WO2017171153A1 - 편광판 검사 방법 및 편광판 검사 장치 - Google Patents

편광판 검사 방법 및 편광판 검사 장치 Download PDF

Info

Publication number
WO2017171153A1
WO2017171153A1 PCT/KR2016/008728 KR2016008728W WO2017171153A1 WO 2017171153 A1 WO2017171153 A1 WO 2017171153A1 KR 2016008728 W KR2016008728 W KR 2016008728W WO 2017171153 A1 WO2017171153 A1 WO 2017171153A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
compensation film
axis
film
orientation angle
Prior art date
Application number
PCT/KR2016/008728
Other languages
English (en)
French (fr)
Inventor
이은규
전주병
엄동환
Original Assignee
동우화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160039473A external-priority patent/KR20170112435A/ko
Priority claimed from KR1020160039477A external-priority patent/KR20170112436A/ko
Application filed by 동우화인켐 주식회사 filed Critical 동우화인켐 주식회사
Publication of WO2017171153A1 publication Critical patent/WO2017171153A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarizing plate inspection method and a polarizing plate inspection apparatus which can be inspected even with an anisotropic release film having a high orientation angle.
  • the polarizing plate is useful as one of the optical components constituting the liquid crystal display device. As the liquid crystal display device is expanded in its use and more precise, defects of the polarizing plate are caused by defects of the liquid crystal display device, and thus it is required to reduce defects of the polarizing plate by inspecting the defects of the polarizing plate.
  • an inspection target polarizing plate to be inspected is placed on the inspection polarizing plate in a state of cross nicol, that is, a state in which their polarization axis directions are orthogonal to irradiate light from a light source, and the screen of transmitted light is visually or cameras. It is carried out by the method of observing by.
  • the release film used in the lower part of the polarizing plate to be inspected mostly uses an anisotropic film. At this time, the phase difference is generated and the optical axis is shifted, which affects the dark state of cross nicol. There is a problem in that it should be limited to an anisotropic release film having an axial angle of 8 ° or less, for example, because it may not be possible to affect the cross inspection.
  • the center portion is low anisotropy, the anisotropy increases toward the side. That is, the amount of the anisotropic film that falls within the standard is very limited and therefore inevitably expensive, which is a factor that increases the manufacturing cost of the polarizing plate. Moreover, since the release film is finally peeled off and discarded, it is very wasteful to discuss anisotropic specifications.
  • Korean Patent Laid-Open Publication No. 2008-0099542 relates to a polarizing plate and a polarizing plate inspection system, and discloses a polarizing plate inspection system including a phase difference correction member positioned between a polarizing plate to be inspected and a polarizing plate for inspection, but applied to an automatic inspection.
  • a polarizing plate inspection system including a phase difference correction member positioned between a polarizing plate to be inspected and a polarizing plate for inspection, but applied to an automatic inspection.
  • the following is a somewhat limited situation.
  • Patent Document 1 Republic of Korea Patent Publication No. 2008-0099542 (2008.11.13.)
  • An object of the present invention is to provide a polarizing plate inspection method and a polarizing plate inspection apparatus which can be inspected even with a release film having a high orientation angle.
  • the present invention comprises the steps of: (a) preparing a test polarizing plate having an anisotropic release film provided under the test polarizer; (b) placing an inspector side polarizer having a phase difference compensation film on the inspector side polarizer under the inspected polarizer; (c) measuring brightness when light passes through the inspected polarizing plate and the inspector-side polarizing plate by using the cross nicol method while moving the phase difference compensation film on the y-axis, wherein the z-axis is the progress of the light.
  • an x axis is a direction in which the inspected polarizer moves on a plane perpendicular to the z axis, and a y axis is on a plane perpendicular to the z axis and perpendicular to the x axis; (d) storing the brightness according to the position on the y-axis of the retardation compensation film; (e) moving the phase difference compensation film to a y-axis position corresponding to brightness within 5% from the smallest brightness among the brightnesses stored in the step (d); And (f) to provide a polarizing plate inspection method comprising the step of inspecting the inspected polarizing plate by a cross nicol method.
  • the present invention (a ') receiving the orientation angle information of the anisotropic release film; (b ') preparing an inspected polarizing plate in which the anisotropic release film is positioned below the inspected polarizer; (c ') positioning the inspector side polarizer having the phase difference compensation film positioned on the upper side of the inspector side polarizer; (d ') moving the phase difference compensation film to a y-axis position according to the received alignment angle; And (e ') inspecting the inspected polarizing plate by measuring brightness when light passes through the inspected polarizing plate and the inspector side polarizing plate using a cross nicol method.
  • the present invention is an apparatus for inspecting a test polarizing plate provided with an anisotropic release film on one surface of the test polarizer, a light source;
  • An inspector side polarizing plate having a phase difference compensation film positioned on an inspector side polarizer;
  • a light receiving unit for receiving light emitted from the light source through the polarizing plate to be inspected and the inspector-side polarizing plate;
  • An image analyzer in a direction in which the inspected polarizing plate moves in a plane, and a y-axis is on a plane perpendicular to the z-axis and perpendicular to the x-axis; And a control unit configured to move the retardation compensation film in the y-axis direction, and to move the retardation compensation film to a position on the y-axis of the retardation compensation film when the brightness stored in the image analysis unit is smallest.
  • the inspected polarizing plate is positioned to be cross nicol with the inspector side polarizing plate, and the light source and the light receiving unit are respectively located above the inspected polarizing plate and below the inspector side polarizing plate; Or it provides a polarizing plate inspection device located on the lower portion of the inspector side polarizing plate and the upper portion of the inspected polarizing plate.
  • the present invention also provides a device for inspecting a test polarizing plate provided with a release film, the information of the release film orientation angle is displayed on one surface of the test polarizer, a light source; An inspector side polarizing plate having a phase difference compensation film positioned on an inspector side polarizer; A light receiving unit for receiving light emitted from the light source through the polarizing plate to be inspected and the inspector-side polarizing plate; A recording medium reading unit for reading the information of the orientation angle, or a data storage unit for receiving data including distribution information of the orientation angle of the anisotropic release film on the test polarizing plate; An encoder for measuring the distance from the recording medium reading device to the inspected polarizing plate by transmitting information read from the recording medium reading machine or information from the data storage unit; And move the retardation compensation film to a position of the y-axis of the retardation compensation film according to the distance measured by the encoder, wherein z-axis is the traveling direction of the light and x-axis is the plane to be
  • a y-axis is on a plane perpendicular to the z-axis and is perpendicular to the x-axis, wherein the polarizer to be inspected is cross nicolically positioned with the inspector-side polarizer,
  • the light source and the light receiving portion are respectively located above the inspected polarizing plate and below the inspector side polarizing plate; Or it provides a polarizing plate inspection device located on the lower portion of the inspector side polarizing plate and the upper portion of the inspected polarizing plate.
  • the polarizing plate inspection method according to the present invention has an advantage of inspecting a polarizing plate having a high anisotropic release film having an orientation angle of 8 ° or more.
  • the polarizing plate inspection apparatus can easily inspect the polarizing plate having an anisotropic release film having a high orientation angle by automatic inspection.
  • FIG. 1 illustrates an example of a polarizing plate inspection apparatus according to some embodiments of the present disclosure.
  • FIG. 2 illustrates an example of a polarizing plate inspection apparatus according to some embodiments of the present disclosure.
  • FIG. 3 is a diagram illustrating an optical configuration of a polarizing plate inspection apparatus according to some embodiments of the present invention.
  • FIG. 5 is a diagram illustrating a change in the orientation angle along the retardation film width direction.
  • FIG. 6 is a view showing a change in the orientation angle according to the width direction of the entire anisotropic release film fabric.
  • a member when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
  • One embodiment of the present invention (a) preparing a test polarizing plate 100 having an anisotropic release film 10 is provided under the test polarizer 30; (b) placing the inspector side polarizer 200 having the phase difference compensation film 20 on the inspector side polarizer 40 below the inspected polarizer 100; (c) measuring brightness when light passes through the inspected polarizing plate 100 and the inspector side polarizing plate 200 by using the cross nicol method while moving the phase difference compensation film 20 on the y-axis.
  • the z-axis is the direction of the light travel
  • the x-axis is the direction in which the inspected polarizing plate 100 moves on a plane perpendicular to the z-axis
  • the y-axis is on a plane perpendicular to the z-axis and the x Perpendicular to the axis; (d) storing the brightness according to the position on the y-axis of the retardation compensation film 20; (e) moving the phase difference compensation film to a y-axis position corresponding to brightness within 5% from the smallest brightness among the brightnesses stored in the step (d); And (f) inspecting the inspected polarizing plate 100 by a cross nicol method.
  • the step (a) is a step of preparing a test polarizing plate 100 provided with an anisotropic release film 10 in the lower portion of the test polarizer 30.
  • the inspected polarizer 30 and the inspector side polarizer 40 may be used without limitation as long as they are all known in the art, and may use the same polarizer or may apply the same polarizer.
  • the "same" may be the same thickness, material or size.
  • the polarizer may include a vinyl alcohol resin film such as polyvinyl alcohol, and specifically, a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol resin film, or a polyvinyl chloride (PVC) film.
  • PVC polyvinyl chloride
  • the anisotropic release film 10 may be an orientation angle of 8 ° or more, specifically 8 ° to 50 °, the material is not limited as long as the release film having an anisotropy commonly used in the art.
  • the anisotropic release film 10 may be a biaxially stretched film, for example, polyolefin-based, polystyrene-based, polyvinylidene chloride-based, ethylene vinyl alcohol, polychlorinated, such as polyester, polyethylene, polypropylene
  • a biaxially oriented film formed of at least one selected from vinyl, polycarbonate, polyamide, polyimide, acrylic, acetate, and polyether sulfone resins may be used.
  • Preferably a biaxially stretched transparent polyester film is used.
  • well-known surface treatment such as corona discharge treatment, can be performed.
  • the anisotropic release film 10 is generally adhered to the adhesive layer 33 formed on the polarizing plate, and peeled and discarded when applied to an image display device or the like in which the polarizing plate is used.
  • the release film used in the lower part of the polarizing plate to be inspected mostly uses an anisotropic film.
  • the optical axis of the anisotropic medium with respect to the optical axis of the polarizing plate is twisted by an axial angle, which may cause incomplete cross inspection.
  • the anisotropic release film 10 which has the orientation angle of 8 degrees or less, for example within the orientation angle range which does not affect cross test
  • the polarizing plate inspection method of the present invention is capable of inspecting the polarizing plate applying the anisotropic release film 10 having an orientation angle of 8 ° or more, compared to the polarizing plate applying the anisotropic release film 10 having an existing orientation angle of 8 ° or less. There is an advantage that can reduce the raw material costs.
  • the test polarizer 30 and the anisotropic release film 10 may be in a bonded state, or the anisotropic release film 10 may be simply positioned below the test polarizer 30.
  • the adhesive layer may be attached by an adhesive layer, but is not limited thereto.
  • the adhesive layer may be transparent and formed using an isotropic adhesive. If it is not limited to this.
  • the inspected polarizing plate 100 may refer to a state in which the inspected polarizer 30 and the anisotropic release film 10 are bonded to each other, and the anisotropic release film (below) of the inspected polarizer 30 ( 10) may simply refer to the state where it is located.
  • the inspected polarizer 30 may have a fixed position.
  • the pre-bonding base material inspection may be performed to advance the anisotropic release film 10 alone through the polarizing plate inspection method of the present invention, and the after-bonding product inspection which is performed after bonding the anisotropic release film 10 to the polarizer. Can be done.
  • the inspector side polarizing plate 200 After preparing the inspected polarizing plate 100 in the step (a), the inspector side polarizing plate 200 provided with the phase difference compensation film 20 on the inspector side polarizer 40 of the inspected polarizing plate 100 (B) positioning it downward.
  • the retardation compensation film 20 is an anisotropic material having the same x-axis refractive index and y-axis refractive index as the anisotropic release film 10, and is rotated 180 ° about the y-axis from the arrangement of the anisotropic release film 10. It may be arranged.
  • the retardation compensation film 20 is located between the inspected polarizing plate 100 and the inspector side polarizer 40, and may perform a role of canceling and correcting a phase difference that is distorted due to the anisotropy of the anisotropic release film 10. have.
  • the type is not limited, but the same film as the anisotropic release film 10 is used. desirable.
  • the inspected polarizing plate 100 is prepared, the inspector side polarizing plate 200 is positioned below the inspected polarizing plate 100, and the phase difference compensation film 20 is disposed on the y-axis.
  • C measuring the brightness of the light passing through the polarizing plate 100 and the inspector-side polarizing plate 200 using the cross nicol method while moving.
  • z-axis is the direction of the light travel
  • x-axis is one axis that exists on a plane perpendicular to the z-axis
  • y-axis is on a plane perpendicular to the z-axis and is perpendicular to the x-axis.
  • the retardation compensation film 20 is located on the inspector side polarizer 40, and the lower end of the retardation compensation film 20 may not be in contact with the upper end of the inspector side polarizer 40. Specifically, the lower end of the phase difference compensation film 20 may be a distance of the upper end of the inspector side polarizer 40 may be 1mm to 50mm.
  • the " distance " is from one point of the lower end of the phase difference compensation film 20, between the surface containing the point and the surface including one point of the upper end of the inspector side polarizer 40 while being parallel to the surface.
  • the shortest length of the straight line can be called.
  • phase difference compensation film 20 Since the phase difference compensation film 20 is not in contact with the inspector side polarizer 40, only the phase difference compensation film 20 can be moved without moving the inspector side polarizer 40.
  • phase difference compensation film 20 is moved on the y-axis between the inspected polarizing plate 100 and the inspector side polarizer 40, light is transmitted using the cross nicol method to the inspected polarizing plate 100 and the inspector.
  • the brightness when passing through the inspector side polarizing plate 200 can be measured.
  • the x and y axes mean the x and y axes existing on the xy plane perpendicular to the z axis, and the z axis means the direction in which light travels.
  • the "x-axis direction” may mean the longitudinal direction of the anisotropic release film 10 or the longitudinal direction of the retardation compensation film 20, and the "y-axis direction” refers to the anisotropic release film 10.
  • the width direction or the width direction of the retardation compensation film 20 may mean.
  • length direction may mean the x-axis direction
  • width direction may mean the y-axis direction
  • the step (d) may be a step of storing the brightness according to the position on the y-axis of the retardation compensation film 20. That is, in the polarizing plate inspection method, when the light passes through the inspected polarizing plate 100 and the inspector-side polarizing plate 200 by using the cross nicol method while moving the retardation compensation film 20 to the y-axis, the brightness is measured. After measuring and storing the position on the y-axis of the phase difference compensation film 20, the phase difference compensation film 20 is moved to the stored y-axis position in the step (d) through the step (e), After the cross nicol method includes the step (f) of inspecting the inspected polarizing plate 100.
  • step (d) may be a step of storing the brightness according to the position on the y-axis of the phase difference compensation film 20.
  • the stored position in step (e) may be a position corresponding to a brightness within 5% of the smallest brightness among the brightnesses according to the stored position in step (d).
  • step (e) may be a step of moving to a point at the y-axis position corresponding to the smallest brightness among the brightnesses stored in step (d).
  • the cross nicol method after moving the phase difference compensation film 20 to the position where the brightness is the lowest, that is, the darkest position. It may be to test using.
  • the expression “small brightness” or “dark” means that the amount of phase difference change by the anisotropic release film 10 and the phase difference compensation film 20 is canceled from each other and the brightness of the transmitted light measured is less than 50 gray, preferably May be an expression referring to the case of less than 30 gray. That is, in the present invention, the "lowest brightness” or “darkest location” is typically the brightness of the transmitted light measured by offsetting the amount of phase difference change by the anisotropic release film 10 and the retardation compensation film 20. The position where the gray value is measured the smallest among the positions when less than 50 gray, preferably less than 30 gray can be referred to.
  • the "brightness" in the present invention may refer to the brightness of the transmitted light measured by the amount of phase difference change by the anisotropic release film 10 and the phase difference compensation film 20 cancel each other out.
  • the retardation compensation film 20 includes a first compensation film 21 and a second compensation film 22, the first compensation film 21 and the second compensation film ( 22) is present on the same xy plane, the first compensation film 21 increases or decreases the alignment angle on the y axis, and the second compensation film 22 increases or decreases the alignment angle on the y axis. May be decreasing.
  • the first compensation film 21 and the second compensation film 22 may use the same thing symmetrically with respect to the x-axis, or may use a film that is not the same, but the x-axis of the anisotropic release film 10
  • the retardation value between the direction and the + y-axis direction should be distributed to have the retardation value between the x-axis direction and the -y-axis direction of the first compensation film 21 or the second compensation film 22.
  • a film having the same distribution as that of the phase difference distribution of the anisotropic release film 10 is disposed on the first compensation film 21 in a state of being symmetrically inverted on the y axis, and the anisotropic release film 10 is based on the x axis.
  • the second compensation film 22 should have a distribution in which the first compensation film 21 is symmetrically reversed with respect to the first compensation film 21.
  • the first compensation film 21 and the second compensation film 22 are located on the same plane on the xy plane, for example, the first compensation film 21 may have an orientation value of + value.
  • the second compensation film 22 may have an orientation value of -value.
  • the second compensation film 22 may have an orientation angle of +.
  • the orientation angle may increase ( ⁇ ) or decrease (+) according to the length of the film. That is, the retardation compensation film 20 of the present invention includes a first compensation film 21 having an increased or decreased orientation angle on the y axis and a second compensation film 22 having an increased or decreased orientation angle on the y axis. Since it includes all, there is an advantage of easy inspection of the polarizing plate through an automated process.
  • the first compensation film 21 and the second compensation film 22 has a distribution inverted symmetrically with respect to the y-axis and the anisotropic release film 10, this position-specific characteristics and the anisotropic release film 10 and This means that the distribution characteristic of the alignment angle of the first compensation film 21 or the second compensation film 22 is canceled. However, this means that the characteristics of the first compensation film 21 and the second compensation film 22 are symmetric with each other.
  • the method may further include selecting any one of the second compensation films 22 to enable cross nicolization, and wherein selecting one to enable cross nicolization may include the anisotropic release film 10 and the phase difference compensation film.
  • the amount of phase difference change by (20) cancels each other so that the brightness of the transmitted light measured may be selected to be less than 50 gray, preferably less than 30 gray.
  • the retardation compensation film 20 includes the first compensation film 21 and the second compensation film 22, and the first compensation film 21 and the second compensation film 22 are on the same xy plane.
  • the first compensation film 21 is an anisotropic release film when the orientation angle is increased or decreased on the y axis, and the second compensation film 22 is increased or decreased on the y axis.
  • the polarizing plate is easily inspected by selecting one of the first compensation film 21 and the second compensation film 22 according to the orientation angle distribution profile of (10). .
  • the retardation compensation film 20 includes a first compensation film 21 and a second compensation film 22, and the first compensation film 21 and the second compensation film before step (c). While selecting the compensation film that can be inspected using the anisotropic release film 10 and the cross nicol method while moving 22 in the x-axis direction, the position of the y-axis is stored while the selected retardation compensation film 20 is moved to the y-axis. Can be.
  • the retardation compensation film 20 may have a profile in which the orientation angle distribution profile along the width direction is symmetric with the orientation angle distribution profile along the width direction of the anisotropic release film 10. have.
  • the retardation compensation film 20 has a profile in which the retardation value distribution profile along the width direction is symmetric with the retardation value distribution profile along the width direction of the anisotropic release film 10. Can be.
  • the orientation angle of the anisotropic release film 10 when the orientation angle of the anisotropic release film 10 has a profile that increases from + 8 ° to + 10 °, the orientation angle of the phase difference compensation film 20 is -8 °. It can have a profile to decrease to -10 °.
  • the first compensation film 21 has the same orientation angle distribution profile along the width direction as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the 2 the orientation angle distribution profile along the width direction of the compensation film 22 is symmetrically distributed with the orientation angle distribution profile along the width direction of the first compensation film 21;
  • the second compensation film 22 may have an orientation angle distribution profile along the width direction of the second compensation film 22 which is the same as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the width direction of the first compensation film 21 may be different.
  • the orientation angle distribution profile according to the present invention may be symmetrically distributed with the orientation angle distribution profile along the width direction of the second compensation film 22.
  • the orientation angle of the first compensation film 21 is 0 mm, that is, about ⁇ 9 ° and about ⁇ 8 ° at 2000 mm from the starting position of the first compensation film.
  • the orientation angle of the second compensation film 22 is 0 mm as shown in b) of FIG. 5, that is, at a position where the second compensation film starts. It is about -9 degrees at -8 degrees, 2000 mm, and it can have a profile which reduces an orientation angle along the width direction of a film.
  • one of the first compensation film 21 and the second compensation film 22 is the same as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the other one. Since there is an symmetric distribution with the orientation angle distribution profile along the width direction of the anisotropic release film 10 has an advantage that can be automated inspection.
  • the method may further include initializing a position of the inspector side polarizer 200.
  • Initializing the position of the inspector-side polarizer 200 may be performed after the step (a) or (b), but is not limited thereto. However, it is preferable to perform after the step (b) in terms of measurement time. For example, if the position of the inspector-side polarizing plate 200 is a center point, unnecessary movement may occur because it has to pass through the already measured position once again in order to move to the unmeasured portion after measuring in one direction. have.
  • One embodiment of the present invention (a ') receiving the orientation angle information of the anisotropic release film 10; (b ') preparing an inspected polarizing plate 100 in which the anisotropic release film 10 is positioned below the inspected polarizer 30; (c ') positioning the inspector side polarizer 200 having the phase difference compensation film 20 positioned on the upper side of the inspector side polarizer 40; (d ') moving the retardation compensation film 20 to a y-axis position according to the received alignment angle; And (e ') inspecting the inspected polarizing plate 100 by measuring brightness when light passes through the inspected polarizing plate 100 and the inspector side polarizing plate 200 using the cross nicol method.
  • z-axis is the direction of the light travel
  • x-axis is the direction in which the inspected polarizing plate 100 is moved on a plane perpendicular to the z-axis
  • y-axis is on a plane perpendicular to the z-axis
  • the x A method for inspecting a polarizing plate perpendicular to an axis.
  • the contents related to the anisotropic release film 10, for example, the orientation angle, the material, and the use of the anisotropic release film 10 are as described above.
  • the polarizing plate inspection method of the present invention can inspect the polarizing plate to which the anisotropic release film 10 having an orientation angle of 8 ° or more can be inspected, the raw material cost is reduced compared to the polarizing plate to which the anisotropic release film 10 having an existing alignment angle of 8 ° or less is applied. This has the advantage of being effective.
  • Receiving the orientation angle information of the anisotropic release film 10 in the step (a ') may be a step of receiving the information by measuring the orientation angle information of the anisotropic release film 10 in real time, before the process In the step may be a step of receiving the orientation angle information displayed on the anisotropic release film 10.
  • the orientation angle of step (a ') may be measured at one end and the other end of the anisotropic release film 10 in the x-axis direction.
  • the "one end” and “other end” are the two-dimensional areas in the direction parallel to the side from the side having the shortest length among the sides forming the two-dimensional plane of the same film as the anisotropic release film 10, respectively.
  • An area of 5% or less with respect to the total length of may be referred to.
  • the "other end” may refer to a portion facing the "one end”.
  • the orientation angle may be an angle measured at any point of the region corresponding to the “one end” and the “other end”.
  • the measurement of the orientation angle can be measured through a method generally known in the art, and the method is not limited.
  • the birefringence can be calculated by measuring the retardation and diameter of the film stretched with a white light source using a polarizing microscope, and can also be measured using the KOBRA equipment of Princesa Instruments.
  • the method may further include displaying the orientation angle information on the anisotropic release film 10 before the step (a '), but is not limited thereto.
  • the displaying of the orientation angle information on the anisotropic release film 10 may include recording the orientation angle information on a recording medium 50 and then recording the recording medium 50 to the anisotropy. Attaching to the release film 10 may be a step of printing or printing.
  • the recording medium 50 is not limited as long as it can record the information of the orientation angle, but may be, for example, in the form of a barcode in convenience, but is not limited thereto.
  • the step of receiving the orientation angle information of the anisotropic release film 10 of the step (a ') is anisotropic release film 10 attached or printed on the anisotropic release film 10 It may be to read the orientation angle information of.
  • the step (b ') is a step of preparing the inspected polarizing plate 100 in which the anisotropic release film 10 is positioned below the inspected polarizer 30.
  • Step (c ') is a step of positioning the inspector side polarizer 200 provided with the phase difference compensation film 20 positioned on the upper side of the inspector side polarizer 40.
  • the content related to the retardation compensation film 20 may be described above.
  • the retardation compensation film 20 includes a first compensation film 21 and a second compensation film 22, the first compensation film 21 and the second compensation film ( 22) is present on the same xy plane, the first compensation film 21 increases or decreases the alignment angle on the y axis, and the second compensation film 22 increases or decreases the alignment angle on the y axis. It may be reduced, and the above-described details may be applied.
  • the retardation compensation film 20 may have a profile in which the orientation angle distribution profile along the width direction is symmetric with the orientation angle distribution profile along the width direction of the anisotropic release film 10. have.
  • the retardation compensation film 20 has a profile in which the retardation value distribution profile along the width direction is symmetric with the retardation value distribution profile along the width direction of the anisotropic release film 10. Can be.
  • the orientation angle of the anisotropic release film 10 when the orientation angle of the anisotropic release film 10 has a profile that increases from + 8 ° to + 10 °, the orientation angle of the phase difference compensation film 20 is -8 °. It can have a profile to decrease to -10 °.
  • the first compensation film 21 has the same orientation angle distribution profile along the width direction as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the 2 the orientation angle distribution profile along the width direction of the compensation film 22 is symmetrically distributed with the orientation angle distribution profile along the width direction of the first compensation film 21;
  • the second compensation film 22 may have an orientation angle distribution profile along the width direction of the second compensation film 22 which is the same as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the width direction of the first compensation film 21 may be different.
  • the orientation angle distribution profile according to the present invention may be symmetrically distributed with the orientation angle distribution profile along the width direction of the second compensation film 22.
  • the orientation angle of the first compensation film 21 is 0 mm, that is, about ⁇ 9 ° and about ⁇ 8 ° at 2000 mm from the starting position of the first compensation film.
  • the orientation angle of the second compensation film 22 is 0 mm as shown in b) of FIG. 5, that is, at a position where the second compensation film starts. It is about -9 degrees at -8 degrees, 2000 mm, and it can have a profile which reduces an orientation angle along the width direction of a film.
  • one of the first compensation film 21 and the second compensation film 22 is the same as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the other one. Since there is an symmetric distribution with the orientation angle distribution profile along the width direction of the anisotropic release film 10 has an advantage that can be automated inspection.
  • one of the first compensation film 21 and the second compensation film 22 is selected to enable cross nicol according to the alignment angle received before the step (d ').
  • the method may further include moving the phase difference compensation film 20 on the x-axis.
  • the first compensation film 21 or the second compensation film 22 is selected according to the inclination direction of the inputted alignment angle.
  • the "tilt direction” may be a relative concept.
  • the orientation angle of the anisotropic release film 10 is based on one axis of the width direction of the anisotropic release film 10, the orientation angle exists on the right side.
  • the case is referred to as a + direction, and the reverse case may be referred to as a-direction, but is not limited thereto, and may have the same meaning as commonly understood in the art.
  • a compensation film having a negative value of an orientation angle of the first compensation film 21 or the second compensation film 22 may be selected to enable cross nicolization.
  • a compensation film having an alignment angle of + value may be selected among the first compensation film 21 or the second compensation film 22. Thereafter, the selected compensation film is adjusted to the position of the x-axis so that cross nicol is possible.
  • Orientation angle information for each position of the retardation compensation film 20, that is, the first compensation film 21 or the second compensation film 22 may be measured in advance, and the roll shape corresponding to the orientation angle
  • the positional information of the motor 5 may also be stored in advance in a storage device such as a PC.
  • the step (d ') is a step of moving the retardation compensation film 20 to the y-axis position according to the received orientation angle, and after moving the retardation compensation film 20 to the y-axis position, the cross nicol method. Inspection of the polarizing plate is possible by performing the step (e ') of inspecting the inspected polarizing plate 100.
  • the step (e ') is to measure the brightness when the light passes through the test polarizing plate 100 and the inspector side polarizing plate 200 by using the cross nicol method to measure the test polarizing plate 100 It is a step of checking.
  • the z-axis is the direction of the light travel
  • the x-axis is the direction in which the inspected polarizing plate 100 is moved on a plane perpendicular to the z-axis
  • the y-axis is on a plane perpendicular to the z-axis and on the x-axis Vertical.
  • the y-axis position according to the alignment angle in the step (d ') is measured by offsetting the amount of retardation by the anisotropic release film 10 and the retardation compensation film 20 to each other.
  • the brightness of the transmitted light may be less than 50 gray, preferably less than 30 gray.
  • Orientation angle information for each position of the retardation compensation film 20, that is, the first compensation film 21 or the second compensation film 22 may be measured in advance, and the roll shape corresponding to the orientation angle
  • the positional information of the motor 5 may also be stored in advance in a storage device such as a PC. That is, in the polarizing plate inspection method according to the present invention, the orientation angle information for each position of the first compensation film 21 or the second compensation film 22 is measured in advance, and the anisotropic release film 10 is supplied.
  • the orientation angle information of the anisotropic release film 10 When the orientation angle information of the anisotropic release film 10 is received when the input can be inspected by moving to a previously stored position, wherein the position by the anisotropic release film 10 and the phase difference compensation film 20 It is a position where the brightness of the transmitted light measured by canceling the phase difference change amount becomes less than 50 gray, preferably less than 30 gray.
  • Another aspect of the present invention is an apparatus for inspecting a test polarizing plate 100 provided with an anisotropic release film 10 on one surface of a test polarizer, the light source (1);
  • An inspector side polarizer 200 having a phase difference compensation film 20 positioned on the inspector side polarizer 40;
  • a light receiving unit 2 for receiving the light irradiated from the light source 1 through the test polarizer 100 and the inspector side polarizer 200;
  • the x-axis is a direction in which the inspected polarizing plate 100 moves in a plane perpendicular to the z-axis, and the y-axis is on a plane perpendicular to the z-axis and is perpendicular to the x-axis (3 ); And shifting the phase difference compensation film 20 in the y-axis direction, and moving the phase difference compensation film 20 to the position on the y axis of the phase difference compensation film 20 when the brightness stored in the image analysis unit is the smallest.
  • a control unit 4 configured to move, wherein the inspected polarizing plate 100 is cross-callable with the inspector side polarizing plate 200, and the light source 1 and the light receiving unit 2 are each inspected.
  • polarizing plate inspection device located on the lower side of the inspector-side polarizing plate 200 and the upper portion of the inspected polarizing plate 100.
  • the inspected polarizer 100 is a state in which a release film 10 is provided under the inspected polarizer 30 and the inspected polarizer 30, and the inspected polarizer 30 and the anisotropic release property.
  • the base film 32 is provided between the films 10, and the base film 32 and the protective film 31 are provided on the inspected polarizer 30, but are not limited thereto.
  • the inspector-side polarizing plate 200 is positioned at the lower end of the crossover side so that cross nicol is possible.
  • the inspector side polarizer 200 is made to include a phase difference compensation film 20 and the inspector side polarizer 40 located at the bottom of the phase difference compensation film 20, the phase difference compensation film 20
  • the first compensation film 21 and the second compensation film 22 are provided side by side on the xy plane.
  • the anisotropic release film 10 is movable according to the moving direction 8 of the anisotropic release film, and the roller-shaped motor 5 at both ends of the first compensation film 21 and the second compensation film 22. ) Is provided so that the phase difference compensation film 20 can be moved on the y axis by the controller 4, and the phase difference compensation film 20 can be moved on the x axis.
  • the light source 1 and the light receiving part 2 may be located above and below the inspected polarizing plate 100 and above and below the inspector side polarizing plate 200, respectively, and the light source 1 and the light receiving part 2 may inspect the polarizing plate. Those skilled in the art may move the position as appropriate for ease of operation. This is illustrated in FIG. 3.
  • the light irradiated from the light source 1 arrives at the light receiving unit 2, and the image obtained from the light receiving unit 2 is interpreted by the image analyzing unit 3, and according to this information, the control unit 4 generates the light.
  • the position of the retardation compensation film 20 is moved.
  • the above-described information may be applied to the inspected polarizer 30, the inspector side polarizer 40, the anisotropic release film 10, the inspected polarizer 100, and the inspector side polarizer 200.
  • the light source 1 is for irradiating light to identify a defect of the polarizing plate 100 to be inspected, and the type of light source 1 is not limited as long as it is generally used in the art, for example, light having a wavelength of 400 nm to 650 nm. It may be to emit.
  • the light source 1 may be the same or similar to the light source 1 of the liquid crystal display device in which the polarizing plate is to be used. White light may be used, but it is more preferable to use green light of 510 nm to 550 nm.
  • the light emitted from the light source 1 passes through the polarizing plate 100 and the inspector side polarizing plate 200 and is received by the light receiving unit 2.
  • the light receiving unit 2 may be a light receiving device such as a CCD camera, but is not limited thereto and may be an image receiving device generally used in the cross nicol method in the art.
  • the image obtained from the light receiving unit 2 of the inspector side polarizer 200 is interpreted by the image analyzer 3 to store the brightness and the position on the y axis of the phase difference compensation film 20 corresponding thereto.
  • phase difference compensation film 20 is moved in the y-axis direction through the controller 4. Specifically, the controller 4 moves the phase difference compensation film 20 to a position on the y axis of the phase difference compensation film 20 when the brightness stored in the image analysis unit is the smallest.
  • the inspected polarizing plate 100 is positioned to be cross nicol with the inspector side polarizing plate 200, and the light source 1 and the light receiving unit 2 are the inspected polarizing plate 100 and the inspector side polarizing plate, respectively. It may be located above and below the 200.
  • the light source 1 is positioned above the inspected polarizing plate 100
  • the light receiving unit 2 is positioned below the inspector side polarizing plate 200
  • the light source 1 is located on the inspector side polarizing plate.
  • the light emitting unit 2 is positioned below the light receiving unit 2
  • the light receiving unit 2 may be positioned above the inspected polarizing plate 100.
  • the retardation compensation film 20 includes a first compensation film 21 and a second compensation film 22, the first compensation film 21 and the second compensation film 22 is on the same xy plane, the first compensation film 21 increases or decreases the alignment angle on the y axis, and the second compensation film 22 increases the alignment angle on the y axis. Or decrease.
  • the first compensation film 21 and the second compensation film 22 may use the same thing symmetrically with respect to the x-axis, or may use a film that is not the same, but the x-axis of the anisotropic release film 10
  • the retardation value between the direction and the + y-axis direction should be distributed to have the retardation value between the x-axis direction and the -y-axis direction of the first compensation film 21 or the second compensation film 22.
  • the retardation compensation film 20 is disposed on the first compensation film 21 in a state in which the film having the same distribution as the phase difference distribution of the anisotropic release film 10 is symmetrically inverted on the y-axis, the anisotropic release
  • the second compensation film 22 should have a distribution in which the first compensation film 21 is symmetrically reversed in the x-axis direction.
  • the first compensation film 21 and the second compensation film 22 has a distribution inverted symmetrically with respect to the y-axis and the anisotropic release film 10, this position-specific characteristics and the anisotropic release film 10 and This means that the distribution characteristic of the alignment angle of the first compensation film 21 or the second compensation film 22 is canceled. However, this means that the characteristics of the first compensation film 21 and the second compensation film 22 are symmetric with each other.
  • the anisotropic release film 10 of the orientation angle distribution profile of the retardation compensation film 20 may be used. Inverted according to the orientation angle distribution profile of, in other words, a compensation film suitable for the anisotropic release film 10 is selected from the first compensation film 21 and the second compensation film 22 without the need for a symmetrical setting process. There is an advantage to the automation process as it only needs to be done.
  • the retardation compensation film 20 has a profile in which the orientation angle distribution profile along the width direction is symmetric with the orientation angle distribution profile along the width direction of the anisotropic release film 10.
  • the first compensation film 21 may have an orientation angle distribution profile along a width direction of the first compensation film 21 which is the same as an orientation angle distribution profile along the width direction of the anisotropic release film 10.
  • the orientation angle distribution profile along the width direction is symmetrically distributed with the orientation angle distribution profile along the width direction of the first compensation film 21;
  • the second compensation film 22 may have an orientation angle distribution profile along the width direction of the second compensation film 22 which is the same as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the width direction of the first compensation film 21 may be different.
  • Orientation angle distribution profile according to may be a symmetric distribution with the orientation angle distribution profile of the second compensation film (22).
  • one of the first compensation film 21 and the second compensation film 22 is the same as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the other one. Since there is an symmetric distribution with the orientation angle distribution profile along the width direction of the anisotropic release film 10 has an advantage that can be automated inspection.
  • the image analysis unit 3 analyzes the image obtained from the light receiving unit 2 of the inspector side polarizing plate 200, its brightness and corresponding phase difference compensation film 20 It is possible to store the position on the x-axis, the control unit 4 is capable of moving the retardation compensation film 20 in the x-axis direction.
  • the retardation compensation film 20 may be moved on the x-axis through the controller 4, and the image analyzer 3 may store a position on the x-axis of the retardation compensation film 20. As the retardation compensation film 20 can be moved and stored in the position of the x-axis, the polarizer may be easily inspected regardless of the shape of the anisotropic release film 10.
  • a conveyor belt for moving the retardation compensation film 20 in the y-axis direction may be further provided.
  • the retardation compensation film 20 drops two roll-shaped motors 5 connected to the controller 4 in the y-axis direction by a suitable distance and then connects the motors 5 with each other. It may be provided in the form of.
  • the length of the conveyor belt may be adjusted according to the length of the phase difference compensation film 20.
  • the inspected polarizing plate 100 may further include a protective film 31, a base film 32, an adhesive layer 33, and the like on at least one surface thereof, and the protective film 31 and the base film 32 are sugars.
  • the adhesive layer 33 may be formed by a method commonly used in the art, but is not limited thereto. However, it is preferable that the anisotropic release film 10 and the phase difference compensation film 20 face each other.
  • the base film 32 may serve as a protective film.
  • FIG. 3 illustrates an optical configuration of a polarizing plate inspection apparatus according to some embodiments of the present invention.
  • an inspector side polarizing plate 200 in which the phase difference compensation film 20 is positioned below the inspector side polarizer 40 is prepared, and an anisotropic release film (below) of the inspector side polarizer 200 is prepared.
  • the adhesive layer 33, the base film 32, the test polarizer 30, the base film 32, the protective film 31 is provided with a test polarizing plate 100 in order, and the light source ( 1) and the light receiving unit 2 may be provided on the outer side of the inspected polarizing plate 100 and the inspector side polarizing plate 200, respectively.
  • the anisotropic release film 10 and the compensation film 20 are provided to face each other.
  • 3B illustrates an example in which the light source 1 and the light receiving unit 2 are provided on the outer side of the inspector side polarizing plate 200 and the inspected polarizing plate 100, respectively.
  • primary polarization occurs at the inspector side polarizer 40 and secondary polarization occurs at the inspected polarizer 30.
  • FIG. 3 c is a side view of FIG. 1, which schematically illustrates b) of FIG. 3, wherein the inspector side polarizer includes a light source 1, an inspector side polarizer 40, and a phase difference compensation film 20. 200 and the anisotropic release film 10, other film layer (eg, protective film 31, base film 32, adhesive layer 33, etc.) on the inspector side polarizer 200 and The inspected polarizing plate 100 and the light receiving unit 2 including the inspected polarizer 30 are provided, and as shown in b) of FIG. 3, primary polarization occurs in the inspector side polarizer 40 and the inspected polarizer ( Secondary polarization may occur in 30). As shown in c) of FIG. 3, the retardation compensation film 20 may be selected such that the direction of the anisotropic release film 10 and the orientation angle are opposite to each other.
  • the retardation compensation film 20 may be selected such that the direction of the anisotropic release film 10 and the orientation angle are opposite to each other.
  • an orientation angle may gradually increase from the center of the anisotropic release film 10 to both ends.
  • the polarizing plate inspection method according to the present invention uses an anisotropic release film 10 including a portion having an orientation angle of 8 ° or more, for example, FIG. Since the use of the anisotropic release film 10 corresponding to the 0-1300mm section, 2700-4000mm section of 6 can be used to reduce the raw material cost.
  • the orientation angle may vary depending on the amount of stretching, and the phase difference compensation film 20 uses the same stretched product as the anisotropic release film 10 or uses the film used for the anisotropic release film 10. It is preferable to use the entire stretched anisotropic release film 10 fabric.
  • Another embodiment of the present invention is an apparatus for inspecting the test polarizing plate 100 provided with an anisotropic release film 10, the information of the anisotropic release film 10 orientation angle is displayed on one surface of the test polarizer 30, Light source 1; An inspector side polarizer 200 having a phase difference compensation film 20 positioned on the inspector side polarizer 40; A light receiving unit 2 for receiving the light irradiated from the light source 1 through the test polarizer 100 and the inspector side polarizer 200; A recording medium reading machine (6) for reading information of the orientation angle; An encoder (7) for transmitting the information read by the recording medium reading machine (6) to measure the distance from the recording medium reading machine (6) to the polarizing plate under test (100); And move the retardation compensation film 20 to a position of the y-axis of the retardation compensation film 20 according to the distance measured by the encoder, wherein z-axis is the traveling direction of the light and x-axis is the z-axis.
  • a control unit 4 which is a direction in which the inspected polarizing plate 100 moves on a plane perpendicular to the axis, and a y-axis exists on a plane perpendicular to the z-axis and is perpendicular to the x-axis.
  • the polarizing plate 100 is positioned to be cross nicol with the inspector side polarizing plate 200, and the light source 1 and the light receiving unit 2 are respectively formed on the upper part of the inspected polarizing plate 100 and the inspector side polarizing plate 200.
  • the present invention provides a device for inspecting a test polarizing plate provided with an anisotropic release film on one surface of the test polarizer, the light source (1); An inspector side polarizer 200 having a phase difference compensation film 20 positioned on the inspector side polarizer 40; A light receiving unit 2 for receiving the light irradiated from the light source 1 through the test polarizer 100 and the inspector side polarizer 200; A data storage unit for receiving data including distribution information of an orientation angle of the anisotropic release film 10 on the inspected polarizing plate 100; An encoder (7) receiving information from the data storage unit and calculating an inspection position of the inspected polarizing plate 100; And move the retardation compensation film 20 to the position of the y-axis of the retardation compensation film 20 according to the distance calculated by the encoder, wherein z-axis is the traveling direction of the light and x-axis is the z-axis.
  • a control unit 4 which is a direction in which the inspected polarizing plate 100 moves on a plane perpendicular to the axis, and a y-axis exists on a plane perpendicular to the z-axis and is perpendicular to the x-axis.
  • the polarizing plate 100 is positioned to be cross nicol with the inspector side polarizing plate 200, and the light source 1 and the light receiving unit 2 are respectively formed on the upper part of the inspected polarizing plate 100 and the inspector side polarizing plate 200.
  • the encoder 7 may be used to measure the distance to confirm the point of time when the products having different orientation angles reach the inspection point, that is, the bottom of the inspected polarizing plate 100.
  • the position of the encoder 7 is not particularly limited, but may be positioned in contact with a driving roll for moving the anisotropic release film 10 or a guide roll for changing a film traveling path.
  • the recording medium reading machine 6 reads the information of the recording medium 50.
  • the encoder 7 measures the moving distance of the film to determine the point of time when the anisotropic release film 10 having an orientation angle of 10 degrees reaches the lower portion of the polarizing plate 100 to be inspected, and thus the position of the phase difference compensation film 20.
  • the polarizing plate inspection can be performed by automatically adjusting.
  • the data storage unit receives data including distribution information of the orientation angles of the anisotropic release film 10 on the polarizing plate 100 to be inspected, and the encoder 7 receives information from the data storage unit.
  • the polarizing plate inspection may be performed by calculating the inspection position of the inspected polarizing plate 100 and automatically adjusting the position of the retardation compensation film 20 by receiving the signal.
  • FIG. 2 shows an example of a polarizing plate inspection apparatus according to some embodiments of the present invention.
  • a bar code on which the orientation angle information is recorded is printed on the lower portion of the anisotropic release film 10, and the polarizing plate under test 100 is disposed under the polarizer 30 under test and the polarizer 30 under test.
  • the anisotropic release film 10 is provided, and a base film 32 is provided between the inspected polarizer 30 and the anisotropic release film 10, and the substrate is disposed above the inspected polarizer 30.
  • the film 32 and the protective film 31 are provided, but are not limited thereto.
  • the barcode according to FIG. 2 is printed on the lower portion of the anisotropic release film 10, but is not limited thereto and may be attached or printed on the upper portion.
  • the lower portion of the anisotropic release film 10 may refer to a surface where the anisotropic release film 10 does not contact the base film 32.
  • the inspector side polarizing plate 200 is located at the lower end of the inspected polarizing plate 100 so as to be cross nicol. At this time, the inspector side polarizer 200 is made to include a phase difference compensation film 20 and the inspector side polarizer 40 located at the bottom of the phase difference compensation film 20, the phase difference compensation film 20 Although not limited thereto, the first compensation film 21 and the second compensation film 22 are provided side by side on the xy plane.
  • the anisotropic release film 10 is movable according to the moving direction 8 of the anisotropic release film, and the roller-shaped motor 5 at both ends of the first compensation film 21 and the second compensation film 22. ),
  • the retardation compensation film 20 may be moved on the y-axis by the controller 4, and the retardation compensation film 20 may be movable on the x-axis.
  • the light source 1 and the light receiving unit 2 may be positioned above and below the inspected polarizing plate 100 and above and below the inspector side polarizing plate 200.
  • the light source 1 and the light receiving unit 2 may be inspected by the polarizing plate. Those skilled in the art may move the position as appropriate for ease. This is illustrated in FIGS. 3A and 3B, but is not limited thereto.
  • the recording medium reading machine 6 reads the information of the barcode and transmits the information of the orientation angle of the anisotropic release film 10 to the encoder 7, and after the encoder 7 transmits the information, The distance to the polarizing plate under test 100 is measured, and the retardation compensation film 20 is moved to an appropriate position in the controller 4. Thereafter, the light emitted from the light source 1 passes through the polarizing plate 100 and the inspector side polarizing plate 200 to be received by the light receiving unit 2 to complete the inspection.
  • the brightness of the transmitted light measured by offsetting the amount of phase difference change by the anisotropic release film 10 and the retardation compensation film 20 so as to read the information of the orientation angle and thus cross nicol inspection is possible.
  • Automatic inspection is possible by automatically adjusting the position of the retardation compensation film 20 so that is less than 30 gray.
  • the polarizing plate inspection apparatus is a phase difference compensation amount by the anisotropic release film 10 and the retardation compensation film 20 is canceled by measuring the position of the retardation compensation film 20 when the brightness of the transmitted light is 50 gray or more
  • the polarizing plate inspection can be performed again by making fine adjustments and moving in the y-axis direction.
  • the above-described information may be applied to the inspected polarizer 30, the inspector side polarizer 40, the anisotropic release film 10, the inspected polarizer 100, and the inspector side polarizer 200.
  • the retardation compensation film 20 includes a first compensation film 21 and a second compensation film 22, the first compensation film 21 and the second compensation film 22 is on the same xy plane, the first compensation film 21 increases or decreases the alignment angle on the y axis, and the second compensation film 22 increases the alignment angle on the y axis. Or decrease.
  • the above-described information may be applied.
  • the retardation compensation film 20 has a profile in which the orientation angle distribution profile along the width direction is symmetric with the orientation angle distribution profile along the width direction of the anisotropic release film 10. Can be.
  • the retardation compensation film 20 may have a profile in which the retardation distribution profile along the width direction is symmetric with the retardation distribution profile along the width direction of the anisotropic release film 10. In this case, the above description may be applied.
  • one of the first compensation film 21 and the second compensation film 22 is the same as the orientation angle distribution profile along the width direction of the anisotropic release film 10, and the other one. Since there is an symmetric distribution with the orientation angle distribution profile along the width direction of the anisotropic release film 10 has an advantage that can be automated inspection.
  • the above-described information may be applied.
  • Positions of the inspected polarizing plate 100, the inspector side polarizing plate 200, the light source 1, and the light receiving unit 2 may apply the above-described contents.
  • a conveyor belt for moving the retardation compensation film 20 in the y-axis direction may be further provided, and the above description may be applied.
  • the inspected polarizing plate 100 may further include a protective film 31, a base film 32, an adhesive layer 33, and the like on at least one surface thereof.
  • FIG. 3 illustrates an optical configuration of a polarizing plate inspection apparatus according to some embodiments of the present invention.
  • an inspector side polarizing plate 200 in which the phase difference compensation film 20 is positioned below the inspector side polarizer 40 is prepared, and an anisotropic release film (below) of the inspector side polarizer 200 is prepared.
  • the adhesive layer 33, the base film 32, the test polarizer 30, the base film 32, the protective film 31 is provided with a test polarizing plate 100 in order, and the light source ( 1) and the light receiving unit 2 may be provided on the outer side of the inspected polarizing plate 100 and the inspector side polarizing plate 200, respectively.
  • the anisotropic release film 10 and the retardation compensation film 20 are provided to face each other.
  • 3B illustrates an example in which the light source 1 and the light receiving unit 2 are provided on the outer side of the inspector side polarizing plate 200 and the inspected polarizing plate 100, respectively.
  • primary polarization occurs at the inspector side polarizer 40 and secondary polarization occurs at the inspected polarizer 30.
  • FIG. 3 c is a side view of FIG. 2, which schematically illustrates b) of FIG. 3, wherein the inspector side polarizing plate including the light source 1, the inspector side polarizer 40, and the phase difference compensation film 20 is provided. 200 and the anisotropic release film 10, other film layer (eg, protective film 31, base film 32, adhesive layer 33, etc.) on the inspector side polarizer 200 and The inspected polarizing plate 100 and the light receiving unit 2 including the inspected polarizer 30 are provided, and as shown in b) of FIG. 3, primary polarization occurs in the inspector side polarizer 40 and the inspected polarizer ( Secondary polarization may occur in 30). As shown in c) of FIG. 3, the retardation compensation film 20 may be selected such that the direction of the anisotropic release film 10 and the orientation angle are opposite to each other.
  • the retardation compensation film 20 may be selected such that the direction of the anisotropic release film 10 and the orientation angle are opposite to each other.
  • an orientation angle may gradually increase from the center of the anisotropic release film 10 to both ends thereof.
  • An anisotropic release film of Mitsubishi Chemical Holdings whose angle of orientation is + 11 °, is shown in Table 1 below by using the cross nicol method for inspecting the anisotropic release film using the polarizing plate inspection apparatus according to the present invention.
  • the anisotropic release film was used by cutting about 1300mm (0 ⁇ 1300mm section, 2700 ⁇ 4000mm section) from both ends in a film of 4000mm in total width, the angle of the orientation angle KOBRA equipment (prince measuring equipment Co., Ltd.).
  • the phase difference compensation film of the polarizing plate inspection apparatus was cut out and used the same product (Mitsubishi Chemical Holdings) as an anisotropic release film.
  • the angles of the orientation angles of one end and the other end of the anisotropic release film of Mitsubishi Chemical Holdings were measured using KOBRA equipment (Principal Instrument, Inc.), and then recorded on a barcode and attached to the anisotropic release film.
  • the anisotropic release film was used to cut about 1300mm (0 ⁇ 1300mm section, 2700 ⁇ 4000mm section) from both ends in the film of the full width 4000mm.
  • the image and the brightness (gray) of the anisotropic release film inspected by the cross nicol method using the polarizing plate inspection apparatus according to the present invention are shown in Table 2 below.
  • the phase difference compensation film of the polarizing plate inspection apparatus was cut out and used the same product (Mitsubishi Chemical Holdings) as an anisotropic release film.
  • An anisotropic release film having an angle of an orientation angle of + 11 ° was inspected by a cross nicol method using the polarizing plate inspection apparatus according to the present invention, and the image and brightness (gray) inspected without including a phase difference compensation film in the polarizing plate inspection apparatus. ) Is shown in Table 1 below.
  • the anisotropic release film After measuring the angles of the orientation angles of one end and the other end of the anisotropic release film, it was recorded on the barcode and attached to the anisotropic release film. Thereafter, the anisotropic release film is inspected by the cross nicol method using the polarizing plate inspection apparatus according to the present invention, but the image and the brightness (gray) inspected in the state of not including the phase difference compensation film in the polarizing plate inspection apparatus are shown in Table 2 below. Indicated.
  • the brightness is 30 gray level, it was possible to implement cross nicol stable, polarizing plate inspection apparatus according to the present invention If not used, the average brightness is 230 gray or more, it can be seen that the polarizing plate inspection is not possible through the cross nicol method.
  • the brightness is 30 gray level, stable cross nicol implementation was possible, but the polarizing plate inspection according to the present invention If the device is not used, the average brightness is 230 gray or more, it can be seen that the polarizing plate inspection is not possible through the cross nicol method.
  • test polarizer 31 protective film

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명에 따른 편광판 검사 방법은 (a) 피검사 편광자의 하부에 이방성 이형필름이 구비된 피검사 편광판을 준비하는 단계; (b) 검사기측 편광자의 상부에 위상차 보상필름이 구비된 검사기측 편광판을 상기 피검사 편광판의 하부로 위치시키는 단계; (c) 상기 위상차 보상필름을 y축 상으로 이동시키면서 크로스니콜법을 이용하여 빛이 상기 피검사 편광판과 상기 검사기측 편광판을 통과했을 때의 밝기를 측정하는 단계로서, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 단계; (d) 상기 위상차 보상필름의 y축 상의 위치에 따른 밝기를 저장하는 단계; (e) 상기 위상차 보상필름을 상기 (d) 단계에서 저장된 밝기들 중 가장 작은 밝기로부터 5% 이내의 밝기에 해당하는 y축 위치로 이동하는 단계; 및 (f) 크로스니콜법으로 상기 피검사 편광판을 검사하는 단계를 포함하는 것을 특징으로 한다.

Description

편광판 검사 방법 및 편광판 검사 장치
본 발명은 높은 배향각을 갖는 이방성 이형필름을 구비하여도 검사가 가능한 편광판 검사 방법 및 편광판 검사 장치에 관한 것이다.
편광판은 액정표시장치를 구성하는 광학부품 중 하나로서 유용하다. 액정표시장치는 그의 용도가 확대되고 보다 정밀하게 됨에 따라서 편광판의 결함은 액정표시장치의 결함으로 야기되어 편광판의 결함을 검사하여 편광판의 불량을 줄이는 것이 더욱 요구되고 있다.
종래의 편광판 검사 방법의 일례로서, 검사용 편광판 상부에 검사하고자 하는 피검사 편광판을 크로스니콜, 즉 이들의 편광축 방향이 직교하는 상태로 배치하여 광원으로부터 광을 조사하고, 투과광의 화면을 육안 또는 카메라에 의해 관찰하는 방법으로 실시된다.
검사하고자 하는 피검사 편광판의 하부에 사용되는 이형필름은 대부분 이방성 필름을 사용하게 되는데, 이 때 위상차가 발생되어 광축이 틀어짐에 따라 크로스니콜의 다크(dark) 상태에 영향을 주게 되어 크로스니콜 검사가 불가능할 수 있기 때문에 상기 크로스 검사에 영향을 미치지 않을 축각도 범위내, 예를 들어 8° 이하의 축각도를 갖는 이방성 이형필름으로 제한시켜야 하는 문제가 있다.
이형필름의 폭방향에 대한 축각도를 살펴보면, 중앙 부분은 이방성이 낮으며, 측면으로 갈수록 이방성이 높아진다. 즉, 규격 내에 들어오는 이방성 필름의 양은 매우 한정되며 따라서 상대적으로 고가일 수 밖에 없고, 이는 편광판의 제조단가를 증가시키는 요인이 되고 있다. 더욱이, 이형필름은 최종적으로 박리되어 폐기되는 것이기 때문에, 이방성 규격을 논하는 것은 매우 낭비적인 것이다.
대한민국 공개특허 2008-0099542호는 편광판 및 편광판 검사 시스템에 관한 것으로서, 피검사 편광판과 검사용 편광판 사이에 위치하는 위상차 보정부재를 포함하여 이루어지는 편광판 검사 시스템에 관한 내용을 개시하고 있으나, 자동 검사에 적용하기에는 다소 한계가 있는 실정이다.
그러므로, 이형필름의 이방성의 값에 관계없으며 자동 검사에 적용이 가능한 편광판의 흠결을 검사할 수 있는 시스템의 개발이 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허 제2008-0099542호 (2008.11.13.)
본 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 높은 배향각을 가지는 이형필름을 구비하여도 검사가 가능한 편광판 검사 방법 및 편광판 검사 장치를 제공하는 것을 목적으로 한다.
본 발명은 (a) 피검사 편광자의 하부에 이방성 이형필름이 구비된 피검사 편광판을 준비하는 단계; (b) 검사기측 편광자의 상부에 위상차 보상필름이 구비된 검사기측 편광판을 상기 피검사 편광판의 하부로 위치시키는 단계; (c) 상기 위상차 보상필름을 y축 상으로 이동시키면서 크로스니콜법을 이용하여 빛이 상기 피검사 편광판과 상기 검사기측 편광판을 통과했을 때의 밝기를 측정하는 단계로서, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 단계; (d) 상기 위상차 보상필름의 y축 상의 위치에 따른 밝기를 저장하는 단계; (e) 상기 위상차 보상필름을 상기 (d) 단계에서 저장된 밝기들 중 가장 작은 밝기로부터 5% 이내의 밝기에 해당하는 y축 위치로 이동하는 단계; 및 (f) 크로스니콜법으로 상기 피검사 편광판을 검사하는 단계를 포함하는 편광판 검사 방법을 제공하고자 한다.
또한, 본 발명은 (a') 이방성 이형필름의 배향각 정보를 입력받는 단계; (b') 피검사 편광자의 하부에 상기 이방성 이형필름이 위치한 피검사 편광판을 준비하는 단계; (c') 검사기측 편광자의 상단에 위치한 위상차 보상필름이 구비된 검사기측 편광판을 위치시키는 단계; (d') 상기 위상차 보상필름을 입력받은 배향각에 따른 y축 위치로 이동하는 단계; 및 (e') 크로스니콜법을 이용하여 빛이 상기 피검사 편광판과 상기 검사기측 편광판을 통과했을 때의 밝기를 측정하여 상기 피검사 편광판을 검사하는 단계를 포함 한다.
또한, 본 발명은 피검사 편광자의 일면 상에 이방성 이형필름이 구비된 피검사 편광판을 검사하는 장치로서, 광원; 검사기측 편광자의 상부에 위치한 위상차 보상필름이 구비된 검사기측 편광판; 상기 광원에서 조사된 빛이 상기 피검사 편광판과 검사기측 편광판을 통과하여 수신되는 수광부; 상기 검사기측 편광판의 상기 수광부로부터 얻은 영상을 해석하여 그 밝기 및 그에 대응하는 상기 위상차 보상필름의 y축 상의 위치를 저장하되, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 것인 영상 해석부; 및 상기 위상차 보상필름을 y축 방향으로 이동시키되, 상기 영상해석부에 저장된 상기 밝기가 가장 작은 경우의 상기 위상차 보상필름의 y축 상의 위치로 상기 위상차 보상필름을 이동시키도록 구성된 제어부를 포함하고, 상기 피검사 편광판은 상기 검사기측 편광판과 크로스니콜 가능하게 위치하며, 상기 광원 및 수광부는 각각 상기 피검사 편광판의 상부와 상기 검사기측 편광판의 하부에 위치하거나; 또는 상기 검사기측 편광판의 하부와 상기 피검사 편광판의 상부에 위치하는 편광판 검사 장치를 제공한다.
또한 본 발명은, 피검사 편광자의 일면 상에 이형 필름 배향각의 정보가 표시된 이형필름이 구비된 피검사 편광판을 검사하는 장치로서, 광원; 검사기측 편광자의 상부에 위치한 위상차 보상필름이 구비된 검사기측 편광판; 상기 광원에서 조사된 빛이 상기 피검사 편광판과 검사기측 편광판을 통과하여 수신되는 수광부; 상기 배향각의 정보를 리딩하는 기록 매체 리딩기, 또는 상기 피검사 편광판 상의 상기 이방성 이형필름의 배향각의 분포 정보가 포함된 데이터를 수신하는 데이터 저장부; 상기 기록 매체 리딩기에서 리딩된 정보 또는 상기 데이터 저장부에서 정보를 송신하여 상기 기록 매체 리딩기에서부터 피검사 편광판까지의 거리를 측정하는 엔코더; 및 상기 엔코더에서 측정된 거리에 따라 상기 위상차 보상필름의 y축의 위치로 상기 위상차 보상필름을 이동시키되, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 것인 제어부를 포함하고, 상기 피검사 편광판은 상기 검사기측 편광판과 크로스니콜 가능하게 위치하며, 상기 광원 및 수광부는 각각 상기 피검사 편광판의 상부와 상기 검사기측 편광판의 하부에 위치하거나; 또는 상기 검사기측 편광판의 하부와 상기 피검사 편광판의 상부에 위치하는 편광판 검사 장치를 제공한다.
본 발명에 따른 편광판 검사 방법은 배향각이 8° 이상의 높은 이방성 이형필름을 구비하고 있는 편광판을 검사할 수 있는 이점이 있다.
또한, 본 발명에 따른 편광판 검사 장치는 높은 배향각을 가지고 있는 이방성 이형필름을 구비하고 있는 편광판을 자동 검사로 손쉽게 검사할 수 있다.
도 1은 본 발명의 몇몇 실시형태에 따른 편광판 검사 장치의 일 예를 도시한 것이다.
도 2는 본 발명의 몇몇 실시형태에 따른 편광판 검사 장치의 일 예를 도시한 것이다.
도 3은 본 발명의 몇몇 실시형태에 따른 편광판 검사 장치의 광학 구성을 예시한 도이다.
도 4는 필름의 폭 방향에 따른 배향각의 변화를 나타낸 도이다.
도 5는 위상차 필름 폭방향에 따른 배향각의 변화를 예시한 도이다.
도 6은 이방성 이형필름 원단 전체의 폭 방향에 따른 배향각의 변화를 나타낸 도이다.
이하, 본 발명에 대하여 더욱 상세히 설명한다.
본 발명에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 발명에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 한 양태는 (a) 피검사 편광자(30)의 하부에 이방성 이형필름(10)이 구비된 피검사 편광판(100)을 준비하는 단계; (b) 검사기측 편광자(40)의 상부에 위상차 보상필름(20)이 구비된 검사기측 편광판(200)을 상기 피검사 편광판(100)의 하부로 위치시키는 단계; (c) 상기 위상차 보상필름(20)을 y축 상으로 이동시키면서 크로스니콜법을 이용하여 빛이 상기 피검사 편광판(100)과 상기 검사기측 편광판(200)을 통과했을 때의 밝기를 측정하는 단계로서, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판(100)이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 단계; (d) 상기 위상차 보상필름(20)의 y축 상의 위치에 따른 밝기를 저장하는 단계; (e) 상기 위상차 보상필름을 상기 (d) 단계에서 저장된 밝기들 중 가장 작은 밝기로부터 5% 이내의 밝기에 해당하는 y축 위치로 이동하는 단계; 및 (f) 크로스니콜법으로 상기 피검사 편광판(100)을 검사하는 단계를 포함하는 편광판 검사 방법에 관한 것이다.
상기 (a) 단계는 피검사 편광자(30)의 하부에 이방성 이형필름(10)이 구비된 피검사 편광판(100)을 준비하는 단계이다.
상기 피검사 편광자(30) 및 검사기측 편광자(40)는 당 업계에서 알려진 편광자라면 모두 제한되지 않고 사용 가능하며, 동일한 편광자를 적용하여도 무방하고, 동일하지 않은 편광자를 적용하여도 무방하다. 상기 "동일한"이란 두께, 재질 또는 크기가 같은 것일 수 있다. 예컨대, 상기 편광자는 폴리비닐알코올 등의 비닐알콜계 수지 필름을 들 수 있으며, 구체적으로는 일축 연신된 폴리비닐알코올계 수지 필름에 2색성 색소가 흡착 배향된 것, 또는 폴리비닐클로라이드(PVC) 필름의 탈염산반응에 의해 폴리엔(polyene)을 형성한 것을 들 수 있으나 이에 한정되지 않는다.
상기 이방성 이형필름(10)은 배향각이 8°이상일 수 있으며, 구체적으로 8°내지 50°일 수 있으며, 그 재질은 통상적으로 당업계에서 사용되는 이방성을 가지는 이형필름이라면 한정되지 않는다. 예컨대, 상기 이방성 이형필름(10)은 이축 연신 필름이 사용될 수 있으며, 예를 들면 폴리에스테르계, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀계, 폴리스티렌계, 폴리염화비닐리덴계, 에틸렌비닐알코올계, 폴리염화비닐계, 폴리카보네이트계, 폴리아미드계, 폴리이미드계, 아크릴계, 아세테이트계, 폴리에테르술폰계의 각 수지로부터 선택되는 적어도 1종으로 형성되어 있는 이축 연신 필름이 사용될 수 있다. 바람직하게는 이축 연신 투명 폴리에스테르 필름이 사용된다. 또한, 코로나 방전 처리 등, 공지의 표면 처리를 할 수 있다.
상기 이방성 이형필름(10)은 일반적으로 편광판에 형성된 점착층(33)에 점착되며, 편광판이 사용되는 화상표시장치 등에 적용 시 박리되어 폐기되게 된다.
일반적으로 검사하고자 하는 편광판의 하부에 사용되는 이형필름은 대부분 이방성 필름을 사용하게 되는데, 편광판의 광축에 대하여 이방성 매질의 광축이 축각도만큼 틀어지게 되어 불완전한 크로스 검사를 야기하게 될 수 있는 있는 문제가 발생하기 때문에, 크로스 검사에 영향을 미치지 않은 배향각 범위내, 예를 들어 8°이하의 배향각을 갖는 이방성 이형필름(10)을 제한하고 있다.
그러나, 본 발명의 편광판 검사 방법은 배향각이 8° 이상인 이방성 이형필름(10)을 적용한 편광판의 검사가 가능하기 때문에 기존의 배향각이 8° 이내의 이방성 이형필름(10)을 적용한 편광판에 비하여 원재료비 절감 효과를 나타낼 수 있는 이점이 있다.
상기 피검사 편광자(30)와 상기 이방성 이형필름(10)은 접착되어 있는 상태일 수도 있고, 상기 피검사 편광자(30) 하부에 상기 이방성 이형필름(10)이 단순히 위치되어 있는 상태일 수도 있다. 상기 이방성 이형필름(10)이 상기 피검사 편광자(30)와 접착되어 있는 경우는 점착제층에 의하여 부착된 상태일 수 있으나 이에 한정되지 않으며, 상기 점착제층은 투명하며, 등방성의 점착제를 이용하여 형성된 것이라면 이에 한정되지 않는다.
요컨대, 상기 피검사 편광판(100)이란 상기 피검사 편광자(30)와 상기 이방성 이형필름(10)이 접착되어 있는 상태를 일컬을 수도 있고, 상기 피검사 편광자(30)의 하부에 상기 이방성 이형필름(10)이 단순히 위치되어 있는 상태를 일컬을 수도 있다.
상기 피검사 편광자(30) 하단에 상기 이방성 이형필름(10)이 단순히 위치되어 있는 상태인 경우 상기 피검사 편광자(30)는 위치가 고정된 상태일 수도 있다.
즉, 본 발명의 편광판 검사 방법을 통하여 이방성 이형필름(10)을 단독으로 진행하는 접합전 기재검사를 수행할 수도 있고, 이방성 이형필름(10)을 편광자에 접합한 후 진행하는 접합 후 제품 검사도 수행할 수 있다.
상기 (a) 단계에서 상기 피검사 편광판(100)을 준비한 후, 검사기측 편광자(40)의 상부에 위상차 보상필름(20)이 구비된 검사기측 편광판(200)을 상기 피검사 편광판(100)의 하부로 위치시키는 (b) 단계를 포함한다.
상기 위상차 보상필름(20)은 상기 이방성 이형필름(10)과 동일한 x축 굴절률 및 y축 굴절률을 갖는 이방성 재질이며, 상기 이방성 이형필름(10)의 배치로부터 y축을 중심으로 180° 회전된 위치에 배치되는 것일 수 있다.
상기 위상차 보상필름(20)은 상기 피검사 편광판(100)과 검사기측 편광자(40) 사이에 위치하는 것으로서, 상기 이방성 이형필름(10)의 이방성으로 인해 틀어지는 위상차를 상쇄 보정시키는 역할을 수행할 수 있다.
상기 위상차 보상필름(20)은 상기 이방성 이형필름(10)과 동일한 x축 굴절률 및 y축 굴절률을 가지기만 하면 그 종류가 한정되지는 않으나, 상기 이방성 이형필름(10)과 동일한 필름을 사용하는 것이 바람직하다.
상기 편광판 검사 방법은 상기 피검사 편광판(100)을 준비하고, 상기 검사기측 편광판(200)을 상기 피검사 편광판(100)의 하부로 위치시킨 후, 상기 위상차 보상필름(20)을 y축 상으로 이동시키면서 크로스니콜법을 이용하여 빛이 상기 피검사 편광판(100)과 상기 검사기측 편광판(200)을 통과했을 때의 밝기를 측정하는 (c) 단계를 포함할 수 있다. 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에 존재하는 한 축이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직이다.
상기 위상차 보상필름(20)은 상기 검사기측 편광자(40) 상에 위치하는 것으로서, 상기 위상차 보상필름(20)의 하단은 상기 검사기측 편광자(40)의 상단과 접촉되지 않은 상태일 수 있다. 구체적으로, 상기 위상차 보상필름(20)의 하단은 상기 검사기측 편광자(40)의 상단의 거리는 1mm 내지 50mm일 수 있다.
상기 "거리"는 상기 위상차 보상필름(20)의 하단의 한 지점으로부터, 상기 지점을 포함하는 면과, 상기 면과 평행하면서 상기 검사기측 편광자(40)의 상단의 한 지점을 포함하는 면 사이의 직선 길이 중 가장 짧은 길이를 일컬을 수 있다.
상기 위상차 보상필름(20)은 상기 검사기측 편광자(40)와 접촉되지 않은 상태이기 때문에 상기 검사기측 편광자(40)를 이동시키지 않으면서, 상기 위상차 보상필름(20)만의 이동이 가능하다.
즉, 상기 피검사 편광판(100)과 상기 검사기측 편광자(40) 사이에서 상기 위상차 보상필름(20)이 y축 상으로 이동되면서 크로스니콜법을 이용하여 빛이 상기 피검사 편광판(100)과 상기 검사기측 편광판(200)을 통과했을 때의 밝기의 측정이 가능하다.
본 명세서에서 상기 x, y축은 z축과 수직한 xy평면 상에 존재하는 x축, y축을 의미하며, 상기 z축은 빛이 진행하는 방향을 의미한다.
또는, 본 명세서에서 상기 "x축 방향"은 이방성 이형필름(10)의 길이 방향 또는 위상차 보상필름(20)의 길이 방향을 의미할 수도 있으며, 상기 "y축 방향"은 이방성 이형필름(10)의 폭 방향 또는 위상차 보상필름(20)의 폭 방향을 의미할 수도 있다.
요컨대, "길이 방향"이란 x축 방향을 의미할 수 있으며, "폭 방향"이란 y축 방향을 의미할 수 있다.
상기 (d) 단계는 상기 위상차 보상필름(20)의 y축 상의 위치에 따른 밝기를 저장하는 단계일 수 있다. 즉, 상기 편광판 검사 방법은 상기 위상차 보상필름(20)을 y축으로 이동시키면서 크로스니콜법을 이용하여 빛이 상기 피검사 편광판(100)과 상기 검사기측 편광판(200)을 통과했을 때의 밝기를 측정하고, 상기 위상차 보상 필름(20)의 y축 상의 위치를 저장한 후, 상기 (e) 단계를 통하여 상기 위상차 보상필름(20)을 (d) 단계의 저장된 y축 위치로 이동시키게 되며, 그 후 크로스니콜법으로 상기 피검사 편광판(100)을 검사하는 상기 (f) 단계를 포함하게 된다.
본 발명의 일 실시형태에 있어서, 상기 (d) 단계는 상기 위상차 보상필름(20)의 y축 상의 위치에 따른 밝기를 저장하는 단계일 수 있다.
상기 (e) 단계에서 상기 저장된 위치는 상기 (d) 단계에서 저장된 위치에 따른 밝기 중 가장 작은 밝기로부터 5% 이내의 밝기에 해당하는 위치일 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 (e) 단계는 상기 (d) 단계에서 저장된 밝기들 중 가장 작은 밝기에 해당하는 y축 위치의 지점으로 이동하는 단계일 수 있다. 구체적으로, 상기 편광판 검사 방법은 상기 저장된 위치 중에서 가장 밝기가 작았던 위치를 저장한 후, 상기 위상차 보상필름(20)을 가장 밝기가 작았던 위치, 즉 가장 어두운 위치로 이동한 후 상기 크로스니콜법을 이용하여 검사하는 것일 수 있다.
본 발명에서 "밝기가 작은" 또는 "어두운"이라는 표현은 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)에 의한 위상차 변화량이 서로 상쇄되어 측정되는 투과광의 밝기가 50 그레이 미만, 바람직하게는 30 그레이 미만인 경우를 일컫는 표현일 수 있다. 즉, 본 발명에서 "밝기가 가장 작은 위치" 또는 "가장 어두운 위치"는 통상적으로 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)에 의한 위상차 변화량이 서로 상쇄되어 측정되는 투과광의 밝기가 50 그레이 미만, 바람직하게는 30 그레이 미만인 경우의 위치 중 가장 그레이 값이 작게 측정된 위치를 일컬을 수 있다.
또한, 본 발명에서 상기 "밝기"는 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)에 의한 위상차 변화량이 서로 상쇄되어 측정되는 투과광의 밝기를 일컬을 수 있다.
본 발명의 또 다른 실시형태에서, 상기 위상차 보상필름(20)은 제1 보상필름(21) 및 제2 보상필름(22)을 포함하고, 상기 제1 보상필름(21) 및 제2 보상필름(22)은 동일한 xy 평면 상에 존재하며, 상기 제1 보상필름(21)은 y축 상으로 배향각이 증가 또는 감소하고, 상기 제2 보상필름(22)은 y축 상으로 배향각이 증가 또는 감소하는 것일 수 있다.
상기 제1 보상필름(21) 및 제2 보상필름(22)은 동일한 것을 x축에 대칭되게 사용하여도 좋고, 동일하지 않은 필름을 사용하여도 무방하나, 상기 이방성 이형필름(10)의 x축 방향과 +y축 방향 사이의 위상차값을 제1 보상필름(21) 혹은 제2 보상필름(22)의 x축 방향과 -y축 방향의 위상차값으로 가지도록 분포하는 것이어야 한다.
즉, 상기 이방성 이형필름(10)의 위상차 분포와 동일한 분포를 가지는 필름을 y축에 대칭되게 뒤집힌 상태로 상기 제1 보상필름(21)에 배치시키되, 상기 이방성 이형필름(10)이 x축을 기준으로 180도 회전하여 역전되는 경우를 위해 상기 제2 보상필름(22)이 상기 제1 보상필름(21)과 x축 방향으로 대칭되게 역전시킨 분포를 가지는 것이어야 한다.
구체적으로, 상기 제1 보상필름(21)과 상기 제2 보상필름(22)은 xy평면 상 동일한 평면에 위치하며, 예컨대, 상기 제1 보상필름(21)은 + 값의 배향각을 가질 수 있으며, 상기 제2 보상필름(22)은 -값의 배향각을 가질 수 있다. 또는, 상기 제1 보상필름(21)이 -값의 배향각을 가지는 경우 상기 제2 보상필름(22)은 +값의 배향각을 가질 수 있다.
도 4를 참고하면, 배향각은 필름의 길이에 따라 증가(-) 또는 감소(+)할 수 있다. 즉, 본 발명의 위상차 보상필름(20)은 y축 상으로 배향각이 증가 또는 감소하는 제1 보상필름(21) 및 y축 상으로 배향각이 증가 또는 감소하는 제2 보상필름(22)을 모두 포함하기 때문에 자동화 공정을 통하여 편광판의 검사가 용이한 이점이 있다.
또한, 도 4에서는 배향각의 분포가 필름의 폭 방향에 따라 일정하게 증가 혹은 감소하고 있으나, 일부 구간에서는 부분적으로 반대의 경향을 보이는 곳도 있다.
상기 제1 보상필름(21) 및 제2 보상필름(22)이 상기 이방성 이형필름(10)과 y축에 대칭되게 뒤집힌 분포를 가진다는 것은, 이러한 위치별 특성이 상기 이방성 이형필름(10)과 상기 제1 보상필름(21) 또는 상기 제2 보상필름(22)의 배향각의 분포 특성이 상쇄되는 것을 의미한다. 다만 상기 제1 보상필름(21)과 상기 제2 보상필름(22)의 특성이 서로 대칭되는 경우를 포함하는 것을 의미한다.
본 발명의 또 다른 실시형태에 있어서, 상기 (c) 단계 이전에 상기 제1 보상필름(21)과 상기 제2 보상필름(22)을 x축 방향으로 이동시키면서 상기 제1 보상필름(21)과 상기 제2 보상필름(22) 중 크로스니콜 가능하도록 어느 하나를 선택하는 단계를 더 포함할 수 있으며, 이때 크로스니콜 가능하도록 어느 하나를 선택하는 단계는 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)에 의한 위상차 변화량이 서로 상쇄되어 측정되는 투과광의 밝기가 50 그레이 미만, 바람직하게는 30 그레이 미만이 되도록 선택하는 단계일 수 있다.
상기 위상차 보상필름(20)이 상기 제1 보상필름(21)과 상기 제2 보상필름(22)을 포함하고, 상기 제1 보상필름(21) 및 제2 보상필름(22)은 동일한 xy 평면 상에 존재하며, 상기 제1 보상필름(21)은 y축 상으로 배향각이 증가 또는 감소하고, 상기 제2 보상필름(22)은 y축 상으로 배향각이 증가 또는 감소하는 경우 상기 이방성 이형필름(10)의 배향각 분포 프로파일에 따라 상기 제1 보상필름(21)과 상기 제2 보상필름(22) 중 하나를 선택함으로써 편광판의 검사가 손쉽게 가능하기 때문에 자동화 양산 설비에 적용하는데 바람직한 이점이 있다.
즉, 상기 위상차 보상필름(20)은 제1 보상필름(21) 및 제2 보상필름(22)을 포함하고, 상기 (c) 단계 이전에 상기 제1 보상필름(21)과 상기 제2 보상필름(22)을 x축 방향으로 이동시키면서 상기 이방성 이형필름(10)과 크로스니콜법을 이용하여 검사 가능한 보상필름을 선택한 후, 선택된 위상차 보상필름(20)을 y축으로 이동하면서 y축의 위치를 저장할 수 있다.
본 발명의 몇몇 실시형태에 있어서, 상기 위상차 보상필름(20)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 대칭되는 프로파일을 가지는 것일 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 위상차 보상필름(20)은 폭 방향에 따른 위상차값 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 위상차값 분포 프로파일과 대칭되는 프로파일을 가지는 것일 수 있다.
도 3의 c)를 참고하면, 상기 이방성 이형 필름(10)의 배향각이 +8° 에서 +10°로 증가하는 프로파일을 가진다고 할 때, 상기 위상차 보상필름(20)의 배향각은 -8° 에서 -10°로 감소하는 프로파일을 가질 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 제1 보상필름(21)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 상기 제2 보상필름(22)의 폭 방향에 따른 배향각 분포 프로파일은 상기 제1 보상필름(21)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되거나; 또는 상기 제2 보상필름(22)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 상기 제1 보상필름(21)의 폭 방향에 따른 배향각 분포 프로파일은 상기 제2 보상필름(22)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되는 것일 수 있다.
도 5를 참고하면, 도 5의 a)와 같이 상기 제1 보상필름(21)의 배향각이 0mm, 요컨대 상기 제1 보상필름이 시작하는 위치에서 약 -9°, 2000mm에서 약 -8°이고 필름의 폭 방향에 따라 배향각이 증가하는 프로파일을 가진다고 할 때, 상기 제2 보상필름(22)의 배향각은 도 5의 b)와 같이 0mm, 요컨대 상기 제2 보상필름이 시작하는 위치에서 약 -8°, 2000mm에서 약 -9°이고, 필름의 폭 방향에 따라 배향각이 감소하는 프로파일을 가질 수 있다.
본 발명에 따른 편광판 검사 장치는 상기 제1 보상필름(21)과 상기 제2 보상필름(22) 중 하나가 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 나머지 하나가 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되기 때문에 자동화 검사가 가능한 이점이 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 검사기측 편광판(200)의 위치를 초기화시키는 단계를 더 포함할 수 있다. 상기 검사기측 편광판(200)의 위치를 초기화시키는 단계는 상기 (a) 단계 또는 (b) 단계 이후에 수행할 수 있으나, 이에 한정되지 않는다. 다만, 상기 (b) 단계 이후에 수행하는 것이 측정 시간 면에서 바람직하다. 예컨대, 상기 검사기측 편광판(200)의 위치가 중앙 지점으로 되어 있다면, 한쪽 방향으로 측정하고 난 이후에 측정하지 않은 부분으로 이동하기 위하여 이미 측정한 위치를 다시 한번 지나가야하기 때문에 불필요한 이동이 발생할 수 있다.
본 발명의 한 양태는 (a') 이방성 이형필름(10)의 배향각 정보를 입력받는 단계; (b') 피검사 편광자(30)의 하부에 상기 이방성 이형필름(10)이 위치한 피검사 편광판(100)을 준비하는 단계; (c') 검사기측 편광자(40)의 상단에 위치한 위상차 보상필름(20)이 구비된 검사기측 편광판(200)을 위치시키는 단계; (d') 상기 위상차 보상필름(20)을 입력받은 배향각에 따른 y축 위치로 이동하는 단계; 및 (e') 크로스니콜법을 이용하여 빛이 상기 피검사 편광판(100)과 상기 검사기측 편광판(200)을 통과했을 때의 밝기를 측정하여 상기 피검사 편광판(100)을 검사하는 단계를 포함하고, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판(100)이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 편광판 검사 방법에 관한 것이다.
상기 이방성 이형필름(10)에 관련된 내용, 예컨대 상기 이방성 이형필름(10)의 배향각, 재질, 사용되는 용도 등은 전술한 바와 같다.
본 발명의 편광판 검사 방법은 배향각이 8° 이상인 이방성 이형필름(10)을 적용한 편광판의 검사가 가능하기 때문에 기존의 배향각이 8° 이내의 이방성 이형필름(10)을 적용한 편광판에 비하여 원재료비 절감 효과를 나타낼 수 있는 이점이 있다.
상기 (a') 단계에서 이방성 이형필름(10)의 배향각 정보를 입력받는 단계는 상기 이방성 이형필름(10)의 배향각 정보를 실시간으로 측정하여 정보를 입력받는 단계일 수도 있고, 공정 전 단계에서 상기 이방성 이형필름(10)에 표시되어 있던 배향각 정보를 입력받는 단계일 수도 있다.
본 발명의 일 실시형태에 있어서, 상기 (a') 단계의 배향각은 상기 이방성 이형필름(10)의 x축 방향의 일단 및 타단에서 측정되는 것일 수 있다.
상기, x, y축 및 z 축과 관련된 내용은 전술한 내용을 적용할 수 있다.
상기 "일단" 및 "타단"이란 각각 상기 이방성 이형필름(10)과 같은 필름의 2차원적 평면을 이루고 있는 변 중 가장 짧은 길이를 가진 변으로부터 상기 변과 평행한 방향으로의 상기 2차원적 면적의 전체 길이에 대하여 5% 이하의 영역을 일컬을 수 있다.
또는, 상기 "타단"은 상기 "일단"과 대향하는 부분을 일컬을 수 있다.
상기 배향각은 상기 "일단" 및 "타단"에 해당하는 영역의 어느 한 지점에서 측정한 각도일 수 있다.
상기 배향각의 측정은 당업계에서 일반적으로 알려진 방법을 통하여 측정할 수 있으며, 상기 방법이 한정되는 것은 아니다. 예컨대, 편광현미경을 사용하여 백색광(white light source)으로 연신된 필름의 지연시간(retardation)과 직경을 측정하여 복굴절률을 계산할 수 있으며, 왕자계측기기 주식회사의 KOBRA 장비를 이용하여 측정할 수도 있다.
본 발명의 몇몇 실시형태에 있어서, 상기 (a') 단계 이전에 상기 배향각 정보를 상기 이방성 이형필름(10)에 표시하는 단계를 더 포함할 수 있으나 이에 한정되지 않는다.
본 발명의 몇몇 실시형태에 있어서, 상기 배향각 정보를 상기 이방성 이형필름(10)에 표시하는 단계는, 상기 배향각 정보를 기록 매체(50)에 기록한 후, 상기 기록 매체(50)를 상기 이방성 이형필름(10)에 부착하는 단계 또는 인쇄하는 단계일 수 있다. 상기 기록 매체(50)는 상기 배향각의 정보를 기록할 수 있다면 한정되지 않으나, 예컨대 편리성에서 바코드의 형태일 수 있으나 이에 한정되지 않는다.
본 발명의 또 다른 실시형태에 있어서, 상기 (a') 단계의 이방성 이형필름(10)의 배향각 정보를 입력받는 단계는 상기 이방성 이형필름(10)에 부착 또는 인쇄된 이방성 이형필름(10)의 배향각 정보를 읽어들이는 것일 수 있다.
상기 (b') 단계는 피검사 편광자(30)의 하부에 상기 이방성 이형필름(10)이 위치한 피검사 편광판(100)을 준비하는 단계다.
상기 피검사 편광자(30) 및 검사기측 편광자(40)에 대한 내용, 구체적으로 재질, 다른 구성들과의 상대적 위치, 접착 상태 등은 전술한 내용을 적용할 수 있다.
상기 (c') 단계는 검사기측 편광자(40)의 상단에 위치한 위상차 보상필름(20)이 구비된 검사기측 편광판(200)을 위치시키는 단계이다.
상기 위상차 보상필름(20)에 관련된 내용은 전술한 내용을 들 수 있다.
본 발명의 또 다른 실시형태에서, 상기 위상차 보상필름(20)은 제1 보상필름(21) 및 제2 보상필름(22)을 포함하고, 상기 제1 보상필름(21) 및 제2 보상필름(22)은 동일한 xy 평면 상에 존재하며, 상기 제1 보상필름(21)은 y축 상으로 배향각이 증가 또는 감소하고, 상기 제2 보상필름(22)은 y축 상으로 배향각이 증가 또는 감소하는 것일 수 있으며, 이와 관련된 구체적인 내용은 전술한 내용을 적용할 수 있다.
본 발명의 몇몇 실시형태에 있어서, 상기 위상차 보상필름(20)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 대칭되는 프로파일을 가지는 것일 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 위상차 보상필름(20)은 폭 방향에 따른 위상차값 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 위상차값 분포 프로파일과 대칭되는 프로파일을 가지는 것일 수 있다.
도 3의 c)를 참고하면, 상기 이방성 이형 필름(10)의 배향각이 +8° 에서 +10°로 증가하는 프로파일을 가진다고 할 때, 상기 위상차 보상필름(20)의 배향각은 -8° 에서 -10°로 감소하는 프로파일을 가질 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 제1 보상필름(21)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 상기 제2 보상필름(22)의 폭 방향에 따른 배향각 분포 프로파일은 상기 제1 보상필름(21)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되거나; 또는 상기 제2 보상필름(22)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 상기 제1 보상필름(21)의 폭 방향에 따른 배향각 분포 프로파일은 상기 제2 보상필름(22)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되는 것일 수 있다.
도 5를 참고하면, 도 5의 a)와 같이 상기 제1 보상필름(21)의 배향각이 0mm, 요컨대 상기 제1 보상필름이 시작하는 위치에서 약 -9°, 2000mm에서 약 -8°이고 필름의 폭 방향에 따라 배향각이 증가하는 프로파일을 가진다고 할 때, 상기 제2 보상필름(22)의 배향각은 도 5의 b)와 같이 0mm, 요컨대 상기 제2 보상필름이 시작하는 위치에서 약 -8°, 2000mm에서 약 -9°이고, 필름의 폭 방향에 따라 배향각이 감소하는 프로파일을 가질 수 있다.
본 발명에 따른 편광판 검사 장치는 상기 제1 보상필름(21)과 상기 제2 보상필름(22) 중 하나가 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 나머지 하나가 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되기 때문에 자동화 검사가 가능한 이점이 있다.
본 발명의 몇몇 실시형태에 있어서, 상기 (d') 단계 이전에 입력받은 배향각에 따라 상기 제1 보상필름(21)과 상기 제2 보상필름(22) 중 크로스니콜 가능하도록 어느 하나를 선택하여 상기 위상차 보상필름(20)을 x축으로 이동하는 단계를 더 포함할 수 있다.
구체적으로, 상기 입력받은 배향각의 기울기 방향에 따라 상기 제1 보상필름(21) 또는 상기 제2 보상필름(22)을 선택하게 된다. 상기 "기울기 방향"이란 상대적인 개념일 수 있으며, 예컨대 상기 이방성 이형필름(10)의 배향각이 상기 이방성 이형필름(10)의 폭 방향의 어느 한 축을 기준으로 하였을 경우 상기 배향각이 우측에 존재하는 경우를 +방향이라고 일컬으며, 그와 반대되는 경우를 -방향이라고 일컬을 수 있으나, 이에 한정되는 것은 아니며, 당업계에서 통상적으로 이해되는 것과 동일한 의미를 가질 수 있다.
상기 입력받은 배향각의 기울기 방향이 +인 경우 크로스니콜 가능하도록 상기 제1 보상필름(21) 또는 상기 제2 보상필름(22) 중 -값의 배향각을 갖는 보상필름을 선택할 수 있으며, 상기 입력받은 배향각의 기울기 방향이 -인 경우 상기 제1 보상필름(21) 또는 상기 제2 보상필름(22) 중 +값의 배향각을 갖는 보상필름을 선택할 수 있다. 그 후, 선택한 보상필름을 크로스니콜 가능하도록 x축의 위치로 조정하게 된다.
상기 위상차 보상필름(20), 즉, 상기 제1 보상필름(21) 또는 상기 제2 보상필름(22)의 위치별 배향각 정보는 사전에 측정 완료된 것일 수 있으며, 상기 배향각에 대응되는 롤 형태의 모터(5)의 위치 정보 또한 PC 등의 기억 장치에 미리 저장해 둔 것일 수 있다.
상기 (d') 단계는 상기 위상차 보상필름(20)을 입력받은 배향각에 따른 y축 위치로 이동하는 단계로서, 상기 위상차 보상필름(20)을 y축 위치로 이동한 뒤, 크로스니콜법으로 상기 피검사 편광판(100)을 검사하는 상기 (e') 단계를 수행함으로써 편광판의 검사가 가능하다.
구체적으로, 상기 (e') 단계는 크로스니콜법을 이용하여 빛이 상기 피검사 편광판(100)과 상기 검사기측 편광판(200)을 통과했을 때의 밝기를 측정하여 상기 피검사 편광판(100)을 검사하는 단계이다.
이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판(100)이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직이다.
본 발명의 몇몇 실시형태에 있어서, 상기 (d') 단계에서 상기 배향각에 따른 y축 위치는 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)에 의한 위상차 변화량이 서로 상쇄되어 측정되는 투과광의 밝기가 50 그레이 미만, 바람직하게는 30 그레이 미만인 것일 수 있다.
상기 위상차 보상필름(20), 즉, 상기 제1 보상필름(21) 또는 상기 제2 보상필름(22)의 위치별 배향각 정보는 사전에 측정 완료된 것일 수 있으며, 상기 배향각에 대응되는 롤 형태의 모터(5)의 위치 정보 또한 PC 등의 기억 장치에 미리 저장해 둔 것일 수 있다. 즉, 본 발명에 따른 편광판 검사 방법은 상기 제1 보상필름(21) 또는 상기 제2 보상필름(22)의 위치별 배향각 정보를 사전에 측정 완료하고, 상기 이방성 이형필름(10)이 공급되어 올 때 상기 이방성 이형필름(10)의 배향각 정보를 입력 받음에 따라 사전에 저장된 위치로 이동함으로써 검사가 가능하며, 이때 상기 위치는 이방성 이형필름(10)과 상기 위상차 보상필름(20)에 의한 위상차 변화량이 상쇄되어 측정되는 투과광의 밝기가 50 그레이 미만, 바람직하게는 30 그레이 미만이 되는 위치이다.
본 발명의 또 다른 양태는, 피검사 편광자의 일면 상에 이방성 이형필름(10)이 구비된 피검사 편광판(100)을 검사하는 장치로서, 광원(1); 검사기측 편광자(40)의 상부에 위치한 위상차 보상필름(20)이 구비된 검사기측 편광판(200); 상기 광원(1)에서 조사된 빛이 상기 피검사 편광판(100)과 검사기측 편광판(200)을 통과하여 수신되는 수광부(2); 상기 검사기측 편광판(200)의 상기 수광부(2)로부터 얻은 영상을 해석하여 그 밝기 및 그에 대응하는 상기 위상차 보상필름(20)의 y축 상의 위치를 저장하되, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판(100)이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 것인 영상 해석부(3); 및 상기 위상차 보상필름(20)을 y축 방향으로 이동시키되, 상기 영상해석부에 저장된 상기 밝기가 가장 작은 경우의 상기 위상차 보상필름(20)의 y축 상의 위치로 상기 위상차 보상필름(20)을 이동시키도록 구성된 제어부(4)를 포함하고, 상기 피검사 편광판(100)은 상기 검사기측 편광판(200)과 크로스니콜 가능하게 위치하며, 상기 광원(1) 및 수광부(2)는 각각 상기 피검사 편광판(100)의 상부과 상기 검사기측 편광판(200)의 하부에 위치하거나; 또는 상기 검사기측 편광판(200)의 하부와 상기 피검사 편광판(100)의 상부에 위치하는 편광판 검사 장치에 관한 것이다.
도 1에 본 발명의 몇몇 실시형태에 따른 편광판 검사 장치의 일 예를 도시하였다. 도 1을 살펴보면, 피검사 편광판(100)은 피검사 편광자(30) 및 피검사 편광자(30)의 하부에 이형필름(10)이 구비된 상태이고, 상기 피검사 편광자(30)와 상기 이방성 이형필름(10) 사이에 기재필름(32)이 구비되며, 상기 피검사 편광자(30) 상부에는 기재필름(32)과 보호필름(31)이 구비되어 있으나, 이에 한정되지 않으며, 상기 피검사 편광판(100)의 하단에 검사기측 편광판(200)이 크로스니콜 가능하게 위치하게 된다. 이 때, 상기 검사기측 편광판(200)은 위상차 보상필름(20) 및 상기 위상차 보상필름(20)의 하단에 위치하는 검사기측 편광자(40)를 포함하도록 이루어지며, 상기 위상차 보상필름(20)은 이에 한정되는 것은 아니나 제1 보상필름(21) 및 제2 보상필름(22)이 xy 평면 상 나란하게 구비되어 있다. 상기 이방성 이형필름(10)은 이방성 이형필름의 이동방향(8)에 따라 이동이 가능하고, 상기 제1 보상필름(21) 및 제2 보상필름(22)의 양 끝단에는 롤러 형태의 모터(5)가 구비되어 있어 제어부(4)에 의하여 상기 위상차 보상필름(20)을 y축 상으로 이동 가능하게 하며, 상기 위상차 보상필름(20)은 x축으로도 이동이 가능할 수 있다. 상기 광원(1) 및 수광부(2)는 각각 상기 피검사 편광판(100)의 상하부 및 검사기측 편광판(200)의 상하부에 위치할 수도 있으며, 상기 광원(1) 및 수광부(2)는 상기 편광판 검사가 용이하도록 당업자가 적절히 위치를 이동할 수도 있다. 이를 도 3에 도시하였다. 상기 광원(1)에서 조사된 빛은 상기 수광부(2)로 도착하게 되고, 상기 수광부(2)로부터 얻은 영상은 영상 해석부(3)에 의하여 해석되며, 이 정보에 따라 제어부(4)가 상기 위상차 보상필름(20)의 위치를 이동시킨다.
상기 피검사 편광자(30), 검사기측 편광자(40), 이방성 이형필름(10), 피검사 편광판(100) 및 검사기측 편광판(200)에 관한 내용은 전술한 내용을 적용할 수 있다.
상기 광원(1)은 피검사 편광판(100)의 결함을 확인하기 위하여 빛을 조사하기 위한 것으로서, 당업계에서 일반적으로 사용되는 조명이라면 그 종류가 한정되지 않으나, 예컨대 400nm 내지 650nm의 파장을 가지는 빛을 방출하는 것일 수 있다. 상기 광원(1)은 편광판이 사용될 액정표시장치의 광원(1)과 동일 또는 유사한 것을 사용하는 것이 좋으며, 백색광 등을 사용할 수 있으나, 510nm 내지 550nm의 녹색광을 사용하는 것이 더욱 바람직하다.
상기 광원(1)에서 방출된 빛은 피검사 편광판(100)과 검사기측 편광판(200)을 통과하여 상기 수광부(2)에 수신된다.
상기 수광부(2)는 CCD 카메라 등의 광수신장치일 수 있으나, 이에 한정되지 않으며 당업계에서 일반적으로 크로스니콜법에 사용되는 화상 수신장치일 수 있다.
상기 검사기측 편광판(200)의 상기 수광부(2)로부터 얻어진 영상은 영상 해석부(3)에서 해석되어 그 밝기 및 그에 대응하는 상기 위상차 보상필름(20)의 y축 상의 위치가 저장된다.
그 후 제어부(4)를 통하여 상기 위상차 보상필름(20)이 y축 방향으로 이동된다. 구체적으로, 상기 제어부(4)는 상기 영상해석부에 저장된 상기 밝기가 가장 작은 경우의 상기 위상차 보상필름(20)의 y축 상의 위치로 상기 위상차 보상필름(20)을 이동시킨다.
이 때, 상기 피검사 편광판(100)은 상기 검사기측 편광판(200)과 크로스니콜 가능하게 위치되며, 상기 광원(1) 및 수광부(2)는 각각 상기 피검사 편광판(100) 및 상기 검사기측 편광판(200)의 상하부에 위치할 수 있다. 예컨대, 상기 광원(1)이 상기 피검사 편광판(100)의 상부에 위치하는 경우 상기 수광부(2)는 상기 검사기측 편광판(200)의 하부에 위치하며, 상기 광원(1)이 상기 검사기측 편광판(200)의 하부에 위치하는 경우 상기 수광부(2)는 상기 피검사 편광판(100)의 상부에 위치할 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 위상차 보상필름(20)은 제1 보상필름(21) 및 제2 보상필름(22)을 포함하고, 상기 제1 보상필름(21) 및 제2 보상필름(22)은 동일한 xy 평면 상에 존재하며, 상기 제1 보상필름(21)은 y축 상으로 배향각이 증가 또는 감소하고, 상기 제2 보상필름(22)은 y축 상으로 배향각이 증가 또는 감소할 수 있다.
상기 제1 보상필름(21) 및 제2 보상필름(22)은 동일한 것을 x축에 대칭되게 사용하여도 좋고, 동일하지 않은 필름을 사용하여도 무방하나, 상기 이방성 이형필름(10)의 x축 방향과 +y축 방향 사이의 위상차값을 제1 보상필름(21) 혹은 제2 보상필름(22)의 x축 방향과 -y축 방향의 위상차값으로 가지도록 분포하는 것이어야 한다.
요컨대, 상기 위상차 보상필름(20)은 상기 이방성 이형필름(10)의 위상차 분포와 동일한 분포를 가지는 필름을 y축에 대칭되게 뒤집힌 상태로 상기 제1 보상필름(21)에 배치시키되, 상기 이방성 이형필름(10)이 x축을 기준으로 180도 회전하여 역전되는 경우를 위해 상기 제2 보상필름(22)이 상기 제1 보상필름(21)과 x축 방향으로 대칭되게 역전시킨 분포를 가지는 것이어야 한다.
상기 제1 보상필름(21) 및 제2 보상필름(22)이 상기 이방성 이형필름(10)과 y축에 대칭되게 뒤집힌 분포를 가진다는 것은, 이러한 위치별 특성이 상기 이방성 이형필름(10)과 상기 제1 보상필름(21) 또는 상기 제2 보상필름(22)의 배향각의 분포 특성이 상쇄되는 것을 의미한다. 다만 상기 제1 보상필름(21)과 상기 제2 보상필름(22)의 특성이 서로 대칭되는 경우를 포함하는 것을 의미한다.
상기 위상차 보상필름(20)이 상기 제1 보상필름(21)과 상기 제2 보상필름(22)을 포함하는 경우, 상기 위상차 보상필름(20)의 배향각 분포 프로파일을 상기 이방성 이형필름(10)의 배향각 분포 프로파일에 따라 뒤집어서, 요컨대 대칭시켜 셋팅하는 공정의 필요가 없이 상기 제1 보상필름(21)과 상기 제2 보상필름(22) 중 상기 이방성 이형필름(10)에 알맞은 보상필름을 선택하기만 하면 되므로 자동화 공정이 가능한 이점이 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 위상차 보상필름(20)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 대칭되는 프로파일을 가지는 것일 수 있으며, 상기 제1 보상필름(21)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 상기 제2 보상필름(22)의 폭 방향에 따른 배향각 분포 프로파일은 상기 제1 보상필름(21)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되거나; 또는 상기 제2 보상필름(22)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 상기 제1 보상필름(21)의 폭 방향에 따른 배향각 분포 프로파일은 상기 제2 보상필름(22)의 배향각 분포 프로파일과 대칭 분포되는 것일 수 있다.
본 발명에 따른 편광판 검사 장치는 상기 제1 보상필름(21)과 상기 제2 보상필름(22) 중 하나가 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 나머지 하나가 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되기 때문에 자동화 검사가 가능한 이점이 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 영상 해석부(3)는 상기 검사기측 편광판(200)의 상기 수광부(2)로부터 얻은 영상을 해석하여 그 밝기 및 그에 대응하는 상기 위상차 보상필름(20)의 x축 상의 위치 저장가능하고, 상기 제어부(4)는 상기 위상차 보상필름(20)을 x축 방향으로 이동 가능하다.
상기 위상차 보상필름(20)은 제어부(4)를 통하여 x축으로 이동이 가능하며, 상기 영상 해석부(3)는 상기 위상차 보상필름(20)의 x축 상의 위치를 저장할 수 있다. 상기 위상차 보상필름(20)의 x축의 위치로 이동 및 저장 가능함에 따라 상기 이방성 이형필름(10)의 형태에 관계 없이 손쉽게 편광판 검사가 가능한 이점이 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 위상차 보상필름(20)을 y축 방향으로 이동시키는 컨베이어 벨트를 더 구비할 수 있다. 구체적으로, 상기 위상차 보상필름(20)은 상기 제어부(4)와 연결된 롤 형태의 모터(5) 두 개를 적당한 거리만큼 y축 방향으로 떨어뜨린 뒤 상기 모터(5)의 사이를 연결하는 컨베이어 벨트의 형태로서 구비될 수 있다. 상기 컨베이어 벨트의 길이는 상기 위상차 보상필름(20)의 길이에 따라 조절될 수 있다.
상기 피검사 편광판(100)은 적어도 일면에 보호필름(31), 기재필름(32), 점착층(33) 등을 더 구비할 수 있으며, 상기 보호필름(31), 기재필름(32)은 당업계에서 통상적으로 사용하는 것이라면 한정되지 않으며, 상기 점착층(33)은 당업계에서 통상적으로 이용되는 방법에 의하여 형성될 수 있으나, 역시 이에 한정되지 않는다. 다만, 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)이 서로 대향하고 있는 형태인 것이 바람직하다. 상기 기재필름(32)은 보호필름의 역할을 수행할 수도 있다.
도 3에 본 발명의 몇몇 실시형태에 따른 편광판 검사 장치의 광학 구성을 예시하였다. 예컨대, 도 3의 a)와 같이 검사기측 편광자(40)의 하부에 위상차 보상필름(20)이 위치한 검사기측 편광판(200)이 준비되고, 상기 검사기측 편광판(200)의 하부에 이방성 이형필름(10), 점착층(33), 기재필름(32), 피검사 편광자(30), 기재필름(32), 보호필름(31)이 순서대로 구비된 피검사 편광판(100)이 구비되며, 광원(1)과 수광부(2)가 각각 상기 피검사 편광판(100)과 상기 검사기측 편광판(200)의 외곽측에 구비될 수 있다. 이때, 상기 이방성 이형필름(10)과 상기 보상필름(20)은 서로 대향하도록 구비된다.
도 3의 a)의 경우 상기 피검사 편광자(30) 에 의하여 1차 편광이 일어나게 되며 상기 검사기측 편광자(40)에 의하여 2차 편광이 일어나게 된다.
도 3의 b)는 광원(1)과 수광부(2)가 각각 상기 검사기측 편광판(200)과 상기 피검사 편광판(100)의 외곽측에 구비된 예를 도시한 것이다. 이 경우는 상기 검사기측 편광자(40) 에서 1차 편광이 일어나며 상기 피검사 편광자(30)에서 2차 편광이 일어나게 된다.
도 3의 c)는 도 1의 측면도로서, 도 3의 b)를 더욱 간략하게 도식화 한 것으로서, 광원(1), 검사기측 편광자(40)와 위상차 보상필름(20)이 구비된 검사기측 편광판(200)과 상기 검사기측 편광판(200) 상에 이방성 이형필름(10), 그 외 추가적으로 포함될 수 있는 필름층(예컨대, 보호필름(31), 기재필름(32), 점착층(33) 등) 및 피검사 편광자(30)를 포함하는 피검사 편광판(100)과 수광부(2)가 구비된 것으로, 도 3의 b)와 마찬가지로 상기 검사기측 편광자(40)에서 1차 편광이 일어나며 상기 피검사 편광자(30)에서 2차 편광이 일어날 수 있다. 도 3의 c)와 같이 상기 위상차 보상필름(20)은 상기 이방성 이형필름(10)과 배향각의 방향이 서로 반대가 되도록 선택될 수 있다.
도 6을 참고하면, 이방성 이형필름(10)에 사용되는 필름을 폭방향으로 연신하게 되면 이방성 이형필름(10) 원단의 중앙부에서 양 끝단으로 갈수록 배향각이 점차 증가할 수 있다. 종래에는 이러한 원단 필름 전체에서 8°이하의 배향각을 나타내는 필름 부분만을 잘라내어 사용하였지만, 본 발명에 따른 편광판 검사 방법은 배향각이 8° 이상인 부분을 포함하는 이방성 이형필름(10), 예컨대 상기 도 6의 0-1300mm 구간, 2700-4000mm의 구간에 해당하는 이방성 이형필름(10)의 사용이 가능하기 때문에 원재료비 절감 효과를 가질 수 있다. 다만, 이때 상기 배향각은 연신량에 따라서 달라질 수 있으며, 위상차 보상필름(20)은 상기 이방성 이형필름(10)과 동일하게 연신한 제품을 사용하거나 혹은 이방성 이형필름(10)에 사용되는 필름을 연신한 이방성 이형필름(10) 원단 전체를 사용하는 것이 바람직하다.
본 발명의 또 다른 양태는 피검사 편광자(30)의 일면 상에 이방성 이형 필름(10) 배향각의 정보가 표시된 이방성 이형필름(10)이 구비된 피검사 편광판(100)을 검사하는 장치로서, 광원(1); 검사기측 편광자(40)의 상부에 위치한 위상차 보상필름(20)이 구비된 검사기측 편광판(200); 상기 광원(1)에서 조사된 빛이 상기 피검사 편광판(100)과 검사기측 편광판(200)을 통과하여 수신되는 수광부(2); 상기 배향각의 정보를 리딩하는 기록 매체 리딩기(6); 상기 기록 매체 리딩기(6)에서 리딩된 정보를 송신하여 상기 기록 매체 리딩기(6)에서부터 피검사 편광판(100)까지의 거리를 측정하는 엔코더(7); 및 상기 엔코더(7)에서 측정된 거리에 따라 상기 위상차 보상필름(20)의 y축의 위치로 상기 위상차 보상필름(20)을 이동시키되, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판(100)이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 것인 제어부(4)를 포함하고, 상기 피검사 편광판(100)은 상기 검사기측 편광판(200)과 크로스니콜 가능하게 위치하며, 상기 광원(1) 및 수광부(2)는 각각 상기 피검사 편광판(100)의 상부와 상기 검사기측 편광판(200)의 하부에 위치하거나; 또는 상기 검사기측 편광판(200)의 하부와 상기 피검사 편광판(100)의 상부에 위치하는 편광판 검사 장치에 관한 것이다.
본 발명의 또 다른 양태는 또한, 본 발명은 피검사 편광자의 일면 상에 이방성 이형필름이 구비된 피검사 편광판을 검사하는 장치로서, 광원(1); 검사기측 편광자(40)의 상부에 위치한 위상차 보상필름(20)이 구비된 검사기측 편광판(200); 상기 광원(1)에서 조사된 빛이 상기 피검사 편광판(100)과 검사기측 편광판(200)을 통과하여 수신되는 수광부(2); 상기 피검사 편광판(100) 상의 상기 이방성 이형필름(10)의 배향각의 분포 정보가 포함된 데이터를 수신하는 데이터 저장부; 상기 데이터 저장부에서 정보를 수신하여 상기 피검사 편광판(100)의 검사 위치를 계산하는 엔코더(7); 및 상기 엔코더(7)에서 계산된 거리에 따라 상기 위상차 보상필름(20)의 y축의 위치로 상기 위상차 보상필름(20)을 이동시키되, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판(100)이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 것인 제어부(4)를 포함하고, 상기 피검사 편광판(100)은 상기 검사기측 편광판(200)과 크로스니콜 가능하게 위치하며, 상기 광원(1) 및 수광부(2)는 각각 상기 피검사 편광판(100)의 상부와 상기 검사기측 편광판(200)의 하부에 위치하거나; 또는 상기 검사기측 편광판(200)의 하부와 상기 피검사 편광판(100)의 상부에 위치하는 편광판 검사 장치에 관한 것이다.
구체적으로, 상기 엔코더(7)는 배향각이 서로 다른 제품이 검사 시점, 즉 상기 피검사 편광판(100)의 하부까지 도달하는 시점을 확인하기 위하여 거리를 측정하는데 사용될 수 있다. 상기 엔코더(7)의 위치는 특별히 한정되지 않으며, 이를 도시하지는 않았으나 통상적으로 이방성 이형 필름(10)을 이동시키는 구동롤 또는 필름 진행 경로를 바꾸어주는 가이드롤에 접촉되게 위치될 수 있다.
예컨대, 배향각이 20도인 이방성 이형필름(10)이 검사 중인 상태에서 배향각이 10도인 이방성 이형필름(10)이 공급되는 경우 기록 매체 리딩기(6)가 기록 매체(50)의 정보를 리딩하고, 엔코더(7)가 필름의 진행 거리를 측정하여 배향각이 10도인 이방성 이형필름(10)이 상기 피검사 편광판(100)의 하부까지 도달하는 시점을 확인하여 위상차 보상필름(20)의 위치를 자동으로 조절함으로써 편광판 검사를 수행할 수 있다.
또는, 도시하지는 않았으나, 데이터 저장부에서 상기 피검사 편광판(100) 상의 상기 이방성 이형필름(10)의 배향각의 분포 정보가 포함된 데이터를 수신하고, 엔코더(7)가 상기 데이터 저장부에서부터 정보를 수신하여 상기 피검사 편광판(100)의 검사 위치를 계산하여 상기 위상차 보상필름(20)의 위치를 자동으로 조절함으로써 편광판 검사를 수행할 수 있다.
도 2에 본 발명의 몇몇 실시형태에 따른 편광판 검사 장치의 일 예를 도시하였다. 도 2을 살펴보면, 이방성 이형필름(10)의 하부에는 배향각 정보가 기록된 바코드가 인쇄된 상태이고, 피검사 편광판(100)은 피검사 편광자(30) 및 피검사 편광자(30)의 하부에 상기 이방성 이형필름(10)을 구비한 상태이며, 상기 피검사 편광자(30)와 상기 이방성 이형필름(10) 사이에 기재필름(32)이 구비되고, 상기 피검사 편광자(30) 상부에는 상기 기재필름(32)과 보호필름(31)이 구비되어 있으나, 이에 한정되지 않는다.
상기 도 2에 따른 바코드는 상기 이방성 이형필름(10)의 하부에 인쇄된 것이나, 이에 한정되지 않으며 상부에 부착 또는 인쇄된 형태일 수도 있다. 이때 상기 이방성 이형필름(10)의 하부란 상기 이방성 이형필름(10)이 상기 기재필름(32)에 접하지 않은 면을 일컬을 수 있다. 상기 피검사 편광판(100)의 하단에는 검사기측 편광판(200)이 크로스니콜 가능하게 위치하게 된다. 이 때, 상기 검사기측 편광판(200)은 위상차 보상필름(20) 및 상기 위상차 보상필름(20)의 하단에 위치하는 검사기측 편광자(40)를 포함하도록 이루어지며, 상기 위상차 보상필름(20)은 이에 한정되는 것은 아니나 제1 보상필름(21) 및 제2 보상필름(22)이 xy 평면 상 나란하게 구비되어 있다. 상기 이방성 이형필름(10)은 이방성 이형필름의 이동방향(8)에 따라 이동이 가능하고, 상기 제1 보상필름(21) 및 제2 보상필름(22)의 양 끝단에는 롤러 형태의 모터(5)가 구비되어 있어 제어부(4)에 의하여 상기 위상차 보상 필름(20)을 y축 상으로 이동 가능하게 하며, 상기 위상차 보상필름(20)은 x축으로도 이동이 가능할 수 있다. 상기 광원(1) 및 수광부(2)는 각각 피검사 편광판(100)의 상하부 및 검사기측 편광판(200)의 상하부에 위치할 수도 있으며, 상기 광원(1) 및 수광부(2)는 상기 편광판 검사가 용이하도록 당업자가 적절히 위치를 이동할 수도 있다. 이를 도 3의 (a'), (b')에 도시하였으나 이에 한정되는 것은 아니다. 기록 매체 리딩기(6)는 상기 바코드의 정보를 리딩하여 상기 이방성 이형필름(10)의 배향각의 정보를 엔코더(7)에 송신하게 되고, 상기 엔코더(7)는 상기 정보를 송신한 후, 피검사 편광판(100)까지의 거리를 측정하며, 제어부(4)에서 상기 위상차 보상필름(20)을 알맞은 위치로 이동시킨다. 그 후, 상기 광원(1)에서 방출된 빛은 피검사 편광판(100)과 검사기측 편광판(200)을 통과하여 상기 수광부(2)에 수신됨으로써 검사가 완료된다.
본 발명에 따른 편광판 검사 장치는 배향각의 정보를 리딩하고 이에 따라 크로스니콜 검사가 가능하도록 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)에 의한 위상차 변화량이 상쇄되어 측정되는 투과광의 밝기가 30 그레이 미만이 되도록 위상차 보상필름(20)의 위치를 자동적으로 조절함으로써 자동 검사가 가능하다.
본 발명에 따른 편광판 검사 장치는 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)에 의한 위상차 변화량이 상쇄되어 측정되는 투과광의 밝기가 50 그레이 이상인 경우 상기 위상차 보상필름(20)의 위치를 미세 조정하여 y축 방향으로 이동함으로써 편광판 검사를 재수행할 수도 있다.
상기 피검사 편광자(30), 검사기측 편광자(40), 이방성 이형필름(10), 피검사 편광판(100) 및 검사기측 편광판(200)에 관한 내용은 전술한 내용을 적용할 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 위상차 보상필름(20)은 제1 보상필름(21) 및 제2 보상필름(22)을 포함하고, 상기 제1 보상필름(21) 및 제2 보상필름(22)은 동일한 xy 평면 상에 존재하며, 상기 제1 보상필름(21)은 y축 상으로 배향각이 증가 또는 감소하고, 상기 제2 보상필름(22)은 y축 상으로 배향각이 증가 또는 감소한다.
상기 제1 보상필름(21) 및 제2 보상필름(22)에 관한 내용은 전술한 내용을 적용할 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 위상차 보상필름(20)은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 대칭되는 프로파일을 가지는 것일 수 있다.
본 발명의 몇몇 실시형태에 있어서, 상기 위상차 보상필름(20)은 폭 방향에 따른 위상차값 분포 프로파일이 상기 이방성 이형필름(10)의 폭 방향에 따른 위상차값 분포 프로파일과 대칭되는 프로파일을 가지는 것일 수 있으며, 구체적인 내용은 전술한 내용을 적용할 수 있다.
본 발명에 따른 편광판 검사 장치는 상기 제1 보상필름(21)과 상기 제2 보상필름(22) 중 하나가 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 동일하고, 나머지 하나가 상기 이방성 이형필름(10)의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되기 때문에 자동화 검사가 가능한 이점이 있다.
상기 광원(1) 및 수광부(2)에 관한 내용은 전술한 내용을 적용할 수 있다.
상기 피검사 편광판(100), 검사기측 편광판(200), 광원(1) 및 수광부(2)의 위치는 전술한 내용을 적용할 수 있다.
본 발명의 또 다른 실시형태에 있어서, 상기 위상차 보상필름(20)을 y축 방향으로 이동시키는 컨베이어 벨트를 더 구비할 수 으며, 구체적인 내용은 전술한 내용을 적용할 수 있다.
상기 피검사 편광판(100)은 적어도 일면에 보호필름(31), 기재필름(32), 점착층(33) 등을 더 구비할 수 있으며, 구체적인 내용은 전술한 내용을 들 수 있다.
도 3에 본 발명의 몇몇 실시형태에 따른 편광판 검사 장치의 광학 구성을 예시하였다. 예컨대, 도 3의 a)와 같이 검사기측 편광자(40)의 하부에 위상차 보상필름(20)이 위치한 검사기측 편광판(200)이 준비되고, 상기 검사기측 편광판(200)의 하부에 이방성 이형필름(10), 점착층(33), 기재필름(32), 피검사 편광자(30), 기재필름(32), 보호필름(31)이 순서대로 구비된 피검사 편광판(100)이 구비되며, 광원(1)과 수광부(2)가 각각 상기 피검사 편광판(100)과 상기 검사기측 편광판(200)의 외곽측에 구비될 수 있다. 이때, 상기 이방성 이형필름(10)과 상기 위상차 보상필름(20)은 서로 대향하도록 구비된다.
도 3의 a)의 경우 상기 피검사 편광자(30)에 의하여 1차 편광이 일어나게 되며 상기 검사기측 편광자(40)에 의하여 2차 편광이 일어나게 된다.
도 3의 b)는 광원(1)과 수광부(2)가 각각 상기 검사기측 편광판(200)과 상기 피검사 편광판(100)의 외곽측에 구비된 예를 도시한 것이다. 이 경우는 상기 검사기측 편광자(40)에서 1차 편광이 일어나며 상기 피검사 편광자(30)에서 2차 편광이 일어나게 된다.
도 3의 c)는 도 2의 측면도로서, 도 3의 b)를 더욱 간략하게 도식화 한 것으로서, 광원(1), 검사기측 편광자(40)와 위상차 보상필름(20)이 구비된 검사기측 편광판(200)과 상기 검사기측 편광판(200) 상에 이방성 이형필름(10), 그 외 추가적으로 포함될 수 있는 필름층(예컨대, 보호필름(31), 기재필름(32), 점착층(33) 등) 및 피검사 편광자(30)를 포함하는 피검사 편광판(100)과 수광부(2)가 구비된 것으로, 도 3의 b)와 마찬가지로 상기 검사기측 편광자(40)에서 1차 편광이 일어나며 상기 피검사 편광자(30)에서 2차 편광이 일어날 수 있다. 도 3의 c)와 같이 상기 위상차 보상필름(20)은 상기 이방성 이형필름(10)과 배향각의 방향이 서로 반대가 되도록 선택될 수 있다.
도 6을 참고하면, 이방성 이형필름(10)에 사용되는 필름을 폭방향으로 연신하게 되면 이방성 이형필름(10) 원단의 중앙부에서 양 끝단으로 갈수록 배향각이 점차 증가할 수 있으며, 이와 관련된 내용은 전술한 내용을 적용할 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세히 설명한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지는 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[실시예 1 내지 4]
배향각의 각도가 +11°인 미쯔비시 케미컬 홀딩스의 이방성 이형필름을 본 발명에 따른 편광판 검사 장치를 이용하여 크로스니콜법으로 검사한 이미지 및 밝기(gray)를 하기 표 1에 나타내었다. 이때, 도 6을 참고하였을 때 이방성 이형필름은 전체 폭 4000mm의 필름에서 양 말단으로부터 1300mm 정도(0~1300mm 구간, 2700~4000mm 구간)를 잘라서 사용하였으며, 배향각의 각도는 KOBRA 장비(왕자계측기기 주식회사)를 이용하여 측정하였다. 이때, 편광판 검사 장치의 위상차 보상필름은 이방성 이형필름과 동일한 제품(미쯔비시 케미컬 홀딩스)을 잘라서 사용하였다.
[실시예 5 내지 8]
미쯔비시 케미컬 홀딩스의 이방성 이형필름의 일단과 타단의 배향각의 각도를 KOBRA 장비(왕자계측기기 주식회사)를 이용하여 측정한 뒤, 이를 바코드에 기록하여 이방성 이형필름에 부착하였다. 이때, 도 6을 참고하였을 때 이방성 이형필름은 전체 폭 4000mm의 필름에서 양 말단으로부터 1300mm 정도(0~1300mm 구간, 2700~4000mm 구간)를 잘라서 사용하였다.
그 후, 이방성 이형필름을 본 발명에 따른 편광판 검사 장치를 이용하여 크로스니콜법으로 검사한 이미지 및 밝기(gray)를 하기 표 2에 나타내었다. 이때, 편광판 검사 장치의 위상차 보상필름은 이방성 이형필름과 동일한 제품(미쯔비시 케미컬 홀딩스)을 잘라서 사용하였다.
[비교예 1]
배향각의 각도가 +11°인 이방성 이형필름을 본 발명에 따른 편광판 검사 장치를 이용하여 크로스니콜법으로 검사하되, 편광판 검사 장치 중 위상차 보상필름을 포함시키지 않은 상태에서 검사한 이미지 및 밝기(gray)를 하기 표 1에 나타내었다.
[비교예 2]
이방성 이형필름의 일단과 타단의 배향각의 각도를 측정한 뒤, 이를 바코드에 기록하여 이방성 이형필름에 부착하였다. 그 후, 이방성 이형필름을 본 발명에 따른 편광판 검사 장치를 이용하여 크로스니콜법으로 검사하되, 편광판 검사 장치 중 위상차 보상 필름을 포함시키지 않은 상태에서 검사한 이미지 및 밝기(gray)를 하기 표 2에 나타내었다.
Figure PCTKR2016008728-appb-T000001
상기 표 1을 살펴보면, 본 발명에 따른 편광판 검사 장치를 이용하는 경우 배향각이 높은 이방성 이형필름을 사용하더라도 밝기가 30 gray 수준으로, 안정적으로 크로스니콜 구현이 가능하였으나, 본 발명에 따른 편광판 검사 장치를 이용하지 않는 경우 평균 밝기가 230 gray 이상으로 크로스니콜법을 통하여 편광판 검사가 가능하지 않은 것을 알 수 있다.
Figure PCTKR2016008728-appb-T000002
또한, 상기 표 2를 살펴보면, 본 발명에 따른 편광판 검사 장치를 이용하는 경우 배향각이 높은 이방성 이형필름을 사용하더라도 밝기가 30 gray 수준으로, 안정적으로 크로스니콜 구현이 가능하였으나, 본 발명에 따른 편광판 검사 장치를 이용하지 않는 경우 평균 밝기가 230 gray 이상으로 크로스니콜법을 통하여 편광판 검사가 가능하지 않은 것을 알 수 있다.
[부호의 설명]
1: 광원 2: 수광부
3: 영상 해석부 4: 제어부
5: 모터 6: 기록 매체 리딩기
7: 엔코더 8: 이방성 이형필름의 이동방향
10: 이방성 이형필름 20: 위상차 보상필름
21: 제1 보상필름 22: 제2 보상필름
30: 피검사 편광자 31: 보호필름
32: 기재필름 33: 점착층
40: 검사기측 편광자
50: 기록 매체
100: 피검사 편광판
200: 검사기측 편광판

Claims (19)

  1. (a) 피검사 편광자의 하부에 이방성 이형필름이 구비된 피검사 편광판을 준비하는 단계;
    (b) 검사기측 편광자의 상부에 위상차 보상필름이 구비된 검사기측 편광판을 상기 피검사 편광판의 하부로 위치시키는 단계;
    (c) 상기 위상차 보상필름을 y축 상으로 이동시키면서 크로스니콜법을 이용하여 빛이 상기 피검사 편광판과 상기 검사기측 편광판을 통과했을 때의 밝기를 측정하는 단계로서, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 단계;
    (d) 상기 위상차 보상필름의 y축 상의 위치에 따른 밝기를 저장하는 단계;
    (e) 상기 위상차 보상필름을 상기 (d) 단계에서 저장된 밝기들 중 가장 작은 밝기로부터 5% 이내의 밝기에 해당하는 y축 위치로 이동하는 단계; 및
    (f) 크로스니콜법으로 상기 피검사 편광판을 검사하는 단계를 포함하는 편광판 검사 방법.
  2. 제1항에 있어서,
    상기 (e) 단계는 상기 (d) 단계에서 저장된 밝기들 중 가장 작은 밝기에 해당하는 y축 위치의 지점으로 이동하는 단계인 것인 편광판 검사 방법.
  3. (a') 이방성 이형필름의 배향각 정보를 입력받는 단계;
    (b') 피검사 편광자의 하부에 상기 이방성 이형필름이 위치한 피검사 편광판을 준비하는 단계;
    (c') 검사기측 편광자의 상단에 위치한 위상차 보상필름이 구비된 검사기측 편광판을 위치시키는 단계;
    (d') 상기 위상차 보상필름을 입력받은 배향각에 따른 y축 위치로 이동하는 단계; 및
    (e') 크로스니콜법을 이용하여 빛이 상기 피검사 편광판과 상기 검사기측 편광판을 통과했을 때의 밝기를 측정하여 상기 피검사 편광판을 검사하는 단계를 포함하고,
    이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 편광판 검사 방법.
  4. 제 3항에 있어서,
    상기 (a') 단계 이전에 배향각 정보를 상기 이방성 이형필름에 표시하는 단계를 더 포함하고,
    상기 (a') 단계의 배향각은 상기 이방성 이형필름의 x축 방향의 일단 및 타단에서 측정되는 것인 편광판 검사 방법.
  5. 제1항 또는 제3항에 있어서,
    상기 위상차 보상필름은 제1 보상필름 및 제2 보상필름을 포함하고, 상기 제1 보상필름 및 제2 보상필름은 동일한 xy 평면 상에 존재하며,
    상기 제1 보상필름은 y축 상으로 배향각이 증가 또는 감소하고,
    상기 제2 보상필름은 y축 상으로 배향각이 증가 또는 감소하는 것인 편광판 검사 방법.
  6. 제1항 또는 제3항에 있어서,
    상기 위상차 보상필름은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름의 폭 방향에 따른 배향각 분포 프로파일과 대칭되는 프로파일을 가지는 것이고, 또는
    상기 위상차 보상필름은 폭 방향에 따른 위상차값 분포 프로파일이 상기 이방성 이형필름의 폭 방향에 따른 위상차값 분포 프로파일과 대칭되는 프로파일을 가지는 것인 편광판 검사 방법.
  7. 제5항에 있어서,
    상기 제1 보상필름은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름의 폭 방향에 따른 배향각 분포 프로파일과 동일하고,
    상기 제2 보상필름의 폭 방향에 따른 배향각 분포 프로파일은 상기 제1 보상필름의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되거나; 또는
    상기 제2 보상필름은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름의 폭 방향에 따른 배향각 분포 프로파일과 동일하고,
    상기 제1 보상필름의 폭 방향에 따른 배향각 분포 프로파일은 상기 제2 보상필름의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되는 것인 편광판 검사 방법.
  8. 제5항에 있어서,
    상기 (c) 단계 이전에 상기 제1 보상필름과 상기 제2 보상필름을 x축 방향으로 이동시키면서 상기 제1 보상필름과 상기 제2 보상필름 중 크로스니콜 가능하도록 어느 하나를 선택하는 단계를 더 포함하는 것인 편광판 검사 방법.
  9. 제4항에 있어서,
    상기 배향각 정보를 상기 이방성 이형필름에 표시하는 단계는 상기 배향각 정보를 기록 매체에 기록한 후, 상기 기록 매체를 상기 이방성 이형필름에 부착 또는 인쇄하는 단계이고,
    상기 (a') 이방성 이형필름의 배향각 정보를 입력받는 단계는 상기 이방성 이형필름에 부착 또는 인쇄된 이방성 이형필름의 배향각 정보를 읽어들이는 것인 편광판 검사 방법.
  10. 제5항에 있어서,
    상기 (d') 단계 이전에 입력받은 배향각에 따라 상기 제1 보상필름과 상기 제2 보상필름 중 크로스니콜 가능하도록 어느 하나를 선택하여 상기 위상차 보상필름을 x축으로 이동하는 단계를 더 포함하는 것인 편광판 검사 방법.
  11. 제3항에 있어서,
    상기 (d') 단계에서 상기 배향각에 따른 y축 위치는 상기 이방성 이형필름과 상기 위상차 보상 필름에 의한 위상차 변화량이 서로 상쇄되어 측정되는 투과광의 밝기가 50 그레이 미만이 되도록 하는 위치인 것인 편광판 검사 방법.
  12. 피검사 편광자의 일면 상에 이방성 이형필름이 구비된 피검사 편광판을 검사하는 장치로서,
    광원;
    검사기측 편광자의 상부에 위치한 위상차 보상필름이 구비된 검사기측 편광판;
    상기 광원에서 조사된 빛이 상기 피검사 편광판과 검사기측 편광판을 통과하여 수신되는 수광부;
    상기 검사기측 편광판의 상기 수광부로부터 얻은 영상을 해석하여 그 밝기 및 그에 대응하는 상기 위상차 보상필름의 y축 상의 위치를 저장하되, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 것인 영상 해석부; 및
    상기 위상차 보상필름을 y축 방향으로 이동시키되, 상기 영상해석부에 저장된 상기 밝기가 가장 작은 경우의 상기 위상차 보상필름의 y축 상의 위치로 상기 위상차 보상필름을 이동시키도록 구성된 제어부를 포함하고,
    상기 피검사 편광판은 상기 검사기측 편광판과 크로스니콜 가능하게 위치하며,
    상기 광원 및 수광부는 각각 상기 피검사 편광판의 상부과 상기 검사기측 편광판의 하부에 위치하거나; 또는 상기 검사기측 편광판의 하부와 상기 피검사 편광판의 상부에 위치하는 편광판 검사 장치.
  13. 피검사 편광자의 일면 상에 이형 필름 배향각의 정보가 표시된 이형필름이 구비된 피검사 편광판을 검사하는 장치로서,
    광원;
    검사기측 편광자의 상부에 위치한 위상차 보상필름이 구비된 검사기측 편광판;
    상기 광원에서 조사된 빛이 상기 피검사 편광판과 검사기측 편광판을 통과하여 수신되는 수광부;
    상기 피검사 편광판 상의 이형 필름의 배향각의 정보를 리딩하는 기록 매체 리딩기;
    상기 기록 매체 리딩기에서 리딩된 정보를 송신하여 상기 기록 매체 리딩기에서부터 피검사 편광판까지의 거리를 측정하는 엔코더; 및
    상기 엔코더에서 측정된 거리에 따라 상기 위상차 보상필름의 y축의 위치로 상기 위상차 보상필름을 이동시키되, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 것인 제어부를 포함하고,
    상기 피검사 편광판은 상기 검사기측 편광판과 크로스니콜 가능하게 위치하며,
    상기 광원 및 수광부는 각각 상기 피검사 편광판의 상부와 상기 검사기측 편광판의 하부에 위치하거나; 또는 상기 검사기측 편광판의 하부와 상기 피검사 편광판의 상부에 위치하는 편광판 검사 장치.
  14. 피검사 편광자의 일면 상에 이방성 이형필름이 구비된 피검사 편광판을 검사하는 장치로서,
    광원;
    검사기측 편광자의 상부에 위치한 위상차 보상필름이 구비된 검사기측 편광판;
    상기 광원에서 조사된 빛이 상기 피검사 편광판과 검사기측 편광판을 통과하여 수신되는 수광부;
    상기 피검사 편광판 상의 상기 이방성 이형필름의 배향각의 분포 정보가 포함된 데이터를 수신하는 데이터 저장부;
    상기 데이터 저장부에서 정보를 수신하여 상기 피검사 편광판의 검사 위치를 계산하는 엔코더; 및
    상기 엔코더에서 계산된 거리에 따라 상기 위상차 보상필름의 y축의 위치로 상기 위상차 보상필름을 이동시키되, 이때 z축은 상기 빛의 진행 방향이고, x축은 상기 z축에 수직인 평면 상에서 상기 피검사 편광판이 이동하는 방향이며, y축은 상기 z축에 수직인 평면 상에 존재하고 상기 x축에 수직인 것인 제어부를 포함하고,
    상기 피검사 편광판은 상기 검사기측 편광판과 크로스니콜 가능하게 위치하며,
    상기 광원 및 수광부는 각각 상기 피검사 편광판의 상부와 상기 검사기측 편광판의 하부에 위치하거나; 또는 상기 검사기측 편광판의 하부와 상기 피검사 편광판의 상부에 위치하는 편광판 검사 장치.
  15. 제12항 내지 제14항 중 어느 한 항에 있어서,
    상기 위상차 보상필름은 제1 보상필름 및 제2 보상필름을 포함하고, 상기 제1 보상필름 및 제2 보상필름은 동일한 xy 평면 상에 존재하며,
    상기 제1 보상필름은 y축 상으로 배향각이 증가 또는 감소하고,
    상기 제2 보상필름은 y축 상으로 배향각이 증가 또는 감소하는 것인 편광판 검사 장치.
  16. 제12항 내지 제14항 중 어느 한 항에 있어서,
    상기 위상차 보상필름은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름의 폭 방향에 따른 배향각 분포 프로파일과 대칭되는 프로파일을 가지는 것이고 또는,
    상기 위상차 보상필름은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름의 폭 방향에 따른 배향각 분포 프로파일과 대칭되는 프로파일을 가지는 것인 편광판 검사 장치.
  17. 제15항에 있어서,
    상기 제1 보상필름은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름의 폭 방향에 따른 배향각 분포 프로파일과 동일하고,
    상기 제2 보상필름의 폭 방향에 따른 배향각 분포 프로파일은 상기 제1 보상필름의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되거나; 또는
    상기 제2 보상필름은 폭 방향에 따른 배향각 분포 프로파일이 상기 이방성 이형필름의 폭 방향에 따른 배향각 분포 프로파일과 동일하고,
    상기 제1 보상필름의 폭 방향에 따른 배향각 분포 프로파일은 상기 제2 보상필름의 폭 방향에 따른 배향각 분포 프로파일과 대칭 분포되는 것인 편광판 검사 장치.
  18. 제12항에 있어서,
    상기 영상 해석부는 상기 검사기측 편광판의 상기 수광부로부터 얻은 영상을 해석하여 그 밝기 및 그에 대응하는 상기 위상차 보상필름의 x축 상의 위치 저장 가능하고,
    상기 제어부는 상기 위상차 보상필름을 x축 방향으로 이동 가능한 것인 편광판 검사 장치.
  19. 제12항 내지 제14항 중 어느 한 항에 있어서,
    상기 위상차 보상필름을 y축 방향으로 이동시키는 컨베이어 벨트를 더 구비하는 것인 편광판 검사 장치.
PCT/KR2016/008728 2016-03-31 2016-08-09 편광판 검사 방법 및 편광판 검사 장치 WO2017171153A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160039473A KR20170112435A (ko) 2016-03-31 2016-03-31 편광판 검사 방법 및 편광판 검사 장치
KR1020160039477A KR20170112436A (ko) 2016-03-31 2016-03-31 편광판 검사 방법 및 편광판 검사 장치
KR10-2016-0039477 2016-03-31
KR10-2016-0039473 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171153A1 true WO2017171153A1 (ko) 2017-10-05

Family

ID=59964828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008728 WO2017171153A1 (ko) 2016-03-31 2016-08-09 편광판 검사 방법 및 편광판 검사 장치

Country Status (2)

Country Link
TW (1) TW201736829A (ko)
WO (1) WO2017171153A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090808A (zh) * 2019-05-17 2019-08-06 智翼博智能科技(苏州)有限公司 偏光片全自动投料外观检测设备及检测方法
CN110153020A (zh) * 2019-05-17 2019-08-23 智翼博智能科技(苏州)有限公司 偏光片全自动投料Mark检测设备及检测方法
CN117183412A (zh) * 2023-09-06 2023-12-08 湖南谱特光电科技有限公司 一种基于颜色测量的偏光片矫正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009919A (ja) * 2003-06-17 2005-01-13 Taiyo Denki Kk 保護膜付き偏光板の検査装置および検査方法
JP2007213016A (ja) * 2006-01-11 2007-08-23 Nitto Denko Corp 積層フィルムの製造方法、積層フィルムの欠陥検出方法、積層フィルムの欠陥検出装置、積層フィルム、及び画像表示装置
KR20070118053A (ko) * 2006-06-09 2007-12-13 후지필름 가부시키가이샤 막결함 검사 장치 및 방법
KR20130076801A (ko) * 2010-05-25 2013-07-08 도레이 카부시키가이샤 필름의 결함 검사 장치, 결함 검사 방법 및 이형 필름
WO2016024682A1 (ko) * 2014-08-14 2016-02-18 주식회사 엘지화학 필름 텐션 조절 시스템 및 이를 포함하는 편광판 제조 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009919A (ja) * 2003-06-17 2005-01-13 Taiyo Denki Kk 保護膜付き偏光板の検査装置および検査方法
JP2007213016A (ja) * 2006-01-11 2007-08-23 Nitto Denko Corp 積層フィルムの製造方法、積層フィルムの欠陥検出方法、積層フィルムの欠陥検出装置、積層フィルム、及び画像表示装置
KR20070118053A (ko) * 2006-06-09 2007-12-13 후지필름 가부시키가이샤 막결함 검사 장치 및 방법
KR20130076801A (ko) * 2010-05-25 2013-07-08 도레이 카부시키가이샤 필름의 결함 검사 장치, 결함 검사 방법 및 이형 필름
WO2016024682A1 (ko) * 2014-08-14 2016-02-18 주식회사 엘지화학 필름 텐션 조절 시스템 및 이를 포함하는 편광판 제조 시스템

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110090808A (zh) * 2019-05-17 2019-08-06 智翼博智能科技(苏州)有限公司 偏光片全自动投料外观检测设备及检测方法
CN110153020A (zh) * 2019-05-17 2019-08-23 智翼博智能科技(苏州)有限公司 偏光片全自动投料Mark检测设备及检测方法
CN117183412A (zh) * 2023-09-06 2023-12-08 湖南谱特光电科技有限公司 一种基于颜色测量的偏光片矫正方法
CN117183412B (zh) * 2023-09-06 2024-03-19 湖南谱特光电科技有限公司 一种基于颜色测量的偏光片矫正方法

Also Published As

Publication number Publication date
TW201736829A (zh) 2017-10-16

Similar Documents

Publication Publication Date Title
WO2017171153A1 (ko) 편광판 검사 방법 및 편광판 검사 장치
WO2015030343A1 (en) Optical element rotation type mueller-matrix ellipsometer and method for measuring mueller-matrix of sample using the same
WO2013187584A1 (ko) 클리노미터, 이를 이용한 주향 및 경사각 측정 방법
WO2011129625A2 (ko) 입체 영상 표시 장치
WO2013155749A1 (zh) 基板的检测方法和装置
WO2020013517A1 (ko) 수직입사 타원계측기 및 이를 이용한 시편의 광물성 측정 방법
WO2018016889A1 (ko) 비전검사모듈 및 그를 가지는 소자핸들러
WO2018147478A1 (ko) 머신 비전을 활용한 와이어 하네스 케이블의 터미널 크림핑 검사 장치 및 검사 방법 그리고 그 작동 방법
JP2006337630A (ja) 積層光学フィルムの製造方法
WO2022203252A1 (ko) 전극 코팅공정의 롤맵, 롤맵 작성방법 및 롤맵 작성 시스템
WO2020153639A1 (ko) 액정표시장치
WO2012008750A2 (ko) 편광 안경
WO2015096225A1 (zh) 彩色滤色片膜厚测量方法及装置
WO2009119983A2 (ko) 중복 영상을 이용한 에프피디 기판 및 반도체 웨이퍼 검사시스템
WO2019172689A1 (ko) 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법
WO2020231113A1 (ko) 치수 측정용 지그 및 그를 포함하는 치수 측정 장치
JP2005009919A (ja) 保護膜付き偏光板の検査装置および検査方法
WO2020251243A1 (ko) 쉐이퍼 유닛 및 흔들림 보정 장치
WO2013016889A9 (zh) 液晶显示器中玻璃基板的目视检查机及检查方法
KR20150125313A (ko) 편광을 이용한 투명기판 상면 이물 검출 장치 및 방법
JPH05256793A (ja) 液晶ディスプレイ基板の検査装置
WO2021020604A1 (ko) 편광에 따른 각도분해 분광간섭 영상을 이용한 다층박막 두께 및 굴절률 측정장치 및 측정방법
WO2018190693A2 (en) Glass processing apparatus and methods
WO2021230447A1 (ko) 박막 표면 미세 변화 측정 시스템 및 방법
WO2020071646A1 (ko) 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897174

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897174

Country of ref document: EP

Kind code of ref document: A1