JP2023149574A - Three-dimensional molding method - Google Patents

Three-dimensional molding method Download PDF

Info

Publication number
JP2023149574A
JP2023149574A JP2022058214A JP2022058214A JP2023149574A JP 2023149574 A JP2023149574 A JP 2023149574A JP 2022058214 A JP2022058214 A JP 2022058214A JP 2022058214 A JP2022058214 A JP 2022058214A JP 2023149574 A JP2023149574 A JP 2023149574A
Authority
JP
Japan
Prior art keywords
core material
shell
dimensional
core
fiber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022058214A
Other languages
Japanese (ja)
Inventor
雄一郎 津田
Yuichiro Tsuda
博史 酒井
Hiroshi Sakai
航平 江川
Kohei Egawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2022058214A priority Critical patent/JP2023149574A/en
Publication of JP2023149574A publication Critical patent/JP2023149574A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a three-dimensional molding method capable of imparting desired rigidity and strength to at least a part of a three-dimensional structure obtained from a core material.SOLUTION: In a three-dimensional molding method in which a shell 125 which is an outer shell layer of a three-dimensional molding object is first molded using a shell material 121, and then a core material 116 which is a liquid phase material in which a reinforcement material 116a is dispersed is filled into a core part 126 which is a portion surrounded by the already molded shell 125 to form the three-dimensional molding object including the core material 116, before, during, or after filling the core material 116 into the core part 126, a pre-shaped fiber structure 140 is placed in the core part 126.SELECTED DRAWING: Figure 4

Description

本発明は、3Dプリンティングなどの付加製造技術を用いて立体造形物を形成させる立体造形装置の性能を維持する方法に関する。 The present invention relates to a method for maintaining the performance of a three-dimensional modeling apparatus that forms three-dimensional objects using additive manufacturing techniques such as 3D printing.

3Dプリンティング技術を用いた製造装置の名称として、広く3Dプリンタという言葉が使われている。3Dプリンタは、3次元のCADデータをもとにコンピュータで造形物の断面形状を計算し、該造形物を薄い輪切り状の断面構成要素に分割して、その断面構成要素を種々の方法で形成し、それを積層させて目的とする造形物を形成する立体造形装置である。3Dプリンティング技術は、国際的にはAdditive Manufacturing Technologyと同義語として使われる場合が多く、日本語訳として、付加製造技術が用いられている。 The term 3D printer is widely used as a name for manufacturing equipment that uses 3D printing technology. A 3D printer uses a computer to calculate the cross-sectional shape of a model based on three-dimensional CAD data, divides the model into thin slice-shaped cross-sectional components, and forms the cross-sectional components using various methods. This is a three-dimensional modeling device that stacks the three-dimensional objects to form a desired object. 3D printing technology is often used internationally as a synonym for Additive Manufacturing Technology, and the Japanese translation is additive manufacturing technology.

近年は、3Dプリンタで形成した造形物に対しても、実製品の量産前の評価目的で外観だけでなく剛性や強度が要求されるようになり、金属3Dプリンタや複合材3Dプリンタが注目されている。特に、下記特許文献1に開示されている立体造形方法では、造形槽内で複数回のシェル層の造形とコア材の充填が繰り返された後、活性エネルギー線の照射または熱エネルギーの付与によりコア材を一括して硬化させることにより、コア材により形成される造形物には積層界面が存在しないため、剛性、強度に方向性が無い造形物を造形することができる。 In recent years, not only appearance but also rigidity and strength are required for objects formed with 3D printers for the purpose of evaluation before mass production of actual products, and metal 3D printers and composite 3D printers are attracting attention. ing. In particular, in the three-dimensional modeling method disclosed in Patent Document 1 below, after the shell layer modeling and core material filling are repeated multiple times in a modeling tank, the core material is irradiated with active energy rays or given thermal energy. By curing the materials all at once, there is no lamination interface in the modeled object formed from the core material, so it is possible to model a modeled object with no directionality in rigidity or strength.

特開2019-136923号公報JP 2019-136923 Publication

ここで、上記の立体造形装置で用いるコア材は、炭素繊維などの強化材が分散された樹脂である。このコア材がノズルから吐出可能な流動性を有するには強化材の長さは長くとも1000um程度であり、この強化材の長さに起因してコア材から得られる立体構造物の剛性、強度には限界があるという問題があった。 Here, the core material used in the above three-dimensional modeling apparatus is a resin in which a reinforcing material such as carbon fiber is dispersed. In order for this core material to have fluidity that allows it to be discharged from a nozzle, the length of the reinforcing material is approximately 1000 um at most, and the length of this reinforcing material is due to the rigidity and strength of the three-dimensional structure obtained from the core material. The problem was that there were limits.

本願発明は、上記問題点を鑑み、コア材から得られる立体構造物の少なくとも一部に所望の剛性、強度を持たせることができる立体造形方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention aims to provide a three-dimensional modeling method that can impart desired rigidity and strength to at least a portion of a three-dimensional structure obtained from a core material.

上記課題を解決するために本発明の立体造形方法は、立体造形物の外殻層であるシェルを、シェル材を用いて先に造形し、次に造形済の前記シェルに囲われた部分であるコア部に強化材が分散された液相材料であるコア材を充填することによって、前記コア材を含む立体造形物を形成させる立体造形方法であって、前記コア部への前記コア材の充填前、充填中、あるいは充填後に、あらかじめ賦形された繊維構造体を前記コア部へ配置することを特徴としている。 In order to solve the above problems, the three-dimensional modeling method of the present invention involves first modeling a shell, which is an outer layer of a three-dimensional model, using a shell material, and then using a portion surrounded by the already-modeled shell. A three-dimensional modeling method for forming a three-dimensional object containing a core material by filling a core material, which is a liquid phase material in which a reinforcing material is dispersed, into a certain core part, the method comprising: The method is characterized in that a pre-shaped fiber structure is placed in the core before, during, or after filling.

本発明の立体造形装方法によれば、あらかじめ賦形された繊維構造体が配置されているため、強化材を含むコア材のみで形成された立体造形物に比べて高剛性、高強度に形成することができる。 According to the three-dimensional modeling method of the present invention, since pre-shaped fiber structures are arranged, the three-dimensional object can be formed with higher rigidity and strength than a three-dimensional object formed only from a core material containing a reinforcing material. can do.

また、上記課題を解決するために本発明の立体造形物は、強化材が分散された樹脂であるコア材により形成された部分を含む立体造形物であり、前記コア材により形成された部分の内部には、賦形された繊維構造体が配置されている
本発明の立体造形物では、賦形された繊維構造体が配置されているため、強化材を含むコア材のみで形成された立体造形物に比べて高剛性、高強度に形成することができる。
Moreover, in order to solve the above-mentioned problems, the three-dimensional molded object of the present invention is a three-dimensional molded object that includes a portion formed of a core material, which is a resin in which a reinforcing material is dispersed. A shaped fiber structure is disposed inside the three-dimensional object of the present invention.Since the shaped fiber structure is disposed inside, the three-dimensional object is a three-dimensional object formed only of a core material containing a reinforcing material. It can be formed with higher rigidity and strength compared to molded objects.

本発明の立体造形方法により、コア材から得られる立体構造物の少なくとも一部に所望の剛性、強度を持たせることができる。 According to the three-dimensional modeling method of the present invention, at least a portion of a three-dimensional structure obtained from a core material can have desired rigidity and strength.

本発明の立体造形方法にかかる立体造形装置を説明する図である。It is a figure explaining the three-dimensional modeling apparatus concerning the three-dimensional modeling method of this invention. 本発明にかかる立体造形方法で用いるコア材および繊維構造体の概略図である。FIG. 2 is a schematic diagram of a core material and a fiber structure used in the three-dimensional modeling method according to the present invention. 本発明の一実施形態における立体造形方法の過程を説明する図である。It is a figure explaining the process of the three-dimensional modeling method in one embodiment of this invention. 本発明の一実施形態における立体造形方法の過程を説明する図である。It is a figure explaining the process of the three-dimensional modeling method in one embodiment of this invention.

本発明の立体造形方法を実施する立体造形装置について、図1を参照して説明する。 A three-dimensional modeling apparatus that implements the three-dimensional modeling method of the present invention will be described with reference to FIG.

複合材3Dプリンタである立体造形装置100は、紫外線硬化樹脂であるシェル材121が貯留されている造形槽111、レーザ光学系112、コア材供給系113を主たる構成要素とする。 The three-dimensional modeling apparatus 100, which is a composite material 3D printer, has a modeling tank 111 in which a shell material 121, which is an ultraviolet curable resin, is stored, a laser optical system 112, and a core material supply system 113 as main components.

造形槽111中には液相材料であるシェル材121が貯留されており、図示しないシェル材調整系により、その液面位置を所定位置に維持、調整可能となっている。シェル材121としてはエポキシ系、アクリル系など公知のものが使用可能である。造形槽111中には造形台128が設けられている。造形台128は立体造形物を支持するためのもので、図示しない駆動機構により図中Z軸方向の任意の位置に移動かつ設置可能となっている。 A shell material 121, which is a liquid phase material, is stored in the modeling tank 111, and its liquid level can be maintained and adjusted at a predetermined position by a shell material adjustment system (not shown). As the shell material 121, known materials such as epoxy and acrylic materials can be used. A modeling table 128 is provided in the modeling tank 111. The molding table 128 is for supporting a three-dimensional molded object, and can be moved and installed at any position in the Z-axis direction in the figure by a drive mechanism (not shown).

レーザ光学系112は紫外線レーザ光源114、走査光学系115とからなり、紫外線レーザ光源114から出射される紫外線レーザ光130は走査光学系115によりシェル材121の液面上(すなわちXY平面)の所定範囲を走査することが可能となっている。 The laser optical system 112 includes an ultraviolet laser light source 114 and a scanning optical system 115. The ultraviolet laser beam 130 emitted from the ultraviolet laser light source 114 is directed to a predetermined position on the liquid surface of the shell material 121 (that is, on the XY plane) by the scanning optical system 115. It is possible to scan the range.

シェル材121は紫外線レーザ光130の照射により、図1にて硬化済み紫外線硬化樹脂123で示すように液面から所定の深さだけ硬化する。この硬化深さは0.1mmから0.2mm程度が一般的である。もちろん紫外線レーザ光源114の出力を調整することによりこの硬化深さを調整することが可能である。 By irradiating the shell material 121 with the ultraviolet laser beam 130, the shell material 121 is cured by a predetermined depth from the liquid surface, as shown by the cured ultraviolet curable resin 123 in FIG. This hardening depth is generally about 0.1 mm to 0.2 mm. Of course, this curing depth can be adjusted by adjusting the output of the ultraviolet laser light source 114.

造形台128上面をシェル材121の液面からこの硬化深さ程度まで沈めた深さに位置させ、シェル材121の液面の任意の位置へ紫外線レーザ光130を照射することにより、造形台128上に任意の面積の硬化済み紫外線硬化樹脂123が形成される。 By positioning the upper surface of the modeling table 128 at a depth below the liquid level of the shell material 121 to about this hardening depth, and irradiating the ultraviolet laser beam 130 to an arbitrary position on the liquid level of the shell material 121, the modeling table 128 A cured ultraviolet curing resin 123 having an arbitrary area is formed thereon.

造形台128上に硬化済み紫外線硬化樹脂123が形成された後、硬化深さ分だけ造形台128を下降させ、その後シェル材121の液面の任意の位置へ紫外線レーザ光130を照射することにより、硬化済み紫外線硬化樹脂123上に硬化済み紫外線硬化樹脂123が積層される。 After the cured ultraviolet curing resin 123 is formed on the molding table 128, the molding table 128 is lowered by the hardening depth, and then an arbitrary position on the liquid surface of the shell material 121 is irradiated with ultraviolet laser light 130. , the cured ultraviolet curing resin 123 is laminated on the cured ultraviolet curing resin 123.

そして、造形台128の下降とシェル材121液面への紫外線レーザ光130の照射とを繰り返し実施することにより、硬化済み紫外線硬化樹脂123の積層が進行し、三次元形状の硬化済み紫外線硬化樹脂123を得ることができる。本発明では、このようにして造形された造形物をシェル125と呼ぶ。このシェル125は中空形状を有するコア材116を充填するための外殻層であり、シェル125で囲われた部分のうち底面を有する部分をコア部126と呼ぶ。 Then, by repeatedly lowering the modeling table 128 and irradiating the liquid surface of the shell material 121 with the ultraviolet laser beam 130, the stacking of the cured ultraviolet curable resin 123 progresses, and the cured ultraviolet curable resin 123 is formed into a three-dimensional shape. 123 can be obtained. In the present invention, the object formed in this way is called a shell 125. This shell 125 is an outer shell layer for filling a core material 116 having a hollow shape, and a portion having a bottom surface among the portions surrounded by the shell 125 is referred to as a core portion 126.

コア材供給系113は液相材料であるコア材116をその内部に貯留するコア材タンク117中から、ポンプ119で配管系118b、118aを順に介してコア材116を送液、供給し、ノズル120から吐出する。ノズル120は図示しない移動機構により、図中XYZ軸各方向に移動かつ固定可能となっている。このため配管系118aはノズル120の移動に追随するようフレキシブルな構成及び材料となっている。コア材116は、図2(a)に示すように熱硬化性樹脂116b中に長さ10um~1000um程度の炭素繊維、ガラス繊維などの強化材116aが均一に分散されたもので、シェル材121同様エポキシ系、アクリル系など公知の熱硬化樹脂が使用可能である。また、コア材116の比重はシェル材121の比重よりも大きい。 The core material supply system 113 uses a pump 119 to send and supply the core material 116, which is a liquid phase material, from a core material tank 117 storing the core material 116 therein through piping systems 118b and 118a in order, and supplies the core material 116 to the nozzle. Discharge from 120. The nozzle 120 can be moved and fixed in each direction of the X, Y, and Z axes in the figure by a moving mechanism (not shown). For this reason, the piping system 118a has a flexible structure and material so as to follow the movement of the nozzle 120. As shown in FIG. 2(a), the core material 116 is made by uniformly dispersing reinforcing material 116a such as carbon fiber or glass fiber with a length of about 10 um to 1000 um in a thermosetting resin 116b. Similarly, known thermosetting resins such as epoxy and acrylic resins can be used. Further, the specific gravity of the core material 116 is greater than the specific gravity of the shell material 121.

シェル125が有するコア部126へコア材116を充填し、コア部126に充填された状態のコア材116へ熱エネルギーを付与することにより、コア材116は熱硬化する。熱硬化したコア材116が本説明における立体造形物であり、所望の形状を有するコア部126に充填してから熱硬化させることにより、所望の形状の立体造形物を得ることができる。また、本方法によるとコア材116により形成される立体造形物には積層界面が存在しないため、剛性、強度に方向性が無い立体造形物を造形することができる。 By filling the core material 116 into the core portion 126 of the shell 125 and applying thermal energy to the core material 116 filled in the core portion 126, the core material 116 is thermally hardened. The thermoset core material 116 is the three-dimensional object in this description, and a three-dimensional object with the desired shape can be obtained by filling the core portion 126 having a desired shape and then thermosetting it. Further, according to this method, since there is no lamination interface in the three-dimensional object formed by the core material 116, it is possible to form a three-dimensional object with no directionality in rigidity or strength.

また、本発明で用いる繊維構造体について、図2(b)を用いて説明する。繊維構造体140は、図2(b)に示すように炭素繊維、ガラス繊維などの長繊維140aが編み込まれたシート、織り込まれた布帛、もしくは不織布などの形態を有し、プレス加工などによって賦形されている。この繊維構造体140は、たとえばRTM(Resin Transfer Molding)法向けのプリフォームである。 Further, the fiber structure used in the present invention will be explained using FIG. 2(b). As shown in FIG. 2(b), the fiber structure 140 has a form such as a sheet, a woven fabric, or a nonwoven fabric in which long fibers 140a such as carbon fibers and glass fibers are woven, and is imprinted by press processing or the like. It is shaped. This fiber structure 140 is, for example, a preform for RTM (Resin Transfer Molding) method.

図2(b)の例では繊維構造体140は略門型の形状となるよう賦形されている。この繊維構造体140の形状は、作成する立体造形物において強化が必要な箇所の位置に応じ、この強化が必要な箇所に繊維構造体140の一部が位置するよう設定されている。なお、本説明における賦形とは、上記の通り繊維構造体140を三次元構造とする意味と、平面状の外形を任意に形成する意味の両方を含む。 In the example of FIG. 2(b), the fiber structure 140 is shaped to have a substantially gate-shaped shape. The shape of the fiber structure 140 is set so that a part of the fiber structure 140 is located at the location where reinforcement is required, depending on the location of the location where reinforcement is required in the three-dimensional object to be created. Note that "shaping" in this description includes both the meaning of making the fiber structure 140 a three-dimensional structure as described above and the meaning of arbitrarily forming a planar outer shape.

また、繊維構造体140自体に熱硬化樹脂が含浸されていても良い。この場合は、繊維構造体140に含浸される熱硬化性樹脂はコア材116の液相材料である熱硬化性樹脂と同じ材料であることが好ましく、これにより、コア材116を熱硬化させる工程において繊維構造体140に含浸される熱硬化性樹脂も熱硬化する。 Further, the fiber structure 140 itself may be impregnated with a thermosetting resin. In this case, it is preferable that the thermosetting resin impregnated into the fiber structure 140 is the same material as the thermosetting resin that is the liquid phase material of the core material 116. The thermosetting resin impregnated into the fiber structure 140 is also thermoset.

また、長繊維140aの長さは、コア材116内の強化材116aよりも充分に長いことが好ましい。たとえば、強化材116aの長さの10倍以上あることが好ましい。 Further, the length of the long fibers 140a is preferably sufficiently longer than the reinforcing material 116a within the core material 116. For example, it is preferable that the length of the reinforcing material 116a is ten times or more.

次に、上記の立体造形装置100を用いた本発明の立体造形方法の過程を図3および図4を用いて順に説明する。 Next, the process of the three-dimensional modeling method of the present invention using the above-mentioned three-dimensional modeling apparatus 100 will be explained in order with reference to FIGS. 3 and 4.

本実施形態の立体造形方法では、まず図3(a)に示すようにレーザ光学系112の駆動によりシェル材121を硬化させ、造形台128上にシェル125の一部を造形する。なお、シェル125の最終形状は、図4(b)に示す通りである。このとき、繊維構造体140が配置される面(底面)は少なくとも造形が完了しているものとする。 In the three-dimensional modeling method of this embodiment, first, as shown in FIG. 3A, the shell material 121 is hardened by driving the laser optical system 112, and a part of the shell 125 is modeled on the modeling table 128. Note that the final shape of the shell 125 is as shown in FIG. 4(b). At this time, it is assumed that at least the surface (bottom surface) on which the fiber structure 140 is arranged has been completed.

次に、図3(b)に示すように、この時点で造形されているシェル125が有するコア部126に繊維構造体140が投入、配置される。本実施形態では、コア部126にコア材116はまだ充填されておらず、コア部126に貯まっているシェル材121内に繊維構造体140がまず配置されることになる。 Next, as shown in FIG. 3(b), the fiber structure 140 is introduced and placed in the core portion 126 of the shell 125 that has been modeled at this point. In this embodiment, the core material 116 is not yet filled in the core portion 126, and the fiber structure 140 is first placed within the shell material 121 stored in the core portion 126.

ここで、造形槽111に貯められたシェル材121の液面から繊維構造体140が飛び出てノズル120などと干渉することを防ぐため、シェル125の形状的に可能であれば、図3(b)の通り繊維構造体140の上端が造形槽111内のシェル材121の液面より下に位置するような高さまで繊維構造体140の投入前にシェル125が形成されていることが好ましい。 Here, in order to prevent the fiber structure 140 from jumping out from the liquid surface of the shell material 121 stored in the modeling tank 111 and interfering with the nozzle 120, etc., if possible due to the shape of the shell 125, ), it is preferable that the shell 125 is formed to a height such that the upper end of the fiber structure 140 is located below the liquid level of the shell material 121 in the modeling tank 111 before the fiber structure 140 is introduced.

次に、図4(a)に示すようにコア材供給系113のノズル120がコア部126に配置され、コア材116が吐出される。これにより、コア部126においてシェル材121からコア材116への置換が行われ、コア材116が充填される。 Next, as shown in FIG. 4(a), the nozzle 120 of the core material supply system 113 is placed in the core portion 126, and the core material 116 is discharged. As a result, the shell material 121 is replaced with the core material 116 in the core portion 126, and the core material 116 is filled.

次に、図4(b)に示すようにさらなるシェル125の造形およびコア材116の充填が行われ、最終形状のシェル125におけるコア部126全体にコア材116が充填された形態が形成される。このコア材116の中には、図3(b)の過程において投入された繊維構造体140が配置されている。 Next, as shown in FIG. 4(b), the shell 125 is further shaped and the core material 116 is filled, so that the entire core portion 126 of the shell 125 in the final shape is filled with the core material 116. . In this core material 116, the fiber structure 140 introduced in the process of FIG. 3(b) is placed.

最後に、シェル125が造形台128から取り外され、シェル125ごとコア材116が図示しない加熱装置内で加熱される。これにより、コア材116の熱硬化が進行する。そして、繊維構造体140を内包した、熱硬化したコア材116による立体造形物が完成する。 Finally, the shell 125 is removed from the modeling table 128, and the core material 116 together with the shell 125 is heated in a heating device (not shown). As a result, thermosetting of the core material 116 progresses. Then, a three-dimensional object made of the thermoset core material 116 containing the fiber structure 140 is completed.

ここで、上記の通り長繊維140aの長さはコア材116内の強化材116aの長さよりも充分長いため、特に長繊維140aの長さ方向においては繊維構造体140の強度、剛性は、熱硬化したコア材116の強度、剛性よりも大きくなる。 Here, as mentioned above, since the length of the long fibers 140a is sufficiently longer than the length of the reinforcing material 116a in the core material 116, the strength and rigidity of the fiber structure 140, especially in the length direction of the long fibers 140a, are The strength and rigidity are greater than that of the hardened core material 116.

すなわち、以上の立体造形方法により、コア材116と繊維構造体140の各々の長所を活かした立体造形物の形成が行われる。具体的には、立体造形物の形成にあたりコア材116を用いることによって立体造形物全体にある程度の強度、剛性を持たせながら形状の自由度の高い造形が行われつつ、特に強度、剛性が必要な箇所にはコア材116の内部に繊維構造体140が配置されることにより所望の強度、剛性が付与される。すなわち、強化材116aを含むコア材116のみで形成された立体造形物に比べて高剛性、高強度に形成することが可能である。 That is, by the above-described three-dimensional modeling method, a three-dimensional object is formed by taking advantage of the respective advantages of the core material 116 and the fiber structure 140. Specifically, by using the core material 116 when forming a three-dimensional object, a certain degree of strength and rigidity can be given to the entire three-dimensional object, while modeling can be performed with a high degree of freedom in shape. By arranging the fiber structure 140 inside the core material 116, desired strength and rigidity are imparted to the core material 116. That is, it is possible to form a three-dimensional structure with higher rigidity and strength than a three-dimensional structure formed only of the core material 116 including the reinforcing material 116a.

なお、本実施形態では、繊維構造体140はコア材116の充填の前に形成途中のシェル125のコア部126に配置されているが、シェル125の形成とコア材116の充填が交互に実施される工程の途中で繊維構造体140が投入されても良く、また、シェル125の形状的に問題無ければ、最終形状までシェル125が形成され、このシェル125のコア部126へのコア材116の充填が完了した後、繊維構造体140を投入しても良い。 Note that in this embodiment, the fiber structure 140 is placed in the core portion 126 of the shell 125 that is being formed before being filled with the core material 116, but the formation of the shell 125 and the filling of the core material 116 may be performed alternately. The fiber structure 140 may be added during the process of forming the shell 125, and if there is no problem with the shape of the shell 125, the shell 125 is formed to the final shape, and the core material 116 is added to the core portion 126 of the shell 125. After the filling is completed, the fiber structure 140 may be added.

以上の立体造形方法により、コア材から得られる立体構造物の少なくとも一部に所望の剛性、強度を持たせることが可能である。 By the above three-dimensional modeling method, it is possible to provide desired rigidity and strength to at least a portion of the three-dimensional structure obtained from the core material.

ここで、本発明の立体造形装置の性能維持方法は、以上で説明した形態に限らず本発明の範囲内において他の形態のものであってもよい。たとえば、コア材内の強化材と繊維構造体を構成する長繊維の材料は同じであっても良く、また、異なっていても良い。 Here, the method for maintaining the performance of a three-dimensional modeling apparatus according to the present invention is not limited to the form described above, but may be other forms within the scope of the present invention. For example, the reinforcing material in the core material and the material of the long fibers constituting the fiber structure may be the same or different.

また、立体造形物はコア材とその内部の繊維構造体のみで構成されても良く、また、それにシェルも含めて立体造形物としても良い。 Further, the three-dimensional molded object may be composed only of the core material and the fiber structure inside the core material, or may include the shell as well.

100 立体造形装置
111 造形槽
112 レーザ光学系
113 コア材供給系
114 紫外線レーザ光源
115 走査光学系
116 コア材
116a 強化材
116b 熱硬化性樹脂
117 コア材タンク
118a 配管系
118b 配管系
119 ポンプ
120 ノズル
121 シェル材
123 硬化済み紫外線硬化樹脂
125 シェル
126 コア部
128 造形台
130 紫外線レーザ光
140 繊維構造体
140a 長繊維
100 Three-dimensional modeling apparatus 111 Modeling tank 112 Laser optical system 113 Core material supply system 114 Ultraviolet laser light source 115 Scanning optical system 116 Core material 116a Reinforcement material 116b Thermosetting resin 117 Core material tank 118a Piping system 118b Piping system 119 Pump 120 Nozzle 121 Shell material 123 Cured ultraviolet curing resin 125 Shell 126 Core portion 128 Modeling table 130 Ultraviolet laser beam 140 Fiber structure 140a Long fiber

Claims (2)

立体造形物の外殻層であるシェルを、シェル材を用いて先に造形し、次に造形済の前記シェルに囲われた部分であるコア部に強化材が分散された液相材料であるコア材を充填することによって、前記コア材を含む立体造形物を形成させる立体造形方法であって、
前記コア部への前記コア材の充填前、充填中、あるいは充填後に、あらかじめ賦形された繊維構造体を前記コア部へ配置することを特徴とする、立体造形方法。
It is a liquid phase material in which the shell, which is the outer layer of the three-dimensional model, is first modeled using a shell material, and then a reinforcing material is dispersed in the core part, which is the part surrounded by the already modeled shell. A three-dimensional modeling method for forming a three-dimensional object containing a core material by filling the core material, the method comprising:
A three-dimensional modeling method, characterized in that a pre-shaped fiber structure is placed in the core part before, during, or after filling the core material with the core material.
強化材が分散された樹脂であるコア材により形成された部分を含む立体造形物であり、前記コア材により形成された部分の内部には、賦形された繊維構造体が配置されていることを特徴とする、立体造形物。 It is a three-dimensional molded object that includes a portion formed of a core material, which is a resin in which a reinforcing material is dispersed, and a shaped fiber structure is disposed inside the portion formed of the core material. A three-dimensional sculpture featuring
JP2022058214A 2022-03-31 2022-03-31 Three-dimensional molding method Pending JP2023149574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022058214A JP2023149574A (en) 2022-03-31 2022-03-31 Three-dimensional molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022058214A JP2023149574A (en) 2022-03-31 2022-03-31 Three-dimensional molding method

Publications (1)

Publication Number Publication Date
JP2023149574A true JP2023149574A (en) 2023-10-13

Family

ID=88288865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022058214A Pending JP2023149574A (en) 2022-03-31 2022-03-31 Three-dimensional molding method

Country Status (1)

Country Link
JP (1) JP2023149574A (en)

Similar Documents

Publication Publication Date Title
Hajash et al. Large-scale rapid liquid printing
CN105711088B (en) Photocuring 3D printer
JP6938398B2 (en) Three-dimensional modeling method
JP6092399B2 (en) Stereolithography method
KR101669627B1 (en) Anti-fall device for 3D printer of the DLP method
KR101722979B1 (en) An Manufacturing Method of 3 Dimensional Shape
CN105799172A (en) Equipment and method for 3D printing of architectural ornaments
JP2018047556A (en) Laminate molding structure, laminate molding method and laminate molding device
JP2023149574A (en) Three-dimensional molding method
TWI302869B (en)
KR102264538B1 (en) Outputting method in 3D(three-dimensional) printer for improving accuracy of printout
CN207140354U (en) A kind of photocuring 3D printer
JPH07329190A (en) Manufacture of 3-dimensional object and manufacturing equipment
JP2970300B2 (en) 3D modeling method
CN205767557U (en) A kind of by photocuring 3D printer framework that LCD screen is light source
JP6840944B2 (en) 3D data generator, modeling device, manufacturing method and program of modeled object
JP2024000737A (en) Three-dimensional molding method
WO2022209028A1 (en) Solid shaping method
JP2023145974A (en) Stereo-lithography
TW515755B (en) Improved rapid prototyping technique
JP2011056697A (en) Laminate shaping apparatus
JP2023137216A (en) Stereo molding method
CN204414606U (en) Based on the elevating mechanism of the 3D printer of DLP
JP2023135436A (en) Method of molding three-dimensional solid
JP2023149502A (en) Performance maintenance method for three-dimensional molding device