WO2017177810A1 - 一种用户设备、基站中的窄带蜂窝通信的方法和装置 - Google Patents

一种用户设备、基站中的窄带蜂窝通信的方法和装置 Download PDF

Info

Publication number
WO2017177810A1
WO2017177810A1 PCT/CN2017/078241 CN2017078241W WO2017177810A1 WO 2017177810 A1 WO2017177810 A1 WO 2017177810A1 CN 2017078241 W CN2017078241 W CN 2017078241W WO 2017177810 A1 WO2017177810 A1 WO 2017177810A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless signal
information
node
sender
data
Prior art date
Application number
PCT/CN2017/078241
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2017177810A1 publication Critical patent/WO2017177810A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to transmission schemes in wireless communication systems, and more particularly to methods and apparatus for supporting wireless relay transmissions.
  • a scheme of Layer 3 (Layer-3) relay base station is proposed in the 3GPP-3rd Generation Partner Project R (Release, Release) 9.
  • the relay base station has the function of a normal base station for the UE (User Equipment), and can independently schedule data and transmit a downlink HARQ-ACK (Hybrid Automatic Repeat reQuest).
  • UE User Equipment
  • HARQ-ACK Hybrid Automatic Repeat reQuest
  • a base station In a conventional 3GPP system, data transmission takes place between a base station and a UE.
  • D2D Device to Device
  • the essential feature of D2D is to allow data transmission between UEs.
  • eD2D Evolution to LTE Device to Device
  • 3GPP R13 eD2D (Enhancements to LTE Device to Device) is established, and its main feature is to introduce a UE relay function.
  • eD2D a relay user equipment (Relay UE) relays data exchange between a remote user equipment (Remote UE) and a base station.
  • Relay UE relay user equipment
  • NB-IOT Network BroadBand Internet of Things
  • Feo2D Frether Enhancements to LTE Device to Device, further enhancement of LTE D2D for IoT and wearable devices is proposed.
  • D2D communication may be implemented through an air interface similar to NB-IoT.
  • a typical application scenario of FeD2D is that there are multiple wearable devices around a smart terminal.
  • the smart terminal relays data exchange between the wearable device and the base station, that is, the smart terminal and the wearable device are a Relay UE and a Remote UE, respectively.
  • Release 12D2D transmission is mainly for the public safety (Public Safety) scenario. Therefore, when designing data transmission, repeated transmission is adopted. There is no link adaptation (Link Adaptation) between the terminal device and the terminal device, and there is no CSI (Channel State Information) feedback. For FeD2D, considering the combination of spectrum efficiency and transmission reliability, the CSI between the terminal device and the terminal device, that is, the CSI of the Relay UE and the Remote UE, needs to be obtained by the base station to perform link adaptation and modulation coding. Match.
  • Link adaptation Link Adaptation
  • CSI Channel State Information
  • An intuitive solution is to reuse the scheme of the relay base station in the 3GPP R9, that is, the Relay UE has the function of the relay base station, and the scheduling of all the Remote UEs is implemented by the Relay UE.
  • the inventors have found through research that the above-mentioned intuitive method imposes high requirements on the power consumption and complexity of the intelligent terminal, and thus is difficult to implement.
  • the present invention provides a solution to the above problems. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the UE of the present application may be applied to a base station, and vice versa. For another example, the features in the embodiments and embodiments in the D2D transmitting UE of the present application (ie, transmitting a wireless signal on a D2D link) may be applied to a D2D receiving UE (ie, receiving the wireless signal on a D2D link). ,vice versa.
  • the solution of the present invention is also applicable to wideband D2D relay (i.e., D2D transmission is broadband based).
  • the invention discloses a method in a UE used for relay communication, which comprises the following steps:
  • Step B Send the second wireless signal and the third wireless signal.
  • the first wireless signal is used to determine a second wireless signal, and the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the sender of the first wireless signal is a first node, and the recipient of the second wireless signal includes a second node.
  • the third wireless signal is used to determine at least one of:
  • the first wireless signal includes the first information or the first data
  • the first node is a serving cell of the UE
  • the first information is generated at a physical layer, and the first data is generated at a higher layer.
  • the relay UE In D2D-based relay transmission, the relay UE, rather than the base station, knows the sidelink (Sidelink) link quality and transmission status. Therefore, with the third wireless signal, the UE can determine the content included in the second wireless signal by itself.
  • Sidelink Sidelink
  • the UE cannot determine the content included in the uplink signal. Therefore, the above method can utilize the uplink air interface resources more efficiently and improve the transmission efficiency.
  • the first node and the second node are a Remote UE and a base station, respectively.
  • the Relay UE acquires the channel quality of the side link through the first signal, and sends the second radio signal to the base station to help the base station perform link adaptation and modulation of the Remote UE to Relay UE transmission. Adaptation of the coding method.
  • the bandwidth occupied by the first wireless signal does not exceed 180 kHz.
  • the bandwidth occupied by the first wireless signal is one of ⁇ 3.75KHz, 15KHz, 45KHz, 90KHz, 180KHz ⁇ .
  • the bandwidth occupied by the second wireless signal is not less than 180 kHz.
  • the second wireless signal and the third wireless signal share a positive integer number of PRB (Physcial Resource Block) pairs.
  • PRB Physical Resource Block
  • the second wireless signal is transmitted in a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the transmission channel of the second wireless signal is a UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the third wireless signal is transmitted in the PUSCH.
  • the transmission channel of the third wireless signal is a UL-SCH.
  • the second wireless signal and the third wireless signal share a positive integer number of PRB pairs.
  • the first information relates to channel quality between the first node and the UE.
  • the first information includes CSI.
  • the first information includes CQI (Channel Quality Information).
  • the first information includes an MCS (Modulation and Coding Status).
  • MCS Modulation and Coding Status
  • the first information includes RSRP (Reference Signal Received Power) of Layer 1 (Layer 1).
  • RSRP Reference Signal Received Power
  • the first information includes a first HARQ-ACK.
  • the first HARQ-ACK indicates whether data transmission between the first node and the UE is correctly decoded.
  • the first information includes an SR (Scheduling Request).
  • the upper layer refers to a layer above the physical layer.
  • the generating, by the physical layer, the first information refers to: there is no transport channel corresponding to the first information.
  • the generating, by the physical layer, the first information refers to: the upper layer cannot identify the first information.
  • the generating, by the upper layer, the first data refers to: a transmission channel corresponding to the first data exists.
  • the generating the first data at a higher level means that the upper layer can identify the first data.
  • the second wireless signal includes first information in ⁇ first information, first data ⁇ , and the first wireless signal includes at least one of ⁇ synchronization sequence, discovery channel, reference signal ⁇ .
  • the second wireless signal includes first information and first data
  • the first wireless signal includes at least one of ⁇ synchronization sequence, discovery channel, reference signal ⁇ and first data.
  • the determining, by the first wireless signal, the second wireless signal means that the second wireless signal comprises information obtained by the UE according to the first wireless signal.
  • the first wireless signal is used to determine that the second wireless signal refers to: the second wireless signal is related to channel quality between the first node and the UE, and the first A wireless signal is used by the UE to acquire the channel quality.
  • the determining, by the first wireless signal, the second wireless signal comprises: the second wireless signal includes a second HARQ-ACK, and the second HARQ-ACK indicates whether the first wireless signal indicates Correctly decoded.
  • the using the first wireless signal to determine the second wireless signal means that the second wireless signal comprises a signal obtained after the first wireless signal is channel equalized.
  • the first wireless signal is used to determine the second wireless
  • the signal means that the second wireless signal comprises a signal obtained by channel equalization, hard decision and remodulation coding of the first wireless signal.
  • the determining, by the first wireless signal, the second wireless signal refers to: obtaining the second wireless signal after performing channel decoding on the first wireless signal.
  • the transport channel corresponding to the first data is a SL-SCH (Sidelink Shared Channel).
  • the transport channel corresponding to the first data is a UL-SCH.
  • the first node is a terminal device.
  • the second node is a network side device.
  • the first node and the second node are non-co-located
  • the first node and the second node are non-co-located means that the first node and the second node are two different communication devices.
  • the first node and the second node are non-co-located, meaning that there is no wired connection between the first node and the second node.
  • the first node and the second node are non-co-located, meaning that the first node and the second node are located at different locations.
  • the design feature of the above “the third wireless signal is used to determine whether the second wireless signal includes the first information or the first data” is that when the base station is the channel quality of the wireless link between the Remote UE and the Relay UE After the related information is allocated to the uplink resource, the channel quality related information does not change rapidly because the radio link between the Remote UE and the Relay UE is not static due to the static characteristics of the Remote UE and the Relay UE. It is meaningless to frequently update the channel quality related information.
  • the relay UE can transmit the relay UE's own uplink data on the resources allocated by the base station by using the indication of the third radio signal to improve the frequency band utilization.
  • the design feature that the foregoing “the third wireless signal is used to determine whether the first node is the serving cell of the UE” is that if there is no Remote UE under the Relay UE, the base station is between the Remote UE and the Relay UE.
  • the uplink resource allocated by the channel quality related information of the radio link can still be used as the transmission of the relay UE uplink data to improve the frequency band utilization.
  • the design trait of the above-mentioned "the third wireless signal is used to determine the identity of the first node" lies in.
  • the base station does not know how many Remote UEs exist under the Relay UE, and which The channel quality related information corresponding to the Remote UE needs to be sent.
  • the relay UE sends the channel quality related information of the Remote UE
  • the identifier of the Remote UE is also sent to the base station, so that it is not necessary to transmit the channel quality related information of all the Remote UEs at a time, and only the Remote UE of which the partial channel changes is needed.
  • Channel quality related information is sent to the base station. This can improve the feedback efficiency to improve the frequency band utilization.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A1 Determine the first information based on the first wireless signal.
  • the first wireless signal includes K target time-frequency resources, and the K target time-frequency resources include K reference signals.
  • the K is a positive integer.
  • the determining, according to the first wireless signal, the first information refers to: channel quality related information that is displayed by the first information and includes a given wireless link.
  • the given wireless link is a link between the UE and the first node.
  • the channel quality related information is at least one of ⁇ MCS, CQI ⁇ .
  • the first wireless signal is transmitted on a PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • the first wireless signal is transmitted on a PSBCH (Physical Sidelink Broadcast Channel).
  • PSBCH Physical Sidelink Broadcast Channel
  • the first wireless signal is transmitted on a PSDCH (Physical Sidelink Discovery Channel).
  • PSDCH Physical Sidelink Discovery Channel
  • the first wireless signal is transmitted on a PSSS (Primary Sidelink Synchronisation Signal).
  • PSSS Primary Sidelink Synchronisation Signal
  • the first wireless signal is transmitted on a NB-PUSCH (Narrow Band-Physcial Uplink Shared Channel).
  • NB-PUSCH Near Band-Physcial Uplink Shared Channel
  • the transport channel corresponding to the first wireless signal is an SL-SCH.
  • the transport channel corresponding to the first wireless signal is a UL-SCH.
  • the reference signal is a reference signal for data demodulation.
  • the reference signal is a reference signal for channel measurement.
  • the reference signal is for a Cell Specific reference signal.
  • the reference signal is for a UE-specific reference signal.
  • the reference channel is a DMRS (Demodulation Reference Signal).
  • DMRS Demodulation Reference Signal
  • the reference channel is an SRS (Sounding Reference Signal)
  • the first wireless signal is used for UE-specific information transmission between the first node and the UE.
  • the first wireless signal is used for cell-specific information transmission between the first node and the UE.
  • the first wireless signal is used for data transmission between the first node and the UE.
  • the first wireless signal is used by the first node to be discovered by the UE.
  • the first wireless signal is used by the first node to establish synchronization with the UE.
  • the method is characterized in that the step B further comprises the following steps:
  • Step B1 Receive the second information.
  • the second information is used to determine the first time-frequency resource.
  • the second wireless signal is transmitted in the first time-frequency resource.
  • the third wireless signal is also transmitted in the first time-frequency resource.
  • the third wireless signal is transmitted on a PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the sender of the second information is the second node.
  • the sender of the second information is a network side device.
  • the sender of the second information is a serving cell of the UE.
  • the second information is transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second information is RRC (Radio Resource Control) common information.
  • RRC Radio Resource Control
  • the second information is RRC specific information.
  • the second information is used to indicate a first time-frequency resource pool.
  • the first time-frequency resource pool includes one of the first time-frequency resources in a given time window, and the first information is transmitted on the first time-frequency resource.
  • the given time window occupies a positive integer number of subframes in the time domain.
  • the first time-frequency resource includes a positive integer number of PRB pairs in a given time window.
  • the advantage of the above two embodiments is that the base station sends the time-frequency resources of the channel quality related information of the Remote UE to the Relay UE link through the configuration of the RRC signaling period, and the degree of change of the channel quality information of the Relay UE according to the link. , selective delivery. This method saves downlink control signaling.
  • the transport channel corresponding to the second information is a DL-SCH (Downlik Shared Channel).
  • the second information is physical layer signaling.
  • the second information is used to indicate the first time-frequency resource from the first time-frequency resource pool.
  • the time-frequency resource occupied by the first time-frequency resource pool is fixed or determined by the first high-level signaling.
  • the characteristics of the foregoing sub-embodiment are that the channel quality related information of the Remote UE to the Relay UE link is sent by using the high-layer signaling and the physical layer signaling configuration resource, and the uplink spectrum efficiency can be better improved than the pure RRC configuration.
  • the second information is transmitted by using one of DCI (Downlink Control Information) format (Format) ⁇ 0, 4 ⁇ , and the corresponding physical layer of the first time-frequency resource
  • DCI Downlink Control Information
  • Form Format
  • the characteristics of the foregoing sub-embodiment are that the channel quality related information of the Remote UE to Relay UE link is transmitted through a conventional PUSCH, and the occupied PRB is indicated by information bits in a given DCI Format.
  • the given DCI Format is one of DCI Format ⁇ 0, 4 ⁇ .
  • the method is characterized in that the step B further comprises the following steps:
  • the third information is used to ⁇ request the first time-frequency resource, and adjust the first At least one of the size of a time-frequency resource.
  • the “requesting the first time-frequency resource” means that the UE requests an uplink resource from a receiver of the third information, and the uplink resource is used to send the second wireless signal and The third wireless signal.
  • the advantage of the foregoing embodiment is that the Relay UE can request the uplink resource to send channel quality related information of the radio link of the Remote UE to the Relay UE, without requiring the system to reserve resources to improve the uplink spectrum utilization.
  • the third information includes 1-bit information, and when the 1-bit information is “1”, it indicates that the first time-frequency resource is requested, and when the 1-bit information is “0” It indicates that the first time-frequency resource is not needed.
  • the “adjusting the size of the first time-frequency resource” means that the UE requests the receiver of the third information to adjust the size of the allocated uplink resource, and the allocated uplink Resources are used to transmit the second wireless signal and the third wireless signal.
  • the advantage of the foregoing embodiment is that the Relay UE needs to increase or decrease the channel quality related information of the radio link of the uplink resource to the Relay UE to the Relay UE according to the number of the neighboring Remote UEs and the channel change speed, and ensure the uplink spectrum utilization rate. At the same time, the transmission speed of channel quality related information is improved, and the overall performance of the system is further improved.
  • the third information includes 1-bit information, and when the 1-bit information is "1", it indicates that the size of the first time-frequency resource currently configured is increased, the 1-bit information. When it is "0", it indicates that the size of the first time-frequency resource of the current configuration is reduced.
  • the third information is used to request at least the first time-frequency resource from ⁇ requesting the first time-frequency resource, adjusting a size of the first time-frequency resource ⁇ , and the foregoing Step B2 occurs before step B1 described above.
  • the third information is used to adjust at least the size of the first time-frequency resource in the requesting the first time-frequency resource, and the size of the first time-frequency resource, and the foregoing
  • the step B2 occurs after the step B1 described above.
  • the recipient of the third information is the second node.
  • the recipient of the third information is a network side device.
  • the receiver of the third information is a serving cell of the UE.
  • the third information is transmitted on the PUSCH.
  • the transport channel corresponding to the third information is a UL-SCH.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A4 Receiving a fourth wireless signal.
  • the related information of the fourth wireless signal and the first information are related.
  • the related information includes at least one of ⁇ MCS, RV (Redundancy Version), NDI (New Data Indicator).
  • the sender of the fourth wireless signal is the first node.
  • the fourth wireless signal is transmitted on the PSSCH.
  • the fourth wireless signal is transmitted on the NB-PUSCH.
  • the transmission channel of the fourth wireless signal is a SL-SCH.
  • the transmission channel of the fourth wireless signal is a UL-SCH.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A5. Receiving fourth information, the fourth information being used to determine related information of the fourth wireless signal, the first information being used to determine the fourth information; or receiving the fifth information, The fifth information is used to determine related information of the fourth wireless signal, and the fifth information is related to the first information.
  • the sender of the fourth information is the second node, and the sender of the fifth information is the first node.
  • the fourth information is transmitted on a PDCCH (Physical Donwlink Control Channel) or an EPDCCH (Enhanced Physical Donwlink Control Channel).
  • PDCCH Physical Donwlink Control Channel
  • EPDCCH Enhanced Physical Donwlink Control Channel
  • the DCI format adopted by the fourth information is DCI Format 5.
  • the DCI format adopted by the fourth information is DCI Format 6-0A.
  • the DCI format adopted by the fourth information is DCI Format 6-0B.
  • the fourth information is used to determine the related information of the fourth wireless signal, where the fourth information is dominantly included (for the MCS of the fourth wireless signal, Said RV of the fourth wireless signal, for at least one of NDI ⁇ of said fourth wireless signal.
  • the first information is used to determine that the fourth information refers to:
  • the first information is implicitly used to determine the fourth information.
  • the first information includes the first HARQ-ACK, and the first HARQ-ACK indicates that data transmission between the first node and the UE is correctly translated. code.
  • the fourth information includes ⁇ for the MCS of the fourth wireless signal, for the RV of the fourth wireless signal, for the NDI of the fourth wireless signal, at least for the NDI of the fourth wireless signal, And the NDI is equal to 1.
  • the first information includes the first HARQ-ACK, and the first HARQ-ACK indicates that data transmission between the first node and the UE is not correctly performed.
  • the fourth information includes ⁇ for the MCS of the fourth wireless signal, for the RV of the fourth wireless signal, for the NDI of the fourth wireless signal, at least for the NDI of the fourth wireless signal, And the NDI is equal to zero.
  • the first information is related to channel quality between the first node and the UE
  • the fourth information includes ⁇ for MCS of the fourth wireless signal ⁇
  • the MCS for the fourth wireless signal is related to the first information
  • the first information includes a CQI
  • the MCS for the fourth wireless signal is related to a CQI included by the first information.
  • the first information includes an MCS
  • the MCS for the fourth wireless signal is related to an MCS included in the first information.
  • the using the first information to determine the fourth information means that the first information is used to determine the fourth information.
  • the first information is related to channel quality between the first node and the UE
  • the fourth information includes ⁇ for MCS of the fourth wireless signal ⁇
  • the MCS for the fourth wireless signal is related to the first information
  • the first information includes a CQI
  • the MCS for the fourth wireless signal is an MCS corresponding to a CQI included in the first information.
  • the first information includes an MCS
  • the MCS for the fourth wireless signal is an MCS included in the first information.
  • the fifth information is transmitted on a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the SCI (Sidelink Control Information) format (Format) adopted by the fifth information is SCI Format 0.
  • the determining, by the fifth information, the related information of the fourth wireless signal, that the fifth information is dominantly includes: (for the MCS of the fourth wireless signal, Said RV of the fourth wireless signal, for at least one of NDI ⁇ of said fourth wireless signal.
  • the fifth information is related to the first information, that is, the first information is implicitly used to determine the fifth information.
  • the first information includes the first HARQ-ACK, and the first HARQ-ACK indicates that data transmission between the first node and the UE is correctly translated. code.
  • the fifth information includes ⁇ for the MCS of the fourth wireless signal, for the RV of the fourth wireless signal, for the NDI of the fourth wireless signal, at least for the NDI of the fourth wireless signal, And the NDI is equal to 1.
  • the first information includes the first HARQ-ACK, and the first HARQ-ACK indicates that data transmission between the first node and the UE is not correctly performed.
  • the fifth information includes ⁇ for the MCS of the fourth wireless signal, for the RV of the fourth wireless signal, for the NDI of the fourth wireless signal, at least for the NDI of the fourth wireless signal, And the NDI is equal to zero.
  • the first information is related to channel quality between the first node and the UE
  • the fifth information includes ⁇ for MCS of the fourth wireless signal ⁇
  • the MCS for the fourth wireless signal is related to the first information
  • the first information includes a CQI
  • the MCS for the fourth wireless signal is related to a CQI included by the first information.
  • the first information includes an MCS
  • the MCS for the fourth wireless signal is related to an MCS included in the first information.
  • the fifth information is related to the first information, that is, the first information is used to determine the fifth information.
  • the first information is related to channel quality between the first node and the UE
  • the fifth information includes ⁇ for MCS of the fourth wireless signal ⁇
  • the MCS for the fourth wireless signal is related to the first information
  • the first information includes a CQI
  • the MCS for the fourth wireless signal is an MCS corresponding to a CQI included in the first information.
  • the first information includes an MCS
  • the MCS for the fourth wireless signal is an MCS included in the first information.
  • the method is characterized in that the identifier of the first node comprises N bits.
  • the N is one of ⁇ 50, 24, 16, M ⁇ , and M is a positive integer less than 16.
  • the number of terminal devices that the UE can maintain is Q, and the Q is a power of two of 2.
  • the feature of the foregoing embodiment is that the Relay UE sorts the registered Remote UEs in all the terminal devices that the Relay UE can maintain, and sends the sequence number to the base station to determine which Remote UE the channel quality related information forwarded by the Relay UE belongs to.
  • the Q is equal to 16, and the N is equal to M, and the M is equal to 4.
  • the Q is equal to 8
  • the N is equal to M
  • the M is equal to 3.
  • the Q is equal to 4, and the N is equal to M, and the M is equal to 2.
  • the identifier of the first node is an RNTI (RNTI Radio Network Tempory Identity) of the first node, and the N is equal to 16.
  • RNTI Radio Network Tempory Identity
  • the feature of the foregoing embodiment is that the Relay UE sends the RNTI of the registered Remote UE to the base station to determine which Remote UE the channel quality related information forwarded by the Relay UE belongs to.
  • the identifier of the first node is a subset of the RNTI, and the N is less than 16.
  • the feature of the above embodiment is that the base station or the system can define a subset of RNTIs, and the RNTIs in the RNTI subset are only used for the Remote UE.
  • the relay UE only needs to send the sequence number of the RNTI of the Remote UE in the RNTI subset to the base station to determine which Remote UE the channel quality related information forwarded by the Relay UE belongs to.
  • the benefit of the method is to save uplink resources.
  • the number of RNTIs included in the subset is P, and the N is equal to M, and the M is a positive integer not greater than (log 2 P+1).
  • the N is equal to 24, and the identifier of the first node is The PLMN-ID (Public Land Mobile Network-Identifier) of the first node is described.
  • PLMN-ID Public Land Mobile Network-Identifier
  • the N is equal to 24, and the identifier of the first node is a Layer-2 ID of the first node.
  • the N is equal to M
  • the M is equal to 50
  • the identifier of the first node is an IMEI (International Mobile Equipment Identity) of the first node.
  • the N is equal to M, the M is not greater than 50, and the identifier of the first node is an IMSI (International Mobile Subscriber Identity) of the first node.
  • IMSI International Mobile Subscriber Identity
  • the invention discloses a method in a UE used for relay communication, which comprises the following steps:
  • Step A Send the first wireless signal.
  • the first wireless signal is used to determine the second wireless signal.
  • the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the recipient of the first wireless signal includes a sender of the second wireless signal.
  • the first information is used to determine the fourth information.
  • the fourth information is related to the first wireless signal received by the first wireless signal receiver.
  • the sender of the fourth information is non-co-located with the recipient of the first wireless signal.
  • the fourth information is related to the first wireless signal received by the first wireless signal receiver, wherein the first wireless signal receiver receives the first The wireless signal acquires the first information, and the first information is used to determine the fourth information.
  • the sender of the fourth information and the receiver of the first wireless signal are non-co-located: the sender of the fourth information and the receiver of the first wireless signal It is two different communication devices.
  • the sender of the fourth information and the receiver of the first wireless signal are non-co-located: the sender of the fourth information and the receiver of the first wireless signal There is no wired connection between them.
  • the sender of the fourth information and the first wireless signal The receiver is non-co-located means that the sender of the fourth information is located at a different location from the recipient of the first wireless signal.
  • the receiver of the first wireless signal is a terminal device
  • the sender of the fourth information is a network side device.
  • the sender of the fourth information is a maintenance device of a serving cell of the receiver of the first wireless signal.
  • the sender of the fourth information is the second node.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A4 Send a fourth wireless signal.
  • the related information of the fourth wireless signal is related to the first information, and the fourth information is used to determine related information of the fourth wireless signal, where the related information includes ⁇ MCS, RV, NDI At least one of ⁇ .
  • the method is characterized in that the step A further comprises the following steps:
  • the fifth information is used to determine the related information of the fourth wireless signal, and the fifth information is related to the first information.
  • the recipient of the fifth information is a recipient of the fourth wireless signal.
  • the invention discloses a method in a base station used for relay communication, which comprises the following steps:
  • Step A Receive a second wireless signal and a third wireless signal.
  • Step B Send the fourth message.
  • the first wireless signal is used to determine a second wireless signal, and the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the sender of the first wireless signal is a first node.
  • the third wireless signal is used to determine at least one of:
  • the first wireless signal includes the first information or the first data
  • the first node is a serving cell of a sender of the second wireless signal
  • the first information is generated at a physical layer, and the first data is generated at a higher layer.
  • the first information is used to determine the fourth information.
  • the fourth information is related to channel quality related information obtained by the first wireless signal receiver according to the first wireless signal.
  • the related information includes at least one of ⁇ MCS, RV, NDI ⁇ .
  • the fourth information is used to determine related information of the fourth wireless signal.
  • the sender of the fourth wireless signal and the sender of the first information are non-co-located.
  • the sender of the fourth wireless signal and the sender of the first information are non-co-located: the sender of the fourth wireless signal and the first
  • the sender of a message is two different communication devices.
  • the sender of the fourth wireless signal and the sender of the first information are non-co-located: the sender of the fourth wireless signal and the first There is no wired connection between senders of a message.
  • the sender of the fourth wireless signal and the sender of the first information are non-co-located: the sender of the fourth wireless signal and the first The sender of a message is located at a different location.
  • the sender of the fourth wireless signal is a Remote UE
  • the sender of the first information is a Relay UE.
  • the sender of the fourth wireless signal is a wearable device
  • the sender of the first information is a smart terminal device.
  • the sender of the fourth wireless signal is a wearable device
  • the sender of the first information is a smart phone.
  • the sender of the fourth wireless signal is the same as the maintenance device of the serving cell of the sender of the first information.
  • the method is characterized in that the step A further comprises the following steps:
  • the second information is used to determine the first time-frequency resource.
  • the second wireless signal is transmitted in the first time-frequency resource.
  • the third wireless signal is transmitted in the first time-frequency resource.
  • the above method is characterized in that the step A also includes the following steps:
  • the third information is used to ⁇ request the first time-frequency resource, and adjust a size of the first time-frequency resource ⁇ .
  • the method is characterized in that the identifier of the first node comprises N bits.
  • the N is one of ⁇ 50, 24, 16, M ⁇ , and M is a positive integer less than 16.
  • the invention discloses a user equipment used for relay communication, which comprises the following modules:
  • a first processing module for receiving the first wireless signal.
  • a first transmitting module for transmitting the second wireless signal and the third wireless signal.
  • the first wireless signal is used to determine a second wireless signal, and the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the sender of the first wireless signal is a first node, and the recipient of the second wireless signal includes a second node.
  • the first wireless signal includes K target time-frequency resources, and the K target time-frequency resources include K reference signals.
  • the K is a positive integer.
  • the third wireless signal is used to determine at least one of:
  • the first wireless signal includes the first information or the first data
  • the first node is a serving cell of the UE
  • the first information is generated at a physical layer, and the first data is generated at a higher layer.
  • the first processing module is further configured to determine the first information according to the first wireless signal.
  • the first wireless signal includes K target time-frequency resources, and the K target time-frequency resources include K reference signals.
  • the K is a positive integer.
  • the first processing module is further configured to receive the second information.
  • the second information is used to determine the first time-frequency resource.
  • the second wireless signal is transmitted in the first time-frequency resource.
  • the first processing module is further configured to send the third information.
  • the third information is used to ⁇ request the first time-frequency resource, and adjust a size of the first time-frequency resource ⁇ .
  • the first processing module is further configured to receive a fourth wireless signal. Its The related information of the fourth wireless signal and the first information are related.
  • the related information includes at least one of ⁇ MCS, RV, NDI ⁇ .
  • the sender of the fourth wireless signal is the first node.
  • the first processing module is further configured to receive fourth information, where the fourth information is used to determine related information of the fourth wireless signal, where the first information is used to determine the first Fourth information; or receiving fifth information, the fifth information being used to determine related information of the fourth wireless signal, the fifth information being related to the first information.
  • the sender of the fourth information is the second node, and the sender of the fifth information is the first node.
  • the device is characterized in that the identifier of the first node comprises N bits.
  • the N is one of ⁇ 50, 24, 16, M ⁇ , and M is a positive integer less than 16.
  • the invention discloses a user equipment used for relay communication, which comprises the following modules:
  • a second transmitting module for transmitting the first wireless signal.
  • - a first receiving module for receiving the fourth information.
  • the first wireless signal is used to determine the second wireless signal.
  • the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the recipient of the first wireless signal includes a sender of the second wireless signal.
  • the first information is used to determine the fourth information.
  • the fourth information is related to the first wireless signal received by the first wireless signal receiver.
  • the sender of the fourth information is non-co-located with the recipient of the first wireless signal.
  • the second sending module is further configured to send a fourth wireless signal.
  • the related information of the fourth wireless signal is related to the first information.
  • the related information includes at least one of ⁇ MCS, RV, NDI ⁇ .
  • the second sending module is further configured to send the fifth information.
  • the fifth information is used to determine the related information of the fourth wireless signal, and the fifth information is related to the first information.
  • the present invention discloses a base station device used for relay communication, which includes the following modules:
  • a second processing module for receiving the second wireless signal and the third wireless signal.
  • the first wireless signal is used to determine a second wireless signal, and the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the sender of the first wireless signal is a first node.
  • the third wireless signal is used to determine at least one of:
  • the first wireless signal includes the first information or the first data
  • the first node is a serving cell of a sender of the second wireless signal
  • the first information is generated at a physical layer, and the first data is generated at a higher layer.
  • the first information is used to determine the fourth information.
  • the fourth information is related to channel quality related information obtained by the first wireless signal receiver according to the first wireless signal.
  • the related information includes at least one of ⁇ MCS, RV, NDI ⁇ .
  • the second processing module is further configured to send the second information.
  • the second information is used to determine the first time-frequency resource.
  • the second wireless signal is transmitted in the first time-frequency resource.
  • the second processing module is further configured to receive the third information.
  • the third information is used to ⁇ request the first time-frequency resource, and adjust a size of the first time-frequency resource ⁇ .
  • the device is characterized in that the identifier of the first node comprises N bits.
  • the N is one of ⁇ 50, 24, 16, M ⁇ , and M is a positive integer less than 16.
  • the present invention has the following technical advantages:
  • the third radio signal is used, and when the relay UE does not need to send the channel quality related information of the side link, the first time-frequency resource can be used to send the relay UE's own PUSCH to improve the uplink spectrum. effectiveness.
  • the Relay UE selectively transmits the channel quality related information of the changed side link (Sidelink), and further improves the channel quality reporting efficiency of the side link (Sidelink).
  • the first time-frequency resource may be requested and resized by using the second information and the third information to improve time-frequency resources occupied by channel quality related information for a side link (Sidelink). Utilization rate.
  • Figure 1 shows a flow diagram of a relay transmission in accordance with one embodiment of the present invention
  • FIG. 2 shows a flow chart of relay transmission in accordance with another embodiment of the present invention.
  • FIG. 3 shows a flow chart of the fourth information transmission according to an embodiment of the present invention
  • FIG. 4 shows a flow chart of the fourth information transmission according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the first time-frequency resource pool according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing the structure of a processing device in a UE according to another embodiment of the present invention.
  • Figure 8 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of relay transmission, as shown in FIG.
  • base station N1 is a maintenance base station of a serving cell of UE U2
  • base station N1 is also a maintenance base station of a serving cell of UE U3
  • the steps identified in block F0 are optional.
  • the second information is transmitted in step S10, the third information is received in step S11, and the second wireless signal and the third wireless signal are received in step S12.
  • the first wireless signal is received in step S20
  • the second wireless signal is determined according to the first wireless signal in step S21
  • the second information is received in step S22
  • the third information is transmitted in step S23.
  • the second wireless signal and the third wireless signal are transmitted in S24.
  • the first wireless signal is transmitted in step S30.
  • the second wireless signal includes first information in ⁇ first information, first data ⁇ , and the first wireless signal includes at least one of ⁇ synchronization sequence, discovery channel, reference signal ⁇ .
  • the second wireless signal includes first information and first data
  • the first wireless signal includes at least one of a ⁇ synchronization sequence, a discovery channel, a reference signal ⁇ and first data.
  • the third information is used to ⁇ request the first time-frequency resource, adjust the size of the first time-frequency resource ⁇ to adjust the size of the first time-frequency resource.
  • the third information is used to adjust the size of the first time-frequency resource.
  • Embodiment 2 illustrates another flow chart of relay transmission, as shown in FIG.
  • the base station N4 is a maintenance base station of the serving cell of the UE U5
  • the base station N4 is also a maintenance base station of the serving cell of the UE U6, and the step identified in the block F1 is optional.
  • the third information is received in step S40, the second information is transmitted in step S41, and the second wireless signal and the third wireless signal are received in step S42.
  • the first wireless signal is received in step S50
  • the second wireless signal is determined according to the first wireless signal in step S51
  • the third information is transmitted in step S52
  • the second information is received in step S53.
  • the second wireless signal and the third wireless signal are transmitted in step S54.
  • the first wireless signal is transmitted in step S60.
  • the second wireless signal includes first information in ⁇ first information, first data ⁇ , and the first wireless signal includes at least one of ⁇ synchronization sequence, discovery channel, reference signal ⁇ .
  • the second wireless signal includes first data in ⁇ first information, first data ⁇ , and the first wireless signal includes first data.
  • the second wireless signal includes first information and first data
  • the first wireless signal includes at least one of a ⁇ synchronization sequence, a discovery channel, a reference signal ⁇ and first data.
  • the third information is used to ⁇ request the first time-frequency resource, adjust the size of the first time-frequency resource ⁇ to request the first time-frequency resource ⁇ .
  • the third information is used to request the first time-frequency resource.
  • Embodiment 3 illustrates a flow chart of the transmission of the fourth information of the relay transmission, as shown in FIG.
  • the base station N7 is a maintenance base station of the serving cell of the UE U8, and the base station N7 is also a maintenance base station of the serving cell of the UE U9.
  • the fourth information is transmitted in step S70.
  • the fifth information is received in step S80, and the fourth wireless signal is received in step S81.
  • the fourth information is received in step S90, the fifth information is transmitted in step S91, and the fourth wireless signal is transmitted in step S92.
  • the fourth information is used to determine related information of the fourth wireless signal
  • the fifth information is used to determine related information of the fourth wireless signal.
  • the DCI format adopted by the fourth information is DCI Format 5.
  • the SCI format adopted by the fifth information is SCI Format 0.
  • Embodiment 4 illustrates another flow chart of the transmission of the fourth information of the relay transmission, as shown in FIG.
  • the base station N10 is a maintenance base station of the serving cell of the UE U11, and the base station N10 is also a maintenance base station of the serving cell of the UE U12.
  • the fourth information is transmitted in step S100.
  • the fourth information is received in step S110, and the fourth wireless signal is received in step S111.
  • the fourth information is received in step S120, and the fourth wireless signal is transmitted in step S121.
  • the fourth information is used to determine related information of the fourth wireless signal.
  • the scrambling mode adopted by the fourth information is fixed.
  • the scrambling mode adopted by the fourth information is predefined.
  • Embodiment 5 illustrates a schematic diagram of one of the first time-frequency resource pools according to the present invention, as shown in FIG.
  • the slash identification portion is the first time-frequency resource pool.
  • the first time-frequency resource pool is periodically distributed in the time domain, and one subframe per eNB is included.
  • J is used to indicate an offset value of a subframe occupied by the first time-frequency resource pool in one cycle.
  • the first time-frequency resource pool occupies R PRB pairs in the frequency domain.
  • the R pairs of PRBs are all within the system bandwidth of the base station device configuration.
  • the I and the R are both positive integers
  • the J is a non-negative integer.
  • the first time-frequency resource occupies part of the time-frequency resource of the first time-frequency resource pool.
  • the size of at least one of ⁇ the J, the I, the R ⁇ is related to the number of terminal devices 2 that the terminal device 1 can support.
  • the terminal device 1 is a Relay UE
  • the terminal device 2 is a Remote UE.
  • the terminal device 1 is a smart terminal and the terminal device 2 is a wearable device.
  • At least one of ⁇ the J, the I, the R, the location of the R PRB pairs in the frequency domain ⁇ is determined by the first higher layer signaling.
  • the frequency domain location of the PRB pair occupied by the first time-frequency resource in the R PRB pairs is determined by the second information.
  • At least one of ⁇ the J, the I, the R, the location of the R PRB pairs in the frequency domain ⁇ is determined by the second information.
  • the R is equal to one.
  • the time-frequency resource occupied by the first time-frequency resource belongs to the first time-frequency resource pool, and the first time-frequency resource occupies a PRB pair in the frequency domain, Occupies 1 subframe in the time domain.
  • Embodiment 6 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 100 is mainly composed of a first processing module 101 and a first transmitting module 102.
  • a first processing module 101 for receiving a first wireless signal.
  • a first transmitting module 102 for transmitting the second wireless signal and the third wireless signal.
  • the first wireless signal is used to determine a second wireless signal, and the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the sender of the first wireless signal is the first section Point
  • the receiver of the second wireless signal includes a second node.
  • the first wireless signal includes K target time-frequency resources, and the K target time-frequency resources include K reference signals.
  • the K is a positive integer.
  • the third wireless signal is used to determine at least one of:
  • the first wireless signal includes the first information or the first data
  • the first node is a serving cell of the UE
  • the first information is generated at a physical layer, and the first data is generated at a higher layer.
  • the first processing module 101 is further configured to determine the first information according to the first wireless signal.
  • the first wireless signal includes K target time-frequency resources, and the K target time-frequency resources include K reference signals.
  • the K is a positive integer.
  • the first processing module 101 is further configured to receive the second information.
  • the second information is used to determine the first time-frequency resource.
  • the second wireless signal is transmitted in the first time-frequency resource.
  • the first processing module 101 is further configured to send third information.
  • the third information is used to ⁇ request the first time-frequency resource, and adjust a size of the first time-frequency resource ⁇ .
  • the first processing module 101 is further configured to receive a fourth wireless signal.
  • the related information of the fourth wireless signal and the first information are related.
  • the related information includes at least one of ⁇ MCS, RV, NDI ⁇ .
  • the sender of the fourth wireless signal is the first node.
  • the first processing module 101 is further configured to receive fourth information, where the fourth information is used to determine related information of the fourth wireless signal, where the first information is used to determine the Fourth information; or receiving fifth information, the fifth information being used to determine related information of the fourth wireless signal, the fifth information being related to the first information.
  • the sender of the fourth information is the second node, and the sender of the fifth information is the first node.
  • Embodiment 7 exemplifies a structural block diagram of a processing device in another UE, as shown in FIG.
  • the UE processing apparatus 200 is mainly composed of a second sending module 201 and a first receiving module 202.
  • a second transmitting module 201 for transmitting the first wireless signal.
  • the first receiving module 202 is configured to receive the fourth information.
  • the first wireless signal is used to determine the second wireless signal.
  • the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the recipient of the first wireless signal includes a sender of the second wireless signal.
  • the fourth information is used to determine related information of the fourth wireless signal, the first information being used to determine the fourth information.
  • the fourth information is related to the first wireless signal received by the first wireless signal receiver.
  • the sender of the fourth information is non-co-located with the recipient of the first wireless signal.
  • the second sending module 201 is further configured to send a fourth wireless signal.
  • the related information of the fourth wireless signal is related to the first information.
  • the related information includes at least one of ⁇ MCS, RV, NDI ⁇ .
  • the second sending module 201 is further configured to send the fifth information.
  • the fifth information is used to determine the related information of the fourth wireless signal, and the fifth information is related to the first information.
  • Embodiment 8 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 300 is mainly composed of a second processing module 301 and a third transmitting module 302.
  • a second processing module 301 for receiving the second wireless signal and the third wireless signal.
  • the third sending module 302 is configured to send the fourth information.
  • the first wireless signal is used to determine a second wireless signal, and the second wireless signal includes one of ⁇ first information, first data ⁇ .
  • the sender of the first wireless signal is a first node.
  • the third wireless signal is used to determine at least one of:
  • the first wireless signal includes the first information or the first data
  • the first node is a serving cell of a sender of the second wireless signal
  • the first information is generated at a physical layer, and the first data is generated at a higher layer.
  • the first information is used to determine the fourth information.
  • the fourth information is related to channel quality related information obtained by the first wireless signal receiver according to the first wireless signal.
  • the related information includes at least one of ⁇ MCS, RV, NDI ⁇ .
  • the second processing module 301 is further configured to send the second information.
  • the second information is used to determine the first time-frequency resource.
  • the second wireless signal is transmitted in the first time-frequency resource.
  • the second processing module 301 is further configured to receive third information.
  • the third information is used to ⁇ request the first time-frequency resource, and adjust a size of the first time-frequency resource ⁇ .
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present invention include but are not limited to RFID, IoT terminal equipment, MTC (Machine Type Communication) terminal, vehicle communication device, wireless sensor, network card, mobile phone, tablet computer, notebook and other wireless communication devices.
  • the base station, the base station device, and the network side device in the present invention include, but are not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种窄带蜂窝通信的方法和装置。UE首先接收第一无线信号,然后发送第二无线信号和第三无线信号。其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点,所述第二无线信号的接收者包括第二节点。所述第一信息在物理层生成,所述第一数据在高层生成。本发明允许UE自行决定所发送的内容,能更高效的利用上行空口资源,提高传输效率。此外,中继UE测量并上报旁行链路的信道质量的相关信息,提升频谱效率以提高***整体性能。

Description

一种用户设备、基站中的窄带蜂窝通信的方法和装置 技术领域
本发明涉及无线通信***中的传输方案,特别是涉及支持无线中继传输(Transmission)的方法和装置。
背景技术
第三代合作伙伴项目(3GPP-3rd Generation Partner Project)R(Release,发布)9中提出了层3(Layer-3)的中继(Relay)基站的方案。中继基站对于UE(User Equipment,用户设备)而言具备普通基站的功能,能够独立的调度数据及发送下行HARQ-ACK(Hybrid Automatic Repeat reQuest,混合自动重传请求)。
传统的3GPP***中,数据传输发生在基站和UE之间。在3GPP R12中,D2D(Device to Device,设备间)通信被立项并加以讨论,D2D的本质特点是允许UE之间的数据传输。在3GPP R13中,eD2D(Enhancements to LTE Device to Device)被立项,其主要特点是引入UE中继(Relay)功能。在eD2D中,中继用户设备(Relay UE)中继远端用户设备(Remote UE)和基站之间的数据交换。
在3GPP RAN(Radio Access Network,无线接入网)#69次全会上,NB-IOT(NarrowBand Internet of Things,窄带物联网)被立项。进一步的,在3GPP RAN#71次全会上(RP-160655),针对IoT和可穿戴设备的FeD2D(Further Enhancements to LTE Device to Device,LTE D2D的进一步增强)被立项。FeD2D中,D2D通信可能通过类似NB-IoT的空中接口实现。
FeD2D的一个典型的应用场景就是在一个智能终端的周围存在多个可穿戴设备。智能终端中继可穿戴设备到基站的数据交换,即智能终端和可穿戴设备分别是Relay UE和Remote UE。
发明内容
Release 12D2D传输主要针对公共安全(Public Safety)的场景, 因此在设计数据传输时,均采用重复传输的方式。终端设备和终端设备之间没有链路自适应(Link Adaptation),也没有CSI(Channel State Information,信道状态信息)反馈。对于FeD2D,考虑到频谱效率和传输可靠性的兼顾,终端设备和终端设备之间的CSI,即Relay UE和Remote UE的CSI,需要被基站获得,以进行链路自适应以及调制编码方式的适配。
一种直观的解决方案是重用3GPP R9中的中继基站的方案,即Relay UE具备中继基站的功能,且所有Remote UE的调度通过Relay UE实现。发明人通过研究发现,上述直观的方法对于智能终端的功耗和复杂度均提出了很高要求,因此较难实现。
本发明针对上述问题提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。又例如,本申请的D2D发送UE(即在D2D链路上发送无线信号)中的实施例和实施例中的特征可以应用到D2D接收UE(即在D2D链路上接收所述无线信号)中,反之亦然。进一步的,虽然本发明的初衷是针对FeD2D(即D2D传输是基于窄带的),本发明的方案也适用于宽带D2D中继(即D2D传输是基于宽带的)。
本发明公开了一种被用于中继通信的UE中的方法,其中,包括如下步骤:
-步骤A.接收第一无线信号
-步骤B.发送第二无线信号和第三无线信号。
其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点,所述第二无线信号的接收者包括第二节点。所述第三无线信号被用于确定以下至少之一:
-.所述第二无线信号中包括第一信息还是第一数据
-.所述第一节点是否是所述UE的服务小区
-.所述第一节点的标识。
所述第一信息在物理层生成,所述第一数据在高层生成。
在基于D2D的中继传输中,中继UE而不是基站知道旁行链路 (Sidelink)的链路质量以及传输状态。因此,利用第三无线信号,所述UE能自行确定所述第二无线信号所包括的内容。
传统的D2D以及eD2D中,UE无法自行决定上行信号所包括的内容。因此,上述方法能更高效的利用上行空口资源,提高传输效率。
作为一个实施例,所述第一节点和所述第二节点分别是Remote UE和基站。上述实施例中,Relay UE通过第一信号获取旁行链路(Sidelink)的信道质量,并通过第二无线信号发送给基站,以帮助基站进行Remote UE到Relay UE传输的链路自适应和调制编码方式的适配。
作为一个实施例,所述第一无线信号所占用的带宽不超过180kHz。
作为该实施例的一个子实施例,所述第一无线信号所占用的带宽是{3.75KHz,15KHz,45KHz,90KHz,180KHz}中的之一。
作为一个实施例,所述第二无线信号所占用的带宽不小于180kHz。
作为一个实施例,所述第二无线信号和所述第三无线信号共占用正整数个PRB(Physcial Resource Block,物理资源块)对。
作为一个实施例,所述第二无线信号在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)中传输。
作为一个实施例,所述第二无线信号的传输信道是UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第三无线信号在PUSCH中传输。
作为一个实施例,所述第三无线信号的传输信道是UL-SCH。
作为一个实施例,所述第二无线信号和所述第三无线信号共享正整数个PRB对。
作为一个实施例,所述第一信息相关于所述第一节点和所述UE之间的信道质量。
作为该实施例的一个子实施例,所述第一信息包括CSI。
作为该实施例的一个子实施例,所述第一信息包括CQI(Channel Qualtity Information,信道质量信息)。
作为该实施例的一个子实施例,所述第一信息包括MCS(Modulation and Coding Status,调制编码指示)。
作为该实施例的一个子实施例,所述第一信息包括层1(Layer 1)的RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一信息包括第一HARQ-ACK。其中,第一HARQ-ACK指示所述第一节点和所述UE之间的数据传输是否被正确译码。
作为一个实施例,所述第一信息包括SR(Scheduling Request,调度请求)。
作为一个实施例,所述高层是指物理层以上的层。
作为一个实施例,所述所述第一信息在物理层生成是指:不存在所述第一信息对应的传输信道。
作为一个实施例,所述所述第一信息在物理层生成是指:高层不能识别所述第一信息。
作为一个实施例,所述所述第一数据在高层生成是指:存在所述第一数据对应的传输信道。
作为一个实施例,所述所述第一数据在高层生成是指:高层能识别所述第一数据。
作为一个实施例,所述第二无线信号包括{第一信息,第一数据}中的第一信息,所述第一无线信号包括{同步序列,发现信道,参考信号}中的至少之一。
作为一个实施例,所述第二无线信号包括第一信息和第一数据,所述第一无线信号包括{同步序列,发现信道,参考信号}中的至少之一以及第一数据。
作为一个实施例,所述第一无线信号被用于确定第二无线信号是指:所述第二无线信号包括所述UE根据所述第一无线信号获得的信息。
作为一个实施例,所述第一无线信号被用于确定第二无线信号是指:所述第二无线信号相关于所述第一节点和所述UE之间的信道质量,且所述第一无线信号被用于所述UE获取所述信道质量。
作为一个实施例,所述第一无线信号被用于确定所述第二无线信号是指:所述第二无线信号包括第二HARQ-ACK,第二HARQ-ACK指示所述第一无线信号是否被正确译码。
作为一个实施例,所述所述第一无线信号被用于确定所述第二无线信号是指:所述第二无线信号包括所述第一无线信号被信道均衡之后得到的信号。
作为一个实施例,所述所述第一无线信号被用于确定所述第二无线 信号是指:所述第二无线信号包括所述第一无线信号被信道均衡,硬判决以及重新调制编码之后得到的信号。
作为一个实施例,所述所述第一无线信号被用于确定所述第二无线信号是指:对所述第一无线信号进行信道译码之后得到所述第二无线信号。
作为一个实施例,所述第一数据对应的传输信道是SL-SCH(Sidelink Shared Channel,旁行共享信道)。
作为一个实施例,所述第一数据对应的传输信道是UL-SCH。
作为一个实施例,所述第一节点是终端设备。
作为一个实施例,所述第二节点是网络侧设备。
作为一个实施例,所述第一节点和所述第二节点是非共址的;
作为该实施例的一个子实施例,所述所述第一节点和所述第二节点是非共址的是指:所述第一节点和所述第二节点是两个不同的通信设备。
作为该实施例的一个子实施例,所述所述第一节点和所述第二节点是非共址的是指:所述第一节点和所述第二节点之间不存在有线连接。
作为该实施例的一个子实施例,所述所述第一节点和所述第二节点是非共址的是指:所述第一节点和所述第二节点位于不同的地点。
上述“所述第三无线信号被用于确定所述第二无线信号中包括第一信息还是第一数据”的设计特质在于,当基站为Remote UE到Relay UE之间的无线链路的信道质量相关信息分配上行资源后,因为Remote UE到Relay UE之间的无线链路因Remote UE相对Relay UE静态的特性,所述信道质量相关信息变化不快,频繁更新所述信道质量相关信息没有意义。Relay UE就可以通过所述第三无线信号的指示,在基站分配的资源上传输Relay UE自己的上行数据,以提高频带利用率。
上述“所述第三无线信号被用于确定所述第一节点是否是所述UE的服务小区”的设计特质在于,若Relay UE下不存在Remote UE,则基站为Remote UE到Relay UE之间的无线链路的信道质量相关信息分配的上行资源,仍然可以用做Relay UE上行数据的传输,以提高频带利用率。
上述“所述第三无线信号被用于确定所述第一节点的标识”的设计特质在于。基站并不知道Relay UE下存在多少个Remote UE,以及哪个 Remote UE对应的信道质量相关信息需要被发送。Relay UE在发送Remote UE的信道质量相关信息时,将Remote UE的标识也发送给基站,就不需要每次发送所有Remote UE的信道质量相关信息,而只需将部分信道发生变化的Remote UE的信道质量相关信息发送给基站。这样可以更好的提升反馈效率,以提高频带利用率。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A1.根据所述第一无线信号确定所述第一信息。
其中,所述第一无线信号包含K个目标时频资源,所述K个目标时频资源上包含K个参考信号。所述K是正整数。
作为一个实施例,所述根据所述第一无线信号确定所述第一信息是指:所述第一信息显示的包含给定无线链路的信道质量相关信息。所述给定无线链路是所述UE与所述第一节点之间的链路。所述信道质量相关信息是{MCS,CQI}中的至少之一。
作为一个实施例,所述第一无线信号在PSSCH(Physical Sidelink Shared Channel,物理旁行共享信道)上传输。
作为一个实施例,所述第一无线信号在PSBCH(Physical Sidelink Broadcast Channel,物理旁行广播信道)上传输。
作为一个实施例,所述第一无线信号在PSDCH(Physical Sidelink Discovery Channel,物理旁行发现信道)上传输。
作为一个实施例,所述第一无线信号在PSSS(Primary Sidelink Synchronisation Signal,主旁行同步信号)上传输。
作为一个实施例,所述第一无线信号在NB-PUSCH(Narrow Band-Physcial Uplink Shared Channel,窄带物理上行共享信道)上传输。
作为一个实施例,所述第一无线信号对应的传输信道是SL-SCH。
作为一个实施例,所述第一无线信号对应的传输信道是UL-SCH。
作为一个实施例,所述参考信号是用于数据解调的参考信号。
作为一个实施例,所述参考信号是用于信道测量的参考信号。
作为一个实施例,所述参考信号是用于小区专属(Cell Specific)参考信号。
作为一个实施例,所述参考信号是用于UE专属(UE Specific)参考信号。
作为一个实施例,所述参考信道是DMRS(Demodulation Reference Signal,解调参考信号)。
作为一个实施例,所述参考信道是SRS(Sounding Reference Signal,探测参考信号)
作为一个实施例,所述第一无线信号被用于所述第一节点与所述UE之间的UE专属的信息传输。
作为一个实施例,所述第一无线信号被用于所述第一节点与所述UE之间的小区专属的信息传输。
作为一个实施例,所述第一无线信号被用于所述第一节点与所述UE之间的数据传输。
作为一个实施例,所述第一无线信号被用于所述第一节点被所述UE所发现。
作为一个实施例,所述第一无线信号被用于所述第一节点与所述UE建立同步。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤B还包括如下步骤:
-步骤B1.接收第二信息。第二信息被用于确定第一时频资源。
其中,所述第二无线信号在所述第一时频资源中传输。
作为一个实施例,所述第三无线信号也在所述第一时频资源中传输。
作为一个实施例,所述第三无线信号在PUCCH(Physical Uplink Control Channel,物理上行控制信道)上传输。
作为一个实施例,所述第二信息的发送者是所述第二节点。
作为一个实施例,所述第二信息的发送者是网络侧设备。
作为一个实施例,所述第二信息的发送者是所述UE的服务小区。
作为一个实施例,所述第二信息在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输。
作为一个实施例,所述第二信息是RRC(Radio Resource Control,无线资源管理)公共(Common)信息。
作为一个实施例,所述第二信息是RRC专属(Specific)信息。
作为一个实施例,所述第二信息用于指示第一时频资源池。其中,所述第一时频资源池在给定时间窗口中包含1个所述第一时频资源,且所述第一信息在所述第一时频资源上传输。
作为该实施例的一个子实施例,所述给定时间窗口在时域占用正整数个子帧。
作为该实施例的一个子实施例,所述第一时频资源在给定时间窗口中包含正整数个PRB对。
上述两个实施例的好处在于,基站通过RRC信令周期的配置发送Remote UE到Relay UE链路的信道质量相关信息的时频资源,Relay UE根据所述链路的信道质量相关信息的变化程度,选择性的发送。该方法较为节约下行控制信令。
作为一个实施例,所述第二信息对应的传输信道是DL-SCH(Downlik Shared Channel,下行共享信道)。
作为一个实施例,所述第二信息是物理层信令。
作为一个子实施例,所述第二信息用于从第一时频资源池中指示出所述第一时频资源。其中,所述第一时频资源池所占用的时频资源是固定的或通过第一高层信令确定的。
上述子实施例的特质在于,同时利用高层信令和物理层信令配置资源发送Remote UE到Relay UE链路的信道质量相关信息,较纯RRC配置的方式,可以更好的提高上行频谱效率。
作为一个子实施例,所述第二信息采用DCI(Downlink Control Information,下行控制信息)格式(Format){0,4}中的之一传输,且所述第一时频资源的对应的物理层信道是PUSCH。
上述子实施例的特质在于,所述Remote UE到Relay UE链路的信道质量相关信息通过传统的PUSCH传输,且占用的PRB通过给定DCI Format中的信息比特指示。所述给定DCI Format是DCI Format{0,4}中的之一。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤B还包括如下步骤:
-步骤B2.发送第三信息。
其中,所述第三信息被用于{请求所述第一时频资源,调整所述第 一时频资源的大小}中的至少之一。
作为一个实施例,所述“请求所述第一时频资源”是指所述UE向所述第三信息的接收者请求上行资源,且所述上行资源用于发送所述第二无线信号和所述第三无线信号。
上述实施例的好处在于,Relay UE可以请求上行资源发送Remote UE到Relay UE的无线链路的信道质量相关信息,而不需要***预留资源,以提高上行频谱利用率。
作为该实施例的一个子实施例,所述第三信息包含1比特信息,所述1比特信息是“1”时表示请求所述第一时频资源,所述1比特信息是“0”时表示不需要所述第一时频资源。
作为一个实施例,所述“调整所述第一时频资源的大小”是指所述UE向所述第三信息的接收者请求调整已分配的上行资源的大小,且所述已分配的上行资源用于发送所述第二无线信号和所述第三无线信号。
上述实施例的好处在于,Relay UE根据周边Remote UE的个数及信道变化快慢,要求增加或减少上行资源发送Remote UE到Relay UE的无线链路的信道质量相关信息,在保证上行频谱利用率的同时,提升信道质量相关信息的传输速度,进一步提升***整体性能。
作为该实施例的一个子实施例,所述第三信息包含1比特信息,所述1比特信息是“1”时表示增加当前配置的所述第一时频资源的大小,所述1比特信息是“0”时表示降低当前配置的所述第一时频资源的大小。
作为一个实施例,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少请求所述第一时频资源,且上述所述步骤B2发生于上述所述步骤B1之前。
作为一个实施例,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少调整所述第一时频资源的大小,且上述所述步骤B2发生于上述所述步骤B1之后。
作为一个实施例,所述第三信息的接收者是所述第二节点。
作为一个实施例,所述第三信息的接收者是网络侧设备。
作为一个实施例,所述第三信息的接收者是所述UE的服务小区。
作为一个实施例,所述第三信息在PUSCH上传输。
作为一个实施例,所述第三信息对应的传输信道是UL-SCH。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A4.接收第四无线信号。
其中,第四无线信号的相关信息和所述第一信息是相关的。所述相关信息包括{MCS,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示)}中的至少之一。所述第四无线信号的发送者是所述第一节点。
作为一个实施例,所述第四无线信号在PSSCH上传输。
作为一个实施例,所述第四无线信号在NB-PUSCH上传输。
作为一个实施例,所述第四无线信号的传输信道是SL-SCH。
作为一个实施例,所述第四无线信号的传输信道是UL-SCH。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A5.接收第四信息,所述第四信息被用于确定所述第四无线信号的相关信息,所述第一信息被用于确定所述第四信息;或者接收第五信息,所述第五信息被用于确定所述第四无线信号的相关信息,所述第五信息与所述第一信息是相关的。
其中,所述第四信息的发送者是所述第二节点,所述第五信息的发送者是所述第一节点。
作为一个实施例,所述第四信息在PDCCH(Physical Donwlink Control Channel,物理下行控制信道)或EPDCCH(Enhanced Physical Donwlink Control Channel,增强的物理下行控制信道)上传输。
作为一个实施例,所述第四信息采用的DCI格式是DCI Format 5。
作为一个实施例,所述第四信息采用的DCI格式是DCI Format 6-0A。
作为一个实施例,所述第四信息采用的DCI格式是DCI Format 6-0B。
作为一个实施例,所述所述第四信息被用于确定所述第四无线信号的相关信息是指:所述第四信息显性的包含{针对所述第四无线信号的MCS,针对所述第四无线信号的RV,针对所述第四无线信号的NDI}中的至少之一。
作为一个实施例,所述所述第一信息被用于确定所述第四信息是指: 所述第一信息隐性的被用于确定所述第四信息。
作为该实施例的一个子实施例,所述第一信息包含所述第一HARQ-ACK,且所述第一HARQ-ACK指示所述第一节点和所述UE之间的数据传输被正确译码。所述第四信息包含{针对所述第四无线信号的MCS,针对所述第四无线信号的RV,针对所述第四无线信号的NDI}中的至少针对所述第四无线信号的NDI,且所述NDI等于1。
作为该实施例的一个子实施例,所述第一信息包含所述第一HARQ-ACK,且所述第一HARQ-ACK指示所述第一节点和所述UE之间的数据传输没有被正确译码。所述第四信息包含{针对所述第四无线信号的MCS,针对所述第四无线信号的RV,针对所述第四无线信号的NDI}中的至少针对所述第四无线信号的NDI,且所述NDI等于0。
作为该实施例的一个子实施例,所述第一信息相关于所述第一节点和所述UE之间的信道质量,所述第四信息包含{针对所述第四无线信号的MCS},且所述针对所述第四无线信号的MCS与所述第一信息相关。
作为该子实施例的一个附属实施例,所述第一信息包括CQI,且所述针对所述第四无线信号的MCS与所述第一信息包括的CQI相关。
作为该子实施例的一个附属实施例,所述第一信息包括MCS,且所述针对所述第四无线信号的MCS与所述第一信息包括的MCS相关。
作为一个实施例,所述所述第一信息被用于确定所述第四信息是指:所述第一信息显性的被用于确定所述第四信息。
作为该实施例的一个子实施例,所述第一信息相关于所述第一节点和所述UE之间的信道质量,所述第四信息包含{针对所述第四无线信号的MCS},且所述针对所述第四无线信号的MCS与所述第一信息相关。
作为该子实施例的一个附属实施例,所述第一信息包括CQI,且所述针对所述第四无线信号的MCS是所述第一信息包括的CQI对应的MCS。
作为该子实施例的一个附属实施例,所述第一信息包括MCS,且所述针对所述第四无线信号的MCS是所述第一信息包括的MCS。
作为一个实施例,所述第五信息在PSCCH(Physical Sidelink Control Channel,物理旁行控制信道)上传输。
作为一个实施例,所述第五信息采用的SCI(Sidelink Control Information,旁行控制信息)格式(Format)是SCI Format 0。
作为一个实施例,所述所述第五信息被用于确定所述第四无线信号的相关信息是指:所述第五信息显性的包含{针对所述第四无线信号的MCS,针对所述第四无线信号的RV,针对所述第四无线信号的NDI}中的至少之一。
作为一个实施例,所述所述第五信息与所述第一信息是相关的是指:所述第一信息隐性的被用于确定所述第五信息。
作为该实施例的一个子实施例,所述第一信息包含所述第一HARQ-ACK,且所述第一HARQ-ACK指示所述第一节点和所述UE之间的数据传输被正确译码。所述第五信息包含{针对所述第四无线信号的MCS,针对所述第四无线信号的RV,针对所述第四无线信号的NDI}中的至少针对所述第四无线信号的NDI,且所述NDI等于1。
作为该实施例的一个子实施例,所述第一信息包含所述第一HARQ-ACK,且所述第一HARQ-ACK指示所述第一节点和所述UE之间的数据传输没有被正确译码。所述第五信息包含{针对所述第四无线信号的MCS,针对所述第四无线信号的RV,针对所述第四无线信号的NDI}中的至少针对所述第四无线信号的NDI,且所述NDI等于0。
作为该实施例的一个子实施例,所述第一信息相关于所述第一节点和所述UE之间的信道质量,所述第五信息包含{针对所述第四无线信号的MCS},且所述针对所述第四无线信号的MCS与所述第一信息相关。
作为该子实施例的一个附属实施例,所述第一信息包括CQI,且所述针对所述第四无线信号的MCS与所述第一信息包括的CQI相关。
作为该子实施例的一个附属实施例,所述第一信息包括MCS,且所述针对所述第四无线信号的MCS与所述第一信息包括的MCS相关。
作为一个实施例,所述所述第五信息与所述第一信息是相关的是指:所述第一信息显性的被用于确定所述第五信息。
作为该实施例的一个子实施例,所述第一信息相关于所述第一节点和所述UE之间的信道质量,所述第五信息包含{针对所述第四无线信号的MCS},且所述针对所述第四无线信号的MCS与所述第一信息相关。
作为该子实施例的一个附属实施例,所述第一信息包括CQI,且所述针对所述第四无线信号的MCS是所述第一信息包括的CQI对应的MCS。
作为该子实施例的一个附属实施例,所述第一信息包括MCS,且所 述针对所述第四无线信号的MCS是所述第一信息包括的MCS。
具体的,根据本发明的一个方面,上述方法的特征在于,所述所述第一节点的标识包括N个比特。所述N是{50,24,16,M}中的之一,M是小于16的正整数。
作为一个实施例,所述UE可以维持的终端设备的个数是Q,且所述Q是2的M次幂。
上述实施例的特质在于,Relay UE将注册的Remote UE在Relay UE可以维持的所有终端设备中排序,并将序号发送给基站,以确定Relay UE转发的信道质量相关信息是属于哪个Remote UE的。
作为该实施例的一个子实施例,所述Q等于16,且所述N等于M,所述M等于4。
作为该实施例的一个子实施例,所述Q等于8,且所述N等于M,所述M等于3。
作为该实施例的一个子实施例,所述Q等于4,且所述N等于M,所述M等于2。
作为一个实施例,所述所述第一节点的标识是所述第一节点的RNTI(RNTI Radio Network Tempory Identity,无线网络临时标识),且所述N等于16。
上述实施例的特质在于,Relay UE将注册的Remote UE的RNTI发送给基站,以确定Relay UE转发的信道质量相关信息是属于哪个Remote UE的。
作为一个实施例,所述所述第一节点的标识是RNTI中的一个子集,且所述N小于16。
上述实施例的特质在于,基站或***可以定义一个RNTI的子集,所述RNTI子集中的RNTI仅用于Remote UE。此种情况下,Relay UE只需要将Remote UE的RNTI在所述RNTI子集中的序号发送给基站,以确定Relay UE转发的信道质量相关信息是属于哪个Remote UE的。所述方法的好处在于节约上行资源。
作为该实施例的一个子实施例,所述子集中包含的RNTI数是P,且所述N等于M,所述M是不大于(log2P+1)的正整数。
作为一个实施例,所述N等于24,且所述所述第一节点的标识是所 述第一节点的PLMN-ID(Public Land Mobile Network-Identifier,公共陆地移动网络标识)。
作为一个实施例,所述N等于24,且所述所述第一节点的标识是所述第一节点的Layer-2ID。
作为一个实施例,所述N等于M,所述M等于50,且所述所述第一节点的标识是所述第一节点的IMEI(International Mobile Equipment Identity,国际移动设备标识)。
作为一个实施例,所述N等于M,所述M不大于50,且所述所述第一节点的标识是所述第一节点的IMSI(International Mobile Subscriber Identity,国际移动用户识别码)。
本发明公开了一种被用于中继通信的UE中的方法,其中,包括如下步骤:
-步骤A.发送第一无线信号。
-步骤B.接收第四信息。
其中,第一无线信号被用于确定第二无线信号。所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的接收者包括所述第二无线信号的发送者。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者接收到的所述第一无线信号有关。所述第四信息的发送者与所述第一无线信号的接收者是非共址的。
作为一个实施例,所述所述第四信息与所述第一无线信号接收者接收到的所述第一无线信号有关是指:所述所述第一无线信号接收者通过接收所述第一无线信号获取所述第一信息,且所述第一信息被用于确定所述第四信息。
作为一个实施例,所述所述第四信息的发送者与所述第一无线信号的接收者是非共址的是指:所述第四信息的发送者与所述第一无线信号的接收者是两个不同的通信设备。
作为一个实施例,所述所述第四信息的发送者与所述第一无线信号的接收者是非共址的是指:所述第四信息的发送者与所述第一无线信号的接收者之间不存在有线连接。
作为一个实施例,所述所述第四信息的发送者与所述第一无线信号 的接收者是非共址的是指:所述第四信息的发送者与所述第一无线信号的接收者位于不同的地点。
作为一个实施例,所述第一无线信号的接收者是终端设备,所述第四信息的发送者是网络侧设备。
作为一个实施例,所述第四信息的发送者是所述第一无线信号的接收者的服务小区的维持设备。
作为一个实施例,所述第四信息的发送者是所述第二节点。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A4.发送第四无线信号。
其中,第四无线信号的相关信息是和所述第一信息是相关的,所述第四信息被用于确定所述第四无线信号的相关信息,所述相关信息包括{MCS,RV,NDI}中的至少之一。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A5.发送第五信息。
其中,所述第五信息被用于确定所述第四无线信号的所述相关信息,所述第五信息与所述第一信息是相关的。
作为一个实施例,所述第五信息的接收者是所述第四无线信号的接收者。
本发明公开了一种被用于中继通信的基站中的方法,其中,包括如下步骤:
-步骤A.接收第二无线信号和第三无线信号。
-步骤B.发送第四信息。
其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点。所述第三无线信号被用于确定以下至少之一:
-.所述第二无线信号中包括第一信息还是第一数据
-.所述第一节点是否是所述第二无线信号的发送者的服务小区
-.所述第一节点的标识。
所述第一信息在物理层生成,所述第一数据在高层生成。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者根据所述第一无线信号获得的信道质量相关信息有关。所述相关信息包括{MCS,RV,NDI}中的至少之一。
作为一个实施例,所述第四信息被用于确定所述第四无线信号的相关信息。
作为一个实施例,所述第四无线信号的发送者和所述第一信息的发送者是非共址的。
作为该实施例的一个子实施例,所述所述第四无线信号的发送者和所述第一信息的发送者是非共址的是指:所述第四无线信号的发送者与所述第一信息的发送者是两个不同的通信设备。
作为该实施例的一个子实施例,所述所述第四无线信号的发送者和所述第一信息的发送者是非共址的是指:所述第四无线信号的发送者与所述第一信息的发送者之间不存在有线连接。
作为该实施例的一个子实施例,所述所述第四无线信号的发送者和所述第一信息的发送者是非共址的是指:所述第四无线信号的发送者与所述第一信息的发送者位于不同的地点。
作为一个实施例,所述第四无线信号的发送者是Remote UE,所述第一信息的发送者是Relay UE。
作为一个实施例,所述第四无线信号的发送者是可穿戴设备,所述第一信息的发送者是智能终端设备。
作为一个实施例,所述第四无线信号的发送者是可穿戴设备,所述第一信息的发送者是智能手机。
作为一个实施例,所述第四无线信号的发送者与所述第一信息的发送者的服务小区的维持设备是相同的。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A2.发送第二信息。第二信息被用于确定第一时频资源。
其中,所述第二无线信号在所述第一时频资源中传输。
作为一个实施例,所述第三无线信号在所述第一时频资源中传输。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤 A还包括如下步骤:
-步骤A3.接收第三信息。
其中,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少之一。
具体的,根据本发明的一个方面,上述方法的特征在于,所述所述第一节点的标识包括N个比特。所述N是{50,24,16,M}中的之一,M是小于16的正整数。
本发明公开了一种被用于中继通信的用户设备,其中,包括如下模块:
-第一处理模块:用于接收第一无线信号。
-第一发送模块:用于发送第二无线信号和第三无线信号。
其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点,所述第二无线信号的接收者包括第二节点。所述第一无线信号包含K个目标时频资源,所述K个目标时频资源上包含K个参考信号。所述K是正整数。所述第三无线信号被用于确定以下至少之一:
-.所述第二无线信号中包括第一信息还是第一数据
-.所述第一节点是否是所述UE的服务小区
-.所述第一节点的标识。
所述第一信息在物理层生成,所述第一数据在高层生成。
作为一个实施例,所述第一处理模块还用于根据所述第一无线信号确定所述第一信息。其中,所述第一无线信号包含K个目标时频资源,所述K个目标时频资源上包含K个参考信号。所述K是正整数。
作为一个实施例,所述第一处理模块还用于接收第二信息。第二信息被用于确定第一时频资源。其中,所述第二无线信号在所述第一时频资源中传输。
作为一个实施例,所述第一处理模块还用于发送第三信息。其中,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少之一。
作为一个实施例,所述第一处理模块还用于接收第四无线信号。其 中,第四无线信号的相关信息和所述第一信息是相关的。所述相关信息包括{MCS,RV,NDI}中的至少之一。所述第四无线信号的发送者是所述第一节点。
作为一个实施例,所述第一处理模块还用于接收第四信息,所述第四信息被用于确定所述第四无线信号的相关信息,所述第一信息被用于确定所述第四信息;或者接收第五信息,所述第五信息被用于确定所述第四无线信号的相关信息,所述第五信息与所述第一信息是相关的。所述第四信息的发送者是所述第二节点,所述第五信息的发送者是所述第一节点。
具体的,根据本发明的一个方面,上述设备的特征在于,所述所述第一节点的标识包括N个比特。所述N是{50,24,16,M}中的之一,M是小于16的正整数。
本发明公开了一种被用于中继通信的用户设备,其中,包括如下模块:
-第二发送模块:用于发送第一无线信号。
-第一接收模块:用于接收第四信息。
其中,第一无线信号被用于确定第二无线信号。所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的接收者包括所述第二无线信号的发送者。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者接收到的所述第一无线信号有关。所述第四信息的发送者与所述第一无线信号的接收者是非共址的。
作为一个实施例,所述第二发送模块还用于发送第四无线信号。其中,第四无线信号的相关信息是和所述第一信息是相关的。所述相关信息包括{MCS,RV,NDI}中的至少之一。
作为一个实施例,所述第二发送模块还用于发送第五信息。其中,所述第五信息被用于确定所述第四无线信号的所述相关信息,所述第五信息与所述第一信息是相关的。
本发明公开了一种被用于中继通信的基站设备,其中,包括如下模块:
-第二处理模块:用于接收第二无线信号和第三无线信号。
-第三发送模块:用于发送第四信息。
其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点。所述第三无线信号被用于确定以下至少之一:
-.所述第二无线信号中包括第一信息还是第一数据
-.所述第一节点是否是所述第二无线信号的发送者的服务小区
-.所述第一节点的标识。
所述第一信息在物理层生成,所述第一数据在高层生成。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者根据所述第一无线信号获得的信道质量相关信息有关。所述相关信息包括{MCS,RV,NDI}中的至少之一。
作为一个实施例,所述第二处理模块还用于发送第二信息。第二信息被用于确定第一时频资源。其中,所述第二无线信号在所述第一时频资源中传输。
作为一个实施例,所述第二处理模块还用于接收第三信息。其中,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少之一。
具体的,根据本发明的一个方面,上述设备的特征在于,所述所述第一节点的标识包括N个比特。所述N是{50,24,16,M}中的之一,M是小于16的正整数。
相比现有公开技术,本发明具有如下技术优势:
-.通过所述第一无线信号,所述第二无线信号和所述第三无线信号,实现通过Relay UE将旁行链路(Sidelink)的信道质量相关信息转发给基站,从而实现Remote UE发送的链路自适应和调制编码方式的适配,提高传输效率。
-.通过所述第三无线信号,在Relay UE不需要发送旁行链路(Sidelink)的信道质量相关信息时,能利用所述第一时频资源发送Relay UE自己的PUSCH,以提升上行频谱效率。
-.通过所述第三无线信号,指示所述第一节点的标识,从而实现在 Relay UE选择性的发送发生变化的旁行链路(Sidelink)的信道质量相关信息,进一步提升所述旁行链路(Sidelink)的信道质量的汇报效率。
-.通过所述第二信息和所述第三信息,所述第一时频资源可以被请求及调整大小,提高针对旁行链路(Sidelink)的信道质量相关信息所占据的时频资源的利用率。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的中继传输的流程图;
图2示出了根据本发明的另一个实施例的中继传输的流程图;
图3示出了根据本发明的一个实施例的所述第四信息传输的流程图;
图4示出了根据本发明的另一个实施例的所述第四信息传输的流程图;
图5示出了根据本发明的一个实施例的所述第一时频资源池的示意图;
图6示出了根据本发明的一个实施例的UE中的处理装置的结构框图;
图7示出了根据本发明的另一个实施例的UE中的处理装置的结构框图;
图8示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了中继传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站,基站N1也是UE U3的服务小区的维持基站,方框F0中标识的步骤是可选的。
对于基站N1,在步骤S10中发送第二信息,在步骤S11中接收第三信息,在步骤S12中接收第二无线信号和第三无线信号。
对于UE U2,在步骤S20中接收第一无线信号,在步骤S21中根据所述第一无线信号确定第二无线信号,在步骤S22中接收第二信息,在步骤S23发送第三信息,在步骤S24中发送第二无线信号和第三无线信号。
对于UE U3,在步骤S30中发送第一无线信号。
作为一个子实施例,所述第二无线信号包括{第一信息,第一数据}中的第一信息,所述第一无线信号包括{同步序列,发现信道,参考信号}中的至少之一。
作为一个子实施例,所述第二无线信号包括第一信息和第一数据,所述第一无线信号包括{同步序列,发现信道,参考信号}中的至少之一以及第一数据。
作为一个子实施例,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少{调整所述第一时频资源的大小}。
作为子该实施例的一个附属实施例,所述第三信息被用于调整所述第一时频资源的大小。
实施例2
实施例2示例了中继传输的另一个流程图,如附图2所示。附图2中,基站N4是UE U5的服务小区的维持基站,基站N4也是UE U6的服务小区的维持基站,方框F1中标识的步骤是可选的。
对于基站N4,在步骤S40中接收第三信息,在步骤S41中发送第二信息,在步骤S42中接收第二无线信号和第三无线信号。
对于UE U5,在步骤S50中接收第一无线信号,在步骤S51中根据所述第一无线信号确定第二无线信号,在步骤S52中发送第三信息,在步骤S53中接收第二信息,在步骤S54中发送第二无线信号和第三无线信号。
对于UE U6,在步骤S60中发送第一无线信号。
作为一个子实施例,所述第二无线信号包括{第一信息,第一数据}中的第一信息,所述第一无线信号包括{同步序列,发现信道,参考信号}中的至少之一。
作为一个子实施例,所述第二无线信号包括{第一信息,第一数据}中的第一数据,所述第一无线信号包括第一数据。
作为一个子实施例,所述第二无线信号包括第一信息和第一数据,所述第一无线信号包括{同步序列,发现信道,参考信号}中的至少之一以及第一数据。
作为一个子实施例,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少{请求所述第一时频资源}。
作为子该实施例的一个附属实施例,所述第三信息被用于请求所述第一时频资源。
实施例3
实施例3示例了中继传输的所述第四信息的传输的流程图,如附图3所示。附图3中,基站N7是UE U8的服务小区的维持基站,基站N7也是UE U9的服务小区的维持基站。
对于基站N7,在步骤S70中发送第四信息。
对于UE U8,在步骤S80中接收第五信息,在步骤S81中接收第四无线信号。
对于UE U9,在步骤S90中接收第四信息,在步骤S91中发送第五信息,在步骤S92中发送第四无线信号。
其中,所述第四信息被用于确定所述第四无线信号的相关信息,所述第五信息被用于确定所述第四无线信号的相关信息。
作为一个子实施例,所述第四信息采用的DCI格式是DCI Format 5。
作为一个子实施例,所述第五信息采用的SCI格式是SCI Format 0。
实施例4
实施例4示例了中继传输的所述第四信息的传输的另一个流程图,如附图4所示。附图4中,基站N10是UE U11的服务小区的维持基站,基站N10也是UE U12的服务小区的维持基站。
对于基站N10,在步骤S100中发送第四信息。
对于UE U11,在步骤S110中接收第四信息,在步骤S111中接收第四无线信号。
对于UE U12,在步骤S120中接收第四信息,在步骤S121中发送第四无线信号。
其中,所述第四信息被用于确定所述第四无线信号的相关信息。
作为一个子实施例,所述第四信息采用的加扰方式是固定的。
作为一个子实施例,所述第四信息采用的加扰方式是预定义的。
实施例5
实施例5示例了根据本发明的一个所述第一时频资源池的示意图,如附图5所示。附图5中,斜线标识部分是第一时频资源池。如图所示,所述第一时频资源池在时域上是周期分布的,每I个子帧中有一个子帧属 于所述第一时频资源池,J用于表示所述第一时频资源池所占用的子帧在一个周期中的偏移值。在一个所述第一时频资源池所占用的子帧中,所述第一时频资源池在频域上共占用R个PRB对。所述R个PRB对均属于基站设备配置的***带宽内。其中,所述I和所述R均是正整数,所述J是非负整数。
作为一个子实施例,所述第一时频资源占用所述第一时频资源池的部分时频资源。
作为一个子实施例,{所述J,所述I,所述R}中的至少之一的大小和终端设备1所能支持的终端设备2的个数有关。
作为该子实施例的一个附属实施例,所述终端设备1是Relay UE,终端设备2是Remote UE。
作为该子实施例的一个附属实施例,所述终端设备1是智能终端,终端设备2是可穿戴设备。
作为一个子实施例,{所述J,所述I,所述R,所述R个PRB对在频域中的位置}中的至少之一由所述第一高层信令确定。
作为该子实施例的一个附属实施例,所述第一时频资源所占用的PRB对在所述R个PRB对中的频域位置由所述第二信息确定。
作为一个子实施例,{所述J,所述I,所述R,所述R个PRB对在频域中的位置}之中的至少之一由所述第二信息确定。
作为该子实施例的一个附属实施例,所述R等于1。
作为该子实施例的一个附属实施例,所述第一时频资源占据的时频资源属于所述第一时频资源池,且所述第一时频资源在频域上占用一个PRB对,在时域上占用1个子帧。
实施例6
实施例6示例了一个UE中的处理装置的结构框图,如附图6所示。附图6中,UE处理装置100主要由第一处理模块101和第一发送模块102组成。
-第一处理模块101:用于接收第一无线信号。
-第一发送模块102:用于发送第二无线信号和第三无线信号。
其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节 点,所述第二无线信号的接收者包括第二节点。所述第一无线信号包含K个目标时频资源,所述K个目标时频资源上包含K个参考信号。所述K是正整数。所述第三无线信号被用于确定以下至少之一:
-.所述第二无线信号中包括第一信息还是第一数据
-.所述第一节点是否是所述UE的服务小区
-.所述第一节点的标识。
所述第一信息在物理层生成,所述第一数据在高层生成。
作为一个实施例,所述第一处理模块101还用于根据所述第一无线信号确定所述第一信息。其中,所述第一无线信号包含K个目标时频资源,所述K个目标时频资源上包含K个参考信号。所述K是正整数。
作为一个实施例,所述第一处理模块101还用于接收第二信息。第二信息被用于确定第一时频资源。其中,所述第二无线信号在所述第一时频资源中传输。
作为一个实施例,所述第一处理模块101还用于发送第三信息。其中,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少之一。
作为一个实施例,所述第一处理模块101还用于接收第四无线信号。其中,第四无线信号的相关信息和所述第一信息是相关的。所述相关信息包括{MCS,RV,NDI}中的至少之一。所述第四无线信号的发送者是所述第一节点。
作为一个实施例,所述第一处理模块101还用于接收第四信息,所述第四信息被用于确定所述第四无线信号的相关信息,所述第一信息被用于确定所述第四信息;或者接收第五信息,所述第五信息被用于确定所述第四无线信号的相关信息,所述第五信息与所述第一信息是相关的。所述第四信息的发送者是所述第二节点,所述第五信息的发送者是所述第一节点。
实施例7
实施例7示例了另一个UE中的处理装置的结构框图,如附图7所示。附图7中,UE处理装置200主要由第二发送模块201和第一接收模块202组成。
-第二发送模块201:用于发送第一无线信号。
-第一接收模块202:用于接收第四信息。
其中,第一无线信号被用于确定第二无线信号。所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的接收者包括所述第二无线信号的发送者。所述第四信息被用于确定所述第四无线信号的相关信息,所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者接收到的所述第一无线信号有关。所述第四信息的发送者与所述第一无线信号的接收者是非共址的。
作为一个实施例,所述第二发送模块201还用于发送第四无线信号。其中,第四无线信号的相关信息是和所述第一信息是相关的。所述相关信息包括{MCS,RV,NDI}中的至少之一。
作为一个实施例,所述第二发送模块201还用于发送第五信息。其中,所述第五信息被用于确定所述第四无线信号的所述相关信息,所述第五信息与所述第一信息是相关的。
实施例8
实施例8示例了一个基站设备中的处理装置的结构框图,如附图8所示。附图8中,基站设备处理装置300主要由第二处理模块301和第三发送模块302组成。
-第二处理模块301:用于接收第二无线信号和第三无线信号。
-第三发送模块302:用于发送第四信息。
其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点。所述第三无线信号被用于确定以下至少之一:
-.所述第二无线信号中包括第一信息还是第一数据
-.所述第一节点是否是所述第二无线信号的发送者的服务小区
-.所述第一节点的标识。
所述第一信息在物理层生成,所述第一数据在高层生成。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者根据所述第一无线信号获得的信道质量相关信息有关。所述相关信息包括{MCS,RV,NDI}中的至少之一。
作为一个实施例,所述第二处理模块301还用于发送第二信息。第二信息被用于确定第一时频资源。其中,所述第二无线信号在所述第一时频资源中传输。
作为一个实施例,所述第二处理模块301还用于接收第三信息。其中,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中的UE和终端包括但不限于RFID,物联网终端设备,MTC(Machine Type Communication,机器类型通信)终端,车载通信设备,无线传感器,上网卡,手机,平板电脑,笔记本等无线通信设备。本发明中的基站,基站设备,和网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种被用于中继通信的UE中的方法,其中,包括如下步骤:
    -步骤A.接收第一无线信号
    -步骤B.发送第二无线信号和第三无线信号。
    其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点,所述第二无线信号的接收者包括第二节点。所述第三无线信号被用于确定以下至少之一:
    -.所述第二无线信号中包括第一信息还是第一数据
    -.所述第一节点是否是所述UE的服务小区
    -.所述第一节点的标识。
    所述第一信息在物理层生成,所述第一数据在高层生成。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.根据所述第一无线信号确定所述第一信息。
    其中,所述第一无线信号包含K个目标时频资源,所述K个目标时频资源上包含K个参考信号。所述K是正整数。
  3. 根据权利要求1所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A2.接收第二信息。第二信息被用于确定第一时频资源。
    其中,所述第二无线信号在所述第一时频资源中传输。
  4. 根据权利要求3所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A3.发送第三信息。
    其中,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少之一。
  5. 根据权利要求1-4所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A4.接收第四无线信号。
    其中,第四无线信号的相关信息和所述第一信息是相关的。所述相关信息包括{MCS,RV,NDI}中的至少之一。所述第四无线信号的发送者是所述第一节点。
  6. 根据权利要求5所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A5.接收第四信息,所述第四信息被用于确定所述第四无线信号的相关信息,所述第一信息被用于确定所述第四信息;或者接收第五信息,所述第五信息被用于确定所述第四无线信号的相关信息,所述第五信息与所述第一信 息是相关的。
    其中,所述第四信息的发送者是所述第二节点,所述第五信息的发送者是所述第一节点。
  7. 根据权利要求1所述的方法,其特征在于,所述所述第一节点的标识包括N个比特。所述N是{50,24,16,M}中的之一,M是小于16的正整数。
  8. 一种被用于中继通信的UE中的方法,其中,包括如下步骤:
    -步骤A.发送第一无线信号。
    -步骤B.接收第四信息。
    其中,第一无线信号被用于确定第二无线信号。所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的接收者包括所述第二无线信号的发送者。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者接收到的所述第一无线信号有关。所述第四信息的发送者与所述第一无线信号的接收者是非共址的。
  9. 根据权利要求8所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A4.发送第四无线信号。
    其中,第四无线信号的相关信息是和所述第一信息是相关的,所述第四信息被用于确定所述第四无线信号的相关信息,所述相关信息包括{MCS,RV,NDI}中的至少之一。
  10. 根据权利要求9所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A5.发送第五信息。
    其中,所述第五信息被用于确定所述第四无线信号的所述相关信息,所述第五信息与所述第一信息是相关的。
  11. 一种被用于中继通信的基站中的方法,其中,包括如下步骤:
    -步骤A.接收第二无线信号和第三无线信号。
    -步骤B.发送第四信息。
    其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点。所述第三无线信号被用于确定以下至少之一:
    -.所述第二无线信号中包括第一信息还是第一数据
    -.所述第一节点是否是所述第二无线信号的发送者的服务小区
    -.所述第一节点的标识。
    所述第一信息在物理层生成,所述第一数据在高层生成。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者根据所述第一无线信号获得的信道质量相关信息有关。所述相关信息包括{MCS,RV,NDI}中的至少之一。
  12. 根据权利要求11所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A2.发送第二信息。第二信息被用于确定第一时频资源。
    其中,所述第二无线信号在所述第一时频资源中传输。
  13. 根据权利要求11所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A3.接收第三信息。
    其中,所述第三信息被用于{请求所述第一时频资源,调整所述第一时频资源的大小}中的至少之一。
  14. 根据权利要求11所述的方法,其特征在于,所述所述第一节点的标识包括N个比特。所述N是{50,24,16,M}中的之一,M是小于16的正整数。
  15. 一种被用于中继通信的用户设备,其中,包括如下模块:
    -第一处理模块:用于接收第一无线信号。
    -第一发送模块:用于发送第二无线信号和第三无线信号。
    其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点,所述第二无线信号的接收者包括第二节点。所述第一无线信号包含K个目标时频资源,所述K个目标时频资源上包含K个参考信号。所述K是正整数。所述第三无线信号被用于确定以下至少之一:
    -.所述第二无线信号中包括第一信息还是第一数据
    -.所述第一节点是否是所述UE的服务小区
    -.所述第一节点的标识。
    所述第一信息在物理层生成,所述第一数据在高层生成。
  16. 一种被用于中继通信的用户设备,其中,包括如下模块:
    -第二发送模块:用于发送第一无线信号。
    -第一接收模块:用于接收第四信息。
    其中,第一无线信号被用于确定第二无线信号。所述第二无线信号包括{第 一信息,第一数据}中的一种。所述第一无线信号的接收者包括所述第二无线信号的发送者。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者接收到的所述第一无线信号有关。所述第四信息的发送者与所述第一无线信号的接收者是非共址的。
  17. 一种被用于中继通信的基站设备,其中,包括如下模块:
    -第二处理模块:用于接收第二无线信号和第三无线信号。
    -第三发送模块:用于发送第四信息。
    其中,第一无线信号被用于确定第二无线信号,所述第二无线信号包括{第一信息,第一数据}中的一种。所述第一无线信号的发送者是第一节点。所述第三无线信号被用于确定以下至少之一:
    -.所述第二无线信号中包括第一信息还是第一数据
    -.所述第一节点是否是所述第二无线信号的发送者的服务小区
    -.所述第一节点的标识。
    所述第一信息在物理层生成,所述第一数据在高层生成。所述第一信息被用于确定所述第四信息。所述第四信息与所述第一无线信号接收者根据所述第一无线信号获得的信道质量相关信息有关。所述相关信息包括{MCS,RV,NDI}中的至少之一。
PCT/CN2017/078241 2016-04-14 2017-03-26 一种用户设备、基站中的窄带蜂窝通信的方法和装置 WO2017177810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610231157.4A CN107302423B (zh) 2016-04-14 2016-04-14 一种窄带蜂窝通信的方法和装置
CN201610231157.4 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017177810A1 true WO2017177810A1 (zh) 2017-10-19

Family

ID=60041389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078241 WO2017177810A1 (zh) 2016-04-14 2017-03-26 一种用户设备、基站中的窄带蜂窝通信的方法和装置

Country Status (2)

Country Link
CN (2) CN107302423B (zh)
WO (1) WO2017177810A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065452A (zh) * 2018-11-03 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3628116B1 (en) 2018-08-03 2021-12-29 Telefonaktiebolaget LM Ericsson (publ) Methods, user equipment and base station for sidelink identification
CN111225343B (zh) * 2018-11-23 2021-10-29 上海朗帛通信技术有限公司 一种无线通信中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460780A (zh) * 2011-03-31 2013-12-18 瑞萨*** 用于促进设备到设备通信的方法和装置
US20140087744A1 (en) * 2012-09-25 2014-03-27 Electronics And Telecommunications Research Institute Link adaptation transmission and reception method in device-to-device communication based cellular mobile communication system
CN104244392A (zh) * 2013-06-24 2014-12-24 华为技术有限公司 避免d2d传输造成上行干扰的方法、基站和用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2703930T3 (es) * 2012-03-16 2019-03-13 Intel Corp Submuestreo de señales de referencia específicas de celda (CRS) para un nuevo tipo de portadora (NCT)
WO2014003500A1 (ko) * 2012-06-29 2014-01-03 엘지전자 주식회사 무선 통신 시스템에서 핸드오버 제어 방법 및 이를 위한 장치
WO2014073776A1 (ko) * 2012-11-07 2014-05-15 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 수신 또는 송신하기 위한 방법 및 이를 위한 장치
US9414392B2 (en) * 2012-12-03 2016-08-09 Intel Corporation Apparatus, system and method of user-equipment (UE) centric access network selection
CN105103637B (zh) * 2014-01-26 2019-07-23 华为技术有限公司 设备通信方法及装置
EP2993944A1 (en) * 2014-09-04 2016-03-09 Alcatel Lucent Low power transceiver for femtocells in sleep mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460780A (zh) * 2011-03-31 2013-12-18 瑞萨*** 用于促进设备到设备通信的方法和装置
US20140087744A1 (en) * 2012-09-25 2014-03-27 Electronics And Telecommunications Research Institute Link adaptation transmission and reception method in device-to-device communication based cellular mobile communication system
CN104244392A (zh) * 2013-06-24 2014-12-24 华为技术有限公司 避免d2d传输造成上行干扰的方法、基站和用户设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065452A (zh) * 2018-11-03 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115065452B (zh) * 2018-11-03 2024-02-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN110417528A (zh) 2019-11-05
CN107302423A (zh) 2017-10-27
CN110417528B (zh) 2021-09-24
CN107302423B (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
US10827420B2 (en) System and method for dynamically configurable air interfaces
WO2016146073A1 (zh) 一种支持多用户叠加的ue、基站中的方法和设备
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
US20150341912A1 (en) Data transmission/reception method and apparatus of low-cost terminal in mobile communication system
US20190342839A1 (en) Uplink Channel Power Allocation Method and Apparatus
CA3114479A1 (en) Method executed by user equipment and user equipment
WO2020220230A1 (zh) 上行数据传输方法、装置及存储介质
US10321469B2 (en) Terminal device, integrated circuit, and radio communication method
WO2017181820A1 (zh) 一种用户设备、基站中的用于中继通信的方法和装置
JP2015508265A (ja) データブロック伝送の処理時間依存制御
WO2017181819A1 (zh) 一种用户设备、基站中的用于中继的方法和装置
CN110140407B (zh) 用于发送下行链路控制信息的方法和设备
CN111182632A (zh) 一种被用于无线通信的节点中的方法和装置
CN111447621B (zh) 一种无线通信中的方法和装置
JP2018504051A (ja) 特定のユーザ装置を適応させるためのシステム及び方法
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2015007152A1 (zh) Dm-rs图样指示方法和装置
WO2016155508A1 (zh) 一种支持多用户叠加的ue、基站中的方法和设备
WO2020142911A1 (zh) 下行数据发送方法、接收方法、装置和存储介质
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2017177810A1 (zh) 一种用户设备、基站中的窄带蜂窝通信的方法和装置
CN114944891A (zh) 一种被用于无线通信的节点中的方法和装置
CN110087340B (zh) 中继传输的方法及设备
JP2023547407A (ja) ハイブリッド自動再送信要求のための方法および装置
US20220006573A1 (en) Wireless data transmission apparatus, wireless data reception apparatus and methods

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781786

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED DD/01.03.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17781786

Country of ref document: EP

Kind code of ref document: A1