WO2017175941A1 - 전기변색 소자 및 전기변색 시스템 - Google Patents

전기변색 소자 및 전기변색 시스템 Download PDF

Info

Publication number
WO2017175941A1
WO2017175941A1 PCT/KR2016/012651 KR2016012651W WO2017175941A1 WO 2017175941 A1 WO2017175941 A1 WO 2017175941A1 KR 2016012651 W KR2016012651 W KR 2016012651W WO 2017175941 A1 WO2017175941 A1 WO 2017175941A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochromic
layer
transparent electrode
bus
electrode
Prior art date
Application number
PCT/KR2016/012651
Other languages
English (en)
French (fr)
Inventor
구상모
홍문헌
박칠근
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160043619A external-priority patent/KR102533359B1/ko
Priority claimed from KR1020160064980A external-priority patent/KR102480700B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/091,346 priority Critical patent/US20190137841A1/en
Publication of WO2017175941A1 publication Critical patent/WO2017175941A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/16Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source
    • G09G3/19Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source using electrochromic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/38Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using electrochromic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides

Definitions

  • the present invention relates to an electrochromic device having an improved color fading speed and an electrochromic system capable of adjusting an amount of light incident through a windshield.
  • Electrochromism is a phenomenon in which coloration or decolorization occurs by electrochemical oxidation or reduction depending on the direction of application of current.
  • the electrochromic material maintains a predetermined color and changes color to another color when an electric current is applied. Reversing the direction of the current restores the original color of the electrochromic material.
  • the electrochromic material changes its absorption spectrum in response to oxidation or reduction. That is, the electrochromic material does not emit light by itself, but takes a color through absorption. Electrochromic devices having such properties are widely used for automotive mirrors, sunroofs, smart windows, outdoor displays, and the like.
  • the electrochromic device is composed of a substrate and an electrode, an electrochromic material, an electrolyte, and again an electrode and a substrate, and can reversibly change the color of the device according to an applied voltage.
  • the electrochromic device can be implemented in various areas depending on its use. When the area of the electrochromic device is widened, since the charge supply to the electrochromic material is made unbalanced, the color change speed of the electrochromic device is slowed.
  • a light shielding film is attached to the car window. Since the light blocking film has a fixed light transmittance, it effectively blocks external light when the outside of the vehicle is bright, but it is difficult to secure a driver's view when the outside of the vehicle is dark.
  • the demand for smart windows that can adjust the shading ability of the window according to the external light is increasing.
  • the conventional smart window has a problem that obstructs the field of view of the dark portion because the overall light transmittance of the entire vehicle window is adjusted in the same according to the external light.
  • Another object is to provide an electrochromic device having a fast discoloration rate even if the reaction area is widened.
  • an object of the present invention is to provide an electrochromic device that minimizes the heterogeneity caused by the bus electrode included in the electrochromic device.
  • a first bus of a predetermined pattern formed on the first transparent electrode, the second transparent electrode facing the first transparent electrode, the upper surface of the first transparent electrode
  • An electrolyte layer positioned between an electrode, the first bus electrode and the second transparent electrode, a first electrochromic layer and the first bus electrode disposed between the first transparent electrode and the electrolyte layer and in contact with the electrolyte layer
  • the present invention provides an electrochromic device including a passivation layer formed between the first bus electrode and the electrochromic layer so as to prevent contact between the electrochromic layer and the electrochromic layer.
  • the passivation layer may be made of an insulating material, the insulating material may be any one of SiO 2 and TiO 2 .
  • the first bus electrode may be prevented from being corroded, and the glitter of the first bus electrode may be prevented.
  • the first bus electrode may be any one of a metal, a conductive polymer, and a conductive carbon nanotube. This can quickly supply charge to the electrochromic layer.
  • the passivation layer may be formed between the first transparent electrode and the first electrochromic layer to prevent contact between the first transparent electrode and the first electrochromic layer.
  • the passivation layer may be made of a conductive material.
  • the electrochromic device according to the present invention may further include an ion storage layer between the electrolyte layer and the second transparent electrode.
  • the present invention is made of an electrochromic device, the electrochromic part made to change the light transmittance for at least a portion of the area, the sensing unit made to sense the amount of light incident on the electrochromic part, When the amount of light incident through a portion of the electrochromic portion is changed, the electrochromic device driving system including a control unit for controlling the electrochromic portion to change the light transmittance for the partial region.
  • the electrochromic unit may include a plurality of electrodes, and the controller may control a voltage value applied to each of the plurality of electrodes such that the light transmittance of the partial region is changed.
  • the present invention may allow the light transmittance of the part of the windshield to change.
  • the controller may control the electrochromic part to reduce the light transmittance of the partial area.
  • the controller may control the electrochromic portion to increase the light transmittance of the partial region.
  • the electrochromic device is formed on a first transparent electrode, the first transparent electrode, an electrochromic layer made of an electrochromic material, an electrolyte layer formed on the electrochromic layer, formed on the electrolyte layer
  • a plurality of first bus electrodes formed between the second transparent electrode, the first transparent electrode and the electrochromic layer, a first passivation layer surrounding each of the first bus electrodes, the electrolyte layer, and the second transparent electrode It may include a plurality of second bus electrodes formed between the electrodes and a second passivation layer surrounding each of the second bus electrodes.
  • the apparatus may further include a power supply unit, and the controller may control the electrochromic unit so that all regions of the electrochromic layer are in a first state when the power supplied from the power supply unit is cut off. .
  • the present invention enables the driver to secure a view even when the power supplied to the system is cut off due to an accident.
  • the bus electrode included in the electrochromic device can be prevented from being oxidized.
  • the bus electrode included in the electrochromic device due to the bus electrode included in the electrochromic device, it is possible to prevent the user from feeling heterogeneous.
  • the electrochromic system to prevent the glare of the driver by blocking the amount of external light incident through the windshield, and at the same time allows the driver to easily secure a view of the dark place.
  • FIG. 1 is a cross-sectional view of an electrochromic device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an electrochromic device including a passivation layer formed to prevent contact between a transparent electrode and an electrochromic layer.
  • FIG 3 is a cross-sectional view illustrating an electrochromic device including an ion storage layer.
  • 4A and 4B are cross-sectional views illustrating an electrochromic device including an ion storage layer and a plurality of passivation layers.
  • 5A and 5B are cross-sectional views illustrating an electrochromic device including a plurality of electrochromic layers.
  • FIG. 6 is a cross-sectional view of an electrochromic device including a passivation layer formed to prevent contact between a transparent electrode and a bus electrode.
  • 7A and 7B are cross-sectional views showing electrochromic elements of the uneven structure.
  • FIG. 8 is a cross-sectional view showing an electrochromic device including a bus electrode made of spherical nanoparticles.
  • FIG. 9 is a cross-sectional view illustrating an electrochromic device including a bus electrode forming a partition wall.
  • FIG. 10 is a cross-sectional view of an electrochromic device including a bus electrode made of a mixture of a metal and a conductive ink.
  • 11A to 11C are cross-sectional views illustrating electrochromic devices including a barrier layer and a hard coating layer.
  • 12 and 13 are conceptual views illustrating patterns of bus electrodes included in the electrochromic device according to the present invention.
  • FIG. 14 is a perspective view illustrating an electrochromic device according to an embodiment of the present invention.
  • FIG. 15 is a cross-sectional view taken along the line B-B of FIG. 14.
  • FIG. 16 is a cross-sectional view taken along the line C-C of FIG. 14.
  • 17 is a cross-sectional view of an electrochromic device that does not include a passivation layer.
  • 18A to 18C are cross-sectional views of an electrochromic device including an adhesive layer.
  • 19A to 19D are conceptual views illustrating patterns of bus electrodes included in the electrochromic device according to the present invention.
  • 20 is a conceptual diagram illustrating a change in light transmittance of an electrochromic device according to the present invention.
  • 21 is a conceptual diagram illustrating an electrochromic device in which bus electrodes are irregularly arranged.
  • 22 is a conceptual diagram illustrating a position of a sensor unit in a vehicle.
  • FIG. 23 is a block diagram of an electrochromic system according to an embodiment of the present invention.
  • 24 is a conceptual diagram illustrating an electrochromic system according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an electrochromic device according to an embodiment of the present invention.
  • An electrochromic device includes a plurality of components between a first transparent electrode and a second transparent electrode facing the first transparent electrode.
  • the components included between the transparent electrode and the two transparent electrodes will be described in detail with reference to FIG. 1.
  • the first and second transparent electrodes are electrodes that are light transmissive and conductive.
  • the transparent electrode may be formed on a substrate made of glass or a light transmissive film, and may be a thin film made of tin oxide, indium oxide, platinum and gold, or a thin film made of a conductive polymer.
  • the transparent electrode is used to apply a voltage to the electrochromic material, and a power supply is connected to one end of the transparent electrode.
  • the power supply allows a potential difference to occur between two transparent electrodes facing each other.
  • the power supply device is not connected to the transparent electrode, and the power supply device may be connected only to the bus electrode to be described later.
  • the first and second transparent electrodes have a predetermined area, and at least a portion of the upper surface of the first transparent electrode 110a and at least a portion of the lower surface of the second transparent electrode 110b face each other.
  • the transparent electrode transfers electric charges to the electrochromic material positioned between the transparent electrodes, so that the electrochromic material is oxidized or reduced.
  • the electrochromic materials spread between the two transparent electrodes can receive charges from the transparent electrode at about the same time, and discolor at the same time.
  • the time for receiving charge from the transparent electrode is greatly different according to the position of the electrochromic material. Accordingly, the time for the color change of the electrochromic material is noticeably different.
  • the electrochromic material disposed between two transparent electrodes, the first and second transparent electrodes, the first bus electrode 120, the electrolyte layer 130, the electrochromic layer 140, Passivation layer 150.
  • the electrochromic device according to the present invention may include other components in addition to the above components. This will be described with reference to the accompanying drawings.
  • the first bus electrode 120 is formed on the upper surface of the first transparent electrode 110a.
  • being formed on the upper surface of the first transparent electrode 110a means that a corresponding component is in contact with the upper surface of the first transparent electrode 110a.
  • a passivation layer may be formed between the first transparent electrode 110a and the first bus electrode 110a, which will be described later. That is, unless otherwise stated, in the present specification, the first bus electrode 120 contacts the upper surface of the first transparent electrode 110a.
  • the first bus electrode 120 may be formed in a predetermined pattern.
  • the predetermined pattern means a pattern of the first bus electrode 120 formed on the upper surface of the first transparent electrode 110a.
  • the first bus electrode 120 may be formed in a lattice pattern on the upper surface of the first transparent electrode 110a. A pattern that the first bus electrode may have will be described later with reference to FIGS. 12 and 13.
  • the first bus electrode 120 may be made of a material having higher conductivity than the above-described transparent electrode.
  • the first bus electrode may be made of any one of a metal, a conductive polymer, and a conductive carbon nanotube, and in particular, may be made of silver, gold, platinum, or the like having high conductivity.
  • the first bus electrode 120 may transfer electric charges to the electrochromic layer along the transparent electrode.
  • the electrolyte layer 130 transfers charge between the two electrodes to the electrochromic layer 140 when a voltage is applied between the first and second transparent electrodes, and may be formed of a liquid, semi-solid, and solid electrolyte.
  • the electrolyte used in the electrolyte layer 130 is a material used for a conventional electrochromic device, a detailed description of the material constituting the electrolyte layer is omitted.
  • the electrolyte layer 130 may be located between the first bus electrode 120 and the second transparent electrode 110b.
  • the electrolyte layer does not contact the first bus electrode 120, and the electrochromic layer 140 may be formed in a space formed between the electrolyte layer 130 and the first bus electrode 120.
  • the electrolyte layer 130 may or may not contact the second transparent electrode 110b.
  • another layer may be positioned between the electrolyte layer 130 and the second transparent electrode 110b. This will be described later.
  • the electrochromic layer 140 (or the first electrochromic layer) may be made of an electrochromic material.
  • the electrochromic substance is a substance which is colored or decolorized by electrochemical oxidation or reduction.
  • the electrochromic material constituting the first electrochromic layer 140 is not limited to a specific material, and may be any material that may be oxidized or reduced between the first and second transparent electrodes to be discolored.
  • the first electrochromic layer 140 is positioned between the first transparent electrode 110a and the electrolyte layer 130 and contacts the electrolyte layer 130.
  • the electrolyte layer 130 transfers electric charges to the first electrochromic layer 140 so that the electrochromic material included in the first electrochromic layer 140 is oxidized or reduced.
  • the first bus electrode 120 adjacent to the first electrochromic layer 140 may be oxidized, so that the charge transfer capability of the first bus electrode 120 may be reduced. Can be degraded.
  • the first bus electrode 120 and the first electrochromic layer 140 do not contact each other.
  • the first bus electrode 120 and the first electrochromic layer 140 may be in contact with each other, which will be described separately in FIG. 10. Unless stated otherwise in the present specification, the first bus electrode 120 and the first electrochromic layer 140 do not contact each other.
  • the first bus electrode 120 made of a metallic material is sparked by external light. Sparkling of the first bus electrode 120 obstructs the user's view of the electrochromic device.
  • the electrochromic device may include a passivation layer 150. It includes.
  • the passivation layer 150 is formed between the first bus electrode 120 and the first electrochromic layer 140 to prevent contact between the first bus electrode 120 and the first electrochromic layer 140.
  • One bus electrode 120 is surrounded.
  • the passivation layer 150 may be made of any one of an insulating material and a conductive material according to a method of enclosing the first bus electrode 120.
  • the insulating material may be any one of SiO 2 and TiO 2
  • the conductive material may be fluorine-doped tin oxide, indium-doped tin oxide, and aluminum oxide.
  • Zinc Zinc Aluminum Oxide may be any one.
  • the passivation layer 150 when the passivation layer 150 surrounds the first bus electrode 120, the passivation layer 150 does not prevent contact between the first transparent electrode 110a and the first electrochromic layer 140.
  • Layer 150 is made of an insulating material.
  • the passivation layer 150 made of an insulating material prevents corrosion of the first bus electrode 120.
  • the first bus electrode 120 since the electrical conductivity of the passivation layer 150 is low, the first bus electrode 120 mainly transfers charges to the first electrochromic layer 140 through the first transparent electrode 110a.
  • the passivation layer 150 is made of a conductive material.
  • the passivation layer 150 absorbs or diffuses the external light, thereby preventing the first bus electrode from glittering.
  • the electrochromic device according to the present invention includes a first bus electrode that spreads evenly throughout the electrochromic device to quickly transfer charges to improve the reaction speed of the electrochromic material.
  • the electrochromic device according to the present invention includes a passivation layer surrounding the first bus electrode to prevent corrosion of the first bus electrode.
  • the present invention can improve the discoloration rate for the electrochromic material spread over a large area, it is possible to prevent the performance degradation that can occur as a long term driving the electrochromic device.
  • the present invention can prevent the first bus electrode from shining by external light.
  • FIG. 2 is a cross-sectional view illustrating an electrochromic device including a passivation layer formed to prevent contact between a transparent electrode and an electrochromic layer.
  • the passivation layer 150 may prevent the first transparent electrode 110a and the first electrochromic layer 140 from contacting the first transparent electrode 110a and the first electrochromic layer 140. 140).
  • the passivation layer 150 may be made of a conductive material, and the charges transferred from the first bus electrode 120 are mainly transmitted through the passivation layer 150 to the first electrochromic layer 140.
  • a portion of the passivation layer 150 made of a conductive material may be oxidized as the electrochromic device is driven for a long time, but may prevent the first bus electrode 120 from being oxidized.
  • the passivation layer 150 may have two forms.
  • each of the shapes of the passivation layer 150 described with reference to FIGS. 1 and 2 will be referred to as a “first form” and a “second form”.
  • FIG 3 is a cross-sectional view illustrating an electrochromic device including an ion storage layer.
  • the electrochromic device of the present invention may further include an ion storage layer 160.
  • the ion storage layer 160 serves to enhance the charge transfer force of the electrochromic device, and may be made of a high ion conductive inorganic material such as antimon doped tin oxide.
  • the ion storage layer 160 may be positioned between the second transparent electrode 110b and the electrolyte layer 130 and may contact the second transparent electrode 110b and the electrolyte layer 130.
  • a second bus electrode 120b different from the first bus electrode 120a may be positioned on the bottom surface of the second transparent electrode 110b.
  • the electrochromic device according to the present invention may include a plurality of passivation layers. This will be described with reference to FIGS. 4A and 4B.
  • 4A and 4B are cross-sectional views illustrating an electrochromic device including an ion storage layer and a plurality of passivation layers.
  • the second bus electrode 120b may be formed on the bottom surface of the second transparent electrode 110b.
  • a separate passivation layer 150b may be formed between the second bus electrode 120b and the ion storage layer 160 to prevent contact between the second bus electrode 120b and the ion storage layer 160.
  • the passivation layer 150b formed between the second bus electrode 120b and the ion storage layer 160 may surround the second bus electrode 120b.
  • the passivation layer 150b surrounding the second bus electrode 120b may have the first shape.
  • the passivation layer 150b having the first shape may be made of an insulating material.
  • the passivation layer 150b may have the second shape.
  • the passivation layer 150b having the second form may be made of a conductive material.
  • 5A and 5B are cross-sectional views illustrating an electrochromic device including a plurality of electrochromic layers.
  • the electrochromic device of the present invention may include two different electrochromic layers 140a and 140b.
  • the two electrochromic layers 140a and 140b may be made of the same electrochromic material or different electrochromic materials.
  • the description of the electrochromic material constituting the two electrochromic layers is replaced with the description of the electrochromic layer described in FIG.
  • the electrochromic device of the present invention may include two bus electrodes in order to improve the color change rate on each electrochromic side.
  • the electrochromic device of the present invention may include first and second bus electrodes 120a and 120b.
  • the first bus electrode 120a may be positioned on the upper surface of the first transparent electrode 110a and the second bus electrode 120b may be positioned on the lower surface of the second transparent electrode 110b.
  • the electrochromic device of the present invention may include two passivation layers 150a and 150b to prevent corrosion of the first and second bus electrodes and to prevent sparking of the first and second bus electrodes.
  • one of the two passivation layers 150a is positioned between the first bus electrode 120a and the first electrochromic layer 140a and surrounds the first bus electrode 120a.
  • the other passivation layer 150b is formed between the first bus electrode 120a and the first electrochromic layer 140a to prevent contact between the second bus electrode 120b and the second electrochromic layer 140b. And surrounds the second bus electrode 120b.
  • the two passivation layers 150a and 150b may have the first shape.
  • the two passivation layers 150a and 150b may be made of an insulating material.
  • the two passivation layers 150a and 150b may have the second shape.
  • the two passivation layers 150a and 150b may be made of a conductive material.
  • FIG. 6 is a cross-sectional view of an electrochromic device including a passivation layer formed to prevent contact between a transparent electrode and a bus electrode.
  • the passivation layer 150 included in the electrochromic device prevents the first transparent electrode 110a and the first bus electrode 120 from contacting the first transparent electrode 110a and the first bus electrode. It may be formed between the (120).
  • the first bus electrode 120 includes an upper surface and a lower surface. Although the passivation layer described with reference to FIG. 1 may prevent sparking of the top surface of the first bus electrode 120, it may not prevent sparking of the bottom surface of the first bus electrode 120.
  • the passivation layer 150 of FIG. 6 may prevent the upper and lower surfaces of the first bus electrode 120 from shining.
  • 7A and 7B are cross-sectional views showing electrochromic elements of the uneven structure.
  • the electrochromic device of the present invention may include a structure different from that of FIG. 6 to prevent the bottom surface of the first bus electrode 120 from shining.
  • the first transparent electrode 110a forms an unevenness 111 in a region where the first transparent electrode 110a and the first bus electrode 120 contact each other.
  • the unevenness 111 may be formed on the bottom surface of the first transparent electrode 110a.
  • the unevenness 111 may be formed by a flaw generated on the upper surface of the substrate during electrochromic device fabrication.
  • the first transparent electrode 110a may be stacked on the first substrate 170a in a thin film form, and before the first transparent electrode 110a is stacked, the first transparent electrode 110a may be scratched on the top surface of the first substrate 170a.
  • the material forming the first transparent electrode 110a is filled between the scratches. Accordingly, irregularities are formed on the lower surface of the first transparent electrode 110a.
  • the first bus electrode 120 forms the unevenness 121 in a region where the first transparent electrode 110a and the first bus electrode 120 contact each other.
  • the unevenness 121 may be formed on the bottom surface of the first bus electrode 120.
  • the unevenness 121 may be formed by a defect generated in the first transparent electrode 110a when the electrochromic device is manufactured.
  • the first bus electrode 120 may be stacked in a thin film form on the upper surface of the first transparent electrode 110a. Before the first bus electrode 120 is stacked, the first bus electrode 120 may be stacked on the upper surface of the first transparent electrode 110a. When scratching, the material forming the first bus electrode 120 is filled between the scratches. As a result, irregularities are formed on the lower surface of the first bus electrode 120.
  • the unevenness 111 and 121 described with reference to FIGS. 7A and 7B may prevent the bottom surface of the first bus electrode from shining.
  • FIG. 8 is a cross-sectional view showing an electrochromic device including a bus electrode made of spherical nanoparticles.
  • the electrochromic device of the present invention may include a first bus electrode 120 made of spherical nanoparticles 122 to prevent the top and bottom surfaces of the first bus electrode from shining.
  • the nanoparticles 122 may be made of the same conductive material as the first bus electrode 120 described with reference to FIG. 1.
  • the nanoparticles 122 shown in FIG. 8 are shown to be larger than the actual size, and the particle diameter of the nanoparticles 122 constituting the first bus electrode is 10 nm to 500 nm.
  • the nanoparticles 122 scatter external light to prevent the first bus electrode 120 from shining.
  • FIG. 9 is a cross-sectional view illustrating an electrochromic device including a bus electrode forming a partition wall.
  • the first bus electrode 120 may be configured to supply charge to the electrochromic layer 140 in three dimensions.
  • the first bus electrodes 120a and 120c contact the upper surface of the first transparent electrode 110a and form a plurality of partition walls.
  • the first electrochromic layer 140 may be positioned between the partition walls formed by the first bus electrodes 120a and 120c.
  • the first bus electrodes 120a and 120c may be formed at the same height as the first electrochromic layer 140. Accordingly, passivation layers 150a and 150c are in contact with the electrolyte layer. That is, the first electrochromic layer 140 is not positioned between the upper surfaces of the passivation layers 150a and 150c and the lower surface of the electrolyte layer 130.
  • the heights of the first bus electrodes 120a and 120c may be 5 ⁇ m to 100 ⁇ m. That is, the height of the partition wall may be 5 ⁇ m to 100 ⁇ m.
  • the first bus electrodes 120a and 120c and the first transparent electrode 110a may supply charge to the first electrochromic layer 140 in three dimensions. Accordingly, the discoloration speed of the first electrochromic layer 140 may be improved.
  • FIG. 10 is a cross-sectional view of an electrochromic device including a bus electrode made of a mixture of a metal and a conductive ink.
  • the electrochromic device according to an embodiment of the present invention may not include a passivation layer.
  • the electrochromic device includes a first transparent electrode 110a, a second transparent electrode 110b facing the first transparent electrode 110a, and an upper surface of the first transparent electrode 110a. Between the electrolyte layer 130, the first transparent electrode 110a, and the electrolyte layer 130 positioned between the bus electrode 120, the first bus electrode 120, and the second transparent electrode having a predetermined pattern formed thereon. And an electrochromic layer 140 in contact with the electrolyte layer 130.
  • the electrochromic device described in FIG. 10 does not include the passivation layer described in FIG. 1. Therefore, the first bus electrode 120 included in the electrochromic device described with reference to FIG. 10 is highly likely to be oxidized.
  • the first bus electrode 120 shown in FIG. 10 is made of a mixture of metal and conductive ink.
  • the conductive ink may be conductive carbon black.
  • the conductive ink inhibits oxidation of metal constituting the first bus electrode 120, improves absorbance of the first bus electrode 120, and prevents sparkling.
  • a plurality of layers may be formed to protect the electrochromic device.
  • 11A to 11C are cross-sectional views illustrating electrochromic devices including a barrier layer and a hard coating layer.
  • the electrochromic device may further include barrier layers 180a and 180b disposed between the transparent electrode and the substrate and hard coating layers 190a and 190b covering the substrate.
  • the barrier layer is used to prevent penetration of moisture or the like into the transparent electrode.
  • the hard coating layer may be disposed on the outermost portion of the electrochromic device, and may be selectively used as necessary because it is not an essential component of the electrochromic device.
  • the barrier layers 180a and 180b may be disposed between the hard coating layer and the substrate.
  • the barrier layers 180a and 180b may be disposed between the substrate and the transparent electrode and between the hard coating layer and the substrate. That is, a plurality of barrier layers may be disposed in one electrochromic device.
  • bus electrodes described with reference to FIGS. 1 to 11C may be formed in various patterns.
  • 12 and 13 are conceptual views illustrating patterns of bus electrodes included in the electrochromic device according to the present invention.
  • the bus electrode may be formed on the upper or lower surface of the transparent electrode in the pattern shown in FIG. 12.
  • the bus electrode is not limited to the pattern shown in FIG. 12 and may be implemented in various forms.
  • the electrochromic device When the bus electrode is formed on one surface of the transparent electrode in a predetermined pattern, the electrochromic device is shown as shown in FIG. As shown in FIG. 13, the electrochromic device according to the present invention forms a predetermined pattern by the bus electrode. Electrochromic device according to the present invention can minimize the heterogeneity caused by the pattern.
  • An electrochromic system according to an embodiment of the present invention includes an electrochromic unit 310, a sensing unit 320, and a control unit 330.
  • an electrochromic unit 310 includes an electrochromic unit 310, a sensing unit 320, and a control unit 330.
  • the components will be described.
  • the electrochromic unit 310 is made of an electrochromic device.
  • the electrochromic device may constitute at least a part of the windshield, and a portion formed of the electrochromic device in the windshield may be referred to as the electrochromic unit 310.
  • the entire window is made of an electrochromic device, the entire window may be referred to as an electrochromic part 310.
  • the electrochromic system according to the present invention adjusts the light transmittance for each area of the window according to the amount of light incident through the window.
  • at least part of the windshield may be made of an electrochromic device.
  • the electrochromic element which comprises at least one part of a windshield is demonstrated.
  • FIG. 14 is a perspective view illustrating an electrochromic device according to an embodiment of the present invention
  • FIG. 15 is a cross-sectional view taken along the line B-B of FIG. 14
  • FIG. 16 is a cross-sectional view taken along the line C-C of FIG. 14.
  • the electrochromic device includes a first transparent electrode 110a, a second transparent electrode 110b, a first bus electrode 120a, a second bus electrode 120b, and an electrolyte layer 130.
  • the electrochromic layer 140, the first passivation layer 150a, and the second passivation layer 150b may be included.
  • the electrochromic device included in the electrochromic unit 310 may have the structure described with reference to FIGS. 1 to 13.
  • the electrochromic device according to an embodiment of the present invention may not include a passivation layer. Specifically, in order to reduce the thickness of the electrochromic device, the thickness of each layer included in the device should be minimized or the number of components included in the device should be minimized. To this end, the electrochromic device according to an embodiment of the present invention allows the transparent electrode to serve as a passivation layer.
  • 17 is a cross-sectional view of an electrochromic device that does not include a passivation layer.
  • FIG. 17 is a cross-sectional view of the electrochromic device taken along the C-C direction as shown in FIG. 16.
  • the electrochromic device includes a first transparent electrode 110a, a second transparent electrode 110b, a first bus electrode 120a, a second bus electrode 120b, an electrolyte layer 130, and a first electrode. Electrochromic layer 140. In addition, the components are disposed between the first substrate 170a and the second substrate 170b.
  • a plurality of first bus electrodes 120a may be disposed at a predetermined distance, and second bus electrodes 120b may be disposed to cross the length direction of the first bus electrodes 120a.
  • the first bus electrode 120a may be mounted inside the first transparent electrode 120a disposed on the first substrate 170a, or as shown in FIG. 17, between the first substrate 170a and the first transparent electrode 120a. Can be arranged. Accordingly, the first bus electrode 120a does not contact the electrochromic layer 140 disposed on the first transparent electrode 120a.
  • the second bus electrode 120b is mounted inside the second transparent electrode 120b disposed on the second substrate 170b, or as shown in FIG. 17, between the second substrate 170b and the second transparent electrode 120b. Can be arranged. Accordingly, the second bus electrode 120a does not contact the electrolyte layer 130 disposed under the second transparent electrode 120b.
  • the electrochromic device that does not include the passivation layer described above may further include an adhesive layer.
  • 18A to 18C are cross-sectional views of an electrochromic device including an adhesive layer.
  • the electrochromic device according to the present invention may further include an adhesive layer 120d.
  • the bus electrode may be disposed between the transparent electrode and the substrate.
  • the adhesive layer 120d may be disposed between the bus electrode and the substrate.
  • the adhesive layer 120d improves the bonding force between the bus electrode and the substrate and reduces glare that may be generated by the bus electrode. In addition, due to the bus electrode reduces the heterogeneity that the user can feel.
  • the adhesive layer 120d may include black or white ink.
  • the adhesive layer 120d may be made of a conductive material to complement the electrical conductivity of the bus electrode.
  • the adhesive layer 120d may include conductive carbon black.
  • the adhesive layer 120d may be made of an insulating material to prevent oxidation of the bus electrode.
  • the adhesive layer 120d may include a material forming the passivation layer described above.
  • the electrochromic device described in Figure 18a may be manufactured in two different ways.
  • the bus electrode 120b is stacked on the stacked adhesive layer 120d.
  • the transparent electrode 110b is stacked on the stacked bus electrodes 120b. Accordingly, the bus electrode and the adhesive layer are positioned between the substrate and the transparent electrode.
  • the bus electrode 120b and the adhesive layer 120d are sequentially stacked at the etched position.
  • the bus electrode and the adhesive layer may be laminated by any one of sputtering, evaporation, chemical vapor deposition, and atomic layer deposition.
  • the transparent electrode may be formed to surround the bus electrode and the adhesive layer.
  • the transparent electrode may be formed of two layers 110b and 110c. In this case, the adhesive layer 120d does not come into contact with the substrate 170b.
  • a moisture barrier layer 181 may be additionally disposed between the substrate and the adhesive layer.
  • the moisture barrier layer 181 may prevent foreign substances from entering the bus electrode and may be made of the same material as the barrier layer 180.
  • the electrochromic device according to the present invention may not include a passivation layer.
  • the structures described with reference to FIGS. 17 to 18C may be utilized when the thickness of the device needs to be reduced or when the manufacturing process should be simplified.
  • the electrochromic device according to the present invention may include first and second bus electrodes 120a and 120b.
  • the plurality of bus electrodes may be arranged in various patterns within the electrochromic device.
  • 19A to 19D are conceptual views illustrating patterns of bus electrodes included in the electrochromic device according to the present invention.
  • the first and second bus electrodes 120a and 120b may be disposed horizontally to each other. Specifically, as shown in FIG. 19A, the first and second bus electrodes 120a and 120b may be disposed to face each other. As shown in FIG. 19B, the first and second bus electrodes 120a and 120b may cross each other. Can be arranged.
  • the first and second bus electrodes 120a and 120b may be disposed perpendicular to each other.
  • one of the first and second bus electrodes 120a and 120b may be positioned above the electrochromic device, and the other may be located below the electrochromic device.
  • each of the first and second bus electrodes 120a and 120b may be alternately positioned above and below the electrochromic device.
  • 20 is a conceptual diagram illustrating a change in light transmittance of an electrochromic device according to the present invention.
  • the part When a voltage above the reference voltage is applied to a part of the electrochromic layer 140, the part is switched from the first state to the second state. On the other hand, when a reverse voltage equal to or greater than the reference voltage is applied to the portion of the second state, the portion is switched from the second state to the first state.
  • the light transmittance of the first state is higher than that of the second state. That is, when the electrochromic layer 140 is electrochromic, the light transmittance is increased or decreased.
  • the first and second bus electrodes may be utilized to apply a voltage above a reference value to a portion of the electrochromic layer 140.
  • a method of changing the light transmittance with respect to a part of the electrochromic layer 140 will be described using the electrochromic device shown in FIG. 20 as an example.
  • the plurality of horizontal and vertical lines illustrated in FIG. 20 are the first and second bus electrodes described with reference to FIGS. 14 to 18C.
  • the horizontal lines illustrated in FIG. 20 are referred to as first bus electrodes
  • the vertical lines are referred to as second bus electrodes. That is, the electrochromic device 200 illustrated in FIG. 20 includes 19 first bus electrodes and 13 second bus electrodes.
  • the bus electrodes will be described in order from left to right or top to bottom.
  • electrochromic color occurs in the electrochromic layer.
  • the electrochromic color occurs sequentially from an area close to the point where the fourth first bus electrode and the fifth second bus electrode intersect among the entire areas of the electrochromic layer.
  • the fourth and tenth first parts of the entire region of the electrochromic layer are applied. It occurs sequentially from the region close to the point where the bus electrode and the fifth second bus electrode intersect. That is, different regions of the electrochromic layer may be electrochromic simultaneously.
  • the electrochromic system controls the light transmittance of a part of the electrochromic device in the manner described above. A more detailed description will be given later along with the description of the controller.
  • bus electrodes may be irregularly disposed in the electrochromic device according to an exemplary embodiment.
  • 21 is a conceptual diagram illustrating an electrochromic device in which bus electrodes are irregularly arranged.
  • the horizontal lines shown in FIG. 21 are referred to as a first bus electrode, and the vertical lines are referred to as a second bus electrode.
  • the first bus electrodes may be disposed at regular intervals and the second bus electrodes may be disposed at irregular intervals. If all bus electrodes are arranged at regular intervals, moire may occur, which may obstruct the driver's vision. To prevent this phenomenon, some of the bus electrodes included in the electrochromic device may be irregularly disposed.
  • the sensing unit 320 will be described.
  • the sensing unit 320 is configured to sense the amount of light incident on the electrochromic unit 310. Specifically, the amount of light transmission may vary for each region of the electrochromic unit 310 due to external light. For example, when the entire vehicle front window is formed of the electrochromic unit 310, the amount of light transmitted to a part of the electrochromic unit 310 may increase due to a front lamp of another vehicle approaching from the front of the vehicle.
  • the sensing unit 320 senses a distribution of light transmittance for each region of the electrochromic unit 310.
  • the light transmission amount distribution for the electrochromic unit 310 is sensed in one or two dimensions, and the sensing unit 320 may be located near the driver's eyes.
  • the sensing unit 320 may be disposed at a position where an Advanced Driver Assistance System (ADAS) or a black box is attached, or may be disposed on a vehicle front window surface.
  • ADAS Advanced Driver Assistance System
  • the position of the sensing unit 320 is not limited to the inside of the vehicle.
  • the sensing unit 320 may be located at a position 320a near the driver's eyes, and may be disposed 320b at a position where a black box or the like is attached, or 320c at a window surface. .
  • the amount of light sensed by the sensing unit 320 may be corrected to correspond to the eye position of the driver, and the light transmittance of the electrochromic unit 310 may be controlled by the corrected amount of light. Specifically, even though the amount of light actually incident on the electrochromic part 310 is large, when the driver's eyes enter the place where the driver's eyes are not located, the corrected amount of light may be smaller than the actual amount of incident light.
  • the sensing unit 320 may include an illuminance sensor or a CCD camera.
  • the illuminance sensors may be arranged to form a plurality of arrays, and each of the plurality of illuminance sensors may be disposed toward different directions to sense a direction in which light is incident.
  • the present invention may control the electrochromic unit 310 so that the light transmittance does not change even if the incident light amount is increased when the direction in which light is incident does not face the driver.
  • the sensing unit 320 may include a video equipment pre-installed in the vehicle.
  • the sensing unit 320 may include a CCD camera included in a black box pre-installed in a vehicle.
  • the present invention may calculate the amount of light incident on the electrochromic unit 310 using an image photographed by a CCD camera.
  • the present invention may recognize an object (sun, headlight) corresponding to the light source in the image, and control the light transmittance of the area corresponding to the light source of the entire region of the electrochromic unit 310.
  • the present invention may divide the image into virtual regions and calculate brightness for each region. Thereafter, the present invention may control the light transmittance of the electrochromic unit 310 based on the calculated brightness.
  • the electrochromic system can sense the amount of light incident on the electrochromic unit 310 without the need to install a separate equipment in the vehicle.
  • the sensing unit 320 may calculate the amount of light incident on the electrochromic unit 310 through heat sensing.
  • the sensing unit 320 may include a thermal imaging camera.
  • the present invention can control the light transmittance of the electrochromic unit 310 according to the temperature of the electrochromic unit 310 by using the image taken by the thermal imaging camera.
  • control unit 330 will be described.
  • the controller 330 controls the electrochromic unit 310 to change the light transmittance of the partial region when the amount of light incident through the partial region of the electrochromic unit 310 changes.
  • the controller 330 may divide the electrochromic unit 310 into a plurality of regions.
  • the plurality of areas may be physically divided areas or virtually divided areas.
  • the controller 330 may divide the virtual regions based on a plurality of points where the first and second bus electrodes intersect.
  • the controller 330 may calculate the amount of light incident through each of the plurality of regions by using the sensing value sensed by the sensing unit 320. Meanwhile, when the sensing unit 320 includes an imaging device, the controller 330 may calculate an amount of light incident through each of the plurality of regions by using an image received from the imaging device.
  • the controller 330 may calculate the amount of light incident on the electrochromic unit 310 in consideration of the driver's line of sight.
  • the present invention may further include a separate sensor for detecting the driver's gaze direction.
  • the present invention may further include an eye tracking sensor.
  • the eye tracking sensor is a sensor that tracks the eyes of a person and detects where the eyes of the person are staying.
  • the controller 330 may calculate the amount of light that can reach the driver's eyes based on the driver's eyeline direction.
  • the controller 330 may control the light transmittance of the electrochromic unit 310 based on the amount of light reaching the driver's eyes.
  • the controller 330 may control the electrochromic unit 310 such that the light transmittance of the entire region of the electrochromic unit 310 corresponding to the driver's gaze direction changes in preference to other regions.
  • the controller 330 may adjust the light transmittance of the partial region. It may not change.
  • the controller 330 controls the electrochromic unit 310 to change the light transmittance of the partial region when the amount of light incident through the partial region is changed.
  • the controller 330 controls the electrochromic unit 310 so that the light transmittance of the partial region is reduced, and the amount of light passing through the partial region is controlled.
  • the electrochromic unit 310 is controlled to reduce the light transmittance of the partial region.
  • the controller 310 controls the voltage value applied to each of the plurality of electrodes included in the electrochromic unit 310 so that the light transmittance of the partial region is changed.
  • the controller 310 causes the potential difference between any one of the first bus electrodes 120a and the second bus electrodes 120b to be equal to or greater than the reference voltage. In this case, the light transmittance is sequentially changed from a point where the first bus electrode and the second bus electrode intersect.
  • the charge is transferred to the entire electrochromic part 310.
  • the light transmittance of the entire electrochromic part 310 may be changed.
  • the controller 330 controls the electrochromic unit 310 to maintain light transmittance for the remaining areas of the electrochromic unit 310 except for the partial region.
  • the controller 330 controls the electrochromic unit 310 such that a potential difference between the fourth first bus electrode and the fifth second bus electrode is equal to or greater than a reference voltage.
  • the controller 310 applies the reverse voltage of the reference voltage between the tenth first bus electrode and the tenth second bus electrode. Accordingly, the light transmittance of the region adjacent to the intersection of the fourth bus electrode and the fifth second bus electrode is changed, and the light transmittance of the region adjacent to the intersection of the tenth first bus electrode and the tenth second bus electrode is changed. The light transmittance does not change.
  • the light transmittance of some regions of the entire region of the electrochromic portion may be changed.
  • the electrochromic system may include a power supply unit configured to supply electric power to the entire system including the electrochromic unit 310.
  • a power supply unit configured to supply electric power to the entire system including the electrochromic unit 310.
  • the electrochromic system when external light passes through a bright area, the electrochromic system according to the present invention reduces the light transmittance of the electrochromic portion 310. In this state, when the power supplied from the power supply is cut off and the vehicle enters a dark place, the driver may feel difficulty in securing a view.
  • the electrochromic system according to the present invention may further include an auxiliary power supply, and when the power supplied from the power supply is cut off, the control unit 330 may include all areas of the electrochromic layer.
  • the electrochromic unit 310 is controlled to be in one state. That is, the controller 330 controls the electrochromic unit 310 to have the maximum light transmittance when power supply is cut off.
  • the electrochromic system according to the present invention may allow the driver to secure a view without difficulty even when the power supplied to the system is cut off due to an accident or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

본 발명은 변색속도가 향상된 전기변색 소자에 관한 것이다. 본 발명은 제1투명전극, 상기 제1투명전극과 마주하는 제2투명전극, 상기 제1투명전극의 상면에 형성되는 소정 패턴의 제1버스전극, 상기 제1버스전극 및 상기 제2투명전극 사이에 위치하는 전해질 층, 상기 제1투명전극 및 상기 전해질 층 사이에 위치하고, 상기 전해질 층과 접촉하는 제1전기변색 층 및 상기 제1버스전극과 상기 전기변색 층의 접촉을 막도록, 상기 제1버스전극 및 상기 전기변색 층 사이에 형성되며, 상기 제1버스전극을 에워싸는 패시베이션 층을 포함하는 전기변색 소자를 제공한다. 본 발명에 따르면, 넓은 면적의 전기변색 소자의 전기변색 속도를 향상시킬 수 있다.

Description

전기변색 소자 및 전기변색 시스템
본 발명은 변색속도가 향상된 전기변색 소자 및 차창을 통해 입사되는 광량을 조절할 수 있는 전기변색 시스템에 관한 것이다.
전기변색(Electrochromism)은 전류의 인가 방향에 따라 전기화학적 산화 또는 환원반응에 의해 착색 또는 탈색이 이루어지는 현상이다. 전기변색 물질은 소정 색을 유지하다가 전류가 인가되면 다른 색으로 변색된다. 그리고 전류의 방향을 역전시키면 전기 변색물질의 본래 색으로 복원된다.
여기서, 전기변색 물질은 산화 또는 환원반응에 따라 흡수 스펙트럼이 변화한다. 즉, 상기 전기변색 물질은 그 자체로 발광을 하는 것이 아니라, 흡광을 통해 색을 띤다. 이러한 성질을 갖는 전기변색 소자는 차량용 미러와 썬루프, 스마트창, 옥외 디스플레이 등의 용도로 널리 사용되고 있다.
전기변색 소자는 기판과 전극, 전기변색 물질, 전해질, 그리고 다시 전극과 기판으로 이루어져 있으며 인가되는 전압에 따라 소자의 색을 가역적으로 변화시킬 수 있다.
전기변색 소자는 그 용도에 따라 다양한 면적으로 구현될 수 있다. 전기변색 소자의 면적이 넓어질 경우, 전기변색 물질에 대한 전하 공급이 불균형하게 이루어지기 때문에, 전기변색 소자의 변색속도가 느려진다.
한편, 운전자의 눈부심을 방지하기 위해, 차창에는 차광필름이 부착된다. 차광필름은 고정적인 광 투과율을 가지기 때문에, 차량 외부가 밝을 때는 외부 광을 효과적으로 차단하지만, 차량 외부가 어두울 때는 운전자의 시야 확보를 어렵게 한다.
이러한 문제점을 해결하기 위해, 외부 광에 따라 차창의 차광능력을 조절할 수 있는 스마트 윈도우에 대한 수요가 증가하고 있다. 한편, 종래 스마트 윈도우는 외부 광에 따라 차창 전체의 광 투과율을 일괄적으로 동일하게 조절하므로, 어두운 부분에 대한 시야를 방해한다는 문제가 있었다.
본 발명은 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다. 또 다른 목적은 반응면적이 넓어지더라도 빠른 변색속도를 가지는 전기변색 소자를 제공하는 것이다.
또한, 본 발명은 전기변색 소자 내부에 포함된 버스전극으로 인하여 발생하는 이질감을 최소화하는 전기변색 소자를 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 차창을 통과하는 광량에 따라 차창 일부의 광 투과율을 선택적으로 변화시키는 전기변색 시스템을 제공하는 것을 그 목적으로 한다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 제1투명전극, 상기 제1투명전극과 마주하는 제2투명전극, 상기 제1투명전극의 상면에 형성되는 소정 패턴의 제1버스전극, 상기 제1버스전극 및 상기 제2투명전극 사이에 위치하는 전해질 층, 상기 제1투명전극 및 상기 전해질 층 사이에 위치하고, 상기 전해질 층과 접촉하는 제1전기변색 층 및 상기 제1버스전극과 상기 전기변색 층의 접촉을 막도록, 상기 제1버스전극 및 상기 전기변색 층 사이에 형성되며, 상기 제1버스전극을 에워싸는 패시베이션 층을 포함하는 전기변색 소자를 제공한다.
일 실시 예에 있어서, 상기 패시베이션 층은 절연물질로 이루어질 수 있으며, 상기 절연물질은 SiO2 및 TiO2 중 어느 하나일 수 있다. 이를 통해, 상기 제1버스전극이 부식되는 것을 막고, 상기 제1버스전극의 반짝임을 방지할 수 있다.
일 실시 예에 있어서, 상기 제1버스전극은 금속, 전도성 고분자 및 전도성 탄소 나노튜브 중 어느 하나일 수 있다. 이를 통해, 전기변색 층에 빠르게 전하를 공급할 수 있다.
일 실시 예에 있어서, 상기 패시베이션 층은 상기 제1투명전극과 상기 제1전기변색 층의 접촉을 막도록, 상기 제1투명전극과 상기 제1전기변색 층 사이에 형성될 수 있다. 이때, 상기 패시베이션 층은 전도성물질로 이루어질 수 있다.
일 실시 예에 있어서, 본 발명에 따른 전기변색 소자는 상기 전해질 층 및 상기 제2투명전극 사이에 이온저장 층을 더 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 본 발명은 전기변색 소자로 이루어지고, 적어도 일부 영역에 대한 광 투과율이 변하도록 이루어지는 전기변색부, 상기 전기변색부로 입사되는 광량을 센싱하도록 이루어지는 센싱부, 상기 전기변색부의 일부 영역을 통해 입사되는 광량이 변하는 경우, 상기 일부 영역에 대한 광 투과율이 변하도록 상기 전기변색부를 제어하는 제어부를 포함하는 전기변색 소자 구동 시스템을 제공한다.
일 실시 예에 있어서, 상기 전기변색부는 복수의 전극들을 포함하는 것을 특징으로 하고, 상기 제어부는, 상기 일부 영역의 광 투과율이 변하도록, 상기 복수의 전극들 각각에 인가되는 전압 값을 제어할 수 있다. 이를 통해, 본 발명은 차창 일부의 광 투과율이 변하도록 할 수 있다.
일 실시 예에 있어서, 상기 제어부는, 상기 일부 영역을 통해 입사되는 광량이 기준 값보다 커지는 경우, 상기 일부 영역의 광 투과율이 감소하도록, 상기 전기변색부를 제어할 수 있다. 이를 통해, 본 발명은 운전자가 외부 광으로 인해 시야 확보에 어려움을 느끼는 것을 방지할 수 있다.
일 실시 예에 있어서, 상기 제어부는, 상기 일부 영역을 통과하는 광량이 기준 값보다 작아지는 경우, 상기 일부 영역의 광 투과율이 증가하도록 상기 전기변색부를 제어할 수 있다. 이를 통해, 본 발명은 차량이 어두운 곳으로 진입하더라도 운전자가 용이하게 시야를 확보할 수 있도록 한다.
일 실시 예에 있어서, 상기 전기변색 소자는, 제1투명전극, 상기 제1투명전극 위에 형성되고, 전기변색물질로 이루어지는 전기변색 층, 상기 전기변색 층 위에 형성되는 전해질 층, 상기 전해질 층 위에 형성되는 제2투명전극, 상기 제1투명전극 및 상기 전기변색 층 사이에 형성되는 복수의 제1버스전극들, 상기 제1버스전극들 각각을 에워싸는 제1패시베이션층, 상기 전해질 층 및 상기 제2투명전극 사이에 형성되는 복수의 제2버스전극들 및 상기 제2버스전극들 각각을 에워싸는 제2패시베이션층을 포함할 수 있다.
일 실시 예에 있어서, 전원공급부를 더 포함하고, 상기 제어부는, 상기 전원공급부로부터 공급되는 전원이 차단되는 경우, 상기 전기변색 층의 모든 영역이 제1상태가 되도록 상기 전기변색부를 제어할 수 있다. 이를 통해, 본 발명은 사고 등으로 시스템에 공급되는 전원이 차단되는 경우에도, 운전자가 시야를 확보할 수 있도록 한다.
본 발명에 따르면, 넓은 면적의 전기변색 소자의 전기변색 속도를 향상 시킬 수 있다.
또한, 본 발명에 따르면, 전기변색 소자를 장시간 구동함에 따라, 전기변색 소자에 포함된 버스전극이 산화되는 것을 방지할 수 있다.
또한, 본 발명에 따르면, 전기변색 소자에 포함된 버스전극으로 인해, 사용자가 이질감을 느끼는 것을 방지할 수 있다.
한편, 본 발명의 일 실시 예에 따른 전기변색 시스템은 차창을 통해 입사되는 외부 광량을 차단하여 운전자의 눈부심을 방지함과 동시에, 운전자가 어두운 곳에 대한 시야를 용이하게 확보할 수 있도록 한다.
도 1은 본 발명의 일 실시 예에 따른 전기변색 소자의 단면도이다.
도 2는 투명전극과 전기변색 층의 접촉을 막도록 이루어지는 패시베이션 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 3은 이온저장 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 4a 및 4b는 이온저장 층 및 복수의 패시베이션 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 5a 및 5b는 복수의 전기변색 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 6은 투명전극과 버스전극의 접촉을 막도록 형성되는 패시베이션 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 7a 및 7b는 요철 구조를 전기변색 소자를 나타내는 단면도이다.
도 8은 구형 나노입자로 이루어진 버스전극을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 9는 격벽을 형성하는 버스전극을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 10은 금속 및 전도성 잉크의 혼합물로 이루어진 버스전극을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 11a 내지 11c는 배리어층 및 하드 코팅층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 12 및 13는 본 발명에 따른 전기변색 소자에 포함된 버스전극의 패턴을 나타내는 개념도이다.
도 14는 본 발명의 일 실시 예에 따른 전기변색소자를 나타내는 사시도이다.
도 15는 도 14의 라인 B-B를 따라 취한 단면도이다.
도 16은 도 14의 라인 C-C를 따라 취한 단면도이다.
도 17은 패시베이션 층을 포함하지 않는 전기변색 소자의 단면도이다.
도 18a 내지 18c은 접착층을 포함하는 전기변색 소자의 단면도이다.
도 19a 내지 19d는 본 발명에 따른 전기변색 소자에 포함된 버스전극의 패턴을 나타내는 개념도이다.
도 20은 본 발명에 따른 전기변색 소자의 광 투과율 변화를 나타내는 개념도이다.
도 21는 버스전극이 불규칙하게 배치된 전기변색 소자를 나타내는 개념도이다.
도 22은 차량 내부의 센서부의 위치를 나타내는 개념도이다.
도 23은 본 발명의 일 실시 예에 따른 전기변색 시스템의 블록도이다.
도 24는 본 발명의 일 실시 예에 따른 전기변색 시스템을 나타내는 개념도이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 일 실시 예에 따른 전기변색 소자에 대하여 설명한다.
도 1은 본 발명의 일 실시 예에 따른 전기변색 소자의 단면도이다.
본 발명의 일 실시 예에 따른 전기변색 소자는 제1투명전극, 제1투명전극과 마주하는 제2투명전극 사이에 복수의 구성요소들을 포함한다. 이하에서는, 도 1을 참조하여 투명전극 및 두 개의 투명전극 사이에 포함된 구성요소들에 대하여 구체적으로 설명한다.
제1 및 제2투명전극은 광 투과성과 전도성이 있는 전극이다. 투명전극은 유리 또는 광투과성 필름으로 이루어진 기판 위에 형성될 수 있으며, 산화 주석, 산화 인듐, 백금 및 금으로 이루어진 박막 또는 전도성 폴리머로 이루어진 박막일 수 있다.
투명전극은 전기변색 물질에 전압을 인가하기 위하여 사용되며, 투명전극의 일단에는 전원 공급 장치가 연결된다. 전원 공급 장치는 서로 마주보는 두 개의 투명전극 사이에 전위차가 발생하도록 한다. 다만, 본 발명의 일 실시 예에 따른 전기변색 소자에서는 투명전극에 전원 공급 장치가 연결되지 않고, 후술할 버스전극에만 전원 공급 장치가 연결될 수 있다.
본 발명에 따른 전기변색소자에서 제1 및 제2투명전극은 소정 면적을 가지며, 제1투명전극(110a) 상면의 적어도 일부와 제2투명전극(110b) 하면의 적어도 일부가 서로 마주본다.
투명전극은 투명전극 사이에 위치하는 전기변색 물질에 전하를 전달하여, 전기변색 물질이 산화 또는 환원되도록 한다. 투명전극의 면적이 일정 면적 이하인 경우, 두 개의 투명전극 사이에 퍼져있는 전기변색 물질들은 거의 동시에 투명전극으로부터 전하를 전달받을 수 있으며, 거의 동시에 변색된다.
하지만, 투명전극의 면적이 일정 면적 이상인 경우, 전기변색 물질의 위치에 따라, 투명전극으로부터 전하를 전달받는 시간이 크게 차이가 나게 된다. 이에 따라, 전기변색 물질은 그 위치에 따라 변색되는 시간이 눈에 띄게 달라진다.
본 발명은 두 개의 투명전극 사이에 위치한 전기변색 물질의 변색속도를 향상시키기 위해, 제1 및 제2투명전극, 제1버스전극(120), 전해질 층(130), 전기변색 층(140), 패시베이션 층(150)을 포함한다.
설명의 편의를 위하여, 도 1에 포함된 구성요소를 우선하여 설명하나, 본 발명에 따른 전기변색 소자는 상기 구성요소들 외에도 다른 구성요소들을 포함할 수 있다. 이에 대해서는, 첨부된 다른 도면을 참조하여 설명한다.
제1버스전극(120)은 제1투명전극(110a) 상면에 형성된다. 본 명세서에서, 제1투명전극(110a) 상면에 형성된다는 것은 제1투명전극(110a) 상면에 해당 구성요소가 접촉하는 것을 의미한다. 다만, 예외적으로 제1투명전극(110a)과 제1버스전극(110a) 사이에는 패시베이션 층이 형성될 수 있으나, 이에 대하여는 후술한다. 즉, 별도의 언급이 없는 한, 본 명세서에서 제1버스전극(120)은 제1투명전극(110a) 상면에 접촉한다.
한편, 제1버스전극(120)은 소정 패턴으로 형성될 수 있다. 여기서, 소정 패턴이란 제1투명전극(110a) 상면에서 형성되는 제1버스전극(120)의 무늬를 의미한다. 예를 들어, 제1버스전극(120)은 제1투명전극(110a) 상면에 격자무늬로 형성될 수 있다. 제1버스전극이 가질 수 있는 패턴에 대해서는 도 12 및 13에서 후술한다.
한편, 제1버스전극(120)은 상술한 투명전극보다 전도성이 높은 물질로 이루어질 수 있다. 구체적으로, 제1버스전극은 금속, 전도성 고분자 및 전도성 탄소 나노튜브 중 어느 하나로 이루어질 수 있으며, 특히, 전도성이 높은 은, 금, 백금 등으로 이루어질 수 있다. 이를 통해, 제1버스전극(120)는 투명전극보다 따르게 전기변색 층에 전하를 전달할 수 있게 된다.
전해질 층(130)은 제1 및 제2투명전극 사이에 전압을 인가하였을 때, 두 전극 사이의 전하를 전기변색 층(140)에 전달하며, 액상, 준고상, 고상 전해질로 이루어질 수 있다.
전해질 층(130)에 사용된 전해질은 종래 전기변색 소자에 사용되는 물질이므로, 전해질 층을 이루는 물질에 대한 자세한 설명은 생략한다.
한편, 전해질 층(130)은 제1버스전극(120) 및 제2투명전극 사이(110b)에 위치할 수 있다. 여기서, 전해질 층은 제1버스전극(120)과 접촉하지 않으며, 전해질 층(130)과 제1버스전극(120) 사이에 형성된 공간에 전기변색 층(140)이 형성될 수 있다.
또한, 전해질 층(130)은 제2투명전극(110b)과 접촉하거나, 접촉하지 않을 수 있다. 전해질 층(130)이 제2 투명전극(110b)과 접촉하지 않는 경우, 전해질 층(130)과 제2투명전극(110b) 사이에는 다른 층이 위치할 수 있다. 이에 대해서는 후술한다.
전기변색 층(140)(또는, 제1전기변색 층)은 전기변색 물질로 이루어질 수 있다. 여기서, 전기변색 물질이란, 전기화학적 산화 또는 환원반응에 의해 착색 또는 탈색이 이루어지는 물질이다.
제1전기변색 층(140)을 이루는 전기변색 물질은 특정 물질에 한정되지 않고, 제1 및 제2투명전극 사이에서 산화 또는 환원되어 변색될 수 있는 모든 물질일 수 있다.
제1전기변색 층(140)은 제1투명전극(110a) 및 전해질 층(130) 사이에 위치하고, 전해질 층(130)과 접촉한다. 전해질 층(130)은 제1전기변색 층(140)에 전하를 전달하여, 제1전기변색 층(140)에 포함된 전기변색 물질이 산화 또는 환원되도록 한다.
전기변색 물질이 산화 또는 환원을 반복하는 경우, 제1전기변색 층(140)과 인접한 제1버스전극(120)이 산화될 수 있으며, 이에 따라, 제1버스전극(120)의 전하 전달 능력이 저하될 수 있다.
이러한 문제점을 해결하기 위해, 본 발명에 따른 전기변색 소자에서 제1버스전극(120)과 제1전기변색 층(140)은 서로 접촉하지 않는다. 다만 예외적으로, 제1버스전극(120)과 제1전기변색 층(140)이 접촉하는 경우가 있으나, 이에 대해서는 도 10에서 별도로 설명한다. 본 명세서에서 별도의 언급이 없는 한 제1버스전극(120)과 제1전기변색 층(140)은 서로 접촉하지 않는다.
또한, 금속 재질로 이루어진 제1버스전극(120)은 외부 광에 의하여 반짝인다. 제1버스전극(120)의 반짝임은 전기변색 소자를 바라보는 사용자의 시야를 방해한다.
제1버스전극(120)과 제1전기변색 층(140)의 접촉을 방지하고, 제1버스전극의 반짝임을 방지하기 위해, 본 발명의 일 실시 예에 따른 전기변색 소자는 패시베이션 층(150)을 포함한다.
패시베이션 층(150)은 제1버스전극(120)과 제1전기변색 층(140)의 접촉을 막도록, 제1버스전극(120) 및 제1전기변색 층(140) 사이에 형성되며, 제1버스전극(120)을 에워싼다.
한편, 패시베이션 층(150)은 제1버스전극(120)을 에워싸는 방식에 따라, 절연물질 및 전도성물질 중 어느 하나로 이루어질 수 있다. 여기서, 절연물질은 SiO2 및 TiO2 중 어느 하나일 수 있고, 전도성물질은 불소가 도핑된 산화주석(Fluorine-doped Tin Oxide), 인듐이 도핑된 주석산화물(Indium-doped Tin Oxide) 및 산화알루미늄아연(Zinc Aluminum Oxide) 중 어느 하나일 수 있다.
구체적으로, 도 1과 같이, 패시베이션 층(150)이 제1버스전극(120)을 에워싸지만, 제1투명전극(110a)과 제1전기변색 층(140)의 접촉을 막지 않는 경우, 패시베이션 층(150)은 절연물질로 이루어진다. 절연물질로 이루어진 패시베이션 층(150)은 제1버스전극(120)의 부식을 막는다. 다만, 이러한 경우, 패시베이션 층(150)의 전기전도도가 낮기 때문에, 제1버스전극(120)은 주로 제1투명전극(110a)을 통해 제1전기변색 층(140)으로 전하를 전달한다.
한편, 패시베이션 층(150)이 전도성 물질로 이루어진 경우에 대해서는 도 2에서 후술한다.
한편, 패시베이션 층(150)은 외부 광을 흡수하거나 난반사 시켜, 제1버스전극의 반짝임을 방지한다.
상술한 바와 같이, 본 발명에 따른 전기변색 소자는 전기변색 물질의 반응속도를 향상시키기 위해, 전기 변색 소자 전체에 고르게 퍼져 전하를 빠르게 전달하는 제1버스전극을 포함한다. 또한, 본 발명에 따른 전기변색 소자는 제1버스전극의 부식을 막도록, 제1버스전극을 에워싸는 패시베이션 층을 포함한다.
이를 통해, 본 발명은 넓은 면적에 퍼져있는 전기변색 물질에 대한 변색속도를 향상시킬 수 있으며, 전기변색 소자를 장기적으로 구동함에 따라 발생할 수 있는 성능저하를 방지할 수 있다. 또한, 본 발명은 제1버스전극이 외부 광에 의하여 반짝이는 것을 방지할 수 있다.
이하에서는, 첨부된 도면을 참조하여, 본 발명에 따른 전기변색 소자의 다양한 구현 예에 대하여 살펴본다.
도 2는 투명전극과 전기변색 층의 접촉을 막도록 이루어지는 패시베이션 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 2에 도시된 바와 같이, 패시베이션 층(150)은 제1투명전극(110a)과 제1전기변색 층(140)의 접촉을 막도록, 제1투명전극(110a)과 제1전기변색 층(140) 사이에 형성된다.
이러한 경우, 패시베이션 층(150)은 전도성 물질로 이루어질 수 있으며, 제1버스전극(120)으로부터 전달되는 전하는 주로 패시베이션 층(150)을 통해, 제1전기변색 층(140)으로 전달된다.
전도성 물질로 이루어진 패시베이션 층(150)은 전기변색 소자를 장시간 구동함에 따라 그 일부가 산화될 수 있지만, 제1버스전극(120)이 산화되는 것을 막을 수 있다.
도 1 및 2에서 설명한 바와 같이, 패시베이션 층(150)은 두 가지 형태를 가질 수 있다. 이하에서는 설명의 편의를 위하여, 도 1 및 2 에서 설명한 패시베이션 층(150)의 형태 각각을 '제1형태' 및 '제2형태'라 한다.
도 3은 이온저장 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
본 발명의 전기변색 소자는 이온저장 층(160)을 더 포함할 수 있다.
이온저장 층(160)은 전기변색 소자의 전하 전달력을 강화하는 역할을 하며, Antimon doped Tin Oxide 등의 고이온 전도성 무기물로 이루어질 수 있다.
이온저장 층(160)은 제2투명전극(110b)과 전해질 층(130) 사이에 위치할 수 있으며, 제2투명전극(110b) 및 전해질 층(130)과 접촉할 수 있다.
한편, 제2투명전극(110b) 하면에는 제1버스전극(120a)과 다른 제2버스전극(120b)이 위치할 수 있다.
제2버스전극(120b)에 대한 구체적인 설명은 제1버스전극(120a)에 대한 설명으로 갈음한다.
한편, 제2버스전극(120a)이 이온저장 층(160)과 접촉하는 경우, 장기간 전기변색 소자를 구동함에 따라 제2버스전극(120a)은 산화된다. 상기 문제점을 해결하기 위하여, 본 발명에 따른 전기변색 소자는 복수의 패시베이션 층을 포함할 수 있다. 이에 대하여, 도 4a 및 4b에서 설명한다.
도 4a 및 4b는 이온저장 층 및 복수의 패시베이션 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 4a 및 4b에 도시된 바와 같이, 제2투명전극(110b)의 하면에 제2버스 전극(120b)이 형성될 수 있다.
한편, 제2버스전극(120b)과 이온저장 층(160)의 접촉을 막도록, 제2버스전극(120b) 및 이온저장 층(160) 사이에 별도의 패시베이션 층(150b)이 형성될 수 있다. 제2버스전극(120b) 및 이온저장 층(160) 사이에 형성되는 패시베이션 층(150b)은 제2버스전극(120b)을 에워싸는 형태일 수 있다.
한편, 도 4a와 같이, 제2버스전극(120b)을 에워싸는 패시베이션 층(150b)은 상기 제1형태를 가질 수 있다. 상기 제1형태를 가지는 패시베이션 층(150b)은 절연 물질로 이루어질 수 있다.
이와 달리, 도 4b와 같이, 패시베이션 층(150b)은 상기 제2형태를 가질 수 있다. 상기 제2형태를 가지는 패시베이션 층(150b)은 전도성 물질로 이루어질 수 있다.
도 5a 및 5b는 복수의 전기변색 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 5a 및 5b에 도시된 바와 같이, 본 발명의 전기변색 소자는 서로 다른 두 개의 전기변색 층(140a 및 140b)을 포함할 수 있다.
두 개의 전기변색 층(140a 및 140b)은 같은 전기변색 물질로 이루어지거나, 서로 다른 전기변색 물질로 이루어질 수 있다. 두 개의 전기변색 층을 이루는 전기변색 물질에 대한 설명은 도 1에서 설명한 전기변색 층에 대한 설명으로 갈음한다.
전기변색 층이 두 개인 경우, 각각의 전기변색 측에 대한 변색 속도를 향상시키기 위해, 본 발명의 전기변색 소자는 두 개의 버스전극을 포함할 수 있다. 구체적으로, 본 발명의 전기변색 소자는 제1 및 제2버스전극(120a 및 120b)를 포함할 수 있다.
도 5a 및 5b와 같이, 제1버스전극(120a)은 제1투명전극(110a) 상면에 위치하고, 제2버스전극(120b)은 제2투명전극(110b)의 하면에 위치할 수 있다.
한편, 본 발명의 전기변색 소자는 제1 및 제2버스전극의 부식을 막고, 제1 및 제2버스전극의 반짝임을 방지하기 위해, 두 개의 패시베이션 층(150a 및 150b)을 포함할 수 있다.
구체적으로, 두 개의 패시베이션 층 중 어느 하나(150a)는 제1버스전극(120a) 및 제1전기변색 층(140a) 사이에 위치하며, 제1버스전극(120a)을 에워싼다.
다른 하나의 패시베이션 층(150b)은 제2버스전극(120b)과 제2전기변색 층(140b)의 접촉을 막도록, 제1버스전극(120a) 및 제1전기변색 층(140a) 사이에 형성되고, 제2버스전극(120b)을 에워싼다.
한편, 도 5a와 같이, 상기 두 개의 패시베이션 층(150a 및 150b)은 상기 제1형태를 가질 수 있다. 이러한 경우, 상기 두 개의 패시베이션 층(150a 및 150b)은 절연물질로 이루어질 수 있다.
이와 달리, 도 5b와 같이, 상기 두 개의 패시베이션 층(150a 및 150b)은 상기 제2형태를 가질 수 있다. 이러한 경우, 상기 두 개의 패시베이션 층(150a 및 150b)은 전도성 물질로 이루어질 수 있다.
도 6은 투명전극과 버스전극의 접촉을 막도록 형성되는 패시베이션 층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 6과 같이, 전기변색 소자에 포함된 패시베이션 층(150)은 제1투명전극(110a)과 제1버스전극(120)의 접촉을 막도록, 제1투명전극(110a)과 제1버스전극(120) 사이에 형성될 수 있다.
제1버스전극(120)은 상면 및 하면을 포함한다. 도 1에서 설명한 패시베이션 층은 제1버스전극(120)의 상면의 반짝임을 막을 수는 있지만, 제1버스전극(120)의 하면의 반짝임을 막을 수 없다.
도 6의 패시베이션 층(150)은 제1버스전극(120)의 상면 및 하면이 반짝이는 것을 방지할 수 있다.
도 7a 및 7b는 요철 구조를 전기변색 소자를 나타내는 단면도이다.
본 발명의 전기변색 소자는 제1버스전극(120)의 하면이 반짝이는 것을 방지하기 위해, 도 6과는 다른 구조를 포함할 수 있다.
도 7a와 같이, 제1투명전극(110a)은 제1투명전극(110a)과 제1버스전극(120)이 접촉하는 영역에 요철(111)을 형성한다. 이때, 요철(111)은 제1투명전극(110a)의 하면에 형성될 수 있다.
요철(111)은 전기변색 소자 제조 시 기판 상면에 생성된 흠에 의하여 형성될 수 있다. 구체적으로, 제1투명전극(110a)은 제1기판(170a) 상면에 박막 형태로 적층될 수 있는데, 제1투명전극(110a)이 적층되기 전, 제1기판(170a)의 상면에 흠집을 내는 경우, 상기 흠집 사이로 제1투명전극(110a)을 이루는 물질이 충진 된다. 이에 따라, 제1투명전극(110a)의 하면에 요철이 형성된다.
이와 달리, 도 7b와 같이, 제1버스전극(120)은 제1투명전극(110a)과 제1버스전극(120)이 접촉하는 영역에 요철(121)을 형성한다. 이때, 요철(121)은 제1버스전극(120)의 하면에 형성될 수 있다.
요철(121)은 전기변색 소자 제조 시 제1투명전극(110a)에 생성된 흠에 의하여 형성될 수 있다. 구체적으로, 제1버스전극(120)은 제1투명전극(110a) 상면에 박막 형태로 적층될 수 있는데, 제1버스전극(120)이 적층되기 전, 제1투명전극(110a)의 상면에 흠집을 내는 경우, 상기 흠집 사이로 제1버스전극(120)을 이루는 물질이 충진 된다. 이에 따라, 제1버스전극(120)의 하면에 요철이 형성된다.
도 7a 및 7b에서 설명한 요철(111 및 121)은 제1버스전극의 하면이 반짝이는 것을 방지할 수 있다.
도 8은 구형 나노입자로 이루어진 버스전극을 포함하는 전기변색 소자를 나타내는 단면도이다.
본 발명의 전기변색 소자는 제1버스전극의 상면 및 하면이 반짝이는 것을 방지하기 위해, 구형 나노입자(122)로 이루어진 제1버스전극(120)을 포함할 수 있다. 여기서, 나노입자(122)는 도 1에서 설명한 제1버스전극(120)과 동일한 전도성 물질로 이루어질 수 있다.
도 8에 도시된 나노입자(122)는 설명의 편의를 위하여, 실제 크기보다 크게 도시되었으며, 제1버스전극을 구성하는 나노입자(122)의 입경은 10nm 내지 500nm이다.
나노입자(122)들은 외부 광을 산란시켜, 제1버스전극(120)이 반짝이는 것을 방지한다.
도 9는 격벽을 형성하는 버스전극을 포함하는 전기변색 소자를 나타내는 단면도이다.
제1버스전극(120)은 전기변색 층(140)에 3차원적으로 전하를 공급하도록 이루어질 수 있다.
도 9와 같이, 제1버스전극(120a 및 120c)은 제1투명전극(110a) 상면에 접촉하고, 복수의 격벽들을 형성한다. 제1버스전극(120a 및 120c)에 의해 형성된 격벽 사이에는 제1전기변색 층(140)이 위치할 수 있다.
한편, 도 9와 같이, 제1버스전극(120a 및 120c)은 제1전기변색 층(140)과 동일한 높이로 형성될 수 있다. 이에 따라, 패시베이션 층(150a 및 150c)은 전해질 층에 접촉하게 된다. 즉, 패시베이션 층(150a 및 150c)의 상면과 전해질 층(130)의 하면 사이에는 제1전기변색 층(140)이 위치하지 않는다.
여기서, 제1버스전극(120a 및 120c)의 높이는 5μm 내지 100 μm일 수 있다. 즉, 상기 격벽의 높이는 5μm 내지 100 μm일 수 있다.
이를 통해, 제1버스전극(120a 및 120c) 및 제1투명전극(110a)은 제1전기변색 층(140)에 3차원적으로 전하를 공급할 수 있게 된다. 이에 따라, 제1전기변색 층(140)의 변색 속도가 향상될 수 있다.
도 10은 금속 및 전도성 잉크의 혼합물로 이루어진 버스전극을 포함하는 전기변색 소자를 나타내는 단면도이다.
본 발명의 일 실시 예에 따른 전기변색 소자는 패시베이션 층을 포함하지 않을 수 있다.
구체적으로, 도 10에 도시된 바와 같이, 전기변색 소자는 제1투명전극(110a), 제1투명전극(110a)과 마주하는 제2투명전극(110b), 제1투명전극(110a)의 상면에 형성되는 소정 패턴의 버스전극(120), 제1버스전극(120) 및 상기 제2투명전극 사이에 위치하는 전해질 층(130), 제1투명전극(110a) 및 전해질 층(130) 사이에 위치하고, 전해질 층(130)과 접촉하는 전기변색 층(140)을 포함한다.
도 10에서 설명한 전기변색 소자는 도 1에서 설명한 패시베이션 층을 포함하지 않는다. 따라서, 도 10에서 설명한 전기변색 소자에 포함된 제1버스전극(120)은 산화될 가능성이 높다.
이러한 문제점을 해결하기 위해, 도 10에 도시된 제1버스전극(120)은 금속 및 전도성 잉크의 혼합물로 이루어진다. 여기서, 상기 전도성 잉크는 전도성 카본 블랙일 수 있다.
상기 전도성 잉크는 제1버스전극(120)을 구성하는 금속의 산화를 억제하고, 제1버스전극(120)의 흡광도를 향상 시켜, 반짝임을 막는다.
한편, 전기변색 소자를 보호하기 위한 복수의 층들이 형성될 수 있다.
도 11a 내지 11c는 배리어층 및 하드 코팅층을 포함하는 전기변색 소자를 나타내는 단면도이다.
도 11a와 같이, 본 발명의 일 실시 예에 따른 전기변색 소자는 투명전극 및 기판 사이에 배치되는 배리어 층(180a 및 180b) 및 기판을 덮는 하드 코팅층(190a 및 190b)을 더 포함할 수 있다.
상기 배리어 층은 투명전극에 수분 등의 침투를 막기 위해 사용된다.
한편, 하드 코팅층은 전기변색 소자의 최외각에 배치될 수 있으며, 전기변색 소자의 필수적인 구성요소는 아니기 때문에 필요에 따라 선택적으로 사용될 수 있다.
한편, 도 11b와 같이, 배리어 층(180a 및 180b)은 하드 코팅층 및 기판 사이에 배치될 수 있으며, 도 11c와 같이, 기판과 투명전극 사이 및 하드 코팅층과 기판 사이에 배치될 수 있다. 즉, 하나의 전기 변색소자에 복수의 배리어층이 배치될 수 있다.
한편, 도 1 내지 11c에서 설명한 버스전극은 다양한 패턴으로 형성될 수 있다.
도 12 및 13은 본 발명에 따른 전기변색 소자에 포함된 버스전극의 패턴을 나타내는 개념도이다.
버스전극은 도 12에 도시된 패턴으로 투명전극 상면 또는 하면에 형성될 수 있다. 다만, 버스전극은 도 12에 도시된 패턴에 한정되지 않고, 다양한 형태로 구현될 수 있다.
버스전극이 소정 패턴으로 투명전극의 일면에 형성되는 경우, 전기변색 소자는 도 13과 같은 모습으로 보여지게 된다. 도 13에 도시된 바와 같이, 본 발명에 따른 전기변색 소자는 버스전극에 의해 일정한 무늬를 형성한다. 본 발명에 따른 전기변색 소자는 상기 무늬로 인하여 발생하는 이질감을 최소화 할 수 있다.
이하에서는, 본 발명의 일 실시 예에 따른 전기변색 시스템에 대하여 설명한다. 본 발명에 따른 전기변색 시스템은 전기변색부(310), 센싱부(320), 제어부(330)를 포함한다. 이하, 상기 구성요소들에 대하여 설명한다.
전기변색부(310)는 전기변색 소자로 이루어진다. 전기변색 소자는 차창의 적어도 일부를 구성할 수 있으며, 차창에서 전기변색 소자로 이루어진 부분을 전기변색부(310)라 할 수 있다. 구체적으로, 차창 전체가 전기변색 소자로 이루어지는 경우, 차창 전체를 전기변색부(310)라 할 수 있다.
본 발명에 따른 전기변색 시스템은 차창을 통해 입사하는 광량에 따라 차창의 영역별 광 투과율을 조절한다. 이를 위해, 차창의 적어도 일부는 전기변색소자로 이루어질 수 있다.
이하에서는, 차창의 적어도 일부를 구성하는 전기변색 소자에 대하여 설명한다.
도 14는 본 발명의 일 실시 예에 따른 전기변색 소자를 나타내는 사시도이고, 도 15는 도 14의 라인 B-B를 따라 취한 단면도이고, 도 16은 도 14의 라인 C-C를 따라 취한 단면도이다.
도 14에 따르면, 본 발명에 따른 전기변색 소자는 제1투명전극(110a), 제2투명전극(110b), 제1버스전극(120a), 제2버스전극(120b), 전해질 층(130), 전기변색 층(140), 제1패시베이션 층(150a) 및 제2패시베이션 층(150b)을 포함할 수 있다. 또한, 전기변색부(310)에 포함되는 전기변색 소자는 도 1 내지 13에서 설명한 구조를 가질 수 있다.
한편, 본 발명의 일 실시 예에 따른 전기변색 소자는 패시베이션 층을 포함하지 않을 수 있다. 구체적으로, 전기변색 소자의 두께를 줄이기 위해서는 소자에 포함된 각각의 층들의 두께를 최소화하거나, 소자에 포함된 구성요소의 개수를 최소화 해야 한다. 이를 위해, 본 발명에 일 실시 예에 따른 전기변색 소자는 투명전극이 패시베이션 층의 역할을 하도록 한다.
도 17은 패시베이션 층을 포함하지 않는 전기변색 소자의 단면도이다.
도 17는 도 16과 같이, 전기변색 소자를 C-C방향을 따라 취한 단면도이다.
도 17에 도시된, 전기변색 소자는 제1투명전극(110a), 제2투명전극(110b), 제1버스전극(120a), 제2버스전극(120b), 전해질 층(130) 및 제1전기변색 층(140)을 포함한다. 또한, 상기 구성요소들은 제1기판(170a) 및 제2기판(170b) 사이에 배치된다.
상술한 구성요소들을 이루는 재질은 도 1 내지 13에서 설명한 구성요소들과 동일하므로, 자세한 설명은 생략한다. 이하에서는, 각 구성요소들의 결합관계에 대하여 설명한다.
제1버스전극(120a)은 소정 거리를 두고, 복수 개 배치될 수 있으며, 제2버스전극(120b)은 상기 제1버스전극(120a)의 길이 방향과 교차하도록 배치될 수 있다.
제1버스전극(120a)은 제1기판(170a) 위에 배치된 제1투명전극(120a) 내부에 실장 되거나, 도 17과 같이, 제1기판(170a) 및 제1투명전극(120a) 사이에 배치될 수 있다. 이에 따라, 제1버스전극(120a)은 제1투명전극(120a)위에 배치되는 전기변색 층(140)과 접하지 않는다.
제2버스전극(120b)은 제2기판(170b)위에 배치된 제2투명전극(120b) 내부에 실장 되거나, 도 17과 같이, 제2기판(170b) 및 제2투명전극(120b) 사이에 배치될 수 있다. 이에 따라, 제2버스전극(120a)은 제2투명전극(120b) 아래에 배치되는 전해질 층(130)과 접하지 않는다.
한편, 상술한 패시베이션 층을 포함하지 않는 전기변색 소자는 접착층을 더 포함할 수 있다.
도 18a 내지 18c은 접착층을 포함하는 전기변색 소자의 단면도이다.
도 18a를 참조하면, 본 발명에 따른 전기변색 소자는 접착층(120d)을 더 포함할 수 있다. 구체적으로, 도 17에서 설명한 바와 같이, 버스전극은 투명전극과 기판 사이에 배치될 수 있는데, 이러한 경우, 접착층(120d)은 버스전극과 기판 사이에 배치될 수 있다.
접착층(120d)은 버스전극과 기판 사이의 결합력을 향상시키고, 버스전극에 의하여 발생될 수 있는 눈부심을 감소시킨다. 또한, 버스전극으로 인하여 사용자가 느낄 수 있는 이질감을 감소시킨다. 이를 위해, 접착층(120d)은 검은색 또는 흰색 잉크를 포함하여 이루어질 수 있다.
한편, 접착층(120d)은 접착층(120d)은 버스전극의 전기 전도도를 보완하도록, 전도성 물질로 이루어질 수 있다. 예를 들어, 접착층(120d)은 전도성 카본 블랙을 포함하여 이루어질 수 있다.
이와 달리, 접착층(120d)은 버스전극의 산화를 방지하도록 절연 물질로 이루어질 수 있다. 예를 들어, 접착층(120d)은 상술한 패시베이션 층을 이루는 물질을 포함하여 이루어질 수 있다.
한편, 도 18a에서 설명한 전기변색 소자는 두 가지 다른 방식으로 제조될 수 있다.
첫 번째로, 기판 위에 접착층(120d)을 적층한 후, 적층된 접착층(120d) 위에 버스전극(120b)을 적층한다. 적층된 버스전극(120b) 위에 투명전극(110b)을 적층한다. 이에 따라, 기판과 투명전극 사이에는 버스전극 및 접착층이 위치하게 된다.
두 번째로, 투명전극(110b)의 일면을 식각한 후, 식각된 위치에 버스전극(120b) 및 접착층(120d)을 순서대로 적층한다. 이때, 버스 전극 및 접착층은 sputtering, evaporation, 화학기상증착(Chemical Vapor Deposition) 및 원자층 증착법(Atmic Layer Deposition) 중 어느 하나에 의하여 적층될 수 있다.
한편, 상술한 패시베이션 층을 포함하지 않는 전기변색 소자에서 투명전극은 버스전극 및 접착층을 에워싸도록 형성될 수 있다. 도 18b를 참조하면, 투명전극은 두 개의 층(110b 및 110c)로 이루어질 수 있다. 이러한 경우, 접착층(120d)은 기판(170b)과 접촉하지 않게 된다.
한편, 상술한 패시베이션 층을 포함하지 않는 전기변색 소자에서 기판과 접착층 사이에는 투습방지 층(181)이 추가적으로 배치될 수 있다. 투습방지 층(181)은 버스전극으로 외부 물질이 유입되는 것을 방지하며, 상기 배리어 층(180)과 동일한 소재로 이루어질 수 있다.
상술한 바와 같이, 본 발명에 따른 전기변색 소자는 패시베이션 층을 포함하지 않을 수 있다. 도 17 내지 18c에서 설명한 구조는 소자의 두께를 줄여야 하는 경우나, 제조 공정을 간소화시켜야 하는 경우 활용될 수 있다.
한편, 도 4a에서 설명한 바와 같이, 본 발명에 따른 전기변색 소자는 제1 및 제2버스전극(120a 및 120b)을 포함할 수 있다. 전기변색 소자 내부에서 복수의 버스전극들은 다양한 패턴으로 배치될 수 있다.
도 19a 내지 19d는 본 발명에 따른 전기변색 소자에 포함된 버스전극의 패턴을 나타내는 개념도이다.
먼저, 도 19a 및 19b를 참조하면, 제1 및 제2버스전극(120a 및 120b)은 서로 수평하게 배치될 수 있다. 구체적으로, 도 19a와 같이, 제1 및 제2버스전극(120a 및 120b)은 서로 마주보도록 배치될 수 있으며, 도 19b와 같이, 제1 및 제2버스전극(120a 및 120b)은 서로 교차하여 배치될 수 있다.
한편, 도 19c 및 19d를 참조하면, 제1 및 제2버스전극(120a 및 120b)은 서로 수직하게 배치될 수 있다. 구체적으로, 도 19c와 같이, 제1 및 제2버스전극(120a 및 120b)는 중 어느 하나는 전기변색 소자 상부에 위치하고, 다른 하나는 전기변색 소자 하부에 위치할 수 있다. 이와 달리, 도 19d을 참조하면, 제1 및 제2버스전극(120a 및 120b) 각각은 서로 번갈아가며 전기변색 소자 상부 및 하부에 위치할 수 있다.
이하에서는, 상술한 전기변색 소자의 광 투과율 변화에 대하여 설명한다.
도 20은 본 발명에 따른 전기변색 소자의 광 투과율 변화를 나타내는 개념도이다.
전기변색 층(140)의 일부에 기준 전압 이상의 전압이 인가되는 경우, 상기 일부는 제1상태에서 제2상태로 전환된다. 한편, 상기 제2상태의 상기 일부에 상기 기준 전압 이상의 역 전압이 인가되는 경우, 상기 일부는 상기 제2상태에서 상기 제1상태로 전환된다.
이때, 상기 제1상태의 광 투과율은 상기 제2상태의 광 투과율보다 높다. 즉, 전기변색 층(140)이 전기 변색되는 경우, 광 투과율이 높아지거나, 낮아진다.
전기변색 층(140)의 일부에 기준 값 이상의 전압을 인가하기 위해, 제1 및 제2버스전극들이 활용될 수 있다. 이하에서는, 전기변색 층(140)의 일부에 대한 광 투과율을 변화시키는 방법을 도 20에 도시된 전기변색 소자를 예로 들어 설명한다.
도 20에 도시된 복수의 가로선 및 세로선들은 도 14 내지 18c에서 설명한 제1 및 제2버스전극이다. 설명의 편의를 위하여, 도 20에 도시된 가로선들은 제1버스전극이라 하고, 세로선들은 제2버스전극이라 한다. 즉, 도 20에 도시된 전기변색 소자(200)는 19개의 제1버스전극과 13개의 제2버스전극을 포함한다. 또한, 버스전극은 왼쪽에서 오른쪽 또는 위에서 아래로 순서를 붙여 설명한다.
예를 들어, 네 번째 제1버스전극과 다섯 번째 제2버스전극 사이에 기준 값 이상의 전압이 인가되는 경우, 전기변색 층에서 전기변색이 일어난다. 구체적으로, 전기변색은 전기변색 층의 전체 영역 중 네 번째 제1버스전극과 다섯 번째 제2버스전극이 교차하는 지점과 가까운 영역부터 순차적으로 일어난다.
다른 예를 들어, 도시되지 않았지만, 네 번째 및 열 번째 제1버스전극과 다섯 번째 제2버스전극 사이에 기준 값 이상의 전압이 인가되는 경우, 전기변색 층의 전체 영역 중 네 번째 및 열 번째 제1버스전극과 다섯 번째 제2버스전극이 교차하는 지점과 가까운 영역부터 순차적으로 일어난다. 즉, 전기변색 층의 서로 다른 영역들이 동시에 전기변색 될 수 있다.
본 발명에 따른 전기변색 시스템에서는 상술한 방식으로 전기변색 소자의 일부의 광 투과율을 제어한다. 보다 자세한 설명은 제어부에 대한 설명과 함께 후술한다.
한편, 본 발명의 일 실시 예에 따른 전기변색 소자에는 버스전극들이 불규칙하게 배치될 수 있다.
도 21은 버스전극이 불규칙하게 배치된 전기변색 소자를 나타내는 개념도이다.
설명의 편의를 위하여, 도 21에 도시된 가로선 들은 제1버스전극, 세로선들은 제2버스전극이라 한다. 도 21에 따르면, 제1버스전극들은 일정한 간격으로 배치되고, 제2버스전극들은 불규칙한 간격으로 배치될 수 있다. 모든 버스전극들이 일정한 간격으로 배치될 경우, 무아레(Moire)가 발생할 수 있으며, 이는 운전자의 시야를 방해할 수 있다. 이러한 현상을 막기 위해, 전기변색 소자에 포함된 버스전극들의 일부는 불규칙적으로 배치될 수 있다.
이하, 센싱부(320)에 대하여 설명한다.
센싱부(320)는 전기변색부(310)로 입사되는 광량을 센싱하도록 이루어진다. 구체적으로, 외부 광에 의하여 전기변색부(310)의 영역별로 광 투과량이 달라질 수 있다. 예를 들어, 차량 전면 창 전체가 전기변색부(310)로 이루어지는 경우, 차량 전방에서 접근하는 다른 차량의 전방 램프에 의하여 전기변색부(310)의 일부에 대한 광 투과량이 증가할 수 있다. 센싱부는(320)는 전기변색부(310)의 영역별 광 투과량 분포를 센싱한다.
보다 구체적으로, 1차원 또는 2차원적으로 전기변색부(310)에 대한 광 투과량 분포를 센싱하며, 센싱부(320)는 운전자의 눈 근처에 위치할 수 있다. 센싱부(320)의 위치와 관련하여, 센싱부(320)는 ADAS(Advanced Driver Assistance Systems) 또는 블랙박스가 부착된 위치에 배치되거나, 차량 전면 창 표면 등에 배치될 수 있다. 또한, 센싱부(320)의 위치는 차량 내부에 한정되지 않는다.
도 22와 같이, 센싱부(320)는 운전자의 눈 근처에 위치(320a)에 위치할 수 있으며, 블랙박스 등이 부착된 위치에 배치(320b)되거나, 창 표면에 배치(320c)될 수 있다. 이때, 센싱부(320)로부터 센싱된 광량은 운전자의 눈 위치에 대응하도록 보정될 수 있으며, 보정된 광량에 의하여 전기변색부(310)의 광투과율이 제어될 수 있다. 구체적으로, 실제로 전기변색부(310)로 입사하는 광량이 크더라도, 운전자의 눈이 위치하지 않는 곳으로 입사하는 경우, 보정된 광량은 실제 입사 광량보다 줄어들 수 있다.
센싱부(320)는 조도센서 또는 CCD 카메라를 포함할 수 있다.
상기 조도센서는 복수의 어레이를 이루도록 배치될 수 있고, 복수의 조도 센서들 각각은 서로 다른 방향을 향해 배치되어 광이 입사하는 방향을 감지하도록 할 수 있다. 이를 통해, 본원발명은 광이 입사하는 방향이 운전자를 향하지 않는 경우, 입사 광량이 증가하더라도 광 투과율이 변하지 않도록 전기 변색부(310)를 제어할 수 있다.
한편, 센싱부(320)는 차량에 기 설치된 영상장비를 포함할 수 있다. 예를 들어, 센싱부(320)는 차량에 기 설치된 블랙박스에 포함된 CCD 카메라를 포함할 수 있다. 구체적으로, 본원발명은 CCD 카메라를 통해 촬영된 영상을 이용하여 전기변색부(310)로 입사하는 광량을 산출할 수 있다. 예를 들어, 본 발명은 상기 영상에서 광원에 해당하는 물체(태양, 헤드라이트)를 인식하여, 전기변색부(310)의 전체 영역 중 상기 광원에 대응하는 영역의 광투과율을 제어할 수 있다.
다를 예를 들어, 본 발명은 상기 영상을 가상의 영역들로 분할하고, 각 영역에 대한 명도를 산출할 수 있다. 이후, 본 발명은 산출된 명도에 근거하여, 전기변색부(310)의 광투과율을 제어할 수 있다.
이를 통해, 본 발명에 따른 전기변색 시스템은 차량에 별도의 장비를 설치할 필요없이 전기변색부(310)로 입사되는 광량을 센싱할 수 있게 된다.
한편, 센싱부(320)는 열 감지를 통해 전기변색부(310)로 입사되는 광량을 산출할 수 있다. 예를 들어, 센싱부(320)는 열화상 카메라를 포함할 수 있다. 본원발명은 열화상 카메라로 촬영된 영상을 이용하여 전기변색부(310)의 온도에 따라 전기변색부(310)의 광 투과율을 제어할 수 있다.
이하, 제어부(330)에 대하여 설명한다.
제어부(330)는 전기변색부(310)의 일부 영역을 통해 입사되는 광량이 변하는 경우, 상기 일부 영역에 대한 광 투과율이 변하도록 전기변색부(310)를 제어한다.
제어부(330)는 전기변색부(310)를 복수의 영역들로 분할할 수 있다. 여기서, 상기 복수의 영역들은 물리적으로 구분되는 영역일 수 있고, 가상의 구획으로 구분되는 영역일 수 있다. 예를 들어, 제어부(330)는 제1 및 제2버스전극들이 교차하는 복수의 지점들을 기준으로 가상의 영역들을 구분할 수 있다.
제어부(330)는 센싱부(320)로부터 센싱된 센싱 값을 이용하여, 상기 복수의 영역들 각각을 통해 입사되는 광량을 산출할 수 있다. 한편, 상기 센싱부(320)가 영상장비를 포함하는 경우, 제어부(330)는 영상장비로부터 수신된 영상을 이용하여, 상기 복수의 영역들 각각을 통해 입사되는 광량을 산출할 수 있다.
한편, 제어부(330)는 운전자의 시선방향을 고려하여, 전기변색부(310)로 입사되는 광량을 산출할 수 있다. 이를 위해, 본 발명은 운전자의 시선방향을 감지하는 별도의 센서를 더 포함할 수 있다.
예를 들어, 본 발명은 아이트래킹 센서(eye tracking sensor)를 더 포함할 수 있다. 여기서 아이트래킹 센서는 사람의 눈동자를 추적하여 사람의 시선이 어디에 머물고 있는지 감지하는 센서이다.
제어부(330)는 운전자의 시선방향에 근거하여, 운전자의 눈에 도달할 수 있는 광량을 산출할 수 있다. 제어부(330)는 운전자의 눈에 도달하는 광량에 근거하여, 전기변색부(310)의 광투과율을 제어할 수 있다.
예를 들어, 제어부(330)는 전기변색부(310)의 전체 영역 중 운전자의 시선 방향에 대응하는 영역의 광투과율이 다른 영역보다 우선하여 변하도록 전기변색부(310)를 제어할 수 있다.
다른 예를 들어, 제어부(330)는 전기변색부(310)의 일부 영역으로 입사하는 광량이 기준 값을 초과하더라도 운전자의 시선이 상기 일부 영역에 머물지 않는다고 판단되는 경우, 상기 일부 영역의 광투과율을 변화시키지 않을 수 있다.
제어부(330)는 상기 일부 영역을 통해 입사되는 광량이 변하는 경우, 상기 일부 영역에 대한 광 투과율이 변하도록 전기변색부(310)를 제어한다. 여기서, 제어부(330)는 상기 일부 영역을 통해 입사되는 광량이 기준 값보다 커지는 경우, 상기 일부 영역의 광 투과율이 감소하도록, 전기변색부(310)를 제어하고, 상기 일부 영역을 통과하는 광량이 기준 값보다 작아지는 경우, 상기 일부 영역의 광 투과율이 감소하도록 전기변색부(310)를 제어한다.
한편, 제어부(310)는 상기 일부 영역의 광 투과율이 변하도록, 전기변색부(310)에 포함된 복수의 전극들 각각에 인가되는 전압 값을 제어한다. 구체적으로, 제어부(310)는 제1버스전극들(120a) 중 어느 하나와 제2버스전극들(120b) 중 어느 하나의 전위차가 기준 전압 이상이 되도록 한다. 이때, 상기 어느 하나의 제1버스전극과 상기 어느 하나의 제2버스전극이 교차하는 지점부터 순차적으로 광 투과율이 변한다.
다만, 제1버스전극들(120a) 중 어느 하나와 제2버스전극들(120b) 중 어느 하나의 전위차가 기준 전압 이상인 상태로 일정 시간이 지날 경우, 전하가 전기변색부(310) 전체에 전달되면서, 전기변색부(310) 전체의 광 투과율이 변할 수 있다.
이러한 문제점을 해결하기 위해, 제어부(330)는 상기 일부 영역을 제외한 전기변색부(310)의 나머지 영역에 대한 광 투과율이 유지되도록 전기변색부(310)를 제어한다.
도 20에 도시된 전기변색 소자(200)를 예로 들면, 제어부(330)는 네 번째 제1버스전극 및 다섯 번째 제2버스전극 간의 전위차가 기준 전압 이상이 되도록 전기변색부(310)를 제어한다. 이와 함께, 제어부(310)는 상기 기준 전압의 역 전압을 열 번째 제1 버스전극 및 열 번째 제2버스전극 사이에 인가한다. 이에 따라, 네 번째 제1버스전극 및 다섯 번째 제2버스전극이 교차하는 지점과 인접한 영역의 광 투과율이 변하며, 열 번째 제1 버스전극 및 열 번째 제2버스전극이 교차하는 지점과 인접한 영역의 광 투과율은 변하지 않는다.
본 발명에 따른 전기변색 시스템은, 도 24와 같이, 전기변색부의 전체 영역 중 일부 영역의 광 투과율을 변화시킬 수 있다.
한편, 본 발명에 따른 전기변색 시스템은 전기변색부(310)를 포함한 시스템 전체에 전력을 공급하도록 이루어지는 전원공급부를 포함할 수 있다. 사고 등으로 인하여, 상기 전원공급부로부터 공급되는 전원이 차단되는 경우, 운전자의 시야확보가 어려워질 수 있다.
예를 들어, 외부 광이 밝은 지역을 통과하는 경우, 본 발명에 따른 전기변색 시스템은 전기변색부(310)의 광 투과율을 감소시킨다. 이러한 상태에서, 상기 전원공급부로부터 공급되는 전원이 차단되고, 차량이 어두운 곳으로 진입하는 경우, 운전자는 시야를 확보하는데 어려움을 느낄 수 있다.
이러한 상황에 대비하여, 본 발명에 따른 전기변색 시스템은 보조전원공급부를 더 포함할 수 있고, 제어부(330)는 상기 전원공급부로부터 공급되는 전원이 차단되는 경우, 전기변색 층의 모든 영역이 상기 제1상태가 되도록 전기변색부(310)를 제어한다. 즉, 제어부(330)는 전원 공급이 차단될 경우, 전기변색부(310)가 최대 광 투과율을 가질 수 있도록 제어한다.
이를 통해, 본 발명에 따른 전기변색 시스템은 사고 등으로 인하여, 시스템에 공급되는 전원이 차단되는 경우에도 운전자가 어려움 없이 시야를 확보하도록 할 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
또한, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (20)

  1. 제1투명전극;
    상기 제1투명전극과 마주하는 제2투명전극;
    상기 제1투명전극의 상면에 형성되는 소정 패턴의 제1버스전극;
    상기 제1버스전극 및 상기 제2투명전극 사이에 위치하는 전해질 층;
    상기 제1투명전극 및 상기 전해질 층 사이에 위치하고, 상기 전해질 층과 접촉하는 제1전기변색 층; 및
    상기 제1버스전극과 상기 전기변색 층의 접촉을 막도록, 상기 제1버스전극 및 상기 전기변색 층 사이에 형성되며, 상기 제1버스전극을 에워싸는 패시베이션 층을 포함하는 전기변색 소자.
  2. 제1항에 있어서,
    상기 패시베이션 층은 절연물질로 이루어지는 것을 특징으로 하는 전기변색 소자.
  3. 제2항에 있어서,
    상기 절연물질은 SiO2 및 TiO2 중 어느 하나로 이루어진 것을 특징으로 하는 전기변색 소자.
  4. 제1항에 있어서,
    상기 제1버스전극은 금속, 전도성 고분자 및 전도성 탄소 나노튜브 중 어느 하나로 이루어지는 것을 특징으로 하는 전기변색 소자.
  5. 제1항에 있어서,
    상기 패시베이션 층은 상기 제1투명전극과 상기 제1전기변색 층의 접촉을 막도록, 상기 제1투명전극과 상기 제1전기변색 층 사이에 형성되는 것을 특징으로 하는 전기변색 소자.
  6. 제5항에 있어서,
    상기 패시베이션 층이 상기 제1투명전극과 상기 제1전기변색 층의 접촉을 막도록 이루어지는 경우, 상기 패시베이션 층은 전도성물질로 이루어지는 것을 특징으로 하는 전기변색 소자.
  7. 제6항에 있어서,
    상기 전도성물질은 불소가 도핑된 산화주석(Fluorine-doped Tin Oxide), 인듐이 도핑된 주석산화물(Indium-doped Tin Oxide) 및 산화알루미늄아연(Zinc Aluminum Oxide) 중 어느 하나로 이루어지는 것을 특징으로 하는 전기변색 소자.
  8. 제1항에 있어서,
    상기 전해질 층 및 상기 제2투명전극 사이에 이온저장 층을 더 포함하는 것을 특징으로 하는 전기변색 소자.
  9. 전기변색 소자로 이루어지고, 적어도 일부 영역에 대한 광 투과율이 변하도록 이루어지는 전기변색부;
    상기 전기변색부로 입사되는 광량을 센싱하도록 이루어지는 센싱부; 및
    상기 전기변색부의 일부 영역을 통해 입사되는 광량이 변하는 경우, 상기 일부 영역에 대한 광 투과율이 변하도록 상기 전기변색부를 제어하는 제어부를 포함하는 전기변색 소자 구동 시스템.
  10. 제9항에 있어서,
    상기 전기변색부는 복수의 전극들을 포함하는 것을 특징으로 하고,
    상기 제어부는,
    상기 일부 영역의 광 투과율이 변하도록, 상기 복수의 전극들 각각에 인가되는 전압 값을 제어하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  11. 제10항에 있어서,
    상기 제어부는,
    상기 일부 영역을 통해 입사되는 광량이 기준 값보다 커지는 경우, 상기 일부 영역의 광 투과율이 감소하도록, 상기 전기변색부를 제어하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  12. 제11항에 있어서,
    상기 제어부는,
    상기 일부 영역을 통과하는 광량이 기준 값보다 작아지는 경우, 상기 일부 영역의 광 투과율이 증가하도록 상기 전기변색부를 제어하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  13. 제9항에 있어서,
    상기 제어부는,
    상기 일부 영역을 제외한 상기 전기변색부의 나머지 영역에 대한 광 투과율이 유지되도록 상기 전기변색부를 제어하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  14. 제11항에 있어서,
    상기 전기변색 소자는,
    제1투명전극;
    상기 제1투명전극 위에 형성되고, 전기변색물질로 이루어지는 전기변색 층;
    상기 전기변색 층 위에 형성되는 전해질 층;
    상기 전해질 층 위에 형성되는 제2투명전극;
    상기 제1투명전극 및 상기 전기변색 층 사이에 형성되는 복수의 제1버스전극들;
    상기 제1버스전극들 각각을 에워싸는 제1패시베이션층;
    상기 전해질 층 및 상기 제2투명전극 사이에 형성되는 복수의 제2버스전극들; 및
    상기 제2버스전극들 각각을 에워싸는 제2패시베이션층을 포함하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  15. 제14항에 있어서,
    상기 전기변색 층의 일부에 기준 값 이상의 전압이 인가되는 경우, 상기 일부는 제1상태에서 제2상태로 전환되는 것을 특징으로 하고,
    상기 제2상태의 상기 일부에 상기 기준 값 이상의 역 전압이 인가되는 경우, 상기 일부는 상기 제2상태에서 상기 제1상태로 전환되는 것을 특징으로 하고,
    상기 제1상태의 광 투과율은 상기 제2상태의 광 투과율 보다 높은 것을 특징으로 하는 전기변색 소자 구동 시스템.
  16. 제15항에 있어서,
    상기 제어부는,
    상기 일부의 광 투과율이 변하도록, 상기 제1 및 제2 버스전극 각각에 인가되는 전압 값을 제어하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  17. 제16항에 있어서,
    전원공급부를 더 포함하고,
    상기 제어부는,
    상기 전원공급부로부터 공급되는 전원이 차단되는 경우, 상기 전기변색 층의 모든 영역이 제1상태가 되도록 상기 전기변색부를 제어하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  18. 제9항에 있어서,
    상기 센싱부는 외부 영상을 촬영하도록 이루어지는 카메라를 포함하는 것을 특징으로 하고,
    상기 제어부는,
    상기 전기변색부를 복수의 가상의 영역들로 구분하고, 상기 카메라로 촬영된 영상을 이용하여, 상기 복수의 영역들 각각을 통해 입사되는 광량을 산출하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  19. 제9항에 있어서,
    운전자의 시선 방향을 감지하도록 이루어지는 센서를 더 포함하고,
    상기 제어부는,
    상기 전기변색부의 전체 영역 중 상기 시선 방향에 대응하는 영역의 광투과율이 다른 영역의 광투과율보다 우선하여 변하도록, 상기 전기변색부를 제어하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
  20. 제9항에 있어서,
    상기 제어부는,
    상기 센싱부로부터 센싱된 광량을 운전자의 눈 위치에 대응하도록 보정하고, 보정된 광량을 이용하여 상기 전기변색부를 제어하는 것을 특징으로 하는 전기변색 소자 구동 시스템.
PCT/KR2016/012651 2016-04-08 2016-11-04 전기변색 소자 및 전기변색 시스템 WO2017175941A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/091,346 US20190137841A1 (en) 2016-04-08 2016-11-04 Electrochromic device and electrochormic system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0043619 2016-04-08
KR1020160043619A KR102533359B1 (ko) 2016-04-08 2016-04-08 전기변색 소자
KR10-2016-0064980 2016-05-26
KR1020160064980A KR102480700B1 (ko) 2016-05-26 2016-05-26 전기변색 시스템

Publications (1)

Publication Number Publication Date
WO2017175941A1 true WO2017175941A1 (ko) 2017-10-12

Family

ID=60000753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012651 WO2017175941A1 (ko) 2016-04-08 2016-11-04 전기변색 소자 및 전기변색 시스템

Country Status (2)

Country Link
US (1) US20190137841A1 (ko)
WO (1) WO2017175941A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109986937A (zh) * 2018-03-26 2019-07-09 京东方科技集团股份有限公司 一种防炫目装置、控制方法及车辆
WO2020149988A1 (en) * 2019-01-18 2020-07-23 Gentex Corporation Electrodes for electro-optic devices and methods of making the electrodes

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102141636B1 (ko) * 2016-05-09 2020-08-05 주식회사 엘지화학 전기변색소자
KR102118361B1 (ko) * 2017-04-24 2020-06-04 주식회사 엘지화학 전기변색필름 및 이를 포함하는 전기변색소자
KR102078403B1 (ko) * 2017-04-27 2020-04-07 주식회사 엘지화학 전기변색소자
FR3068481B1 (fr) * 2017-06-29 2019-07-26 Airbus Operations (S.A.S.) Systeme et procede d'affichage pour un aeronef
US11046243B2 (en) * 2017-11-21 2021-06-29 Wipro Limited Visual speed indication device for motor vehicles and method thereof
KR102213095B1 (ko) * 2019-05-30 2021-02-08 엘지전자 주식회사 자율 주행 차량 제어 방법
WO2022103452A1 (en) * 2020-11-16 2022-05-19 Ambilight Inc. An electrochromic device with multiple electrochromic layers
WO2022147343A1 (en) * 2020-12-31 2022-07-07 Gentex Corporation Electro-optic element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070005366A (ko) * 2005-07-06 2007-01-10 엘지전자 주식회사 차량용 스마트 윈도우장치
KR20120045915A (ko) * 2010-11-01 2012-05-09 엘지전자 주식회사 스마트 윈도우 장치
KR20140132025A (ko) * 2013-05-06 2014-11-17 한국에너지기술연구원 전기 변색소자를 이용한 차량용 선루프와 이에 전기를 공급하는 방법
KR20150003271A (ko) * 2012-04-17 2015-01-08 뷰, 인크. 광학적으로 전환가능한 디바이스들에서의 천이들 제어
KR20150087012A (ko) * 2014-01-21 2015-07-29 엘지이노텍 주식회사 전기변색 디바이스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070005366A (ko) * 2005-07-06 2007-01-10 엘지전자 주식회사 차량용 스마트 윈도우장치
KR20120045915A (ko) * 2010-11-01 2012-05-09 엘지전자 주식회사 스마트 윈도우 장치
KR20150003271A (ko) * 2012-04-17 2015-01-08 뷰, 인크. 광학적으로 전환가능한 디바이스들에서의 천이들 제어
KR20140132025A (ko) * 2013-05-06 2014-11-17 한국에너지기술연구원 전기 변색소자를 이용한 차량용 선루프와 이에 전기를 공급하는 방법
KR20150087012A (ko) * 2014-01-21 2015-07-29 엘지이노텍 주식회사 전기변색 디바이스

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109986937A (zh) * 2018-03-26 2019-07-09 京东方科技集团股份有限公司 一种防炫目装置、控制方法及车辆
CN109986937B (zh) * 2018-03-26 2020-07-17 京东方科技集团股份有限公司 一种防炫目装置、控制方法及车辆
US11628709B2 (en) 2018-03-26 2023-04-18 Boe Technology Group Co., Ltd. Anti-glare device, control method and vehicle
WO2020149988A1 (en) * 2019-01-18 2020-07-23 Gentex Corporation Electrodes for electro-optic devices and methods of making the electrodes
US11372304B2 (en) 2019-01-18 2022-06-28 Gentex Corporation Electrodes for electro-optic devices and methods of making the electrodes

Also Published As

Publication number Publication date
US20190137841A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2017175941A1 (ko) 전기변색 소자 및 전기변색 시스템
WO2020071611A1 (ko) 표시 장치
WO2011115343A1 (en) Backlight unit and display device
WO2016182282A1 (ko) 박막트랜지스터 기판 및 이를 포함하는 디스플레이 장치
WO2018128508A1 (ko) 액체 렌즈
WO2014092443A1 (en) Light-controlling device and method of manufacturing the same
WO2020141651A1 (ko) 색변환 기판 및 표시 장치
WO2016159602A1 (ko) 전도성 구조체, 이의 제조방법 및 전도성 구조체를 포함하는 전극
WO2020226267A1 (ko) 표시 장치
WO2015065162A1 (ko) 전도성 구조체 및 이의 제조방법
WO2015034217A1 (ko) 광학 필터 및 이를 포함하는 촬상 장치
WO2020197289A1 (ko) 히팅 장치 및 카메라 모듈
WO2022154517A1 (ko) 표시 장치
WO2022005123A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2022030763A1 (ko) 표시 장치
WO2021025299A1 (ko) 표시 장치
WO2022173101A1 (ko) 표시 장치
WO2022050746A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2022146131A1 (ko) 표시 장치
WO2018004228A1 (ko) 지문센싱 장치 및 이를 포함하는 터치 디바이스
WO2022045581A1 (ko) 전기 변색 렌즈를 갖는 안경
WO2021230510A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
WO2021020802A1 (ko) 광 경로 제어 부재 및 이를 포함하는 표시 장치
WO2021020795A1 (ko) 광 경로 제어 부재 및 이를 포함하는 표시 장치
WO2021145638A1 (ko) 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898044

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898044

Country of ref document: EP

Kind code of ref document: A1