WO2017175349A1 - Surface shape determination device, surface shape determination method and surface shape determination program - Google Patents

Surface shape determination device, surface shape determination method and surface shape determination program Download PDF

Info

Publication number
WO2017175349A1
WO2017175349A1 PCT/JP2016/061371 JP2016061371W WO2017175349A1 WO 2017175349 A1 WO2017175349 A1 WO 2017175349A1 JP 2016061371 W JP2016061371 W JP 2016061371W WO 2017175349 A1 WO2017175349 A1 WO 2017175349A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface shape
calculation result
shape determination
vector
shape
Prior art date
Application number
PCT/JP2016/061371
Other languages
French (fr)
Japanese (ja)
Inventor
光一 西浦
スマディ ジエン
萌 奥本
Original Assignee
インテグラル・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インテグラル・テクノロジー株式会社 filed Critical インテグラル・テクノロジー株式会社
Priority to JP2018510186A priority Critical patent/JP6605712B2/en
Priority to PCT/JP2016/061371 priority patent/WO2017175349A1/en
Publication of WO2017175349A1 publication Critical patent/WO2017175349A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a surface shape determination device, a surface shape determination method, and a surface shape determination program for determining a surface shape between adjacent first and second surfaces of an analysis structure whose surface is divided into a plurality of surfaces. About.
  • Patent Document 1 Conventionally, a surface shape measuring method for measuring the shape of an analysis structure has been disclosed (for example, see Patent Document 1).
  • This surface shape measurement method measures the coordinates of a plurality of measurement points arranged at predetermined intervals along the cross-section line of the representative cross section of the analysis structure (object to be measured), and determines each of the measurement points based on the coordinates of each measurement point.
  • a virtual line passing through the measurement point is created, and if the deviation between each verification point and the virtual line is greater than or equal to a predetermined value, the virtual line is corrected based on the coordinates of the verification point. Further, the coordinates of the verification point arranged between the measurement point and the verification point are measured, and the virtual line is corrected based on the coordinates of the verification point whose deviation from the virtual line is a predetermined value or more. It is disclosed that the above processing is performed between the measurement points, and the deviation of the virtual line with respect to the cross-sectional line is set to a predetermined value or less.
  • the present invention was devised to solve such problems, and its purpose is to provide a surface shape determination device, a surface shape determination method, and a surface shape that can determine the surface shape of an analytical structure using a very simple method. To provide a judgment program.
  • a surface shape determination apparatus determines a surface shape between a first surface and a second surface that are adjacent to each other in an analysis structure whose surface is divided into a plurality of surfaces.
  • An outer product calculation means for obtaining an outer product vector from a normal vector (out-of-plane vector) of the first surface (reference surface) and a tangential vector where the first surface and the second surface are in contact with each other;
  • Inner product calculating means for obtaining an inner product of the outer product vector and a normal vector (out-of-plane vector) of the second surface, and a surface of the second surface with respect to the first surface based on a calculation result of the inner product calculating means
  • determining means for determining the shape.
  • the determination unit determines that the second surface is a concave surface when the calculation result indicates a positive value, and determines the second surface when the calculation result indicates a negative value. Two surfaces are determined to be convex.
  • the determination means determines that the second surface is a plane continuous to the first surface when the calculation result indicates a zero value.
  • the determination unit determines the type of the surface when the calculation result indicates a positive value +, and the type of the surface when the calculation result indicates a negative value.
  • the type of surface when the calculation result shows a zero value is classified as 0, and the shape of the analysis structure is extracted by the combination of +, ⁇ , 0.
  • the surface shape determination method of the present invention is a surface shape determination method for determining a surface shape between adjacent first and second surfaces of an analysis structure whose surface is divided into a plurality of surfaces, A cross product calculating step for obtaining a cross product vector from a normal vector (out-of-plane vector) of the first surface (reference surface) and a tangential vector where the first surface and the second surface are in contact; , An inner product calculation step for obtaining an inner product with a normal vector (out-of-plane vector) of the second surface, and determination of determining a surface shape of the second surface with respect to the first surface based on a calculation result of the inner product calculation step And a step.
  • the determination step determines that the second surface is a concave surface when the calculation result indicates a positive value, and the second step when the calculation result indicates a negative value.
  • Two surfaces are determined as convex surfaces, and when the calculation result indicates a zero value, the second surface is determined to be a flat surface.
  • the determination step includes a surface type when the calculation result shows a positive value + and a surface type when the calculation result shows a negative value. -, And the type of surface when the calculation result shows a zero value is classified as 0, and the shape of the analysis structure is extracted by the combination of +,-, 0.
  • the surface shape determination program of the present invention is characterized by causing a computer to execute each step of the surface shape determination method having the above-described configuration.
  • the surface shapes of two adjacent surfaces can be determined very simply and easily.
  • FIG. 1 is a functional block diagram of a surface shape determination apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram illustrating an example of surface information.
  • Drawing 3 is an explanatory view of the surface shape judging processing of the analysis structure by the surface shape judging device concerning an embodiment.
  • FIG. 4 is an explanatory diagram of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment.
  • FIG. 5 is an explanatory diagram of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment.
  • FIG. 6 is a flowchart illustrating the procedure of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment.
  • FIG. 7 is an explanatory diagram illustrating a processing result when the determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 8 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 9 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 10 is an explanatory diagram illustrating a processing result when the determination processing is applied to a specific shape portion of the analysis structure.
  • FIG. 11 is an explanatory diagram of an application example of the surface shape determination process according to the embodiment.
  • FIG. 1 is a functional block diagram of a surface shape determination apparatus 1 according to an embodiment of the present invention.
  • the surface shape determination device 1 is a device that determines a surface shape between a first surface and a second surface that are adjacent to each other in an analysis structure whose surface is divided into a plurality of surfaces.
  • the surface shape determination apparatus 1 includes data input means 11 for inputting CAD or other shape data (analytical structure shape model), and the input surface of the analyzed structure is divided into a plurality of surfaces. And a database 12 in which information on each surface is registered.
  • FIG. 2 is an explanatory diagram showing an example of surface information.
  • the surface information shown in FIG. 2 exemplifies the surface f12 of the rounded thick portion (fillet) that is the root of the rising portion of the rib-shaped rib shown in FIG.
  • the surface shape determination apparatus 1 has a first surface (reference surface).
  • the outer product computing means 13 for obtaining the outer product vector from the normal vector (out-of-plane vector) and the vector in the tangential direction where the first surface and the second surface are in contact, and the obtained outer product vector and the normal vector of the second surface (
  • An inner product calculating means 14 for obtaining an inner product with the out-of-plane vector), and a determining means 15 for determining the surface shape of the second surface relative to the first surface based on the calculation result of the inner product calculating means 14.
  • the outer product calculation means 13 performs the outer product calculation with one surface registered in the database 12 as the first surface (reference surface) F1 and the other surface F2 adjacent thereto as the second surface (step S1).
  • the first surface (reference surface) F1 is basically a flat surface.
  • the outer product vector D is obtained from the vector B of
  • the inner product calculation means 14 calculates the inner product of the outer product vector D obtained by the outer product calculation means 13 and the normal vector (out-of-plane vector) C of the second surface F2 (step S2), and determines the calculation result as a determination means. 15
  • the determination means 15 determines the surface shape of the second surface F2 with respect to the first surface F1 based on the input calculation result.
  • step S3 it is determined whether or not the calculation result is a positive value.
  • the second surface F2 is determined to be a concave surface (see FIG. 3) (step S4). ).
  • step S5 it is next determined whether or not the calculation result is a negative value (step S5), and the calculation result is negative.
  • step S6 it is next determined whether or not the calculation result is a convex surface (see FIG. 4) (step S6).
  • step S7 it is next determined whether or not the calculation result is a zero value (step S7), and the calculation result is zero.
  • the value is indicated, it is determined that the second surface F2 is a plane (see FIG. 5) continuous with the first surface F1 (step S8). If it is also determined No in step S7, error processing (step S11) is executed and the process ends.
  • step S9 it is confirmed whether or not the processing for all the surfaces has been completed. If the processing for all the surfaces has not been completed, the processing returns to step S1 and the processing is repeated. On the other hand, if all the surfaces have been processed (Yes in step S9), the surface shape determination processing ends at that time.
  • the determination means 15 sets the surface type when the calculation result shows a positive value (+), the type of the surface when the calculation result shows a negative value ( ⁇ ), and the calculation result shows a zero value. Is classified by (0), and the classification information is registered corresponding to the information of each surface of the database 12 (step S10). As a result, the shape of the analysis structure can be extracted (that is, specified) by a combination of these (+), ( ⁇ ), and (0) in processing such as analysis simulation performed later.
  • FIG. 7 shows the result of applying the above-described determination processing to the rib shape, and the result of the inner product calculation is positive (+) on the surface of the rounded thick part (fillet) that is the root of the rising part of the rib, The result of the inner product calculation is minus ( ⁇ ) on the surface of the tip (end) of the rib.
  • the surface F11 is classified as a plane
  • the surface F12 is a concave surface
  • the surface F13 is a plane
  • the surface F14 is a convex surface
  • the surface F15 is a plane
  • the surface F16 is a concave surface
  • the surface F17 is a plane.
  • FIG. 8 shows the result of applying the above-described determination processing to the shape of the end portion, and the result of the inner product calculation is minus ( ⁇ ) for the rounded surface of the corner portion of the end portion.
  • the surface F21 is classified as a plane, the surface F22 as a convex surface, the surface F23 as a plane, the surface F24 as a convex surface, and the surface F25 as a plane.
  • FIG. 9 shows the result of applying the above-described determination process to a shape in which a plane continues.
  • the result of the inner product operation also continues with zero (0).
  • the surface F31 is classified as a plane
  • the surface F32 is classified as a plane
  • the surface F33 is classified as a plane
  • the surface F34 is classified as a plane.
  • FIG. 10 shows the result of applying the above-described determination processing to a shape including a gradually changing surface (gradually changing surface), and the result of the inner product calculation is positive (+) and negative in the gradually changing surface. (-).
  • the surface F41 is classified as a plane
  • the surface F42 is classified as a gradually changing surface (in this example, an inclined surface)
  • the surface F43 is classified as a plane.
  • the information of the shape type of each surface of the analysis structure classified in this way is used for various subsequent analysis simulations.
  • the surface shape of each of the divided surfaces can be determined only by the calculated value plus, minus, zero. Therefore, it is possible to perform the surface determination process easily and at extremely high speed.
  • the surface shape determination process of the present invention can be applied to various shape models such as a solid model and a wire model in addition to the surface model. .
  • connection points e1 and e2 between the surface F42 and the surface F43. Therefore, by using these pieces of information, for example, a neutral surface (or mesh) CF1 can be easily pasted on the gradually changing surface F42.
  • FIG. 11 is an explanatory diagram showing a simple example when the analysis structure is divided into hexahedral meshes.
  • the normal vector of the surface F51 which is the reference surface, and the tangential direction where the surface F51 and the surface F52 are in contact with each other If the outer product vector is obtained from the vector and the inner product of the outer product vector and the normal vector of the surface F52 is obtained, the result of the operation becomes positive. That is, it can be seen that the connecting portion between the surface F51 and the surface F52 is a recess. Therefore, the analysis structure can be divided into two hexahedral meshes on the left and right sides by drawing the cut line CL1 downward from the connection point P along the surface F52 (that is, parallel to the surface F54). Further, by drawing a cut line CL2 from the connection point P to the left along the surface F51 (that is, parallel to the surface F53), the analysis structure can be divided into two upper and lower hexahedral meshes.
  • FIGS. 10 and 11 are merely examples, and the present invention is not limited to these application examples.
  • the present invention includes a program executed by a computer in order to realize the surface shape determination method.
  • the computer is, for example, a CPU (not shown) of the surface shape determination apparatus 1, but any other device that can execute a program may be used.
  • the computer can execute the surface shape determination process of the present invention by executing a program acquired via a recording medium or a communication network.
  • the present invention greatly contributes to the entire technical field related to analysis simulation in which structural analysis is performed using various shape models such as a surface model, a solid model, and a wire model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A surface shape determination device for determining the surface shape between a first face and a second face adjacent to each other of an analysis structure in which a surface has been divided into a plurality of faces, the device being provided with: a cross product calculation means 13 for obtaining a cross product vector by a normal vector of the first face and a vector in the tangential direction in which the first face and the second face are in contact; a dot product calculation means 14 for obtaining a dot product of the obtained cross product vector and a normal vector of the second face; and a determination means 15 for determining the surface shape of the second face with respect to the first face on the basis of the calculation results of the dot product calculation means 14.

Description

表面形状判定装置、表面形状判定方法、及び表面形状判定プログラムSurface shape determination apparatus, surface shape determination method, and surface shape determination program
 本発明は、表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定装置、表面形状判定方法、及び表面形状判定プログラムに関する。 The present invention relates to a surface shape determination device, a surface shape determination method, and a surface shape determination program for determining a surface shape between adjacent first and second surfaces of an analysis structure whose surface is divided into a plurality of surfaces. About.
 従来から、解析構造物の形状を測定する表面形状測定方法が開示されている(例えば、特許文献1参照)。 Conventionally, a surface shape measuring method for measuring the shape of an analysis structure has been disclosed (for example, see Patent Document 1).
 この表面形状測定方法は、解析構造物(被測定対象物)の代表断面の断面線に沿って所定の間隔で配置した複数の測定点の座標を測定し、各測定点の座標に基づいて各測定点を通過する仮想線を作成し、各検証点と仮想線との偏差が所定値以上の場合には、検証点の座標に基づいて仮想線を修正する。さらに、測定点と検証点との間に配置した検証点の座標を測定し、仮想線との偏差が所定値以上の検証点の座標に基づいて仮想線を修正する。上記処理を各測定点間に対して行い、断面線に対する仮想線の偏差を所定値以下とすることが開示されている。 This surface shape measurement method measures the coordinates of a plurality of measurement points arranged at predetermined intervals along the cross-section line of the representative cross section of the analysis structure (object to be measured), and determines each of the measurement points based on the coordinates of each measurement point. A virtual line passing through the measurement point is created, and if the deviation between each verification point and the virtual line is greater than or equal to a predetermined value, the virtual line is corrected based on the coordinates of the verification point. Further, the coordinates of the verification point arranged between the measurement point and the verification point are measured, and the virtual line is corrected based on the coordinates of the verification point whose deviation from the virtual line is a predetermined value or more. It is disclosed that the above processing is performed between the measurement points, and the deviation of the virtual line with respect to the cross-sectional line is set to a predetermined value or less.
特開平5-180652号公報Japanese Patent Laid-Open No. 5-180652
 上記特許文献1の開示技術では、所定の間隔で配置した複数の測定点の座標を測定し、各測定点の座標に基づいて各測定点を通過する仮想線を作成し、各検証点と仮想線との偏差が所定値以下になるまで、検証点の座標に基づいて仮想線を修正するといった処理を繰り返すことになる。 In the disclosed technique disclosed in Patent Document 1, the coordinates of a plurality of measurement points arranged at a predetermined interval are measured, and a virtual line passing through each measurement point is created based on the coordinates of each measurement point. Until the deviation from the line becomes a predetermined value or less, the process of correcting the virtual line based on the coordinates of the verification point is repeated.
 そのため、高い精度で表面形状を測定できるものの、膨大な処理時間と処理工数とが必要になるといった問題があった。 Therefore, although the surface shape can be measured with high accuracy, there is a problem that enormous processing time and processing man-hours are required.
 本発明はかかる問題点を解決すべく創案されたもので、その目的は、極めて簡単な手法を用いて解析構造物の表面形状を判定し得る表面形状判定装置、表面形状判定方法、及び表面形状判定プログラムを提供することにある。 The present invention was devised to solve such problems, and its purpose is to provide a surface shape determination device, a surface shape determination method, and a surface shape that can determine the surface shape of an analytical structure using a very simple method. To provide a judgment program.
 上記課題を解決するため、本発明の表面形状判定装置は、表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定装置であって、前記第1面(基準面)の法線ベクトル(面外ベクトル)と、前記第1面と前記第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算手段と、前記外積ベクトルと、前記第2面の法線ベクトル(面外ベクトル)との内積を求める内積演算手段と、前記内積演算手段の演算結果に基づいて前記第1面に対する前記第2面の表面形状を判定する判定手段と、を備えたことを特徴としている。 In order to solve the above-described problems, a surface shape determination apparatus according to the present invention determines a surface shape between a first surface and a second surface that are adjacent to each other in an analysis structure whose surface is divided into a plurality of surfaces. An outer product calculation means for obtaining an outer product vector from a normal vector (out-of-plane vector) of the first surface (reference surface) and a tangential vector where the first surface and the second surface are in contact with each other; , Inner product calculating means for obtaining an inner product of the outer product vector and a normal vector (out-of-plane vector) of the second surface, and a surface of the second surface with respect to the first surface based on a calculation result of the inner product calculating means And determining means for determining the shape.
 また、本発明の表面形状判定装置によれば、前記判定手段は、前記演算結果がプラスの値を示すときには前記第2面を凹面と判定し、前記演算結果がマイナスの値を示すときには前記第2面を凸面と判定する構成としている。 According to the surface shape determination apparatus of the present invention, the determination unit determines that the second surface is a concave surface when the calculation result indicates a positive value, and determines the second surface when the calculation result indicates a negative value. Two surfaces are determined to be convex.
 また、本発明の表面形状判定装置によれば、前記判定手段は、前記演算結果が零の値を示すときには前記第2面を前記第1面に連続する平面であると判定する構成としている。 Further, according to the surface shape determination apparatus of the present invention, the determination means determines that the second surface is a plane continuous to the first surface when the calculation result indicates a zero value.
 また、本発明の表面形状判定装置によれば、前記判定手段は、前記演算結果がプラスの値を示すときの面の種類を+、前記演算結果がマイナスの値を示すときの面の種類を-、前記演算結果が零の値を示すときの面の種類を0で分類し、前記+、-、0の組み合わせにより前記解析構造物の形状を抽出する構成としている。 Further, according to the surface shape determination apparatus of the present invention, the determination unit determines the type of the surface when the calculation result indicates a positive value +, and the type of the surface when the calculation result indicates a negative value. The type of surface when the calculation result shows a zero value is classified as 0, and the shape of the analysis structure is extracted by the combination of +, −, 0.
 また、本発明の表面形状判定方法は、表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定方法であって、前記第1面(基準面)の法線ベクトル(面外ベクトル)と、前記第1面と前記第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算ステップと、前記外積ベクトルと、前記第2面の法線ベクトル(面外ベクトル)との内積を求める内積演算ステップと、前記内積演算ステップの演算結果に基づいて前記第1面に対する前記第2面の表面形状を判定する判定ステップと、を含むことを特徴としている。 Further, the surface shape determination method of the present invention is a surface shape determination method for determining a surface shape between adjacent first and second surfaces of an analysis structure whose surface is divided into a plurality of surfaces, A cross product calculating step for obtaining a cross product vector from a normal vector (out-of-plane vector) of the first surface (reference surface) and a tangential vector where the first surface and the second surface are in contact; , An inner product calculation step for obtaining an inner product with a normal vector (out-of-plane vector) of the second surface, and determination of determining a surface shape of the second surface with respect to the first surface based on a calculation result of the inner product calculation step And a step.
 また、本発明の表面形状判定方法によれば、前記判定ステップは、前記演算結果がプラスの値を示すときには前記第2面を凹面と判定し、前記演算結果がマイナスの値を示すときには前記第2面を凸面と判定し、前記演算結果が零の値を示すときには前記第2面を平面であると判定する構成としている。 According to the surface shape determination method of the present invention, the determination step determines that the second surface is a concave surface when the calculation result indicates a positive value, and the second step when the calculation result indicates a negative value. Two surfaces are determined as convex surfaces, and when the calculation result indicates a zero value, the second surface is determined to be a flat surface.
 また、本発明の表面形状判定方法によれば、前記判定ステップは、前記演算結果がプラスの値を示すときの面の種類を+、前記演算結果がマイナスの値を示すときの面の種類を-、前記演算結果が零の値を示すときの面の種類を0で分類し、前記+、-、0の組み合わせにより前記解析構造物の形状を抽出するステップを含む構成としている。 Further, according to the surface shape determination method of the present invention, the determination step includes a surface type when the calculation result shows a positive value + and a surface type when the calculation result shows a negative value. -, And the type of surface when the calculation result shows a zero value is classified as 0, and the shape of the analysis structure is extracted by the combination of +,-, 0.
 また、本発明の表面形状判定プログラムは、上記各構成の表面形状判定方法の各ステップを、コンピュータに実効させることを特徴としている。 The surface shape determination program of the present invention is characterized by causing a computer to execute each step of the surface shape determination method having the above-described configuration.
 本発明によれば、ベクトルの外積と内積に着目することで、隣接する2つの面の表面形状を極めて簡単かつ容易に判定することができる。 According to the present invention, by focusing on the outer product and inner product of vectors, the surface shapes of two adjacent surfaces can be determined very simply and easily.
図1は、本発明の実施の形態に係る表面形状判定装置の機能ブロック図である。FIG. 1 is a functional block diagram of a surface shape determination apparatus according to an embodiment of the present invention. 図2は、面の情報の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of surface information. 図3は、実施の形態に係る表面形状判定装置による解析構造物の表面形状判定処理の説明図である。Drawing 3 is an explanatory view of the surface shape judging processing of the analysis structure by the surface shape judging device concerning an embodiment. 図4は、実施の形態に係る表面形状判定装置による解析構造物の表面形状判定処理の説明図である。FIG. 4 is an explanatory diagram of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment. 図5は、実施の形態に係る表面形状判定装置による解析構造物の表面形状判定処理の説明図である。FIG. 5 is an explanatory diagram of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment. 図6は、実施の形態に係る表面形状判定装置による解析構造物の表面形状判定処理の手順を示すフローチャートである。FIG. 6 is a flowchart illustrating the procedure of the surface shape determination process of the analysis structure by the surface shape determination device according to the embodiment. 図7は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 7 is an explanatory diagram illustrating a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図8は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 8 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図9は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 9 is an explanatory diagram showing a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図10は、判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を示す説明図である。FIG. 10 is an explanatory diagram illustrating a processing result when the determination processing is applied to a specific shape portion of the analysis structure. 図11は、実施の形態に係る表面形状判定処理の応用例の説明図である。FIG. 11 is an explanatory diagram of an application example of the surface shape determination process according to the embodiment.
 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施の形態に係る表面形状判定装置1の機能ブロック図である。 FIG. 1 is a functional block diagram of a surface shape determination apparatus 1 according to an embodiment of the present invention.
 この表面形状判定装置1は、表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する装置である。 The surface shape determination device 1 is a device that determines a surface shape between a first surface and a second surface that are adjacent to each other in an analysis structure whose surface is divided into a plurality of surfaces.
 具体的に説明すると、この表面形状判定装置1は、CAD等の形状データ(解析構造物の形状モデル)を入力するデータ入力手段11と、入力された解析構造物の表面を複数の面に区分すると共に、各面の情報が登録されたデータベース12とを備えている。 More specifically, the surface shape determination apparatus 1 includes data input means 11 for inputting CAD or other shape data (analytical structure shape model), and the input surface of the analyzed structure is divided into a plurality of surfaces. And a database 12 in which information on each surface is registered.
 図2は、面の情報の一例を示す説明図である。この図2に示す面の情報は、後述する図7に示すリブ形状のリブの立ち上がり部分の根元である丸み肉厚部(フィレット)の面f12を例示している。 FIG. 2 is an explanatory diagram showing an example of surface information. The surface information shown in FIG. 2 exemplifies the surface f12 of the rounded thick portion (fillet) that is the root of the rising portion of the rib-shaped rib shown in FIG.
 データベース12には、各面の情報として、面積a1、各面の外形を構成するラインL1~L4及びライン数、それぞれのラインL1~L4の長さ、最大ライン長(この例ではL1(またはL3))、相当ライン幅(=面積a1/最大ライン長L1)の各情報が、各面ごとに登録されている。 In the database 12, as information on each surface, the area a1, the lines L1 to L4 and the number of lines constituting the outer shape of each surface, the length of each line L1 to L4, the maximum line length (in this example, L1 (or L3 )), Each information of the equivalent line width (= area a1 / maximum line length L1) is registered for each surface.
 ここで、データベース12に登録された一つの面を第1面(基準面)とし、これに隣接する他の面を第2面とすると、表面形状判定装置1は、第1面(基準面)の法線ベクトル(面外ベクトル)と、第1面と第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算手段13と、求めた外積ベクトルと第2面の法線ベクトル(面外ベクトル)との内積を求める内積演算手段14と、内積演算手段14の演算結果に基づいて第1面に対する第2面の表面形状を判定する判定手段15と、をさらに備えている。 Here, assuming that one surface registered in the database 12 is a first surface (reference surface) and another surface adjacent to the first surface is a second surface, the surface shape determination apparatus 1 has a first surface (reference surface). , The outer product computing means 13 for obtaining the outer product vector from the normal vector (out-of-plane vector) and the vector in the tangential direction where the first surface and the second surface are in contact, and the obtained outer product vector and the normal vector of the second surface ( An inner product calculating means 14 for obtaining an inner product with the out-of-plane vector), and a determining means 15 for determining the surface shape of the second surface relative to the first surface based on the calculation result of the inner product calculating means 14.
 次に、上記構成の表面形状判定装置1による解析構造物の表面形状判定処理について、図3乃至図5に示す説明図、及び図6に示すフローチャートを参照して説明する。 Next, the surface shape determination process of the analysis structure by the surface shape determination apparatus 1 having the above configuration will be described with reference to the explanatory diagrams shown in FIGS. 3 to 5 and the flowchart shown in FIG.
 外積演算手段13は、データベース12に登録された一つの面を第1面(基準面)F1とし、これに隣接する他の面F2を第2面として、外積演算を行う(ステップS1)。ここで、第1面(基準面)F1は、基本的に平面である。外積演算手段13では、図3乃至図5に示すように、第1面(基準面)F1の法線ベクトル(面外ベクトル)Aと、第1面F1と第2面F2とが接する接線方向のベクトルBとにより外積ベクトルDを求める。 The outer product calculation means 13 performs the outer product calculation with one surface registered in the database 12 as the first surface (reference surface) F1 and the other surface F2 adjacent thereto as the second surface (step S1). Here, the first surface (reference surface) F1 is basically a flat surface. In the outer product calculation means 13, as shown in FIGS. 3 to 5, the normal vector (out-of-plane vector) A of the first surface (reference surface) F1 and the tangential direction in which the first surface F1 and the second surface F2 are in contact with each other. The outer product vector D is obtained from the vector B of
 次に、内積演算手段14は、外積演算手段13で求めた外積ベクトルDと第2面F2の法線ベクトル(面外ベクトル)Cとの内積を求め(ステップS2)、その演算結果を判定手段15に入力する。 Next, the inner product calculation means 14 calculates the inner product of the outer product vector D obtained by the outer product calculation means 13 and the normal vector (out-of-plane vector) C of the second surface F2 (step S2), and determines the calculation result as a determination means. 15
 判定手段15は、入力された演算結果に基づいて第1面F1に対する第2面F2の表面形状を判定する。 The determination means 15 determines the surface shape of the second surface F2 with respect to the first surface F1 based on the input calculation result.
 具体的には、演算結果がプラスの値であるか否かを判断し(ステップS3)、演算結果がプラスの値を示すときには第2面F2を凹面(図3参照)と判定する(ステップS4)。一方、演算結果がプラスの値でない場合(ステップS3でNoと判断された場合)には、次に、演算結果がマイナスの値であるか否かを判断し(ステップS5)、演算結果がマイナスの値を示すときには第2面F2を凸面(図4参照)と判定する(ステップS6)。さらに、演算結果がマイナスの値でない場合(ステップS5でNoと判断された場合)には、次に演算結果が零の値であるか否かを判断し(ステップS7)、演算結果が零の値を示すときには第2面F2を第1面F1に連続する平面(図5参照)であると判定する(ステップS8)。なお、ステップS7でもNoと判断された場合には、エラー処理(ステップS11)を実行して終了する。 Specifically, it is determined whether or not the calculation result is a positive value (step S3). When the calculation result indicates a positive value, the second surface F2 is determined to be a concave surface (see FIG. 3) (step S4). ). On the other hand, when the calculation result is not a positive value (when it is determined No in step S3), it is next determined whether or not the calculation result is a negative value (step S5), and the calculation result is negative. When the value is indicated, the second surface F2 is determined as a convex surface (see FIG. 4) (step S6). Further, when the calculation result is not a negative value (when it is determined No in step S5), it is next determined whether or not the calculation result is a zero value (step S7), and the calculation result is zero. When the value is indicated, it is determined that the second surface F2 is a plane (see FIG. 5) continuous with the first surface F1 (step S8). If it is also determined No in step S7, error processing (step S11) is executed and the process ends.
 この後、全ての面の処理を終了したか否かを確認し(ステップS9)、全ての面の処理を終了していない場合には、ステップS1に戻って処理を繰り返す。一方、全ての面の処理を終了している場合(ステップS9でYesと判断された場合)には、その時点で表面形状の判定処理を終了する。 Thereafter, it is confirmed whether or not the processing for all the surfaces has been completed (step S9). If the processing for all the surfaces has not been completed, the processing returns to step S1 and the processing is repeated. On the other hand, if all the surfaces have been processed (Yes in step S9), the surface shape determination processing ends at that time.
 すなわち、本実施の形態では、上記内積演算の結果、隣り合う面が、基準面からみたときに面内に食い込む面は必ずマイナスの値となり、面外に広がる面は必ずプラスの値となることを利用している。 In other words, in the present embodiment, as a result of the inner product calculation, when adjacent surfaces are viewed from the reference surface, the surface that bites into the surface always has a negative value, and the surface that spreads out of the surface always has a positive value. Is used.
 最後に、判定手段15は、演算結果がプラスの値を示すときの面の種類を(+)、演算結果がマイナスの値を示すときの面の種類を(-)、演算結果が零の値を示すときの面の種類を(0)で分類し、これらの分類情報をデータベース12の各面の情報に対応させて登録する(ステップS10)。これにより、以後に実施される解析シミュレーション等の処理において、これら(+)、(-)、(0)の組み合わせにより解析構造物の形状を抽出(すなわち、特定)することができる。 Finally, the determination means 15 sets the surface type when the calculation result shows a positive value (+), the type of the surface when the calculation result shows a negative value (−), and the calculation result shows a zero value. Is classified by (0), and the classification information is registered corresponding to the information of each surface of the database 12 (step S10). As a result, the shape of the analysis structure can be extracted (that is, specified) by a combination of these (+), (−), and (0) in processing such as analysis simulation performed later.
 図7乃至図10は、上記の判定処理を解析構造物の具体的な形状部分に当てはめたときの処理結果を例示している。 7 to 10 illustrate processing results when the above determination processing is applied to a specific shape portion of the analysis structure.
 図7は、リブ形状に上記の判定処理を当てはめた結果を示しており、リブの立ち上がり部分の根元である丸み肉厚部(フィレット)の面は、内積演算の結果がプラス(+)となり、リブの先端部(端部)の面では、内積演算の結果がマイナス(-)となっている。その結果、図7において、面F11は平面、面F12は凹面、面F13は平面、面F14は凸面、面F15は平面、面F16は凹面、面F17は平面に分類されることになる。 FIG. 7 shows the result of applying the above-described determination processing to the rib shape, and the result of the inner product calculation is positive (+) on the surface of the rounded thick part (fillet) that is the root of the rising part of the rib, The result of the inner product calculation is minus (−) on the surface of the tip (end) of the rib. As a result, in FIG. 7, the surface F11 is classified as a plane, the surface F12 is a concave surface, the surface F13 is a plane, the surface F14 is a convex surface, the surface F15 is a plane, the surface F16 is a concave surface, and the surface F17 is a plane.
 また、図8は、端部の形状に上記の判定処理を当てはめた結果を示しており、端部の角部分の丸みを帯びた面は、内積演算の結果がマイナス(-)となっている。その結果、図8において、面F21は平面、面F22は凸面、面F23は平面、面F24は凸面、面F25は平面に分類されることになる。 FIG. 8 shows the result of applying the above-described determination processing to the shape of the end portion, and the result of the inner product calculation is minus (−) for the rounded surface of the corner portion of the end portion. . As a result, in FIG. 8, the surface F21 is classified as a plane, the surface F22 as a convex surface, the surface F23 as a plane, the surface F24 as a convex surface, and the surface F25 as a plane.
 また、図9は、平面が続く形状に上記の判定処理を当てはめた結果を示している。平面が続く場合には、内積演算の結果も零(0)が続くことなる。その結果、図9において、面F31は平面、面F32は平面、面F33は平面、面F34は平面に分類されることになる。 FIG. 9 shows the result of applying the above-described determination process to a shape in which a plane continues. When the plane continues, the result of the inner product operation also continues with zero (0). As a result, in FIG. 9, the surface F31 is classified as a plane, the surface F32 is classified as a plane, the surface F33 is classified as a plane, and the surface F34 is classified as a plane.
 また、図10は、徐変している面(徐変面)を含む形状に上記の判定処理を当てはめた結果を示しており、徐変面は、内積演算の結果がプラス(+)とマイナス(-)となっている。その結果、図10において、面F41は平面、面F42は徐変面(この例では傾斜面)、面F43は平面に分類されることになる。 FIG. 10 shows the result of applying the above-described determination processing to a shape including a gradually changing surface (gradually changing surface), and the result of the inner product calculation is positive (+) and negative in the gradually changing surface. (-). As a result, in FIG. 10, the surface F41 is classified as a plane, the surface F42 is classified as a gradually changing surface (in this example, an inclined surface), and the surface F43 is classified as a plane.
 このようにして分類された解析構造物の各面の形状種別の情報は、その後の各種解析シミュレーションに利用される。 The information of the shape type of each surface of the analysis structure classified in this way is used for various subsequent analysis simulations.
 すなわち、本実施の形態の表面形状判定装置及び表面形状判定方法及び表面形状判定プログラムによれば、区分された各面の表面形状を、演算結果の演算値のプラス、マイナス、零だけで判定できるので、表面判定処理を簡単かつ極めて高速に行うことが可能となる。 That is, according to the surface shape determination device, the surface shape determination method, and the surface shape determination program of the present embodiment, the surface shape of each of the divided surfaces can be determined only by the calculated value plus, minus, zero. Therefore, it is possible to perform the surface determination process easily and at extremely high speed.
 なお、解析構造物の形状モデルとしては、上記のサーフェースモデル以外にも、ソリッドモデルやワイヤーモデル等の各種形状モデルに対しても、本発明の表面形状判定処理を適用することが可能である。 As the shape model of the analysis structure, the surface shape determination process of the present invention can be applied to various shape models such as a solid model and a wire model in addition to the surface model. .
 (実施の形態に係る表面形状判定処理の応用例の説明)
 例えば図10に示す形状の場合、面F41と面F42との接続点e1、及び面F42と面F43との接続点e2からそれぞれ対向面に垂直に直線L11,L12を引くことで、各接続点e1,e2での距離(解析構造物の厚み)がわかる。従って、これらの情報を利用して、例えば徐変している面F42に対して、その真ん中に中立面(若しくはメッシュ)CF1を貼るといったことを容易に行うことができる。また、面F41の中立面(若しくはメッシュ)CF2をそのまま面F42及び面F43まで延長して貼るような場合でも、面F41から面F43までの解析構造物の形状を事前に特定する必要があるが、本実施の形態の表面形状判定処理を用いることで、このような形状特定を容易に行うことができる。
(Description of application example of surface shape determination processing according to embodiment)
For example, in the case of the shape shown in FIG. 10, by drawing straight lines L11 and L12 perpendicular to the opposing surfaces from the connection point e1 between the surface F41 and the surface F42 and the connection point e2 between the surface F42 and the surface F43, the connection points The distance (thickness of the analysis structure) at e1 and e2 is known. Therefore, by using these pieces of information, for example, a neutral surface (or mesh) CF1 can be easily pasted on the gradually changing surface F42. Even when the neutral surface (or mesh) CF2 of the surface F41 is directly extended to the surface F42 and the surface F43 and pasted, it is necessary to specify the shape of the analysis structure from the surface F41 to the surface F43 in advance. However, such shape specification can be easily performed by using the surface shape determination process of the present embodiment.
 また、図11は、解析構造物を六面体メッシュに分割する場合の簡単な例を示した説明図であり、基準面である面F51の法線ベクトルと、面F51と面F52とが接する接線方向のベクトルとにより外積ベクトルを求め、この外積ベクトルと面F52の法線ベクトルとの内積を求めると、その演算結果はプラスとなる。すなわち、面F51と面F52との接続部分は凹部であることがわかる。従って、この接続点Pから面F52に沿って下方向に(すなわち、面F54と平行に)カット線CL1を引くことで、解析構造物を左右2つの六面体メッシュに分割することができる。また、この接続点Pから面F51に沿って左方向に(すなわち、面F53に平行に)カット線CL2を引くことで、解析構造物を上下2つの六面体メッシュに分割することができる。 FIG. 11 is an explanatory diagram showing a simple example when the analysis structure is divided into hexahedral meshes. The normal vector of the surface F51, which is the reference surface, and the tangential direction where the surface F51 and the surface F52 are in contact with each other If the outer product vector is obtained from the vector and the inner product of the outer product vector and the normal vector of the surface F52 is obtained, the result of the operation becomes positive. That is, it can be seen that the connecting portion between the surface F51 and the surface F52 is a recess. Therefore, the analysis structure can be divided into two hexahedral meshes on the left and right sides by drawing the cut line CL1 downward from the connection point P along the surface F52 (that is, parallel to the surface F54). Further, by drawing a cut line CL2 from the connection point P to the left along the surface F51 (that is, parallel to the surface F53), the analysis structure can be divided into two upper and lower hexahedral meshes.
 なお、上記図10及び図11で示した応用例はほんの一例であり、これらの応用例に限定されるものではない。 Note that the application examples shown in FIGS. 10 and 11 are merely examples, and the present invention is not limited to these application examples.
 本発明は、表面形状判定方法を実現するためにコンピュータにより実行されるプログラムを含む。コンピュータは、例えば、表面形状判定装置1の図示しないCPU等であるが、この他にもプログラムを実行し得るデバイスであればどのようなものであってもよい。また、コンピュータは、記録媒体や通信ネットワークを介して取得したプログラムを実行することで、本発明の表面形状判定処理を実施することができる。 The present invention includes a program executed by a computer in order to realize the surface shape determination method. The computer is, for example, a CPU (not shown) of the surface shape determination apparatus 1, but any other device that can execute a program may be used. The computer can execute the surface shape determination process of the present invention by executing a program acquired via a recording medium or a communication network.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲に示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is set forth in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 本発明は、サーフェースモデルやソリッドモデル、ワイヤーモデル等の各種形状モデルを用いて構造解析を行う解析シミュレーションに関する技術分野全般に寄与するところは大きい。 The present invention greatly contributes to the entire technical field related to analysis simulation in which structural analysis is performed using various shape models such as a surface model, a solid model, and a wire model.
 1 表面形状判定装置
 11 データ入力手段
 12 データベース
 13 外積演算手段
 14 内積演算手段
 15 判定手段
 
DESCRIPTION OF SYMBOLS 1 Surface shape determination apparatus 11 Data input means 12 Database 13 Outer product calculation means 14 Inner product calculation means 15 Determination means

Claims (8)

  1.  表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定装置であって、
     前記第1面の法線ベクトルと、前記第1面と前記第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算手段と、
     前記外積ベクトルと、前記第2面の法線ベクトルとの内積を求める内積演算手段と、
     前記内積演算手段の演算結果に基づいて前記第1面に対する前記第2面の表面形状を判定する判定手段と、
     を備えたことを特徴とする表面形状判定装置。
    A surface shape determination device for determining a surface shape between an adjacent first surface and a second surface of an analysis structure having a surface divided into a plurality of surfaces,
    Cross product calculation means for obtaining a cross product vector from a normal vector of the first surface and a tangential vector where the first surface and the second surface are in contact with each other;
    Inner product calculating means for obtaining an inner product of the outer product vector and the normal vector of the second surface;
    Determination means for determining a surface shape of the second surface relative to the first surface based on a calculation result of the inner product calculation means;
    A surface shape determination device comprising:
  2.  請求項1に記載の表面形状判定装置であって、
     前記判定手段は、前記演算結果がプラスの値を示すときには前記第2面を凹面と判定し、前記演算結果がマイナスの値を示すときには前記第2面を凸面と判定することを特徴とする表面形状判定装置。
    The surface shape determination device according to claim 1,
    The determination means determines the second surface as a concave surface when the calculation result shows a positive value, and determines the second surface as a convex surface when the calculation result shows a negative value. Shape determination device.
  3.  請求項2に記載の表面形状判定装置であって、
     前記判定手段は、前記演算結果が零の値を示すときには前記第2面を前記第1面に連続する平面であると判定することを特徴とする表面形状判定装置。
    The surface shape determination apparatus according to claim 2,
    The said determination means determines that the said 2nd surface is a plane which continues the said 1st surface when the said calculation result shows a zero value, The surface shape determination apparatus characterized by the above-mentioned.
  4.  請求項3に記載の表面形状判定装置であって、
     前記判定手段は、前記演算結果がプラスの値を示すときの面の種類を+、前記演算結果がマイナスの値を示すときの面の種類を-、前記演算結果が零の値を示すときの面の種類を0で分類し、前記+、-、0の組み合わせにより前記解析構造物の形状を抽出することを特徴とする表面形状判定装置。
    The surface shape determination apparatus according to claim 3,
    The determination means is + for the type of surface when the calculation result shows a positive value,-for the type of surface when the calculation result shows a negative value, and when the calculation result shows a zero value. A surface shape determination apparatus characterized by classifying a surface type by 0 and extracting the shape of the analysis structure by a combination of +,-, and 0.
  5.  表面を複数の面に区分された解析構造物の隣接する第1面と第2面との間で表面形状を判定する表面形状判定方法であって、
     前記第1面の法線ベクトルと、前記第1面と前記第2面とが接する接線方向のベクトルとにより外積ベクトルを求める外積演算ステップと、
     前記外積ベクトルと、前記第2面の法線ベクトルとの内積を求める内積演算ステップと、
     前記内積演算ステップの演算結果に基づいて前記第1面に対する前記第2面の表面形状を判定する判定ステップと、
     を含むことを特徴とする表面形状判定方法。
    A surface shape determination method for determining a surface shape between an adjacent first surface and a second surface of an analysis structure whose surface is divided into a plurality of surfaces,
    An outer product calculation step for obtaining an outer product vector from a normal vector of the first surface and a vector in a tangential direction where the first surface and the second surface are in contact with each other;
    An inner product calculating step for obtaining an inner product of the outer product vector and a normal vector of the second surface;
    A determination step of determining a surface shape of the second surface relative to the first surface based on a calculation result of the inner product calculation step;
    The surface shape determination method characterized by including.
  6.  請求項5に記載の表面形状判定方法であって、
     前記判定ステップは、前記演算結果がプラスの値を示すときには前記第2面を凹面と判定し、前記演算結果がマイナスの値を示すときには前記第2面を凸面と判定し、前記演算結果が零の値を示すときには前記第2面を平面であると判定することを特徴とする表面形状判定方法。
    The surface shape determination method according to claim 5,
    The determination step determines that the second surface is a concave surface when the calculation result indicates a positive value, and determines that the second surface is a convex surface when the calculation result indicates a negative value, and the calculation result is zero. A surface shape determination method, wherein the second surface is determined to be a flat surface when the value of is indicated.
  7.  請求項6に記載の表面形状判定方法であって、
     前記判定ステップは、前記演算結果がプラスの値を示すときの面の種類を+、前記演算結果がマイナスの値を示すときの面の種類を-、前記演算結果が零の値を示すときの面の種類を0で分類し、前記+、-、0の組み合わせにより前記解析構造物の形状を抽出するステップを含むことを特徴とする表面形状判定方法。
    The surface shape determination method according to claim 6,
    In the determination step, the surface type when the calculation result shows a positive value is +, the surface type when the calculation result shows a negative value-, and the calculation result shows a zero value. A method for determining a surface shape, comprising: classifying a surface type by 0 and extracting the shape of the analysis structure by a combination of +, −, and 0.
  8.  請求項5から請求項7までのいずれか一つに記載の表面形状判定方法の各ステップを、コンピュータに実効させるための表面形状判定プログラム。
     
    A surface shape determination program for causing a computer to execute each step of the surface shape determination method according to any one of claims 5 to 7.
PCT/JP2016/061371 2016-04-07 2016-04-07 Surface shape determination device, surface shape determination method and surface shape determination program WO2017175349A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018510186A JP6605712B2 (en) 2016-04-07 2016-04-07 Surface shape determination apparatus, surface shape determination method, and surface shape determination program
PCT/JP2016/061371 WO2017175349A1 (en) 2016-04-07 2016-04-07 Surface shape determination device, surface shape determination method and surface shape determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061371 WO2017175349A1 (en) 2016-04-07 2016-04-07 Surface shape determination device, surface shape determination method and surface shape determination program

Publications (1)

Publication Number Publication Date
WO2017175349A1 true WO2017175349A1 (en) 2017-10-12

Family

ID=60000928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061371 WO2017175349A1 (en) 2016-04-07 2016-04-07 Surface shape determination device, surface shape determination method and surface shape determination program

Country Status (2)

Country Link
JP (1) JP6605712B2 (en)
WO (1) WO2017175349A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024367A1 (en) * 2019-08-06 2021-02-11 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method, and shape data processing program
WO2022091181A1 (en) * 2020-10-26 2022-05-05 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method, and shape data processing program
WO2022091311A1 (en) * 2020-10-29 2022-05-05 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method, and shape data processing program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269262A (en) * 1997-03-24 1998-10-09 Honda Motor Co Ltd Method for verifying shape data
JP2015001789A (en) * 2013-06-13 2015-01-05 国立大学法人岩手大学 Curved surface generation device, curved surface generation program, and curved surface generation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269262A (en) * 1997-03-24 1998-10-09 Honda Motor Co Ltd Method for verifying shape data
JP2015001789A (en) * 2013-06-13 2015-01-05 国立大学法人岩手大学 Curved surface generation device, curved surface generation program, and curved surface generation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024367A1 (en) * 2019-08-06 2021-02-11 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method, and shape data processing program
JPWO2021024515A1 (en) * 2019-08-06 2021-02-11
WO2021024515A1 (en) * 2019-08-06 2021-02-11 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method, and shape data processing program
JP7189584B2 (en) 2019-08-06 2022-12-14 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method and shape data processing program
WO2022091181A1 (en) * 2020-10-26 2022-05-05 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method, and shape data processing program
JP7392961B2 (en) 2020-10-26 2023-12-06 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method, and shape data processing program
WO2022091311A1 (en) * 2020-10-29 2022-05-05 インテグラル・テクノロジー株式会社 Shape data processing device, shape data processing method, and shape data processing program

Also Published As

Publication number Publication date
JPWO2017175349A1 (en) 2018-11-01
JP6605712B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
Montoya et al. CFD-based aeroelastic characterization of streamlined bridge deck cross-sections subject to shape modifications using surrogate models
JP6605712B2 (en) Surface shape determination apparatus, surface shape determination method, and surface shape determination program
JP2016524260A5 (en)
Wu et al. Adaptive location of repaired blade for multi-axis milling
CN107292055B (en) Method for assisting PCB design by establishing mathematical geometric model
CN114861500A (en) Method and system for automatically generating tunnel structure finite element model based on three-dimensional point cloud
JP6806321B2 (en) Surface shape determination device, surface shape determination method, and surface shape determination program
CN103559361A (en) Intensity optimization method and stress analysis method for component
CN104915490A (en) Method and device for pneumatically anti-designing motor train unit head type
Ko A survey: application of geometric modeling techniques to ship modeling and design
JP6086793B2 (en) Tire wear simulation method and tire wear simulation program
Tinmitondé et al. Single-objective aerodynamic optimization of a streamlined bridge deck subjected to shape modification using a polynomial emulator and genetic algorithm
Wilkinson et al. Approximating urban wind interference
JP7091212B2 (en) Model automatic correction device, structure evaluation system, model automatic correction method, and model automatic correction program
Zhang et al. Extracting skeletons of two-manifold triangular mesh surface for planning skeleton-guided five-axis surface inspection path
JP2005044146A (en) Finite element analysis method, program and device
Barbier et al. Multiple Crack Growth and Coalescence in Meshfree Methods with Adistance Function-Based Enriched Kernel
Calì et al. Flying shape sails analysis by radial basis functions mesh morphing
El Maani et al. CFD Analysis of the Transonic Flow over a NACA 0012 Airfoil
JP6727931B2 (en) Hole-covered curved surface generation device and hole-covered curved surface generation program
JP7189584B2 (en) Shape data processing device, shape data processing method and shape data processing program
Narabu et al. Automatic manufacturing feature extraction of CAD models for machining
Dannenhoffer The creation of a static BRep model given a cloud of points
JP6327927B2 (en) Simulation device, model generation device, simulation method, model generation method, and computer program
WO2022091181A1 (en) Shape data processing device, shape data processing method, and shape data processing program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897906

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897906

Country of ref document: EP

Kind code of ref document: A1