each battery cell is estimated, and if there is variation in the state of charge among the battery cells, one of balancing lines BL1 to BLn via the balancing line corresponding to the battery cell to be discharged. By flowing a discharge current, balancing is performed to equalize the charge state of each battery cell.
  • the battery monitoring system monitoring device can perform various processing and control based on the voltage of each battery cell detected by the integrated circuit 2.
  • a capacitor for stabilizing the discharge current is connected between the balancing lines adjacent to each other among the balancing lines BL1 to BLn. Further, in the integrated circuit 2, the voltage measurement lines SL1 to SLn and the balancing lines BL1 to BLn are respectively connected to the main power supply line MB and the ground line GND via the ESD protection diodes.
  • the power supply unit 3 supplies power from the battery unit 1 to the integrated circuit 2 and is connected between the main power supply line MB and the ground line GND.
  • the power supply unit 3 includes a Zener diode and a capacitor, and uses these to protect the power supply input terminal of the integrated circuit 2 connected to the main power supply line MB from overvoltage and overcurrent.
  • the RC filter 4 is a filter circuit for removing high frequency noise superimposed on the voltage signal of each battery cell input to the integrated circuit 2 from the voltage measurement lines SL1 to SLn, and is applied to each of the voltage measurement lines SL1 to SLn It consists of a resistor and a capacitor provided opposite to each other.
  • the RC filter 4 is provided between the integrated circuit 2 and the branch point to the balancing lines BL1 to BLn in the voltage measurement lines SL1 to SLn.
  • the discharge resistors 5 are resistance elements for adjusting the discharge current flowing to the balancing lines BL1 to BLn at the time of balancing, and are provided on the balancing lines BL1 to BLn, respectively.
  • the noise reduction capacitor 6 is for reducing noise generated between voltage measurement lines adjacent to each other among the voltage measurement lines SL1 to SLn.
  • the noise reduction capacitors 6 are provided between the branch points to the balancing lines BL1 to BLn and the respective battery cells of the battery unit 1 in the voltage measurement lines SL1 to SLn.
  • FIG. 1 by providing two noise suppression capacitors 6 in series between each of the voltage measurement lines SL1 to SLn, even if one of them is shorted, a large current is generated between adjacent voltage measurement lines. Although the current is prevented from flowing, the number of noise suppression capacitors 6 is not limited to this.
  • the fuse 7 is a current limiting element for preventing an overcurrent from flowing in the voltage measurement lines SL1 to SLn, and is provided between each of the voltage measurement lines SL1 to SLn and each battery cell of the battery unit 1 .
  • the fuse 7 is provided for each of the voltage measurement lines SL1 to SLn. Therefore, when the battery unit 1 is configured by a large number of battery cells, the number of voltage measurement lines also increases accordingly, so a large number of fuses 7 are required, leading to an increase in the size of the device and an increase in cost. It will be described below.
  • FIG. 2 is a diagram showing the configuration of the battery system monitoring apparatus according to the first embodiment of the present invention.
  • the battery system monitoring apparatus shown in FIG. 2 is different from the comparative example shown in FIG. 1 in that the anti-noise capacitor 6 is not provided and the fuse 7 is replaced by fuses 7A and 7B. is there.
  • the fuses 7A and 7B are current limiting elements for preventing an overcurrent similar to the fuse 7 of FIG. 1, and are provided on the main power supply line MB and the ground line GND, respectively.
  • fuses 7A and 7B are provided only for main power supply line MB and ground line GND without providing a fuse for each of voltage measurement lines SL1 to SLn. ing. Therefore, the space for mounting the fuses 7A and 7B can be constant regardless of the number of battery cells constituting the battery unit 1, and therefore the enlargement of the device as in the comparative example is not caused. Further, since the number of fuses 7A and 7B is constant, the cost does not increase as in the comparative example.
  • the noise reduction capacitor 6 as shown in FIG. 1 since the noise reduction capacitor 6 as shown in FIG. 1 is not provided, further cost reduction is possible compared to the comparative example.
  • the noise reduction capacitor 6 it is assumed that the noise reduction capacitor 6 is not provided, as noise can be sufficiently removed by the RC filter 4.
  • the noise reduction capacitor 6 may be provided as shown in FIG.
  • the most dangerous short-circuit failure that can occur in the battery system monitoring device of FIG. 2 is that the total voltage of all battery cells of the battery unit 1 is applied between the main power supply line MB and the ground line GND when the power supply unit 3 is shorted. It is a fault in which a large current flows through these. However, when such a short circuit failure occurs, at least one of the fuses 7A and 7B is melted down, so that it is possible to prevent a large current from continuously flowing to generate heat and fire.
  • any of the ESD protection diodes provided in the integrated circuit 2 has a short circuit failure, it passes through the voltage measurement line or balancing line corresponding to the ESD protection diode and the main power supply line MB or the ground line GND. There is a possibility that a large current may flow. However, even when such a short circuit failure occurs, either one of the fuses 7A or 7B is melted down, so that it is possible to prevent a large current from continuing to flow and heat generation or ignition to occur.
  • the battery system monitoring apparatus According to the battery system monitoring apparatus according to the first embodiment of the present invention, it is possible to effectively prevent heat generation and ignition due to a short circuit failure while solving the problems as in the comparative example. .
  • the fuses 7A and 7B are provided on the main power supply line MB and the ground line GND, respectively. However, only one of these may be provided. In that case, the large current due to the short circuit failure of the power supply unit 3 as described above can be reliably prevented, but the large current due to the short circuit failure of the ESD protection diode may not be prevented in some cases. However, even in this case, it is possible to prevent the occurrence of heat generation and ignition due to a short circuit failure to some extent while solving the problems as in the comparative example. That is, in the battery system monitoring apparatus according to the present invention, fuses 7A and 7B as current limiting elements can be provided in at least one of main power supply line MB and ground line GND.
  • the battery system monitoring device is connected to the battery unit 1 which is a battery pack in which a plurality of battery cells are connected in series, and monitors the state of each battery cell.
  • the battery system monitoring device is connected to voltage measurement lines SL1 to SLn connected to the battery cells and voltage measurement lines SL1 to SLn, and is integrated to detect the voltage of each battery cell via the voltage measurement lines SL1 to SLn.
  • main power supply line MB connected to the positive electrode side of the uppermost battery cell in battery unit 1, ground line GND connected to the negative electrode side of the lowermost battery cell in battery unit 1, battery unit 1
  • Power supply unit 3 connected between main power supply line MB and ground line GND to supply power to integrated circuit 2, and a current limiting element provided on at least one of main power supply line MB and ground line GND And fuses 7A and 7B. Since this is done, it is possible to prevent an overcurrent from flowing between the battery unit 1 and the integrated circuit 2 that performs voltage detection without providing a large number of fuses.
  • fuses 7A and 7B can be provided in both main power supply line MB and ground line GND. In this way, a large current flows due to a short circuit failure of the power supply unit 3 or a short circuit failure of the ESD protection diode provided inside the integrated circuit 2 to effectively prevent heat generation and fire from occurring. it can.
  • the battery system monitoring apparatus includes balancing lines BL1 to BLn branched from voltage measurement lines SL1 to SLn, resistors and a capacitor, and in voltage measurement lines SL1 to SLn, to balancing lines BL1 to BLn
  • the circuit further includes an RC filter 4 provided between the branch point of and the integrated circuit 2 and a discharge resistor 5 provided on each of the balancing lines BL1 to BLn.
  • the battery system monitoring device includes a noise reduction capacitor 6 for reducing noise generated between the voltage measurement lines SL1 to SLn adjacent to each other between the battery cells and the branch points of the voltage measurement lines SL1 to SLn. Not provided. Therefore, further cost reduction can be realized.
  • FIG. 3 is a diagram showing the configuration of a battery system monitoring apparatus according to a second embodiment of the present invention.
  • the battery system monitoring apparatus shown in FIG. 3 differs from the first embodiment shown in FIG. 2 in that the fuse 7A is not provided, and the fusing detection circuit 8 for detecting the fusing of the fuse 7B is provided. It is a point that
  • the fusing detection circuit 8 has one end connected to a voltage source that outputs a predetermined reference voltage, and a midpoint connected to the fuse 7 B and the power supply unit 3.
  • the other end of the pull-up resistor is connected to the input terminal of the integrated circuit 2 for measuring the voltage value of the pull-up resistor. That is, the fusing detection circuit 8 is composed of a pull-up resistor and the integrated circuit 2.
  • the midpoint of the pull-up resistor is disconnected from any potential, so the reference voltage from the voltage source is connected via the pull-up resistor. It is input to the integrated circuit 2. Therefore, by detecting the reference voltage from the voltage source with integrated circuit 2, the fusing detection circuit 8 can detect the fusing of the fuse 7B.
  • the battery system monitoring apparatus further includes the fusing detection circuit 8 that detects the fusing of the fuse 7B which is the current limiting element. Therefore, when the overcurrent flows and the fuse 7B is melted, this can be reliably detected.
  • the fusing detection circuit 8 described above is connected to a voltage source that outputs a predetermined reference voltage, and has a pull-up resistor connected to the fuse 7 B and the power supply unit 3.
  • the fusing detection circuit 8 detects the fusing of the fuse 7B by detecting the reference voltage through the pull-up resistor.
  • the power supply unit 3 is short-circuited, the voltage of the uppermost battery cell is detected through the power supply unit 3 and the pull-up resistor, thereby detecting the blowout of the fuse 7B. Since this is done, melting of the fuse 7B can be reliably detected when the power supply unit 3 is not short-circuited and when it is short-circuited.
  • the fuse 7B is provided only on the ground line GND, and the fusing detection circuit 8 detects the fusing of the fuse 7B.
  • fuse 7A may be provided also on main power supply line MB, and a fusion detection circuit may be further provided to detect the fusion of fuse 7B.
  • the fused detection circuit can be configured using a pull-up resistor and the integrated circuit 2 as in the fused detection circuit 8 of FIG. Specifically, when the fuse 7A is melted without short-circuit failure of the power supply unit 3, the integrated circuit 2 detects the reference voltage from the voltage source through the pull-up resistor to melt the fuse 7A. To detect.
  • SYMBOLS 1 Battery part, 2 ... Integrated circuit, 3 ... Power supply part, 4 ... RC filter, 5 ... Discharge resistance, 6 ⁇ ⁇ ⁇ noise suppression capacitor, 7, 7A, 7B ⁇ ⁇ ⁇ fuse ⁇ 8 ⁇ blow detection circuit, SL1 to SLn: voltage measurement line, BL1 to BLn: balancing line, MB: Main power supply line, GND: Ground line

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

This battery cell system monitoring device is provided with: a plurality of voltage measurement lines respectively connected to battery cells; an integrated circuit for detecting the voltages of the battery cells through the voltage measurement lines; a main power supply line connected to the positive pole side of the highest level battery cell in an assembled battery; a ground line connected to the negative positive pole side of the lowest level battery cell in the assembled battery; a power supply unit connected between the main power supply line and the ground line, for supplying a power supply to the integrated circuit from the assembled battery; and a current limiting element provided to at least one of the main power supply line or the ground line.

Description

電池システム監視装置Battery system monitoring device
 本発明は、電池システム監視装置に関する。 The present invention relates to a battery system monitoring device.
 従来、直列に接続された複数のセル電池で構成された組電池と、各セル電池のセル電圧を検出する回路とが複数の電圧計測ラインを介して接続されており、各電圧計測ラインに過電流保護用のヒューズが設けられた装置が知られている(特許文献1)。 Conventionally, a battery pack composed of a plurality of cell batteries connected in series and a circuit for detecting a cell voltage of each cell battery are connected via a plurality of voltage measurement lines, and each voltage measurement line is An apparatus provided with a fuse for current protection is known (Patent Document 1).
日本国特開2011-75504号公報Japan JP 2011-75504
 特許文献1に記載された装置は、各電圧計測ラインにヒューズが設けられているため、組電池を構成するセル電池の数が増えるほど、必要なヒューズの数も増大する。したがって、たとえば電気自動車に搭載される車両駆動用バッテリのように、多数の電池セルを用いて高電圧を発生する組電池の場合は、多数のヒューズが必要となり、装置の大型化やコストの増加を招いてしまうという課題がある。 In the device described in Patent Document 1, since the fuses are provided in each voltage measurement line, the number of required fuses also increases as the number of cell batteries constituting the assembled battery increases. Therefore, for example, in the case of an assembled battery that generates high voltage using a large number of battery cells, such as a vehicle drive battery mounted on an electric vehicle, a large number of fuses are required, resulting in an increase in the size of the device and the cost. There is a problem of causing
 本発明による電池システム監視装置は、複数の電池セルを直列に接続した組電池と接続されて各電池セルの状態を監視するものであって、電池セルとそれぞれ接続される複数の電圧計測ラインと、電圧計測ラインと接続され、電圧計測ラインを介して各電池セルの電圧を検出する集積回路と、組電池において最上位の電池セルの正極側に接続される主電源ラインと、組電池において最下位の電池セルの負極側に接続されるグランドラインと、組電池から集積回路に電源を供給するために主電源ラインとグランドラインの間に接続された電源部と、主電源ラインおよびグランドラインのいずれか少なくとも一方に設けられた電流制限素子と、を備える。 The battery system monitoring apparatus according to the present invention is connected to a battery pack in which a plurality of battery cells are connected in series to monitor the state of each battery cell, and includes a plurality of voltage measurement lines respectively connected to the battery cells An integrated circuit connected to the voltage measurement line and detecting the voltage of each battery cell via the voltage measurement line; a main power supply line connected to the positive electrode side of the uppermost battery cell in the assembled battery; A ground line connected to the negative side of the lower battery cell, a power supply connected between the main power supply line and the ground line to supply power to the integrated circuit from the assembled battery, and the main power supply line and the ground line And a current limiting element provided on at least one of the two.
 本発明によれば、多数のヒューズを設けることなく、組電池と電圧検出を行う回路との間に過電流が流れるのを防止することができる。 According to the present invention, it is possible to prevent an overcurrent from flowing between the battery assembly and the circuit that performs voltage detection without providing a large number of fuses.
比較例による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by a comparative example. 本発明の第1の実施形態による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by the 1st Embodiment of this invention. 本発明の第2の実施形態による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by the 2nd Embodiment of this invention.
 以下、本発明の一実施形態について図面を参照して説明する。以下の実施形態では、ハイブリッド自動車(HEV)などに用いられる電池システムを監視する電池システム監視装置に対して、本発明を適用した場合の例を説明する。なお、本発明による電池システム監視装置の適用範囲は、HEVに搭載される電池システムを監視するものに限らない。たとえば、プラグインハイブリッド自動車(PHEV)や電気自動車(EV)、鉄道車両などに搭載される電池システムを監視する装置に対しても、幅広く適用可能である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following embodiments, an example in which the present invention is applied to a battery system monitoring apparatus that monitors a battery system used in a hybrid vehicle (HEV) or the like will be described. In addition, the application range of the battery system monitoring apparatus by this invention is not restricted to what monitors the battery system mounted in HEV. For example, the present invention can be widely applied to a device for monitoring a battery system mounted in a plug-in hybrid vehicle (PHEV), an electric vehicle (EV), a railway vehicle or the like.
 以下の実施形態では、本発明に係る電池システム監視装置が接続されて制御および監視の対象とする電池システム(組電池)の最小単位として、所定の出力電圧範囲、たとえば3.0~4.2V(平均出力電圧:3.6V)の出力電圧範囲を有するリチウムイオン電池を想定している。しかし、本発明に係る電池システム監視装置は、リチウムイオン電池以外の蓄電・放電デバイスを用いて構成された電池システムを制御および監視の対象としてもよい。すなわち、SOC(State Of Charge)が高すぎる場合(過充電)や低すぎる場合(過放電)にその使用を制限する必要があれば、どのような蓄電・放電デバイスを用いて電池システムを構成してもよい。以下の説明では、こうした電池システムの構成要素としての蓄電・放電デバイスを、電池セルと総称する。 In the following embodiments, a battery system monitoring apparatus according to the present invention is connected, and a predetermined output voltage range, for example, 3.0 to 4.2 V, as a minimum unit of a battery system (assembled battery) to be controlled and monitored. A lithium ion battery having an output voltage range of (average output voltage: 3.6 V) is assumed. However, the battery system monitoring apparatus according to the present invention may control and monitor a battery system configured using a storage and discharge device other than a lithium ion battery. That is, if it is necessary to limit its use when SOC (State Of Charge) is too high (overcharge) or too low (overdischarge), the battery system is configured using any storage / discharge device. May be In the following description, a storage and discharge device as a component of such a battery system is generically referred to as a battery cell.
 以下の説明では、本発明との比較例として、従来の電池システム監視装置の一例を最初に説明する。図1は、比較例による電池システム監視装置の構成を示す図である。図1に示す電池システム監視装置は、組電池であるバッテリ部1と接続されており、集積回路2、電源部3、RCフィルタ4、放電抵抗5、ノイズ対策コンデンサ6およびヒューズ7を有している。 In the following description, an example of a conventional battery system monitoring device will first be described as a comparative example with the present invention. FIG. 1 is a diagram showing the configuration of a battery system monitoring apparatus according to a comparative example. The battery system monitoring apparatus shown in FIG. 1 is connected to the battery unit 1 which is a battery pack, and has an integrated circuit 2, a power supply unit 3, an RC filter 4, a discharge resistor 5, a noise reduction capacitor 6 and a fuse 7. There is.
 バッテリ部1は、n-1個の電池セルが直列に接続された組電池であり、図1の電池監視システム監視装置が制御および監視の対象とする電池システムとして機能する。バッテリ部1の各電池セルは、n個の電圧計測ラインSL1~SLnと、電圧計測ラインSL1~SLnからそれぞれ分岐して設けられたn個のバランシングラインBL1~BLnにそれぞれ接続されている。また、バッテリ部1において最上位、すなわち最も高電位側に配置されている電池セルの正極側には、主電源ラインMBが抵抗を介して接続されており、バッテリ部1において最下位、すなわち最も低電位側に配置されている電池セルの負極側には、グランドラインGNDが接続されている。なお、図1では、バッテリ部1においてn-1個の電池セルが直列に接続されている例を示しているが、バッテリ部1を構成する電池セルの個数はこれに限定されない。 The battery unit 1 is an assembled battery in which n-1 battery cells are connected in series, and functions as a battery system to be controlled and monitored by the battery monitoring system monitoring device of FIG. Each battery cell of the battery unit 1 is connected to n voltage measurement lines SL1 to SLn and n balancing lines BL1 to BLn branched from the voltage measurement lines SL1 to SLn. In addition, main power supply line MB is connected via a resistor to the positive electrode side of the battery cell disposed at the highest position, ie, the highest potential side in battery unit 1, and the lowest position in battery unit 1, ie, the most The ground line GND is connected to the negative electrode side of the battery cell disposed on the low potential side. Although FIG. 1 shows an example in which n-1 battery cells are connected in series in the battery unit 1, the number of battery cells constituting the battery unit 1 is not limited to this.
 集積回路2は、電圧計測ラインSL1~SLn、バランシングラインBL1~BLn、主電源ラインMBおよびグランドラインGNDと接続されており、電圧計測ラインSL1~SLnを介してバッテリ部1の各電池セルの電圧を検出する。この集積回路2による各電池セルの電圧検出結果に基づいて、図1の電池監視システム監視装置は、バッテリ部1を制御および監視するための所定の動作を実行する。たとえば、各電池セルの充電状態(SOC)を推定し、電池セル間で充電状態にばらつきが生じている場合は、バランシングラインBL1~BLnのうち、放電対象の電池セルに対応するバランシングラインを介して放電電流を流すことにより、各電池セルの充電状態を均一化するためのバランシングを行う。これ以外にも、集積回路2により検出された各電池セルの電圧に基づいて、電池監視システム監視装置は様々な処理や制御を行うことができる。 The integrated circuit 2 is connected to the voltage measurement lines SL1 to SLn, the balancing lines BL1 to BLn, the main power supply line MB and the ground line GND, and the voltages of the respective battery cells of the battery unit 1 via the voltage measurement lines SL1 to SLn To detect Based on the voltage detection result of each battery cell by the integrated circuit 2, the battery monitoring system monitoring device of FIG. 1 executes a predetermined operation for controlling and monitoring the battery unit 1. For example, the state of charge (SOC) of each battery cell is estimated, and if there is variation in the state of charge among the battery cells, one of balancing lines BL1 to BLn via the balancing line corresponding to the battery cell to be discharged. By flowing a discharge current, balancing is performed to equalize the charge state of each battery cell. In addition to this, the battery monitoring system monitoring device can perform various processing and control based on the voltage of each battery cell detected by the integrated circuit 2.
 なお、バランシングラインBL1~BLnのうち互いに隣接するバランシングライン同士の間には、放電電流を安定させるためのコンデンサがそれぞれ接続されている。また、集積回路2の内部において、各電圧計測ラインSL1~SLnおよび各バランシングラインBL1~BLnは、ESD保護ダイオードを介して、主電源ラインMBおよびグランドラインGNDとそれぞれ接続されている。 A capacitor for stabilizing the discharge current is connected between the balancing lines adjacent to each other among the balancing lines BL1 to BLn. Further, in the integrated circuit 2, the voltage measurement lines SL1 to SLn and the balancing lines BL1 to BLn are respectively connected to the main power supply line MB and the ground line GND via the ESD protection diodes.
 電源部3は、バッテリ部1から集積回路2に電源を供給するためのものであり、主電源ラインMBとグランドラインGNDの間に接続されている。この電源部3は、ツェナーダイオードとコンデンサを有しており、これらを用いて、主電源ラインMBに接続されている集積回路2の電源入力端子を過電圧や過電流から保護する。 The power supply unit 3 supplies power from the battery unit 1 to the integrated circuit 2 and is connected between the main power supply line MB and the ground line GND. The power supply unit 3 includes a Zener diode and a capacitor, and uses these to protect the power supply input terminal of the integrated circuit 2 connected to the main power supply line MB from overvoltage and overcurrent.
 RCフィルタ4は、電圧計測ラインSL1~SLnから集積回路2に入力される各電池セルの電圧信号に重畳された高周波ノイズを除去するためのフィルタ回路であり、電圧計測ラインSL1~SLnの各々に対して設けられた抵抗とコンデンサにより構成されている。このRCフィルタ4は、電圧計測ラインSL1~SLnにおいて、バランシングラインBL1~BLnへの分岐点と集積回路2の間にそれぞれ設けられている。 The RC filter 4 is a filter circuit for removing high frequency noise superimposed on the voltage signal of each battery cell input to the integrated circuit 2 from the voltage measurement lines SL1 to SLn, and is applied to each of the voltage measurement lines SL1 to SLn It consists of a resistor and a capacitor provided opposite to each other. The RC filter 4 is provided between the integrated circuit 2 and the branch point to the balancing lines BL1 to BLn in the voltage measurement lines SL1 to SLn.
 放電抵抗5は、バランシング時にバランシングラインBL1~BLnに流れる放電電流を調整するための抵抗素子であり、バランシングラインBL1~BLnにそれぞれ設けられている。 The discharge resistors 5 are resistance elements for adjusting the discharge current flowing to the balancing lines BL1 to BLn at the time of balancing, and are provided on the balancing lines BL1 to BLn, respectively.
 ノイズ対策コンデンサ6は、電圧計測ラインSL1~SLnのうち互いに隣接する電圧計測ライン同士の間に生じるノイズを低減するためのものである。このノイズ対策コンデンサ6は、電圧計測ラインSL1~SLnにおいて、バランシングラインBL1~BLnへの分岐点とバッテリ部1の各電池セルの間に設けられている。なお、図1の例では、各電圧計測ラインSL1~SLnの間にノイズ対策コンデンサ6を2個ずつ直列に設けることで、そのうち1つが短絡しても隣接する電圧計測ラインの間に大電流が流れないようにしているが、ノイズ対策コンデンサ6の個数はこれに限定されるものではない。 The noise reduction capacitor 6 is for reducing noise generated between voltage measurement lines adjacent to each other among the voltage measurement lines SL1 to SLn. The noise reduction capacitors 6 are provided between the branch points to the balancing lines BL1 to BLn and the respective battery cells of the battery unit 1 in the voltage measurement lines SL1 to SLn. In the example of FIG. 1, by providing two noise suppression capacitors 6 in series between each of the voltage measurement lines SL1 to SLn, even if one of them is shorted, a large current is generated between adjacent voltage measurement lines. Although the current is prevented from flowing, the number of noise suppression capacitors 6 is not limited to this.
 ヒューズ7は、電圧計測ラインSL1~SLnに過電流が流れるのを防止するための電流制限素子であり、電圧計測ラインSL1~SLnの各々とバッテリ部1の各電池セルの間に設けられている。 The fuse 7 is a current limiting element for preventing an overcurrent from flowing in the voltage measurement lines SL1 to SLn, and is provided between each of the voltage measurement lines SL1 to SLn and each battery cell of the battery unit 1 .
 以上説明した比較例による電池システム監視装置では、電圧計測ラインSL1~SLnの各々に対してヒューズ7が設けられている。そのため、バッテリ部1が多数の電池セルによって構成されている場合は、それに応じて電圧計測ラインの本数も多くなるため、数多くのヒューズ7が必要であり、装置の大型化やコストの増加につながってしまう。 In the battery system monitoring apparatus according to the comparative example described above, the fuse 7 is provided for each of the voltage measurement lines SL1 to SLn. Therefore, when the battery unit 1 is configured by a large number of battery cells, the number of voltage measurement lines also increases accordingly, so a large number of fuses 7 are required, leading to an increase in the size of the device and an increase in cost. It will
 そこで、本発明では、以下の第1、第2の各実施形態で説明するような構成を採用することにより、上記のような問題点を解消するようにしている。 Therefore, in the present invention, the above-described problems are solved by adopting the configuration as described in the first and second embodiments below.
(第1の実施形態)
 図2は、本発明の第1の実施形態による電池システム監視装置の構成を示す図である。図2に示す電池システム監視装置において、図1に示した比較例との違いは、ノイズ対策コンデンサ6が設けられていない点と、ヒューズ7に替えてヒューズ7Aおよび7Bを有している点である。
First Embodiment
FIG. 2 is a diagram showing the configuration of the battery system monitoring apparatus according to the first embodiment of the present invention. The battery system monitoring apparatus shown in FIG. 2 is different from the comparative example shown in FIG. 1 in that the anti-noise capacitor 6 is not provided and the fuse 7 is replaced by fuses 7A and 7B. is there.
 ヒューズ7A、7Bは、図1のヒューズ7と同様の過電流を防止するための電流制限素子であり、主電源ラインMBとグランドラインGNDにそれぞれ設けられている。 The fuses 7A and 7B are current limiting elements for preventing an overcurrent similar to the fuse 7 of FIG. 1, and are provided on the main power supply line MB and the ground line GND, respectively.
 このように、図2の電池システム監視装置では、電圧計測ラインSL1~SLnの各々に対してヒューズを設けずに、主電源ラインMBとグランドラインGNDに対してのみ、ヒューズ7A、7Bが設けられている。したがって、バッテリ部1を構成する電池セルの個数に関わらず、ヒューズ7A、7Bを搭載するためのスペースが一定で済むため、比較例のように装置の大型化を招くことはない。また、ヒューズ7A、7Bの個数は一定であるため、比較例のようにコストの増加につながることもない。 Thus, in the battery system monitoring apparatus of FIG. 2, fuses 7A and 7B are provided only for main power supply line MB and ground line GND without providing a fuse for each of voltage measurement lines SL1 to SLn. ing. Therefore, the space for mounting the fuses 7A and 7B can be constant regardless of the number of battery cells constituting the battery unit 1, and therefore the enlargement of the device as in the comparative example is not caused. Further, since the number of fuses 7A and 7B is constant, the cost does not increase as in the comparative example.
 加えて、図2の電池システム監視装置では、図1のようなノイズ対策コンデンサ6が設けられていないため、比較例と比べてさらなるコスト低減が可能である。なお、本実施形態では、RCフィルタ4により十分にノイズを除去できるものとして、ノイズ対策コンデンサ6を設けないこととしている。しかし、RCフィルタ4だけではノイズ除去が不十分な場合などは、図1のようにノイズ対策コンデンサ6を設けてもよい。 In addition, in the battery system monitoring apparatus of FIG. 2, since the noise reduction capacitor 6 as shown in FIG. 1 is not provided, further cost reduction is possible compared to the comparative example. In the present embodiment, it is assumed that the noise reduction capacitor 6 is not provided, as noise can be sufficiently removed by the RC filter 4. However, when the noise removal is insufficient with the RC filter 4 alone, the noise reduction capacitor 6 may be provided as shown in FIG.
 ここで、図2の電池システム監視装置において短絡故障が生じた場合を考える。図2の電池システム監視装置において生じ得る最も危険な短絡故障は、電源部3が短絡することで、バッテリ部1の全電池セルの総電圧が主電源ラインMBとグランドラインGNDの間に印加されてしまい、これらを経由して大電流が流れる故障である。しかし、このような短絡故障が生じた場合、ヒューズ7Aまたは7Bのいずれか少なくとも一方が溶断するため、大電流が流れ続けて発熱や発火が生じるのを防ぐことができる。 Here, the case where a short circuit failure occurs in the battery system monitoring device of FIG. 2 will be considered. The most dangerous short-circuit failure that can occur in the battery system monitoring device of FIG. 2 is that the total voltage of all battery cells of the battery unit 1 is applied between the main power supply line MB and the ground line GND when the power supply unit 3 is shorted. It is a fault in which a large current flows through these. However, when such a short circuit failure occurs, at least one of the fuses 7A and 7B is melted down, so that it is possible to prevent a large current from continuously flowing to generate heat and fire.
 また、集積回路2の内部に設けられているESD保護ダイオードのいずれかが短絡故障した場合、当該ESD保護ダイオードに対応する電圧計測ラインまたはバランシングラインと、主電源ラインMBまたはグランドラインGNDとを経由して、大電流が流れる可能性がある。しかし、このような短絡故障が生じた場合にも、ヒューズ7Aまたは7Bのいずれか一方が溶断するため、大電流が流れ続けて発熱や発火が生じるのを防ぐことができる。 Also, if any of the ESD protection diodes provided in the integrated circuit 2 has a short circuit failure, it passes through the voltage measurement line or balancing line corresponding to the ESD protection diode and the main power supply line MB or the ground line GND. There is a possibility that a large current may flow. However, even when such a short circuit failure occurs, either one of the fuses 7A or 7B is melted down, so that it is possible to prevent a large current from continuing to flow and heat generation or ignition to occur.
 なお、バランシングラインBL1~BLnのうち互いに隣接するバランシングライン同士の間に設けられたコンデンサが短絡故障した場合、当該バランシングラインを経由して電流が流れる。しかし、この電流は、前述のバランシング時に流れる放電電流と同じであるため、発熱や発火が生じるようなことはない。 When a capacitor provided between the balancing lines adjacent to each other among the balancing lines BL1 to BLn has a short circuit failure, a current flows via the balancing line. However, since this current is the same as the discharge current flowing at the time of the above-mentioned balancing, heat generation and ignition do not occur.
 以上説明したように、本発明の第1の実施形態による電池システム監視装置によれば、比較例のような問題点を解消しつつ、短絡故障による発熱や発火を効果的に防止することができる。 As described above, according to the battery system monitoring apparatus according to the first embodiment of the present invention, it is possible to effectively prevent heat generation and ignition due to a short circuit failure while solving the problems as in the comparative example. .
 なお、以上説明した第1の実施形態では、主電源ラインMBとグランドラインGNDにヒューズ7A、7Bをそれぞれ設けることとしたが、これらのうちいずれか一方のみを設けてもよい。その場合、前述したような電源部3の短絡故障による大電流については確実に防止できるが、ESD保護ダイオードの短絡故障による大電流については防止できない場合がある。しかし、このようにしても、比較例のような問題点を解消しつつ、短絡故障による発熱や発火の発生をある程度は防止することができる。すなわち、本発明による電池システム監視装置では、主電源ラインMBおよびグランドラインGNDのいずれか少なくとも一方に、電流制限素子としてのヒューズ7A、7Bを設けることができる。 In the first embodiment described above, the fuses 7A and 7B are provided on the main power supply line MB and the ground line GND, respectively. However, only one of these may be provided. In that case, the large current due to the short circuit failure of the power supply unit 3 as described above can be reliably prevented, but the large current due to the short circuit failure of the ESD protection diode may not be prevented in some cases. However, even in this case, it is possible to prevent the occurrence of heat generation and ignition due to a short circuit failure to some extent while solving the problems as in the comparative example. That is, in the battery system monitoring apparatus according to the present invention, fuses 7A and 7B as current limiting elements can be provided in at least one of main power supply line MB and ground line GND.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following effects can be obtained.
(1)電池システム監視装置は、複数の電池セルを直列に接続した組電池であるバッテリ部1と接続されて各電池セルの状態を監視する。この電池システム監視装置は、電池セルとそれぞれ接続される電圧計測ラインSL1~SLnと、電圧計測ラインSL1~SLnと接続され、電圧計測ラインSL1~SLnを介して各電池セルの電圧を検出する集積回路2と、バッテリ部1において最上位の電池セルの正極側に接続される主電源ラインMBと、バッテリ部1において最下位の電池セルの負極側に接続されるグランドラインGNDと、バッテリ部1から集積回路2に電源を供給するために主電源ラインMBとグランドラインGNDの間に接続された電源部3と、主電源ラインMBおよびグランドラインGNDのいずれか少なくとも一方に設けられた電流制限素子としてのヒューズ7A、7Bとを備える。このようにしたので、多数のヒューズを設けることなく、バッテリ部1と電圧検出を行う集積回路2との間に過電流が流れるのを防止することができる。 (1) The battery system monitoring device is connected to the battery unit 1 which is a battery pack in which a plurality of battery cells are connected in series, and monitors the state of each battery cell. The battery system monitoring device is connected to voltage measurement lines SL1 to SLn connected to the battery cells and voltage measurement lines SL1 to SLn, and is integrated to detect the voltage of each battery cell via the voltage measurement lines SL1 to SLn. Circuit 2, main power supply line MB connected to the positive electrode side of the uppermost battery cell in battery unit 1, ground line GND connected to the negative electrode side of the lowermost battery cell in battery unit 1, battery unit 1 Power supply unit 3 connected between main power supply line MB and ground line GND to supply power to integrated circuit 2, and a current limiting element provided on at least one of main power supply line MB and ground line GND And fuses 7A and 7B. Since this is done, it is possible to prevent an overcurrent from flowing between the battery unit 1 and the integrated circuit 2 that performs voltage detection without providing a large number of fuses.
(2)電池システム監視装置では、主電源ラインMBおよびグランドラインGNDの両方にヒューズ7A、7Bを設けることができる。このようにすれば、電源部3の短絡故障や集積回路2の内部に設けられたESD保護ダイオードの短絡故障により大電流が流れることで、発熱や発火が生じるのを効果的に防止することができる。 (2) In the battery system monitoring apparatus, fuses 7A and 7B can be provided in both main power supply line MB and ground line GND. In this way, a large current flows due to a short circuit failure of the power supply unit 3 or a short circuit failure of the ESD protection diode provided inside the integrated circuit 2 to effectively prevent heat generation and fire from occurring. it can.
(3)電池システム監視装置は、電圧計測ラインSL1~SLnからそれぞれ分岐して設けられたバランシングラインBL1~BLnと、抵抗とコンデンサにより構成され、電圧計測ラインSL1~SLnにおいてバランシングラインBL1~BLnへの分岐点と集積回路2の間にそれぞれ設けられたRCフィルタ4と、バランシングラインBL1~BLnにそれぞれ設けられた放電抵抗5とをさらに備える。この電池システム監視装置には、電圧計測ラインSL1~SLnの上記分岐点と電池セルの間において、互いに隣接する電圧計測ラインSL1~SLn同士の間に生じるノイズを低減するためのノイズ対策コンデンサ6が設けられていない。そのため、さらなるコスト低減を実現することができる。 (3) The battery system monitoring apparatus includes balancing lines BL1 to BLn branched from voltage measurement lines SL1 to SLn, resistors and a capacitor, and in voltage measurement lines SL1 to SLn, to balancing lines BL1 to BLn The circuit further includes an RC filter 4 provided between the branch point of and the integrated circuit 2 and a discharge resistor 5 provided on each of the balancing lines BL1 to BLn. The battery system monitoring device includes a noise reduction capacitor 6 for reducing noise generated between the voltage measurement lines SL1 to SLn adjacent to each other between the battery cells and the branch points of the voltage measurement lines SL1 to SLn. Not provided. Therefore, further cost reduction can be realized.
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態による電池システム監視装置の構成を示す図である。図3に示す電池システム監視装置において、図2に示した第1の実施形態との違いは、ヒューズ7Aが設けられていない点と、ヒューズ7Bの溶断を検出するための溶断検出回路8が設けられている点である。
Second Embodiment
Next, a second embodiment of the present invention will be described. FIG. 3 is a diagram showing the configuration of a battery system monitoring apparatus according to a second embodiment of the present invention. The battery system monitoring apparatus shown in FIG. 3 differs from the first embodiment shown in FIG. 2 in that the fuse 7A is not provided, and the fusing detection circuit 8 for detecting the fusing of the fuse 7B is provided. It is a point that
 溶断検出回路8は、一端が所定の基準電圧を出力する電圧源に接続されていると共に、中間点がヒューズ7Bおよび電源部3に接続されたプルアップ抵抗を有している。このプルアップ抵抗の他端は、プルアップ抵抗の電圧値を測定するための集積回路2の入力端子に接続されている。すなわち、溶断検出回路8は、プルアップ抵抗と集積回路2により構成されている。 The fusing detection circuit 8 has one end connected to a voltage source that outputs a predetermined reference voltage, and a midpoint connected to the fuse 7 B and the power supply unit 3. The other end of the pull-up resistor is connected to the input terminal of the integrated circuit 2 for measuring the voltage value of the pull-up resistor. That is, the fusing detection circuit 8 is composed of a pull-up resistor and the integrated circuit 2.
 ヒューズ7Bが溶断されていない場合、集積回路2には、ヒューズ7Bを介して接続されたグランド電位が入力される。一方、ヒューズ7Bが溶断されると、グランド電位とは異なる電圧が集積回路2に入力される。この電圧は、電源部3が短絡故障されている場合とされていない場合とで、以下のように変化する。 When the fuse 7B is not fused, a ground potential connected via the fuse 7B is input to the integrated circuit 2. On the other hand, when the fuse 7B is fused, a voltage different from the ground potential is input to the integrated circuit 2. This voltage changes as follows depending on whether the power supply unit 3 is short circuited or not.
 電源部3が短絡故障されずにヒューズ7Bが溶断された場合、プルアップ抵抗の中間点はいずれの電位からも断絶された状態となるため、電圧源からの基準電圧がプルアップ抵抗を介して集積回路2に入力される。したがって、この電圧源からの基準電圧を集積回路2で検出することにより、溶断検出回路8においてヒューズ7Bの溶断を検出することができる。 When fuse 7B is melted without short circuit failure of power supply unit 3, the midpoint of the pull-up resistor is disconnected from any potential, so the reference voltage from the voltage source is connected via the pull-up resistor. It is input to the integrated circuit 2. Therefore, by detecting the reference voltage from the voltage source with integrated circuit 2, the fusing detection circuit 8 can detect the fusing of the fuse 7B.
 電源部3が短絡故障されてヒューズ7Bが溶断された場合、プルアップ抵抗の中間点には、電源部3および主電源ラインMBを介して、バッテリ部1の最上位の電池セルからの電圧が印加される。この中間点への印加電圧がプルアップ抵抗により分圧された基準電圧を上回る場合、当該印加電圧がプルアップ抵抗を介して集積回路2に入力される。したがって、この中間点への印加電圧を集積回路2で検出することにより、溶断検出回路8においてヒューズ7Bの溶断を検出することができる。 When power supply unit 3 is short circuited and fuse 7B is melted, the voltage from the uppermost battery cell of battery unit 1 is supplied via power supply unit 3 and main power supply line MB at the midpoint of the pull-up resistance. Applied. When the voltage applied to the intermediate point exceeds the reference voltage divided by the pull-up resistor, the applied voltage is input to the integrated circuit 2 through the pull-up resistor. Therefore, by detecting the voltage applied to the intermediate point by the integrated circuit 2, the fusing detection circuit 8 can detect the fusing of the fuse 7B.
 以上説明した本発明の第2の実施形態によれば、電池システム監視装置は、電流制限素子であるヒューズ7Bの溶断を検出する溶断検出回路8をさらに備える。そのため、過電流が流れてヒューズ7Bが溶断した場合に、これを確実に検知することができる。 According to the second embodiment of the present invention described above, the battery system monitoring apparatus further includes the fusing detection circuit 8 that detects the fusing of the fuse 7B which is the current limiting element. Therefore, when the overcurrent flows and the fuse 7B is melted, this can be reliably detected.
 上記の溶断検出回路8は、所定の基準電圧を出力する電圧源に接続されると共に、ヒューズ7Bおよび電源部3に接続されたプルアップ抵抗を有している。この溶断検出回路8は、電源部3が短絡されていない場合は、プルアップ抵抗を介して基準電圧を検出することにより、ヒューズ7Bの溶断を検出する。また、電源部3が短絡された場合は、電源部3およびプルアップ抵抗を介して最上位の電池セルの電圧を検出することにより、ヒューズ7Bの溶断を検出する。このようにしたので、電源部3が短絡されていない場合と短絡された場合とで、それぞれ確実にヒューズ7Bの溶断を検出することができる。 The fusing detection circuit 8 described above is connected to a voltage source that outputs a predetermined reference voltage, and has a pull-up resistor connected to the fuse 7 B and the power supply unit 3. When the power supply unit 3 is not short circuited, the fusing detection circuit 8 detects the fusing of the fuse 7B by detecting the reference voltage through the pull-up resistor. When the power supply unit 3 is short-circuited, the voltage of the uppermost battery cell is detected through the power supply unit 3 and the pull-up resistor, thereby detecting the blowout of the fuse 7B. Since this is done, melting of the fuse 7B can be reliably detected when the power supply unit 3 is not short-circuited and when it is short-circuited.
 なお、以上説明した第2の実施形態では、グランドラインGNDのみにヒューズ7Bを設けて、このヒューズ7Bの溶断を溶断検出回路8により検出することとした。しかし、前述の第1の実施形態と同様に、主電源ラインMBにもヒューズ7Aを設けて、このヒューズ7Bの溶断を検出するための溶断検出回路をさらに設けてもよい。その場合、当該溶断検出回路は、図3の溶断検出回路8と同様に、プルアップ抵抗と集積回路2を用いて構成することができる。具体的には、電源部3が短絡故障されずにヒューズ7Aが溶断された場合は、プルアップ抵抗を介して電圧源からの基準電圧を集積回路2で検出することにより、ヒューズ7Aの溶断を検出する。一方、電源部3が短絡故障されてヒューズ7Aが溶断された場合は、バッテリ部1の最下位の電池セルから電源部3およびグランドラインGNDを介してプルアップ抵抗の中間点に印加される電圧を、プルアップ抵抗を介して集積回路2で検出することにより、ヒューズ7Aの溶断を検出する。このようにすれば、主電源ラインMBおよびグランドラインGNDの両方にヒューズ7A、7Bを設けた場合においても、それぞれの溶断を確実に検出することができる。 In the second embodiment described above, the fuse 7B is provided only on the ground line GND, and the fusing detection circuit 8 detects the fusing of the fuse 7B. However, as in the first embodiment described above, fuse 7A may be provided also on main power supply line MB, and a fusion detection circuit may be further provided to detect the fusion of fuse 7B. In that case, the fused detection circuit can be configured using a pull-up resistor and the integrated circuit 2 as in the fused detection circuit 8 of FIG. Specifically, when the fuse 7A is melted without short-circuit failure of the power supply unit 3, the integrated circuit 2 detects the reference voltage from the voltage source through the pull-up resistor to melt the fuse 7A. To detect. On the other hand, when power supply unit 3 is short circuited and fuse 7A is melted, the voltage applied from the lowermost battery cell of battery unit 1 to the midpoint of the pull-up resistor via power supply unit 3 and ground line GND. Is detected by the integrated circuit 2 through the pull-up resistor, thereby detecting the fuse 7A being blown. In this way, even when fuses 7A and 7B are provided in both main power supply line MB and ground line GND, respective melting can be reliably detected.
 以上説明した各実施形態や変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。 Each embodiment and modification which were explained above are examples to the last, and the present invention is not limited to these contents, unless the feature of the invention is spoiled.
1…バッテリ部、2…集積回路、3…電源部、4…RCフィルタ、5…放電抵抗、
6…ノイズ対策コンデンサ、7,7A,7B…ヒューズ、8…溶断検出回路、
SL1~SLn…電圧計測ライン、BL1~BLn…バランシングライン、
MB…主電源ライン、GND…グランドライン
DESCRIPTION OF SYMBOLS 1 ... Battery part, 2 ... Integrated circuit, 3 ... Power supply part, 4 ... RC filter, 5 ... Discharge resistance,
6 · · · noise suppression capacitor, 7, 7A, 7B · · · fuse · 8 · blow detection circuit,
SL1 to SLn: voltage measurement line, BL1 to BLn: balancing line,
MB: Main power supply line, GND: Ground line

Claims (5)

  1.  複数の電池セルを直列に接続した組電池と接続されて各電池セルの状態を監視する電池システム監視装置であって、
     前記電池セルとそれぞれ接続される複数の電圧計測ラインと、
     前記電圧計測ラインと接続され、前記電圧計測ラインを介して各電池セルの電圧を検出する集積回路と、
     前記組電池において最上位の電池セルの正極側に接続される主電源ラインと、
     前記組電池において最下位の電池セルの負極側に接続されるグランドラインと、
     前記組電池から前記集積回路に電源を供給するために前記主電源ラインと前記グランドラインの間に接続された電源部と、
     前記主電源ラインおよび前記グランドラインのいずれか少なくとも一方に設けられた電流制限素子と、を備える電池システム監視装置。
    A battery system monitoring apparatus connected to a battery assembly in which a plurality of battery cells are connected in series to monitor the state of each battery cell,
    A plurality of voltage measurement lines respectively connected to the battery cells;
    An integrated circuit connected to the voltage measurement line and detecting a voltage of each battery cell via the voltage measurement line;
    A main power supply line connected to the positive electrode side of the uppermost battery cell in the assembled battery;
    A ground line connected to the negative electrode side of the lowermost battery cell in the assembled battery,
    A power supply unit connected between the main power supply line and the ground line to supply power from the assembled battery to the integrated circuit;
    A battery system monitoring device comprising: a current limiting element provided on at least one of the main power supply line and the ground line.
  2.  請求項1に記載の電池システム監視装置において、
     前記主電源ラインおよび前記グランドラインの両方に前記電流制限素子が設けられている電池システム監視装置。
    In the battery system monitoring device according to claim 1,
    The battery system monitoring device in which the current limiting element is provided in both the main power supply line and the ground line.
  3.  請求項1または2に記載の電池システム監視装置において、
     前記電圧計測ラインからそれぞれ分岐して設けられた複数のバランシングラインと、
     抵抗とコンデンサにより構成され、前記電圧計測ラインにおいて前記バランシングラインへの分岐点と前記集積回路の間にそれぞれ設けられたRCフィルタと、
     前記バランシングラインにそれぞれ設けられた放電抵抗と、をさらに備え、
     前記電圧計測ラインの前記分岐点と前記電池セルの間において、互いに隣接する電圧計測ライン同士の間に生じるノイズを低減するためのコンデンサが設けられていない電池システム監視装置。
    In the battery system monitoring device according to claim 1 or 2,
    A plurality of balancing lines provided separately from the voltage measurement line;
    An RC filter which comprises a resistor and a capacitor, and which is provided between the branch point to the balancing line in the voltage measurement line and the integrated circuit;
    And a discharge resistor respectively provided on the balancing line,
    The battery system monitoring device which is not provided with the capacitor | condenser for reducing the noise produced between the voltage measurement lines which adjoin mutually between the said branch point of the said voltage measurement line, and the said battery cell.
  4.  請求項1または2に記載の電池システム監視装置において、
     前記電流制限素子はヒューズであり、
     前記ヒューズの溶断を検出する溶断検出回路をさらに備える電池システム監視装置。
    In the battery system monitoring device according to claim 1 or 2,
    The current limiting element is a fuse,
    A battery system monitoring apparatus, further comprising: a fusing detection circuit for detecting the fusing of the fuse.
  5.  請求項4に記載の電池システム監視装置において、
     前記溶断検出回路は、所定の基準電圧を出力する電圧源に接続されると共に、前記ヒューズおよび前記電源部に接続されたプルアップ抵抗を有しており、
     前記電源部が短絡されていない場合は、前記プルアップ抵抗を介して前記基準電圧を検出することにより、前記ヒューズの溶断を検出し、
     前記電源部が短絡された場合は、前記電源部および前記プルアップ抵抗を介して前記最上位または前記最下位の電池セルの電圧を検出することにより、前記ヒューズの溶断を検出する電池システム監視装置。
    In the battery system monitoring device according to claim 4,
    The fusing detection circuit is connected to a voltage source that outputs a predetermined reference voltage, and has a pull-up resistor connected to the fuse and the power supply unit.
    If the power supply unit is not short circuited, the fuse is detected by detecting the reference voltage through the pull-up resistor.
    In the case where the power supply unit is short-circuited, a battery system monitoring apparatus that detects the melting of the fuse by detecting the voltage of the uppermost or lowermost battery cell via the power supply unit and the pull-up resistor. .
PCT/JP2013/070451 2013-07-29 2013-07-29 Battery system monitoring device WO2015015549A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015529237A JP6014764B2 (en) 2013-07-29 2013-07-29 Battery system monitoring device
PCT/JP2013/070451 WO2015015549A1 (en) 2013-07-29 2013-07-29 Battery system monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070451 WO2015015549A1 (en) 2013-07-29 2013-07-29 Battery system monitoring device

Publications (1)

Publication Number Publication Date
WO2015015549A1 true WO2015015549A1 (en) 2015-02-05

Family

ID=52431131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070451 WO2015015549A1 (en) 2013-07-29 2013-07-29 Battery system monitoring device

Country Status (2)

Country Link
JP (1) JP6014764B2 (en)
WO (1) WO2015015549A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157674A (en) * 2017-03-17 2018-10-04 株式会社ケーヒン Circuit protection device and voltage detector
CN109633411A (en) * 2018-12-21 2019-04-16 中国北方车辆研究所 A kind of special vehicle high voltage power distribution circuit state detection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156633A (en) * 2007-12-25 2009-07-16 Yazaki Corp Voltage detecting device
JP2010122194A (en) * 2008-11-21 2010-06-03 Sanyo Electric Co Ltd Battery system
JP2013094032A (en) * 2011-10-27 2013-05-16 Hitachi Vehicle Energy Ltd Battery system monitoring device and power storage device with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156633A (en) * 2007-12-25 2009-07-16 Yazaki Corp Voltage detecting device
JP2010122194A (en) * 2008-11-21 2010-06-03 Sanyo Electric Co Ltd Battery system
JP2013094032A (en) * 2011-10-27 2013-05-16 Hitachi Vehicle Energy Ltd Battery system monitoring device and power storage device with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157674A (en) * 2017-03-17 2018-10-04 株式会社ケーヒン Circuit protection device and voltage detector
US11223193B2 (en) 2017-03-17 2022-01-11 Hitachi Astemo, Ltd. Circuit protection device and voltage detection device
CN109633411A (en) * 2018-12-21 2019-04-16 中国北方车辆研究所 A kind of special vehicle high voltage power distribution circuit state detection system
CN109633411B (en) * 2018-12-21 2021-04-30 中国北方车辆研究所 High-voltage distribution circuit state detection system for special vehicle

Also Published As

Publication number Publication date
JPWO2015015549A1 (en) 2017-03-02
JP6014764B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
US9806545B2 (en) Battery management system, motor vehicle and battery module
CN104935026B (en) Battery cell arrangement with battery cells and current limiting circuit and corresponding method
JP6459087B2 (en) Circuit protection device and voltage detection device
JP5926143B2 (en) Battery monitoring system and semiconductor device
JP5503430B2 (en) Battery pack with output stop switch
JP6260716B2 (en) Power supply device, protection device, and protection method
US20160226288A1 (en) Overcharge protection device
JP2008182883A (en) On-vehicle electric power supply network
US10830830B2 (en) Battery monitoring device for vehicle-mounted battery
US11079439B2 (en) Protection circuit for battery monitoring device, and battery monitoring device
WO2015015549A1 (en) Battery system monitoring device
US20150180091A1 (en) Accumulator battery protected against external short-circuits
CN109247036B (en) Management device and power supply system
JP5884683B2 (en) Battery monitoring device
KR20160055148A (en) Switching circuit
JP2016134962A (en) Power storage system
JP2014048281A (en) Electric power unit and failure detection circuit
JP6291287B2 (en) Battery module
JP6155854B2 (en) Battery system
JP6789768B2 (en) Circuit protection device and power supply monitoring device
JP7200915B2 (en) storage system
JP6348925B2 (en) Semiconductor device and battery monitoring system
KR20210028356A (en) Battery disconnect apparatus, battery apparatus and method of preventing power disconnect
JP7373767B2 (en) Overload detection circuit
JP2018190677A (en) Circuit protection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890349

Country of ref document: EP

Kind code of ref document: A1