WO2017179200A1 - On-board charger - Google Patents

On-board charger Download PDF

Info

Publication number
WO2017179200A1
WO2017179200A1 PCT/JP2016/062142 JP2016062142W WO2017179200A1 WO 2017179200 A1 WO2017179200 A1 WO 2017179200A1 JP 2016062142 W JP2016062142 W JP 2016062142W WO 2017179200 A1 WO2017179200 A1 WO 2017179200A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
mode
failure
circuit
failure determination
Prior art date
Application number
PCT/JP2016/062142
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 大林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018511862A priority Critical patent/JP6362812B2/en
Priority to PCT/JP2016/062142 priority patent/WO2017179200A1/en
Priority to CN201680084472.7A priority patent/CN109075705B/en
Priority to DE112016006573.6T priority patent/DE112016006573T5/en
Publication of WO2017179200A1 publication Critical patent/WO2017179200A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • the present invention relates to an in-vehicle charger.
  • the inverter has a plurality of switching elements, and a circuit that turns on and off the output by turning on and off these switching elements, a so-called “switching output circuit” is used.
  • Patent Document 1 discloses a technique for detecting and displaying an overcurrent flowing through a switching element in an inverter.
  • Electric vehicles such as EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), or PHEV (Plug-in Hybrid Electric Vehicle) are charged with a battery for driving by an external power source such as a household power source or a dedicated charging stand.
  • the so-called “OBC (On Board Charger)” is installed.
  • the OBC has a converter that converts DC power into DC power (hereinafter referred to as “DC-DC converter”).
  • DC-DC converter converts DC power into DC power
  • AC-DC converter which converts alternating current power into direct-current power, when an external power supply is alternating current power supply.
  • a switching output circuit similar to the inverter is used for the DC / DC converter for OBC.
  • a bridge circuit including four switching elements a so-called “full bridge circuit” is used.
  • a bridge circuit including two switching elements a so-called “half bridge circuit” is used.
  • the DC / DC converter for OBC is provided with a circuit for detecting an overcurrent flowing through these switching output circuits.
  • OBC Since OBC is an important member in the charging system of an electric vehicle, it is required to reliably detect a failure. On the other hand, since OBC has a high replacement cost, it is required to prevent erroneous detection of a failure. For this reason, in the conventional OBC, when an overcurrent is detected in the switching output circuit of the DC / DC converter, the charging operation is temporarily stopped and then restarted, and the overcurrent continues for a predetermined number of times (for example, three times). If it is detected, it is determined that the DC / DC converter has failed.
  • the DC / DC converter for OBC has a small initial value of the duty ratio of the output operation by the switching output circuit from the viewpoint of stabilizing the charging operation immediately after the start of charging (for example, it is set to several percent), and thereafter, the value of the duty ratio is set to gradually increase. Since the on-time for several tens to several hundreds of times after the start of charging is short, the overcurrent cannot be detected even if an overcurrent flows through the switching output circuit.
  • the present invention has been made in order to solve the above-described problems, and in a vehicle-mounted charger, a failure of a DC / DC converter is detected at an early stage, and a secondary failure due to an overcurrent is suppressed. For the purpose.
  • the in-vehicle charger of the present invention includes a DC / DC converter having a switching output circuit, a switching mode for executing an output operation by the switching output circuit, and whether or not there is a failure in the switching output circuit in a state where the output operation is stopped.
  • a control unit capable of switching between a failure determination mode for determination, and when charging of a driving battery provided in the vehicle is started, operates in the failure determination mode prior to the switching mode, and the failure in the switching output circuit When it is determined that there is no power, the mode is switched to the switching mode.
  • the in-vehicle charger of the present invention has a failure determination mode that is separate from the switching mode, and operates in the failure determination mode before the switching mode when charging of the driving battery is started.
  • FIG. 1 is an explanatory diagram showing a main part of the in-vehicle charger according to Embodiment 1 of the present invention. With reference to FIG. 1, the vehicle-mounted charger 100 of Embodiment 1 is demonstrated.
  • the external power source 1 is composed of an AC power source.
  • the external power source 1 is constituted by a household power source or a dedicated charging stand.
  • the vehicle 2 is configured by an electric vehicle such as EV, HEV, or PHEV.
  • the vehicle 2 has a charging terminal 3 that can be connected to the external power source 1, and has a driving battery 4.
  • the driving battery 4 is constituted by, for example, a lithium ion secondary battery or a nickel hydride secondary battery.
  • the AC / DC converter 11 is constituted by, for example, an AC / DC converter using a full-bridge circuit, that is, a so-called “full-bridge type AC / DC converter”.
  • a switching output circuit 12, a transformer circuit 13, a rectifier circuit 14, and a smoothing circuit 15 are sequentially connected between the AC / DC converter 11 and the driving battery 4.
  • the switching output circuit 12, the transformer circuit 13, the rectifier circuit 14 and the smoothing circuit 15 constitute a DC / DC converter 16.
  • a control unit 17 for the switching output circuit 12 is provided.
  • the switching output circuit 12 is configured by, for example, a full bridge circuit.
  • the transformer circuit 13 is configured by, for example, a transformer formed by winding a primary winding and a secondary winding around an iron core.
  • the rectifier circuit 14 is configured by a diode, for example.
  • the smoothing circuit 15 is configured by, for example, an LC filter including a coil (L) formed by winding a winding around an iron core and a capacitor (C). That is, the DC / DC converter 16 is configured by a so-called “full-bridge DC / DC converter”.
  • the control part 17 is comprised by processors, such as a microcontroller or DSP (Digital Signal Processor), for example.
  • the main part of the in-vehicle charger 100 is configured by the AC / DC converter 11, the DC / DC converter 16 and the controller 17.
  • the in-vehicle charger 100 is mounted on the vehicle 2 and is a charger that charges the driving battery 4 using the external power source 1, that is, an OBC.
  • the full bridge circuit 21 is composed of four switching elements Q1 to Q4. Each of the switching elements Q1 to Q4 is configured by an N-channel MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • the drive circuit 22 turns on the switching elements Q1 to Q4 by supplying a driving voltage of a predetermined value (for example, 5 volts) to the gate terminals of the switching elements Q1 to Q4 according to the drive signal input from the control unit 17 Set the state.
  • the drive circuit 22 sets the switching elements Q1 to Q4 to the off state by stopping the supply of the drive voltage.
  • the current detection circuit 23 detects the current value of the current flowing through the full bridge circuit 21.
  • the current detection circuit 23 is configured by, for example, a current transformer formed by winding a primary winding and a secondary winding around an iron core.
  • the overcurrent detection circuit 24 detects an overcurrent flowing through the full bridge circuit 21. That is, the overcurrent detection circuit 24 is preset with a threshold value to be compared with the current value detected by the current detection circuit 23. The overcurrent detection circuit 24 compares the current value detected by the current detection circuit 23 with a threshold value. When the current value exceeds the threshold value, the overcurrent detection circuit 24 outputs a signal indicating that to the control unit 17 and outputs a gate cutoff signal to the drive circuit 22.
  • the overcurrent detection circuit 24 is configured by a comparator using an operational amplifier, for example.
  • the drive circuit 22 supplies the drive voltage to all the switching elements Q1 to Q4 regardless of whether the drive signal is input from the control unit 17. Is supposed to stop.
  • the main part of the switching output circuit 12 is configured by the full bridge circuit 21, the drive circuit 22, the current detection circuit 23, and the overcurrent detection circuit 24.
  • the DC / DC converter 16 has four operation modes: a charge start mode, a switching mode, a charge stop mode, and a failure determination mode.
  • the charging start mode is an operation mode that is set first every time charging of the driving battery 4 is started.
  • the drive circuit 22 stops supplying drive voltages to all the switching elements Q1 to Q4.
  • the switching mode is an operation mode in which the driving battery 4 is charged by executing an output operation by the switching output circuit 12 (hereinafter sometimes simply referred to as “output operation”).
  • the drive circuit 22 alternately applies drive voltages to the two switching elements Q2 and Q3 and the remaining switching elements Q1 and Q4 among the four switching elements Q1 to Q4 included in the full bridge circuit 21.
  • the cycle of the output operation in the switching mode is set to 13 microseconds, for example.
  • the switching mode includes a slow start mode in which the value of the duty ratio in the output operation is gradually increased, and a steady switching mode in which the value of the duty ratio is a constant value after shifting from the slow start mode.
  • the duty ratio in the slow start mode is set such that the lower limit value (that is, the initial value) is greater than 0 percent and less than 10 percent, and the upper limit value (that is, the final value) is greater than 40 percent and 50%. It is set to a value less than a percentage.
  • the duty ratio in the steady switching mode is set to a value equivalent to the upper limit value in the slow start mode.
  • the charge stop mode is an operation mode in which charging of the drive battery 4 is stopped.
  • the drive circuit 22 stops supplying the drive voltage to all the switching elements Q1 to Q4.
  • the failure determination mode is an operation mode for determining whether or not there is a failure in the switching output circuit 12 in a state where the output operation is stopped. Specifically, for example, among the four switching elements Q1 to Q4 included in the full bridge circuit 21, whether or not there is a short circuit failure in the two switching elements Q1 and Q3 connected to the high potential side, The presence or absence of a short circuit failure is determined in the two switching elements Q2 and Q4 connected to the low potential side.
  • the drive circuit 22 alternately supplies a drive voltage to the low potential side switching elements Q2, Q4 and the high potential side switching elements Q1, Q3 once each.
  • a drive voltage is supplied to the low potential side switching elements Q2 and Q4
  • the overcurrent detection circuit 24 detects an overcurrent
  • a short circuit failure occurs in at least one of the high potential side switching elements Q1 and Q3. It is determined that
  • a driving voltage is supplied to the high potential side switching elements Q1 and Q3
  • the overcurrent detection circuit 24 detects an overcurrent, a short circuit failure occurs in at least one of the low potential side switching elements Q2 and Q4. It is determined that
  • the on-time of each of the switching elements Q1 to Q4 in the failure determination mode is an overcurrent detection circuit when an overcurrent flows through the full bridge circuit 21 due to a short circuit failure of any of the switching elements Q1 to Q4. 24 is set to a value large enough to detect this overcurrent. In addition, the on-time is set to a small value such that the temperature rise value of the switching elements Q1 to Q4 due to the overcurrent in the failure determination mode of a predetermined number of times (for example, 3 times) is not more than a preset reference value. ing.
  • This reference value is, for example, a value obtained by subtracting a predicted value or a measured value of the environmental temperature in the in-vehicle charger 100 during charging from the upper limit value (eg, 150 ° C. to 175 ° C.) of the heat resistant temperature of the switching elements Q1 to Q4. It is. Specifically, the on-time of the low-potential side switching elements Q2 and Q4 is set to 50 milliseconds, for example, and the on-time of the high-potential side switching elements Q1 and Q3 is also 50 milliseconds. Is set to
  • the operation mode setting unit 31 sets the operation mode of the DC / DC conversion unit 16.
  • the drive signal output unit 32 outputs a drive signal corresponding to each of the switching elements Q1 to Q4 to the drive circuit 22 at a timing according to the operation mode set by the operation mode setting unit 31.
  • the operation mode setting unit 31 first sets the operation mode of the DC / DC conversion unit 16 to the charge start mode when starting to charge the drive battery 4, and then shifts to the failure determination mode. When it is determined that there is no failure in the switching output circuit 12 in the failure determination mode, the operation mode setting unit 31 shifts to the switching mode.
  • the abnormality detection unit 33 monitors the output of the overcurrent detection circuit 24 and detects the abnormal state of the switching output circuit 12 during operation in the switching mode. That is, the abnormal state is a state in which an overcurrent flows through the full bridge circuit 21.
  • the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the switching mode to the charge stop mode, and then sequentially shifts to the charge start mode and the failure determination mode. It is supposed to be.
  • the failure determination unit 34 monitors the output of the overcurrent detection circuit 24 during operation in the failure determination mode, and determines whether or not there is a failure in the switching output circuit 12. Specifically, for example, when the overcurrent is detected when the drive signal corresponding to the low-potential side switching elements Q2 and Q4 is output, the failure determination unit 34 detects the high-potential side switching elements Q1 and Q3. It is determined that a short circuit failure has occurred in at least one of them. Further, when an overcurrent is detected when a drive signal corresponding to the high-potential side switching elements Q1 and Q3 is output, the failure determination unit 34 selects at least one of the low-potential side switching elements Q2 and Q4. It is determined that a short circuit failure has occurred.
  • the operation mode setting unit 31 When the failure determination unit 34 determines that the short-circuit fault has occurred in at least one of the high-potential side switching elements Q1 and Q3 or the low-potential side switching elements Q2 and Q4, the operation mode setting unit 31 The operation mode of the DC converter 16 is shifted from the failure determination mode to the charge stop mode. Further, the operation mode setting unit 31 causes the failure determination unit 34 to continuously short-circuit at least one of the high-potential side switching elements Q1 and Q3 or the low-potential side switching elements Q2 and Q4 a predetermined number of times (for example, 3 times). When it is determined that there is a failure, the operation mode of the DC / DC converter 16 is fixed to the charge stop mode, and thereafter the operation mode is not changed. At this time, the operation mode setting unit 31 instructs the failure signal transmission unit 35 to transmit a signal indicating that the in-vehicle charger 100 has failed (hereinafter referred to as “failure signal”).
  • the failure signal transmitter 35 transmits a failure signal to an external device (not shown).
  • the external device is, for example, a control device for an instrument panel provided in the vehicle 2.
  • the control device turns on a warning light indicating that the charging system of the drive battery 4 is out of the warning lights provided on the instrument panel.
  • the operation mode setting unit 31, the drive signal output unit 32, the abnormality detection unit 33, the failure determination unit 34, and the failure signal transmission unit 35 constitute a main part of the control unit 17.
  • control unit 17 will be described with reference to the flowchart of FIG. 3, focusing on the operations of the operation mode setting unit 31, the abnormality detection unit 33, the failure determination unit 34, and the failure signal transmission unit 35.
  • the number of failure determinations by the failure determination unit 34 serving as a reference for fixing the operation mode and transmitting a failure signal is set to three.
  • step ST1 the operation mode setting unit 31 sets the operation mode of the DC / DC conversion unit 16 to the charge start mode.
  • the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the charge start mode to the failure determination mode.
  • the operation mode setting unit 31 notifies the failure determination unit 34 that the operation mode has been shifted to the failure determination mode.
  • the operation mode setting unit 31 fails the timing at which the drive signals corresponding to the low potential side switching elements Q2 and Q4 are output and the timing at which the drive signals corresponding to the high potential side switching elements Q1 and Q3 are output.
  • the determination unit 34 is notified.
  • the failure determination unit 34 monitors the output of the overcurrent detection circuit 24 during operation in the failure determination mode, and determines whether there is a failure in the switching output circuit 12. That is, the failure determination unit 34 determines whether or not a short circuit failure has occurred in the high potential side switching elements Q1 and Q3, and whether or not a short circuit failure has occurred in the low potential side switching elements Q2 and Q4. judge. The failure determination unit 34 outputs the determination result to the operation mode setting unit 31.
  • the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the charge stop mode.
  • step ST5 the operation mode setting unit 31 refers to the determination result of the failure determination unit 34 in the last three steps ST3.
  • the number of times that the failure determination unit 34 has determined that a short-circuit failure has occurred in the high-potential side switching elements Q1, Q3 is less than 3, and a short-circuit failure has occurred in the low-potential side switching elements Q2, Q4. If the number of times determined to be present is less than three (step ST5 “NO”), the operation mode setting unit 31 returns to step ST1 and sets the operation mode of the DC / DC conversion unit 16 to the charge start mode.
  • the number of times that the failure determination unit 34 determines that a short-circuit failure has occurred in at least one of the high-potential side switching elements Q1 and Q3 or the low-potential side switching elements Q2 and Q4 is three or more. If present (step ST5 “YES”), in step ST6, the operation mode setting unit 31 fixes the operation mode of the DC / DC conversion unit 16 to the charge stop mode. The operation mode setting unit 31 instructs the failure signal transmission unit 35 to transmit a failure signal.
  • step ST7 the failure signal transmitter 35 transmits a failure signal to the external device.
  • step ST11 the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the slow start mode. Further, the operation mode setting unit 31 notifies the abnormality detection unit 33 that the mode has been switched to the switching mode.
  • step ST12 the abnormality detection unit 33 monitors the output of the overcurrent detection circuit 24 during the operation in the slow start mode.
  • the abnormality detection unit 33 notifies the operation mode setting unit 31 to that effect. .
  • step ST13 the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the slow start mode to the charge stop mode.
  • step ST13 the operation mode setting unit 31 returns to step ST1 and sets the DC / DC conversion unit 16 in the charge start mode.
  • the operation mode setting unit 31 sets the operation mode of the DC / DC conversion unit 16 in step ST21. Transition from slow start mode to steady switching mode.
  • step ST22 the abnormality detection unit 33 monitors the output of the overcurrent detection circuit 24 during the operation in the steady switching mode.
  • the abnormality detection unit 33 notifies the operation mode setting unit 31 to that effect. .
  • step ST23 the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the steady switching mode to the charge stop mode.
  • the operation mode setting unit 31 returns to step ST1 and sets the DC / DC conversion unit 16 in the charge start mode.
  • step ST22 “NO” when the steady switching mode ends without receiving a notification that an abnormal state has been detected (step ST22 “NO”), the control unit 17 ends the process.
  • the charging of the driving battery 4 is completed when the charging of the driving battery 4 is completed, the connection between the charging terminal 3 and the external power source 1 is released, or the operation of an input device (not shown). Exit when instructed.
  • FIG. 4 shows the drive signals corresponding to the switching elements Q1 to Q4, the on / off states of the switching elements Q1 to Q4, and the determination by the failure determination unit 34 when none of the switching elements Q1 to Q4 has a short circuit fault. It is a timing diagram which shows the flag which shows a result, and a gate interruption
  • the operation mode setting unit 31 first sets the operation mode of the DC / DC conversion unit 16 to the charge start mode.
  • the drive signal output unit 32 stops outputting drive signals corresponding to all the switching elements Q1 to Q4. For this reason, the supply of the drive voltage to all the switching elements Q1 to Q4 is stopped, and the switching elements Q1 to Q4 are all in the off state.
  • the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the charge start mode to the failure determination mode.
  • the drive signal output unit 32 first outputs drive signals corresponding to the low potential side switching elements Q2 and Q4, and then outputs drive signals corresponding to the high potential side switching elements Q1 and Q3. To do.
  • the drive signal first, the drive voltage is supplied to the switching elements Q2 and Q4, and then the drive voltage is supplied to the switching elements Q1 and Q3.
  • switching elements Q2 and Q4 are turned on, and then switching elements Q1 and Q3 are turned on.
  • the on-time of switching elements Q2 and Q4 and the on-time of switching elements Q1 and Q3 are both set to 50 milliseconds.
  • the failure determination unit 34 determines that there is no failure in the switching output circuit 12.
  • the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the slow start mode.
  • the drive signal output unit 32 alternately outputs drive signals corresponding to the two switching elements Q2 and Q3 and drive signals corresponding to the remaining switching elements Q1 and Q4.
  • a driving voltage is alternately applied to the switching elements Q2, Q3 and the switching elements Q1, Q4 according to the driving signal.
  • switching elements Q2, Q3 and switching elements Q1, Q4 are alternately turned on. Thereby, the output operation of the switching output circuit 12 is executed, and the driving battery 4 is charged.
  • the output operation cycle is set to 13 microseconds.
  • the duty ratio of the output operation is set such that the lower limit value (ie, the initial value) is greater than 0 percent and less than 10 percent, specifically 1 percent, and the upper limit value (ie, the final value) is greater than 40 percent. It is set to a value less than 50%, specifically 48%.
  • the duty ratio value is gradually increased within a set range, and is repeatedly turned on and off for several hundred cycles, for example. Note that FIG. 4 is illustrated so that the value of the duty ratio increases rapidly over three cycles for easy understanding.
  • control unit 17 shifts the operation mode of the DC / DC conversion unit 16 from the slow start mode to the steady switching mode.
  • the period of the output operation in the steady switching mode is set to a value (13 microseconds) equivalent to that in the slow start mode.
  • the duty ratio in the steady switching mode is set to a value (48%) equivalent to the upper limit value in the slow start mode.
  • FIG. 5 shows a drive signal corresponding to the switching elements Q1 to Q4, an on / off state of the switching elements Q1 to Q4, and a flag indicating a determination result by the failure determination unit 34 when a short circuit failure occurs in the switching element Q2. It is a timing diagram which shows a gate interruption
  • the operation mode setting unit 31 first sets the operation mode of the DC / DC conversion unit 16 to the charge start mode. Next, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the charge start mode to the failure determination mode.
  • the switching element Q2 since a short circuit failure has occurred in the switching element Q2, the switching element Q2 is in a state equivalent to being always on regardless of whether or not the drive voltage is supplied. For this reason, when the drive signal output unit 32 outputs a drive signal corresponding to the switching elements Q1 and Q3, the switching element Q1 that is turned on by the supply of the driving voltage and the switching element Q2 in which a short-circuit fault has occurred are excessively transmitted. Current flows.
  • the overcurrent detection circuit 24 detects this overcurrent and outputs a gate cutoff signal to the drive circuit 22. As a result, drive circuit 22 stops supplying drive voltage to switching elements Q1 and Q3, and switching elements Q1 and Q3 are turned off. Further, the failure determination unit 34 turns on the determination result flag and determines that a short-circuit failure has occurred in at least one of the low-potential-side switching elements Q2 and Q4.
  • the overcurrent detection circuit 24 when the overcurrent detection circuit 24 outputs the gate cutoff signal, when the short-circuit failure occurs in the switching element Q2, the time during which the overcurrent flows to the other switching element Q1 in each failure determination mode is predetermined.
  • the ON time 50 milliseconds
  • the ON time can be further shortened. Thereby, the temperature rise of the switching element Q1 can be suppressed, and the occurrence of a secondary failure can be prevented more reliably.
  • the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the charge stop mode. At this time, the operation mode setting unit 31 resets the flag of the failure determination unit 34. Thereafter, the operation mode setting unit 31 sequentially shifts the operation mode of the DC / DC conversion unit 16 to the charge start mode and the failure determination mode. When the operation mode shifts to the charge start mode, the operation mode setting unit 31 cancels the output of the gate cutoff signal by the overcurrent detection circuit 24. In FIG. 1, connection lines between the operation mode setting unit 31 and the overcurrent detection circuit 24 are not shown.
  • a conventional in-vehicle charger does not have an operation mode corresponding to the failure determination mode of the first embodiment, and detects an abnormal state (that is, a state in which an overcurrent flows) during operation in the switching mode. In addition, the mode has again shifted to the switching mode via the charge stop mode and the charge start mode. At this time, if an overcurrent is continuously detected a predetermined number of times in the switching mode, it is determined that the DC / DC converter has failed, the operation mode is fixed to the charge stop mode, and a failure signal is transmitted.
  • the slow start mode is included in the switching mode.
  • the individual on-time in the majority including the first half in the slow start mode is 1 to 40 percent of time for ten or more microseconds, and is shorter than the response time of the current detection circuit using a current transformer or the like. For this reason, even if a short circuit failure occurs in any of the switching elements and an overcurrent flows, the overcurrent cannot be detected in the majority including the first half in the slow start mode.
  • the conventional on-vehicle charger detects an overcurrent a predetermined number of times when a short circuit failure occurs in any one of the plurality of switching elements included in the switching output circuit of the DC / DC converter.
  • an overcurrent corresponding to the number of times obtained by multiplying the tens to hundreds of times by the predetermined number of times flows in the switching output circuit of the DC / DC converter. Due to this overcurrent, the temperature of other switching elements in which a short circuit failure has not occurred rises, causing a secondary failure.
  • the in-vehicle charger 100 has a failure determination mode that is separate from the switching mode, and the failure determination is performed before the switching mode when charging of the driving battery 4 is started. Operates in mode. In the failure determination mode, the ON times of the individual switching elements Q1 to Q4 are large enough to detect the overcurrent flowing through the full bridge circuit 21 by the overcurrent detection circuit 24, and this overcurrent is detected. Is set to a small value such that the temperature rise values of the switching elements Q1 to Q4 are less than or equal to the reference value.
  • the current flows through the full bridge circuit 21 after a short circuit failure has occurred in any of the switching elements Q1 to Q4 until the failure determination unit 34 determines that a short circuit failure has occurred a predetermined number of times (three times). It is possible to reduce the overcurrent and suppress the occurrence of a secondary failure due to the overcurrent.
  • a predetermined number of times three times
  • the external power source 1 may be a DC power source.
  • the in-vehicle charger 100 may be configured by the DC / DC converter 16 and the controller 17 by removing the AC / DC converter 11 shown in FIG.
  • the AC / DC converter 11 is not limited to a full-bridge AC / DC converter.
  • the AC / DC converter 11 may be configured by an AC / DC converter using a half-bridge circuit, that is, a so-called “half-bridge AC / DC converter”.
  • the circuit configurations of the transformer circuit 13, the rectifier circuit 14, and the smoothing circuit 15 are not limited to the example shown in FIG. Any circuit configuration may be used as long as it transforms, rectifies, and smoothes the output of the switching output circuit 12.
  • the switching elements Q1 to Q4 are not limited to N-channel MOSFETs as long as they use so-called “power semiconductors”.
  • the switching elements Q1 to Q4 may be, for example, those using P-channel MOSFETs or IGBTs (Insulated Gate Bipolar Transistors).
  • the switching output circuit 12 may be provided with a half bridge circuit in place of the full bridge circuit 21. That is, the DC / DC converter 16 is not limited to a full-bridge DC / DC converter, but may be a so-called “half-bridge DC / DC converter”. However, when a half-bridge circuit is used for the switching output circuit 12, the two switching elements are alternately turned on in the failure determination mode as in the switching mode. For this reason, it is necessary to add a circuit for stopping the output operation in the failure determination mode to the output side of the switching output circuit 12. It is more preferable to use the full bridge circuit 21 as the switching output circuit 12 from the viewpoint of reducing the cost by eliminating such an additional circuit and corresponding to the large power of OBC.
  • the current detection circuit 23 may be any circuit as long as it can detect a current value, and is not limited to a current transformer.
  • the current detection circuit 23 may be constituted by, for example, a shunt formed by connecting a resistor to a shunt, or a dedicated IC (Integrated Circuit).
  • the number of times of failure determination by the failure determination unit 34 serving as a reference for fixing the operation mode and transmitting a failure signal is not limited to three.
  • the number of times may be set to any number of times of two or more. However, from the viewpoint of more reliably preventing the occurrence of a secondary failure, it is preferable to set the number of times as small as possible.
  • the overcurrent detection circuit 24 has a circuit configuration that does not output a gate cutoff signal to the drive circuit 22, it is required to reduce the number of times.
  • the on-time of the individual switching elements Q1 to Q4 in the failure determination mode is not limited to 50 milliseconds.
  • the on-time is a value large enough to allow the overcurrent detection circuit 24 to detect the overcurrent flowing through the full bridge circuit 21, and the temperature rise value of the switching elements Q1 to Q4 due to this overcurrent is a reference. Any value may be set as long as the value is as small as possible.
  • the period in the steady switching mode is not limited to 13 microseconds, and may be any value.
  • the duty ratio in the steady switching mode may be a value less than 50% and is not limited to 48%.
  • the cycle in the slow start mode is not limited to 13 microseconds, and may be a value equivalent to that in the steady switching mode.
  • the upper limit value of the duty ratio in the slow start mode may be a value equal to or lower than the duty ratio in the steady switching mode, and is not limited to 48%.
  • the lower limit value of the duty ratio in the slow start mode may be a value less than the upper limit value, and is not limited to 1 percent.
  • the in-vehicle charger 100 stops the DC / DC converter 16 having the switching output circuit 12, the switching mode in which the output operation by the switching output circuit 12 is performed, and the output operation.
  • a controller 17 that can switch between a failure determination mode for determining whether or not there is a failure in the switching output circuit 12 in a state, and when charging of the driving battery 4 provided in the vehicle 2 is started, the control unit 17 The operation is first performed in the failure determination mode, and when it is determined that there is no failure in the switching output circuit 12, the switching mode is entered. By providing a failure determination mode separate from the switching mode and operating in the failure determination mode prior to the switching mode at the start of charging, the failure of the DC / DC converter 16 can be found early.
  • any one of the switching elements Q1 to Q4 has a short circuit failure.
  • the occurrence of a secondary failure can be suppressed by reducing the overcurrent flowing through the full bridge circuit 21 until the failure determination unit 34 determines that a short circuit failure has occurred a predetermined number of times.
  • the on-vehicle charger 100 shifts from the switching mode to the failure determination mode and determines whether there is a failure in the switching output circuit 12. .
  • the on-vehicle charger 100 shifts from the switching mode to the failure determination mode and determines whether there is a failure in the switching output circuit 12. .
  • the in-vehicle charger 100 transitions again to the failure determination mode and determines whether or not there is a failure in the switching output circuit 12. As a result, it is possible to prevent a fault in the DC / DC converter 16 from being erroneously detected due to a transient overcurrent when no short-circuit fault has occurred in any of the switching elements Q1 to Q4.
  • the failure determination mode determines whether or not there is a failure in the switching elements Q1 and Q3 connected to the high potential side among the plurality of switching elements Q1 to Q4 included in the switching output circuit 12, and sets the switching element Q1 to Q on the low potential side. The presence or absence of a failure in the connected switching elements Q2 and Q4 is determined. Thereby, it can be specified whether the failure part in the switching output circuit 12 is the switching elements Q1 and Q3 on the high potential side or the switching elements Q2 and Q4 on the low potential side.
  • FIG. In-vehicle charger 100 according to Embodiment 1 determines whether or not there is a short circuit failure in switching elements Q1 and Q3 on the high potential side and whether or not there is a short circuit failure in switching elements Q2 and Q4 on the low potential side in the failure determination mode. Was to judge.
  • an in-vehicle charger 100 that determines whether or not there is a short circuit failure in each of the switching elements Q1 to Q4 in the failure determination mode will be described.
  • the circuit structure of the vehicle-mounted charger 100 which concerns on Embodiment 2 is the same as that of Embodiment 1, it demonstrates referring FIG.1 and FIG.2. Also, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the drive circuit 22 supplies a drive voltage to each of the switching elements Q1 to Q4 once. Specifically, for example, the drive circuit 22 sequentially supplies a drive voltage to the switching element Q4, the switching element Q3, the switching element Q2, and the switching element Q1.
  • the failure determination unit 34 monitors the output of the overcurrent detection circuit 24 during operation in the failure determination mode, and determines whether or not there is a failure in the switching output circuit 12. Specifically, failure determination unit 34 determines that a short circuit failure has occurred in switching element Q2 when an overcurrent is detected when a drive signal corresponding to switching element Q1 is output. Moreover, the failure determination part 34 determines with the short circuit failure having arisen in the switching element Q1, when an overcurrent is detected when the drive signal corresponding to the switching element Q2 is output. Failure determination unit 34 determines that a short-circuit failure has occurred in switching element Q4 when an overcurrent is detected when a drive signal corresponding to switching element Q3 is output. Failure determination unit 34 determines that a short-circuit failure has occurred in switching element Q3 when an overcurrent is detected when a drive signal corresponding to switching element Q4 is output.
  • the operation mode setting unit 31 charges the operation mode of the DC / DC conversion unit 16 from the failure determination mode when the failure determination unit 34 determines that a short circuit failure has occurred in at least one of the switching elements Q1 to Q4. Transition to stop mode.
  • the operation mode setting unit 31 operates when the failure determination unit 34 determines that there is a short-circuit failure continuously for a predetermined number of times (for example, 3 times) for the same switching elements Q1 to Q4. Is fixed to the charge stop mode, and the failure signal transmission unit 35 is instructed to transmit the failure signal.
  • step ST3a the failure determination unit 34 monitors the output of the overcurrent detection circuit 24 during operation in the failure determination mode, and determines the presence or absence of a failure in the switching output circuit 12. That is, failure determination unit 34 determines whether or not a short-circuit failure has occurred for each of switching elements Q1 to Q4. The failure determination unit 34 outputs the determination result to the operation mode setting unit 31.
  • step ST4 If the failure determination unit 34 determines that a short circuit failure has occurred in at least one of the switching elements Q1 to Q4 (step ST3a “YES”), in step ST4, the operation mode setting unit 31 The operation mode of the DC converter 16 is shifted from the failure determination mode to the charge stop mode.
  • step ST5a the operation mode setting unit 31 refers to the determination result of the failure determination unit 34 in the last three steps ST3a.
  • the number of times that the failure determination unit 34 determines that a short-circuit failure has occurred in the switching element Q1 is less than three times, and the number of times that the short-circuit failure has occurred in the switching element Q2 is less than three times.
  • the operation mode setting unit 31 returns to step ST1.
  • step ST5a if the number of times that the short-circuit fault has been determined to be at least three times by at least one of the switching elements Q1 to Q4 by the failure determination unit 34 (step ST5a “YES”), the operation mode setting is performed.
  • the unit 31 proceeds to step ST6.
  • step ST3a “NO”) The operation when the failure determination unit 34 determines that no short-circuit failure has occurred in any of the switching elements Q1 to Q4 (step ST3a “NO”) is the same as that in FIG. Since it is the same as what was demonstrated with reference to FIG. 3C, illustration and description are abbreviate
  • FIG. 7 shows the drive signals corresponding to the switching elements Q1 to Q4, the on / off states of the switching elements Q1 to Q4, and the determination by the failure determination unit 34 when no short circuit failure has occurred in any of the switching elements Q1 to Q4. It is a timing diagram which shows the flag which shows a result, and a gate interruption
  • the drive signal output unit 32 first outputs a drive signal corresponding to the switching element Q4, and then outputs a drive signal corresponding to the switching element Q3, a drive signal corresponding to the switching element Q2, and the switching element Q1. Corresponding drive signals are sequentially output.
  • a driving voltage is sequentially supplied to the switching element Q4, the switching element Q3, the switching element Q2, and the switching element Q1 according to the drive signal.
  • the switching element Q4, the switching element Q3, the switching element Q2, and the switching element Q1 are sequentially turned on.
  • the on times of the individual switching elements Q1 to Q4 are all set to, for example, 50 milliseconds.
  • the failure determination unit 34 determines that there is no failure in the switching output circuit 12.
  • the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the slow start mode.
  • FIG. 8 shows a drive signal corresponding to the switching elements Q1 to Q4, an on / off state of the switching elements Q1 to Q4, and a flag indicating a determination result by the failure determination unit 34 when a short circuit failure occurs in the switching element Q2. It is a timing diagram which shows a gate interruption
  • the switching element Q2 Since the short-circuit failure has occurred in the switching element Q2, the switching element Q2 is equivalent to being always on regardless of whether or not the drive voltage is supplied. For this reason, in the failure determination mode, when the drive signal output unit 32 outputs a drive signal corresponding to the switching element Q1, the switching element Q1 turned on by the supply of the drive voltage and the switching element Q2 in which the short-circuit failure has occurred. Overcurrent flows through The overcurrent detection circuit 24 detects this overcurrent and outputs a gate cutoff signal to the drive circuit 22. As a result, the drive circuit 22 stops supplying the drive voltage to the switching element Q1, and the switching element Q1 is turned off. Further, the failure determination unit 34 turns on a determination result flag and determines that a short circuit failure has occurred in the switching element Q2.
  • the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the charge stop mode. At this time, the operation mode setting unit 31 resets the flag of the failure determination unit 34. Thereafter, the operation mode setting unit 31 sequentially shifts the operation mode of the DC / DC conversion unit 16 to the charge start mode and the failure determination mode. When the operation mode shifts to the charge start mode, the operation mode setting unit 31 cancels the output of the gate cutoff signal by the overcurrent detection circuit 24.
  • the in-vehicle charger 100 according to the second embodiment has a failure determination mode that is different from the switching mode, like the in-vehicle charger 100 according to the first embodiment.
  • the full bridge circuit 21 is in a period from when a short-circuit failure occurs in any of the switching elements Q1 to Q4 to when the failure determination unit 34 determines that a short-circuit failure has occurred a predetermined number of times (for example, 3 times).
  • the flowing overcurrent can be reduced, and the occurrence of secondary failure due to the overcurrent can be suppressed.
  • a short-circuit failure occurs in any of the switching elements Q1 to Q4 and a short-circuit failure occurs by the failure determination unit 34, a predetermined number of times (for example, 3 The time until the determination is shortened, and the failure of the DC / DC converter 16 can be found early.
  • vehicle-mounted charger 100 according to the second embodiment can employ various modifications similar to those described in the first embodiment.
  • the failure determination mode of the second embodiment determines whether or not there is a failure in each of the switching elements Q1 to Q4 among the plurality of switching elements Q1 to Q4 included in the switching output circuit 12. . As a result, it is possible to identify the switching elements Q1 to Q4 in which a failure has occurred.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the on-vehicle charger of the present invention can be used for OBC for electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An on-board charger (100) is provided with: a DC-DC conversion unit (16) having a switching output circuit (12); and a control unit (17) that freely switches between a switching mode in which an output operation of the switching output circuit (12) is carried out and a failure determination mode in which the presence or absence of a failure in the switching output circuit (12) is determined while the output operation is being stopped. When starting to charge a drive battery (4) mounted on a vehicle (2), the failure determination mode is activated prior to the switching mode and then shifted to the switching mode when it is determined that no failure is present in the switching output circuit (12).

Description

車載用充電器Car charger
 本発明は、車載用充電器に関する。 The present invention relates to an in-vehicle charger.
 従来、直流電力を交流電力に変換する変換器、いわゆる「インバータ」が開発されている。インバータには、複数個のスイッチング素子を有しており、これらのスイッチング素子のオンオフにより出力をオンオフする回路、いわゆる「スイッチング出力回路」が用いられている。 Conventionally, a converter for converting DC power into AC power, a so-called “inverter” has been developed. The inverter has a plurality of switching elements, and a circuit that turns on and off the output by turning on and off these switching elements, a so-called “switching output circuit” is used.
 一般に、スイッチング出力回路に含まれる複数個のスイッチング素子のうちのいずれかのスイッチング素子に短絡故障が生じると、スイッチング出力回路に過電流が流れる。この過電流により、短絡故障が生じていなかった他のスイッチング素子の温度が上昇して、当該他のスイッチング素子の短絡故障、すなわち二次故障が発生する。特許文献1には、インバータにおいて、スイッチング素子に流れる過電流を検出して表示する技術が開示されている。 Generally, when a short circuit failure occurs in any one of a plurality of switching elements included in the switching output circuit, an overcurrent flows in the switching output circuit. Due to this overcurrent, the temperature of the other switching element in which the short circuit failure has not occurred rises, and a short circuit failure of the other switching device, that is, a secondary failure occurs. Patent Document 1 discloses a technique for detecting and displaying an overcurrent flowing through a switching element in an inverter.
特開平10-215578号公報JP-A-10-215578
 EV(Electric Vehicle)、HEV(Hybrid Electric Vehicle)又はPHEV(Plug-in Hybrid Electric Vehicle)などの電気自動車には、家庭用電源又は専用の充電スタンドなどの外部電源により駆動用バッテリを充電する充電器、いわゆる「OBC(On Board Charger)」が搭載されている。OBCは、直流電力を直流電力に変換する変換器(以下「直流直流変換器」という。)を有している。また、OBCは、外部電源が交流電源である場合、交流電力を直流電力に変換する変換器(以下「交流直流変換器」という。)を有している。 Electric vehicles such as EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), or PHEV (Plug-in Hybrid Electric Vehicle) are charged with a battery for driving by an external power source such as a household power source or a dedicated charging stand. The so-called “OBC (On Board Charger)” is installed. The OBC has a converter that converts DC power into DC power (hereinafter referred to as “DC-DC converter”). Moreover, OBC has the converter (henceforth "AC-DC converter") which converts alternating current power into direct-current power, when an external power supply is alternating current power supply.
 OBC用の直流直流変換器には、上記インバータと同様のスイッチング出力回路が用いられている。具体的には、例えば、4個のスイッチング素子によるブリッジ回路、いわゆる「フルブリッジ回路」が用いられている。または、例えば、2個のスイッチング素子によるブリッジ回路、いわゆる「ハーフブリッジ回路」が用いられている。OBC用の直流直流変換器には、これらのスイッチング出力回路に流れる過電流を検出する回路が設けられている。 A switching output circuit similar to the inverter is used for the DC / DC converter for OBC. Specifically, for example, a bridge circuit including four switching elements, a so-called “full bridge circuit” is used. Alternatively, for example, a bridge circuit including two switching elements, a so-called “half bridge circuit” is used. The DC / DC converter for OBC is provided with a circuit for detecting an overcurrent flowing through these switching output circuits.
 OBCは、電気自動車の充電系統における重要な部材であるため、故障を確実に検出することが求められる。他方、OBCは交換費用が高いため、故障の誤検出を防ぐことが求められる。このため、従来のOBCは、直流直流変換器のスイッチング出力回路にて過電流が検出されると、充電動作を一旦停止した後に再開して、過電流が所定回数(例えば3回)連続して検出された場合に直流直流変換器が故障したと判定している。これにより、過電流の発生原因が一過性のものである場合、すなわち直流直流変換器の故障がない場合に故障があると誤判定するのを防ぎ、かつ、過電流の発生原因がスイッチング素子の短絡故障である場合は直流直流変換器が故障したと判定できるようにしている。 Since OBC is an important member in the charging system of an electric vehicle, it is required to reliably detect a failure. On the other hand, since OBC has a high replacement cost, it is required to prevent erroneous detection of a failure. For this reason, in the conventional OBC, when an overcurrent is detected in the switching output circuit of the DC / DC converter, the charging operation is temporarily stopped and then restarted, and the overcurrent continues for a predetermined number of times (for example, three times). If it is detected, it is determined that the DC / DC converter has failed. As a result, when the cause of overcurrent is transient, that is, when there is no failure of the DC / DC converter, it is possible to prevent erroneous determination that there is a failure, and the cause of overcurrent is the switching element. In the case of a short circuit failure, it can be determined that the DC / DC converter has failed.
 ここで、OBC用の直流直流変換器は、駆動用バッテリの充電を開始するとき、充電開始直後の充電動作を安定させる観点から、スイッチング出力回路による出力動作のデューティ比の初期値が小さい値(例えば数パーセント)に設定されており、その後、デューティ比の値が次第に大きくなるように設定されている。充電開始後、数十回~数百回分のオン時間は、個々のオン時間が短いため、仮にスイッチング出力回路に過電流が流れたとしてもこの過電流を検出することができない。 Here, when starting the charging of the driving battery, the DC / DC converter for OBC has a small initial value of the duty ratio of the output operation by the switching output circuit from the viewpoint of stabilizing the charging operation immediately after the start of charging ( For example, it is set to several percent), and thereafter, the value of the duty ratio is set to gradually increase. Since the on-time for several tens to several hundreds of times after the start of charging is short, the overcurrent cannot be detected even if an overcurrent flows through the switching output circuit.
 すなわち、従来のOBCは、直流直流変換器のスイッチング出力回路に含まれる複数個のスイッチング素子のうちのいずれかのスイッチング素子に短絡故障が生じた場合、過電流が所定回数検出されて直流直流変換器が故障したと判定されるまでに時間がかかり、直流直流変換器の故障を早期に発見することができない問題があった。また、当該時間において、直流直流変換器のスイッチング出力回路に、数十回~数百回に所定回数を乗じた回数分の過電流が流れる。この過電流により、短絡故障が生じていなかった他のスイッチング素子の温度が上昇して、二次故障が発生する問題があった。 That is, in the conventional OBC, when a short circuit failure occurs in any one of the plurality of switching elements included in the switching output circuit of the DC / DC converter, an overcurrent is detected a predetermined number of times and the DC / DC conversion is performed. It takes time until it is determined that the converter has failed, and there is a problem that a failure of the DC / DC converter cannot be detected at an early stage. Further, during the time, an overcurrent corresponding to the number of times obtained by multiplying the predetermined number of times by several tens to several hundreds of times flows through the switching output circuit of the DC / DC converter. Due to this overcurrent, the temperature of other switching elements in which a short circuit failure has not occurred rises, causing a secondary failure.
 本発明は、上記のような課題を解決するためになされたものであり、車載用充電器において、直流直流変換器の故障を早期に発見するとともに、過電流による二次故障の発生を抑制することを目的とする。 The present invention has been made in order to solve the above-described problems, and in a vehicle-mounted charger, a failure of a DC / DC converter is detected at an early stage, and a secondary failure due to an overcurrent is suppressed. For the purpose.
 本発明の車載用充電器は、スイッチング出力回路を有する直流直流変換部と、スイッチング出力回路による出力動作を実行するスイッチングモードと、出力動作を停止させた状態にてスイッチング出力回路における故障の有無を判定する故障判定モードとを切替自在な制御部とを備え、車両に設けられた駆動用バッテリの充電を開始するとき、スイッチングモードよりも先に故障判定モードにて動作し、スイッチング出力回路における故障がないと判定された場合にスイッチングモードに移行するものである。 The in-vehicle charger of the present invention includes a DC / DC converter having a switching output circuit, a switching mode for executing an output operation by the switching output circuit, and whether or not there is a failure in the switching output circuit in a state where the output operation is stopped. A control unit capable of switching between a failure determination mode for determination, and when charging of a driving battery provided in the vehicle is started, operates in the failure determination mode prior to the switching mode, and the failure in the switching output circuit When it is determined that there is no power, the mode is switched to the switching mode.
 本発明の車載用充電器は、スイッチングモードとは別個の故障判定モードを有し、駆動用バッテリの充電を開始するとき、スイッチングモードよりも先に故障判定モードにて動作する。これにより、直流直流変換部の故障を早期に発見するとともに、過電流による二次故障の発生を抑制することができる。 The in-vehicle charger of the present invention has a failure determination mode that is separate from the switching mode, and operates in the failure determination mode before the switching mode when charging of the driving battery is started. Thereby, while discovering the failure of a direct current direct current conversion part at an early stage, generation | occurrence | production of the secondary failure by overcurrent can be suppressed.
本発明の実施の形態1に係る車載用充電器の要部を示す説明図である。It is explanatory drawing which shows the principal part of the vehicle-mounted charger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスイッチング出力回路及び制御部の要部を示す説明図である。It is explanatory drawing which shows the principal part of the switching output circuit and control part which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスイッチング出力回路及び制御部の動作のうち、スイッチング素子に短絡故障が生じていない場合の動作の一例を示すタイミング図である。It is a timing diagram which shows an example of operation | movement when the short circuit failure has not arisen in the switching element among operation | movement of the switching output circuit and control part which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係るスイッチング出力回路及び制御部の動作のうち、スイッチング素子に短絡故障が生じている場合の動作の一例を示すタイミング図である。It is a timing diagram which shows an example of operation | movement when the short circuit fault has arisen in the switching element among operation | movement of the switching output circuit and control part which concern on Embodiment 1 of this invention. 本発明の実施の形態2に係る制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るスイッチング出力回路及び制御部の動作のうち、スイッチング素子に短絡故障が生じていない場合の動作の一例を示すタイミング図である。It is a timing diagram which shows an example of operation | movement when the short circuit failure has not arisen in the switching element among operation | movement of the switching output circuit and control part which concern on Embodiment 2 of this invention. 本発明の実施の形態2に係るスイッチング出力回路及び制御部の動作のうち、スイッチング素子に短絡故障が生じている場合の動作の一例を示すタイミング図である。It is a timing diagram which shows an example of operation | movement when the short circuit fault has arisen in the switching element among operation | movement of the switching output circuit and control part which concern on Embodiment 2 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、本発明の実施の形態1に係る車載用充電器の要部を示す説明図である。図1を参照して、実施の形態1の車載用充電器100について説明する。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram showing a main part of the in-vehicle charger according to Embodiment 1 of the present invention. With reference to FIG. 1, the vehicle-mounted charger 100 of Embodiment 1 is demonstrated.
 図中、1は外部電源である。外部電源1は、交流電源により構成されている。具体的には、例えば、外部電源1は、家庭用電源又は専用の充電スタンドにより構成されている。 In the figure, 1 is an external power source. The external power source 1 is composed of an AC power source. Specifically, for example, the external power source 1 is constituted by a household power source or a dedicated charging stand.
 車両2は、例えば、EV、HEV又はPHEVなどの電気自動車により構成されている。車両2は、外部電源1と接続自在な充電用端子3を有しており、かつ、駆動用バッテリ4を有している。駆動用バッテリ4は、例えば、リチウムイオン二次電池又はニッケル水素二次電池により構成されている。 The vehicle 2 is configured by an electric vehicle such as EV, HEV, or PHEV. The vehicle 2 has a charging terminal 3 that can be connected to the external power source 1, and has a driving battery 4. The driving battery 4 is constituted by, for example, a lithium ion secondary battery or a nickel hydride secondary battery.
 充電用端子3と駆動用バッテリ4間に、交流直流変換部11が設けられている。交流直流変換部11は、例えば、フルブリッジ回路を用いた交流直流変換器、いわゆる「フルブリッジ型AC/DCコンバータ」により構成されている。 Between the charging terminal 3 and the driving battery 4, an AC / DC converter 11 is provided. The AC / DC converter 11 is constituted by, for example, an AC / DC converter using a full-bridge circuit, that is, a so-called “full-bridge type AC / DC converter”.
 交流直流変換部11と駆動用バッテリ4間に、スイッチング出力回路12、変圧回路13、整流回路14及び平滑回路15が順次接続されている。スイッチング出力回路12、変圧回路13、整流回路14及び平滑回路15により、直流直流変換部16が構成されている。また、スイッチング出力回路12用の制御部17が設けられている。 A switching output circuit 12, a transformer circuit 13, a rectifier circuit 14, and a smoothing circuit 15 are sequentially connected between the AC / DC converter 11 and the driving battery 4. The switching output circuit 12, the transformer circuit 13, the rectifier circuit 14 and the smoothing circuit 15 constitute a DC / DC converter 16. A control unit 17 for the switching output circuit 12 is provided.
 スイッチング出力回路12は、例えば、フルブリッジ回路等により構成されている。変圧回路13は、例えば、鉄心に一次巻線と二次巻線とを巻回してなる変圧器により構成されている。整流回路14は、例えば、ダイオードにより構成されている。平滑回路15は、例えば、鉄心に巻線を巻回してなるコイル(L)と、蓄電器(C)とからなるLCフィルタにより構成されている。すなわち、直流直流変換部16は、いわゆる「フルブリッジ型DC/DCコンバータ」により構成されている。制御部17は、例えば、マイクロコントローラ又はDSP(Digital Signal Processor)などのプロセッサにより構成されている。 The switching output circuit 12 is configured by, for example, a full bridge circuit. The transformer circuit 13 is configured by, for example, a transformer formed by winding a primary winding and a secondary winding around an iron core. The rectifier circuit 14 is configured by a diode, for example. The smoothing circuit 15 is configured by, for example, an LC filter including a coil (L) formed by winding a winding around an iron core and a capacitor (C). That is, the DC / DC converter 16 is configured by a so-called “full-bridge DC / DC converter”. The control part 17 is comprised by processors, such as a microcontroller or DSP (Digital Signal Processor), for example.
 交流直流変換部11、直流直流変換部16及び制御部17により、車載用充電器100の要部が構成されている。車載用充電器100は、車両2に搭載されており、外部電源1を用いて駆動用バッテリ4を充電する充電器、すなわちOBCである。 The main part of the in-vehicle charger 100 is configured by the AC / DC converter 11, the DC / DC converter 16 and the controller 17. The in-vehicle charger 100 is mounted on the vehicle 2 and is a charger that charges the driving battery 4 using the external power source 1, that is, an OBC.
 次に、図2を参照して、スイッチング出力回路12及び制御部17について説明する。
 フルブリッジ回路21は、4個のスイッチング素子Q1~Q4により構成されている。個々のスイッチング素子Q1~Q4は、Nチャネル型のMOSFET(Metal-oxide-semiconductor Field Effect Transistor)により構成されている。
Next, the switching output circuit 12 and the control unit 17 will be described with reference to FIG.
The full bridge circuit 21 is composed of four switching elements Q1 to Q4. Each of the switching elements Q1 to Q4 is configured by an N-channel MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor).
 駆動回路22は、制御部17から入力された駆動信号に応じて、スイッチング素子Q1~Q4のゲート端子に所定値(例えば5ボルト)の駆動電圧を供給することにより、スイッチング素子Q1~Q4をオン状態に設定するものである。また、駆動回路22は、駆動電圧の供給を停止することにより、スイッチング素子Q1~Q4をオフ状態に設定するものである。 The drive circuit 22 turns on the switching elements Q1 to Q4 by supplying a driving voltage of a predetermined value (for example, 5 volts) to the gate terminals of the switching elements Q1 to Q4 according to the drive signal input from the control unit 17 Set the state. The drive circuit 22 sets the switching elements Q1 to Q4 to the off state by stopping the supply of the drive voltage.
 電流検出回路23は、フルブリッジ回路21に流れる電流の電流値を検出するものである。電流検出回路23は、例えば、鉄心に一次巻線と二次巻線とを巻回してなる変流器により構成されている。 The current detection circuit 23 detects the current value of the current flowing through the full bridge circuit 21. The current detection circuit 23 is configured by, for example, a current transformer formed by winding a primary winding and a secondary winding around an iron core.
 過電流検出回路24は、フルブリッジ回路21に流れる過電流を検出するものである。すなわち、過電流検出回路24には、電流検出回路23により検出された電流値との比較対象となる閾値が予め設定されている。過電流検出回路24は、電流検出回路23により検出された電流値と閾値とを比較する。過電流検出回路24は、電流値が閾値を超えたとき、その旨を示す信号を制御部17に出力するとともに、ゲート遮断信号を駆動回路22に出力する。過電流検出回路24は、例えば、演算増幅器を用いた比較器により構成されている。 The overcurrent detection circuit 24 detects an overcurrent flowing through the full bridge circuit 21. That is, the overcurrent detection circuit 24 is preset with a threshold value to be compared with the current value detected by the current detection circuit 23. The overcurrent detection circuit 24 compares the current value detected by the current detection circuit 23 with a threshold value. When the current value exceeds the threshold value, the overcurrent detection circuit 24 outputs a signal indicating that to the control unit 17 and outputs a gate cutoff signal to the drive circuit 22. The overcurrent detection circuit 24 is configured by a comparator using an operational amplifier, for example.
 駆動回路22は、過電流検出回路24からゲート遮断信号を入力された場合、制御部17から駆動信号を入力されているか否かに関わらず、全てのスイッチング素子Q1~Q4への駆動電圧の供給を停止するようになっている。 When the gate cutoff signal is input from the overcurrent detection circuit 24, the drive circuit 22 supplies the drive voltage to all the switching elements Q1 to Q4 regardless of whether the drive signal is input from the control unit 17. Is supposed to stop.
 フルブリッジ回路21、駆動回路22、電流検出回路23及び過電流検出回路24により、スイッチング出力回路12の要部が構成されている。 The main part of the switching output circuit 12 is configured by the full bridge circuit 21, the drive circuit 22, the current detection circuit 23, and the overcurrent detection circuit 24.
 ここで、直流直流変換部16は、充電開始モード、スイッチングモード、充電停止モード及び故障判定モードの4つの動作モードを有している。 Here, the DC / DC converter 16 has four operation modes: a charge start mode, a switching mode, a charge stop mode, and a failure determination mode.
 充電開始モードは、駆動用バッテリ4の充電を開始する度毎に、最初に設定される動作モードである。充電開始モードにおいて、駆動回路22は、全てのスイッチング素子Q1~Q4に対する駆動電圧の供給を停止する。 The charging start mode is an operation mode that is set first every time charging of the driving battery 4 is started. In the charge start mode, the drive circuit 22 stops supplying drive voltages to all the switching elements Q1 to Q4.
 スイッチングモードは、スイッチング出力回路12による出力動作(以下、単に「出力動作」ということがある。)を実行して、駆動用バッテリ4を充電する動作モードである。スイッチングモードにおいて、駆動回路22は、フルブリッジ回路21に含まれる4個のスイッチング素子Q1~Q4のうち、2個のスイッチング素子Q2,Q3と残余のスイッチング素子Q1,Q4とに交互に駆動電圧を供給する。スイッチングモードにおける出力動作の周期は、例えば、13マイクロ秒に設定されている。 The switching mode is an operation mode in which the driving battery 4 is charged by executing an output operation by the switching output circuit 12 (hereinafter sometimes simply referred to as “output operation”). In the switching mode, the drive circuit 22 alternately applies drive voltages to the two switching elements Q2 and Q3 and the remaining switching elements Q1 and Q4 among the four switching elements Q1 to Q4 included in the full bridge circuit 21. Supply. The cycle of the output operation in the switching mode is set to 13 microseconds, for example.
 スイッチングモードには、出力動作におけるデューティ比の値が次第に大きくなるスロースタートモードと、スロースタートモードから移行してデューティ比の値が一定値である定常スイッチングモードとが含まれている。スロースタートモードにおけるデューティ比は、例えば、下限値(すなわち初期値)が0パーセントよりも大きくかつ10パーセント未満の値に設定されており、上限値(すなわち最終値)が40パーセントよりも大きくかつ50パーセント未満の値に設定されている。定常スイッチングモードにおけるデューティ比は、スロースタートモードにおける上限値と同等の値に設定されている。 The switching mode includes a slow start mode in which the value of the duty ratio in the output operation is gradually increased, and a steady switching mode in which the value of the duty ratio is a constant value after shifting from the slow start mode. The duty ratio in the slow start mode is set such that the lower limit value (that is, the initial value) is greater than 0 percent and less than 10 percent, and the upper limit value (that is, the final value) is greater than 40 percent and 50%. It is set to a value less than a percentage. The duty ratio in the steady switching mode is set to a value equivalent to the upper limit value in the slow start mode.
 充電停止モードは、駆動用バッテリ4の充電を停止する動作モードである。充電停止モードにおいて、駆動回路22は、全てのスイッチング素子Q1~Q4に対する駆動電圧の供給を停止する。 The charge stop mode is an operation mode in which charging of the drive battery 4 is stopped. In the charge stop mode, the drive circuit 22 stops supplying the drive voltage to all the switching elements Q1 to Q4.
 故障判定モードは、出力動作を停止させた状態にて、スイッチング出力回路12における故障の有無を判定する動作モードである。具体的には、例えば、フルブリッジ回路21に含まれる4個のスイッチング素子Q1~Q4のうち、高電位側に接続された2個のスイッチング素子Q1,Q3における短絡故障の有無を判定するとともに、低電位側に接続された2個のスイッチング素子Q2,Q4における短絡故障の有無を判定するものである。 The failure determination mode is an operation mode for determining whether or not there is a failure in the switching output circuit 12 in a state where the output operation is stopped. Specifically, for example, among the four switching elements Q1 to Q4 included in the full bridge circuit 21, whether or not there is a short circuit failure in the two switching elements Q1 and Q3 connected to the high potential side, The presence or absence of a short circuit failure is determined in the two switching elements Q2 and Q4 connected to the low potential side.
 すなわち、故障判定モードにおいて、駆動回路22は、低電位側のスイッチング素子Q2,Q4と高電位側のスイッチング素子Q1,Q3とに交互に1回ずつ駆動電圧を供給する。低電位側のスイッチング素子Q2,Q4に駆動電圧が供給されたとき、過電流検出回路24が過電流を検出した場合、高電位側のスイッチング素子Q1,Q3のうちの少なくとも一方に短絡故障が生じていると判定される。高電位側のスイッチング素子Q1,Q3に駆動電圧が供給されたとき、過電流検出回路24が過電流を検出した場合、低電位側のスイッチング素子Q2,Q4のうちの少なくとも一方に短絡故障が生じていると判定される。 That is, in the failure determination mode, the drive circuit 22 alternately supplies a drive voltage to the low potential side switching elements Q2, Q4 and the high potential side switching elements Q1, Q3 once each. When a drive voltage is supplied to the low potential side switching elements Q2 and Q4, if the overcurrent detection circuit 24 detects an overcurrent, a short circuit failure occurs in at least one of the high potential side switching elements Q1 and Q3. It is determined that When a driving voltage is supplied to the high potential side switching elements Q1 and Q3, if the overcurrent detection circuit 24 detects an overcurrent, a short circuit failure occurs in at least one of the low potential side switching elements Q2 and Q4. It is determined that
 ここで、故障判定モードにおける個々のスイッチング素子Q1~Q4のオン時間は、スイッチング素子Q1~Q4のうちのいずれかの短絡故障によりフルブリッジ回路21に過電流が流れた場合に、過電流検出回路24によりこの過電流を検出できる程度に大きい値に設定されている。かつ、当該オン時間は、所定回数(例えば3回)の故障判定モードにおける当該過電流によるスイッチング素子Q1~Q4の温度上昇値が、予め設定された基準値以下となる程度に小さい値に設定されている。この基準値は、例えば、スイッチング素子Q1~Q4の耐熱温度の上限値(例えば150度~175度)から、充電時における車載用充電器100内の環境温度の予測値又は測定値を減算した値である。当該オン時間は、具体的には、例えば、低電位側のスイッチング素子Q2,Q4のオン時間が50ミリ秒に設定されており、高電位側のスイッチング素子Q1,Q3のオン時間も50ミリ秒に設定されている。 Here, the on-time of each of the switching elements Q1 to Q4 in the failure determination mode is an overcurrent detection circuit when an overcurrent flows through the full bridge circuit 21 due to a short circuit failure of any of the switching elements Q1 to Q4. 24 is set to a value large enough to detect this overcurrent. In addition, the on-time is set to a small value such that the temperature rise value of the switching elements Q1 to Q4 due to the overcurrent in the failure determination mode of a predetermined number of times (for example, 3 times) is not more than a preset reference value. ing. This reference value is, for example, a value obtained by subtracting a predicted value or a measured value of the environmental temperature in the in-vehicle charger 100 during charging from the upper limit value (eg, 150 ° C. to 175 ° C.) of the heat resistant temperature of the switching elements Q1 to Q4. It is. Specifically, the on-time of the low-potential side switching elements Q2 and Q4 is set to 50 milliseconds, for example, and the on-time of the high-potential side switching elements Q1 and Q3 is also 50 milliseconds. Is set to
 動作モード設定部31は、直流直流変換部16の動作モードを設定するものである。駆動信号出力部32は、動作モード設定部31により設定された動作モードに応じたタイミングにて、各々のスイッチング素子Q1~Q4に対応する駆動信号を駆動回路22に出力するものである。 The operation mode setting unit 31 sets the operation mode of the DC / DC conversion unit 16. The drive signal output unit 32 outputs a drive signal corresponding to each of the switching elements Q1 to Q4 to the drive circuit 22 at a timing according to the operation mode set by the operation mode setting unit 31.
 動作モード設定部31は、駆動用バッテリ4の充電を開始するとき、まず、直流直流変換部16の動作モードを充電開始モードに設定し、次いで、故障判定モードに移行する。動作モード設定部31は、故障判定モードにてスイッチング出力回路12における故障がないと判定された場合、スイッチングモードに移行する。 The operation mode setting unit 31 first sets the operation mode of the DC / DC conversion unit 16 to the charge start mode when starting to charge the drive battery 4, and then shifts to the failure determination mode. When it is determined that there is no failure in the switching output circuit 12 in the failure determination mode, the operation mode setting unit 31 shifts to the switching mode.
 異常検出部33は、スイッチングモードによる動作中、過電流検出回路24の出力を監視して、スイッチング出力回路12の異常状態を検出するものである。すなわち、異常状態とは、フルブリッジ回路21に過電流が流れている状態である。 The abnormality detection unit 33 monitors the output of the overcurrent detection circuit 24 and detects the abnormal state of the switching output circuit 12 during operation in the switching mode. That is, the abnormal state is a state in which an overcurrent flows through the full bridge circuit 21.
 動作モード設定部31は、異常検出部33が異常状態を検出したとき、直流直流変換部16の動作モードをスイッチングモードから充電停止モードに移行し、次いで、充電開始モード、故障判定モードに順次移行するようになっている。 When the abnormality detection unit 33 detects an abnormal state, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the switching mode to the charge stop mode, and then sequentially shifts to the charge start mode and the failure determination mode. It is supposed to be.
 故障判定部34は、故障判定モードによる動作中、過電流検出回路24の出力を監視して、スイッチング出力回路12における故障の有無を判定するものである。具体的には、例えば、故障判定部34は、低電位側のスイッチング素子Q2,Q4に対応する駆動信号が出力されたときに過電流が検出された場合、高電位側のスイッチング素子Q1,Q3のうちの少なくとも一方に短絡故障が生じていると判定する。また、故障判定部34は、高電位側のスイッチング素子Q1,Q3に対応する駆動信号が出力されたときに過電流が検出された場合、低電位側のスイッチング素子Q2,Q4のうちの少なくとも一方に短絡故障が生じていると判定する。 The failure determination unit 34 monitors the output of the overcurrent detection circuit 24 during operation in the failure determination mode, and determines whether or not there is a failure in the switching output circuit 12. Specifically, for example, when the overcurrent is detected when the drive signal corresponding to the low-potential side switching elements Q2 and Q4 is output, the failure determination unit 34 detects the high-potential side switching elements Q1 and Q3. It is determined that a short circuit failure has occurred in at least one of them. Further, when an overcurrent is detected when a drive signal corresponding to the high-potential side switching elements Q1 and Q3 is output, the failure determination unit 34 selects at least one of the low-potential side switching elements Q2 and Q4. It is determined that a short circuit failure has occurred.
 動作モード設定部31は、故障判定部34により高電位側のスイッチング素子Q1,Q3又は低電位側のスイッチング素子Q2,Q4のうちの少なくとも一方に短絡故障が生じていると判定された場合、直流直流変換部16の動作モードを故障判定モードから充電停止モードに移行するようになっている。また、動作モード設定部31は、故障判定部34により高電位側のスイッチング素子Q1,Q3又は低電位側のスイッチング素子Q2,Q4のうちの少なくとも一方について所定回数(例えば3回)連続して短絡故障があると判定された場合、直流直流変換部16の動作モードを充電停止モードに固定して、以後、動作モードを変更しないようになっている。また、このとき、動作モード設定部31は、車載用充電器100が故障したことを示す信号(以下「故障信号」という。)の送信を故障信号送信部35に指示する。 When the failure determination unit 34 determines that the short-circuit fault has occurred in at least one of the high-potential side switching elements Q1 and Q3 or the low-potential side switching elements Q2 and Q4, the operation mode setting unit 31 The operation mode of the DC converter 16 is shifted from the failure determination mode to the charge stop mode. Further, the operation mode setting unit 31 causes the failure determination unit 34 to continuously short-circuit at least one of the high-potential side switching elements Q1 and Q3 or the low-potential side switching elements Q2 and Q4 a predetermined number of times (for example, 3 times). When it is determined that there is a failure, the operation mode of the DC / DC converter 16 is fixed to the charge stop mode, and thereafter the operation mode is not changed. At this time, the operation mode setting unit 31 instructs the failure signal transmission unit 35 to transmit a signal indicating that the in-vehicle charger 100 has failed (hereinafter referred to as “failure signal”).
 故障信号送信部35は、故障信号を図示しない外部装置に送信するものである。外部装置は、例えば、車両2に設けられた計器盤用の制御装置である。この制御装置は、故障信号を受信すると、計器盤に設けられた警告灯のうち、駆動用バッテリ4の充電系統が故障したことを示す警告灯を点灯させる。 The failure signal transmitter 35 transmits a failure signal to an external device (not shown). The external device is, for example, a control device for an instrument panel provided in the vehicle 2. When receiving the failure signal, the control device turns on a warning light indicating that the charging system of the drive battery 4 is out of the warning lights provided on the instrument panel.
 動作モード設定部31、駆動信号出力部32、異常検出部33、故障判定部34及び故障信号送信部35により、制御部17の要部が構成されている。 The operation mode setting unit 31, the drive signal output unit 32, the abnormality detection unit 33, the failure determination unit 34, and the failure signal transmission unit 35 constitute a main part of the control unit 17.
 次に、図3のフローチャートを参照して、制御部17の動作について、動作モード設定部31、異常検出部33、故障判定部34及び故障信号送信部35の動作を中心に説明する。なお、動作モードの固定及び故障信号の送信に係る基準となる故障判定部34による故障判定回数は、3回に設定されている。充電用端子3が外部電源1と接続されたとき、又は図示しない入力装置の操作により駆動用バッテリ4の充電開始を指示されたとき、制御部17はステップST1の処理を開始する。 Next, the operation of the control unit 17 will be described with reference to the flowchart of FIG. 3, focusing on the operations of the operation mode setting unit 31, the abnormality detection unit 33, the failure determination unit 34, and the failure signal transmission unit 35. Note that the number of failure determinations by the failure determination unit 34 serving as a reference for fixing the operation mode and transmitting a failure signal is set to three. When the charging terminal 3 is connected to the external power source 1 or when an instruction to start charging the driving battery 4 is given by operating an input device (not shown), the control unit 17 starts the process of step ST1.
 まず、ステップST1にて、動作モード設定部31は、直流直流変換部16の動作モードを充電開始モードに設定する。次いで、ステップST2にて、動作モード設定部31は、直流直流変換部16の動作モードを充電開始モードから故障判定モードに移行する。また、動作モード設定部31は、故障判定モードに移行したことを故障判定部34に通知する。動作モード設定部31は、低電位側のスイッチング素子Q2,Q4に対応する駆動信号が出力されるタイミングと、高電位側のスイッチング素子Q1,Q3に対応する駆動信号が出力されるタイミングとを故障判定部34に通知する。 First, in step ST1, the operation mode setting unit 31 sets the operation mode of the DC / DC conversion unit 16 to the charge start mode. Next, in step ST2, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the charge start mode to the failure determination mode. In addition, the operation mode setting unit 31 notifies the failure determination unit 34 that the operation mode has been shifted to the failure determination mode. The operation mode setting unit 31 fails the timing at which the drive signals corresponding to the low potential side switching elements Q2 and Q4 are output and the timing at which the drive signals corresponding to the high potential side switching elements Q1 and Q3 are output. The determination unit 34 is notified.
 次いで、ステップST3にて、故障判定部34は、故障判定モードによる動作中、過電流検出回路24の出力を監視して、スイッチング出力回路12における故障の有無を判定する。すなわち、故障判定部34は、高電位側のスイッチング素子Q1,Q3に短絡故障が生じているか否かを判定するとともに、低電位側のスイッチング素子Q2,Q4に短絡故障が生じているか否かを判定する。故障判定部34は、判定結果を動作モード設定部31に出力する。 Next, in step ST3, the failure determination unit 34 monitors the output of the overcurrent detection circuit 24 during operation in the failure determination mode, and determines whether there is a failure in the switching output circuit 12. That is, the failure determination unit 34 determines whether or not a short circuit failure has occurred in the high potential side switching elements Q1 and Q3, and whether or not a short circuit failure has occurred in the low potential side switching elements Q2 and Q4. judge. The failure determination unit 34 outputs the determination result to the operation mode setting unit 31.
 故障判定部34により、高電位側のスイッチング素子Q1,Q3又は低電位側のスイッチング素子Q2,Q4のうちの少なくとも一方に短絡故障が生じていると判定された場合(ステップST3“YES”)、ステップST4にて、動作モード設定部31は、直流直流変換部16の動作モードを故障判定モードから充電停止モードに移行する。 When the failure determination unit 34 determines that a short-circuit failure has occurred in at least one of the high-potential side switching elements Q1, Q3 or the low-potential side switching elements Q2, Q4 (step ST3 “YES”). In step ST4, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the charge stop mode.
 次いで、ステップST5にて、動作モード設定部31は、直近3回のステップST3における故障判定部34の判定結果を参照する。故障判定部34により高電位側のスイッチング素子Q1,Q3に短絡故障が生じていると判定された回数が3回未満であり、かつ、低電位側のスイッチング素子Q2,Q4に短絡故障が生じていると判定された回数が3回未満である場合(ステップST5“NO”)、動作モード設定部31はステップST1に戻り、直流直流変換部16の動作モードを充電開始モードに設定する。 Next, in step ST5, the operation mode setting unit 31 refers to the determination result of the failure determination unit 34 in the last three steps ST3. The number of times that the failure determination unit 34 has determined that a short-circuit failure has occurred in the high-potential side switching elements Q1, Q3 is less than 3, and a short-circuit failure has occurred in the low-potential side switching elements Q2, Q4. If the number of times determined to be present is less than three (step ST5 “NO”), the operation mode setting unit 31 returns to step ST1 and sets the operation mode of the DC / DC conversion unit 16 to the charge start mode.
 他方、故障判定部34により、高電位側のスイッチング素子Q1,Q3又は低電位側のスイッチング素子Q2,Q4のうちの少なくとも一方について、短絡故障が生じていると判定された回数が3回以上である場合(ステップST5“YES”)、ステップST6にて、動作モード設定部31は、直流直流変換部16の動作モードを充電停止モードに固定する。また、動作モード設定部31は、故障信号の送信を故障信号送信部35に指示する。 On the other hand, the number of times that the failure determination unit 34 determines that a short-circuit failure has occurred in at least one of the high-potential side switching elements Q1 and Q3 or the low-potential side switching elements Q2 and Q4 is three or more. If present (step ST5 “YES”), in step ST6, the operation mode setting unit 31 fixes the operation mode of the DC / DC conversion unit 16 to the charge stop mode. The operation mode setting unit 31 instructs the failure signal transmission unit 35 to transmit a failure signal.
 次いで、ステップST7にて、故障信号送信部35は、故障信号を外部装置に送信する。 Next, in step ST7, the failure signal transmitter 35 transmits a failure signal to the external device.
 故障判定部34により、高電位側のスイッチング素子Q1,Q3及び低電位側のスイッチング素子Q2,Q4のうちのいずれにも短絡故障が生じていないと判定された場合(ステップST3“NO”)、ステップST11にて、動作モード設定部31は、直流直流変換部16の動作モードを故障判定モードからスロースタートモードに移行する。また、動作モード設定部31は、スイッチングモードに移行したことを異常検出部33に通知する。 When the failure determination unit 34 determines that no short-circuit failure has occurred in any of the high-potential side switching elements Q1 and Q3 and the low-potential side switching elements Q2 and Q4 (step ST3 “NO”), In step ST11, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the slow start mode. Further, the operation mode setting unit 31 notifies the abnormality detection unit 33 that the mode has been switched to the switching mode.
 次いで、ステップST12にて、異常検出部33は、スロースタートモードによる動作中、過電流検出回路24の出力を監視する。スイッチング出力回路12の異常状態、すなわちフルブリッジ回路21に過電流が流れている状態が検出されたとき(ステップST12“YES”)、異常検出部33はその旨を動作モード設定部31に通知する。 Next, in step ST12, the abnormality detection unit 33 monitors the output of the overcurrent detection circuit 24 during the operation in the slow start mode. When an abnormal state of the switching output circuit 12, that is, a state where an overcurrent flows through the full bridge circuit 21 is detected (step ST12 “YES”), the abnormality detection unit 33 notifies the operation mode setting unit 31 to that effect. .
 ステップST12の通知を受けて、ステップST13にて、動作モード設定部31は、直流直流変換部16の動作モードをスロースタートモードから充電停止モードに移行する。次いで、動作モード設定部31はステップST1に戻り、直流直流変換部16を充電開始モードに設定する。 Upon receiving the notification of step ST12, in step ST13, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the slow start mode to the charge stop mode. Next, the operation mode setting unit 31 returns to step ST1 and sets the DC / DC conversion unit 16 in the charge start mode.
 他方、異常状態を検出した旨の通知を受けることなくスロースタートモードが終了した場合(ステップST12“NO”)、ステップST21にて、動作モード設定部31は、直流直流変換部16の動作モードをスロースタートモードから定常スイッチングモードに移行する。 On the other hand, when the slow start mode ends without receiving a notification that an abnormal state has been detected (“NO” in step ST12), the operation mode setting unit 31 sets the operation mode of the DC / DC conversion unit 16 in step ST21. Transition from slow start mode to steady switching mode.
 次いで、ステップST22にて、異常検出部33は、定常スイッチングモードによる動作中、過電流検出回路24の出力を監視する。スイッチング出力回路12の異常状態、すなわちフルブリッジ回路21に過電流が流れている状態が検出されたとき(ステップST22“YES”)、異常検出部33はその旨を動作モード設定部31に通知する。 Next, in step ST22, the abnormality detection unit 33 monitors the output of the overcurrent detection circuit 24 during the operation in the steady switching mode. When an abnormal state of the switching output circuit 12, that is, a state in which an overcurrent flows through the full bridge circuit 21 is detected (step ST22 “YES”), the abnormality detection unit 33 notifies the operation mode setting unit 31 to that effect. .
 ステップST22の通知を受けて、ステップST23にて、動作モード設定部31は、直流直流変換部16の動作モードを定常スイッチングモードから充電停止モードに移行する。次いで、動作モード設定部31はステップST1に戻り、直流直流変換部16を充電開始モードに設定する。 Upon receiving the notification of step ST22, in step ST23, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the steady switching mode to the charge stop mode. Next, the operation mode setting unit 31 returns to step ST1 and sets the DC / DC conversion unit 16 in the charge start mode.
 他方、異常状態を検出した旨の通知を受けることなく定常スイッチングモードが終了した場合(ステップST22“NO”)、制御部17は処理を終了する。なお、定常スイッチングモードは、駆動用バッテリ4の充電が完了したとき、充電用端子3と外部電源1間の接続が解除されたとき、又は図示しない入力装置の操作により駆動用バッテリ4の充電終了を指示されたときに終了する。 On the other hand, when the steady switching mode ends without receiving a notification that an abnormal state has been detected (step ST22 “NO”), the control unit 17 ends the process. In the steady switching mode, the charging of the driving battery 4 is completed when the charging of the driving battery 4 is completed, the connection between the charging terminal 3 and the external power source 1 is released, or the operation of an input device (not shown). Exit when instructed.
 次に、図4及び図5を参照して、スイッチング出力回路12及び制御部17の詳細な動作の一例について説明する。 Next, an example of detailed operations of the switching output circuit 12 and the control unit 17 will be described with reference to FIGS.
 図4は、スイッチング素子Q1~Q4のいずれにも短絡故障が生じていない場合における、スイッチング素子Q1~Q4に対応する駆動信号と、スイッチング素子Q1~Q4のオンオフ状態と、故障判定部34による判定結果を示すフラグと、ゲート遮断信号とを示すタイミング図である。 FIG. 4 shows the drive signals corresponding to the switching elements Q1 to Q4, the on / off states of the switching elements Q1 to Q4, and the determination by the failure determination unit 34 when none of the switching elements Q1 to Q4 has a short circuit fault. It is a timing diagram which shows the flag which shows a result, and a gate interruption | blocking signal.
 動作モード設定部31は、まず、直流直流変換部16の動作モードを充電開始モードに設定する。充電開始モードにおいて、駆動信号出力部32は、全てのスイッチング素子Q1~Q4に対応する駆動信号の出力を停止する。このため、全てのスイッチング素子Q1~Q4に対する駆動電圧の供給が停止しており、スイッチング素子Q1~Q4はいずれもオフ状態である。 The operation mode setting unit 31 first sets the operation mode of the DC / DC conversion unit 16 to the charge start mode. In the charge start mode, the drive signal output unit 32 stops outputting drive signals corresponding to all the switching elements Q1 to Q4. For this reason, the supply of the drive voltage to all the switching elements Q1 to Q4 is stopped, and the switching elements Q1 to Q4 are all in the off state.
 次いで、動作モード設定部31は、直流直流変換部16の動作モードを充電開始モードから故障判定モードに移行する。故障判定モードにおいて、駆動信号出力部32は、まず、低電位側のスイッチング素子Q2,Q4に対応する駆動信号を出力し、次いで、高電位側のスイッチング素子Q1,Q3に対応する駆動信号を出力する。駆動信号に応じて、まず、スイッチング素子Q2,Q4に駆動電圧が供給され、次いで、スイッチング素子Q1,Q3に駆動電圧が供給される。この結果、まず、スイッチング素子Q2,Q4がオン状態となり、次いで、スイッチング素子Q1,Q3がオン状態となる。スイッチング素子Q2,Q4のオン時間及びスイッチング素子Q1,Q3のオン時間は、いずれも50ミリ秒に設定されている。 Next, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the charge start mode to the failure determination mode. In the failure determination mode, the drive signal output unit 32 first outputs drive signals corresponding to the low potential side switching elements Q2 and Q4, and then outputs drive signals corresponding to the high potential side switching elements Q1 and Q3. To do. In response to the drive signal, first, the drive voltage is supplied to the switching elements Q2 and Q4, and then the drive voltage is supplied to the switching elements Q1 and Q3. As a result, first, switching elements Q2 and Q4 are turned on, and then switching elements Q1 and Q3 are turned on. The on-time of switching elements Q2 and Q4 and the on-time of switching elements Q1 and Q3 are both set to 50 milliseconds.
 スイッチング素子Q1~Q4のいずれにも短絡故障が生じていないため、フルブリッジ回路21に過電流が流れず、過電流検出回路24により過電流が検出されない。この結果、故障判定部34は、スイッチング出力回路12における故障がないと判定する。動作モード設定部31は、直流直流変換部16の動作モードを故障判定モードからスロースタートモードに移行する。 Since no short circuit failure has occurred in any of the switching elements Q1 to Q4, no overcurrent flows through the full bridge circuit 21, and no overcurrent is detected by the overcurrent detection circuit 24. As a result, the failure determination unit 34 determines that there is no failure in the switching output circuit 12. The operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the slow start mode.
 スロースタートモードにおいて、駆動信号出力部32は、2個のスイッチング素子Q2,Q3に対応する駆動信号と、残余のスイッチング素子Q1,Q4に対応する駆動信号とを交互に出力する。駆動信号に応じて、スイッチング素子Q2,Q3とスイッチング素子Q1,Q4とに交互に駆動電圧が印加される。この結果、スイッチング素子Q2,Q3とスイッチング素子Q1,Q4とが交互にオン状態となる。これにより、スイッチング出力回路12の出力動作が実行されて、駆動用バッテリ4が充電される。 In the slow start mode, the drive signal output unit 32 alternately outputs drive signals corresponding to the two switching elements Q2 and Q3 and drive signals corresponding to the remaining switching elements Q1 and Q4. A driving voltage is alternately applied to the switching elements Q2, Q3 and the switching elements Q1, Q4 according to the driving signal. As a result, switching elements Q2, Q3 and switching elements Q1, Q4 are alternately turned on. Thereby, the output operation of the switching output circuit 12 is executed, and the driving battery 4 is charged.
 スロースタートモードにおいて、出力動作の周期は13マイクロ秒に設定されている。出力動作のデューティ比は、下限値(すなわち初期値)が0パーセントよりも大きく10パーセント未満の値、具体的には1パーセントに設定されており、上限値(すなわち最終値)が40パーセントよりも大きく50パーセント未満の値、具体的には48パーセントに設定されている。スロースタートモードは、設定された範囲内でデューティ比の値を次第に大きくしながら、例えば数百周期に亘りオンオフを繰り返す。なお、図4は、説明を分かり易くするため、3周期に亘りデューティ比の値が急激に大きくなるように図示している。 In the slow start mode, the output operation cycle is set to 13 microseconds. The duty ratio of the output operation is set such that the lower limit value (ie, the initial value) is greater than 0 percent and less than 10 percent, specifically 1 percent, and the upper limit value (ie, the final value) is greater than 40 percent. It is set to a value less than 50%, specifically 48%. In the slow start mode, the duty ratio value is gradually increased within a set range, and is repeatedly turned on and off for several hundred cycles, for example. Note that FIG. 4 is illustrated so that the value of the duty ratio increases rapidly over three cycles for easy understanding.
 スロースタートモードが終了すると、次いで、制御部17は、直流直流変換部16の動作モードをスロースタートモードから定常スイッチングモードに移行する。定常スイッチングモードにおける出力動作の周期は、スロースタートモードと同等の値(13マイクロ秒)に設定されている。定常スイッチングモードにおけるデューティ比は、スロースタートモードにおける上限値と同等の値(48パーセント)に設定されている。 When the slow start mode ends, the control unit 17 then shifts the operation mode of the DC / DC conversion unit 16 from the slow start mode to the steady switching mode. The period of the output operation in the steady switching mode is set to a value (13 microseconds) equivalent to that in the slow start mode. The duty ratio in the steady switching mode is set to a value (48%) equivalent to the upper limit value in the slow start mode.
 図5は、スイッチング素子Q2に短絡故障が生じた場合における、スイッチング素子Q1~Q4に対応する駆動信号と、スイッチング素子Q1~Q4のオンオフ状態と、故障判定部34による判定結果を示すフラグと、ゲート遮断信号とを示すタイミング図である。 FIG. 5 shows a drive signal corresponding to the switching elements Q1 to Q4, an on / off state of the switching elements Q1 to Q4, and a flag indicating a determination result by the failure determination unit 34 when a short circuit failure occurs in the switching element Q2. It is a timing diagram which shows a gate interruption | blocking signal.
 動作モード設定部31は、まず、直流直流変換部16の動作モードを充電開始モードに設定する。次いで、動作モード設定部31は、直流直流変換部16の動作モードを充電開始モードから故障判定モードに移行する。 The operation mode setting unit 31 first sets the operation mode of the DC / DC conversion unit 16 to the charge start mode. Next, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the charge start mode to the failure determination mode.
 このとき、スイッチング素子Q2に短絡故障が生じているため、スイッチング素子Q2は、駆動電圧が供給されているか否かに関わらず、常時オンされているのと等価な状態となる。このため、駆動信号出力部32がスイッチング素子Q1,Q3に対応する駆動信号を出力したとき、駆動電圧の供給によりオン状態となったスイッチング素子Q1と、短絡故障が生じたスイッチング素子Q2とに過電流が流れる。過電流検出回路24はこの過電流を検出して、駆動回路22にゲート遮断信号を出力する。この結果、駆動回路22はスイッチング素子Q1,Q3に対する駆動電圧の供給を停止して、スイッチング素子Q1,Q3がオフ状態となる。また、故障判定部34は、判定結果のフラグをオンにして、低電位側のスイッチング素子Q2,Q4のうちの少なくとも一方に短絡故障が発生したと判定する。 At this time, since a short circuit failure has occurred in the switching element Q2, the switching element Q2 is in a state equivalent to being always on regardless of whether or not the drive voltage is supplied. For this reason, when the drive signal output unit 32 outputs a drive signal corresponding to the switching elements Q1 and Q3, the switching element Q1 that is turned on by the supply of the driving voltage and the switching element Q2 in which a short-circuit fault has occurred are excessively transmitted. Current flows. The overcurrent detection circuit 24 detects this overcurrent and outputs a gate cutoff signal to the drive circuit 22. As a result, drive circuit 22 stops supplying drive voltage to switching elements Q1 and Q3, and switching elements Q1 and Q3 are turned off. Further, the failure determination unit 34 turns on the determination result flag and determines that a short-circuit failure has occurred in at least one of the low-potential-side switching elements Q2 and Q4.
 このように、過電流検出回路24がゲート遮断信号を出力することにより、スイッチング素子Q2に短絡故障が生じているとき、個々の故障判定モードにおいて他のスイッチング素子Q1に過電流が流れる時間を所定のオン時間(50ミリ秒)よりもさらに短くすることができる。これにより、スイッチング素子Q1の温度上昇を抑制して、二次故障の発生をより確実に防ぐことができる。 As described above, when the overcurrent detection circuit 24 outputs the gate cutoff signal, when the short-circuit failure occurs in the switching element Q2, the time during which the overcurrent flows to the other switching element Q1 in each failure determination mode is predetermined. The ON time (50 milliseconds) can be further shortened. Thereby, the temperature rise of the switching element Q1 can be suppressed, and the occurrence of a secondary failure can be prevented more reliably.
 次いで、動作モード設定部31は、直流直流変換部16の動作モードを故障判定モードから充電停止モードに移行する。このとき、動作モード設定部31は故障判定部34のフラグをリセットする。その後、動作モード設定部31は、直流直流変換部16の動作モードを充電開始モード、故障判定モードに順次移行する。動作モードが充電開始モードに移行したとき、動作モード設定部31は、過電流検出回路24によるゲート遮断信号の出力を解除する。図1において、動作モード設定部31と過電流検出回路24間の接続線は図示を省略している。 Next, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the charge stop mode. At this time, the operation mode setting unit 31 resets the flag of the failure determination unit 34. Thereafter, the operation mode setting unit 31 sequentially shifts the operation mode of the DC / DC conversion unit 16 to the charge start mode and the failure determination mode. When the operation mode shifts to the charge start mode, the operation mode setting unit 31 cancels the output of the gate cutoff signal by the overcurrent detection circuit 24. In FIG. 1, connection lines between the operation mode setting unit 31 and the overcurrent detection circuit 24 are not shown.
 次に、実施の形態1に係る車載用充電器100の効果について説明する。
 従来の車載用充電器は、実施の形態1の故障判定モードに対応する動作モードを有しておらず、スイッチングモードによる動作中に異常状態(すなわち過電流が流れている状態)を検出した場合、充電停止モード、充電開始モードを経由して、再びスイッチングモードに移行していた。このとき、スイッチングモードにて所定回数連続して過電流が検出された場合に、直流直流変換部が故障したと判定し、動作モードを充電停止モードに固定するとともに故障信号を送信していた。
Next, effects of the in-vehicle charger 100 according to Embodiment 1 will be described.
A conventional in-vehicle charger does not have an operation mode corresponding to the failure determination mode of the first embodiment, and detects an abnormal state (that is, a state in which an overcurrent flows) during operation in the switching mode. In addition, the mode has again shifted to the switching mode via the charge stop mode and the charge start mode. At this time, if an overcurrent is continuously detected a predetermined number of times in the switching mode, it is determined that the DC / DC converter has failed, the operation mode is fixed to the charge stop mode, and a failure signal is transmitted.
 ここで、スイッチングモードにはスロースタートモードが含まれている。スロースタートモードのうちの前半を含む過半における個々のオン時間は、十数マイクロ秒に対する1~40パーセントの時間であり、変流器などを用いた電流検出回路の応答時間よりも短い。このため、仮にいずれかのスイッチング素子に短絡故障が生じて過電流が流れている場合であっても、スロースタートモードのうちの前半を含む過半においてはこの過電流を検出することができない。 Here, the slow start mode is included in the switching mode. The individual on-time in the majority including the first half in the slow start mode is 1 to 40 percent of time for ten or more microseconds, and is shorter than the response time of the current detection circuit using a current transformer or the like. For this reason, even if a short circuit failure occurs in any of the switching elements and an overcurrent flows, the overcurrent cannot be detected in the majority including the first half in the slow start mode.
 この結果、従来の車載用充電器は、直流直流変換部のスイッチング出力回路に含まれる複数個のスイッチング素子のうちのいずれかのスイッチング素子に短絡故障が生じた場合、過電流が所定回数検出されて直流直流変換部が故障したと判定されるまでに時間がかかり、直流直流変換部の故障を早期に発見することができない問題があった。また、当該時間において、直流直流変換部のスイッチング出力回路に、数十回~数百回に所定回数を乗じた回数分の過電流が流れる。この過電流により、短絡故障が生じていなかった他のスイッチング素子の温度が上昇して、二次故障が発生する問題があった。 As a result, the conventional on-vehicle charger detects an overcurrent a predetermined number of times when a short circuit failure occurs in any one of the plurality of switching elements included in the switching output circuit of the DC / DC converter. Thus, it takes time until it is determined that the DC / DC conversion unit has failed, and there is a problem that the DC / DC conversion unit cannot be detected at an early stage. Further, during the time, an overcurrent corresponding to the number of times obtained by multiplying the tens to hundreds of times by the predetermined number of times flows in the switching output circuit of the DC / DC converter. Due to this overcurrent, the temperature of other switching elements in which a short circuit failure has not occurred rises, causing a secondary failure.
 この問題に対し、実施の形態1の車載用充電器100は、スイッチングモードとは別個の故障判定モードを有しており、駆動用バッテリ4の充電を開始するときスイッチングモードよりも先に故障判定モードにて動作する。故障判定モードにおいて、個々のスイッチング素子Q1~Q4のオン時間は、過電流検出回路24によりフルブリッジ回路21に流れる過電流を検出することができる程度に大きい値であって、かつ、この過電流によるスイッチング素子Q1~Q4の温度上昇値が基準値以下となる程度に小さい値に設定されている。 In response to this problem, the in-vehicle charger 100 according to the first embodiment has a failure determination mode that is separate from the switching mode, and the failure determination is performed before the switching mode when charging of the driving battery 4 is started. Operates in mode. In the failure determination mode, the ON times of the individual switching elements Q1 to Q4 are large enough to detect the overcurrent flowing through the full bridge circuit 21 by the overcurrent detection circuit 24, and this overcurrent is detected. Is set to a small value such that the temperature rise values of the switching elements Q1 to Q4 are less than or equal to the reference value.
 これにより、スイッチング素子Q1~Q4のいずれかに短絡故障が生じてから、故障判定部34により短絡故障が生じていると所定回数(3回)判定されるまでの間にフルブリッジ回路21に流れる過電流を低減して、過電流による二次故障の発生を抑制することができる。また、故障判定モードを有しない従来の車載用充電器に対して、スイッチング素子Q1~Q4のいずれかに短絡故障が生じてから故障判定部34により短絡故障が生じていると所定回数(3回)判定されるまでの時間を短縮して、直流直流変換部16の故障を早期に発見することができる。 As a result, the current flows through the full bridge circuit 21 after a short circuit failure has occurred in any of the switching elements Q1 to Q4 until the failure determination unit 34 determines that a short circuit failure has occurred a predetermined number of times (three times). It is possible to reduce the overcurrent and suppress the occurrence of a secondary failure due to the overcurrent. In addition, for a conventional vehicle-mounted charger that does not have a failure determination mode, if a short-circuit failure occurs in any of the switching elements Q1 to Q4 and the short-circuit failure occurs by the failure determination unit 34, a predetermined number of times (three times) ) The time until the determination is shortened, and the failure of the DC / DC converter 16 can be detected early.
 なお、外部電源1は、直流電源により構成されたものであっても良い。この場合、車載用充電器100は、図1に示す交流直流変換部11を除去して、直流直流変換部16及び制御部17により構成されたものであっても良い。 The external power source 1 may be a DC power source. In this case, the in-vehicle charger 100 may be configured by the DC / DC converter 16 and the controller 17 by removing the AC / DC converter 11 shown in FIG.
 また、交流直流変換部11は、フルブリッジ型AC/DCコンバータに限定されるものではない。交流直流変換部11は、例えば、ハーフブリッジ回路を用いた交流直流変換器、いわゆる「ハーフブリッジ型AC/DCコンバータ」により構成されたものであっても良い。 Also, the AC / DC converter 11 is not limited to a full-bridge AC / DC converter. For example, the AC / DC converter 11 may be configured by an AC / DC converter using a half-bridge circuit, that is, a so-called “half-bridge AC / DC converter”.
 また、変圧回路13、整流回路14及び平滑回路15の回路構成は、図1に示す例に限定されるものではない。スイッチング出力回路12の出力を変圧、整流及び平滑するものであれば、如何なる回路構成によるものであっても良い。 The circuit configurations of the transformer circuit 13, the rectifier circuit 14, and the smoothing circuit 15 are not limited to the example shown in FIG. Any circuit configuration may be used as long as it transforms, rectifies, and smoothes the output of the switching output circuit 12.
 また、スイッチング素子Q1~Q4は、いわゆる「パワー半導体」を用いたものであれば良く、Nチャネル型のMOSFETに限定されるものではない。スイッチング素子Q1~Q4は、例えば、Pチャネル型のMOSFET、又はIGBT(Insulated Gate Bipolar Transistor)を用いたものであっても良い。 The switching elements Q1 to Q4 are not limited to N-channel MOSFETs as long as they use so-called “power semiconductors”. The switching elements Q1 to Q4 may be, for example, those using P-channel MOSFETs or IGBTs (Insulated Gate Bipolar Transistors).
 また、スイッチング出力回路12は、フルブリッジ回路21に代えてハーフブリッジ回路を設けたものであっても良い。すなわち、直流直流変換部16はフルブリッジ型DC/DCコンバータに限定されるものではなく、いわゆる「ハーフブリッジ型DC/DCコンバータ」により構成されたものであっても良い。しかしながら、スイッチング出力回路12にハーフブリッジ回路を用いた場合、故障判定モードにおいてスイッチングモードと同様に2個のスイッチング素子が交互にオンされる。このため、スイッチング出力回路12の出力側に、故障判定モードにおける出力動作を停止させるための回路を追加する必要がある。このような追加回路を不要としてコストを低減するとともに、OBCの大電力に対応する観点から、スイッチング出力回路12はフルブリッジ回路21を用いるのがより好適である。 Further, the switching output circuit 12 may be provided with a half bridge circuit in place of the full bridge circuit 21. That is, the DC / DC converter 16 is not limited to a full-bridge DC / DC converter, but may be a so-called “half-bridge DC / DC converter”. However, when a half-bridge circuit is used for the switching output circuit 12, the two switching elements are alternately turned on in the failure determination mode as in the switching mode. For this reason, it is necessary to add a circuit for stopping the output operation in the failure determination mode to the output side of the switching output circuit 12. It is more preferable to use the full bridge circuit 21 as the switching output circuit 12 from the viewpoint of reducing the cost by eliminating such an additional circuit and corresponding to the large power of OBC.
 また、電流検出回路23は電流値を検出できるものであれば良く、変流器に限定されるものではない。電流検出回路23は、例えば、抵抗器をシャントに接続してなる分流器、又は専用のIC(Integrated Circuit)により構成されたものであっても良い。 Further, the current detection circuit 23 may be any circuit as long as it can detect a current value, and is not limited to a current transformer. The current detection circuit 23 may be constituted by, for example, a shunt formed by connecting a resistor to a shunt, or a dedicated IC (Integrated Circuit).
 また、動作モードの固定及び故障信号の送信に係る基準となる故障判定部34による故障判定回数は、3回に限定されるものではない。当該回数は、2回以上の如何なる回数に設定されたものであっても良い。ただし、二次故障の発生をより確実に防ぐ観点から、当該回数は可能な限り少ない回数に設定するのが好適である。特に、過電流検出回路24が駆動回路22にゲート遮断信号を出力しない回路構成とした場合は、当該回数を低減することが求められる。 Further, the number of times of failure determination by the failure determination unit 34 serving as a reference for fixing the operation mode and transmitting a failure signal is not limited to three. The number of times may be set to any number of times of two or more. However, from the viewpoint of more reliably preventing the occurrence of a secondary failure, it is preferable to set the number of times as small as possible. In particular, when the overcurrent detection circuit 24 has a circuit configuration that does not output a gate cutoff signal to the drive circuit 22, it is required to reduce the number of times.
 また、故障判定モードにおける個々のスイッチング素子Q1~Q4のオン時間は、50ミリ秒に限定されるものではない。当該オン時間は、過電流検出回路24によりフルブリッジ回路21に流れる過電流を検出することができる程度に大きい値であって、かつ、この過電流によるスイッチング素子Q1~Q4の温度上昇値が基準値以下となる程度に小さい値であれば、如何なる値に設定されたものであっても良い。 In addition, the on-time of the individual switching elements Q1 to Q4 in the failure determination mode is not limited to 50 milliseconds. The on-time is a value large enough to allow the overcurrent detection circuit 24 to detect the overcurrent flowing through the full bridge circuit 21, and the temperature rise value of the switching elements Q1 to Q4 due to this overcurrent is a reference. Any value may be set as long as the value is as small as possible.
 また、定常スイッチングモードにおける周期は13マイクロ秒に限定されるものではなく、如何なる値であっても良い。定常スイッチングモードにおけるデューティ比は50パーセント未満の値であれば良く、48パーセントに限定されるものではない。 Further, the period in the steady switching mode is not limited to 13 microseconds, and may be any value. The duty ratio in the steady switching mode may be a value less than 50% and is not limited to 48%.
 また、スロースタートモードにおける周期は、13マイクロ秒に限定されるものではなく、定常スイッチングモードと同等の値であれば良い。スロースタートモードにおけるデューティ比の上限値は、定常スイッチングモードにおけるデューティ比以下の値であれば良く、48パーセントに限定されるものではない。スロースタートモードにおけるデューティ比の下限値は、上限値未満の値であれば良く、1パーセントに限定されるものではない。 Also, the cycle in the slow start mode is not limited to 13 microseconds, and may be a value equivalent to that in the steady switching mode. The upper limit value of the duty ratio in the slow start mode may be a value equal to or lower than the duty ratio in the steady switching mode, and is not limited to 48%. The lower limit value of the duty ratio in the slow start mode may be a value less than the upper limit value, and is not limited to 1 percent.
 以上のように、実施の形態1の車載用充電器100は、スイッチング出力回路12を有する直流直流変換部16と、スイッチング出力回路12による出力動作を実行するスイッチングモードと、出力動作を停止させた状態にてスイッチング出力回路12における故障の有無を判定する故障判定モードとを切替自在な制御部17とを備え、車両2に設けられた駆動用バッテリ4の充電を開始するとき、スイッチングモードよりも先に故障判定モードにて動作し、スイッチング出力回路12における故障がないと判定された場合にスイッチングモードに移行する。スイッチングモードとは別個の故障判定モードを設けて、充電開始時にスイッチングモードよりも先に故障判定モードにて動作することにより、直流直流変換部16の故障を早期に発見することができる。また、故障判定モードにおける個々のスイッチング素子Q1~Q4のオン時間を適切な値に設定することにより、スロースタートモードを有する直流直流変換部16において、いずれかのスイッチング素子Q1~Q4に短絡故障が生じてから故障判定部34により短絡故障が生じていると所定回数判定されるまでの間にフルブリッジ回路21に流れる過電流を低減して、二次故障の発生を抑制することができる。 As described above, the in-vehicle charger 100 according to Embodiment 1 stops the DC / DC converter 16 having the switching output circuit 12, the switching mode in which the output operation by the switching output circuit 12 is performed, and the output operation. A controller 17 that can switch between a failure determination mode for determining whether or not there is a failure in the switching output circuit 12 in a state, and when charging of the driving battery 4 provided in the vehicle 2 is started, the control unit 17 The operation is first performed in the failure determination mode, and when it is determined that there is no failure in the switching output circuit 12, the switching mode is entered. By providing a failure determination mode separate from the switching mode and operating in the failure determination mode prior to the switching mode at the start of charging, the failure of the DC / DC converter 16 can be found early. Further, by setting the on-time of each switching element Q1 to Q4 in the failure determination mode to an appropriate value, in the DC / DC converter 16 having the slow start mode, any one of the switching elements Q1 to Q4 has a short circuit failure. The occurrence of a secondary failure can be suppressed by reducing the overcurrent flowing through the full bridge circuit 21 until the failure determination unit 34 determines that a short circuit failure has occurred a predetermined number of times.
 また、車載用充電器100は、スイッチングモードによる動作中にスイッチング出力回路12の異常状態が検出されたとき、スイッチングモードから故障判定モードに移行して、スイッチング出力回路12における故障の有無を判定する。これにより、上記のように、過電流による二次故障の発生を抑制することができる。 In addition, when the abnormal state of the switching output circuit 12 is detected during the operation in the switching mode, the on-vehicle charger 100 shifts from the switching mode to the failure determination mode and determines whether there is a failure in the switching output circuit 12. . Thereby, as described above, it is possible to suppress the occurrence of secondary failure due to overcurrent.
 また、車載用充電器100は、故障判定モードにてスイッチング出力回路12における故障があると判定された場合、故障判定モードに再度移行して、スイッチング出力回路12における故障の有無を判定する。これにより、スイッチング素子Q1~Q4のいずれにも短絡故障が生じていない場合に、一過性の過電流により直流直流変換部16の故障が誤検出されるのを防ぐことができる。 Further, when it is determined that there is a failure in the switching output circuit 12 in the failure determination mode, the in-vehicle charger 100 transitions again to the failure determination mode and determines whether or not there is a failure in the switching output circuit 12. As a result, it is possible to prevent a fault in the DC / DC converter 16 from being erroneously detected due to a transient overcurrent when no short-circuit fault has occurred in any of the switching elements Q1 to Q4.
 また、故障判定モードは、スイッチング出力回路12に含まれる複数個のスイッチング素子Q1~Q4のうち、高電位側に接続されたスイッチング素子Q1,Q3における故障の有無を判定するとともに、低電位側に接続されたスイッチング素子Q2,Q4における故障の有無を判定するものである。これにより、スイッチング出力回路12における故障部位が高電位側のスイッチング素子Q1,Q3であるのか低電位側のスイッチング素子Q2,Q4であるのかを特定することができる。 The failure determination mode determines whether or not there is a failure in the switching elements Q1 and Q3 connected to the high potential side among the plurality of switching elements Q1 to Q4 included in the switching output circuit 12, and sets the switching element Q1 to Q on the low potential side. The presence or absence of a failure in the connected switching elements Q2 and Q4 is determined. Thereby, it can be specified whether the failure part in the switching output circuit 12 is the switching elements Q1 and Q3 on the high potential side or the switching elements Q2 and Q4 on the low potential side.
実施の形態2.
 実施の形態1の車載用充電器100は、故障判定モードにおいて、高電位側のスイッチング素子Q1,Q3における短絡故障の有無を判定するとともに、低電位側のスイッチング素子Q2,Q4における短絡故障の有無を判定するものであった。実施の形態2では、故障判定モードにおいて、個々のスイッチング素子Q1~Q4における短絡故障の有無を判定する車載用充電器100について説明する。なお、実施の形態2に係る車載用充電器100の回路構成等は実施の形態1と同様であるため、図1及び図2を援用して説明する。また、実施の形態1と同様の構成部材には同一符号を付して説明を省略する。
Embodiment 2. FIG.
In-vehicle charger 100 according to Embodiment 1 determines whether or not there is a short circuit failure in switching elements Q1 and Q3 on the high potential side and whether or not there is a short circuit failure in switching elements Q2 and Q4 on the low potential side in the failure determination mode. Was to judge. In the second embodiment, an in-vehicle charger 100 that determines whether or not there is a short circuit failure in each of the switching elements Q1 to Q4 in the failure determination mode will be described. In addition, since the circuit structure of the vehicle-mounted charger 100 which concerns on Embodiment 2 is the same as that of Embodiment 1, it demonstrates referring FIG.1 and FIG.2. Also, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 実施の形態2の故障判定モードにおいて、駆動回路22は、スイッチング素子Q1~Q4のそれぞれに1回ずつ駆動電圧を供給する。具体的には、例えば、駆動回路22は、スイッチング素子Q4、スイッチング素子Q3、スイッチング素子Q2、スイッチング素子Q1に駆動電圧を順次供給する。 In the failure determination mode of the second embodiment, the drive circuit 22 supplies a drive voltage to each of the switching elements Q1 to Q4 once. Specifically, for example, the drive circuit 22 sequentially supplies a drive voltage to the switching element Q4, the switching element Q3, the switching element Q2, and the switching element Q1.
 故障判定部34は、故障判定モードによる動作中、過電流検出回路24の出力を監視して、スイッチング出力回路12における故障の有無を判定するものである。具体的には、故障判定部34は、スイッチング素子Q1に対応する駆動信号が出力されたときに過電流が検出された場合、スイッチング素子Q2に短絡故障が生じていると判定する。また、故障判定部34は、スイッチング素子Q2に対応する駆動信号が出力されたときに過電流が検出された場合、スイッチング素子Q1に短絡故障が生じていると判定する。故障判定部34は、スイッチング素子Q3に対応する駆動信号が出力されたときに過電流が検出された場合、スイッチング素子Q4に短絡故障が生じていると判定する。故障判定部34は、スイッチング素子Q4に対応する駆動信号が出力されたときに過電流が検出された場合、スイッチング素子Q3に短絡故障が生じていると判定する。 The failure determination unit 34 monitors the output of the overcurrent detection circuit 24 during operation in the failure determination mode, and determines whether or not there is a failure in the switching output circuit 12. Specifically, failure determination unit 34 determines that a short circuit failure has occurred in switching element Q2 when an overcurrent is detected when a drive signal corresponding to switching element Q1 is output. Moreover, the failure determination part 34 determines with the short circuit failure having arisen in the switching element Q1, when an overcurrent is detected when the drive signal corresponding to the switching element Q2 is output. Failure determination unit 34 determines that a short-circuit failure has occurred in switching element Q4 when an overcurrent is detected when a drive signal corresponding to switching element Q3 is output. Failure determination unit 34 determines that a short-circuit failure has occurred in switching element Q3 when an overcurrent is detected when a drive signal corresponding to switching element Q4 is output.
 動作モード設定部31は、故障判定部34によりスイッチング素子Q1~Q4のうちの少なくとも1つに短絡故障が生じていると判定された場合、直流直流変換部16の動作モードを故障判定モードから充電停止モードに移行するようになっている。また、動作モード設定部31は、故障判定部34により同一のスイッチング素子Q1~Q4について所定回数(例えば3回)連続して短絡故障があると判定された場合、直流直流変換部16の動作モードを充電停止モードに固定して、故障信号の送信を故障信号送信部35に指示するようになっている。 The operation mode setting unit 31 charges the operation mode of the DC / DC conversion unit 16 from the failure determination mode when the failure determination unit 34 determines that a short circuit failure has occurred in at least one of the switching elements Q1 to Q4. Transition to stop mode. The operation mode setting unit 31 operates when the failure determination unit 34 determines that there is a short-circuit failure continuously for a predetermined number of times (for example, 3 times) for the same switching elements Q1 to Q4. Is fixed to the charge stop mode, and the failure signal transmission unit 35 is instructed to transmit the failure signal.
 次に、図6のフローチャートを参照して、制御部17の動作について説明する。なお、図6において、図3Aに示す実施の形態1のフローチャートと同様のステップには同一符号を付して説明を省略する。 Next, the operation of the control unit 17 will be described with reference to the flowchart of FIG. In FIG. 6, the same steps as those in the flowchart of the first embodiment shown in FIG.
 ステップST2に次いで、ステップST3aにて、故障判定部34は、故障判定モードによる動作中、過電流検出回路24の出力を監視して、スイッチング出力回路12における故障の有無を判定する。すなわち、故障判定部34は、個々のスイッチング素子Q1~Q4のそれぞれについて、短絡故障が発生しているか否かを判定する。故障判定部34は、判定結果を動作モード設定部31に出力する。 After step ST2, in step ST3a, the failure determination unit 34 monitors the output of the overcurrent detection circuit 24 during operation in the failure determination mode, and determines the presence or absence of a failure in the switching output circuit 12. That is, failure determination unit 34 determines whether or not a short-circuit failure has occurred for each of switching elements Q1 to Q4. The failure determination unit 34 outputs the determination result to the operation mode setting unit 31.
 故障判定部34により、スイッチング素子Q1~Q4のうちの少なくとも1つに短絡故障が生じていると判定された場合(ステップST3a“YES”)、ステップST4にて、動作モード設定部31は、直流直流変換部16の動作モードを故障判定モードから充電停止モードに移行する。 If the failure determination unit 34 determines that a short circuit failure has occurred in at least one of the switching elements Q1 to Q4 (step ST3a “YES”), in step ST4, the operation mode setting unit 31 The operation mode of the DC converter 16 is shifted from the failure determination mode to the charge stop mode.
 次いで、ステップST5aにて、動作モード設定部31は、直近3回のステップST3aにおける故障判定部34の判定結果を参照する。故障判定部34によりスイッチング素子Q1に短絡故障が生じていると判定された回数が3回未満であり、かつ、スイッチング素子Q2に短絡故障が生じていると判定された回数が3回未満であり、かつ、スイッチング素子Q3に短絡故障が生じていると判定された回数が3回未満であり、かつ、スイッチング素子Q4に短絡故障が生じていると判定された回数が3回未満である場合(ステップST5a“NO”)、動作モード設定部31はステップST1に戻る。 Next, in step ST5a, the operation mode setting unit 31 refers to the determination result of the failure determination unit 34 in the last three steps ST3a. The number of times that the failure determination unit 34 determines that a short-circuit failure has occurred in the switching element Q1 is less than three times, and the number of times that the short-circuit failure has occurred in the switching element Q2 is less than three times. When the number of times that the short-circuit failure has occurred in the switching element Q3 is less than 3 times, and the number of times in which the short-circuit failure has occurred in the switching element Q4 is less than 3 times ( In step ST5a “NO”), the operation mode setting unit 31 returns to step ST1.
 他方、故障判定部34により、スイッチング素子Q1~Q4のうちの少なくとも1つについて、短絡故障が生じていると判定された回数が3回以上である場合(ステップST5a“YES”)、動作モード設定部31はステップST6に進む。 On the other hand, if the number of times that the short-circuit fault has been determined to be at least three times by at least one of the switching elements Q1 to Q4 by the failure determination unit 34 (step ST5a “YES”), the operation mode setting is performed. The unit 31 proceeds to step ST6.
 なお、故障判定部34により、スイッチング素子Q1~Q4のうちのいずれにも短絡故障が生じていないと判定された場合(ステップST3a“NO”)の動作は、実施の形態1にて図3B及び図3Cを参照して説明したものと同様であるため、図示及び説明を省略する。 The operation when the failure determination unit 34 determines that no short-circuit failure has occurred in any of the switching elements Q1 to Q4 (step ST3a “NO”) is the same as that in FIG. Since it is the same as what was demonstrated with reference to FIG. 3C, illustration and description are abbreviate | omitted.
 次に、図7及び図8を参照して、スイッチング出力回路12及び制御部17の詳細な動作の一例について説明する。 Next, an example of detailed operations of the switching output circuit 12 and the control unit 17 will be described with reference to FIGS.
 図7は、スイッチング素子Q1~Q4のいずれにも短絡故障が生じていない場合における、スイッチング素子Q1~Q4に対応する駆動信号と、スイッチング素子Q1~Q4のオンオフ状態と、故障判定部34による判定結果を示すフラグと、ゲート遮断信号とを示すタイミング図である。なお、故障判定モード以外の動作モードにおけるタイミング図は、図4に示す実施の形態1のタイミング図と同様であるため、説明を省略する。 FIG. 7 shows the drive signals corresponding to the switching elements Q1 to Q4, the on / off states of the switching elements Q1 to Q4, and the determination by the failure determination unit 34 when no short circuit failure has occurred in any of the switching elements Q1 to Q4. It is a timing diagram which shows the flag which shows a result, and a gate interruption | blocking signal. Note that the timing chart in the operation mode other than the failure determination mode is the same as the timing chart of the first embodiment shown in FIG.
 故障判定モードにおいて、駆動信号出力部32は、まず、スイッチング素子Q4に対応する駆動信号を出力し、次いで、スイッチング素子Q3に対応する駆動信号、スイッチング素子Q2に対応する駆動信号、スイッチング素子Q1に対応する駆動信号を順次出力する。駆動信号に応じて、スイッチング素子Q4、スイッチング素子Q3、スイッチング素子Q2、スイッチング素子Q1に駆動電圧が順次供給される。この結果、スイッチング素子Q4、スイッチング素子Q3、スイッチング素子Q2、スイッチング素子Q1が順次オン状態となる。個々のスイッチング素子Q1~Q4のオン時間は、いずれも例えば50ミリ秒に設定されている。 In the failure determination mode, the drive signal output unit 32 first outputs a drive signal corresponding to the switching element Q4, and then outputs a drive signal corresponding to the switching element Q3, a drive signal corresponding to the switching element Q2, and the switching element Q1. Corresponding drive signals are sequentially output. A driving voltage is sequentially supplied to the switching element Q4, the switching element Q3, the switching element Q2, and the switching element Q1 according to the drive signal. As a result, the switching element Q4, the switching element Q3, the switching element Q2, and the switching element Q1 are sequentially turned on. The on times of the individual switching elements Q1 to Q4 are all set to, for example, 50 milliseconds.
 スイッチング素子Q1~Q4のいずれにも短絡故障が生じていないため、フルブリッジ回路21に過電流が流れず、過電流検出回路24により過電流が検出されない。この結果、故障判定部34は、スイッチング出力回路12における故障がないと判定する。動作モード設定部31は、直流直流変換部16の動作モードを故障判定モードからスロースタートモードに移行する。 Since no short circuit failure has occurred in any of the switching elements Q1 to Q4, no overcurrent flows through the full bridge circuit 21, and no overcurrent is detected by the overcurrent detection circuit 24. As a result, the failure determination unit 34 determines that there is no failure in the switching output circuit 12. The operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the slow start mode.
 図8は、スイッチング素子Q2に短絡故障が生じた場合における、スイッチング素子Q1~Q4に対応する駆動信号と、スイッチング素子Q1~Q4のオンオフ状態と、故障判定部34による判定結果を示すフラグと、ゲート遮断信号とを示すタイミング図である。なお、故障判定モード以外の動作モードにおけるタイミング図は、図5に示す実施の形態1のタイミング図と同様であるため、説明を省略する。 FIG. 8 shows a drive signal corresponding to the switching elements Q1 to Q4, an on / off state of the switching elements Q1 to Q4, and a flag indicating a determination result by the failure determination unit 34 when a short circuit failure occurs in the switching element Q2. It is a timing diagram which shows a gate interruption | blocking signal. Note that the timing chart in the operation mode other than the failure determination mode is the same as the timing chart of the first embodiment shown in FIG.
 スイッチング素子Q2に短絡故障が生じているため、スイッチング素子Q2は、駆動電圧が供給されているか否かに関わらず、常時オンされているのと等価な状態となる。このため、故障判定モードにおいて、駆動信号出力部32がスイッチング素子Q1に対応する駆動信号を出力したとき、駆動電圧の供給によりオン状態となったスイッチング素子Q1と、短絡故障が生じたスイッチング素子Q2とに過電流が流れる。過電流検出回路24はこの過電流を検出して、駆動回路22にゲート遮断信号を出力する。この結果、駆動回路22はスイッチング素子Q1への駆動電圧を供給を停止して、スイッチング素子Q1がオフ状態となる。また、故障判定部34は、判定結果のフラグをオンにして、スイッチング素子Q2に短絡故障が発生したと判定する。 Since the short-circuit failure has occurred in the switching element Q2, the switching element Q2 is equivalent to being always on regardless of whether or not the drive voltage is supplied. For this reason, in the failure determination mode, when the drive signal output unit 32 outputs a drive signal corresponding to the switching element Q1, the switching element Q1 turned on by the supply of the drive voltage and the switching element Q2 in which the short-circuit failure has occurred. Overcurrent flows through The overcurrent detection circuit 24 detects this overcurrent and outputs a gate cutoff signal to the drive circuit 22. As a result, the drive circuit 22 stops supplying the drive voltage to the switching element Q1, and the switching element Q1 is turned off. Further, the failure determination unit 34 turns on a determination result flag and determines that a short circuit failure has occurred in the switching element Q2.
 次いで、動作モード設定部31は、直流直流変換部16の動作モードを故障判定モードから充電停止モードに移行する。このとき、動作モード設定部31は故障判定部34のフラグをリセットする。その後、動作モード設定部31は、直流直流変換部16の動作モードを充電開始モード、故障判定モードに順次移行する。動作モードが充電開始モードに移行したとき、動作モード設定部31は、過電流検出回路24によるゲート遮断信号の出力を解除する。 Next, the operation mode setting unit 31 shifts the operation mode of the DC / DC conversion unit 16 from the failure determination mode to the charge stop mode. At this time, the operation mode setting unit 31 resets the flag of the failure determination unit 34. Thereafter, the operation mode setting unit 31 sequentially shifts the operation mode of the DC / DC conversion unit 16 to the charge start mode and the failure determination mode. When the operation mode shifts to the charge start mode, the operation mode setting unit 31 cancels the output of the gate cutoff signal by the overcurrent detection circuit 24.
 このように、実施の形態2の車載用充電器100は、実施の形態1の車載用充電器100と同様に、スイッチングモードとは別個の故障判定モードを有しており、駆動用バッテリ4の充電を開始するときスイッチングモードよりも先に故障判定モードにて動作する。これにより、スイッチング素子Q1~Q4のいずれかに短絡故障が生じてから、故障判定部34により短絡故障が生じていると所定回数(例えば3回)判定されるまでの間にフルブリッジ回路21に流れる過電流を低減して、過電流による二次故障の発生を抑制することができる。また、故障判定モードを有しない従来の車載用充電器に対して、スイッチング素子Q1~Q4のいずれかに短絡故障が生じてから故障判定部34により短絡故障が生じていると所定回数(例えば3回)判定されるまでの時間を短縮して、直流直流変換部16の故障を早期に発見することができる。 As described above, the in-vehicle charger 100 according to the second embodiment has a failure determination mode that is different from the switching mode, like the in-vehicle charger 100 according to the first embodiment. When charging is started, it operates in the failure determination mode prior to the switching mode. As a result, the full bridge circuit 21 is in a period from when a short-circuit failure occurs in any of the switching elements Q1 to Q4 to when the failure determination unit 34 determines that a short-circuit failure has occurred a predetermined number of times (for example, 3 times). The flowing overcurrent can be reduced, and the occurrence of secondary failure due to the overcurrent can be suppressed. In addition, for a conventional in-vehicle charger that does not have a failure determination mode, if a short-circuit failure occurs in any of the switching elements Q1 to Q4 and a short-circuit failure occurs by the failure determination unit 34, a predetermined number of times (for example, 3 The time until the determination is shortened, and the failure of the DC / DC converter 16 can be found early.
 また、実施の形態2の車載用充電器100は、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。 In addition, the vehicle-mounted charger 100 according to the second embodiment can employ various modifications similar to those described in the first embodiment.
 以上のように、実施の形態2の故障判定モードは、スイッチング出力回路12に含まれる複数個のスイッチング素子Q1~Q4のうち、個々のスイッチング素子Q1~Q4における故障の有無を判定するものである。これにより、故障が生じているスイッチング素子Q1~Q4を特定することができる。 As described above, the failure determination mode of the second embodiment determines whether or not there is a failure in each of the switching elements Q1 to Q4 among the plurality of switching elements Q1 to Q4 included in the switching output circuit 12. . As a result, it is possible to identify the switching elements Q1 to Q4 in which a failure has occurred.
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Further, within the scope of the present invention, the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
 本発明の車載用充電器は、電気自動車用のOBCに用いることができる。 The on-vehicle charger of the present invention can be used for OBC for electric vehicles.
 1 外部電源、2 車両、3 充電用端子、4 駆動用バッテリ、11 交流直流変換部、12 スイッチング出力回路、13 変圧回路、14 整流回路、15 平滑回路、16 直流直流変換部、17 制御部、21 フルブリッジ回路、22 駆動回路、23 電流検出回路、24 過電流検出回路、31 動作モード設定部、32 駆動信号出力部、33 異常検出部、34 故障判定部、35 故障信号送信部、100 車載用充電器、Q1,Q2,Q3,Q4 スイッチング素子。 1 external power source, 2 vehicle, 3 charging terminal, 4 drive battery, 11 AC / DC converter, 12 switching output circuit, 13 transformer circuit, 14 rectifier circuit, 15 smoothing circuit, 16 DC / DC converter, 17 controller, 21 full bridge circuit, 22 drive circuit, 23 current detection circuit, 24 overcurrent detection circuit, 31 operation mode setting unit, 32 drive signal output unit, 33 abnormality detection unit, 34 failure determination unit, 35 failure signal transmission unit, 100 onboard Charger, Q1, Q2, Q3, Q4 switching element.

Claims (9)

  1.  スイッチング出力回路を有する直流直流変換部と、
     前記スイッチング出力回路による出力動作を実行するスイッチングモードと、前記出力動作を停止させた状態にて前記スイッチング出力回路における故障の有無を判定する故障判定モードとを切替自在な制御部と、を備え、
     車両に設けられた駆動用バッテリの充電を開始するとき、前記スイッチングモードよりも先に前記故障判定モードにて動作し、前記スイッチング出力回路における故障がないと判定された場合に前記スイッチングモードに移行する
     ことを特徴とする車載用充電器。
    A DC / DC converter having a switching output circuit;
    A control unit capable of switching between a switching mode for executing an output operation by the switching output circuit and a failure determination mode for determining whether or not there is a failure in the switching output circuit in a state in which the output operation is stopped,
    When charging of the driving battery provided in the vehicle is started, the operation is performed in the failure determination mode prior to the switching mode, and when it is determined that there is no failure in the switching output circuit, the switching mode is entered. An in-vehicle charger characterized by the above.
  2.  前記スイッチングモードによる動作中に前記スイッチング出力回路の異常状態が検出されたとき、前記スイッチングモードから前記故障判定モードに移行して、前記スイッチング出力回路における故障の有無を判定することを特徴とする請求項1記載の車載用充電器。 When an abnormal state of the switching output circuit is detected during the operation in the switching mode, the switching mode is shifted to the failure determination mode to determine whether or not there is a failure in the switching output circuit. The vehicle-mounted charger according to Item 1.
  3.  前記故障判定モードにて前記スイッチング出力回路における故障があると判定された場合、前記故障判定モードに再度移行して、前記スイッチング出力回路における故障の有無を判定することを特徴とする請求項2記載の車載用充電器。 3. When it is determined in the failure determination mode that there is a failure in the switching output circuit, the failure determination mode is entered again to determine whether or not there is a failure in the switching output circuit. In-vehicle charger.
  4.  前記故障判定モードは、前記スイッチング出力回路に含まれる複数個のスイッチング素子のうち、高電位側に接続された前記スイッチング素子における故障の有無を判定するとともに、低電位側に接続された前記スイッチング素子における故障の有無を判定するものであることを特徴とする請求項1記載の車載用充電器。 The failure determination mode determines whether or not there is a failure in the switching element connected to the high potential side among the plurality of switching elements included in the switching output circuit, and the switching element connected to the low potential side The in-vehicle charger according to claim 1, wherein the presence or absence of a failure is determined.
  5.  前記故障判定モードは、前記スイッチング出力回路に含まれる複数個のスイッチング素子のうち、個々の前記スイッチング素子における故障の有無を判定するものであることを特徴とする請求項1記載の車載用充電器。 The in-vehicle charger according to claim 1, wherein the failure determination mode is for determining whether or not there is a failure in each of the switching elements among the plurality of switching elements included in the switching output circuit. .
  6.  前記スイッチングモードは、前記出力動作におけるデューティ比の値が次第に大きくなるスロースタートモードと、前記スロースタートモードから移行して前記デューティ比の値が一定値である定常スイッチングモードとを含むものであることを特徴とする請求項1記載の車載用充電器。 The switching mode includes a slow start mode in which a value of a duty ratio in the output operation is gradually increased and a steady switching mode in which the value of the duty ratio is a constant value after shifting from the slow start mode. The in-vehicle charger according to claim 1.
  7.  前記スロースタートモードにおける前記デューティ比は、下限値が0パーセントよりも大きくかつ10パーセント未満の値に設定されており、上限値が40パーセントよりも大きくかつ50パーセント未満の値に設定されていることを特徴とする請求項6記載の車載用充電器。 The lower limit value of the duty ratio in the slow start mode is set to a value greater than 0 percent and less than 10 percent, and the upper limit value is set to a value greater than 40 percent and less than 50 percent. The in-vehicle charger according to claim 6.
  8.  前記故障判定モードにおいて、前記スイッチング出力回路に含まれる個々のスイッチング素子のオン時間は、前記スイッチング出力回路に流れる過電流を検出可能であり、かつ、前記過電流による前記スイッチング素子の温度上昇値が基準値以下となる値に設定されていることを特徴とする請求項1記載の車載用充電器。 In the failure determination mode, the on-time of each switching element included in the switching output circuit can detect an overcurrent flowing through the switching output circuit, and a temperature rise value of the switching element due to the overcurrent is The in-vehicle charger according to claim 1, wherein the on-vehicle charger is set to a value that is equal to or less than a reference value.
  9.  前記オン時間は、50ミリ秒に設定されていることを特徴とする請求項8記載の車載用充電器。 The on-vehicle charger according to claim 8, wherein the on-time is set to 50 milliseconds.
PCT/JP2016/062142 2016-04-15 2016-04-15 On-board charger WO2017179200A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018511862A JP6362812B2 (en) 2016-04-15 2016-04-15 Car charger
PCT/JP2016/062142 WO2017179200A1 (en) 2016-04-15 2016-04-15 On-board charger
CN201680084472.7A CN109075705B (en) 2016-04-15 2016-04-15 Charger for vehicle
DE112016006573.6T DE112016006573T5 (en) 2016-04-15 2016-04-15 On-board loader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062142 WO2017179200A1 (en) 2016-04-15 2016-04-15 On-board charger

Publications (1)

Publication Number Publication Date
WO2017179200A1 true WO2017179200A1 (en) 2017-10-19

Family

ID=60041473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062142 WO2017179200A1 (en) 2016-04-15 2016-04-15 On-board charger

Country Status (4)

Country Link
JP (1) JP6362812B2 (en)
CN (1) CN109075705B (en)
DE (1) DE112016006573T5 (en)
WO (1) WO2017179200A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924721A (en) * 2019-06-07 2022-01-11 松下知识产权经营株式会社 Vehicle-mounted power supply system
JP7061174B1 (en) 2020-11-25 2022-04-27 株式会社日本トリム Electrolysis control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723535A (en) * 1993-06-30 1995-01-24 Hitachi Ltd Charger for electric automobile
JPH09191654A (en) * 1996-01-12 1997-07-22 Fuji Electric Co Ltd Control method for voltage type inverter
JP2010213501A (en) * 2009-03-11 2010-09-24 Omron Corp Power supply control device, method, and program
JP2011223707A (en) * 2010-04-07 2011-11-04 Denso Corp Motor controller
JP2013085391A (en) * 2011-10-11 2013-05-09 Nichicon Corp Installation-type electric charging system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215578A (en) 1997-01-29 1998-08-11 Hitachi Ltd Overcurrent display device for inverter
CN102412717B (en) * 2011-11-18 2014-04-09 广州三晶电气有限公司 Lossless soft start device and method for frequency converter
JP5769780B2 (en) * 2013-10-29 2015-08-26 三菱電機株式会社 Switching power supply device and power supply method
KR101592700B1 (en) * 2014-05-29 2016-02-12 현대자동차주식회사 Battery charging system using charger and driving control method of the same charger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723535A (en) * 1993-06-30 1995-01-24 Hitachi Ltd Charger for electric automobile
JPH09191654A (en) * 1996-01-12 1997-07-22 Fuji Electric Co Ltd Control method for voltage type inverter
JP2010213501A (en) * 2009-03-11 2010-09-24 Omron Corp Power supply control device, method, and program
JP2011223707A (en) * 2010-04-07 2011-11-04 Denso Corp Motor controller
JP2013085391A (en) * 2011-10-11 2013-05-09 Nichicon Corp Installation-type electric charging system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924721A (en) * 2019-06-07 2022-01-11 松下知识产权经营株式会社 Vehicle-mounted power supply system
CN113924721B (en) * 2019-06-07 2023-08-25 松下知识产权经营株式会社 Vehicle-mounted power supply system
JP7061174B1 (en) 2020-11-25 2022-04-27 株式会社日本トリム Electrolysis control method
JP2022083693A (en) * 2020-11-25 2022-06-06 株式会社日本トリム Electrolysis control method

Also Published As

Publication number Publication date
JP6362812B2 (en) 2018-07-25
CN109075705A (en) 2018-12-21
DE112016006573T5 (en) 2018-11-22
JPWO2017179200A1 (en) 2018-07-05
CN109075705B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
US11173857B2 (en) Control device for on-board power supply unit, and on-board power supply device with a protective relay
US9154000B2 (en) Uninterruptible power supply apparatus including a control circuit that executes a first mode when supply of a first AC electric power from a commercial AC power supply is resumed at a time of discharge end
WO2020029901A1 (en) Method for detecting an isolation fault
JP6135663B2 (en) Power conversion device and power conversion method
JP5807649B2 (en) Power conversion device and power conversion method
US10601301B2 (en) Abnormality detection device and vehicle-mounted power supply device
US9425612B2 (en) Output power protection apparatus and method of operating the same
JP6446325B2 (en) Power supply device
US9537414B2 (en) Power conversion apparatus that switches electrode connection when a short-circuit is detected
JP2014121229A (en) Charging apparatus
JP6009027B1 (en) Power converter
JP7482354B2 (en) In-vehicle power supply system
US20160285290A1 (en) Charger
US11888388B2 (en) Electric compressor control device
JP6362812B2 (en) Car charger
US11368015B2 (en) Process for testing the operability of a circuit breaker device
JP4086751B2 (en) Switching power supply
US9898027B2 (en) Station building power supply device
US20220109383A1 (en) Power conversion device
US20220109382A1 (en) Power conversion device
CA2996871C (en) Power converting device and method of controlling power converting device
JP2016213968A (en) Power supply device
JP2015104298A (en) On-vehicle voltage converter and on-vehicle apparatus
JP7186683B2 (en) switching power supply
JP2016127752A (en) Electric vehicle controller

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511862

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898660

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898660

Country of ref document: EP

Kind code of ref document: A1