WO2017175397A1 - マイカテープ、マイカテープの硬化物及び絶縁物 - Google Patents

マイカテープ、マイカテープの硬化物及び絶縁物 Download PDF

Info

Publication number
WO2017175397A1
WO2017175397A1 PCT/JP2016/061622 JP2016061622W WO2017175397A1 WO 2017175397 A1 WO2017175397 A1 WO 2017175397A1 JP 2016061622 W JP2016061622 W JP 2016061622W WO 2017175397 A1 WO2017175397 A1 WO 2017175397A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
mica tape
layer
mass
tape
Prior art date
Application number
PCT/JP2016/061622
Other languages
English (en)
French (fr)
Inventor
貴耶 山本
みゆき 室町
滝田 隆夫
敬二 福島
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/061622 priority Critical patent/WO2017175397A1/ja
Priority to CN201780021061.8A priority patent/CN108886286A/zh
Priority to PCT/JP2017/014724 priority patent/WO2017175875A1/ja
Priority to US16/090,962 priority patent/US20190115119A1/en
Priority to KR1020187028309A priority patent/KR20180118738A/ko
Priority to JP2018510684A priority patent/JP6889153B2/ja
Priority to EP17779252.0A priority patent/EP3442098A4/en
Publication of WO2017175397A1 publication Critical patent/WO2017175397A1/ja
Priority to JP2020011702A priority patent/JP2020092597A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/06Single tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/125Other insulating structures; Insulating between coil and core, between different winding sections, around the coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to mica tape, a cured product of mica tape, and an insulator.
  • an insulating material using mica As a material for forming an insulating layer for insulating a member (insulator) such as a coil from the external environment, an insulating material using mica called a mica tape is known (for example, International Publication No. WO2013-053374). reference).
  • the mica tape is generally mainly composed of a backing layer containing a backing material and a mica layer containing mica.
  • the mica tape is impregnated with the resin component in a state before being wound around the insulator or after being wound around the insulator, and the insulating layer is formed by curing the resin component.
  • Mica contained in the mica layer is a flaky inorganic substance having excellent electrical insulation, and the insulation effect tends to increase as the amount of mica contained in the mica layer increases.
  • the amount of mica is increased, the thickness of the mica tape increases and it may be difficult to wind the mica tape around the object to be insulated, or voids and cracks may be generated in the formed insulating layer. Therefore, development of a technique for improving the electrical insulation of the mica tape is awaited without relying on a method for increasing the amount of mica contained in the mica layer.
  • an object of the present invention is to provide a mica tape capable of forming an insulating layer excellent in electrical insulation, a cured product of mica tape, and an insulator using the same.
  • Means for solving the above problems include the following embodiments.
  • a mica layer containing mica and a backing layer containing a backing material when the mica pieces obtained from the mica layer peeled from the backing layer are sieved using a JIS standard sieve, the particle diameter
  • the mica tape whose ratio of the mica piece which is 2.8 mm or more is less than 45 mass% of the whole mica piece.
  • the proportion of mica pieces having a particle diameter of 0.5 mm or more is 40% of the whole mica pieces.
  • the mica tape according to ⁇ 1> which is not less than mass%.
  • ⁇ 3> The ratio of mica pieces having a mica layer containing mica and a backing layer containing a backing material and having a particle diameter of 2.8 mm or more when sieved using a JIS standard sieve in the mica layer
  • Mica tape that is less than 45% by mass of the total.
  • the ratio of mica pieces having a particle diameter of 0.5 mm or more when sieving using a JIS standard sieve in the mica layer is 40% by mass or more of the entire mica pieces, according to ⁇ 3>.
  • Mica tape. ⁇ 5> The mica tape according to any one of ⁇ 1> to ⁇ 4>, wherein the mica tape has an average thickness of 300 ⁇ m or less and is used as a prepreg mica tape.
  • ⁇ 6> The mica tape according to any one of ⁇ 1> to ⁇ 4>, wherein the mica tape has an average thickness of 220 ⁇ m or less and is used as a dry mica tape.
  • ⁇ 7> The mica tape according to any one of ⁇ 1> to ⁇ 6>, wherein an average thickness of the mica layer is 180 ⁇ m or less.
  • ⁇ 8> The mica tape according to any one of ⁇ 1> to ⁇ 7>, wherein the backing layer further contains an inorganic filler.
  • the inorganic filler includes boron nitride.
  • ⁇ 10> The mica tape according to ⁇ 9>, wherein the apparent volume of the mica is 2.0 to 5.0 times the volume of the boron nitride.
  • ⁇ 11> The mica tape according to any one of ⁇ 8> to ⁇ 10>, wherein the inorganic filler has a volume average particle diameter of 1 ⁇ m to 40 ⁇ m.
  • ⁇ 12> The content of the inorganic filler according to any one of ⁇ 8> to ⁇ 11>, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total nonvolatile content excluding the mica and the backing material. Mica tape.
  • ⁇ 13> The mica tape according to any one of ⁇ 1> to ⁇ 12>, wherein an average thickness of the mica tape is 120 ⁇ m or more.
  • ⁇ 14> The mica tape according to any one of ⁇ 1> to ⁇ 13>, further including a resin component.
  • ⁇ 15> The mica tape according to ⁇ 14>, wherein the resin component content is 25% by mass to 33% by mass of the total mass of the mica layer and the backing layer, and is used as a prepreg mica tape.
  • ⁇ 16> The mica tape according to ⁇ 15>, wherein the content of the resin component is 5% by mass to 15% by mass of the total mass of the mica layer and the backing layer, and is used as a dry mica tape.
  • ⁇ 17> A cured product of the mica tape according to ⁇ 1> to ⁇ 16>.
  • a mica tape capable of forming an insulating layer having excellent electrical insulation, a cured product of mica tape, and an insulator using the same are provided.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the mica tape of this embodiment has a mica layer containing mica and a backing layer containing a backing material, and the mica pieces obtained from the mica layer peeled from the backing layer were sieved using a JIS standard sieve.
  • the proportion of mica pieces having a particle diameter of 2.8 mm or more is less than 45% by mass of the whole mica pieces.
  • the JIS standard sieve conforms to JIS-Z-8801-1: 2006 and corresponds to ISO3310-1: 2000.
  • ISO 3310-1: 2000 it is preferable to apply a sieve having a square shape as in JIS-Z-8801-1: 2006.
  • the insulating layer formed using the mica tape of the present embodiment has a ratio of mica pieces having a particle diameter of 2.8 mm or more in the mica pieces obtained from the mica layer peeled from the backing layer. It was found that the insulating layer was superior to the insulating layer formed using the mica tape of 45% by mass or more. The reason is not clear, but the mica layer contains many relatively small mica pieces, so that the resin component is sufficiently filled between the mica pieces, and the generation of voids in the mica layer is suppressed, resulting in overlapping mica tapes. It is conceivable that the peeling between the mica tapes caused by the voids in the mica layer is suppressed when pressed in a heated state.
  • the mica tape of this embodiment can improve the electrical insulation of the insulating layer without increasing the amount of mica, it becomes possible to reduce the thickness of the mica tape while ensuring the necessary electrical insulation. .
  • the mica tape of this embodiment is a mica tape (prepreg mica tape) used in a method for forming an insulating layer by curing a resin component contained in a mica tape in advance after the mica tape is wound around an object to be insulated.
  • it may be a mica tape (dry mica tape) used in a method of forming an insulating layer by impregnating with a resin component after being wound around an insulator and curing it.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of the mica tape of this embodiment.
  • the mica tape may have a backing layer 5 including the inorganic filler 1 and the backing material 2, and a mica layer 6 including the mica 4. Further, the backing layer 5 and the mica layer 6 may each contain the resin component 3.
  • the backing layer 5 may not include the inorganic filler 1.
  • the mica tape shown in FIG. 1 is in a state in which the entire backing layer 5 and the entire mica layer 6 contain the resin component 3 (prepreg mica tape), but the entire mica layer 6 or a part of the mica layer 6 is a resin component. 3 (dry mica tape) may not be included.
  • the mica layer contains mica, and when the mica pieces obtained from the mica layer peeled from the backing layer are sieved using a JIS standard sieve, the proportion of mica pieces having a particle diameter of 2.8 mm or more is Of less than 45% by weight. From the viewpoint of improving electrical insulation, the proportion of mica pieces having a particle size of 2.8 mm or more is preferably 30% by mass or less, more preferably 20% by mass or less, based on the entire mica piece.
  • the proportion of mica pieces having a particle diameter of 0.5 mm or more when sieving using a JIS standard sieve in mica pieces obtained from a mica layer peeled from the backing layer is 40 mass% or more of the whole mica piece, and it is more preferable that it is 60 mass% or more.
  • the ratio of the mica pieces having a particle diameter of 2.8 mm or more and the mica pieces having a particle diameter of 0.5 mm or more when sieving using a JIS standard sieve in the mica pieces obtained from the mica layer peeled from the backing layer The ratio can be confirmed as follows, for example.
  • methyl ethyl ketone is added to the remaining solid after removing the supernatant, and the mixture is shaken for 10 minutes and then centrifuged at 8000 rpm for 5 minutes. The supernatant is removed, 100 g of methyl ethyl ketone is added to 1 g of the remaining solid, and the mixture is dispersed for 30 minutes with a mix rotor and shaken for another 10 minutes. Then, while shaking the container, JIS standard sieves (JIS-Z-8801-1: 2006, ISO3310-1: 2000, Tokyo Screen Co., Ltd., test sieve) ).
  • the ratio (mass%) in the total amount of mica pieces before sieving of the residue remaining without passing through the 2.8 mm sieve sieve is determined using “JIS standard sieve.
  • the ratio (% by mass) in the total amount of mica pieces is defined as “the ratio of mica pieces having a particle diameter of 0.5 mm or more when sieved using a JIS standard sieve”.
  • the type of mica contained in the mica layer is not particularly limited. Examples include unfired hard mica, fired hard mica, unfired soft mica, fired soft mica, synthetic mica, and flake mica. Among these, unfired hard mica is preferable from the viewpoint of adhesion between mica and the resin component.
  • Mica may be used alone or in combination of two or more.
  • two or more mica are used in combination, for example, when two or more mica having the same component and different average particle sizes are used, when using two or more mica having the same average particle size and different components, and the average particle size
  • two or more mica having different components are used.
  • the amount of mica in the mica layer is not particularly limited.
  • the range is 100 g / m 2 to 220 g / m 2 . If the amount of mica in the mica layer is 100 g / m 2 or more, a decrease in electrical insulation tends to be suppressed. If the amount of mica in the mica layer is 220 g / m 2 or less, the thickness of the mica tape can be made thinner, and the decrease in thermal conductivity tends to be suppressed.
  • the mica layer may or may not contain a resin component.
  • the resin component contained in the mica layer is not particularly limited.
  • a curable resin is preferable, and a thermosetting resin is more preferable.
  • the curable resin include an epoxy resin, a phenol resin, an unsaturated polyester resin, and a silicone resin.
  • an epoxy resin is preferable.
  • a resin component may be used individually by 1 type, or may use 2 or more types together.
  • Epoxy resins in the case of using an epoxy resin as a resin component include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, cycloaliphatic epoxy resin, etc. Is mentioned. Among these, from the viewpoint of heat resistance, phenol novolac type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable.
  • the number average molecular weight of the epoxy resin is not particularly limited. For example, from the viewpoint of fluidity, it is preferably 100 to 100,000, more preferably 200 to 50,000, and still more preferably 300 to 10,000.
  • the number average molecular weight is a value measured by gel permeation chromatography (GPC).
  • the number average molecular weight of the epoxy resin is a value measured under the following conditions using a gel permeation chromatography method (GPC) according to a conventional method.
  • the epoxy equivalent of the epoxy resin is not particularly limited. For example, it is preferably 130 g / eq to 500 g / eq, more preferably 135 g / eq to 400 g / eq, and even more preferably 140 g / eq to 300 g / eq.
  • the epoxy equivalent is measured by dissolving a precisely weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for potentiometric titration.
  • a curing agent may be included as the resin component.
  • the curing agent is not particularly limited, and can be selected according to the type of resin used as the resin component.
  • the curing agent can be appropriately selected from curing agents usually used as curing agents for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine; phenol resin curing agents such as phenol novolac and cresol novolac; acid anhydride curing agents such as alicyclic acid anhydrides and the like.
  • curing agent may be used individually by 1 type, or may use 2 or more types together.
  • the ratio of the curing agent to the epoxy resin should be 0.8 to 1.2 in terms of equivalent ratio (curing agent / epoxy resin) from the viewpoint of curability and electrical characteristics of the cured product To preferred.
  • a curing accelerator may be included for the purpose of accelerating the curing reaction of the resin component.
  • the curing accelerator is not particularly limited, and can be selected according to the type of the resin component.
  • Curing accelerators include tertiary amine compounds such as trimethylamine, imidazole catalysts such as 2-methylimidazole and 2-methyl-4-ethylimidazole, amine complexes of Lewis acids such as boron trifluoride monoethylamine, and organic phosphine compounds. And organic phosphorus compounds.
  • a hardening accelerator may be used individually by 1 type, or may use 2 or more types together.
  • the content is not particularly limited.
  • the content of the curing accelerator is generally in the range of 0.01% by mass to 5% by mass with respect to the total amount of the epoxy resin and the curing agent.
  • the mica layer may contain mica and other components other than the above-described components as necessary.
  • other components include various additives and inorganic fillers other than mica.
  • the additive include a coupling agent, an elastomer, an antioxidant, an antioxidant, a stabilizer, a flame retardant, and a thickener.
  • the amount is preferably such that the properties such as the flexibility of the mica tape are not impaired.
  • the mica layer preferably does not contain fibrites.
  • the content is preferably 1% by mass or less, more preferably 0.5% by mass or less, further preferably 0.1% by mass or less, and particularly preferably 0% by mass. . If the content of fibrils in the mica layer is 1% by mass or less, a decrease in thermal conductivity tends to be suppressed.
  • the fibrit is a fibrous substance mixed so that the mica layer can stand on its own, and examples thereof include organic fibers such as polyamide and polyimide, and inorganic fibers such as glass fibers.
  • the backing layer includes a backing material.
  • the type of backing material is not particularly limited.
  • a glass cloth is mentioned. By using glass cloth as the backing material, falling off (powder-off) of mica and, if necessary, the inorganic filler contained in the mica tape is suppressed, cutting the mica tape during the process of winding the mica tape around the insulator, Cracks and the like tend to be suppressed.
  • a part of the fiber may be an organic material.
  • the fiber comprised in particular with an organic material is not restrict
  • a part of the glass cloth is a fiber composed of an organic material
  • the warp, the weft, or both may be a fiber composed of an organic material.
  • the average thickness of the backing material is not particularly limited.
  • the thickness is preferably 30 ⁇ m to 60 ⁇ m, and more preferably 45 ⁇ m to 50 ⁇ m.
  • the average thickness of the backing material is 30 ⁇ m or more, it is suppressed that the backing layer becomes too thin following the thickness of the backing material when the mica tape is pressed, and a decrease in thermal conductivity is suppressed. There is a tendency. If the average thickness of the backing material is 60 ⁇ m or less, the mica tape can be prevented from becoming thick, and the occurrence of breakage, cracks, etc. of the mica tape during the process of winding the mica tape around the insulator is likely to be suppressed. .
  • the average thickness of the backing material is the arithmetic average value of the measured values obtained by measuring the thickness of the mica tape at 10 locations using a micrometer (Mitutoyo Corporation, “MDC-SB”).
  • the backing material may be surface-treated if necessary.
  • Examples of the surface treatment method for the backing material include treatment with a silane coupling agent.
  • the backing layer may contain an inorganic filler.
  • the inorganic filler include silica, boron nitride, and alumina. From the viewpoint of thermal conductivity, boron nitride is preferable. Boron nitride exhibits higher thermal conductivity than other inorganic fillers (eg, alumina). Therefore, when the backing layer contains boron nitride, the thermal conductivity of the insulating layer formed from the mica tape tends to be improved.
  • the type of boron nitride is not particularly limited, and examples include hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), and wurtzite boron nitride. Among these, hexagonal boron nitride (h-BN) is preferable.
  • the boron nitride may be primary particles of boron nitride formed in a scale shape or secondary particles formed by agglomeration of primary particles.
  • the average particle size of the inorganic filler is not particularly limited.
  • the volume average particle diameter 1 ⁇ m to 40 ⁇ m can be mentioned.
  • the volume average particle diameter of the inorganic filler is 1 ⁇ m or more, the thermal conductivity and the dielectric strength voltage tend to be further improved.
  • the volume average particle diameter of the inorganic filler is 40 ⁇ m or less, the anisotropy of the thermal conductivity due to the anisotropy of the particle shape tends to be suppressed.
  • the volume average particle diameter of the inorganic filler can be measured by using, for example, a laser diffraction / scattering particle size distribution analyzer (Nikkiso Co., Ltd., “Microtrack MT3000II”). Specifically, an inorganic filler is introduced into pure water and then dispersed with an ultrasonic disperser. By measuring the particle size distribution of the dispersion, the particle size distribution of the inorganic filler is measured. Based on this particle size distribution, the particle size (D50) corresponding to 50% volume accumulation from the small diameter side is determined as the volume average particle size.
  • a laser diffraction / scattering particle size distribution analyzer Nikkiso Co., Ltd., “Microtrack MT3000II”.
  • An inorganic filler may be used alone or in combination of two or more.
  • two or more inorganic fillers are used in combination, for example, when two or more inorganic fillers having the same component and different average particle sizes are used, two or more inorganic fillers having the same average particle size and different components are used, and A case where two or more inorganic fillers having different average particle diameters and types are used.
  • the content is not particularly limited. For example, it is preferably 20% by volume to 50% by volume and more preferably 25% by volume to 35% by volume of the total volume of the non-volatile content excluding mica and the backing material.
  • the content of the inorganic filler is 20% by volume or more of the total volume of nonvolatile components excluding mica and the backing material, the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved.
  • the content of the inorganic filler is 50% by volume or less of the total volume of non-volatile components excluding mica and the backing material, filling of the inorganic filler into the resin component tends to be facilitated.
  • the inorganic filler may include those subjected to surface treatment by applying a coupling agent, heat treatment, light treatment, or the like, if necessary.
  • a coupling agent for example, in the case of heat treatment, impurities on the surface of the inorganic filler are removed by heating the inorganic filler at an appropriate high temperature (for example, 250 ° C. to 800 ° C.) for 1 hour to 3 hours. Therefore, the affinity at the time of mixing an inorganic filler and a resin component improves, the viscosity of the mixture (varnish) of an inorganic filler and a resin component falls, and it exists in the tendency for application
  • the backing layer may or may not contain a resin component.
  • the type is not particularly limited.
  • the resin component which may be contained in the mica layer mentioned above is mentioned, and a preferable aspect is also the same.
  • the backing layer may contain components other than the backing material, the resin component, and the inorganic filler as necessary.
  • components include a curing accelerator and various additives.
  • the additive include a coupling agent, an antioxidant, an anti-aging agent, a stabilizer, a flame retardant, and a thickener.
  • the average thickness of the mica tape (the sum of the thicknesses of the mica layer and the backing layer) is not particularly limited, and can be selected according to the application.
  • the average thickness of the mica tape may be 400 ⁇ m or less, preferably 350 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the average thickness of the mica tape is preferably 300 ⁇ m or less and more preferably 290 ⁇ m or less from the viewpoint of easy winding of the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 160 ⁇ m or more.
  • the average thickness of the mica tape is preferably 220 ⁇ m or less and more preferably 190 ⁇ m or less from the viewpoint of ease of winding the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 180 ⁇ m or more.
  • the average thickness of the mica layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the mica layer is preferably 180 ⁇ m or less, and more preferably 170 ⁇ m or less. From the viewpoint of electrical insulation, the average thickness of the mica layer is preferably 80 ⁇ m or more, and more preferably 90 ⁇ m or more.
  • the average thickness of the backing layer is not particularly limited. From the viewpoint of ease of winding the mica tape, the average thickness of the backing layer is preferably 60 ⁇ m or less, and more preferably 50 ⁇ m or less. From the viewpoint of the strength of the mica tape, the average thickness of the backing layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the average thickness of the mica tape (the sum of the thickness of the mica layer and the backing layer) is a total of 10 mica tape thicknesses using a micrometer (Mitutoyo Corporation, “MDC-SB”). Measure and use as the arithmetic average value of the measured values.
  • the thickness of the mica layer and the backing layer in the mica tape is determined by measuring the thickness of the mica layer and the backing layer in the cross section of the mica tape with a micrometer of a stereomicroscope (for example, Olympus Corporation “BX51”). Observe 3 points and use the arithmetic average.
  • a stereomicroscope for example, Olympus Corporation “BX51”.
  • the backing layer preferably contains boron nitride as an inorganic filler, and the apparent volume of mica is preferably 2.0 to 5.0 times the volume of boron nitride.
  • the thermal conductivity is good.
  • the apparent volume of mica is 2.0 times or more of the volume of boron nitride
  • the mica tape is wound around the insulator, cracks, wrinkles, etc. of the mica tape are less likely to occur, There is a tendency that the decrease in thermal conductivity is sufficiently suppressed.
  • the backing layer showing relatively high thermal conductivity by containing a relatively large amount of boron nitride tends to contribute to the thermal conductivity of the entire mica tape.
  • the apparent volume of mica is more preferably 3.0 times to 4.8 times the volume of boron nitride, and further preferably 3.2 times to 4.0 times.
  • the volume of boron nitride is calculated by the following method, for example.
  • a mica tape (1 cm 2 minutes) containing boron nitride is decomposed in a nitric acid aqueous solution while being irradiated with microwaves on a hot plate to prepare a sample solution for measurement.
  • the sample solution is sprayed into plasma, and boron ions generated in the plasma are separated and quantified by a mass spectrometer, and converted to the amount of boron nitride, thereby obtaining the mass of boron nitride.
  • the volume (cm 3 ) of boron nitride per cm 2 of mica tape is determined.
  • the apparent volume of mica is calculated by the following method, for example.
  • the apparent volume (cm) of the mica layer in the mica tape having an area of 1 cm 2 By determining the thickness (cm) of the mica layer in the mica tape having an area of 1 cm 2 and obtaining the obtained thickness (cm) ⁇ 1 cm 2 , the apparent volume (cm 3 ) of mica per 1 cm 2 of mica tape Become.
  • the average thickness of the mica layer in the mica tape is obtained, for example, by observing the cross section of the mica tape at three positions with a micrometer of a stereomicroscope (Olympus Corporation, “BX51”) in the width direction, and obtaining the arithmetic average value thereof. It is done.
  • the content of the resin component in the mica tape is not particularly limited and can be selected according to the use of the mica tape.
  • the content of the resin component may be 40% by mass or less of the total mass of the backing layer and the mica layer, and is preferably 5% by mass to 33% by mass.
  • the content of the resin component is preferably 25% by mass to 33% by mass of the total mass of the backing layer and the mica layer, for example, 25% by mass to 30% by mass. It is more preferable that When the content of the resin component is 25% by mass or more, the mica from the mica tape and the inorganic filler contained as necessary are prevented from falling off (powder falling), and the mica tape is used when the mica tape is wound around the insulator. As a result of suppressing the occurrence of cracks, cuts, wrinkles, etc., the insulation reliability and the thermal conductivity tend to be suppressed.
  • the content of the resin component is 33% by mass or less, an increase in the thickness of the mica tape is suppressed and good winding properties tend to be maintained. Furthermore, the resin tends to be prevented from flowing out beyond the volume necessary to fill the gap between the overlapping mica tapes with the mica tape wound around the insulator. As a result, generation of voids is reduced, and a decrease in insulation reliability tends to be suppressed.
  • the content of the resin component in the mica tape is preferably 5% by mass to 15% by mass of the total mass of the backing layer and the mica layer, for example, 5% by mass. More preferably, it is ⁇ 12% by mass, and further preferably 8% by mass to 10% by mass.
  • the content of the resin component is 5% by mass or more of the total mass of the backing layer and the mica layer, the adhesion between the backing layer and the mica layer tends to be sufficiently secured.
  • the content of the resin component is 15% by mass or less of the total mass of the backing layer and the mica layer, high thermal conductivity tends to be achieved.
  • the content rate of the resin component in the mica tape is calculated by the following method, for example.
  • the mica tape cut to a size of 30 mm in width and 50 mm in length is heated in an electric furnace at 600 ° C. for 2 hours, and the mass reduction rate (%) before and after heating is obtained by the following formula.
  • the above process is performed three times, and an arithmetic average value of the obtained values is obtained.
  • Content of resin component ⁇ (mass before heating ⁇ mass after heating) / mass before heating ⁇ ⁇ 100
  • the cured product of the mica tape of this embodiment is obtained by curing the mica tape described above. More specifically, it is obtained by curing the resin component contained in the mica tape before being wound around the insulator or after being wound around the insulator.
  • the curing method is not particularly limited. You can choose from the usual methods.
  • the insulator of this embodiment includes an insulator and an insulating layer that is a cured product of the mica tape of this embodiment that is disposed on at least a part of the surface of the insulator.
  • the method for forming the insulating layer using the mica tape of the present embodiment is not particularly limited, and conventionally known production methods can be applied. For example, after winding mica tape around an insulator, heat it while applying pressure to the mica tape (heat press), and let the resin component contained in the mica tape flow out of the mica tape in advance and overlap between the overlapping mica tapes.
  • a resin component is formed by filling and curing an insulating layer (in the case of a prepreg mica tape), winding a mica tape around an insulator, and then applying a vacuum pressure impregnation (VPI).
  • a vacuum pressure impregnation A method of impregnating a mica tape and curing the same to form an insulating layer (in the case of dry mica tape).
  • the kind of insulator to be insulated is not particularly limited, and examples thereof include metal materials (copper, etc.) having shapes such as coils, rods, and plates.
  • the present invention also includes the mica tape of the following second embodiment, a cured product of the mica tape, and an insulator.
  • the details and preferred aspects of the mica tape, the cured product of the mica tape, and the insulator can be referred to the matters described in the first embodiment.
  • ⁇ 1> The ratio of mica pieces having a mica layer containing mica and a backing layer containing a backing material and having a particle diameter of 2.8 mm or more when sieved using a JIS standard sieve in the mica layer Mica tape, less than 45% by weight of the entire mica piece.
  • ⁇ 2> The ratio of mica pieces having a particle diameter of 0.5 mm or more when sieving using a JIS standard sieve in the mica layer is 60% by mass or more of the entire mica pieces, according to ⁇ 1>.
  • Mica tape ⁇ 3> The mica tape according to ⁇ 1> or ⁇ 2>, wherein the mica tape has an average thickness of 300 ⁇ m or less and is used as a prepreg mica tape.
  • ⁇ 4> The mica tape according to any one of ⁇ 1> to ⁇ 3>, wherein the mica tape has an average thickness of 220 ⁇ m or less and is used as a dry mica tape.
  • ⁇ 5> The mica tape according to any one of ⁇ 1> to ⁇ 4>, wherein an average thickness of the mica layer is 180 ⁇ m or less.
  • ⁇ 6> The mica tape according to any one of ⁇ 1> to ⁇ 5>, wherein the backing layer further contains an inorganic filler.
  • ⁇ 7> The mica tape according to any one of ⁇ 1> to ⁇ 6>, wherein the inorganic filler includes boron nitride.
  • ⁇ 8> The mica tape according to ⁇ 7>, wherein the apparent volume of the mica is 2.0 to 5.0 times the volume of boron nitride.
  • ⁇ 9> The mica tape according to any one of ⁇ 6> to ⁇ 8>, wherein the inorganic filler has a volume average particle diameter of 1 ⁇ m to 40 ⁇ m.
  • ⁇ 10> The content of the inorganic filler according to any one of ⁇ 6> to ⁇ 9>, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total volume of the nonvolatile content excluding the mica and the backing material. Mica tape.
  • ⁇ 11> The mica tape according to any one of ⁇ 1> to ⁇ 10>, wherein an average thickness of the mica tape is 120 ⁇ m or more.
  • ⁇ 12> The mica tape according to any one of ⁇ 1> to ⁇ 11>, further including a resin component.
  • ⁇ 13> The mica tape according to ⁇ 12>, wherein the resin component content is 25% by mass to 33% by mass of the total mass of the mica layer and the backing layer, and is used as a prepreg mica tape.
  • ⁇ 14> The mica tape according to ⁇ 12>, wherein the resin component content is 5% by mass to 15% by mass of the total mass of the mica layer and the backing layer, and is used as a dry mica tape.
  • ⁇ 15> A cured product of the mica tape according to ⁇ 1> to ⁇ 14>.
  • the insulating layer formed using the mica tape of the present embodiment is a mica tape in which the proportion of mica pieces having a particle diameter of 2.8 mm or more in the mica layer is 45% by mass or more. It was found that the insulating layer was superior to the insulating layer formed by using it. The reason for this is not clear, but the mica layer contains many relatively small mica pieces, so the resin component can easily fill the space between the mica pieces, which is thought to be partly due to the suppression of voids in the mica layer. It is done.
  • the mica tape of the present embodiment can improve the electrical insulation of the insulating layer without increasing the amount of mica, it is possible to reduce the thickness of the mica tape while ensuring the necessary electrical insulation. become. As a result, it is possible to provide a mica tape that is excellent in workability when the mica tape is wound around an insulator.
  • the resin component in the pressurizing process after winding the mica tape around the insulator, the resin component can be sufficiently distributed between the overlapping mica tapes, and the insulating layer has high adhesion between mica tapes and excellent reliability. Can be formed.
  • the proportion of mica pieces having a particle diameter of 2.8 mm or more in the mica layer is preferably 30% by mass or less, more preferably 20% by mass or less. preferable.
  • the proportion of mica pieces having a particle diameter of 0.5 mm or more when sieving using a JIS standard sieve in the mica layer is 40% by mass or more of the whole mica pieces. It is preferable that it is 60 mass% or more.
  • the ratio of mica pieces having a particle diameter of 2.8 mm or more and the ratio of mica pieces having a particle diameter of 0.5 mm or more when sieving using a JIS standard sieve in the mica layer is, for example, The sieving of the mica pieces used for the production of the mica layer can be confirmed by using a JIS standard sieve. As a result of sieving, the ratio (mass%) in the total amount of mica pieces before sieving of the residue remaining without passing through the 2.8 mm sieve sieve is determined using “JIS standard sieve. The ratio of the mica pieces having a particle diameter of 2.8 mm or more ”.
  • the mica before sieving is the sum of the residue remaining without passing through the sieve with a sieve opening of 2.8 mm and the residue remaining without passing through the sieve with a sieve opening of 0.5 mm
  • the ratio (mass%) in the total amount of the pieces is defined as “the ratio of mica pieces having a particle diameter of 0.5 mm or more when sieved using a JIS standard sieve”.
  • the present invention also includes the mica tape of the following third embodiment, a cured product of the mica tape, and an insulator.
  • the matter described in 1st Embodiment can be referred for the detail and preferable aspect of the mica tape, the hardened
  • the backing layer further contains an inorganic filler.
  • the apparent volume of the mica is 2.0 to 5.0 times the volume of the boron nitride.
  • ⁇ 6> The mica tape according to any one of ⁇ 3> to ⁇ 5>, wherein the inorganic filler has a volume average particle diameter of 1 ⁇ m to 40 ⁇ m.
  • ⁇ 7> The content of the inorganic filler according to any one of ⁇ 3> to ⁇ 6>, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total nonvolatile content excluding the mica and the backing material.
  • Mica tape. ⁇ 8> The mica tape according to any one of ⁇ 1> to ⁇ 7>, wherein an average thickness of the mica tape is 120 ⁇ m or more.
  • ⁇ 9> Any one of ⁇ 1> to ⁇ 8>, further comprising a resin component, wherein the content of the resin component is 25% by mass to 33% by mass of the total mass of the mica layer and the backing layer Mica tape described in 1.
  • ⁇ 11> A cured product of the mica tape according to ⁇ 1> to ⁇ 10>.
  • the total thickness of the mica layer and the backing layer is 300 ⁇ m or less.
  • the resin component can be sufficiently distributed between the overlapping mica tapes, and the insulating layer has high adhesion between mica tapes and excellent reliability. Can be formed.
  • Example 1 (1) Production of mica paper Unfired hard mica was dispersed in water to make mica pieces, and the mica paper was made with a paper machine to prepare mica paper (unfired hard laminated mica) having a mica amount of 180 g / m 2 . The average thickness of the produced mica paper was 150 ⁇ m. The average thickness of the mica paper was obtained by measuring the thickness at 18 points using a micrometer (Mitutoyo Corporation, “MDC-SB”) and calculating the arithmetic average value. Hereinafter, the average thickness of the mica paper was measured by the same method.
  • MDC-SB micrometer
  • the ratio (mass%) of the mica pieces is shown in Table 1 as the ratio of the mica pieces having a particle diameter of 2.8 mm or more and the ratio of the mica pieces having a particle diameter of 0.5 mm or more before tape production.
  • Phenol novolac type epoxy resin (Dow Chemical Japan Co., Ltd., “D.N.438” (“D.N.” is a registered trademark)) 36.7 as a resin component 1.1% by mass of boron trifluoride monoethylamine (Wako Pure Chemical Industries, Ltd.) as a curing accelerator, 31.1% by mass of methyl ethyl ketone (MEK) (Wako Pure Chemical Industries, Ltd.) as an organic solvent, Were mixed. Thereafter, 31.1% by mass of boron nitride (volume average particle diameter 5 ⁇ m, Denki Kagaku Kogyo Co., Ltd.) was added as an inorganic filler and further mixed to prepare a resin varnish. In addition, the content rate of the boron nitride with respect to the non volatile matter (components other than the organic solvent) of a resin varnish was 25 volume%.
  • the laminate of the mica layer and the glass cloth layer was cut to a total length of 100 m and a width of 30 mm to prepare a prepreg mica tape.
  • the average thickness of the backing material was determined as an arithmetic average value of the measured values obtained by measuring the thickness of the mica tape at a total of 10 locations using a micrometer (Mitutoyo Corporation, “MDC-SB”).
  • the average thickness of the prepared prepreg mica tape before curing was 270 ⁇ m, and the maximum value of the thickness was 276 ⁇ m.
  • the average thickness of the cured product of the prepreg mica tape obtained by heating and curing the mica tape at 170 ° C. for 1 hour was 265 ⁇ m, and the maximum thickness was 273 ⁇ m.
  • the average thickness before and after curing of the prepreg mica tape and the maximum value of the thickness are obtained as the arithmetic average value and maximum value by measuring the thickness at 10 points using a micrometer (Mitutoyo Co., Ltd., “MDC-SB”). It was.
  • MDC-SB micrometer
  • the average thickness of the mica layer before curing of the prepared prepreg mica tape was 147 ⁇ m.
  • the average thickness of the mica layer was determined by observing the cross section of the prepreg mica tape at three locations with a micrometer of a stereomicroscope (Olympus Corporation, “BX51”) in the width direction, and obtaining the arithmetic average value thereof.
  • the laminated cured product 1 is cut into a circle with a diameter of 50 mm to prepare a sample, and the thermal conductivity (W / (m ⁇ K)) is measured using a thermal conductivity measuring device (Hideki Seiki Co., Ltd., “HC-110”). Was measured. The results are shown in Table 1.
  • the laminated cured product 1 was cut in the thickness direction, the cut surface was smoothed with abrasive paper, and then platinum was deposited. The cut surface was observed with a scanning electron microscope (SEM) (magnification: 30 to 40 times), and the presence or absence of voids on the observation screen (length in the thickness direction: 3 mm, length in the width direction: 3 mm) was determined according to the following evaluation criteria. evaluated. The results are shown in Table 1.
  • a void with a length of 50 ⁇ m or more is not seen ...
  • a 1 to 4 voids with a length of 50 ⁇ m or more can be seen ...
  • B 5 or more voids with a length of 50 ⁇ m or more can be seen ...
  • the dielectric breakdown electric field strength (kV / mm) was measured using a dielectric breakdown test apparatus (Soken Electric Co., Ltd., “DAC-6032C”). The measurement was performed by sandwiching the laminated cured product 2 with a cylindrical electrode having a diameter of 10 mm, under a pressure increase rate of 500 V / s, an alternating current of 50 Hz, a cutoff current of 10 mA, room temperature (25 ⁇ 1 ° C.), and in oil. The results are shown in Table 1.
  • FIG. 3 shows an SEM photograph of a cross section of the insulating layer.
  • Example 7 (1) Production of mica paper Unfired hard mica was dispersed in water to form mica particles, and mica paper was made to produce mica paper (unfired hard laminated mica) having a mica amount of 100 g / m 2 .
  • Example 1 About the produced dry mica tape, it carried out similarly to Example 1, the particle diameter of the mica piece after tape production, the average thickness and thickness of the mica tape before and after curing, the average thickness of the mica layer of the mica tape before curing The content of the resin component was evaluated. The results are shown in Table 1.
  • “Mica / BN (volume ratio)” in Table 1 means “ratio of the total apparent volume of mica to the total volume of boron nitride”.
  • the mica tape of the example in which the proportion of mica pieces having a particle diameter of 2.8 mm or more when sieving using a JIS standard sieve is less than 45% by mass is obtained after curing.
  • the dielectric breakdown electric field strength was high, and no void was found in the laminated cured product.
  • the mica tapes of Examples 1 to 5 in which the proportion of mica pieces having a particle diameter of 0.5 mm or more when sieved using a JIS standard sieve is 60% by mass or more have a particle diameter of 0.
  • the strength of the dielectric breakdown electric field after curing was higher than that of the mica tape of Example 6 in which the proportion of mica pieces of 5 mm or more was less than 60 mass%.
  • the mica tape of Comparative Example 1 in which the proportion of mica pieces having a particle diameter of 2.8 mm or more when screened using a JIS standard sieve exceeds 45% by mass has a dielectric breakdown electric field strength after curing. Voids were observed in the laminated cured product.
  • the particle diameter of the mica piece after the mica tape production tends to be smaller than the particle diameter of the mica piece before the mica tape production, this is a resin whose surface of the mica piece is hydrophobic in the mica tape production process. It is thought that the aggregated state between the mica pieces is suppressed by covering with the components and losing hydrogen bonds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Insulating Bodies (AREA)
  • Insulating Of Coils (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

 マイカを含むマイカ層と、裏打ち材を含む裏打ち層とを有し、前記裏打ち層から剥離した前記マイカ層から得られるマイカ片をJIS標準篩を用いて篩い分けしたときに、粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満である、マイカテープ。

Description

マイカテープ、マイカテープの硬化物及び絶縁物
 本発明は、マイカテープ、マイカテープの硬化物及び絶縁物に関する。
 コイル等の部材(被絶縁体)を外部環境から絶縁するための絶縁層を形成する材料として、マイカテープと呼ばれるマイカを用いた絶縁材が知られている(例えば、国際公開第2015-053374号参照)。マイカテープは、一般に、裏打ち材を含む裏打ち層と、マイカを含むマイカ層とから主に構成されている。マイカテープには、被絶縁体に巻きつける前の状態か、被絶縁体に巻き付けた後の状態で樹脂成分が含浸され、この樹脂成分を硬化することで絶縁層が形成される。
 マイカ層に含まれるマイカは電気絶縁性に優れた薄片状の無機物質であり、マイカ層に含まれるマイカの量が多いほど絶縁効果は高まる傾向にある。他方、マイカの量を多くするとマイカテープの厚みが増大して被絶縁体に巻き付けにくくなったり、形成した絶縁層中に空隙、ひび等が生じたりする場合がある。従って、マイカ層に含まれるマイカの量を増やす手法によらずにマイカテープの電気絶縁性を向上する技術の開発が待たれている。
 本発明は上記事情に鑑み、電気絶縁性に優れる絶縁層を形成可能なマイカテープ、マイカテープの硬化物及びそれを用いた絶縁物を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>マイカを含むマイカ層と、裏打ち材を含む裏打ち層とを有し、前記裏打ち層から剥離した前記マイカ層から得られるマイカ片をJIS標準篩を用いて篩い分けしたときに、粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満である、マイカテープ。
<2>前記裏打ち層から剥離した前記マイカ層から得られるマイカ片をJIS標準篩を用いて篩い分けしたときに、粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の40質量%以上である、<1>に記載のマイカテープ。
<3>
 マイカを含むマイカ層と、裏打ち材を含む裏打ち層とを有し、前記マイカ層におけるJIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満である、マイカテープ。
<4>前記マイカ層におけるJIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の40質量%以上である、<3>に記載のマイカテープ。
<5>前記マイカテープの平均厚さが300μm以下であり、プリプレグマイカテープとして使用される、<1>~<4>のいずれか1項に記載のマイカテープ。
<6>前記マイカテープの平均厚さが220μm以下であり、ドライマイカテープとして使用される、<1>~<4>のいずれか1項に記載のマイカテープ。
<7>前記マイカ層の平均厚さが180μm以下である、<1>~<6>のいずれか1項に記載のマイカテープ。
<8>前記裏打ち層は無機フィラーをさらに含む、<1>~<7>のいずれか1項に記載のマイカテープ。
<9>前記無機フィラーは窒化ホウ素を含む、<8>に記載のマイカテープ。
<10>前記マイカの見掛け体積が前記窒化ホウ素の体積の2.0倍~5.0倍である、<9>に記載のマイカテープ。
<11>前記無機フィラーの体積平均粒子径が1μm~40μmである、<8>~<10>のいずれか1項に記載のマイカテープ。
<12>前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<8>~<11>のいずれか1項に記載のマイカテープ。
<13>前記マイカテープの平均厚さが120μm以上である、<1>~<12>のいずれか1項に記載のマイカテープ。
<14>樹脂成分をさらに含む、<1>~<13>のいずれか1項に記載のマイカテープ。
<15>前記樹脂成分の含有率が、前記マイカ層及び前記裏打ち層の合計質量の25質量%~33質量%であり、プリプレグマイカテープとして使用される、<14>に記載のマイカテープ。
<16>前記樹脂成分の含有率が、前記マイカ層及び前記裏打ち層の合計質量の5質量%~15質量%であり、ドライマイカテープとして使用される、<15>に記載のマイカテープ。
<17><1>~<16>に記載のマイカテープの硬化物。
<18>被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される<1>~<16>のいずれか1項に記載のマイカテープの硬化物である絶縁層と、を有する絶縁物。
 本発明によれば、電気絶縁性に優れる絶縁層を形成可能なマイカテープ、マイカテープの硬化物及びそれを用いた絶縁物が提供される。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
本実施形態のマイカテープの構造の一例を表す概略断面図である。 マイカテープを被絶縁体に巻きつける方法の一例を模式的に示す図である。 マイカテープを用いて形成した絶縁層の断面の電子顕微鏡写真である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
〔第1実施形態〕
<マイカテープ>
 本実施形態のマイカテープは、マイカを含むマイカ層と、裏打ち材を含む裏打ち層とを有し、前記裏打ち層から剥離した前記マイカ層から得られるマイカ片をJIS標準篩を用いて篩い分けしたときに、粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満である。
 また、前記JIS標準篩はJIS-Z-8801-1:2006に準拠し、ISO3310-1:2000に対応する。尚、ISO3310-1:2000を用いる場合には、JIS-Z-8801-1:2006と同様に篩い目の形状が正方形であるものを適用することが好ましい。
 本発明者らの検討により、本実施形態のマイカテープを用いて形成した絶縁層は、裏打ち層から剥離したマイカ層から得られるマイカ片における粒子径が2.8mm以上であるマイカ片の割合が45質量%以上であるマイカテープを用いて形成した絶縁層に比べ、電気絶縁性に優れていることがわかった。その理由は明らかではないが、マイカ層が比較的小さいマイカ片を多く含むことで樹脂成分がマイカ片の間を充分に充填し、マイカ層における空隙の発生が抑制される結果、マイカテープが重なり合った状態で加圧した際にマイカ層中の空隙に起因して生じるマイカテープ間の剥離が抑制されること等が考えられる。
 本実施形態のマイカテープは、マイカの量を増やすことなく絶縁層の電気絶縁性を向上することができるため、必要な電気絶縁性を確保しつつマイカテープの厚みを低減することが可能になる。その結果、マイカテープを被絶縁体に巻き付ける際の作業性に優れるマイカテープを提供することが可能になる。また、本実施形態のマイカテープによれば、マイカ層中の空隙とマイカテープ間の剥離の発生が抑制されて信頼性に優れる絶縁層を形成することが可能になる。
 本実施形態のマイカテープは、被絶縁体にマイカテープを巻き付けた後にあらかじめマイカテープに含まれている樹脂成分を硬化させて絶縁層を形成する方法に用いられるマイカテープ(プリプレグマイカテープ)であっても、被絶縁体に巻きつけた後に樹脂成分で含浸し、これを硬化させて絶縁層を形成する方法に用いられるマイカテープ(ドライマイカテープ)であってもよい。
 図1は、本実施形態のマイカテープの構造の一例を表す概略断面図である。図1に示すように、マイカテープは無機フィラー1と裏打ち材2を含む裏打ち層5と、マイカ4を含むマイカ層6と、を有していてもよい。また、裏打ち層5とマイカ層6はそれぞれ樹脂成分3を含んでいてもよい。裏打ち層5は、無機フィラー1を含んでいなくてもよい。図1に記載のマイカテープは、裏打ち層5の全体とマイカ層6の全体が樹脂成分3を含んだ状態(プリプレグマイカテープ)となっているが、マイカ層6の全体又は一部が樹脂成分3を含まない状態(ドライマイカテープ)であってもよい。
(マイカ層)
 マイカ層はマイカを含み、裏打ち層から剥離したマイカ層から得られるマイカ片をJIS標準篩を用いて篩い分けしたときに、粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満である。電気絶縁性向上の観点からは、粒子径が2.8mm以上であるマイカ片の割合は、マイカ片全体の30質量%以下であることが好ましく、20質量%以下であることがより好ましい。
 充分な絶縁破壊電界強度を確保する観点からは、裏打ち層から剥離したマイカ層から得られるマイカ片におけるJIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の40質量%以上であることが好ましく、60質量%以上であることがより好ましい。
 裏打ち層から剥離したマイカ層から得られるマイカ片におけるJIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合、及び粒子径が0.5mm以上であるマイカ片の割合は、例えば、以下のようにして確認することができる。
 マイカテープの裏打ち層とマイカ層の界面に剃刀を差し込み、裏打ち層からマイカ層を剥離する。剥離したマイカ層1gをメチルエチルケトン100gに分散させ、10分間振とう後、8000回転/分(rpm)で5分間遠心分離する。上澄み液を除去して残った固形分に対して、メチルエチルケトン100gを加え、10分間振とう後、8000回転/分(rpm)で5分間遠心分離する。さらにもう一度、上澄み液を除去して残った固形分に対して、メチルエチルケトン100gを加え、10分間振とうした後、8000回転/分(rpm)で5分間遠心分離する。上澄み液を除去して残った固形分1gにメチルエチルケトン100gを加え、ミックスローターにて30分間分散させ、さらに10分間振とうする。その後、容器を振とうさせながら、目開き2.8mmから目開き0.5mmの順にJIS標準篩(JIS-Z-8801-1:2006、ISO3310-1:2000、東京スクリーン株式会社、試験用ふるい)で篩い分けする。
 篩い分けの結果、目開き2.8mmの篩いの目を通らずに残った残渣分の、篩い分けする前のマイカ片の全量中の割合(質量%)を「JIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合」とする。
 篩い分けの結果、目開き2.8mmの篩いの目を通らずに残った残渣分と、目開き0.5mmの篩いの目を通らずに残った残渣分との合計の、篩い分けする前のマイカ片の全量中の割合(質量%)を「JIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合」とする。
 マイカ層に含まれるマイカの種類は特に制限されない。例えば、未焼成硬質マイカ、焼成硬質マイカ、未焼成軟質マイカ、焼成軟質マイカ、合成マイカ及びフレークマイカが挙げられる。これらの中でも、マイカと樹脂成分の接着性の観点からは、未焼成硬質マイカが好ましい。
 マイカは1種を単独で使用してもよく、2種以上を併用してもよい。マイカを2種以上併用する場合としては、例えば、同じ成分で平均粒子径が異なるマイカを2種以上用いる場合、平均粒子径が同じで成分の異なるマイカを2種以上用いる場合、並びに平均粒子径及び成分の異なるマイカを2種以上用いる場合が挙げられる。
 マイカ層におけるマイカの量は、特に制限されない。例えば、100g/m~220g/mの範囲が挙げられる。マイカ層中のマイカの量が100g/m以上であれば、電気絶縁性の低下が抑制される傾向にある。マイカ層中のマイカの量が220g/m以下であれば、マイカテープの厚さをより薄くでき、熱伝導率の低下が抑制される傾向にある。
 マイカ層は樹脂成分を含んでいても、含んでいなくてもよい。マイカ層が樹脂成分を含む場合、マイカ層に含まれる樹脂成分は、特に限定されない。マイカテープを硬化させて絶縁層を形成する観点からは、硬化性樹脂であることが好ましく、熱硬化性樹脂であることがより好ましい。硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂及びシリコーン樹脂が挙げられる。マイカ層と裏打ち層との接着性及び電気絶縁性の観点からは、エポキシ樹脂が好ましい。樹脂成分は1種を単独で用いても、2種以上を併用してもよい。
 樹脂成分としてエポキシ樹脂を用いる場合のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、環式脂肪族エポキシ樹脂等が挙げられる。中でも、耐熱性の観点からは、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂が好ましい。
 エポキシ樹脂の数平均分子量は、特に制限されない。例えば、流動性の観点からは100~100000であることが好ましく、200~50000であることがより好ましく、300~10000であることがさらに好ましい。なお、数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。エポキシ樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)を用いて、定法に従い下記の条件で測定した値である。
〔測定条件〕
 ポンプ:L-6000(株式会社日立製作所)
 カラム:TSKgel(登録商標)G4000HHR+G3000HHR+G2000HXL(東ソー株式会社)
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン(クロマトグラフィー用安定剤不含、和光純薬工業株式会社)
 試料濃度:5g/L(テトラヒドロフラン可溶分)
 注入量:100μL
 流速:1.0mL/分
 検出器:示差屈折率計(RI-8020、東ソー株式会社)
 分子量較正標準物質:標準ポリスチレン
 データ処理装置:GPC-8020(東ソー株式会社)
 エポキシ樹脂のエポキシ当量は、特に制限されない。例えば、130g/eq~500g/eqであることが好ましく、135g/eq~400g/eqであることがより好ましく、140g/eq~300g/eqであることがさらに好ましい。なお、エポキシ当量は、精秤したエポキシ樹脂をメチルエチルケトン等の溶媒に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。電位差滴定には、指示薬を用いてもよい。
 マイカ層が樹脂成分を含む場合、樹脂成分として硬化剤を含んでもよい。硬化剤は特に制限されず、樹脂成分として用いる樹脂の種類等に応じて選択できる。
 特に、樹脂成分として用いる樹脂がエポキシ樹脂である場合、硬化剤としてはエポキシ樹脂用硬化剤として通常用いられる硬化剤から適宜選択して用いることができる。具体的には、ジシアンジアミド、芳香族ジアミン等のアミン硬化剤;フェノールノボラック、クレゾールノボラック等のフェノール樹脂硬化剤;脂環式酸無水物等の酸無水物硬化剤などを挙げることができる。硬化剤は1種を単独で用いても、2種以上を併用してもよい。
 硬化性樹脂がエポキシ樹脂である場合、硬化剤とエポキシ樹脂の割合は、当量比(硬化剤/エポキシ樹脂)で0.8~1.2とすることが硬化性及び硬化物の電気特性の観点から好ましい。
 マイカ層が樹脂成分を含む場合、樹脂成分の硬化反応を加速させる目的で硬化促進剤を含んでもよい。硬化促進剤は特に制限されず、樹脂成分の種類等に応じて選択できる。硬化促進剤としては、トリメチルアミン等の第3級アミン化合物、2-メチルイミダゾール、2-メチル-4-エチルイミダゾール等のイミダゾール触媒、三フッ化ホウ素モノエチルアミン等のルイス酸のアミン錯体、有機ホスフィン化合物等の有機リン化合物などを挙げることができる。硬化促進剤は1種を単独で用いても、2種以上を併用してもよい。
 マイカ層が硬化促進剤を含む場合、その含有率は特に制限されない。例えば、樹脂成分として用いる樹脂がエポキシ樹脂である場合の硬化促進剤の含有率は、エポキシ樹脂及び硬化剤の合計量に対して0.01質量%~5質量%の範囲が一般的である。
 マイカ層は、必要に応じてマイカ及び上述した成分以外のその他の成分を含んでもよい。その他の成分としては、各種添加剤、マイカ以外の無機フィラー等が挙げられる。添加剤としては、カップリング剤、エラストマー、酸化防止剤、老化防止剤、安定剤、難燃剤、増粘剤等が挙げられる。
 マイカ層がマイカ以外の無機フィラーを含む場合、その量は、マイカテープの柔軟性等の特性が損なわれない程度であることが好ましい。
 マイカ層は、フィブリットを含まないことが好ましい。マイカ層がフィブリットを含む場合、その含有率は、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下がさらに好ましく、0質量%であることが特に好ましい。マイカ層中のフィブリットの含有率が1質量%以下であれば、熱伝導率の低下が抑制される傾向にある。本明細書においてフィブリットとは、マイカ層が自立可能になるように混合される繊維状の物質であり、例えば、ポリアミド、ポリイミド等の有機繊維、ガラスファイバー等の無機繊維などが挙げられる。
(裏打ち層)
 裏打ち層は、裏打ち材を含む。裏打ち材の種類は特に制限されない。例えば、ガラスクロスが挙げられる。裏打ち材としてガラスクロスを用いることで、マイカ及び必要に応じて含まれる無機フィラーのマイカテープからの脱落(粉落ち)が抑制され、マイカテープを被絶縁体に巻き付ける工程中のマイカテープの切れ、ひび等が抑制される傾向にある。
 裏打ち材としてガラスクロスを用いる場合、その一部が有機材料で構成される繊維であってもよい。有機材料で構成される繊維は特に制限されず、アラミド、ポリアミド、ポリイミド、ポリエステル等の繊維が挙げられる。ガラスクロスの一部が有機材料で構成される繊維である場合には、縦糸、横糸又はその両方が有機材料で構成される繊維であってもよい。
 裏打ち材の平均厚さは特に限定されない。例えば、30μm~60μmであることが好ましく、45μm~50μmであることがより好ましい。裏打ち材の平均厚さが30μm以上であれば、マイカテープを加圧した際に裏打ち層が裏打ち材の厚さに追従して薄くなりすぎるのが抑制され、熱伝導率の低下が抑制される傾向にある。裏打ち材の平均厚さが60μm以下であれば、マイカテープが厚くなるのを抑制でき、マイカテープを被絶縁体に巻き付ける工程中のマイカテープの切れ、ひび等の発生が抑制される傾向にある。
 本実施形態において裏打ち材の平均厚さは、マイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いてマイカテープの厚さを計10箇所で測定し、得られた測定値の算術平均値とする。
 裏打ち材は、必要に応じて表面処理されたものでもよい。裏打ち材の表面処理の方法としては、例えば、シランカップリング剤による処理が挙げられる。
 裏打ち層は、無機フィラーを含んでもよい。無機フィラーとしては、シリカ、窒化ホウ素、アルミナ等が挙げられる。熱伝導率の観点からは、窒化ホウ素が好ましい。窒化ホウ素は、他の無機フィラー(例えば、アルミナ)よりも高い熱伝導性を示す。そのため、裏打ち層が窒化ホウ素を含むことで、マイカテープから形成される絶縁層の熱伝導性が向上する傾向にある。
 窒化ホウ素の種類は特に限定されず、六方晶窒化ホウ素(h-BN)、立方晶窒化ホウ素(c-BN)、ウルツ鉱型窒化ホウ素等が挙げられる。これらの中でも、六方晶窒化ホウ素(h-BN)が好ましい。窒化ホウ素は、鱗片状に形成されている窒化ホウ素の一次粒子であっても、一次粒子が凝集して形成された二次粒子であってもよい。
 無機フィラーの平均粒子径は、特に限定されない。例えば、体積平均粒子径の場合、1μm~40μmが挙げられる。無機フィラーの体積平均粒子径が1μm以上であると、熱伝導率及び絶縁耐電圧がより向上する傾向にある。無機フィラーの体積平均粒子径が40μm以下であると、粒子形状の異方性による熱伝導率の異方性が抑制される傾向にある。
 無機フィラーの体積平均粒子径は、例えば、レーザー回折散乱方式粒度分布測定装置(日機装株式会社、「マイクロトラック MT3000II」)を用いることで測定可能である。具体的には、純水中に無機フィラーを投入した後に、超音波分散機で分散する。この分散液の粒子径分布を測定することで、無機フィラーの粒子径分布が測定される。この粒子径分布に基づいて、小径側からの体積累積50%に対応する粒子径(D50)を体積平均粒子径として求める。
 無機フィラーは1種を単独で使用してもよく、2種以上を併用してもよい。無機フィラーを2種以上併用する場合としては、例えば、同じ成分で平均粒子径が異なる無機フィラーを2種以上用いる場合、平均粒子径が同じで成分の異なる無機フィラーを2種以上用いる場合、並びに平均粒子径及び種類の異なる無機フィラーを2種以上用いる場合が挙げられる。
 裏打ち層が無機フィラーを含む場合、その含有率は特に限定されない。例えば、マイカと裏打ち材を除く不揮発分の総体積の20体積%~50体積%であることが好ましく、25体積%~35体積%であることがより好ましい。無機フィラーの含有率が、マイカと裏打ち材を除く不揮発分の総体積の20体積%以上であると、マイカテープから形成される絶縁層の熱伝導率がより向上する傾向にある。無機フィラーの含有率が、マイカと裏打ち材を除く不揮発分の総体積の50体積%以下であると、無機フィラーの樹脂成分への充填が容易となる傾向にある。
 無機フィラーは、必要に応じてカップリング剤の付与、熱処理、光処理等によって表面処理されたものを含んでもよい。例えば、熱処理の場合、無機フィラーを適切な高温(例えば、250℃~800℃)で1時間~3時間加熱することにより、無機フィラーの表面の不純物が除去される。そのため、無機フィラーと樹脂成分とを混合した際の親和性が向上し、無機フィラーと樹脂成分との混合物(ワニス)の粘度が下がり、塗布が容易になる傾向にある。また、ワニスの塗布面における塗り斑、凹凸等の発生が抑制され、平坦性が向上する傾向にある。
 裏打ち層は樹脂成分を含んでいても、含んでいなくてもよい。裏打ち層が樹脂成分を含む場合、その種類は特に制限されない。例えば、上述したマイカ層に含まれてもよい樹脂成分が挙げられ、好ましい態様も同様である。
 裏打ち層は、必要に応じて裏打ち材、樹脂成分及び無機フィラー以外の成分を含んでもよい。このような成分としては、硬化促進剤、各種添加剤等が挙げられる。添加剤としては、カップリング剤、酸化防止剤、老化防止剤、安定剤、難燃剤、増粘剤等が挙げられる。
(マイカテープの全体構成)
 マイカテープの平均厚さ(マイカ層と裏打ち層の厚さの合計)は特に制限されず、用途等に応じて選択できる。例えば、マイカテープの平均厚さは400μm以下であってよく、350μm以下であることが好ましく、300μm以下であることがより好ましい。
 マイカテープがプリプレグマイカテープとして使用される場合、マイカテープの巻きつけやすさの観点からは、マイカテープの平均厚さは300μm以下であることが好ましく、290μm以下であることがより好ましい。電気絶縁性の観点からは、マイカテープの平均厚さは120μm以上であることが好ましく、150μm以上であることがより好ましく、160μm以上であることがさらに好ましい。
 マイカテープがドライマイカテープとして使用される場合、マイカテープの巻きつけやすさの観点からは、マイカテープの平均厚さは220μm以下であることが好ましく、190μm以下であることがより好ましい。電気絶縁性の観点からは、マイカテープの平均厚さは120μm以上であることが好ましく、150μm以上であることがより好ましく、180μm以上であることがさらに好ましい。
 マイカ層の平均厚さは、特に制限されない。マイカテープの巻き付けやすさの観点からは、マイカ層の平均厚さは180μm以下であることが好ましく、170μm以下であることがより好ましい。電気絶縁性の観点からは、マイカ層の平均厚さは80μm以上であることが好ましく、90μm以上であることがより好ましい。
 裏打ち層の平均厚さは、特に制限されない。マイカテープの巻き付けやすさの観点からは、裏打ち層の平均厚さは60μm以下であることが好ましく、50μm以下であることがより好ましい。マイカテープの強度の観点からは、裏打ち層の平均厚さは10μm以上であることが好ましく、20μm以上であることがより好ましい。
 本実施形態においてマイカテープの平均厚さ(マイカ層と裏打ち層の厚さの合計)は、マイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いてマイカテープの厚さを計10箇所で測定し、得られた測定値の算術平均値とする。
 本実施形態においてマイカテープ中のマイカ層及び裏打ち層の厚さは、マイカテープの断面におけるマイカ層及び裏打ち層の厚さを実体顕微鏡(例えば、オリンパス株式会社、「BX51」)のミクロメーターにて3箇所観察し、その算術平均値とする。
 マイカテープは、裏打ち層が無機フィラーとして窒化ホウ素を含み、マイカの見掛け体積が窒化ホウ素の体積の2.0~5.0倍であることが好ましい。
 マイカの見掛け体積が窒化ホウ素の体積の5.0倍以下であると、熱伝導率が良好となる。一方、マイカの見掛け体積が窒化ホウ素の体積の2.0倍以上であると、被絶縁体にマイカテープを巻き付けた際に、マイカテープのひび割れ、皺等が発生しにくくなり、ボイドの発生及び熱伝導率の低下が充分に抑制される傾向にある。さらに、窒化ホウ素を相対的に多く含むことで相対的に高い熱伝導率を示す裏打ち層がマイカテープ全体の熱伝導率に寄与する割合が大きくなる傾向にある。マイカの見掛け体積は、窒化ホウ素の体積の3.0倍~4.8倍であることがより好ましく、3.2倍~4.0倍であることがさらに好ましい。
 本実施形態において、窒化ホウ素の体積は、例えば、下記方法によって算出される。
 ホットプレート上で窒化ホウ素を含むマイカテープ(1cm分)を硝酸水溶液中でマイクロウェーブを照射しながら分解し、測定用の試料溶液を調製する。この試料溶液をプラズマ中に噴霧し、プラズマ中で生成するホウ素イオンを質量分析計で分離及び定量し、窒化ホウ素量に換算することで、窒化ホウ素の質量を求める。得られた質量を窒化ホウ素の比重で割ると、マイカテープ1cmあたりの窒化ホウ素の体積(cm)が求められる。
 本実施形態において、マイカの見掛け体積は、例えば、下記方法によって算出される。
 面積が1cmのマイカテープにおけるマイカ層の厚さ(cm)を求め、得られた厚さ(cm)×1cmとすることで、マイカテープ1cmあたりのマイカの見掛け体積(cm)となる。
 マイカテープにおけるマイカ層の平均厚さは、例えば、マイカテープの断面を幅方向に対して実体顕微鏡(オリンパス株式会社、「BX51」)のミクロメーターにて3箇所観察し、その算術平均値として求められる。
 マイカテープ中の樹脂成分の含有率は特に制限されず、マイカテープの用途等に応じて選択できる。例えば、樹脂成分の含有率は、裏打ち層とマイカ層の合計質量の40質量%以下であってよく、5質量%~33質量%であることが好ましい。
 マイカテープがプリプレグマイカテープとして使用される場合、樹脂成分の含有率は、例えば、裏打ち層とマイカ層の合計質量の25質量%~33質量%であることが好ましく、25質量%~30質量%であることがより好ましい。樹脂成分の含有率が25質量%以上であると、マイカテープからのマイカ及び必要に応じて含まれる無機フィラーの脱落(粉落ち)が抑制され、被絶縁体にマイカテープを巻き付ける際のマイカテープのひび割れ、切れ、皺等の発生が抑制される結果、絶縁信頼性の低下及び熱伝導率の低下が抑制される傾向にある。一方、樹脂成分の含有率が33質量%以下であると、マイカテープの厚さの増大が抑制されて良好な巻き付け性が維持される傾向にある。さらに、被絶縁体にマイカテープを巻き付けた状態で重なり合ったマイカテープ間の空隙を埋めるために必要な体積以上に樹脂が流出することが抑制される傾向にある。その結果、ボイドの発生が低減し、絶縁信頼性の低下が抑制される傾向にある。
 マイカテープがドライマイカテープとして使用される場合、マイカテープ中の樹脂成分の含有率は、例えば、裏打ち層及びマイカ層の合計質量の5質量%~15質量%であることが好ましく、5質量%~12質量%であることがより好ましく、8質量%~10質量%であることがさらに好ましい。樹脂成分の含有率が裏打ち層及びマイカ層の合計質量の5質量%以上であると、裏打ち層とマイカ層との接着性が充分に確保される傾向にある。一方、樹脂成分の含有率が裏打ち層及びマイカ層の合計質量の15質量%以下であると、高い熱伝導率が達成される傾向にある。
 本実施形態において、マイカテープ中の樹脂成分の含有率は、例えば、下記方法によって算出される。
 幅30mm及び長さ50mmの大きさに切断したマイカテープを電気炉にて600℃及び2時間の条件で加熱し、加熱前後の質量減少率(%)を下記式により求める。以上の工程を3回行い、得られた値の算術平均値として求める。
 樹脂成分の含有率={(加熱前の質量-加熱後の質量)/加熱前の質量}×100
(マイカテープの製造方法)
 本実施形態のマイカテープの製造方法は特に制限されず、公知の製造方法を適用することができる。
<マイカテープの硬化物>
 本実施形態のマイカテープの硬化物は、上述したマイカテープを硬化して得られる。より具体的には、被絶縁体に巻きつける前又は被絶縁体に巻き付けた後のマイカテープに含まれる樹脂成分を硬化して得られる。硬化の方法は特に制限されず。通常の方法から選択できる。
<絶縁物>
 本実施形態の絶縁物は、被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される本実施形態のマイカテープの硬化物である絶縁層と、を有する。本実施形態のマイカテープを用いて絶縁層を形成する方法は特に制限されず、従来から公知の製造方法を適用することができる。例えば、被絶縁体にマイカテープを巻き付けた後にマイカテープを加圧しながら加熱(ヒートプレス)して、あらかじめマイカテープに含まれている樹脂成分をマイカテープの外に流出させて重なり合うマイカテープ間を埋めるようにし、これを硬化させて絶縁層を形成する方法(プリプレグマイカテープの場合)、被絶縁体にマイカテープを巻きつけた後に真空加圧含浸法(Vacuum Pressure Impregnation、VPI)にて樹脂成分をマイカテープに含浸し、これを硬化させて絶縁層を形成する方法(ドライマイカテープの場合)などが挙げられる。
 絶縁物における被絶縁体の種類は特に限定されず、コイル、棒、板等の形状を有する金属材料(銅等)などが挙げられる。
〔第2実施形態〕
 本発明には、下記の第2実施形態のマイカテープ、マイカテープの硬化物及び絶縁物も包含される。第2実施形態において、マイカテープ、マイカテープの硬化物並びに絶縁物の詳細及び好ましい態様は、第1実施形態に記載した事項を参照することができる。
<1>マイカを含むマイカ層と、裏打ち材を含む裏打ち層とを有し、前記マイカ層におけるJIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満である、マイカテープ。
<2>前記マイカ層におけるJIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の60質量%以上である、<1>に記載のマイカテープ。
<3>前記マイカテープの平均厚さが300μm以下であり、プリプレグマイカテープとして使用される、<1>又は<2>に記載のマイカテープ。
<4>前記マイカテープの平均厚さが220μm以下であり、ドライマイカテープとして使用される、<1>~<3>のいずれか1項に記載のマイカテープ。
<5>前記マイカ層の平均厚さが180μm以下である、<1>~<4>のいずれか1項に記載のマイカテープ。
<6>前記裏打ち層は無機フィラーをさらに含む、<1>~<5>のいずれか1項に記載のマイカテープ。
<7>前記無機フィラーは窒化ホウ素を含む、<1>~<6>のいずれか1項に記載のマイカテープ。
<8>前記マイカの見掛け体積が窒化ホウ素の体積の2.0倍~5.0倍である、<7>に記載のマイカテープ。
<9>前記無機フィラーの体積平均粒子径が1μm~40μmである、<6>~<8>のいずれか1項に記載のマイカテープ。
<10>前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<6>~<9>のいずれか1項に記載のマイカテープ。
<11>前記マイカテープの平均厚さが120μm以上である、<1>~<10>のいずれか1項に記載のマイカテープ。
<12>樹脂成分をさらに含む、<1>~<11>のいずれか1項に記載のマイカテープ。
<13>前記樹脂成分の含有率が、前記マイカ層及び前記裏打ち層の合計質量の25質量%~33質量%であり、プリプレグマイカテープとして使用される、<12>に記載のマイカテープ。
<14>前記樹脂成分の含有率が、前記マイカ層及び前記裏打ち層の合計質量の5質量%~15質量%であり、ドライマイカテープとして使用される、<12>に記載のマイカテープ。
<15><1>~<14>に記載のマイカテープの硬化物。
<16>被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される<1>~<14>のいずれか1項に記載のマイカテープの硬化物である絶縁層と、を有する絶縁物。
 本発明者らの検討により、本実施形態のマイカテープを用いて形成される絶縁層は、マイカ層における粒子径が2.8mm以上であるマイカ片の割合が45質量%以上であるマイカテープを用いて形成した絶縁層に比べ、電気絶縁性に優れていることがわかった。その理由は明らかではないが、マイカ層が比較的小さいマイカ片を多く含むことで樹脂成分がマイカ片の間を充填しやすく、マイカ層中における空隙の発生が抑制されることが一因として考えられる。
 さらに、本実施形態のマイカテープは、マイカの量を増やすことなく絶縁層の電気絶縁性を向上することができるため、必要な電気絶縁性を確保しつつマイカテープの厚みを低減することが可能になる。その結果、マイカテープを被絶縁体に巻き付ける際の作業性に優れるマイカテープを提供することが可能になる。また、マイカテープを被絶縁体に巻きつけた後の加圧工程で、樹脂成分を重なり合うマイカテープ間に充分にいきわたらせることができ、マイカテープ間の密着性が高く信頼性に優れる絶縁層を形成することが可能になる。
 電気絶縁性向上の観点からは、マイカ層における粒子径が2.8mm以上であるマイカ片の割合は、マイカ片全体の30質量%以下であることが好ましく、20質量%以下であることがより好ましい。
 充分な絶縁破壊電界強度を確保する観点からは、マイカ層におけるJIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の40質量%以上であることが好ましく、60質量%以上であることがより好ましい。
 本実施形態において、マイカ層におけるJIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合、及び粒子径が0.5mm以上であるマイカ片の割合は、例えば、マイカ層の作製に用いるマイカ片の篩い分けをJIS標準篩を用いて行うことで確認することができる。
 篩い分けの結果、目開き2.8mmの篩いの目を通らずに残った残渣分の、篩い分けする前のマイカ片の全量中の割合(質量%)を「JIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合」とする。
 篩い分けの結果、目開き2.8mmの篩いの目を通らずに残った残渣分と目開き0.5mmの篩いの目を通らずに残った残渣分の合計の、篩い分けする前のマイカ片の全量中の割合(質量%)を「JIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合」とする。
〔第3実施形態〕
 本発明には、下記の第3実施形態のマイカテープ、マイカテープの硬化物及び絶縁物も包含される。第3実施形態において、マイカテープ、マイカテープの硬化物並びに絶縁物の詳細及び好ましい態様は、第1実施形態に記載した事項を参照することができる。
<1>マイカを含むマイカ層と、裏打ち材を含む裏打ち層とを有し、平均厚さが300μm以下である、マイカテープ。
<2>前記マイカ層の平均厚さが180μm以下である、<1>に記載のマイカテープ。
<3>前記裏打ち層は無機フィラーをさらに含む、<1>又は<2>に記載のマイカテープ。
<4>前記無機フィラーは窒化ホウ素を含む、<1>~<3>のいずれか1項に記載のマイカテープ。
<5>前記マイカの見掛け体積が前記窒化ホウ素の体積の2.0倍~5.0倍である、<4>に記載のマイカテープ。
<6>前記無機フィラーの体積平均粒子径が1μm~40μmである、<3>~<5>のいずれか1項に記載のマイカテープ。
<7>前記無機フィラーの含有率が、前記マイカ及び前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<3>~<6>のいずれか1項に記載のマイカテープ。
<8>前記マイカテープの平均厚さが120μm以上である、<1>~<7>のいずれか1項に記載のマイカテープ。
<9>樹脂成分をさらに含み、前記樹脂成分の含有率が、前記マイカ層及び前記裏打ち層の合計質量の25質量%~33質量%である、<1>~<8>のいずれか1項に記載のマイカテープ。
<10>プリプレグマイカテープとして使用される、<1>~<9>のいずれか1項に記載のマイカテープ。
<11><1>~<10>に記載のマイカテープの硬化物。
<12>被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される<1>~<10>のいずれか1項に記載のマイカテープの硬化物である絶縁層と、を有する絶縁物。
 本実施形態のマイカテープは、マイカ層と裏打ち層の厚さの合計が300μm以下である。これにより、マイカテープを被絶縁体に巻き付ける際の作業性に優れている。また、マイカテープを被絶縁体に巻きつけた後の加圧工程で、樹脂成分を重なり合うマイカテープ間に充分にいきわたらせることができ、マイカテープ間の密着性が高く信頼性に優れる絶縁層を形成することできる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
(1)マイカペーパーの作製
 未焼成硬質マイカを水中に分散してマイカ片とし、抄紙機にて抄造して、マイカ量が180g/mのマイカペーパー(未焼成硬質集成マイカ)を作製した。作製したマイカペーパーの平均厚さは150μmであった。なお、マイカペーパーの平均厚さはマイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いて18点の厚みを測定し、その算術平均値として求めた。以下、同様の方法によりマイカペーパーの平均厚さを測定した。
 マイカペーパーの作製に用いたマイカ片において、JIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合(質量%)と、粒子径が0.5mm以上であるマイカ片の割合(質量%)を、テープ作製前の粒子径が2.8mm以上であるマイカ片の割合と粒子径が0.5mm以上であるマイカ片の割合として表1に示す。
(2)樹脂ワニスの調製
 樹脂成分としてフェノールノボラック型エポキシ樹脂(ダウ・ケミカル日本株式会社、「D.E.N.438」(「D.E.N.」は、登録商標))36.7質量%と、硬化促進剤として三フッ化ホウ素モノエチルアミン(和光純薬工業株式会社)1.1質量%と、有機溶剤としてメチルエチルケトン(MEK)(和光純薬工業株式会社)31.1質量%とを混合した。その後、無機フィラーとして窒化ホウ素(体積平均粒子径5μm、電気化学工業株式会社)を31.1質量%加え、さらに混合して樹脂ワニスを調製した。
 なお、樹脂ワニスの不揮発分(有機溶剤以外の成分)に対する窒化ホウ素の含有率は、25体積%であった。
(3)プリプレグマイカテープの作製
 マイカペーパーの上に裏打ち材としてガラスクロス(株式会社双洋、「WEA 03G 103」、平均厚さ0.030mm)を重ね、このガラスクロスの上面に、樹脂ワニスをロールコーターにより塗布し、ガラスクロスに樹脂ワニスを含浸させた。含浸は、樹脂ワニスの樹脂成分がマイカペーパーにも浸透するように実施した。
 この際、ロールコーターとガラスクロスとの間のギャップ幅を調整することで、マイカの見掛け体積が窒化ホウ素の体積の4.65倍となるようにした。乾燥後、マイカ層とガラスクロス層(裏打ち層)の積層体を、長さが合計で100m、幅が30mmとなるように切断して、プリプレグマイカテープを作製した。
 裏打ち材の平均厚さは、マイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いてマイカテープの厚さを計10箇所で測定し、得られた測定値の算術平均値として求めた。
(マイカテープ作製後のマイカ片の粒子径)
 プリプレグマイカテープのガラスクロス層(裏打ち層)から剥離したマイカ層から、上述した方法によって得たマイカ片について篩い分けを行った。篩い分けの結果を、テープ作製後の粒子径が2.8mm以上であるマイカ片の割合と粒子径が0.5mm以上であるマイカ片の割合として表1に示す。
(硬化前後におけるマイカテープの平均厚さと厚さの最大値)
 作製したプリプレグマイカテープの硬化前の平均厚さは270μmであり、厚さの最大値は276μmであった。マイカテープを170℃で1時間加熱硬化して得たプリプレグマイカテープの硬化物の平均厚さは265μmであり、厚さの最大値は273μmであった。
 プリプレグマイカテープの硬化前後における平均厚さと厚さの最大値は、マイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いて10点の厚みを測定し、その算術平均値と最大値として求めた。以下、同様の方法によりプリプレグマイカテープの平均厚さ、厚さ最大値を測定した。
(硬化前におけるマイカテープのマイカ層の平均厚さ)
 作製したプリプレグマイカテープの硬化前におけるマイカ層の平均厚さは、147μmであった。マイカ層の平均厚さは、プリプレグマイカテープの断面を幅方向に対して実体顕微鏡(オリンパス株式会社、「BX51」)のミクロメーターにて3箇所観察し、その算術平均値として求めた。
(樹脂成分の含有率)
 作製したプリプレグマイカテープについて、上述した方法により加熱前後の質量減少率を3回測定し、その算術平均値をマイカテープ中の樹脂成分の含有率とした。結果を表1に示す。以下、同様の方法によりマイカテープ中の樹脂成分の含有率を測定した。
(窒化ホウ素の体積に対するマイカの見掛け体積)
 作製したプリプレグマイカテープについて、上述した方法により窒化ホウ素の体積に対するマイカの見掛け体積を算出した。結果を表1に示す。
(4)プリプレグマイカテープの積層硬化物1の作製
 作製したプリプレグマイカテープを16枚重ねて、170℃で1時間のヒートプレスを行って樹脂成分を硬化させ、積層硬化物1を作製した。積層硬化物1を用いて熱伝導率とボイドの有無を下記のようにして評価した。結果を表1に示す。
(熱伝導率)
 積層硬化物1を直径50mmの円形に切り出して試料を作製し、熱伝導率測定装置(英弘精機株式会社、「HC-110」)を用いて、熱伝導率(W/(m・K))を測定した。結果を表1に示す。
(ボイドの有無)
 積層硬化物1を厚み方向に切断し、切断面を研磨紙により平滑化した後、白金を蒸着した。この切断面を走査型電子顕微鏡(SEM)(倍率:30~40倍)により観察し、観察画面(厚み方向の長さ3mm、幅方向の長さ3mm)におけるボイドの有無を以下の評価基準で評価した。結果を表1に示す。
 長さが50μm以上のボイドが見られない・・・A
 長さが50μm以上のボイドが1~4箇所見られる・・・B
 長さが50μm以上のボイドが5箇所以上見られる・・・C
(5)プリプレグマイカテープの積層硬化物2の作製
 作製したプリプレグマイカテープを3枚重ねて、170℃で1時間のヒートプレスを行って樹脂成分を硬化させ、積層硬化物2を作製した。積層硬化物2を用いて絶縁性(絶縁破壊電界強度)を下記のようにして評価した。結果を表1に示す。
(絶縁破壊電界強度)
 積層硬化物2について、絶縁破壊試験装置(総研電気株式会社、「DAC-6032C」)を用いて絶縁破壊電界強度(kV/mm)を測定した。測定は、積層硬化物2を直径10mmの円筒電極ではさみ、昇圧速度500V/s、交流50Hz、カットオフ電流10mA、室温(25±1℃)、油中の条件で行った。結果を表1に示す。
(6)絶縁層の形成と評価
 プリプレグマイカテープを被絶縁体としての長さ200mm、幅30mm、厚さ9mmの金属板にらせん状に巻き付けた。巻き付けは、図2に示すように、マイカテープ10を被絶縁体20に巻きつけた部分の半分が、その上に巻きつける部分の半分と重なるように行い、断面を観察したときにマイカテープ10が計10層(1層のマイカ層と1層の裏打ち層の合計を「1層」とする)となるように繰り返した。その後、170℃で1時間のヒートプレスを行って樹脂成分を硬化させて、絶縁層を形成した。
 次いで、金属板から絶縁層を分離し、厚み方向に切断し、切断面を研磨紙により平滑化した後、白金を蒸着した。この切断面をSEM(倍率:30倍~40倍)により観察し、観察画面(厚み方向の長さ:3mm、幅方向の長さ:3mm)におけるボイドの有無を調べた。その結果、長さが50μm以上のボイドは観察されなかった。図3に絶縁層の断面のSEM写真を示す。
<実施例2~6、比較例1>
(1)プリプレグマイカテープの作製と評価
 マイカペーパーの作製に用いたマイカの量、マイカテープの作製前と作製後における粒子径が2.8mm以上であるマイカ片の割合と粒子径が0.5mm以上であるマイカ片の割合、マイカペーパーの平均厚さ、硬化前後におけるマイカテープの平均厚さと厚さの最大値、硬化前におけるマイカテープのマイカ層の平均厚さ、樹脂成分の含有率及び窒化ホウ素の体積に対するマイカの見掛け体積が表1に示す値である以外は実施例1と同様にして、実施例2~6及び比較例1のプリプレグマイカテープを作製した。作製したプリプレグマイカテープを用いて、実施例1と同様にして熱伝導率、ボイドの有無及び絶縁破壊電界強度を評価した。結果を表1に示す。
(2)絶縁層の作製と評価
 比較例1のプリプレグマイカテープを用いて、実施例1と同様にして絶縁層を形成した。形成した絶縁層の断面のSEM写真を図3に示す。図3に示すように、絶縁層中に長さが50μm以上のボイドが観察された。
<実施例7>
(1)マイカペーパーの作製
 未焼成硬質マイカを水中に分散してマイカ粒子とし、抄紙機にて抄造して、マイカ量が100g/mのマイカペーパー(未焼成硬質集成マイカ)を作製した。
(2)樹脂ワニスの調製
 樹脂成分としてビスフェノールA型エポキシ樹脂(三菱化学株式会社、「エピコート828」)と、硬化促進剤として亜鉛(II)アセチルアセトナート(純正化学株式会社)と、有機溶剤としてメチルエチルケトン(和光純薬工業株式会社)とを混合した。その後、無機フィラーとして窒化ホウ素(体積平均粒子径:5μm)を加え、さらに混合して樹脂ワニスを調製した。エポキシ樹脂と硬化促進剤との質量基準の比率(エポキシ樹脂:硬化促進剤)は、97:3であった。
 なお、樹脂ワニスの不揮発分(有機溶剤以外の成分)に対する窒化ホウ素の含有率は、25体積%であった。
(3)ドライマイカテープの作製及び評価
 マイカペーパーの上に裏打ち材としてガラスクロス(株式会社双洋、「WEA 03G 103」)を重ね、このガラスクロスの上面に、樹脂ワニスをロールコーターにより塗布した。塗布は、ガラスクロスの下のマイカペーパーの一部にも樹脂ワニスの樹脂成分が浸透して、マイカペーパーとガラスクロスとが樹脂成分で接着するように実施した。また、ロールコーターとガラスクロスとの間のギャップ幅を調整することで、マイカの見掛け体積が窒化ホウ素の体積の3.11倍になるようにした。乾燥後、幅が30mmになるように切断して、ドライマイカテープを作製した。
 作製したドライマイカテープについて、実施例1と同様にしてテープ作製後のマイカ片の粒子径、硬化前後におけるマイカテープの平均厚さと厚さの最大値、硬化前におけるマイカテープのマイカ層の平均厚さ、及び樹脂成分の含有率を評価した。結果を表1に示す。
(4)ドライマイカテープの積層硬化物3の作製及び評価
 作製したドライマイカテープを10枚重ねて含浸レジンに浸漬し、真空含浸法によりドライマイカテープに樹脂成分を浸透させた。その後、130℃で2時間、次いで190℃で2時間のヒートプレスを行って、積層硬化物3を作製した。
 含浸レジンとしては、ビスフェノールA型エポキシ樹脂(三菱化学株式会社、「エピコート828」)と硬化剤(日立化成株式会社、「HN-5500」、メチルヘキサヒドロ無水フタル酸)とを質量基準で1:1で混合したものを用いた。積層硬化物3を用いて、実施例1と同様の方法で熱伝導率と、ボイドの有無を評価した。結果を表1に示す。
(5)ドライマイカテープの積層硬化物4の作製及び評価
 作製したドライマイカテープを3枚重ね、積層硬化物3の作製に用いたものと同じ含浸レジンに浸漬し、真空含浸法によりドライマイカテープに樹脂成分を浸透させた。その後、130℃で2時間、次いで190℃で2時間のヒートプレスを行って、積層硬化物4を作製した。積層硬化物4を用いて、実施例1と同様の方法で絶縁性(絶縁破壊電界強度)を評価した。結果を表1に示す。
(6)絶縁層の形成と評価
 作製したドライマイカテープを実施例1と同様にして金属板に巻き付け、積層硬化物3の作製に用いたものと同じ含浸レジンに浸漬し、真空含浸法によりドライマイカテープに樹脂成分を浸透させた。その後、130℃で2時間、及び190℃で1時間のヒートプレスを行って樹脂成分を硬化させて、絶縁層を形成した。形成した絶縁層について、実施例1と同様の方法でボイドの有無を評価したところ、長さが50μm以上のボイドは観察されなかった。
Figure JPOXMLDOC01-appb-T000001

 
 表1の「マイカ/BN(体積比)」は、「マイカの総見掛け体積の、窒化ホウ素の総体積に対する比率」を意味する。
 表1の結果に示されるように、JIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合が45質量%未満である実施例のマイカテープは硬化後の絶縁破壊電界強度が高く、積層硬化物中にボイドの発生は見られなかった。
 実施例の中でも、JIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が60質量%以上である実施例1~5のマイカテープは、粒子径が0.5mm以上であるマイカ片の割合が60質量%未満である実施例6のマイカテープに比べて硬化後の絶縁破壊電界強度が高かった。
 JIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合が45質量%を超えている比較例1のマイカテープは、硬化後の絶縁破壊電界強度が実施例よりも低く、積層硬化物中にボイドが観察された。
 なお、マイカテープ作製前のマイカ片の粒子径よりもマイカテープ作製後のマイカ片の粒子径が小さくなる傾向が認められるが、これはマイカテープの作製工程においてマイカ片の表面が疎水性の樹脂成分で被覆され水素結合が失われることで、マイカ片同士の凝集状態が抑制されるためと考えられる。

Claims (18)

  1.  マイカを含むマイカ層と、裏打ち材を含む裏打ち層とを有し、前記裏打ち層から剥離した前記マイカ層から得られるマイカ片をJIS標準篩を用いて篩い分けしたときに、粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満である、マイカテープ。
  2.  前記裏打ち層から剥離した前記マイカ層から得られるマイカ片をJIS標準篩を用いて篩い分けしたときに、粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の40質量%以上である、請求項1に記載のマイカテープ。
  3.  マイカを含むマイカ層と、裏打ち材を含む裏打ち層とを有し、前記マイカ層におけるJIS標準篩を用いて篩い分けしたときの粒子径が2.8mm以上であるマイカ片の割合が、マイカ片全体の45質量%未満である、マイカテープ。
  4.  前記マイカ層におけるJIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が、マイカ片全体の40質量%以上である、請求項3に記載のマイカテープ。
  5.  前記マイカテープの平均厚さが300μm以下であり、プリプレグマイカテープとして使用される、請求項1~請求項4のいずれか1項に記載のマイカテープ。
  6.  前記マイカテープの平均厚さが220μm以下であり、ドライマイカテープとして使用される、請求項1~請求項4のいずれか1項に記載のマイカテープ。
  7.  前記マイカ層の平均厚さが180μm以下である、請求項1~請求項6のいずれか1項に記載のマイカテープ。
  8.  前記裏打ち層は無機フィラーをさらに含む、請求項1~請求項7のいずれか1項に記載のマイカテープ。
  9.  前記無機フィラーは窒化ホウ素を含む、請求項8に記載のマイカテープ。
  10.  前記マイカの見掛け体積が前記窒化ホウ素の体積の2.0倍~5.0倍である、請求項9に記載のマイカテープ。
  11.  前記無機フィラーの体積平均粒子径が1μm~40μmである、請求項8~請求項10のいずれか1項に記載のマイカテープ。
  12.  前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、請求項8~請求項11のいずれか1項に記載のマイカテープ。
  13.  前記マイカテープの平均厚さが120μm以上である、請求項1~請求項12のいずれか1項に記載のマイカテープ。
  14.  樹脂成分をさらに含む、請求項1~請求項13のいずれか1項に記載のマイカテープ。
  15.  前記樹脂成分の含有率が、前記マイカ層及び前記裏打ち層の合計質量の25質量%~33質量%であり、プリプレグマイカテープとして使用される、請求項14に記載のマイカテープ。
  16.  前記樹脂成分の含有率が、前記マイカ層及び前記裏打ち層の合計質量の5質量%~15質量%であり、ドライマイカテープとして使用される、請求項13に記載のマイカテープ。
  17.  請求項1~請求項16に記載のマイカテープの硬化物。
  18.  被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される請求項1~請求項16のいずれか1項に記載のマイカテープの硬化物である絶縁層と、を有する絶縁物。
PCT/JP2016/061622 2016-04-08 2016-04-08 マイカテープ、マイカテープの硬化物及び絶縁物 WO2017175397A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2016/061622 WO2017175397A1 (ja) 2016-04-08 2016-04-08 マイカテープ、マイカテープの硬化物及び絶縁物
CN201780021061.8A CN108886286A (zh) 2016-04-08 2017-04-10 旋转电机用线圈、旋转电机用线圈的制造方法、云母带、云母带的固化物和绝缘物
PCT/JP2017/014724 WO2017175875A1 (ja) 2016-04-08 2017-04-10 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
US16/090,962 US20190115119A1 (en) 2016-04-08 2017-04-10 Coil for rotating electrical machine, method for producing coil for rotating electrical machine, mica tape, cured product of mica tape, and insulating material
KR1020187028309A KR20180118738A (ko) 2016-04-08 2017-04-10 회전 전기용 코일, 회전 전기용 코일의 제조 방법, 마이카 테이프, 마이카 테이프의 경화물 및 절연물
JP2018510684A JP6889153B2 (ja) 2016-04-08 2017-04-10 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
EP17779252.0A EP3442098A4 (en) 2016-04-08 2017-04-10 COIL FOR ROTATING ELECTRIC MACHINE, METHOD FOR MANUFACTURING COIL FOR ROTATING ELECTRIC MACHINE, MICA BAND, CURED MICA BAND PRODUCT, AND INSULATING MATERIAL
JP2020011702A JP2020092597A (ja) 2016-04-08 2020-01-28 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061622 WO2017175397A1 (ja) 2016-04-08 2016-04-08 マイカテープ、マイカテープの硬化物及び絶縁物

Publications (1)

Publication Number Publication Date
WO2017175397A1 true WO2017175397A1 (ja) 2017-10-12

Family

ID=60000952

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/061622 WO2017175397A1 (ja) 2016-04-08 2016-04-08 マイカテープ、マイカテープの硬化物及び絶縁物
PCT/JP2017/014724 WO2017175875A1 (ja) 2016-04-08 2017-04-10 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014724 WO2017175875A1 (ja) 2016-04-08 2017-04-10 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Country Status (6)

Country Link
US (1) US20190115119A1 (ja)
EP (1) EP3442098A4 (ja)
JP (2) JP6889153B2 (ja)
KR (1) KR20180118738A (ja)
CN (1) CN108886286A (ja)
WO (2) WO2017175397A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043031A (ja) * 2018-09-13 2020-03-19 藤森工業株式会社 バスバー用絶縁フィルム及びバスバー

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019077793A1 (ja) * 2017-10-18 2019-11-14 三菱電機株式会社 固定子コイルの絶縁被覆材およびそれを用いた回転機
JP2019108517A (ja) * 2017-12-15 2019-07-04 住友ベークライト株式会社 熱硬化性樹脂組成物、その硬化物、積層板、金属ベース基板およびパワーモジュール
CN112771765A (zh) * 2018-10-11 2021-05-07 三菱电机株式会社 定子线圈、定子线圈的制造方法以及旋转电机
JP6758791B2 (ja) * 2019-01-18 2020-09-23 西芝電機株式会社 回転子コイルの製造方法
CN110492646A (zh) * 2019-08-08 2019-11-22 中国长江动力集团有限公司 匝间绝缘结构及其构成的发电机转子线圈
WO2021145097A1 (ja) * 2020-01-17 2021-07-22 株式会社日立インダストリアルプロダクツ プリプレグマイカテープ、回転電機及び回転電機の製造方法
JP7498098B2 (ja) 2020-01-17 2024-06-11 株式会社日立インダストリアルプロダクツ プリプレグマイカテープ、回転電機及び回転電機の製造方法
CN114360841B (zh) * 2021-11-30 2022-11-18 核工业西南物理研究院 一种可拆卸的大电流板式环向场磁体线圈
JP2023101093A (ja) * 2022-01-07 2023-07-20 日立Astemo株式会社 回転電機の固定子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425498A (en) * 1977-07-28 1979-02-26 Hitachi Chemical Co Ltd Mica prepreg material
JPS5436596A (en) * 1977-08-26 1979-03-17 Hitachi Ltd Mica prepreg material
JPH02304818A (ja) * 1989-05-19 1990-12-18 Okabe Maika Kogyosho:Kk 微粒集成マイカテープ及びシート
JPH11306891A (ja) * 1998-04-23 1999-11-05 Okabe Mica Kogyosho:Kk 耐火電線用集成マイカテープ
JP2008027819A (ja) * 2006-07-24 2008-02-07 Toshiba Corp プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機
JP2012038681A (ja) * 2010-08-11 2012-02-23 Hitachi Ltd ドライマイカテープ及びこれを用いた電気絶縁線輪
WO2015053374A1 (ja) * 2013-10-09 2015-04-16 日立化成株式会社 プリプレグマイカテープ及びそれを用いたコイル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022445B2 (ja) * 1980-11-19 1985-06-01 日立化成工業株式会社 集成マイカ材料及び集成マイカプリプレグ材料
JPS5861605A (ja) * 1981-10-08 1983-04-12 Hitachi Chem Co Ltd 絶縁線輪
US4491618A (en) * 1980-11-08 1985-01-01 Hitachi Chemical Company, Ltd. Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils
US4576856A (en) * 1980-11-19 1986-03-18 Hitachi Chemical Company, Ltd. Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils
JP3879054B2 (ja) * 2000-09-13 2007-02-07 株式会社日本マイカ製作所 マイカ基材シート状体及び絶縁コイル
JP4996086B2 (ja) * 2005-09-29 2012-08-08 株式会社東芝 マイカテープおよびこのマイカテープを用いた回転電機コイル
JP4922018B2 (ja) * 2007-03-06 2012-04-25 株式会社東芝 回転電機のコイル絶縁物
WO2013073496A1 (ja) * 2011-11-14 2013-05-23 三菱電機株式会社 電磁コイル及びその製造方法、並びに絶縁テープ
US10199136B2 (en) * 2014-01-29 2019-02-05 Mitsubishi Electric Corporation Insulating tape and production method thereof, stator coil and production method thereof, and rotating electric machine
EP3280032A4 (en) * 2015-07-17 2018-12-26 Hitachi Chemical Co., Ltd. Coil for rotary electric machine, method for manufacturing coil for rotary electric machine, and mica tape

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425498A (en) * 1977-07-28 1979-02-26 Hitachi Chemical Co Ltd Mica prepreg material
JPS5436596A (en) * 1977-08-26 1979-03-17 Hitachi Ltd Mica prepreg material
JPH02304818A (ja) * 1989-05-19 1990-12-18 Okabe Maika Kogyosho:Kk 微粒集成マイカテープ及びシート
JPH11306891A (ja) * 1998-04-23 1999-11-05 Okabe Mica Kogyosho:Kk 耐火電線用集成マイカテープ
JP2008027819A (ja) * 2006-07-24 2008-02-07 Toshiba Corp プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機
JP2012038681A (ja) * 2010-08-11 2012-02-23 Hitachi Ltd ドライマイカテープ及びこれを用いた電気絶縁線輪
WO2015053374A1 (ja) * 2013-10-09 2015-04-16 日立化成株式会社 プリプレグマイカテープ及びそれを用いたコイル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043031A (ja) * 2018-09-13 2020-03-19 藤森工業株式会社 バスバー用絶縁フィルム及びバスバー
WO2020053747A1 (ja) * 2018-09-13 2020-03-19 藤森工業株式会社 バスバー用絶縁フィルム及びバスバー
JP7154905B2 (ja) 2018-09-13 2022-10-18 藤森工業株式会社 バスバー用絶縁フィルム及びバスバー

Also Published As

Publication number Publication date
WO2017175875A1 (ja) 2017-10-12
JPWO2017175875A1 (ja) 2018-11-29
JP6889153B2 (ja) 2021-06-18
US20190115119A1 (en) 2019-04-18
EP3442098A4 (en) 2019-10-30
CN108886286A (zh) 2018-11-23
JP2020092597A (ja) 2020-06-11
EP3442098A1 (en) 2019-02-13
KR20180118738A (ko) 2018-10-31

Similar Documents

Publication Publication Date Title
WO2017175875A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP6520966B2 (ja) プリプレグマイカテープ及びそれを用いたコイル
JP4103390B2 (ja) 絶縁材及び電機巻線とその製造法
CN104217795B (zh) 电绝缘***
EP2945169B1 (en) Insulation tape, method for producing same and stator coil
JP6819589B2 (ja) 回転電機用コイル、回転電機用コイルの製造方法及びマイカテープ
JP7094689B2 (ja) 電気絶縁システムおよび電気機械分野用絶縁部品
WO2018003950A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物
JP2019122099A (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2010158113A (ja) 電気絶縁部材、回転電機用固定子コイルおよび回転電機
JP6891887B2 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2012244861A (ja) 絶縁コイル
JP3879054B2 (ja) マイカ基材シート状体及び絶縁コイル
WO2018179439A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
WO2018179440A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2018170252A (ja) 回転電機用コイル、プリプレグマイカテープ、プリプレグマイカテープの製造方法、プリプレグマイカテープの硬化物、絶縁層付き物品、及び回転電機用コイルの製造方法
JP2019217668A (ja) ドライマイカテープ、絶縁物、回転電機用コイル及び回転電機用コイルの製造方法
WO2018179437A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物
JP2018026282A (ja) マイカテープ、マイカテープの製造方法、絶縁物、流動抵抗算出方法、流動抵抗算出装置、及び流動抵抗算出プログラム
JP2009187817A (ja) 絶縁シート、固定子コイルおよび回転電機

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897952

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP