WO2017170475A1 - Method and device for shaping composite material - Google Patents

Method and device for shaping composite material Download PDF

Info

Publication number
WO2017170475A1
WO2017170475A1 PCT/JP2017/012520 JP2017012520W WO2017170475A1 WO 2017170475 A1 WO2017170475 A1 WO 2017170475A1 JP 2017012520 W JP2017012520 W JP 2017012520W WO 2017170475 A1 WO2017170475 A1 WO 2017170475A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
reinforcing material
energy ray
region
composite
Prior art date
Application number
PCT/JP2017/012520
Other languages
French (fr)
Japanese (ja)
Inventor
岩出 卓
潤 稲垣
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to JP2018508030A priority Critical patent/JPWO2017170475A1/en
Publication of WO2017170475A1 publication Critical patent/WO2017170475A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a so-called 3D printer whose performance has been improved in recent years, or a three-dimensional modeling method and apparatus represented by an optical modeling technique that has been put into practical use before that, and particularly contains a reinforcing material. Also involved in 3D modeling technology for composite materials
  • a so-called 3D printer calculates the cross-sectional shape of a modeled object with a computer based on three-dimensional CAD data, divides the modeled object into thin, round-shaped cross-sectional components, and forms the cross-sectional components using various methods. Then, it is a three-dimensional modeling method for obtaining the desired shape by laminating them.
  • the name of the 3D printer is widely used. However, internationally, it is often referred to as additive manufacturing technology, or directly translated as additive manufacturing technology. In this specification, the term “3D printer” is mainly used, but expressions are appropriately used according to the intended use.
  • the additive manufacturing technology is roughly classified into seven methods as shown below depending on the type of modeling material and the lamination method.
  • (1) Vat photopolymerization (2) Material extrusion method (Material extrusion) (3) Powder bed fusion method (4) Binder Jetting (5) Sheet lamination method (6) Material jetting method (Material Jetting) (7) Directed Energy Deposition (Directed Energy Deposition).
  • the liquid tank polymerization method was put into practical use at the earliest time among these, and has been used for rapid prototyping under the name of stereolithography before the name of 3D printers became common. .
  • an ultraviolet curable resin is used, and an ultraviolet curable resin 41 is held in the tank 3 as shown in FIG. 42 is formed (FIGS. 7A to 7C).
  • the cured area 41 of the first layer is supported by a suitable support member 4.
  • the cured region 41 of the first layer together with the support member 4 is submerged in the liquid (FIG. 7 (d)), or the cured region 41 of the first layer is fixed to a certain depth by raising the liquid level. Just submerge in the liquid.
  • the surface of the liquid 7 is selectively irradiated again with the ultraviolet ray 7 so that the second layer cured region 42 is formed continuously with the first layer cured region 41 above the first layer cured region 41. (FIG. 7 (e)). By repeating this, a three-dimensional model is obtained.
  • 3D printers marketed as personal uses are generally (2) material extrusion method and (6) material injection method.
  • the material extrusion method is a method in which a modeling material made of a thermoplastic resin is heated to a molten fluid state and laminated while being extruded from a nozzle (see FIG. 8).
  • the material injection method has a much lower viscosity of the modeling material than that of the (2) material extrusion method, so to speak, it is a method of modeling while ejecting the modeling material instead of ink of the ink jet printer It is.
  • Powder bed fusion bonding method and (4) binder injection method are characterized by using powdery and granular materials as modeling materials.
  • the modeling material powder 61 is placed in a suitable tank 60. This is often referred to as the material bed 62.
  • the material bed 62 As a modeling material, it is a feature that a wide range of modeling materials can be selected as long as it can be melted by an energy ray, such as an inorganic material such as a metal, a resin, or a ceramic.
  • the surface of the material bed 62 is selectively irradiated with a laser beam 66 to melt and combine the modeling material powder 61 to form a first modeling layer 67.
  • a laser beam 66 to melt and combine the modeling material powder 61 to form a first modeling layer 67.
  • an infrared laser 63 is used as the energy beam source, and the surface of the material bed 82 can be arbitrarily scanned using the galvano optical systems 64 and 65.
  • the table 69 is lowered by a certain amount, and the squeegee 68 is moved in the direction of arrow A in the figure, thereby equalizing the modeling material content. And flatten.
  • a laser beam 66 is scanned to form a second modeling layer. By repeating this, a desired three-dimensional model is obtained.
  • the binder injection method uses a material bed made of modeling material powder as in the case of (3) powder bed fusion bonding method, but it has a function of an adhesive that binds the molding material powder to the material bed.
  • This is a method in which modeling material powders are bound to each other by selectively ejecting a dressing material from an inkjet head or the like.
  • the sheet lamination method is a method of three-dimensional modeling by cutting sheet-like materials such as paper and plastic film into laminated cross-sectional shapes, and sequentially laminating and bonding them.
  • the last (7) directional energy deposition method has a typical configuration shown in FIG. 10, and is a method of laminating modeling materials while supplying modeling materials and selectively applying energy simultaneously.
  • the laser beam 71 is transmitted through the inner nozzle 73 of the double rod nozzle 72, and the laser beam 71 is collected on the surface of the base 75 by the condenser lens 74. From the outer nozzle 76, a shielding gas and modeling material powder (indicated by an arrow 78 in the figure) are sprayed toward the condensing point of the laser beam 71.
  • the sprayed modeling material powder 78 is heated and melted by the laser beam 71 at the condensing point of the laser beam 71, and a molten pool 77 in which the modeling material powder 78 is melted and aggregated is formed on the surface of the base 75.
  • This is a method in which the modeling material is placed and stacked on the base while the relative position of the base 75 and the double rod nozzle 72 is moved and the molten pool 72 is swallowed on the base material.
  • This method is a typical example of a 3D printer using a metal material. From a different point of view, it can be said that this method has been developed as a modeling method by refining and automating the arc welding method that has been known for a long time.
  • the composite material referred to here is a material in which a matrix, matrix, or powder, granular, acicular or fibrous reinforcing material is contained, and the material properties (thermal conductivity, electrical conductivity) of the matrix.
  • these reinforcing materials are incorporated with the intention of improving the mechanical properties (such as rigidity, strength, and fatigue properties).
  • the reinforcing material is in a fibrous form, a large effect is often obtained in improving the mechanical properties as compared with the case of using only the base material by causing the reinforcing material to bear the deformation caused by the load.
  • the reinforcement in the mother is to be dispersed as uniformly and isotropic as possible in the mother when the material properties and mechanical properties after molding are required to be isotropic (uniform dispersion). Is preferred. Uniform here means that the distribution density of the reinforcing material is uniform, and isotropic means that the orientation direction is random in the acicular and fibrous reinforcing materials.
  • a modeling interface is always formed between the cross-sectional components as viewed in the stacking direction of the modeled product.
  • the reinforcing material is uniformly dispersed in the base material.
  • the continuity of the uniform dispersion of the reinforcing material is impaired at the interface. There is a big problem.
  • the long fiber pellet 22 is filled in the chamber 21.
  • the long fiber pellet 22 is a granular thermoplastic resin pellet in which reinforcing fibers 23 are dispersed.
  • the inside of the chamber 21 is heated by a heating mechanism (not shown), and the long fiber pellets 22 are melted.
  • the long fiber pellet 22 that has been melted and fluidized is referred to herein as a molten composite material 25.
  • the molten composite material 25 is pushed out from the nozzle 27 by the pressure P applied by the pressure member 26.
  • the extruded molten composite material 25 is placed on the modeling table 28.
  • the modeling table 28 has a translational degree of freedom in the in-plane direction indicated by arrows X and Y in the figure, a degree of freedom in the vertical direction of the modeling table 28 indicated by arrow Z, and a degree of freedom of rotation around the support shaft 29 (arrows in the figure). ⁇ ).
  • the modeling table 28 is driven in the directions of the arrows X, Y, and ⁇ , and the molten composite material 25 is placed in an arbitrary planar shape on the surface of the modeling table 28. It will be done.
  • the molten composite material layer first placed on the surface of the modeling table 28 corresponds to the first layer as the cross-sectional component described above.
  • the second layer 31 is stacked and placed on the first layer 30 with the modeling table 8 lowered as shown in FIG. 11 (b). By repeating this, a three-dimensional shape is formed.
  • the magnitude relationship between the inner diameter of the nozzle 27 and the size of the reinforcing material is preferably about the average length of the nozzle inner diameter> the reinforcing fiber length.
  • the nozzle inner diameter is smaller than the size of the reinforcing material, the reinforcing material cannot pass through the nozzle.
  • the reinforcing fibers 23 are bent or rounded, which is not preferable as a reinforcing material.
  • the active energy rays are locally irradiated to a reinforcing material dispersion in which a reinforcing material is dispersed in a liquid phase material that can be cured by irradiation with active energy rays.
  • a composite three-dimensional modeling method in which a three-dimensional object is formed by generating a hardened region in the reinforcing material dispersion and continuously generating the hardened region.
  • the lowermost layer curing that forms the first cured region by irradiating the active energy ray on a support member that supports the cured region provided in the reinforcing material dispersion.
  • a region forming step, a support member lowering step for lowering the support member, and a recuring region for irradiating the active energy ray on the cured region to form a new cured region on the cured region formed in the previous step The composite material three-dimensional modeling according to claim 1, wherein a three-dimensional object is formed on the support member by repeating a forming step, the support member lowering step, and the re-hardening region forming step in this order.
  • a method is provided.
  • the active energy ray is composed of any one of an electromagnetic wave, an electron beam, an elementary particle beam, a vibration wave in a wavelength range of 1 mm to 0.1 pm, or any combination thereof.
  • a featured composite three-dimensional modeling method is provided.
  • a composite three-dimensional modeling method characterized in that the reinforcing material is fibrous.
  • a composite three-dimensional modeling method characterized in that the distance of the cured region from the liquid surface of the reinforcing material dispersion is approximately equal to or greater than the average length of the reinforcing material. Is done.
  • the liquid phase material curable by irradiation with the active energy ray has a threshold value in the spatial energy density of the active energy ray necessary for initiating the curing.
  • the composite three-dimensional modeling method is characterized by irradiating the active energy ray so that the space energy density of the active energy ray is equal to or higher than the threshold value in the cured region.
  • a composite three-dimensional modeling method characterized by irradiating the active energy rays from at least two directions.
  • the formation of the three-dimensional structure is further imparted with active energy to further promote the curing.
  • a composite three-dimensional modeling method is provided.
  • a reinforcing material dispersion tank containing a reinforcing material dispersion in which a reinforcing material is uniformly and isotropically dispersed in a liquid phase material curable by irradiation with active energy rays
  • An active energy ray source for generating an active energy ray; and at least an active energy induction member for locally inducing the active energy ray from the active energy ray source into the reinforcing material dispersion;
  • the active energy ray from the active energy ray source is locally irradiated into the reinforcing material dispersion by the active energy induction member to generate a hardened region in the reinforcing material dispersion, and the hardened region is continuously formed.
  • the gist of the present invention will be further described with reference to FIG.
  • the invention according to any one of claims 1 to 3 and 6 is an additive manufacturing method or apparatus similar to a liquid tank photopolymerization method, and unlike a conventional technique, curing by irradiation with an active energy ray such as ultraviolet rays is performed as a reinforcing material dispersion. It is characterized in that it is carried out in the liquid instead of the liquid surface. It is relatively easy to disperse the reinforcing material uniformly and isotropically in the liquid, and even if the specific gravity of the liquid phase of the base material and the reinforcing material is slightly different, temporary, simulated It is easy to realize a uniform and isotropic dispersed state.
  • the reinforcing material before hardening is uniform and isotropic.
  • the liquid phase material as the base material can be cured without disturbing the dispersion state. That is, as shown schematically in FIG. 4, a state in which the reinforcing material 2 protrudes from the surface of the hardened region 10 can be realized, and after forming the first layer, the second layer is formed so as to be continuous therewith. It becomes possible to make the reinforcing material cross and exist at the modeling interface of the first layer and the second layer. Therefore, it becomes possible to solve the problem in the prior art of dividing the reinforcing material or the dispersed state of the reinforcing material at the modeling interface.
  • curing does not simply mean that the liquid as a substance state transitions to a solid state, but the liquid phase material that can be flowed and deformed can maintain its shape. It changes to the state which has the rigidity of.
  • the reinforcing material that may exist near the liquid surface is uniformly and isotropically dispersed. This is preferable because it is possible to avoid hardening of a region that has not been formed (for example, a region in which a large amount of the reinforcing material 94 is present as shown in FIG.
  • the liquid surface referred to here includes not only the free surface of the liquid but also the interface with the tank.
  • the entire gist of the active energy rays is hardened, and the gist of the present invention is difficult to achieve. Therefore, if the curable liquid phase material typified by ultraviolet curable resin has a threshold value for the spatial energy density of the active energy ray necessary for the curing, the irradiation intensity of the active energy ray to be irradiated is desired. If the threshold value is exceeded only in the cured region, it is preferable that the cured region can be formed in the liquid (Claim 5).
  • an ultraviolet curable resin or the like has a threshold value for the energy density of an active energy ray (here, ultraviolet light) necessary for the curing, and such characteristics are not particularly unique characteristics.
  • the curing by irradiation with active energy rays may be a curing that can maintain the shape even when the shaped article is taken out from the liquid phase material.
  • the active energy rays are first cured by curing to such an extent that the shape can be maintained even in the state of being taken out from the liquid phase material, and after taking out from the liquid phase material, the same active energy rays are applied again. Curing may be further promoted to a necessary and sufficient strength as a modeling material by irradiating the entire modeled object or applying another energy to the entire model by heating or the like (Claim 7). )
  • FIG. 1 shows a first embodiment of a three-dimensional modeling apparatus according to the present invention.
  • a reinforcing material dispersion 1 in which reinforcing fibers 2 that are reinforcing materials are uniformly dispersed in an ultraviolet curable resin 1 a that is a liquid phase material that can be cured by ultraviolet rays is held in a dispersion tank 3.
  • a support member 4 is provided in the dispersion tank 3 to support a cured region 10 to be formed later.
  • the ultraviolet curable resin 1a is a resin that is cured by irradiation with ultraviolet light 7, which is an active energy ray, and is in a liquid (liquid phase) state at room temperature and normal pressure.
  • As the reinforcing fiber 2 glass fiber, carbon fiber, or the like can be used.
  • the ultraviolet source 5 a mercury lamp, an ultraviolet LED, or the like can be used.
  • the ultraviolet curable resin 1a has a threshold value for the energy required for the curing, and is not cured with energy below the threshold value.
  • the ultraviolet light 7 from the ultraviolet light source 5 is converted into parallel light by the collimating lens 8 of the introducing optical system 6, bent vertically downward by the reflecting mirror 18, and the reinforcing material dispersion 1 in the dispersion liquid tank 3 by the condenser lens 9.
  • the liquid is irradiated from above the liquid surface into the liquid (FIG. 1).
  • the emission intensity of the ultraviolet light source 5, the aperture of the condenser lens 9, the focal length, and the like are selected so that the energy intensity of the ultraviolet light 7 is equal to or higher than the threshold only near the condensing point (that is, the focal position).
  • a region where the energy intensity is greater than or equal to the threshold value in the vicinity of the condensing point is a cured region 10.
  • the distance l from the liquid surface of the reinforcing material dispersion 1 in the cured region 10 is equal to or greater than the average length of the reinforcing fibers 2.
  • the distance l means the shortest distance between the cured region 10 and the surface of the reinforcing material dispersion 1.
  • the ultraviolet light source 5 and the introduction optical system 6 can be freely moved in an in-plane direction parallel to the liquid surface of the reinforcing material dispersion 1, and the focal position of the condenser lens 9 can be freely scanned in the liquid within this surface. I can do it. Therefore, the hardened region 10 can be formed at an arbitrary position at a depth distance l from the liquid surface.
  • the ultraviolet light source 5 and the introduction optical system 6 are viewed from above while irradiating the ultraviolet light 7, and are moved while being appropriately controlled in the directions of arrows A and B in the figure.
  • a first layer cured region 10a is formed in parallel with the liquid surface (FIGS. 2A, 2B, 3A, 3B) (lowermost layer cured) Region forming step). It is also possible to form the curing region 10a while moving the dispersion tank 3 in the directions of arrows A and B instead of moving the ultraviolet light source 5 and the introduction optical system 6.
  • the hardened region 10a of the first layer is formed while performing a zigzag folded scan, but it is of course possible to take an arbitrary scan path such as a spiral. It is.
  • the hardened area 10a of the first layer is supported by the support member 4.
  • the support member 4 includes a base material 4a and a plurality of base members 4a.
  • the support member 4 includes a needle-like support 4b that slightly bites the distal end of the hardened region 10a of the first layer and fixes it.
  • the ultraviolet light source 5 and the introduction optical system 6 are scanned in a direction parallel to the liquid surface so that the cured region 10b of the second layer is continuous with the cured region 10a of the first layer in the depth direction. (FIGS. 2D and 2E) (recured region forming step).
  • the support member 4 is lowered again by a predetermined amount, and the third layer is cured. Thereafter, the entire molding is performed by repeating this procedure.
  • the reinforcing material dispersion 1 may be supplemented to the dispersion liquid tank 3 to relatively raise the liquid level by a predetermined amount.
  • the ultraviolet curable resin 1a is cured while maintaining the dispersion state of the reinforcing fiber 2 before being cured.
  • the cured region 10 can be formed with the fibers 2 protruding from the surface.
  • the reinforcing fiber 2 can be present across the interface between the two. It becomes possible.
  • FIG. 5 shows a schematic configuration diagram of a composite three-dimensional modeling apparatus 15 according to the second embodiment of the present invention.
  • the reinforcing material dispersion liquid 1 composed of an ultraviolet curable resin and a reinforcing material is held in the dispersing material tank 3. Note that the reinforcing material is not shown because the figure becomes complicated.
  • the material of the dispersion material tank 3 is preferably a material having a sufficient transmittance for ultraviolet laser light, which is an active energy ray, such as quartz glass.
  • two ultraviolet lasers 11 are used as the ultraviolet light source.
  • the ultraviolet laser beams 12 from the respective ultraviolet lasers 11 are arranged so as to intersect at one point in the reinforcing material dispersion 1.
  • the intensity of each ultraviolet laser beam 12 is less than the energy threshold necessary for curing the ultraviolet curable resin 1a, and the ultraviolet rays so that the sum of the two exceeds the threshold value at the portion where each ultraviolet laser beam 12 intersects.
  • two ultraviolet lasers 11 are used, but it is also possible to use a configuration in which three or more ultraviolet lasers 11 are used and the ultraviolet laser beams 12 from the plurality of ultraviolet lasers 11 intersect at one point.
  • the number of ultraviolet lasers 11 is not limited to two. Even in the case of three or more units, the intensity of the ultraviolet laser beam 12 from each ultraviolet laser 11 is below the threshold value of the energy required for curing the ultraviolet curable resin 1a, and the portion where each ultraviolet laser beam 12 intersects. What is necessary is just to set the output of each ultraviolet laser 11 so that the sum total exceeds this threshold value.
  • the ultraviolet curable resin is maintained while maintaining the dispersion state of the reinforcing fibers 2 before curing. Curing of 1a is performed, and it becomes possible to form the cured region 10 with the reinforcing fibers 2 protruding from the surface, similar to FIG.
  • FIG. 6 shows a third aspect of the present invention.
  • the ultraviolet light 7 is introduced into the dispersion 1 by the ultraviolet optical fiber 16. If the outer diameter of the ultraviolet optical fiber 16 is sufficiently smaller than the size and distribution density of the reinforcing material 1 in the dispersion (in this embodiment, the reinforcing fiber 2), the reinforcing material 2 in the dispersion 1 It is suitable without disturbing the dispersion state.
  • the vicinity of the tip position of the ultraviolet optical fiber 16 is the cured region 10.
  • the first layer 10a may be formed by scanning the ultraviolet optical fiber 16 in a direction parallel to the liquid surface while irradiating the ultraviolet light 7 while the tip of the ultraviolet optical fiber 16 is inserted into the dispersion 1.
  • the ultraviolet light fiber 16 is once pulled out of the dispersion liquid 1 and moved in an in-plane direction. After that, the ultraviolet light fiber 16 is inserted into the dispersion liquid 1 again and the ultraviolet light 7 is irradiated.
  • the layer 10a may be formed. After the first layer 10a is formed, as in the first embodiment, the first layer 10a is lowered by a predetermined amount by the support member 4, and the second layer 10b is formed so as to be continuous with the first layer 10a. .
  • the ultraviolet optical fiber 16 is inserted into the dispersion liquid and then the ultraviolet optical fiber 16 is extracted from the dispersion liquid 1 while being irradiated with the ultraviolet light 7, the ultraviolet fiber 16 is continuously extracted in the extraction direction. It is also possible in principle to form the hardened region 10.
  • all the hardened regions are formed in the liquid instead of the liquid surface of the reinforcing material dispersion.
  • ultraviolet rays are used as active energy rays
  • a combination of ultraviolet curable resins is used as a liquid phase material that can be cured by irradiation thereof.
  • Electromagnetic waves in the wavelength range of 0.1 mm to 1 pm that is, electromagnetic waves in the far infrared, infrared, visible, ultraviolet, vacuum ultraviolet, and X-ray regions, electron beams, particle beams such as ⁇ rays and neutron rays, and the like are cured.
  • Combinations of possible liquid phase materials can be used.
  • active energy ray curable resins represented by ultraviolet curable resins contain at least monomers, oligomers, and polymerization initiators as components.
  • the polymerization initiator absorbs active energy rays and is activated (excited) to generate reaction initiators such as radical molecules and hydrogen ions, so that the monomers and oligomers are often polymerized and cured. .
  • the polymerization initiator and the reaction initiator are sealed in a microcapsule made of a material that is decomposed or destroyed by active energy rays, and the microcapsule is combined with a reinforcing material in a liquid phase material. It is also possible to have a form in which it is dispersed. In this case, the microcapsules are destroyed by local irradiation with active energy rays, and the polymerization initiator and the reaction initiator are released into the liquid phase material to cure the liquid phase material.
  • a mode in which an ultrasonic wave or shock wave source is placed at one focal position of the spheroid mirror and the other focal position is set as a hardening region is conceivable.
  • the reinforcing material is shown as a reinforcing material.
  • the reinforcing material is not limited to a fibrous material, but is in the form of powder or granular.
  • the effect of the present invention can be expected even for needle-shaped objects.
  • the effect can be expected for reinforcing materials having an irregular shape typified by an oval shape, an elliptical shape, a needle shape, a flat shape, and a star shape.

Abstract

The present invention provides a method and a device for three-dimensionally shaping a composite material, which enables continuous and uniform dispersion of a reinforcement material at an interface of the composite material being three-dimensionally shaped. Specifically provided are a method and a device for three-dimensionally shaping a composite material which are characterized in that: a reinforcement material dispersion liquid, which is obtained by dispersing a reinforcement material in a liquid-phase material that is curable by irradiation with an active energy ray, is locally irradiated with the active energy ray, so as to generate a cured region in the reinforcement material dispersion liquid; and the generation of said cured region is continued so as to form a three-dimensionally shaped object.

Description

複合材料造形方法及び装置Composite material forming method and apparatus
 本発明は、近年その性能を向上させてきているいわゆる3Dプリンタ、或いは、それ以前より実用化されている光造形技術などに代表される立体造形方法および装置に関するもので、特に強化材を含有した複合材の立体造形技術にも関わるものである The present invention relates to a so-called 3D printer whose performance has been improved in recent years, or a three-dimensional modeling method and apparatus represented by an optical modeling technique that has been put into practical use before that, and particularly contains a reinforcing material. Also involved in 3D modeling technology for composite materials
 いわゆる3Dプリンタは、3次元のCADデータをもとにコンピューターで造形物の断面形状を計算し、造形物を薄い輪切り状の断面構成要素に分割して、その断面構成要素を種々の方法で形成し、それを積層させて目的とする形状を得る立体造形方法である。一般的には3Dプリンタの名称が広く用いられているが、国際的にはAdditive Manufacturing Technology、直訳すれば付加製造技術と呼ぶことが多い。本明細書に於いては主として3Dプリンタの用語を用いるが、使用意図に応じて適宜表現を使い分けることとする。 A so-called 3D printer calculates the cross-sectional shape of a modeled object with a computer based on three-dimensional CAD data, divides the modeled object into thin, round-shaped cross-sectional components, and forms the cross-sectional components using various methods. Then, it is a three-dimensional modeling method for obtaining the desired shape by laminating them. In general, the name of the 3D printer is widely used. However, internationally, it is often referred to as additive manufacturing technology, or directly translated as additive manufacturing technology. In this specification, the term “3D printer” is mainly used, but expressions are appropriately used according to the intended use.
 付加製造技術は、造形材料の種類やその積層方法によって、以下に示すように大きく7つの方式に分類される。
(1)液槽重合法(Vat Photopolymerization)
(2)材料押出法(Material extrusion)
(3)粉末床溶融結合法(Powder bed fusion)
(4)結合材噴射法(Binder Jetting)
(5)シート積層法(Sheet lamination)
(6)材料噴射法(Material Jetting)
(7)指向性エネルギー堆積法
(Directed Energy Deposition)。
The additive manufacturing technology is roughly classified into seven methods as shown below depending on the type of modeling material and the lamination method.
(1) Vat photopolymerization
(2) Material extrusion method (Material extrusion)
(3) Powder bed fusion method
(4) Binder Jetting
(5) Sheet lamination method
(6) Material jetting method (Material Jetting)
(7) Directed Energy Deposition (Directed Energy Deposition).
 (1)液槽重合法はこれらの中でも最も古い時期に実用化されたもので、3Dプリンタの名称が一般化する以前から、光造形法などの名称でラピッドプロトタイピング用途として用いられてきている。多くは紫外線硬化(重合)樹脂を用い、図7に示すように紫外線硬化樹脂41を槽3内に保持し、その液面に紫外線7を選択的に照射して、第1層目の硬化領域42を形成する(図7(a)~(c))。該第1層目の硬化領域41は適当なサポート部材4でサポートされる。次に該サポート部材4ごと第1層目の硬化領域41を液中に沈める(図7(d))、或いは、液面を上昇させることにより、第1層目の硬化領域41を一定深さだけ液中に沈める。次いで再び紫外線7を液面に選択的に照射して、第1層目の硬化領域41の上方に第2層目の硬化領域42を第1層目の硬化領域41と連続するように形成する(図7(e))。これを繰り返すことによって、立体造形物を得る方式である。 (1) The liquid tank polymerization method was put into practical use at the earliest time among these, and has been used for rapid prototyping under the name of stereolithography before the name of 3D printers became common. . In many cases, an ultraviolet curable resin is used, and an ultraviolet curable resin 41 is held in the tank 3 as shown in FIG. 42 is formed (FIGS. 7A to 7C). The cured area 41 of the first layer is supported by a suitable support member 4. Next, the cured region 41 of the first layer together with the support member 4 is submerged in the liquid (FIG. 7 (d)), or the cured region 41 of the first layer is fixed to a certain depth by raising the liquid level. Just submerge in the liquid. Next, the surface of the liquid 7 is selectively irradiated again with the ultraviolet ray 7 so that the second layer cured region 42 is formed continuously with the first layer cured region 41 above the first layer cured region 41. (FIG. 7 (e)). By repeating this, a three-dimensional model is obtained.
 近年パーソナルユーズとして市販されている3Dプリンタとしては、(2)材料押出法と(6)材料噴射法のものが一般的である。 In recent years, 3D printers marketed as personal uses are generally (2) material extrusion method and (6) material injection method.
 (2)材料押し出し法は、多くの場合熱可塑性樹脂からなる造形材料を加熱して溶融流動状態とし、それをノズルから押し出しながら積層して造形する方法である(図8参照)。 (2) In many cases, the material extrusion method is a method in which a modeling material made of a thermoplastic resin is heated to a molten fluid state and laminated while being extruded from a nozzle (see FIG. 8).
 (6)材料噴射法は造形材料の粘度が(2)材料押し出し法のそれよりやや低めのものが多く、いわばインクジェットプリンタのインクの代わりに造形材料を吐出させて積層させながら造形していく方法である。 (6) The material injection method has a much lower viscosity of the modeling material than that of the (2) material extrusion method, so to speak, it is a method of modeling while ejecting the modeling material instead of ink of the ink jet printer It is.
 (3)粉末床溶融結合法と(4)結合材噴射法は造形材料として粉体状、粒状のものを用いるところが特徴である。 (3) Powder bed fusion bonding method and (4) binder injection method are characterized by using powdery and granular materials as modeling materials.
 (3)粉末床溶融結合法は。図9に示すように、適当な槽60内に造形材料粉61を静置する。これを材料床62と呼ぶことが多い。造形材料としては金属、樹脂、セラミックなどの無機材料などエネルギー線によって溶融可能なものであれば、幅広く造形材料が選択できることが特長である。材料床62の表面を多くの場合レーザー光66を選択的に照射してその造形材料粉61を溶融合体させて、1層目の造形層67を形成する。図9ではエネルギー線源として赤外線レーザー63を用い、ガルバノ光学系64、65を用いて材料床82表面を任意にスキャンできるようにしている。次いで、図9(b)に示すように、造形材料粉62を一定量継ぎ足したのち、テーブル69を一定量降下させ、スキージ68を図中矢印A方向に移動させることで、造形材料分を均して平らにする。これで再び材料省62が形成される。次いでレーザー光66をスキャンさせで2層目の造形層を形成する。これを繰り返しすとにより所望の立体造形物を得る方式である。 (3) What is the powder bed fusion bonding method? As shown in FIG. 9, the modeling material powder 61 is placed in a suitable tank 60. This is often referred to as the material bed 62. As a modeling material, it is a feature that a wide range of modeling materials can be selected as long as it can be melted by an energy ray, such as an inorganic material such as a metal, a resin, or a ceramic. In many cases, the surface of the material bed 62 is selectively irradiated with a laser beam 66 to melt and combine the modeling material powder 61 to form a first modeling layer 67. In FIG. 9, an infrared laser 63 is used as the energy beam source, and the surface of the material bed 82 can be arbitrarily scanned using the galvano optical systems 64 and 65. Next, as shown in FIG. 9B, after a certain amount of modeling material powder 62 has been added, the table 69 is lowered by a certain amount, and the squeegee 68 is moved in the direction of arrow A in the figure, thereby equalizing the modeling material content. And flatten. Thus, the material saving 62 is formed again. Next, a laser beam 66 is scanned to form a second modeling layer. By repeating this, a desired three-dimensional model is obtained.
 (4)結合材噴射法も(3)粉末床溶融結合法と同様、造形材料粉から成る材料床を用いる、が、材料床に対し造形材料粉を結着するいわば接着剤の機能を有する結着材料をインクジェットヘッド等から選択的に噴射することで、造形材料粉同士を結着させ造形する方式である。 (4) The binder injection method uses a material bed made of modeling material powder as in the case of (3) powder bed fusion bonding method, but it has a function of an adhesive that binds the molding material powder to the material bed. This is a method in which modeling material powders are bound to each other by selectively ejecting a dressing material from an inkjet head or the like.
 (5)シート積層法はその名の通り、紙、プラスチックフィルム等のシート状材料を積層断面形状に切断しそれを順次積層、接着することにより立体造形する方式である。 (5) As the name suggests, the sheet lamination method is a method of three-dimensional modeling by cutting sheet-like materials such as paper and plastic film into laminated cross-sectional shapes, and sequentially laminating and bonding them.
 最後の、(7)指向性エネルギー堆積法は、図10に代表的な構成を示すが、造形材料を供給しながら且つエネルギーも同時に選択的に付与しながら、造形材料を積層する方式である。二重菅ノズル72の内側ノズル73はその内部をレーザー光71が透過し、レーザー光71は集光レンズ74によって、ベース75表面に集光される。外側ノズル76からは、シールドガスと造形材料粉末(図中矢印78で示す)がレーザー光71の集光点目指して吹き付けられる。レーザー光71の集光点において、吹き付けられた造形材料粉末78がレーザー光71によって加熱溶融され、ベース75表面に造形材料粉末78が溶融凝集した溶融池77が形成される。ベース75と二重菅ノズル72の相対位置を移動させ、溶融池72をベース材上をいわば泳がせながら、ベース上に造形材料を載置、積層していく方法である。この方式は金属材料を用いる3Dプリンタの代表例である。なお、この方式は見方を変えれば、古くから知られているアーク溶接法を精細化、自動化し造形方法として発展させたとも言える。 The last (7) directional energy deposition method has a typical configuration shown in FIG. 10, and is a method of laminating modeling materials while supplying modeling materials and selectively applying energy simultaneously. The laser beam 71 is transmitted through the inner nozzle 73 of the double rod nozzle 72, and the laser beam 71 is collected on the surface of the base 75 by the condenser lens 74. From the outer nozzle 76, a shielding gas and modeling material powder (indicated by an arrow 78 in the figure) are sprayed toward the condensing point of the laser beam 71. The sprayed modeling material powder 78 is heated and melted by the laser beam 71 at the condensing point of the laser beam 71, and a molten pool 77 in which the modeling material powder 78 is melted and aggregated is formed on the surface of the base 75. This is a method in which the modeling material is placed and stacked on the base while the relative position of the base 75 and the double rod nozzle 72 is moved and the molten pool 72 is swallowed on the base material. This method is a typical example of a 3D printer using a metal material. From a different point of view, it can be said that this method has been developed as a modeling method by refining and automating the arc welding method that has been known for a long time.
特開昭56-144478号公報JP 56-144478 A 米国特許4863538号公報US Pat. No. 4,863,538 米国特許5121329号公報US Pat. No. 5,121,329
 さて、このような3Dプリンタを複合材の造形に適用しようとする動きがある。ここでいう複合材とは、母材(マトリクス材)中に、粉体状、粒状、針状あるいは繊維状の強化材を含有させたもので、母材の材料物性(熱伝導度、電気導電度など)の改良、機械特性(剛性、強度、疲労特性など)の改良を意図してこれら強化材を含有させることが多い。特に強化材が繊維状のものは、荷重による変形を強化材に負担させることで、母材だけの場合に比してその機械特性の改良に大きな効果が得られる場合が多い。 Now, there is a movement to apply such a 3D printer to modeling composite materials. The composite material referred to here is a material in which a matrix, matrix, or powder, granular, acicular or fibrous reinforcing material is contained, and the material properties (thermal conductivity, electrical conductivity) of the matrix. In many cases, these reinforcing materials are incorporated with the intention of improving the mechanical properties (such as rigidity, strength, and fatigue properties). In particular, when the reinforcing material is in a fibrous form, a large effect is often obtained in improving the mechanical properties as compared with the case of using only the base material by causing the reinforcing material to bear the deformation caused by the load.
 母在中の強化材は、造形後の材料物性や機械特性に等方性を要求する場合には、母在中に可及的均一且つ等方的に分散していること(均一分散性)が好ましい。ここでいう均一とは強化材の分布密度が一様であること、等方的とは、針状、繊維状の強化材においてその配向方向がランダムであることをいう。 The reinforcement in the mother is to be dispersed as uniformly and isotropic as possible in the mother when the material properties and mechanical properties after molding are required to be isotropic (uniform dispersion). Is preferred. Uniform here means that the distribution density of the reinforcing material is uniform, and isotropic means that the orientation direction is random in the acicular and fibrous reinforcing materials.
 近年複合材を造形できる3Dプリンタは各種発表されているものの、これらの複合材3Dプリンタには3Dプリンタ造形方法の根本にも関わる問題が存在する。先に、3Dプリンタ(付加製造技術)の7つの主たる方式について説明したが、いずれの方式も、造形物を薄い輪切り状の断面構成要素に分割して、その断面構成要素を積層させて目的とする造形物を形成するという原理は同じである。 In recent years, various 3D printers that can form composite materials have been announced, but these composite material 3D printers have problems related to the fundamental 3D printer modeling method. The seven main methods of the 3D printer (additional manufacturing technology) have been described above. However, in any of the methods, the shaped object is divided into thin ring-shaped cross-sectional components, and the cross-sectional components are stacked. The principle of forming a modeled object is the same.
 付加製造方法においては、この断面構成要素を1層、2層・・と積層していくため、必ず造形物の積層方向に見て各断面構成要素間に造形界面が形成される。複合材中では強化材は母材中に均一分散していることが好ましい場合が殆どであるが、このような造形界面が存在すると、その界面において強化材の均一分散の連続性が損なわれるという大きな問題が存在する。 In the additive manufacturing method, since the cross-sectional components are laminated in one layer, two layers,..., A modeling interface is always formed between the cross-sectional components as viewed in the stacking direction of the modeled product. In the composite material, it is almost always preferable that the reinforcing material is uniformly dispersed in the base material. However, when such a modeling interface exists, the continuity of the uniform dispersion of the reinforcing material is impaired at the interface. There is a big problem.
 従来技術による複合材3Dプリンタの例を、付加製造技術として代表的な(2)材料押出法を例にもう少し詳細に説明する。図11(a)において、チャンバー21内に長繊維ペレット22が充填される。長繊維ペレット22とは強化繊維23を内部に分散した粒状の熱可塑性樹脂ペレットである。図示しない加熱機構によってチャンバー21内が加熱され、長繊維ペレット22が溶融する。溶融し流動状態となった長繊維ペレット22をここでは溶融複合材25と呼ぶ事とする。溶融複合材25は加圧部材26による加圧力Pにより、ノズル27から押し出される。押し出された溶融複合材25は、造形テーブル28上に載置されていく。造形テーブル28は図中矢印XおよびYで示す造形テーブル28面内方向の並進自由度、矢印Zで示す造形テーブル28上下方向の自由度、および支軸29廻りの回転の自由度(図中矢印θ)を有している。 An example of a composite 3D printer according to the prior art will be described in a little more detail by taking a typical example of (2) material extrusion as an additive manufacturing technique. In FIG. 11A, the long fiber pellet 22 is filled in the chamber 21. The long fiber pellet 22 is a granular thermoplastic resin pellet in which reinforcing fibers 23 are dispersed. The inside of the chamber 21 is heated by a heating mechanism (not shown), and the long fiber pellets 22 are melted. The long fiber pellet 22 that has been melted and fluidized is referred to herein as a molten composite material 25. The molten composite material 25 is pushed out from the nozzle 27 by the pressure P applied by the pressure member 26. The extruded molten composite material 25 is placed on the modeling table 28. The modeling table 28 has a translational degree of freedom in the in-plane direction indicated by arrows X and Y in the figure, a degree of freedom in the vertical direction of the modeling table 28 indicated by arrow Z, and a degree of freedom of rotation around the support shaft 29 (arrows in the figure). θ).
 ノズル27から溶融複合材25が押し出されるのに合わせて、上記矢印X、Y、θ方向に造形テーブル28が駆動され、造形テーブル28面上に任意の平面形状にて溶融複合材25が載置されていく。この造形テーブル28面上に最初に載置される溶融複合材層が、先述の断面構成要素としての第1層に相当する。 As the molten composite material 25 is pushed out from the nozzle 27, the modeling table 28 is driven in the directions of the arrows X, Y, and θ, and the molten composite material 25 is placed in an arbitrary planar shape on the surface of the modeling table 28. It will be done. The molten composite material layer first placed on the surface of the modeling table 28 corresponds to the first layer as the cross-sectional component described above.
 第1層30の成型完了後、図11(b)に示すように、造形テーブル8が下降した状態で、第2層31が第1層30の上に積層されて載置されていく。これを繰り返すことにより立体形状が造形されていく。 After completion of the molding of the first layer 30, the second layer 31 is stacked and placed on the first layer 30 with the modeling table 8 lowered as shown in FIG. 11 (b). By repeating this, a three-dimensional shape is formed.
 図11の態様において、ノズル27の内径と強化材の大きさ(ここでは強化繊維23の平均長さ)の大小関係としては、ノズル内径>強化繊維長の平均長さ程度であることが好ましい。当然ではあるが、ノズル内径が強化材の大きさより小さければ強化材はノズルを通り抜けられない。強化繊維の場合でも、ノズル内径が平均長さ以上でないと、強化繊維23が折れ曲がったり、丸まったりして、強化材として好ましくない状態となる。 11, the magnitude relationship between the inner diameter of the nozzle 27 and the size of the reinforcing material (here, the average length of the reinforcing fibers 23) is preferably about the average length of the nozzle inner diameter> the reinforcing fiber length. Naturally, if the nozzle inner diameter is smaller than the size of the reinforcing material, the reinforcing material cannot pass through the nozzle. Even in the case of reinforcing fibers, if the inner diameter of the nozzle is not equal to or greater than the average length, the reinforcing fibers 23 are bent or rounded, which is not preferable as a reinforcing material.
 しかしながら、本願発明の効果に関して重要なのはノズル内径と強化材の相対的な大きさではない。テーブル28上に押し出された溶融複合材25の表面において、内部の強化繊維23が、図11(c)、符番37に示す表面から突出した強化繊維が存在することはまずありえない。 However, what is important regarding the effect of the present invention is not the relative size of the nozzle inner diameter and the reinforcing material. In the surface of the molten composite material 25 extruded on the table 28, it is unlikely that the reinforcing fibers 23 inside the reinforcing fibers 23 protrude from the surface indicated by reference numeral 37 in FIG.
 即ち、各断面構成要素としての層内において、隣接して配設されていく溶融複合材25相互の界面、および、第1層30と第2層31と積層されていくされる各層間の界面を、強化繊維が横断して存在することはまずありえないということになる。 That is, in the layer as each cross-sectional component, the interface between the melted composite materials 25 arranged adjacent to each other, and the interface between each layer laminated with the first layer 30 and the second layer 31, It is unlikely that the reinforcing fibers will exist across.
 (1)液槽重合法や(3)材料床溶融結合法に於いてもこれらの問題は同様である。(1)液層重合法を複合材の造形に適用した例を図12に示す。強化材90が分散された紫外線硬化樹脂等の母材91とから成る強化材分散液92を槽93中に静置しても、強化材90が強化材分散液92の液面から突出して存在することはまず考えられない。強化材90と母材91の比重が近い場合には図12(c)に示すように一部の強化材90が強化材分散液92液面から突き出した状態も確率的にはあり得るであろうが、殆どの強化材は図12(b)に示すごとく液面近傍において「寝た」状態となるのが普通である。 These problems are the same in (1) liquid tank polymerization method and (3) material bed melt bonding method. (1) An example in which the liquid layer polymerization method is applied to modeling of a composite material is shown in FIG. Even if the reinforcing material dispersion 92 composed of the base material 91 such as an ultraviolet curable resin in which the reinforcing material 90 is dispersed is left in the tank 93, the reinforcing material 90 protrudes from the liquid surface of the reinforcing material dispersion 92. I can't think of doing that. When the specific gravity of the reinforcing material 90 and the base material 91 is close, as shown in FIG. 12 (c), there is a possibility that a part of the reinforcing material 90 protrudes from the liquid surface of the reinforcing material dispersion 92. However, most reinforcing materials are usually “sleeped” in the vicinity of the liquid surface as shown in FIG.
 従って、強化材図12(b)で示すようなな分散状態にある液表面を紫外線7の照射によって第1層を造形せしめ、次いで第2層をその上に造形したとしても、やはり造形界面における強化材又は強化材の分散状態の分断という問題はついて廻ることとなる。 Therefore, even if the first layer is formed by irradiating the ultraviolet ray 7 on the liquid surface in a dispersed state as shown in FIG. 12 (b), and then the second layer is formed thereon, it is still at the modeling interface. The problem of splitting the reinforcing material or the dispersed state of the reinforcing material comes around.
 上記課題を解決するために本願発明に於いては、活性エネルギー線の照射によって硬化可能な液相材料中に強化材を分散せしめた強化材分散液に、前記活性エネルギー線を局所的に照射することにより前記強化材分散液中に硬化領域を生成せしめ、該硬化領域を連続して生成せしめることにより、立体造形物を形成することを特長とする複合材立体造形方法が提供される。 In order to solve the above problems, in the present invention, the active energy rays are locally irradiated to a reinforcing material dispersion in which a reinforcing material is dispersed in a liquid phase material that can be cured by irradiation with active energy rays. Thus, a composite three-dimensional modeling method is provided, in which a three-dimensional object is formed by generating a hardened region in the reinforcing material dispersion and continuously generating the hardened region.
 本願発明の好ましい態様によれば、前記強化材分散液中に設けられた前記硬化領域を支持するサポート部材上に前記活性エネルギー線を照射して1層目の前記硬化領域を形成する最下層硬化領域形成工程と、前記サポート部材を降下させるサポート部材降下工程と、前記硬化領域上に前記活性エネルギー線を照射して前工程で形成された硬化領域上に新たな硬化領域を形成する再硬化領域形成工程と、前記サポート部材降下工程と前記再硬化領域形成工程とをこの順に繰り返すことにより、前記サポート部材上に立体造形物を形成することを特徴とする請求項1に記載の複合材立体造形方法が提供される。 According to a preferred aspect of the present invention, the lowermost layer curing that forms the first cured region by irradiating the active energy ray on a support member that supports the cured region provided in the reinforcing material dispersion. A region forming step, a support member lowering step for lowering the support member, and a recuring region for irradiating the active energy ray on the cured region to form a new cured region on the cured region formed in the previous step The composite material three-dimensional modeling according to claim 1, wherein a three-dimensional object is formed on the support member by repeating a forming step, the support member lowering step, and the re-hardening region forming step in this order. A method is provided.
 本願発明のさらに好ましい態様によれば、前記活性エネルギー線が、波長1mmから0.1pmの範囲の電磁波、電子線、素粒子線、振動波のいずれか、又はこれらの任意の組み合わせからなることを特長とする複合材立体造形方法が提供される。 According to a further preferred aspect of the present invention, the active energy ray is composed of any one of an electromagnetic wave, an electron beam, an elementary particle beam, a vibration wave in a wavelength range of 1 mm to 0.1 pm, or any combination thereof. A featured composite three-dimensional modeling method is provided.
 本願発明の別の態様によれば、前記強化材が繊維状のものであることを特長とする複合材立体造形方法が提供される。 According to another aspect of the present invention, there is provided a composite three-dimensional modeling method characterized in that the reinforcing material is fibrous.
 本願発明のさらに好ましい態様によれば、前記硬化領域の前記強化材分散液の液表面からの距離が、およそ前記強化材の平均長さ以上であることを特長とする複合材立体造形方法が提供される。 According to a further preferred aspect of the present invention, there is provided a composite three-dimensional modeling method characterized in that the distance of the cured region from the liquid surface of the reinforcing material dispersion is approximately equal to or greater than the average length of the reinforcing material. Is done.
 本願発明の別の好ましい態様によれば、前記の活性エネルギー線の照射により硬化可能な液相材料は、該硬化を開始せしめるに必要な前記活性エネルギー線の空間エネルギー密度に閾値を有するものであり、前記硬化領域において前記活性エネルギー線の空間エネルギー密度が前記閾値以上となる様、前記活性エネルギー線を照射することを特長とする複合材立体造形方法が提供される。 According to another preferable aspect of the present invention, the liquid phase material curable by irradiation with the active energy ray has a threshold value in the spatial energy density of the active energy ray necessary for initiating the curing. The composite three-dimensional modeling method is characterized by irradiating the active energy ray so that the space energy density of the active energy ray is equal to or higher than the threshold value in the cured region.
 本願発明の好ましい態様によれば、前記活性エネルギー線を少なくとも2方向から照射することを特長とする合材立体造形方法が提供される。 According to a preferred aspect of the present invention, there is provided a composite three-dimensional modeling method characterized by irradiating the active energy rays from at least two directions.
 本願発明のさらに好ましい態様によれば、前記活性エネルギー線の照射による前記立体造形物の形成後、形成された該立体造形物にさらに活性エネルギーを付与して、前記硬化をより促進することを特長とする複合材立体造形方法が提供される。 According to a further preferred aspect of the present invention, after the formation of the three-dimensional structure by irradiation with the active energy rays, the formation of the three-dimensional structure is further imparted with active energy to further promote the curing. A composite three-dimensional modeling method is provided.
 本願発明の別の態様によれば、活性エネルギー線の照射によって硬化可能な液相材料中に強化材を均一かつ等方的に分散せしめた強化材分散液を収容する強化材分散液槽、前記活性エネルギー線を生じせしめる活性エネルギー線源、該活性エネルギー線源からの前記活性エネルギー線を前記強化材分散液中に局所的に誘導する活性エネルギー誘導部材を少なくとも有し、前記強化材分散液中に前記活性エネルギー線源からの前記活性エネルギー線を前記活性エネルギー誘導部材によって前記強化材分散液中に局所的に照射し、前記強化材分散液中に硬化領域を生成せしめ、該硬化領域を連続的に生成せしめることにより、立体造形物を形成することを特長とする複合材立体造形装置が提供される。 According to another aspect of the present invention, a reinforcing material dispersion tank containing a reinforcing material dispersion in which a reinforcing material is uniformly and isotropically dispersed in a liquid phase material curable by irradiation with active energy rays, An active energy ray source for generating an active energy ray; and at least an active energy induction member for locally inducing the active energy ray from the active energy ray source into the reinforcing material dispersion; The active energy ray from the active energy ray source is locally irradiated into the reinforcing material dispersion by the active energy induction member to generate a hardened region in the reinforcing material dispersion, and the hardened region is continuously formed. Thus, a composite three-dimensional modeling apparatus characterized by forming a three-dimensional modeled object is provided.
 本発明の趣旨を、図1も参照しさらに説明する。請求項1から3、及び6に記載の発明は液槽光重合法に類する付加製造方法又は装置において、従来の技術とは異なり、紫外線等の活性エネルギー線の照射による硬化を、強化材分散液の液表面でなく液中で行うことを特長とする。強化材を液中に均一かつ等方的に分散させることは比較的容易であり、母材の液相と強化材の比重が多少異なっても、機械的撹拌等を施すことにより一時的、擬似的に均一且つ等方的な分散状態の実現は容易である。 The gist of the present invention will be further described with reference to FIG. The invention according to any one of claims 1 to 3 and 6 is an additive manufacturing method or apparatus similar to a liquid tank photopolymerization method, and unlike a conventional technique, curing by irradiation with an active energy ray such as ultraviolet rays is performed as a reinforcing material dispersion. It is characterized in that it is carried out in the liquid instead of the liquid surface. It is relatively easy to disperse the reinforcing material uniformly and isotropically in the liquid, and even if the specific gravity of the liquid phase of the base material and the reinforcing material is slightly different, temporary, simulated It is easy to realize a uniform and isotropic dispersed state.
 この状態において、強化材分散液の液表面ではなく液中に活性エネルギー線を局所的に照射して、硬化領域を液中に生成せしめれば、硬化前の強化材の均一かつ等方的な分散状態を擾乱することなく、母材たる液相材料の硬化が可能となる。即ち、図4に模式的に示す如く硬化領域10の表面から強化材2が突出した状態が実現でき、第1層目を形成後次に2層目をこれと連続するように造形することにより、1層目と2層目の造形界面に強化材を横断させて存在させることが可能となる。よって、造形界面における強化材又は強化材の分散状態の分断という従来技術における課題を解決することが可能となる。 In this state, if the active energy rays are locally irradiated in the liquid instead of the liquid surface of the reinforcing material dispersion to generate a cured region in the liquid, the reinforcing material before hardening is uniform and isotropic. The liquid phase material as the base material can be cured without disturbing the dispersion state. That is, as shown schematically in FIG. 4, a state in which the reinforcing material 2 protrudes from the surface of the hardened region 10 can be realized, and after forming the first layer, the second layer is formed so as to be continuous therewith. It becomes possible to make the reinforcing material cross and exist at the modeling interface of the first layer and the second layer. Therefore, it becomes possible to solve the problem in the prior art of dividing the reinforcing material or the dispersed state of the reinforcing material at the modeling interface.
 又、本明細書でいう硬化とは、単に物質の状態としての液体が固体の状態に遷移することのみを意味するのではなく、流動および変形可能な液相材料が、その形状を維持できる程度の剛性を有する状態に変化することを言う。 In addition, the term “curing” as used in the present specification does not simply mean that the liquid as a substance state transitions to a solid state, but the liquid phase material that can be flowed and deformed can maintain its shape. It changes to the state which has the rigidity of.
 さらに、硬化領域の液表面からの距離を強化材の平均長さよりも長くしておけば(請求項4)、液表面近傍に存在する可能性のある、強化材が均一、等方的に分散していない領域(たとえば図12(b)に示す寝た強化材94が多く存在する領域)の硬化を避けることが出来好適である。尚、ここでいう液表面とは液の自由表面だけでなく、槽との界面も含むものである。 Furthermore, if the distance from the liquid surface of the hardened region is longer than the average length of the reinforcing material (Claim 4), the reinforcing material that may exist near the liquid surface is uniformly and isotropically dispersed. This is preferable because it is possible to avoid hardening of a region that has not been formed (for example, a region in which a large amount of the reinforcing material 94 is present as shown in FIG. The liquid surface referred to here includes not only the free surface of the liquid but also the interface with the tank.
 紫外線等の活性エネルギー線の液中への照射にあたり、その活性エネルギー線の照射経路すべてが硬化してしまうと本願発明の趣旨は達し難い。そこで、紫外線硬化樹脂等に代表される硬化可能な液相材料が、その硬化に必要な活性エネルギー線の空間エネルギー密度に閾値を持つものであれば、照射する活性エネルギー線の照射強度が所望の硬化領域のおいてのみ該閾値を超えるようにすれば、液中に硬化領域を形成せしむることが出来好適である(請求項5)。 When the active energy rays such as ultraviolet rays are irradiated into the liquid, the entire gist of the active energy rays is hardened, and the gist of the present invention is difficult to achieve. Therefore, if the curable liquid phase material typified by ultraviolet curable resin has a threshold value for the spatial energy density of the active energy ray necessary for the curing, the irradiation intensity of the active energy ray to be irradiated is desired. If the threshold value is exceeded only in the cured region, it is preferable that the cured region can be formed in the liquid (Claim 5).
 これは、紫外光線等の活性エネルギー線を適当な光学系でもって集光することにより空間エネルギー密度を上げる(図1、図2)、閾値以下のエネルギー密度の複数の活性エネルギー線を複数の方向から略1箇所に集中させる(請求項6、第2の実施態様、図5)等の方法でも実現できる場合がある。 This increases the spatial energy density by condensing active energy rays such as ultraviolet rays with an appropriate optical system (FIGS. 1 and 2), and a plurality of active energy rays having an energy density equal to or lower than a threshold value in a plurality of directions. In some cases, it can be realized by a method such as concentrating at approximately one place (Claim 6, Second Embodiment, FIG. 5).
 なお、紫外線硬化樹脂等では、その硬化に必要な活性エネルギー線(ここでは紫外光線)のエネルギー密度に閾値を持っており、斯様な特性は特段に特異な特性ではない。 It should be noted that an ultraviolet curable resin or the like has a threshold value for the energy density of an active energy ray (here, ultraviolet light) necessary for the curing, and such characteristics are not particularly unique characteristics.
 強化材が活性エネルギー線を実質的に透過できるものであれば問題はないが、強化材の活性エネルギー線の透過率が低い場合には、強化材のいわば影になる部分において、液相材料の硬化が阻害される場合も考えられる。このような場合、活性エネルギー線を複数の方向から照射すれば、この影の部分の影響が低減できるという効果も期待できる(請求項6、第2の実施態様、図5)。 There is no problem as long as the reinforcing material can substantially transmit the active energy ray, but when the reinforcing material has a low transmittance of the active energy ray, in the so-called shadow portion of the reinforcing material, the liquid phase material It is also conceivable that curing is inhibited. In such a case, if the active energy rays are irradiated from a plurality of directions, an effect of reducing the influence of the shaded portion can be expected (claim 6, second embodiment, FIG. 5).
 さらに、活性エネルギー線の照射による硬化は、造形物を液相材料中から取り出した状態でもその形状を維持できる程度の硬化であっても構わない場合もある。そのような場合においては、活性エネルギー線の照射によって、まずは液相材料中から取り出した状態でもその形状を維持できる程度の硬化をおこない、液相材料中から取り出した後に、あらためて同じ活性エネルギー線を造形物全体に照射する、或いは、加熱する等で別のエネルギーを全体に付与する等の方法で、造形材料として必要十分な強度にまで硬化をさらに促進するようにしても構わない(請求項7) Furthermore, the curing by irradiation with active energy rays may be a curing that can maintain the shape even when the shaped article is taken out from the liquid phase material. In such a case, the active energy rays are first cured by curing to such an extent that the shape can be maintained even in the state of being taken out from the liquid phase material, and after taking out from the liquid phase material, the same active energy rays are applied again. Curing may be further promoted to a necessary and sufficient strength as a modeling material by irradiating the entire modeled object or applying another energy to the entire model by heating or the like (Claim 7). )
本発明による立体造形装置の第1の実施態様を示す図である。It is a figure which shows the 1st embodiment of the three-dimensional modeling apparatus by this invention. 本発明による立体造形装置の第1の実施態様の動作を説明する図である。It is a figure explaining operation | movement of the 1st embodiment of the three-dimensional modeling apparatus by this invention. 本発明による立体造形装置の第1の実施態様の動作の一部を上面から見た図である。It is the figure which looked at a part of operation | movement of the 1st embodiment of the three-dimensional model | molding apparatus by this invention from the upper surface. 本発明による立体造形装置の第1の実施態様によって形成された紫外線硬化樹脂を示す図である。It is a figure which shows the ultraviolet curable resin formed by the 1st embodiment of the three-dimensional model | molding apparatus by this invention. 本発明による立体造形装置の第2の実施態様を示す図である。It is a figure which shows the 2nd embodiment of the three-dimensional modeling apparatus by this invention. 本発明による立体造形装置の第3の実施態様を示す図である。It is a figure which shows the 3rd embodiment of the three-dimensional modeling apparatus by this invention. 液相重合法による立体造形装置を示す図である。It is a figure which shows the three-dimensional modeling apparatus by a liquid phase polymerization method. 材料押出法による立体造形装置を示す図である。It is a figure which shows the three-dimensional modeling apparatus by a material extrusion method. 粉末床溶融結合法による立体造形装置を示す図である。It is a figure which shows the three-dimensional modeling apparatus by a powder bed fusion | bonding method. 指向性エネルギー堆積法の原理図であるIt is a principle diagram of the directional energy deposition method 従来技術により、複合材料を材料押出法による3Dプリンタに適用した場合の概念図である。It is a conceptual diagram at the time of applying a composite material to the 3D printer by a material extrusion method by a prior art. 従来技術により、複合材料を液相重合法による立体造形装置に適用した場合の概念図である。It is a conceptual diagram at the time of applying a composite material to the three-dimensional modeling apparatus by a liquid phase polymerization method by a prior art.
 本発明にかかわる立体造形装置の実施態様を図1から6を用いて説明する。
図1は本願発明による立体造形装置の第1の実施態様である。紫外線によって硬化可能な液相材料である紫外線硬化樹脂1a中に強化材たる強化繊維2を均一分散させた強化材分散液1が、分散液槽3内に保持されている。分散液槽3内には後に形成される硬化領域10をサポートするサポート部材4が設けられている。紫外線硬化樹脂1aは活性エネルギー線たる紫外光7の照射によって硬化する樹脂であり、常温常圧に於いては液体(液相)状態にある。強化繊維2としてはガラス繊維、炭素繊維などを用いることが出来る。
An embodiment of the three-dimensional modeling apparatus according to the present invention will be described with reference to FIGS.
FIG. 1 shows a first embodiment of a three-dimensional modeling apparatus according to the present invention. A reinforcing material dispersion 1 in which reinforcing fibers 2 that are reinforcing materials are uniformly dispersed in an ultraviolet curable resin 1 a that is a liquid phase material that can be cured by ultraviolet rays is held in a dispersion tank 3. A support member 4 is provided in the dispersion tank 3 to support a cured region 10 to be formed later. The ultraviolet curable resin 1a is a resin that is cured by irradiation with ultraviolet light 7, which is an active energy ray, and is in a liquid (liquid phase) state at room temperature and normal pressure. As the reinforcing fiber 2, glass fiber, carbon fiber, or the like can be used.
 紫外線源5としては水銀ランプ、紫外線LEDなどが使用できる。一般に紫外線硬化樹脂1aはその硬化に必要なエネルギーに閾値を有しており、閾値以下のエネルギーでは硬化しない。 As the ultraviolet source 5, a mercury lamp, an ultraviolet LED, or the like can be used. In general, the ultraviolet curable resin 1a has a threshold value for the energy required for the curing, and is not cured with energy below the threshold value.
 紫外線源5からの紫外光7は導入光学系6のコリメートレンズ8によって平行光とされ、反射鏡18によって鉛直下方に折り曲げられ、集光レンズ9によって、分散液槽3内の強化材分散液1の液面上方から液中に照射される(図1)。該紫外光7のエネルギー強度は、集光点(即ち焦点位置)近傍においてのみ前記閾値以上となる様、その紫外光源5の発行強度、集光レンズ9の開口、焦点距離などが選定される。この集光点近傍においてエネルギー強度が前記閾値以上となる領域が硬化領域10である。硬化領域10の強化材分散液1の液面からの距離lは、強化繊維2の平均長さ以上となっている。尚距離lは硬化領域10と強化材分散液1の液面との最短距離を言う。 The ultraviolet light 7 from the ultraviolet light source 5 is converted into parallel light by the collimating lens 8 of the introducing optical system 6, bent vertically downward by the reflecting mirror 18, and the reinforcing material dispersion 1 in the dispersion liquid tank 3 by the condenser lens 9. The liquid is irradiated from above the liquid surface into the liquid (FIG. 1). The emission intensity of the ultraviolet light source 5, the aperture of the condenser lens 9, the focal length, and the like are selected so that the energy intensity of the ultraviolet light 7 is equal to or higher than the threshold only near the condensing point (that is, the focal position). A region where the energy intensity is greater than or equal to the threshold value in the vicinity of the condensing point is a cured region 10. The distance l from the liquid surface of the reinforcing material dispersion 1 in the cured region 10 is equal to or greater than the average length of the reinforcing fibers 2. The distance l means the shortest distance between the cured region 10 and the surface of the reinforcing material dispersion 1.
 紫外線源5及び導入光学系6は強化材分散液1の液面と平行な面内方向に自由に移動可能で、集光レンズ9の焦点位置をこの面内において自由に液中をスキャンさせることが出来る。よって、液面から深さ距離lの任意の位置に硬化領域10の形成が可能となっている。 The ultraviolet light source 5 and the introduction optical system 6 can be freely moved in an in-plane direction parallel to the liquid surface of the reinforcing material dispersion 1, and the focal position of the condenser lens 9 can be freely scanned in the liquid within this surface. I can do it. Therefore, the hardened region 10 can be formed at an arbitrary position at a depth distance l from the liquid surface.
 まず、紫外光7を照射しながら紫外線源5及び導入光学系6を上面から見た図3(a)、(b)に示すように、図中矢印A及びB方向に適宜制御させながら移動させ、強化材分散液1中に液面と平行に第1層の硬化領域10aを形成していく(図2(a)、(b)、図3(a)、(b))(最下層硬化領域形成工程)。なお、紫外線源5と導入光学系6を移動させる替わりに分散液槽3を矢印A,B方向に移動させながら硬化領域10aを形成することも可能である。又、図3(a)、(b)に於いてはジグザグ状に折り返しスキャンながら第1層の硬化領域10aを形成しているが、渦巻状に行うなど任意のスキャン経路を取ることももちろん可能である。 First, as shown in FIGS. 3A and 3B, the ultraviolet light source 5 and the introduction optical system 6 are viewed from above while irradiating the ultraviolet light 7, and are moved while being appropriately controlled in the directions of arrows A and B in the figure. In the reinforcing material dispersion 1, a first layer cured region 10a is formed in parallel with the liquid surface (FIGS. 2A, 2B, 3A, 3B) (lowermost layer cured) Region forming step). It is also possible to form the curing region 10a while moving the dispersion tank 3 in the directions of arrows A and B instead of moving the ultraviolet light source 5 and the introduction optical system 6. In FIGS. 3 (a) and 3 (b), the hardened region 10a of the first layer is formed while performing a zigzag folded scan, but it is of course possible to take an arbitrary scan path such as a spiral. It is.
 第1層目の硬化領域10aはサポート部材4によってサポートされる。サポート部材4はベース材4aと、該ベース材4a上に複数配設され、第1層目の硬化領域10aにその先端がわずかに食い込み、それを固定する針状サポート4bとから成る。第1層目の硬化領域10aの形成が完了すると(図3(b))、紫外光7の照射を停止し、サポート部材4が図中矢印Z方向、即ち第1層目の硬化領域10aを液中にさらに沈める方向に所定量降下する(図2(c))(サポート部材降下工程)。 The hardened area 10a of the first layer is supported by the support member 4. The support member 4 includes a base material 4a and a plurality of base members 4a. The support member 4 includes a needle-like support 4b that slightly bites the distal end of the hardened region 10a of the first layer and fixes it. When the formation of the first layer cured region 10a is completed (FIG. 3B), the irradiation of the ultraviolet light 7 is stopped, and the support member 4 moves in the direction of the arrow Z in the drawing, that is, the first layer cured region 10a. A predetermined amount is lowered in the direction of submerging in the liquid (FIG. 2C) (support member lowering step).
 次いで再び紫外光7を照射しながら、紫外線源5及び導入光学系6を液面と平行方向にスキャンさせ第2層の硬化領域10bを第1層の硬化領域10aと深さ方向に連続するように形成する(図2(d)、(e))(再硬化領域形成工程)。 Next, while irradiating the ultraviolet light 7 again, the ultraviolet light source 5 and the introduction optical system 6 are scanned in a direction parallel to the liquid surface so that the cured region 10b of the second layer is continuous with the cured region 10a of the first layer in the depth direction. (FIGS. 2D and 2E) (recured region forming step).
 第2層目の硬化領域10bの形成が完了すると、再びサポート部材4を所定量降下させ、第3層目の硬化を行う。以下この手順を繰り返すことによって全体の造形を行う。 When the formation of the cured region 10b of the second layer is completed, the support member 4 is lowered again by a predetermined amount, and the third layer is cured. Thereafter, the entire molding is performed by repeating this procedure.
 各層の形成後、サポート部材4を所定量降下させる代わりに、強化材分散液1を分散液槽3に補充して相対的に液面を所定量だけ上げても良い。 After the formation of each layer, instead of lowering the support member 4 by a predetermined amount, the reinforcing material dispersion 1 may be supplemented to the dispersion liquid tank 3 to relatively raise the liquid level by a predetermined amount.
 このように、紫外線7による硬化領域を液中に形成すれば、硬化前の強化繊維2の分散状態を維持したまま紫外線硬化樹脂1aの硬化が行われ、図4に模式的に示すごとく、強化繊維2がその表面から突出した状態で硬化領域10を形成していくことが可能となる。 As described above, when the cured region by the ultraviolet ray 7 is formed in the liquid, the ultraviolet curable resin 1a is cured while maintaining the dispersion state of the reinforcing fiber 2 before being cured. As schematically shown in FIG. The cured region 10 can be formed with the fibers 2 protruding from the surface.
 よって、強化繊維2がその表面から突出した状態の第1の硬化領域10aと連続するように第2の硬化領域10bを形成することにより、両者の界面に強化繊維2を横断さて存在させることが可能となる。 Therefore, by forming the second cured region 10b so as to be continuous with the first cured region 10a in a state where the reinforcing fiber 2 protrudes from the surface, the reinforcing fiber 2 can be present across the interface between the two. It becomes possible.
 又、各層内において、硬化領域10内の隣接するスキャン経路間の界面においても強化繊維2を横断さて存在させることが可能となる。
次に、図5に本発明の第2の実施態様による複合材立体造形装置15の概略構成図を示す。
Further, in each layer, the reinforcing fiber 2 can be present across the interface also between the adjacent scan paths in the cured region 10.
Next, FIG. 5 shows a schematic configuration diagram of a composite three-dimensional modeling apparatus 15 according to the second embodiment of the present invention.
 分散材槽3中に紫外線硬化樹脂と強化材とからなる強化材分散液1が保持されているのは同じである。尚、図が煩雑となるため強化材は図示していない。分散材槽3の材質は、石英ガラスなど、活性エネルギー線たる紫外線レーザー光に対し十分な透過率を持つものが好ましい。 It is the same that the reinforcing material dispersion liquid 1 composed of an ultraviolet curable resin and a reinforcing material is held in the dispersing material tank 3. Note that the reinforcing material is not shown because the figure becomes complicated. The material of the dispersion material tank 3 is preferably a material having a sufficient transmittance for ultraviolet laser light, which is an active energy ray, such as quartz glass.
 本態様では、紫外光源として紫外線レーザー11を2台用いる用いる。各々の紫外線レーザー11からの紫外線レーザー光12は、強化材分散液1中1点で交差するように配設されている。個々の紫外線レーザー光12の強度は、紫外線硬化樹脂1aの硬化に必要なエネルギーの閾値以下でかつ各々の紫外線レーザー光12が交差している部分において、両者の和が該閾値を越えるように紫外線レーザー11の出力を設定する。このように強度設定すれば、強化材分散液1中で、各紫外線レーザー光12の交差領域のみを硬化領域10とすることが出来る。 In this embodiment, two ultraviolet lasers 11 are used as the ultraviolet light source. The ultraviolet laser beams 12 from the respective ultraviolet lasers 11 are arranged so as to intersect at one point in the reinforcing material dispersion 1. The intensity of each ultraviolet laser beam 12 is less than the energy threshold necessary for curing the ultraviolet curable resin 1a, and the ultraviolet rays so that the sum of the two exceeds the threshold value at the portion where each ultraviolet laser beam 12 intersects. Sets the output of laser 11. If the strength is set in this way, only the intersecting region of each ultraviolet laser beam 12 in the reinforcing material dispersion 1 can be set as the cured region 10.
 本態様では紫外線レーザー11を2台用いているが、3台以上複数の紫外線レーザー11を用い、該複数の紫外線レーザー11からの紫外線レーザー光12が1点で交差する様構成することも可能で、紫外線レーザー11の台数は2台に限られるものではない。3台以上の場合においても、各紫外線レーザー11からの紫外線レーザー光12の強度を、紫外線硬化樹脂1aの硬化に必要なエネルギーの閾値以下でかつ各々の紫外線レーザー光12が交差している部分においてその総和が該閾値を越えるように各紫外線レーザー11の出力を設定すればよい。 In this embodiment, two ultraviolet lasers 11 are used, but it is also possible to use a configuration in which three or more ultraviolet lasers 11 are used and the ultraviolet laser beams 12 from the plurality of ultraviolet lasers 11 intersect at one point. The number of ultraviolet lasers 11 is not limited to two. Even in the case of three or more units, the intensity of the ultraviolet laser beam 12 from each ultraviolet laser 11 is below the threshold value of the energy required for curing the ultraviolet curable resin 1a, and the portion where each ultraviolet laser beam 12 intersects. What is necessary is just to set the output of each ultraviolet laser 11 so that the sum total exceeds this threshold value.
 第1の実施態様同様、複数のレーザー光11の交差位置を適宜公知のスキャン技術により強化材分散液1中をスキャンさせれば、硬化前の強化繊維2の分散状態を維持したまま紫外線硬化樹脂1aの硬化が行われ、図4と同様の、強化繊維2がその表面から突出した状態で硬化領域10を形成していくことが可能となる。 Similarly to the first embodiment, if the crossing positions of the plurality of laser beams 11 are appropriately scanned in the reinforcing material dispersion 1 by a known scanning technique, the ultraviolet curable resin is maintained while maintaining the dispersion state of the reinforcing fibers 2 before curing. Curing of 1a is performed, and it becomes possible to form the cured region 10 with the reinforcing fibers 2 protruding from the surface, similar to FIG.
 図6に本願発明の第3の態様を示す。本態様に於いては紫外光7は紫外線光ファイバ16によって分散液1中に導入される。紫外線光ファイバ16の外径を、分散液中1の強化材(本態様では強化繊維2)の大きさや分布密度に比して十分小さくしておけば、分散液1中での強化材2の分散状態を乱すことがなく好適である。本態様に於いては紫外線光ファイバ16の先端位置近傍が硬化領域10となる。紫外線光ファイバ16の先端を分散液1中へ挿入したまま、紫外光7を照射しつつ液面と平行方向に紫外線光ファイバ16スキャンさせて第1層10aを形成しても良いし、また、紫外線7の照射後、一旦紫外線光ファイバ16を分散液1から引き抜き、面内方向に適量移動した後に再度紫外線光ファイバ16を分散液1に挿入し紫外光7の照射、を繰り返すことにより第1層10aを形成しても良い。第1層10aが形成された後は第1の実施態様同様、サポート部材4により第1層10aを所定量降下させ、第1層10aに連続する様に第2層10bを形成させればよい。又、別の態様として紫外線光ファイバ16を分散液中に挿入後、紫外光7を照射させながら紫外線光ファイバ16を分散液1から抜き出す動作を行えば、紫外線ファイバ16の抜き出し方向に連続して硬化領域10を形成することも原理的には可能である。 FIG. 6 shows a third aspect of the present invention. In this embodiment, the ultraviolet light 7 is introduced into the dispersion 1 by the ultraviolet optical fiber 16. If the outer diameter of the ultraviolet optical fiber 16 is sufficiently smaller than the size and distribution density of the reinforcing material 1 in the dispersion (in this embodiment, the reinforcing fiber 2), the reinforcing material 2 in the dispersion 1 It is suitable without disturbing the dispersion state. In this embodiment, the vicinity of the tip position of the ultraviolet optical fiber 16 is the cured region 10. The first layer 10a may be formed by scanning the ultraviolet optical fiber 16 in a direction parallel to the liquid surface while irradiating the ultraviolet light 7 while the tip of the ultraviolet optical fiber 16 is inserted into the dispersion 1. After the ultraviolet light 7 is irradiated, the ultraviolet light fiber 16 is once pulled out of the dispersion liquid 1 and moved in an in-plane direction. After that, the ultraviolet light fiber 16 is inserted into the dispersion liquid 1 again and the ultraviolet light 7 is irradiated. The layer 10a may be formed. After the first layer 10a is formed, as in the first embodiment, the first layer 10a is lowered by a predetermined amount by the support member 4, and the second layer 10b is formed so as to be continuous with the first layer 10a. . As another embodiment, if the ultraviolet optical fiber 16 is inserted into the dispersion liquid and then the ultraviolet optical fiber 16 is extracted from the dispersion liquid 1 while being irradiated with the ultraviolet light 7, the ultraviolet fiber 16 is continuously extracted in the extraction direction. It is also possible in principle to form the hardened region 10.
 以上、本発明の3つの態様による複合材立体造形装置に於いては、すべて、強化材分散液の液面ではなく液中に硬化領域を形成している。これにより硬化領域から強化材がいわば突き出た状態の硬化領域を形成することが可能となる。したがって、このような硬化領域を互いに隣り合うように連続して形成することにより、各硬化領域の界面を横断して強化材を存在させることが可能となる。 As described above, in the composite material three-dimensional modeling apparatus according to the three aspects of the present invention, all the hardened regions are formed in the liquid instead of the liquid surface of the reinforcing material dispersion. As a result, it is possible to form a cured region in which the reinforcing material protrudes from the cured region. Therefore, by continuously forming such cured regions so as to be adjacent to each other, it becomes possible to make the reinforcing material cross across the interface of each cured region.
 よって、従来の技術による複合材立体造形方法における課題であった、造形界面における強化材の分断という課題を解決できる立体造形方法及び装置を実現することが可能となっている。 Therefore, it is possible to realize a three-dimensional modeling method and apparatus that can solve the problem of splitting the reinforcing material at the modeling interface, which was a problem in the conventional three-dimensional modeling method of composite materials.
 尚、以上の3つの態様に於いては、活性エネルギー線として紫外線を、それの照射により硬化可能な液相材料として紫外線硬化樹脂の組み合わせを用いたが、これ以外にも、活性エネルギー線として、波長0.1mmから1pmの範囲の電磁波、即ち遠赤外線~赤外線~可視光線~紫外線~真空紫外光~X線の領域の電磁波、電子線、α線や中性子線などの粒子線などと、それらにより硬化可能な液相材料の組み合わせを用いることが出来る。 In the above three embodiments, ultraviolet rays are used as active energy rays, and a combination of ultraviolet curable resins is used as a liquid phase material that can be cured by irradiation thereof. Electromagnetic waves in the wavelength range of 0.1 mm to 1 pm, that is, electromagnetic waves in the far infrared, infrared, visible, ultraviolet, vacuum ultraviolet, and X-ray regions, electron beams, particle beams such as α rays and neutron rays, and the like are cured. Combinations of possible liquid phase materials can be used.
 一般に紫外線硬化樹脂に代表される活性エネルギー線硬化樹脂は、その成分として少なくともモノマー、オリゴマー、重合開始材を含むものが多い。このうちの重合開始材が活性エネルギー線を吸収して活性化(励起)し、ラジカル分子、水素イオンなど反応開始物質をすることで、前記モノマー及びオリゴマーが重合して硬化するメカニズムのものが多い。 In general, many active energy ray curable resins represented by ultraviolet curable resins contain at least monomers, oligomers, and polymerization initiators as components. Of these, the polymerization initiator absorbs active energy rays and is activated (excited) to generate reaction initiators such as radical molecules and hydrogen ions, so that the monomers and oligomers are often polymerized and cured. .
 上記メカニズムの応用形態として、上記の重合開始材や反応開始物質を活性エネルギー線によって分解や破壊される材料からなるマイクロカプセル中に封止しており、該マイクロカプセルを強化材と共に液相材料中に分散しておく形態も考えられる。この場合、活性エネルギー線の局所的な照射によってマイクロカプセルが破壊され、重合開始材や反応開始物質が液相材料中に放出されて液相材料の硬化が行われる。この応用形態に於いては活性エネルギー線として、超音波、衝撃波などの物理的エネルギー波の適用の可能性もある。たとえば、回転楕円鏡の片方の焦点位置に超音波や衝撃波の発生源をおき、他方の焦点位置を硬化領域とする態様が考えられる。 As an application form of the mechanism, the polymerization initiator and the reaction initiator are sealed in a microcapsule made of a material that is decomposed or destroyed by active energy rays, and the microcapsule is combined with a reinforcing material in a liquid phase material. It is also possible to have a form in which it is dispersed. In this case, the microcapsules are destroyed by local irradiation with active energy rays, and the polymerization initiator and the reaction initiator are released into the liquid phase material to cure the liquid phase material. In this application mode, there is a possibility of applying physical energy waves such as ultrasonic waves and shock waves as active energy rays. For example, a mode in which an ultrasonic wave or shock wave source is placed at one focal position of the spheroid mirror and the other focal position is set as a hardening region is conceivable.
 又さらに、本発明の3つの態様による複合材立体造形装置に於いては強化材として強化繊維のものを示したが、強化材の形態としては繊維状のものに限らず、粉体状、粒状、針状のものに対しても本発明の効果は期待できるものである。特に長円状、楕円状、針状、偏平状、星芒状に代表される異定型形状の強化材に対してその効果が期待できる。 Furthermore, in the composite three-dimensional modeling apparatus according to the three aspects of the present invention, the reinforcing material is shown as a reinforcing material. However, the reinforcing material is not limited to a fibrous material, but is in the form of powder or granular. The effect of the present invention can be expected even for needle-shaped objects. In particular, the effect can be expected for reinforcing materials having an irregular shape typified by an oval shape, an elliptical shape, a needle shape, a flat shape, and a star shape.
1   強化材分散液
1a  紫外線硬化樹脂
2   強化繊維
3   分散液槽
4   サポート部材
4a  ベース材
4b  針状サポート
5   紫外線源
6   導入光学系
7   紫外光
8   コリメートレンズ
9   集光レンズ
10   硬化領域
10a   第1層目の硬化領域
10b   第2層目の硬化領域
11   紫外線レーザー
12   紫外線レーザー光
15   複合材立体造形装置
16   紫外線光ファイバ
17   ファイバ導入光学系
18   反射鏡
21   チャンバー
22   長繊維ペレット
23   強化繊維
24   
25   溶融複合材
26   加圧部材
27   ノズル
28   造形テーブル
29   支軸
30   第1層
31   第2層
41   紫外線硬化樹脂
42   第1層目の硬化領域
43   第2層目の硬化領域
60   槽
61   造形材料粉
62   材料床
63   赤外線レーザー
64,65  ガルバノ光学系
66   レーザー光
67   1層目の造形層
68   スキージ
69   テーブル
71   レーザー光
72   二重菅ノズル
73   内側ノズル
74   集光レンズ
75   ベース
76   外側ノズル
77   溶融池
90   強化材
91   母材
92   強化材分散液
93   槽
94   寝た強化材
DESCRIPTION OF SYMBOLS 1 Reinforcement material dispersion liquid 1a UV curable resin 2 Reinforcing fiber 3 Dispersion liquid tank 4 Support member 4a Base material 4b Needle-like support 5 Ultraviolet source 6 Introduction optical system 7 Ultraviolet light 8 Collimating lens 9 Condensing lens
10 Curing area
10a First layer hardened area
10b Second layer hardened area
11 UV laser
12 UV laser light
15 Composite 3D modeling equipment
16 UV optical fiber
17 Fiber introduction optical system
18 Reflector
21 chamber
22 Long fiber pellets
23 Reinforcing fiber
twenty four
25 Molten composite
26 Pressure member
27 nozzles
28 Modeling table
29 Spindle
30 Layer 1
31 2nd layer
41 UV curable resin
42 Hardened area of the first layer
43 Hardened area of the second layer
60 tanks
61 Molding material powder
62 Material floor
63 infrared laser
64,65 Galvano optics
66 Laser light
67 First modeling layer
68 Squeegee
69 tables
71 laser light
72 Double spear nozzle
73 Inner nozzle
74 Condensing lens
75 base
76 Outer nozzle
77 molten pool
90 reinforcement
91 Base material
92 Reinforcement dispersion
93 tanks
94 Sleeping reinforcement

Claims (9)

  1. 活性エネルギー線の照射によって硬化可能な液相材料中に強化材を分散せしめた強化材分散液中に、前記活性エネルギー線を局所的に照射することにより前記強化材分散液中に硬化領域を生成せしめ、該硬化領域を連続して生成せしめることにより、立体造形物を形成することを特長とする複合材立体造形方法。 A cured region is generated in the reinforcing material dispersion by locally irradiating the active energy rays in a reinforcing material dispersion in which a reinforcing material is dispersed in a liquid phase material that can be cured by irradiation with active energy rays. A composite material three-dimensional modeling method characterized by forming a three-dimensional object by caulking and continuously generating the cured region.
  2. 前記強化材分散液中に設けられた前記硬化領域を支持するサポート部材上に前記活性エネルギー線を照射して1層目の前記硬化領域を形成する最下層硬化領域形成工程と、
    前記サポート部材を降下させるサポート部材降下工程と、
    前記硬化領域上に前記活性エネルギー線を照射して前工程で形成された硬化領域上に新たな硬化領域を形成する再硬化領域形成工程と、
    前記サポート部材降下工程と前記再硬化領域形成工程とをこの順に繰り返すことにより、前記サポート部材上に立体造形物を形成することを特徴とする請求項1に記載の複合材立体造形方法。
    A lowermost layer cured region forming step of irradiating the active energy ray on a support member supporting the cured region provided in the reinforcing material dispersion to form the first cured region;
    A support member lowering step for lowering the support member;
    A re-curing region forming step of forming a new curing region on the curing region formed in the previous step by irradiating the active energy ray on the curing region;
    2. The composite three-dimensional modeling method according to claim 1, wherein a three-dimensional model is formed on the support member by repeating the support member lowering step and the re-curing region forming step in this order.
  3. 前記活性エネルギー線が、波長1mmから0.1pmの範囲の電磁波、電子線、素粒子線、振動波のいずれか、又はこれらの任意の組み合わせからなることを特長とする請求項1または2に記載の複合材立体造形方法。 The active energy ray is made of any one of an electromagnetic wave, an electron beam, an elementary particle beam, a vibration wave having a wavelength in the range of 1 mm to 0.1 pm, or any combination thereof. Composite material three-dimensional modeling method.
  4. 前記強化材が繊維状のものであることを特長とする請求項1乃至3のいずれかに記載の複合材立体造形方法。 The composite material three-dimensional modeling method according to any one of claims 1 to 3, wherein the reinforcing material is fibrous.
  5. 前記硬化領域の前記強化材分散液の液表面からの距離が、およそ前記強化材の平均長さ以上であることを特長とする請求項4に記載の複合材立体造形方法。 5. The composite three-dimensional modeling method according to claim 4, wherein a distance from the liquid surface of the reinforcing material dispersion in the cured region is approximately equal to or greater than an average length of the reinforcing material.
  6. 前記の活性エネルギー線の照射により硬化可能な液相材料は、該硬化を開始せしめるに必要な前記活性エネルギー線の空間エネルギー密度に閾値を有するものであり、前記硬化領域において前記活性エネルギー線の空間エネルギー密度が前記閾値以上となる様、前記活性エネルギー線を照射することを特長とする請求項1乃至5のいずれかに記載の複合材立体造形方法。 The liquid phase material curable by irradiation with the active energy ray has a threshold value in the space energy density of the active energy ray necessary for initiating the hardening, and the space of the active energy ray in the hardening region. The composite material three-dimensional modeling method according to any one of claims 1 to 5, wherein the active energy ray is irradiated so that an energy density is equal to or higher than the threshold value.
  7. 前記活性エネルギー線を少なくとも2方向から照射することを特長とする請求項6に記載の複合材立体造形方法。 The composite three-dimensional modeling method according to claim 6, wherein the active energy rays are irradiated from at least two directions.
  8. 前記活性エネルギー線の照射による前記立体造形物の形成後、形成された該立体造形物にさらに活性エネルギーを付与して、前記硬化をより促進することを特長とする請求項1乃至7のいずれかに記載の複合材立体造形方法。 8. The method according to claim 1, wherein after the formation of the three-dimensional structure by irradiation of the active energy ray, active energy is further imparted to the formed three-dimensional structure to further accelerate the curing. The composite three-dimensional modeling method of description.
  9. 活性エネルギー線の照射によって硬化可能な液相材料中に強化材をランダムかつ等方的に分散せしめた強化材分散液を収容する強化材分散液槽、前記活性エネルギー線を生じせしめる活性エネルギー線源、該活性エネルギー線源からの前記活性エネルギー線を前記強化材分散液中に局所的に誘導する活性エネルギー誘導部材を少なくとも有し、前記強化材分散液中に前記活性エネルギー線源からの前記活性エネルギー線を前記活性エネルギー誘導部材によって前記強化材分散液中に局所的に照射し、前記強化材分散液中に硬化領域を生成せしめ、該硬化領域を連続的に生成せしめることにより、立体造形物を形成することを特長とする複合材立体造形装置。 Reinforcing material dispersion tank containing a reinforcing material dispersion liquid in which a reinforcing material is randomly and isotropically dispersed in a liquid phase material curable by irradiation with active energy rays, and an active energy ray source for generating the active energy rays At least an active energy induction member that locally induces the active energy ray from the active energy ray source in the reinforcing material dispersion, and the activity from the active energy ray source in the reinforcing material dispersion. By irradiating the reinforcing material dispersion liquid locally with energy rays by the active energy induction member, generating a cured region in the reinforcing material dispersion solution, and continuously generating the cured region, Composite material three-dimensional modeling apparatus characterized by forming
PCT/JP2017/012520 2016-03-31 2017-03-28 Method and device for shaping composite material WO2017170475A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508030A JPWO2017170475A1 (en) 2016-03-31 2017-03-28 Composite material forming method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070482 2016-03-31
JP2016-070482 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170475A1 true WO2017170475A1 (en) 2017-10-05

Family

ID=59965639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012520 WO2017170475A1 (en) 2016-03-31 2017-03-28 Method and device for shaping composite material

Country Status (2)

Country Link
JP (1) JPWO2017170475A1 (en)
WO (1) WO2017170475A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141748A (en) * 1995-11-22 1997-06-03 Takemoto Oil & Fat Co Ltd Formation of transparent optical three-dimensional shaped article
JP2007508418A (en) * 2003-09-29 2007-04-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Spin printing of electronic and display components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141748A (en) * 1995-11-22 1997-06-03 Takemoto Oil & Fat Co Ltd Formation of transparent optical three-dimensional shaped article
JP2007508418A (en) * 2003-09-29 2007-04-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Spin printing of electronic and display components

Also Published As

Publication number Publication date
JPWO2017170475A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6625653B2 (en) Curing system for 3D object printing
JP5774825B2 (en) Three-dimensional modeling apparatus and manufacturing method of modeled object
Deshmukh et al. Fundamentals and applications of 3D and 4D printing of polymers: challenges in polymer processing and prospects of future research
KR101593488B1 (en) Apparatus and method for enhancing speed of 3d printer
US9597835B2 (en) Three-dimensional modeling apparatus, model, and method of manufacturing a model
WO2018097157A1 (en) Three-dimensional molding method
WO2019155897A1 (en) Three-dimensional forming method
CN107249862A (en) Method and apparatus for manufacturing three-dimensional body
US20140113105A1 (en) Structure and method of producing the same
US20230339181A1 (en) Ultra active micro-reactor based additive manufacturing
JP6888259B2 (en) Laminated modeling structure, laminated modeling method and laminated modeling equipment
JP2015221526A (en) Method of producing three-dimensional molded object, three-dimensional molding apparatus, program and three-dimensional molded object
WO2017170475A1 (en) Method and device for shaping composite material
JP6955291B2 (en) Printer device using sonic levitation
JP2015221572A (en) Three-dimensional molding apparatus and production method of molded object
US20230122426A1 (en) Method for manufacturing three-dimensional shaped object, additive manufacturing apparatus, and article
JP6439338B2 (en) 3D modeling method and 3D modeling apparatus
JP6344447B2 (en) Three-dimensional modeling apparatus and manufacturing method of modeled object
JP2015085626A (en) Method for producing molded body
JP2023149574A (en) Three-dimensional molding method
WO2019155898A1 (en) Three-dimensional forming method and three-dimensional forming device
JP7424434B2 (en) Curable liquid composition, cured product, and method for producing cured product
JP7020214B2 (en) Modeling equipment and modeling method
JP2005262865A (en) Method for making three-dimensional structure transparent and transparent three-dimensional structure
JP2023145974A (en) Stereo-lithography

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508030

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775012

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775012

Country of ref document: EP

Kind code of ref document: A1