WO2017179265A1 - Reception device - Google Patents

Reception device Download PDF

Info

Publication number
WO2017179265A1
WO2017179265A1 PCT/JP2017/002727 JP2017002727W WO2017179265A1 WO 2017179265 A1 WO2017179265 A1 WO 2017179265A1 JP 2017002727 W JP2017002727 W JP 2017002727W WO 2017179265 A1 WO2017179265 A1 WO 2017179265A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
amplifier
frequency signal
unit
Prior art date
Application number
PCT/JP2017/002727
Other languages
French (fr)
Japanese (ja)
Inventor
中島 健介
新司 山浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017179265A1 publication Critical patent/WO2017179265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing

Definitions

  • the present disclosure relates to a receiving apparatus having a function of mixing a received signal with a local frequency signal and converting the received signal into an intermediate frequency signal.
  • Non-patent document 1 is known as a related art relating to a receiving apparatus that mixes a received signal with a local frequency signal and converts it into an intermediate frequency signal.
  • the BIST (Bilt-In-Self-Test) signal in the millimeter wave band is a signal having the same frequency that is generated from the same signal source as the local signal of the transceiver, and is down-converted by the local signal at the receiver.
  • the converted signal is converted into a DC signal having only a DC component. This is a so-called direct conversion system.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a receiving apparatus capable of testing frequency characteristics of a circuit block in an intermediate frequency band regardless of the frequency of a signal to be converted.
  • the low frequency signal generation unit generates a low frequency signal having a frequency lower than that of the local frequency signal used for conversion to the intermediate frequency signal
  • the test signal generation unit includes the low frequency signal.
  • the test signal is generated by mixing the signal and a signal having the same frequency as the local frequency signal. Then, the test signal and the input portion of the amplifier that amplifies the reception signal are coupled by a coupler, and the control unit tests the operation of the reception unit including the amplifier, the frequency conversion unit, and the intermediate frequency band amplifier using the test signal.
  • the signal converted and output by the frequency conversion unit has the frequency of the low frequency signal. That is, since a signal having a predetermined frequency can be obtained at the time of the test, the operation of the receiving unit can be tested regardless of the frequency of the intermediate frequency signal converted by the frequency converting unit.
  • FIG. 1 is a functional block diagram mainly showing the configuration of an IC in the first embodiment.
  • FIG. 2 is a diagram illustrating a specific numerical example of each frequency signal in the receiving unit and the receiving BIST unit, and a power spectrum.
  • FIG. 3 is a diagram showing a configuration of an in-vehicle millimeter wave radar system.
  • FIG. 4 is a flowchart showing the contents of the BIST process by the control unit.
  • FIG. 5 is a functional block diagram mainly showing the configuration of the IC in the second embodiment.
  • FIG. 6 is a functional block diagram mainly showing the configuration of the IC in the third embodiment.
  • FIG. 1 is a functional block diagram mainly showing the configuration of an IC in the first embodiment.
  • FIG. 2 is a diagram illustrating a specific numerical example of each frequency signal in the receiving unit and the receiving BIST unit, and a power spectrum.
  • FIG. 3 is a diagram showing a configuration of an in-vehicle millimeter wave radar system.
  • FIG. 7 is a functional block diagram mainly showing the configuration of the IC in the fourth embodiment.
  • FIG. 8 is a functional block diagram mainly showing the configuration of the IC in the fifth embodiment.
  • FIG. 9 is a functional block diagram mainly showing the configuration of the IC in the sixth embodiment.
  • FIG. 10 is a functional block diagram mainly showing the configuration of the IC in the seventh embodiment.
  • FIG. 11 is a functional block diagram mainly showing the configuration of an IC in the eighth embodiment.
  • FIG. 12 is a functional block diagram mainly showing the configuration of the IC in the ninth embodiment.
  • the in-vehicle millimeter wave radar system 1 includes an IC 2 and a control unit 3 that performs signal processing and controls the IC 2.
  • the control unit 3 transfers data to and from the control unit 4 that performs vehicle safety control.
  • the control unit 4 communicates with other control units arranged in each part of the vehicle by an in-vehicle LAN or the like.
  • the reference clock signal fclk generated by the reference clock generation unit 5 is input to IC2.
  • the reference clock signal fclk is given to an internal PLL (Phase Locked Loop) frequency synthesizer 6.
  • the name of a signal may indicate the frequency of the corresponding signal.
  • the frequency synthesizer 6 generates a signal fLO / N obtained by dividing the frequency of the local frequency signal fLO used in the IC 2 by N and outputs it to each unit as described below.
  • the IC 2 includes a circuit control register 7, and the control unit 3 controls each unit of the IC 2 through the circuit control register 7. Data is transferred between the control unit 3 and the circuit control register 7 according to a communication standard such as SPI (Serial Peripheral Interface) or I2C (Inter-Integrated Circuit), but the communication standard used is not limited to these.
  • a communication standard such as SPI (Serial Peripheral Interface) or I2C (Inter-Integrated Circuit)
  • SPI Serial Peripheral Interface
  • I2C Inter-Integrated Circuit
  • the IC 2 includes a transmission unit 11, a reception unit 12, and a reception BIST unit 13.
  • the transmitter 11 multiplies the signal fLO / N by N by receiving the signal fLO / N, and inputs the signal of the frequency fLO to the power amplifier 16 via the phase shifter 15.
  • the power amplifier 16 amplifies the input signal and outputs the amplified signal to the transmission antenna 17, and the transmission antenna 17 transmits a radio signal having the frequency fLO to the outside.
  • the radio wave signal transmitted by the transmitter 11 as described above is reflected by a target 18 such as another vehicle, and the reflected wave is received by the receiving antenna 19.
  • the receiving unit 12 amplifies the signal received by the receiving antenna 19 by the low noise amplifier 20 and inputs the amplified signal to the mixer 21.
  • the signal fLO / N is also multiplied by N by the multiplier 22 in the receiver 12 to generate a local frequency signal having the frequency fLO.
  • the local frequency signal fLO is input to the mixer 21 and mixed with the signal amplified by the low noise amplifier 20.
  • the signal output from the mixer 21 is an intermediate frequency signal, and the intermediate frequency signal is amplified by the intermediate frequency band amplifier 23 having a variable amplification gain and input to the control unit 3.
  • the intermediate frequency signal is A / D converted by an A / D converter (not shown) built in the control unit 3 and read.
  • the actual receiving unit 12 includes a plurality of, for example, four receiving channels (1) to (4).
  • the control unit 4 and the transmission unit 11 are not shown.
  • the reception BIST unit 13 divides the reference clock signal fclk by the test signal generator 24 to generate the low frequency signal fIF in order to generate the test signal ftest used for testing the frequency characteristic of the reception unit 12. .
  • the reception BIST unit 13 multiplies the frequency-divided signal fLO / N generated by the frequency synthesizer 6 by N by the multiplier 25 to generate a signal having the same frequency as the local frequency signal fLO. These signals are input to the mixer 26 and mixed to generate a test signal ftest.
  • the test signal ftest is input to the input terminal of the low noise amplifier 20 via the coupler 27.
  • the mixer 26 corresponds to a test signal generation unit.
  • the frequency fclk of the reference clock signal is set to 52 MHz
  • the frequency fLO of the local frequency signal is set to 80 GHz.
  • the frequency synthesizer 6 generates a signal fLO / 2 having a frequency of 40 GHz using the reference clock signal.
  • the signal fLO / 2 is doubled by the multiplier 22 to become a local frequency signal fLO.
  • the signal fLO / 2 is doubled by the multiplier 25 to generate a signal fLO whose frequency is equal to the local frequency signal.
  • the frequency of the signal transmitted from the transmission unit 11 is 80 GHz, and the frequency of the local frequency signal fLO input to the mixer 21 of the reception unit 12 is 80 GHz. Therefore, the IC 2 that is a transceiver constituting the millimeter wave radar system 1 employs a direct conversion method in which the intermediate frequency signal output from the mixer 21 is only a DC component.
  • the radar modulation signal (FMCW) generated by the frequency synthesizer 6 is reflected by the target 18.
  • the intermediate frequency signal output from the mixer 21 when the reflected wave is received by the receiving unit 12 is down-converted with a radar modulation signal having a different frequency by a time difference corresponding to the distance, and a frequency component corresponding to the time difference. Only can be obtained.
  • the reception BIST unit 13 divides the reference clock signal fclk by 1000 by the low frequency signal generator 24 to generate a low frequency signal fIF having a frequency of 52 kHz.
  • the frequency of the generated test signal ftest is (80 GHz ⁇ 52 kHz). Therefore, if only the test signal ftest is input to the receiving unit 12, the frequency of the signal output from the mixer 21 is 52 kHz.
  • the level of the local frequency signal component fLO can be suppressed as shown in FIG.
  • the control unit 3 turns on the reception BIST unit 13 from the state of the reception mode in which the frequency synthesizer 6 and the reception unit 12 are ON, and shifts to the BIST mode (S1) to set the test items. (S2).
  • S1 the state of the reception mode in which the frequency synthesizer 6 and the reception unit 12 are ON
  • S2 shifts to the BIST mode (S1) to set the test items.
  • S2 An example of test items is shown below.
  • the voltage amplitude of the intermediate frequency signal fIF which is the output of the receiving unit 12 is within an allowable range of desired characteristics when the test signal ftest is input to the receiving unit 12.
  • the voltage amplitudes of the intermediate frequency signals fIF of the channels 12 (1) to 12 (4) are all within the allowable range of the desired characteristics. . -Is the frequency characteristic of the voltage amplitude of the intermediate frequency signal fIF within an allowable range of the desired frequency characteristic? That is, are the desired filter characteristics and cut-off frequency obtained?
  • the frequency synthesizer 6 is set according to the test item, and the local frequency signal LO used in the BIST is set (S3).
  • the frequency of the signal is set, and in the case of a radar modulation signal (FMCW), a modulation frequency range and a modulation period are set.
  • FMCW radar modulation signal
  • the receiving BIST circuit 13 is configured.
  • the low frequency signal generator 24 is set (S5).
  • the frequency band characteristic of the intermediate frequency band amplifier 23 can be self-tested by setting the frequency fIF of the low frequency signal to the same value as the frequency of the signal output from the mixer 21 of the receiving unit 12.
  • BIST is started (S6). That is, the control unit 3 determines whether or not the intermediate frequency signal or the reception signal obtained via the reception unit 12 satisfies a desired characteristic. If the determination result of this test is bad (S7, NO), it is determined whether or not improvement is possible by changing the setting parameter of each circuit block constituting the receiving unit 12 and whether or not the circuit adjustment is possible (S11). If adjustment is possible (YES), the parameter setting is changed (S14), and the process returns to step S2. As a result, not only the occurrence of a failure in the receiving unit 12 but also the millimeter wave signal receiving characteristics (gain, frequency) are determined, and the desired millimeter wave signal receiving characteristics can be obtained using the adjustment function of each circuit block of the receiving unit 12. Calibrate and adjust to obtain.
  • step S11 if circuit adjustment is not possible in step S11 (NO), the failure test item / condition and the test result are stored (S12), and it is determined whether the necessary test items are completed (S13). If the necessary test items are not completed (NO), the process returns to step S2.
  • step S7 if the test determination result is good (YES), the good test item / condition and the test result are stored (S8), and it is determined whether the required test item is completed (S9). ). If the necessary test items are not completed (NO), the process returns to step S2.
  • step S9 or S13 if the necessary test items are completed (YES), the reception BIST circuit 13 is turned off to end the reception BIST (S10) and return to the reception mode.
  • the low frequency signal generator 24 generates the low frequency signal fIF having a frequency lower than that of the local frequency signal fLO used for the conversion to the intermediate frequency signal, and the mixer 26
  • the test signal ftest is generated by mixing the low frequency signal fIF and a signal having the same frequency as the local frequency signal fLO.
  • the test signal ftest and the input part of the amplifier 20 that amplifies the received signal are coupled by a coupler 27, and the control unit 3 has an amplifier 20, a mixer 21, and an intermediate frequency band amplifier 23 using the test signal ftest. The operation of the receiving unit 13 is tested.
  • the signal converted and output by the mixer 21 has the frequency of the low-frequency signal fIF. That is, since a signal having a predetermined frequency fIF can be obtained during the test, it is possible to test the operation of the receiving unit 13 regardless of the frequency of the intermediate frequency signal converted by the mixer 21 in the normal communication operation. Become.
  • IC2 is replaced with IC32.
  • the IC 32 includes an A / D converter 34 at the output unit of the intermediate frequency band amplifier 23 in the receiving unit 33. Therefore, the control unit 35 can acquire the received signal as digital data from the IC 32 without incorporating an A / D converter.
  • the IC 32 in the system 31 of the second embodiment is replaced with an IC.
  • the IC 42 is configured by the reception BIST unit 43 in which the low frequency signal generator 24 is replaced with a programmable frequency divider 44.
  • the control unit 35 appropriately sets a frequency division ratio in the programmable frequency divider 44.
  • the receiving BIST unit 43 includes the programmable frequency divider 44, the frequency of the low frequency signal fIF can be arbitrarily changed.
  • the millimeter wave radar system 41 ⁇ / b> A of the fourth embodiment has a frequency synthesizer in which the clock signal input to the programmable frequency divider 44 in the system 41 of the third embodiment is changed to the reference clock signal fclk. 6 is a signal fLO / N output from 6. In this case, if an example of each frequency is the same as that shown in FIG. 2 of the first embodiment, the frequency division ratio set in the programmable frequency divider 44 may be (13/10000000).
  • the clock signal input to the programmable frequency divider 44 is changed to the signal fLO / N output from the frequency synthesizer 6 in place of the reference clock signal fclk, thereby generating a frequency higher than the reference clock signal fclk frequency. can do.
  • the IC 32 in the system 31 of the second embodiment is replaced with an IC 52.
  • the IC 52 is configured by a reception BIST unit 53 in which the low frequency signal generator 24 is replaced with a PLL frequency synthesizer 54.
  • the PLL frequency synthesizer 54 can set the low frequency signal fIF more flexibly.
  • the IC 32 in the system 31 of the second embodiment is replaced with an IC 62.
  • the reception BIST unit 63 switch circuits 64 (1) to 64 (4) are arranged between the mixer 26 and the reception channels 33 (1) to 33 (4).
  • the switch circuit 64 is configured by an analog switch or the like, for example, and the control unit 35 can control ON / OFF thereof via the circuit control register 65.
  • the switch circuit 64 corresponds to an output stop unit.
  • the isolation between (4) can be increased. For example, when the switch circuits 64 (1) to 64 (4) are not provided, the isolation between the reception channels 12 (1) to 12 (4) is almost determined by the coupling amount of the two couplers 27.
  • the switch circuit 64 may be connected in series to the line through which the test signal ftest is transmitted, as shown in FIG. 9, or connected in parallel to the ground via a DC cut capacitor and coupled.
  • the input terminal of the device 27 may be dropped to the ground level to prevent the input of the signal.
  • the IC 62 in the system 61 of the sixth embodiment is replaced with an IC 72.
  • the reception BIST unit 73 includes amplifiers 74 (1) to 74 (4) instead of the switch circuits 64 (1) to 64 (4).
  • the amplifier 74 is configured such that the control unit 35 can stop the amplification operation via the circuit control register 65, and corresponds to an output stop unit.
  • the amplifiers 74 (1) to 74 (4) By arranging the amplifiers 74 (1) to 74 (4) in this way, attenuation is caused by the loss of the connection line from the mixer 26 to each of the reception channels 33 (1) to 33 (4) and the loss of the coupler 27.
  • the test signal ftest can be amplified.
  • the control unit 35 turns off the amplifier 74 in the normal operation of the millimeter wave radar system 1 as in the sixth embodiment, so that the isolation between the reception channels 33 (1) to 33 (4) is achieved. Can be increased.
  • the IC 72 in the system 71 of the seventh embodiment is replaced with an IC 82.
  • the reception 83 includes a high-pass filter 84 between the mixer 21 and the intermediate frequency amplifier 23.
  • the IC 82 in the system 81 of the eighth embodiment is replaced with an IC 82A.
  • the IC 82A is different from the eighth embodiment only in the connection position of the amplifier 74 in the reception BIST unit 73A.
  • four amplifiers 74 (1) to 74 (4) are connected in series to the output terminal of the mixer 26, and correspond to the output terminals of the amplifiers 74 (1) to 74 (4).
  • the input terminals of the couplers 27 (1) to 27 (4) are connected to each other. According to 9th Embodiment comprised as mentioned above, the effect similar to 8th Embodiment is acquired.
  • the number of reception channels is not limited to “4”, but may be “3” or less or “5” or more, for example, 8 channels or 16 channels. Further, it is not always necessary to provide a plurality of reception channels. If “NO” is determined in the step S7, the step S14 may be executed as necessary.
  • the present invention is not limited to the direct conversion method and can be applied. Further, the present invention is not limited to the one applied to the in-vehicle millimeter wave radar system, but can be applied to any receiving device that performs down-conversion in the receiving system. What is necessary is just to change suitably the specific numerical value of a frequency according to an individual design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Superheterodyne Receivers (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The disclosed reception device is equipped with: an amplifier (20) that amplifies a received signal received with a reception antenna (19); a frequency signal generation unit (5, 6, 22) that generates a local-frequency signal; a frequency conversion unit (21) that mixes the signal amplified by the amplifier and the local-frequency signal, converting these to an intermediate-frequency signal; an intermediate-frequency band amplifier (23) that amplifies the intermediate-frequency signal; a low-frequency signal generation unit (24, 44, 54) that generates a low-frequency signal the frequency of which is lower than the local-frequency signal; a test signal generation unit (26) that mixes the low-frequency signal and a signal of the same frequency as the local-frequency signal to generate a test signal; couplers (27) coupling the input unit of the amplifier and the test signal; and a control unit (3, 35) that uses the test signal to test the operation of a reception unit (12, 33, 83) having the amplifier, the frequency conversion unit, and the intermediate-frequency band amplifier.

Description

受信装置Receiver 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年4月13日に出願された日本出願番号2016-80326号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-80326 filed on April 13, 2016, the contents of which are incorporated herein by reference.
 本開示は、受信信号をローカル周波数信号と混合して中間周波数信号に変換する機能を備えた受信装置に関する。 The present disclosure relates to a receiving apparatus having a function of mixing a received signal with a local frequency signal and converting the received signal into an intermediate frequency signal.
 受信信号をローカル周波数信号と混合して中間周波数信号に変換する受信装置に関する従来技術として、非特許文献1がある。この技術では、ミリ波帯のBIST(Bilt-In-Self-Test)信号が、送受信機のローカル信号と共通の信号源から生成された同じ周波数を有する信号であり、受信機でローカル信号によりダウンコンバートされた信号は、直流成分しか持たないDC信号に変換される。これは所謂ダイレクトコンバージョン方式である。 Non-patent document 1 is known as a related art relating to a receiving apparatus that mixes a received signal with a local frequency signal and converts it into an intermediate frequency signal. In this technology, the BIST (Bilt-In-Self-Test) signal in the millimeter wave band is a signal having the same frequency that is generated from the same signal source as the local signal of the transceiver, and is down-converted by the local signal at the receiver. The converted signal is converted into a DC signal having only a DC component. This is a so-called direct conversion system.
 しかしながら、ダウンコンバートされた信号が直流成分しか持たない場合、中間周波数帯の回路ブロックについては、周波数特性をテストすることができないという問題があった。 However, when the down-converted signal has only a DC component, there is a problem that the frequency characteristic cannot be tested for the circuit block in the intermediate frequency band.
 本開示は、上記事情に鑑みてなされたものであり、変換される信号の周波数に関わらず、中間周波数帯の回路ブロックについて周波数特性をテストできる受信装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a receiving apparatus capable of testing frequency characteristics of a circuit block in an intermediate frequency band regardless of the frequency of a signal to be converted.
 本開示の一態様によれば、低周波信号生成部は、中間周波数信号への変換に使用されるローカル周波数信号よりも周波数が低い低周波信号を生成し、テスト信号生成部は、その低周波信号と、ローカル周波数信号と同じ周波数の信号とを混合してテスト信号を生成する。そして、テスト信号と受信信号を増幅する増幅器の入力部とを結合器により結合させ、制御部は、テスト信号を用いて増幅器,周波数変換部及び中間周波数帯増幅器を有する受信部の動作をテストする。 According to one aspect of the present disclosure, the low frequency signal generation unit generates a low frequency signal having a frequency lower than that of the local frequency signal used for conversion to the intermediate frequency signal, and the test signal generation unit includes the low frequency signal. The test signal is generated by mixing the signal and a signal having the same frequency as the local frequency signal. Then, the test signal and the input portion of the amplifier that amplifies the reception signal are coupled by a coupler, and the control unit tests the operation of the reception unit including the amplifier, the frequency conversion unit, and the intermediate frequency band amplifier using the test signal. .
 このように構成すれば、結合器を介してテスト信号を入力した際に、周波数変換部により変換されて出力される信号は、前記低周波信号の周波数を有するものとなる。つまり、テスト時には既定の周波数の信号が得られるようになるので、周波数変換部により変換される中間周波数信号の周波数に関わらず、受信部の動作をテストすることが可能になる。 With this configuration, when the test signal is input through the coupler, the signal converted and output by the frequency conversion unit has the frequency of the low frequency signal. That is, since a signal having a predetermined frequency can be obtained at the time of the test, the operation of the receiving unit can be tested regardless of the frequency of the intermediate frequency signal converted by the frequency converting unit.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態において、ICの構成を中心に示す機能ブロック図であり、 図2は、受信部及び受信BIST部における各周波数信号の具体数値例,及びパワースぺクトルを示す図であり、 図3は、車載ミリ波レーダシステムの構成を示す図であり、 図4は、制御部によるBIST処理の内容を示すフローチャートであり、 図5は、第2実施形態において、ICの構成を中心に示す機能ブロック図であり、 図6は、第3実施形態において、ICの構成を中心に示す機能ブロック図であり、 図7は、第4実施形態において、ICの構成を中心に示す機能ブロック図であり、 図8は、第5実施形態において、ICの構成を中心に示す機能ブロック図であり、 図9は、第6実施形態において、ICの構成を中心に示す機能ブロック図であり、 図10は、第7実施形態において、ICの構成を中心に示す機能ブロック図であり、 図11は、第8実施形態において、ICの構成を中心に示す機能ブロック図であり、 図12は、第9実施形態において、ICの構成を中心に示す機能ブロック図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a functional block diagram mainly showing the configuration of an IC in the first embodiment. FIG. 2 is a diagram illustrating a specific numerical example of each frequency signal in the receiving unit and the receiving BIST unit, and a power spectrum. FIG. 3 is a diagram showing a configuration of an in-vehicle millimeter wave radar system. FIG. 4 is a flowchart showing the contents of the BIST process by the control unit. FIG. 5 is a functional block diagram mainly showing the configuration of the IC in the second embodiment. FIG. 6 is a functional block diagram mainly showing the configuration of the IC in the third embodiment. FIG. 7 is a functional block diagram mainly showing the configuration of the IC in the fourth embodiment. FIG. 8 is a functional block diagram mainly showing the configuration of the IC in the fifth embodiment. FIG. 9 is a functional block diagram mainly showing the configuration of the IC in the sixth embodiment. FIG. 10 is a functional block diagram mainly showing the configuration of the IC in the seventh embodiment. FIG. 11 is a functional block diagram mainly showing the configuration of an IC in the eighth embodiment. FIG. 12 is a functional block diagram mainly showing the configuration of the IC in the ninth embodiment.
  (第1実施形態)
 図3に示すように、本実施形態の車載ミリ波レーダシステム1は、IC2,信号処理を行うと共にIC2を制御する制御部3を備えている。制御部3は、車両の安全制御を行う制御ユニット4との間でデータの転送を行う。制御ユニット4は、車両の各部に配置されている他の制御ユニットとの間で、車載LAN等により通信を行う。
(First embodiment)
As shown in FIG. 3, the in-vehicle millimeter wave radar system 1 according to the present embodiment includes an IC 2 and a control unit 3 that performs signal processing and controls the IC 2. The control unit 3 transfers data to and from the control unit 4 that performs vehicle safety control. The control unit 4 communicates with other control units arranged in each part of the vehicle by an in-vehicle LAN or the like.
 IC2には、基準クロック生成部5により生成された基準クロック信号fclkが入力されている。基準クロック信号fclkは、内部のPLL(Phase Locked Loop)周波数シンセサイザ6に与えられている。尚、以下において、信号の名称は、対応する信号の周波数を示すことがある。周波数シンセサイザ6は、IC2において使用するローカル周波数信号fLOの周波数をN分周した信号fLO/Nを生成し、以下に述べるよう各部に出力する。 The reference clock signal fclk generated by the reference clock generation unit 5 is input to IC2. The reference clock signal fclk is given to an internal PLL (Phase Locked Loop) frequency synthesizer 6. In the following, the name of a signal may indicate the frequency of the corresponding signal. The frequency synthesizer 6 generates a signal fLO / N obtained by dividing the frequency of the local frequency signal fLO used in the IC 2 by N and outputs it to each unit as described below.
 また、IC2は回路制御レジスタ7を備えており、制御部3は、回路制御レジスタ7を介してIC2の各部を制御する。制御部3と回路制御レジスタ7との間では、例えばSPI(Serial Peripheral Interface)やI2C(Inter-Integrated Circuit)などの通信規格によりデータを転送するが、用いる通信規格はこれらに限ることはない。 The IC 2 includes a circuit control register 7, and the control unit 3 controls each unit of the IC 2 through the circuit control register 7. Data is transferred between the control unit 3 and the circuit control register 7 according to a communication standard such as SPI (Serial Peripheral Interface) or I2C (Inter-Integrated Circuit), but the communication standard used is not limited to these.
 IC2は、送信部11,受信部12及び受信BIST部13を備えている。送信部11は、信号fLO/Nを逓倍器14により受けることでN逓倍し、周波数fLOの信号を、移相器15を介してパワーアンプ16に入力する。パワーアンプ16は、入力された信号を増幅して送信アンテナ17に出力し、送信アンテナ17は、周波数fLOの電波信号を外部に送信する。 The IC 2 includes a transmission unit 11, a reception unit 12, and a reception BIST unit 13. The transmitter 11 multiplies the signal fLO / N by N by receiving the signal fLO / N, and inputs the signal of the frequency fLO to the power amplifier 16 via the phase shifter 15. The power amplifier 16 amplifies the input signal and outputs the amplified signal to the transmission antenna 17, and the transmission antenna 17 transmits a radio signal having the frequency fLO to the outside.
 上記のようにして送信部11により送信された電波信号は、例えば他の車両などのターゲット18により反射され、その反射波が受信アンテナ19により受信される。受信部12は、受信アンテナ19により受信された信号を低雑音増幅器20により増幅してミクサ21に入力する。 The radio wave signal transmitted by the transmitter 11 as described above is reflected by a target 18 such as another vehicle, and the reflected wave is received by the receiving antenna 19. The receiving unit 12 amplifies the signal received by the receiving antenna 19 by the low noise amplifier 20 and inputs the amplified signal to the mixer 21.
 前記信号fLO/Nは、受信部12においても逓倍器22によりN逓倍され、周波数fLOのローカル周波数信号が生成される。そのローカル周波数信号fLOはミクサ21に入力されて、低雑音増幅器20により増幅された信号と混合される。ミクサ21より出力される信号は中間周波数信号となり、その中間周波数信号は、増幅利得が可変である中間周波数帯増幅器23により増幅されて制御部3に入力される。 The signal fLO / N is also multiplied by N by the multiplier 22 in the receiver 12 to generate a local frequency signal having the frequency fLO. The local frequency signal fLO is input to the mixer 21 and mixed with the signal amplified by the low noise amplifier 20. The signal output from the mixer 21 is an intermediate frequency signal, and the intermediate frequency signal is amplified by the intermediate frequency band amplifier 23 having a variable amplification gain and input to the control unit 3.
 中間周波数信号は、制御部3に内蔵されている図示しないA/DコンバータによりA/D変換されて読み込まれる。尚、図1に示すように、実際の受信部12は、複数,例えば4つの受信チャネル(1)~(4)を備えて構成されている。また、図1では、制御ユニット4及び送信部11の図示を省略している。 The intermediate frequency signal is A / D converted by an A / D converter (not shown) built in the control unit 3 and read. As shown in FIG. 1, the actual receiving unit 12 includes a plurality of, for example, four receiving channels (1) to (4). In FIG. 1, the control unit 4 and the transmission unit 11 are not shown.
 受信BIST部13は、受信部12の周波数特性をテストするために使用されるテスト信号ftestを生成するため、基準クロック信号fclkをテスト信号生成器24により分周して低周波数信号fIFを生成する。また受信BIST部13は、周波数シンセサイザ6により生成された分周信号fLO/Nを逓倍器25によりN逓倍し、ローカル周波数信号fLOと周波数が同一の信号を生成する。これらの信号は、ミクサ26に入力されて混合されることでテスト信号ftestが生成される。テスト信号ftestは、結合器27を介して低雑音増幅器20の入力端子に入力される。ミクサ26は、テスト信号生成部に相当する。 The reception BIST unit 13 divides the reference clock signal fclk by the test signal generator 24 to generate the low frequency signal fIF in order to generate the test signal ftest used for testing the frequency characteristic of the reception unit 12. . The reception BIST unit 13 multiplies the frequency-divided signal fLO / N generated by the frequency synthesizer 6 by N by the multiplier 25 to generate a signal having the same frequency as the local frequency signal fLO. These signals are input to the mixer 26 and mixed to generate a test signal ftest. The test signal ftest is input to the input terminal of the low noise amplifier 20 via the coupler 27. The mixer 26 corresponds to a test signal generation unit.
 例えば図2に示すように、基準クロック信号の周波数fclkを52MHzとし、ローカル周波数信号の周波数fLOを80GHzとする。この時、周波数シンセサイザ6は、基準クロック信号を用いて周波数40GHzの信号fLO/2を生成する。信号fLO/2は、逓倍器22で2逓倍されてローカル周波数信号fLOとなる。また、受信BIST部13においても、信号fLO/2は、逓倍器25で2逓倍されて周波数がローカル周波数信号に等しい信号fLOが生成される。 For example, as shown in FIG. 2, the frequency fclk of the reference clock signal is set to 52 MHz, and the frequency fLO of the local frequency signal is set to 80 GHz. At this time, the frequency synthesizer 6 generates a signal fLO / 2 having a frequency of 40 GHz using the reference clock signal. The signal fLO / 2 is doubled by the multiplier 22 to become a local frequency signal fLO. Also in the reception BIST unit 13, the signal fLO / 2 is doubled by the multiplier 25 to generate a signal fLO whose frequency is equal to the local frequency signal.
 送信部11より送信される信号の周波数は80GHzであり、受信部12のミクサ21に入力されるローカル周波数信号fLOの周波数は80GHzである。したがって、ミリ波レーダシステム1を構成する送受信機であるIC2は、ミクサ21より出力される中間周波数信号が直流成分のみとなるダイレクトコンバージョン方式を採用している。 The frequency of the signal transmitted from the transmission unit 11 is 80 GHz, and the frequency of the local frequency signal fLO input to the mixer 21 of the reception unit 12 is 80 GHz. Therefore, the IC 2 that is a transceiver constituting the millimeter wave radar system 1 employs a direct conversion method in which the intermediate frequency signal output from the mixer 21 is only a DC component.
 例えば、ミリ波レーダシステム1の通常動作では、周波数シンセサイザ6により生成されたレーダ用変調信号(FMCW)がターゲット18で反射される。その反射波を受信部12で受信した際にミクサ21より出力される中間周波数信号は、距離に応じた時間差分だけ周波数が異なるレーダ用変調信号でダウンコンバートされ、その時間差分に応じた周波数成分のみが得られる。 For example, in the normal operation of the millimeter wave radar system 1, the radar modulation signal (FMCW) generated by the frequency synthesizer 6 is reflected by the target 18. The intermediate frequency signal output from the mixer 21 when the reflected wave is received by the receiving unit 12 is down-converted with a radar modulation signal having a different frequency by a time difference corresponding to the distance, and a frequency component corresponding to the time difference. Only can be obtained.
 受信BIST部13では、基準クロック信号fclkを低周波信号生成器24により1000分周して周波数52kHzの低周波数信号fIFを生成する。ミクサ26では、信号fLOと低周波数信号fIFとが混合されるので、生成されるテスト信号ftestの周波数は(80GHz±52kHz)となる。したがって、受信部12にテスト信号ftestのみが入力されていれば、ミクサ21より出力される信号の周波数は52kHzとなる。ここで、アップコンバート用のミクサ26にダブルバランスミクサを用いれば、図2中に示すようにローカル周波数の信号成分fLOのレベルを抑圧できる。 The reception BIST unit 13 divides the reference clock signal fclk by 1000 by the low frequency signal generator 24 to generate a low frequency signal fIF having a frequency of 52 kHz. In the mixer 26, since the signal fLO and the low frequency signal fIF are mixed, the frequency of the generated test signal ftest is (80 GHz ± 52 kHz). Therefore, if only the test signal ftest is input to the receiving unit 12, the frequency of the signal output from the mixer 21 is 52 kHz. Here, if a double balance mixer is used for the up-conversion mixer 26, the level of the local frequency signal component fLO can be suppressed as shown in FIG.
 次に、本実施形態の作用について説明する。図4に示すように、制御部3は、周波数シンセサイザ6及び受信部12がONしている受信モードの状態から、受信BIST部13をONにしてBISTモードに移行し(S1)テスト項目を設定する(S2)。テスト項目の一例を以下に示す。 Next, the operation of this embodiment will be described. As shown in FIG. 4, the control unit 3 turns on the reception BIST unit 13 from the state of the reception mode in which the frequency synthesizer 6 and the reception unit 12 are ON, and shifts to the BIST mode (S1) to set the test items. (S2). An example of test items is shown below.
 ・テスト信号ftestを受信部12に入力した際に、受信部12の出力である中間周波数信号fIFの電圧振幅が所望の特性の許容範囲内か。
 ・本実施形態のように受信部12を多チャンネル集積したIC2において、各チャンネル12(1)~12(4)の中間周波数信号fIFの電圧振幅が、所望の特性の許容範囲内で揃っているか。
 ・中間周波数信号fIFの電圧振幅の周波数特性が、所望の周波数特性の許容範囲内か。つまり、所望のフィルタ特性,カットオフ周波数が得られているか。
Whether the voltage amplitude of the intermediate frequency signal fIF, which is the output of the receiving unit 12, is within an allowable range of desired characteristics when the test signal ftest is input to the receiving unit 12.
In the IC 2 in which the receiver 12 is integrated in multiple channels as in the present embodiment, the voltage amplitudes of the intermediate frequency signals fIF of the channels 12 (1) to 12 (4) are all within the allowable range of the desired characteristics. .
-Is the frequency characteristic of the voltage amplitude of the intermediate frequency signal fIF within an allowable range of the desired frequency characteristic? That is, are the desired filter characteristics and cut-off frequency obtained?
 続いて、前記テスト項目に応じた周波数シンセサイザ6の設定を行い、BISTで使用するローカル周波数信号LOを設定する(S3)。このとき、無変調のCW(Continuous Wave)信号の場合はその信号の周波数を、また、レーダ用変調信号(FMCW)の場合は変調周波数範囲,変調周期を設定する。 Subsequently, the frequency synthesizer 6 is set according to the test item, and the local frequency signal LO used in the BIST is set (S3). At this time, in the case of an unmodulated CW (Continuous Wave) signal, the frequency of the signal is set, and in the case of a radar modulation signal (FMCW), a modulation frequency range and a modulation period are set.
 次に、受信部12の回路パラメータ,つまり受信部12を構成する各回路ブロックの利得や周波数特性(フィルタのカットオフ周波数),バイアス値等を設定すると(S4)、受信BIST回路13を構成する低周波信号生成器24を設定する(S5)。本実施形態では、低周波信号生成器24の分周比は固定であるから、ここでは低周波信号の振幅のみを設定する。上述のように、低周波信号の周波数fIFが受信部12のミクサ21より出力される信号の周波数と同じ値になることで、中間周波数帯増幅器23の周波数帯域特性をセルフテストすることができる。 Next, when the circuit parameters of the receiving unit 12, that is, the gain, frequency characteristics (filter cutoff frequency), bias value, etc. of each circuit block constituting the receiving unit 12 are set (S4), the receiving BIST circuit 13 is configured. The low frequency signal generator 24 is set (S5). In this embodiment, since the frequency division ratio of the low frequency signal generator 24 is fixed, only the amplitude of the low frequency signal is set here. As described above, the frequency band characteristic of the intermediate frequency band amplifier 23 can be self-tested by setting the frequency fIF of the low frequency signal to the same value as the frequency of the signal output from the mixer 21 of the receiving unit 12.
 各種設定が終了したら、BISTを開始する(S6)。すなわち、中間周波数信号や受信部12を介して得られる受信信号について、制御部3が所望の特性を満たしているか否かを判定する。このテストの判定結果が不良であれば(S7,NO)、受信部12を構成する各回路ブロックの設定パラメータを変更することで改善可能か否か、回路調整可否を判定する(S11)。そして、調整可能であれば(YES)、パラメータ設定を変更して(S14)ステップS2に戻る。これにより、受信部12の故障発生の有無だけでなく、ミリ波信号受信特性(利得、周波数)を判定し、受信部12の各回路ブロックの調整機能を用いて所望のミリ波信号受信特性が得られるように校正,調整する。 When the various settings are completed, BIST is started (S6). That is, the control unit 3 determines whether or not the intermediate frequency signal or the reception signal obtained via the reception unit 12 satisfies a desired characteristic. If the determination result of this test is bad (S7, NO), it is determined whether or not improvement is possible by changing the setting parameter of each circuit block constituting the receiving unit 12 and whether or not the circuit adjustment is possible (S11). If adjustment is possible (YES), the parameter setting is changed (S14), and the process returns to step S2. As a result, not only the occurrence of a failure in the receiving unit 12 but also the millimeter wave signal receiving characteristics (gain, frequency) are determined, and the desired millimeter wave signal receiving characteristics can be obtained using the adjustment function of each circuit block of the receiving unit 12. Calibrate and adjust to obtain.
 一方、ステップS11において回路調整が不可であれば(NO)、不良テスト項目/条件,及びテスト結果を保存して(S12)必要なテスト項目が完了したか否かを判定する(S13)。必要なテスト項目が完了していなければ(NO)ステップS2に戻る。また、ステップS7において、テストの判定結果が良であれば(YES)、良テスト項目/条件,及びテスト結果を保存し(S8)、必要なテスト項目が完了したか否かを判定する(S9)。必要なテスト項目が完了していなければ(NO)ステップS2に戻る。 On the other hand, if circuit adjustment is not possible in step S11 (NO), the failure test item / condition and the test result are stored (S12), and it is determined whether the necessary test items are completed (S13). If the necessary test items are not completed (NO), the process returns to step S2. In step S7, if the test determination result is good (YES), the good test item / condition and the test result are stored (S8), and it is determined whether the required test item is completed (S9). ). If the necessary test items are not completed (NO), the process returns to step S2.
 ステップS9又はS13において、必要なテスト項目が完了していれば(YES)、受信BIST回路13をOFFすることで受信BISTを終了し(S10)、受信モードに戻る。 In step S9 or S13, if the necessary test items are completed (YES), the reception BIST circuit 13 is turned off to end the reception BIST (S10) and return to the reception mode.
 以上のように本実施形態によれば、低周波信号生成器24は、中間周波数信号への変換に使用されるローカル周波数信号fLOよりも周波数が低い低周波信号fIFを生成し、ミクサ26は、その低周波信号fIFと、ローカル周波数信号fLOと同じ周波数の信号とを混合してテスト信号ftestを生成する。そして、テスト信号ftestと受信信号を増幅する増幅器20の入力部とを結合器27により結合させ、制御部3は、テスト信ftest号を用いて増幅器20,ミクサ21及び中間周波数帯増幅器23を有する受信部13の動作をテストする。 As described above, according to the present embodiment, the low frequency signal generator 24 generates the low frequency signal fIF having a frequency lower than that of the local frequency signal fLO used for the conversion to the intermediate frequency signal, and the mixer 26 The test signal ftest is generated by mixing the low frequency signal fIF and a signal having the same frequency as the local frequency signal fLO. Then, the test signal ftest and the input part of the amplifier 20 that amplifies the received signal are coupled by a coupler 27, and the control unit 3 has an amplifier 20, a mixer 21, and an intermediate frequency band amplifier 23 using the test signal ftest. The operation of the receiving unit 13 is tested.
 このように構成すれば、結合器27を介してテスト信号ftestを入力した際に、ミクサ21により変換されて出力される信号は、低周波信号fIFの周波数を有するものとなる。つまり、テスト時には既定の周波数fIFの信号が得られるようになるので、通常の通信動作においてミクサ21により変換される中間周波数信号の周波数に関わらず、受信部13の動作をテストすることが可能になる。 With this configuration, when the test signal ftest is input via the coupler 27, the signal converted and output by the mixer 21 has the frequency of the low-frequency signal fIF. That is, since a signal having a predetermined frequency fIF can be obtained during the test, it is possible to test the operation of the receiving unit 13 regardless of the frequency of the intermediate frequency signal converted by the mixer 21 in the normal communication operation. Become.
  (第2実施形態)
 以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図5に示すように、第2実施形態のミリ波レーダシステム31は、IC2がIC32に置き換えられている。IC32は、受信部33において、中間周波数帯増幅器23の出力部にA/D変換器34を備えている。したがって、制御部35は、自身がA/D変換器を内蔵せずとも、IC32より受信信号をデジタルデータとして取得することができる。
(Second Embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described. As shown in FIG. 5, in the millimeter wave radar system 31 of the second embodiment, IC2 is replaced with IC32. The IC 32 includes an A / D converter 34 at the output unit of the intermediate frequency band amplifier 23 in the receiving unit 33. Therefore, the control unit 35 can acquire the received signal as digital data from the IC 32 without incorporating an A / D converter.
  (第3実施形態)
 図6に示すように、第3実施形態のミリ波レーダシステム41は、第2実施形態のシステム31におけるIC32がIC42に置き換えられている。IC42は、受信BIST部43が、低周波信号生成器24をプログラマブル分周器44に置き換えたもので構成されている。この場合、第1実施形態の図4に示すステップS5において、制御部35がプログラマブル分周器44に分周比を適宜設定する。以上のように構成される第3実施形態によれば、受信BIST部43にプログラマブル分周器44を備えるので、低周波信号fIFの周波数を任意に変更することができる。
(Third embodiment)
As shown in FIG. 6, in the millimeter wave radar system 41 of the third embodiment, the IC 32 in the system 31 of the second embodiment is replaced with an IC. The IC 42 is configured by the reception BIST unit 43 in which the low frequency signal generator 24 is replaced with a programmable frequency divider 44. In this case, in step S5 shown in FIG. 4 of the first embodiment, the control unit 35 appropriately sets a frequency division ratio in the programmable frequency divider 44. According to the third embodiment configured as described above, since the receiving BIST unit 43 includes the programmable frequency divider 44, the frequency of the low frequency signal fIF can be arbitrarily changed.
  (第4実施形態)
 図7に示すように、第4実施形態のミリ波レーダシステム41Aは、第3実施形態のシステム41においてプログラマブル分周器44に入力されるクロック信号が、基準クロック信号fclkに換えて、周波数シンセサイザ6より出力される信号fLO/Nとなっている。この場合、各周波数の一例が第1実施形態の図2に示すものと同様であれば、プログラマブル分周器44に設定する分周比を(13/10000000)とすれば良い。
(Fourth embodiment)
As shown in FIG. 7, the millimeter wave radar system 41 </ b> A of the fourth embodiment has a frequency synthesizer in which the clock signal input to the programmable frequency divider 44 in the system 41 of the third embodiment is changed to the reference clock signal fclk. 6 is a signal fLO / N output from 6. In this case, if an example of each frequency is the same as that shown in FIG. 2 of the first embodiment, the frequency division ratio set in the programmable frequency divider 44 may be (13/10000000).
 このようにプログラマブル分周器44に入力されるクロック信号を、基準クロック信号fclkに換えて、周波数シンセサイザ6より出力される信号fLO/Nにすることで、基準クロック信号fclk周波数より高い周波数を生成することができる。 In this way, the clock signal input to the programmable frequency divider 44 is changed to the signal fLO / N output from the frequency synthesizer 6 in place of the reference clock signal fclk, thereby generating a frequency higher than the reference clock signal fclk frequency. can do.
  (第5実施形態)
 図8に示すように、第5実施形態のミリ波レーダシステム51は、第2実施形態のシステム31におけるIC32がIC52に置き換えられている。IC52は、受信BIST部53が、低周波信号生成器24をPLL周波数シンセサイザ54に置き換えたもので構成されている。以上のように構成される第5実施形態によれば、PLL周波数シンセサイザ54により、低周波信号fIFの設定をより柔軟に行うことができる。
(Fifth embodiment)
As shown in FIG. 8, in the millimeter wave radar system 51 of the fifth embodiment, the IC 32 in the system 31 of the second embodiment is replaced with an IC 52. The IC 52 is configured by a reception BIST unit 53 in which the low frequency signal generator 24 is replaced with a PLL frequency synthesizer 54. According to the fifth embodiment configured as described above, the PLL frequency synthesizer 54 can set the low frequency signal fIF more flexibly.
  (第6実施形態)
 図9に示すように、第6実施形態のミリ波レーダシステム61は、第2実施形態のシステム31におけるIC32がIC62に置き換えられている。IC62では、受信BIST部63において、ミクサ26と各受信チャネル33(1)~33(4)との間に、スイッチ回路64(1)~64(4)が配置されている。スイッチ回路64は例えばアナログスイッチ等で構成され、制御部35が回路制御レジスタ65を介してそのON/OFFを制御可能となっている。スイッチ回路64は出力停止部に相当する。
(Sixth embodiment)
As shown in FIG. 9, in the millimeter wave radar system 61 of the sixth embodiment, the IC 32 in the system 31 of the second embodiment is replaced with an IC 62. In the IC 62, in the reception BIST unit 63, switch circuits 64 (1) to 64 (4) are arranged between the mixer 26 and the reception channels 33 (1) to 33 (4). The switch circuit 64 is configured by an analog switch or the like, for example, and the control unit 35 can control ON / OFF thereof via the circuit control register 65. The switch circuit 64 corresponds to an output stop unit.
 このようにスイッチ回路64(1)~64(4)を配置することで、ミリ波レーダシステム1の通常動作おいて、スイッチ回路64をOFFにすることで、各受信チャネル33(1)~33(4)間のアイソレーションを高めることができる。例えば、スイッチ回路64(1)~64(4)がない場合、各受信チャネル12(1)~12(4)間のアイソレーションは、2つの結合器27のカップリング量でほぼ決まる。 By arranging the switch circuits 64 (1) to 64 (4) in this way, in the normal operation of the millimeter wave radar system 1, by turning off the switch circuit 64, each of the reception channels 33 (1) to 33 (33). The isolation between (4) can be increased. For example, when the switch circuits 64 (1) to 64 (4) are not provided, the isolation between the reception channels 12 (1) to 12 (4) is almost determined by the coupling amount of the two couplers 27.
 尚、スイッチ回路64をテスト信号ftestが伝送される線路に対して、図9に示すように直列に接続する方法でも良いし、並列にDCカットコンデンサを介してグランドとの間に接続し、結合器27の入力端子をグランドレベルに落として前記信号の入力を阻止しても良い。 Note that the switch circuit 64 may be connected in series to the line through which the test signal ftest is transmitted, as shown in FIG. 9, or connected in parallel to the ground via a DC cut capacitor and coupled. The input terminal of the device 27 may be dropped to the ground level to prevent the input of the signal.
  (第7実施形態)
 図10に示すように、第7実施形態のミリ波レーダシステム71は、第6実施形態のシステム61におけるIC62がIC72に置き換えられている。IC72では、受信BIST部73において、スイッチ回路64(1)~64(4)に替えて増幅器74(1)~74(4)が配置されている。増幅器74は、制御部35が回路制御レジスタ65を介して増幅動作を停止可能に構成されており、出力停止部に相当する。
(Seventh embodiment)
As shown in FIG. 10, in the millimeter wave radar system 71 of the seventh embodiment, the IC 62 in the system 61 of the sixth embodiment is replaced with an IC 72. In the IC 72, the reception BIST unit 73 includes amplifiers 74 (1) to 74 (4) instead of the switch circuits 64 (1) to 64 (4). The amplifier 74 is configured such that the control unit 35 can stop the amplification operation via the circuit control register 65, and corresponds to an output stop unit.
 このように増幅器74(1)~74(4)を配置することで、ミクサ26から各受信チャネル33(1)~33(4)までの接続線路の損失や、結合器27の損失により減衰したテスト信号ftestを増幅できる。また、制御部35が、第6実施形態と同様にミリ波レーダシステム1の通常動作おいて、増幅器74をOFFさせることで、各受信チャネル33(1)~33(4)間のアイソレーションを高めることができる。 By arranging the amplifiers 74 (1) to 74 (4) in this way, attenuation is caused by the loss of the connection line from the mixer 26 to each of the reception channels 33 (1) to 33 (4) and the loss of the coupler 27. The test signal ftest can be amplified. Further, the control unit 35 turns off the amplifier 74 in the normal operation of the millimeter wave radar system 1 as in the sixth embodiment, so that the isolation between the reception channels 33 (1) to 33 (4) is achieved. Can be increased.
  (第8実施形態)
 図11に示すように、第8実施形態のミリ波レーダシステム81は、第7実施形態のシステム71におけるIC72がIC82に置き換えられている。IC82では、受信83において、ミクサ21と中間周波数増幅器23との間にハイパスフィルタ84を備えている。このように構成すれば、ミクサ21より出力される信号に含まれる不要な低周波成分をハイパスフィルタ84により除去できる。
(Eighth embodiment)
As shown in FIG. 11, in the millimeter wave radar system 81 of the eighth embodiment, the IC 72 in the system 71 of the seventh embodiment is replaced with an IC 82. In the IC 82, the reception 83 includes a high-pass filter 84 between the mixer 21 and the intermediate frequency amplifier 23. With this configuration, an unnecessary low-frequency component included in the signal output from the mixer 21 can be removed by the high-pass filter 84.
  (第9実施形態)
 図12に示すように、第9実施形態のミリ波レーダシステム81Aは、第8実施形態のシステム81におけるIC82がIC82Aに置き換えられている。IC82Aでは、受信BIST部73Aにおいて、増幅器74の接続位置が第8実施形態と異なるだけである。第9実施形態では、ミクサ26の出力端子に4つの増幅器74(1)~74(4)が直列に接続されており、各増幅器74(1)~74(4)の出力端子と、対応する結合器27(1)~27(4)の入力端子とがそれぞれ接続されている。以上のように構成される第9実施形態によれば、第8実施形態と同様の効果が得られる。
(Ninth embodiment)
As shown in FIG. 12, in the millimeter wave radar system 81A of the ninth embodiment, the IC 82 in the system 81 of the eighth embodiment is replaced with an IC 82A. The IC 82A is different from the eighth embodiment only in the connection position of the amplifier 74 in the reception BIST unit 73A. In the ninth embodiment, four amplifiers 74 (1) to 74 (4) are connected in series to the output terminal of the mixer 26, and correspond to the output terminals of the amplifiers 74 (1) to 74 (4). The input terminals of the couplers 27 (1) to 27 (4) are connected to each other. According to 9th Embodiment comprised as mentioned above, the effect similar to 8th Embodiment is acquired.
  (その他の実施形態)
 受信チャネルの数は「4」に限らず、「3」以下又は「5」以上,例えば8チャネルや16チャネル等であっても良い。また、必ずしも複数の受信チャネルを備える必要はない。
 ステップS7で「NO」と判断した場合に、ステップS14は必要に応じて実行すれば良い。
 ダイレクトコンバージョン方式を行うものに限らず、適用が可能である。
 また、車載ミリ波レーダシステムに適用するものに限らず、受信系においてダウンコンバートを行う受信装置であれば適用が可能である。
 周波数の具体数値については、個別の設計に応じて適宜変更すれば良い。
(Other embodiments)
The number of reception channels is not limited to “4”, but may be “3” or less or “5” or more, for example, 8 channels or 16 channels. Further, it is not always necessary to provide a plurality of reception channels.
If “NO” is determined in the step S7, the step S14 may be executed as necessary.
The present invention is not limited to the direct conversion method and can be applied.
Further, the present invention is not limited to the one applied to the in-vehicle millimeter wave radar system, but can be applied to any receiving device that performs down-conversion in the receiving system.
What is necessary is just to change suitably the specific numerical value of a frequency according to an individual design.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (12)

  1.  受信アンテナ(19)で受信した受信信号を増幅する増幅器(20)と、
     ローカル周波数信号を生成する周波数信号生成部(5,6,22)と、
     前記増幅器により増幅された信号と前記ローカル周波数信号とを混合して中間周波数信号に変換する周波数変換部(21)と、
     前記中間周波数信号を増幅する中間周波数帯増幅器(23)と、
     前記ローカル周波数信号よりも周波数が低い低周波信号を生成する低周波信号生成部(24,44,54)と、
     前記低周波信号と、前記ローカル周波数信号と同じ周波数の信号とを混合してテスト信号を生成するテスト信号生成部(26)と、
     前記テスト信号と前記増幅器の入力部とを結合させる結合器(27)と、
     前記テスト信号を用いて、前記増幅器,前記周波数変換部及び前記中間周波数帯増幅器を有する受信部(12,33,83)の動作をテストする制御部(3,35)とを備える受信装置。
    An amplifier (20) for amplifying the received signal received by the receiving antenna (19);
    A frequency signal generator (5, 6, 22) for generating a local frequency signal;
    A frequency converter (21) for mixing the signal amplified by the amplifier and the local frequency signal and converting the mixed signal into an intermediate frequency signal;
    An intermediate frequency amplifier (23) for amplifying the intermediate frequency signal;
    A low frequency signal generator (24, 44, 54) for generating a low frequency signal having a frequency lower than that of the local frequency signal;
    A test signal generator (26) for generating a test signal by mixing the low frequency signal and a signal having the same frequency as the local frequency signal;
    A coupler (27) for coupling the test signal and the input of the amplifier;
    And a control unit (3, 35) for testing the operation of the reception unit (12, 33, 83) having the amplifier, the frequency conversion unit, and the intermediate frequency band amplifier using the test signal.
  2.  前記制御部は、前記テストの結果より、前記受信部の動作が所望の周波数特性を満たしていないと判断すると、前記周波数特性を満たすように周波数調整制御,及び/又は前記増幅器若しくは前記中間周波数帯増幅器の利得調整制御を行う請求項1記載の受信装置。 If the control unit determines that the operation of the receiving unit does not satisfy a desired frequency characteristic from the result of the test, the control unit performs frequency adjustment control and / or the amplifier or the intermediate frequency band so as to satisfy the frequency characteristic. The receiving apparatus according to claim 1, wherein gain adjustment control of the amplifier is performed.
  3.  前記中間周波数信号を、A/D変換して前記制御部に入力するA/D変換器(34)を備える請求項1又は2記載の受信装置。 The receiving apparatus according to claim 1 or 2, further comprising an A / D converter (34) for A / D converting the intermediate frequency signal and inputting the signal to the control unit.
  4.  前記低周波信号生成部は、前記周波数信号生成部に入力される基準クロック信号から、前記低周波信号を生成する周波数シンセサイザ(54)で構成される請求項1から3の何れか一項に記載の受信装置。 The said low frequency signal generation part is comprised from the frequency synthesizer (54) which produces | generates the said low frequency signal from the reference clock signal input into the said frequency signal generation part. Receiver.
  5.  前記低周波信号生成部は、前記周波数信号生成部に入力される基準クロック信号を分周する分周比の設定が、前記制御部により変更可能な分周器(44)で構成される請求項1から3の何れか一項に記載の受信装置。 The low frequency signal generation unit includes a frequency divider (44) in which a setting of a frequency division ratio for dividing a reference clock signal input to the frequency signal generation unit can be changed by the control unit. The receiving device according to any one of 1 to 3.
  6.  前記低周波信号生成部は、前記周波数信号生成部より出力される信号を分周する分周器で構成される請求項1から3の何れか一項に記載の受信装置。 The receiving apparatus according to any one of claims 1 to 3, wherein the low-frequency signal generation unit includes a frequency divider that divides a signal output from the frequency signal generation unit.
  7.  前記テスト信号生成部と前記結合器との間に、前記テスト信号の出力を停止させる出力停止部(64,74)を備える請求項1から6の何れか一項に記載の受信装置。 The receiving device according to any one of claims 1 to 6, further comprising an output stop unit (64, 74) for stopping the output of the test signal between the test signal generation unit and the coupler.
  8.  前記受信部は、複数の受信チャネルを備え、
     前記出力停止部は、前記テスト信号生成部と前記複数の受信チャネルに対応する結合器との間の線路にそれぞれ配置されている請求項7記載の受信装置。
    The receiving unit includes a plurality of receiving channels,
    The receiving device according to claim 7, wherein the output stop unit is disposed on a line between the test signal generation unit and a coupler corresponding to the plurality of reception channels.
  9.  前記出力停止部は、スイッチ(64)である請求項7又は8記載の受信装置。 The receiving device according to claim 7 or 8, wherein the output stop unit is a switch (64).
  10.  前記出力停止部は、増幅動作を停止可能な増幅器(74)である請求項7又は8記載の受信装置。 The receiving device according to claim 7 or 8, wherein the output stop unit is an amplifier (74) capable of stopping an amplification operation.
  11.  前記周波数変換部と前記中間周波数帯増幅器との間に、ハイパスフィルタ(84)を備える請求項1から10の何れか一項に記載の受信装置。 The receiving device according to any one of claims 1 to 10, further comprising a high-pass filter (84) between the frequency converter and the intermediate frequency band amplifier.
  12.  車載ミリ波レーダシステム(1,21,31,41,41A,51,61,71,81,81A)に適用される請求項1から11の何れか一項に記載の受信装置。
     
    The receiving device according to any one of claims 1 to 11, which is applied to an in-vehicle millimeter wave radar system (1, 21, 31, 41, 41A, 51, 61, 71, 81, 81A).
PCT/JP2017/002727 2016-04-13 2017-01-26 Reception device WO2017179265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016080326A JP2017192018A (en) 2016-04-13 2016-04-13 Receiving device
JP2016-080326 2016-04-13

Publications (1)

Publication Number Publication Date
WO2017179265A1 true WO2017179265A1 (en) 2017-10-19

Family

ID=60041587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002727 WO2017179265A1 (en) 2016-04-13 2017-01-26 Reception device

Country Status (2)

Country Link
JP (1) JP2017192018A (en)
WO (1) WO2017179265A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627810A (en) * 2018-05-04 2018-10-09 吉林大学 Intelligent automobile millimetre-wave radar hardware-in―the-loop test rack
JP2021110589A (en) * 2020-01-08 2021-08-02 株式会社デンソー Self-diagnosing device
JP2021110588A (en) * 2020-01-08 2021-08-02 株式会社デンソー Self-diagnosing device
US11237249B2 (en) 2018-01-22 2022-02-01 Mediatek Inc. Apparatus and method for applying frequency calibration to local oscillator signal derived from reference clock output of active oscillator that has no electromechanical resonator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063004B2 (en) * 2018-02-27 2022-05-09 株式会社デンソー Self-diagnosis device
JP7279580B2 (en) * 2019-08-22 2023-05-23 株式会社デンソー self-diagnostic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096647A (en) * 2005-09-28 2007-04-12 Hitachi Kokusai Electric Inc Receiver
JP2008228038A (en) * 2007-03-14 2008-09-25 Renesas Technology Corp Semiconductor integrated circuit and test method thereof
JP2008300900A (en) * 2007-05-29 2008-12-11 Fujitsu Ltd Online diagnostic method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096647A (en) * 2005-09-28 2007-04-12 Hitachi Kokusai Electric Inc Receiver
JP2008228038A (en) * 2007-03-14 2008-09-25 Renesas Technology Corp Semiconductor integrated circuit and test method thereof
JP2008300900A (en) * 2007-05-29 2008-12-11 Fujitsu Ltd Online diagnostic method and apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11237249B2 (en) 2018-01-22 2022-02-01 Mediatek Inc. Apparatus and method for applying frequency calibration to local oscillator signal derived from reference clock output of active oscillator that has no electromechanical resonator
US11693089B2 (en) 2018-01-22 2023-07-04 Mediatek Inc. Apparatus and method for applying frequency calibration to local oscillator signal derived from reference clock output of active oscillator
CN108627810A (en) * 2018-05-04 2018-10-09 吉林大学 Intelligent automobile millimetre-wave radar hardware-in―the-loop test rack
CN108627810B (en) * 2018-05-04 2023-05-05 吉林大学 Intelligent automobile millimeter wave radar hardware-in-the-loop test bench
JP2021110589A (en) * 2020-01-08 2021-08-02 株式会社デンソー Self-diagnosing device
JP2021110588A (en) * 2020-01-08 2021-08-02 株式会社デンソー Self-diagnosing device
JP7327169B2 (en) 2020-01-08 2023-08-16 株式会社デンソー self-diagnostic device
JP7327168B2 (en) 2020-01-08 2023-08-16 株式会社デンソー self-diagnostic device

Also Published As

Publication number Publication date
JP2017192018A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2017179265A1 (en) Reception device
US9817106B2 (en) Phased-array transmitter, transceiver, and radar apparatus
EP2454642B1 (en) Integrated circuit, communication unit and method for phase adjustment
EP2454832B1 (en) Integrated circuit, transceiver and method for leakage cancellation in a receive path
CN108282234A (en) Generate method, corresponding circuit and the device of trial signal of testing oneself
CN109905184B9 (en) Circuit and method for high frequency signal and high frequency device
KR100612206B1 (en) Radar system using quadrature signal
CN110071772B (en) Radio system, calibration system, and LO signal calibration method
US20080225759A1 (en) Radio communication apparatus
US8036627B2 (en) Bidirectional frequency mixer, radiofrequency transceiver system including such a mixer
US10673442B2 (en) Testing properties of a voltage-controlled oscillator
JP7063004B2 (en) Self-diagnosis device
US9148103B2 (en) Gain measurement circuit, gain measurement method, and communication apparatus
CN117278026B (en) Radio frequency self-calibration method
US11658690B2 (en) Transceiver droop calibration
US20240106469A1 (en) Spurious emissions detection and calibration using envelope detector
Ebrahimi et al. A 71–86 GHz bidirectional image selection transceiver architecture
US8902019B2 (en) Electronic circuit
CN111987995B (en) Comb signal source based on frequency mixing modulation feedback loop
WO2021191970A1 (en) Transceiver
JP2016086417A (en) Frequency mixer, frequency converter, signal quality measurement system, and transmitter
KR101947905B1 (en) Apparatus for sensitivity improvement of radiometers by using image frequency bands
WO2004091179A1 (en) Dual band superheterodyne radar receiver
KR20110139027A (en) Rf integrated circuit for development
KR20110139029A (en) Rf circuit

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782084

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782084

Country of ref document: EP

Kind code of ref document: A1