WO2017170102A1 - Polyarylene sulfide composition, method for producing same, and coating film - Google Patents

Polyarylene sulfide composition, method for producing same, and coating film Download PDF

Info

Publication number
WO2017170102A1
WO2017170102A1 PCT/JP2017/011649 JP2017011649W WO2017170102A1 WO 2017170102 A1 WO2017170102 A1 WO 2017170102A1 JP 2017011649 W JP2017011649 W JP 2017011649W WO 2017170102 A1 WO2017170102 A1 WO 2017170102A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
functional group
group
polymer compound
pas
Prior art date
Application number
PCT/JP2017/011649
Other languages
French (fr)
Japanese (ja)
Inventor
勇也 榎本
高橋 誠治
早織 奈良
太田 克己
高光 中村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018509166A priority Critical patent/JP6977712B2/en
Publication of WO2017170102A1 publication Critical patent/WO2017170102A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound and an aqueous resin, a method for producing the same, and a coating film obtained using the same. .
  • Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resin is excellent in mechanical strength, heat resistance, chemical resistance, molding processability, and dimensional stability. Used as part material.
  • polyarylene sulfide resin has an aspect that its application expansion does not proceed because it is inferior in adhesion and adhesion to different materials. Therefore, in the paint field, adhesive material field, coating field, polymer compound field, etc., demand for adhesion and adhesiveness is expected, although demand is expected if polyarylene sulfide can be made into fine particles and dispersed into liquid. It was difficult to obtain fine particles and dispersion liquid that satisfy the characteristics.
  • Patent Documents 1 and 2 a polyarylene sulfide resin is heated and dissolved in an organic solvent in the presence of an inorganic salt, and then cooled to precipitate polyarylene sulfide coarse particles to form a suspension.
  • Patent Document 3 proposes a polyarylene sulfide resin fine particle dispersion comprising a polymer surfactant, polyarylene sulfide resin fine particles, and an alcohol solvent.
  • dispersions composed of PAS fine particles obtained by conventional techniques such as Patent Documents 1 to 3 have a low active ingredient concentration, and it is difficult to produce a coating having a polyarylene sulfide concentration sufficient for coating formation. A desired coating film could not be obtained.
  • Patent Document 4 it has been confirmed that a stable PAS dispersion can be obtained even when the concentration of the PAS resin is high.
  • the PAS dispersion has adhesiveness and adhesion to various substrates. It is said to be excellent.
  • the PAS dispersion described in Patent Document 4 still has room for improvement in terms of adhesion to metal, has high metal adhesion, and can be suitably used as a coating paint on metal. Is required.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polyarylene sulfide fine particle dispersion having high dispersion stability even at a high concentration and having excellent adhesion and adhesion to metal.
  • the inventors of the present invention further added an aqueous resin to a dispersion obtained by coating polyarylene sulfide fine particles with an ionic functional group-containing aqueous polymer compound.
  • the present inventors have found that the obtained polyarylene sulfide composition can solve the above-mentioned problems, and have completed the present invention.
  • the polyarylene sulfide composition of the present invention has the following characteristics.
  • a polyarylene sulfide composition comprising a polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound and an aqueous resin.
  • the ionic functional group of the ionic functional group-containing aqueous polymer compound is at least one anionic group selected from the group consisting of a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and a phosphoric acid group.
  • the main skeleton of the ionic functional group-containing aqueous polymer compound is (meth) acrylate resin, styrene- (meth) acrylate resin, vinyl-modified epoxy ester resin, vinyl resin, polyurethane resin, and polyamideimide.
  • the polyarylene sulfide composition according to any one of (1) to (6) which is at least one aqueous polymer compound selected from the group consisting of resins.
  • the acid or base used for neutralization of the ionic functional group is at least selected from the group consisting of inorganic acids, sulfonic acids, carboxylic acids, and vinylic carboxylic acids.
  • Step (9) The polyarylene sulfide composition according to any one of (1) to (8), wherein the volume average particle diameter of the polyarylene sulfide particles in the polyarylene sulfide fine particle dispersion is 1 ⁇ m or less.
  • Step (10) Step (A) of heating polyarylene sulfide in an organic solvent to form a solution; Step (B) of forming polyarylene sulfide fine particles by adding the polyarylene sulfide solution obtained in Step (A) to an aqueous resin solution in which an ionic functional group-containing aqueous polymer compound is added and dissolved in water.
  • the functional group of the ionic functional group-containing aqueous polymer compound present in the surface layer of the polyarylene sulfide fine particles obtained in the step (B) is neutralized with an acid or a base, and the ionic functional group-containing aqueous solution on the surface of the polyarylene sulfide fine particles.
  • Precipitating a polymer compound to precipitate polyarylene sulfide fine particles coated with an ionic functional group-containing aqueous polymer C
  • the polyarylene sulfide particles coated with the water-containing ionic functional group-containing aqueous polymer obtained by filtering and washing the polyarylene sulfide particles coated with the ionic functional group-containing aqueous polymer obtained in the step (C) are washed.
  • the polyarylene sulfide particle wet cake coated with the hydrous ionic functional group-containing aqueous polymer obtained in the step (D) is neutralized with an acid or a base, and an ionic functional group-containing aqueous polymer compound is used.
  • a process for producing a polyarylene sulfide composition comprising: (11)
  • the organic solvent used in the step (A) is at least one organic solvent selected from N-methyl-2-pyrrolidone, 1-chloronaphthalene, and 1,3-dimethyl-2-imidazolidinone. (10) The manufacturing method of the polyarylene sulfide composition of.
  • a composition containing a polyarylene sulfide dispersion which is stable even when the concentration of the polyarylene sulfide resin is high, and has excellent adhesion and adhesion to various substrates containing metal, is obtained. Since such a polyarylene sulfide composition exhibits particularly good adhesion to metal, it is required to have high mechanical strength, high heat resistance, high chemical resistance, etc. For example, it can be suitably used as a lining agent or the like.
  • the polyarylene sulfide composition of the present invention comprises a polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound and an aqueous resin.
  • the polyarylene sulfide fine particle dispersion is not particularly limited as long as the polyarylene sulfide of the present invention (polyarylene sulfide coated with an ionic functional group-containing aqueous polymer compound) is dispersed. However, it is preferably composed of polyarylene sulfide particles, an ionic functional group-containing aqueous polymer compound, an acid or base, and an aqueous medium.
  • each component in the polyarylene sulfide fine particle dispersion will be described.
  • polyarylene sulfide fine particles contained in the polyarylene sulfide fine particle dispersion are those in which a polyarylene sulfide resin is dispersed as fine particles in an aqueous medium using an ionic functional group-containing aqueous polymer compound. It is. Details of the method for dispersing the polyarylene sulfide fine particles will be described later.
  • the polyarylene sulfide resin has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded. More specifically, a resin having a structural unit represented by the following formula (1) as a repeating unit is exemplified.
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group or an ethoxy group. ]
  • R 1 and R 2 in the formula are particularly preferably hydrogen atoms from the viewpoint of mechanical strength of the polyarylene sulfide resin.
  • R ⁇ 1 > and R ⁇ 2 > are both hydrogen atoms, what is couple
  • the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (2). In terms of surface. It is also possible to use a mixture of a structure bonded at the para position and a structure bonded at the meta position, and a structure bonded at the para position and a structure bonded at the ortho position.
  • polyarylene sulfide resin represents not only the structural moiety represented by the formula (1) but also the structural moiety represented by the following structural formulas (3) to (6) by the formula (1). It may be contained in an amount of 30 mol% or less of the total with the structural site.
  • the structural site represented by the above formulas (3) to (6) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin.
  • their bonding mode may be either random copolymerization or block copolymerization.
  • the polyarylene sulfide resin may have a trifunctional structural site represented by the following formula (7) or a naphthyl sulfide bond in the molecular structure, but other structural sites. Is preferably 3 mol% or less, particularly preferably 1 mol% or less, based on the total number of moles.
  • the method for producing the polyarylene sulfide resin is not particularly limited. For example, it can be produced by the following methods (1) to (3).
  • (1) A method of polymerizing a dihalogenoaromatic compound, a polyhalogenoaromatic compound, and, if necessary, other copolymerization components in the presence of sulfur and sodium carbonate.
  • (2) A method of polymerizing a dihalogenoaromatic compound, a polyhalogenoaromatic compound, and, if necessary, other copolymerization components in a polar solvent in the presence of a sulfidizing agent, etc.
  • (3) p-chlorothio A method of self-condensing phenol and, if necessary, other copolymer components.
  • the method (2) is versatile and preferable.
  • an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization.
  • a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent, a dihalogenoaromatic compound, and a polyhalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, A dihalogenoaromatic compound, a polyhalogenoaromatic compound and a sulfidizing agent are reacted in an organic polar solvent, and the water content in the reaction system is 0.02 to 0.5 mol relative to 1 mol of the organic polar solvent.
  • a method for producing a polyarylene sulfide resin by controlling in the above range is particularly preferred.
  • a dihalogeno aromatic compound, a polyhalogeno aromatic compound, an alkali metal hydrosulfide, and an organic acid alkali metal in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent.
  • Salt, 0.01 to 0.9 mol of organic acid alkali metal salt with respect to 1 mol of sulfur source, and the amount of water in the reaction system is in the range of 0.02 mol with respect to 1 mol of aprotic polar organic solvent.
  • a method in which the reaction is carried out while controlling is also particularly preferable.
  • dihalogenoaromatic compounds include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4 ′ -Dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p'- Dihalodiphenyl ether, 4,4′-dihalobenzophenone, 4,4′-dihalodiphenyl sulfone, 4,4′-dihalodiphenyl sulfoxide
  • polyhalogenoaromatic compound examples include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1 2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene and the like.
  • the halogen atom contained in each compound is a chlorine atom or a bromine atom.
  • the post-treatment method of the reaction mixture containing the polyarylene sulfide resin obtained by the polymerization step is not particularly limited, and examples thereof include the following methods (i) to (iii).
  • the reaction mixture is first left as it is, or an acid or a base is added, and then the solvent is distilled off under reduced pressure or normal pressure. Or an organic solvent having an equivalent solubility in a low-molecular polymer), a method of washing once or twice with a solvent such as acetone, methyl ethyl ketone, alcohol, and the like, followed by neutralization, washing with water, filtration and drying.
  • reaction mixture After completion of the polymerization reaction, the reaction mixture is soluble in water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons and the like (soluble in the polymerization solvent used). And at least a solvent that is a poor solvent for polyarylene sulfide) is added as a precipitating agent to precipitate solid products such as polyarylene sulfide and inorganic salts, which are filtered, washed, and dried. Method.
  • reaction solvent or an organic solvent having an equivalent solubility with respect to the low molecular weight polymer
  • a reaction solvent or an organic solvent having an equivalent solubility with respect to the low molecular weight polymer
  • the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. .
  • the polyarylene sulfide resin can also be oxidized and crosslinked by heat treatment in an oxidizing atmosphere having an oxygen concentration in the range of 5 to 30% by volume or under reduced pressure.
  • the physical properties of the polyarylene sulfide resin are not particularly limited as long as the effects of the present invention are not impaired. For example, polyarylene sulfide resins having the following physical properties are preferable.
  • the polyarylene sulfide resin used in the present invention preferably has a melt viscosity (V6) measured at 300 ° C. in the range of 0.1 to 1000 [Pa ⁇ s], and further has a balance between fluidity and mechanical strength.
  • V6 melt viscosity measured at 300 ° C.
  • the range of 0.1 to 100 [Pa ⁇ s] is more preferable from the viewpoint of goodness, and the range of 0.1 to 50 [Pa ⁇ s] is particularly preferable.
  • the non-Newtonian index of the polyarylene sulfide resin used in the present invention is not particularly limited as long as the effect of the present invention is not impaired, but it is preferably in the range of 0.90 to 2.00.
  • the non-Newtonian index is preferably in the range of 0.90 to 1.50, and more preferably in the range of 0.95 to 1.20.
  • Such a polyarylene sulfide resin is excellent in mechanical properties, fluidity, and abrasion resistance.
  • the fine particles obtained by dispersing the polyarylene sulfide resin as described above in an aqueous medium preferably have a volume average particle size of 1 ⁇ m or less, more preferably less than 500 nm.
  • a method for measuring the volume average particle diameter and a method for producing the polyarylene sulfide resin having the volume average particle diameter as described above will be described later.
  • the ionic functional group-containing aqueous polymer compound is a polymer compound that has an ionic functional group in its structure and can exhibit hydrophilicity. It is not particularly limited.
  • the ionic functional group may be an anionic functional group or a cationic functional group.
  • the main skeleton of the ionic functional group-containing aqueous polymer compound is (meth) acrylate resin, styrene- (meth) acrylate resin, (meth) acrylate-epoxy resin, vinyl resin, polyurethane resin, and polyamideimide. It is preferably at least one selected from the group consisting of resins.
  • anionic functional group examples include a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and a phosphoric acid group. Among them, it is preferable to use a carboxylate group or a sulfonate group in which a part or all of the carboxyl group or sulfonic acid group is neutralized with a basic compound or the like in order to impart good water dispersion stability.
  • the cationic functional group examples include a tertiary amino group, and specific examples include a dimethylamino group, a diethylamino group, and a methylethylamino group.
  • the ionic functional group-containing aqueous polymer compound is anionic, its acid value is preferably 10 to 300 mgKOH / g, more preferably 50 to 240 mgKOH / g, from the viewpoint of good dispersion stability.
  • the ionic functional group-containing aqueous polymer compound is cationic, its amine value is preferably 10 to 300 mgKOH / g, more preferably 50 to 240 mgKOH / g, from the viewpoint of good dispersion stability.
  • ionic functional group-containing aqueous polymer compound one kind may be used alone, or two or more kinds may be used in combination.
  • the acid or base contained in the polyarylene sulfide fine particle dispersion of the present invention is the acid or base used when the ionic functional group-containing aqueous polymer compound is dissolved in the acid or base. is there. Specifically, when the ionic functional group-containing aqueous polymer compound is anionic, a base used for dissolution is included in the dispersion. On the other hand, when the ionic functional group-containing aqueous polymer compound is cationic, an acid used for dissolution is included in the dispersion.
  • Examples of the base include ammonia, inorganic metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, methylamine, ethylamine, n-butylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, tri-n-butylamine.
  • Alkylamines such as: hydroxylamines such as N-methylaminoethanol, N, N-dimethylaminoethanol, N, N-diethylaminoethanol, 2-amino-2-methylpropanol, diethanolamine, triethanolamine; ethylenediamine, diethylenetriamine
  • Organic amines such as polyamines such as are preferred.
  • a base may be used individually by 1 type and may use 2 or more types together.
  • Acids include inorganic acidic substances (inorganic acids) such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; sulfonic acids such as methanesulfonic acid, ethanesulfonic acid and p-toluenesulfonic acid; acetic acid, formic acid, oxalic acid and acrylic acid Carboxylic acids such as methacrylic acid, ascorbic acid, and Meldrum's acid; and organic acidic substances such as vinylic carboxylic acids are preferred.
  • An acid may be used individually by 1 type and may use 2 or more types together.
  • the amount of acid or base relative to the ionic functional group-containing aqueous polymer compound is 70 to 300 with respect to the amine value or acid value of the ionic functional group-containing aqueous polymer compound in order to completely dissolve the polymer compound. % Is preferred.
  • aqueous medium water alone may be sufficient and the mixed solvent which consists of water and a water-soluble solvent may be sufficient.
  • the water-soluble solvent include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, and methyl isobutyl ketone; methanol, ethanol, 2-propanol, 2-methyl-1-propanol, 1-butanol, 2-methoxyethanol, Alcohols such as tetrahydrofuran; ethers such as 1,4-dioxane and 1,2-dimethoxyethane; and amides such as dimethylformamide and N-methyl-2-pyrrolidone.
  • glycols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, polyethylene glycol, and polypropylene glycol; diols such as butanediol, pentanediol, hexanediol, and diols similar to these; propylene laurate Glycol esters such as glycol; glycol ethers such as cellosolve including diethylene glycol monoethyl, diethylene glycol monobutyl, diethylene glycol monohexyl ethers, propylene glycol ether, dipropylene glycol ether, and triethylene glycol ether; or sulfolane; ⁇ - Lactones such as butyrol
  • aqueous resin examples of the aqueous resin contained in the polyarylene sulfide composition of the present invention include polyurethane resins such as anionic functional group-containing polyurethane resins and cationic functional group-containing polyurethane resins; polyvinyl alcohols; polyvinyl pyrrolidones; vinyl-modified epoxy ester resins.
  • (Meth) acrylic resins such as (meth) acrylic acid ester- (meth) acrylic acid copolymer, (meth) acrylic acid ester- (meth) acrylic acid N, N-dialkylaminoalkyl ester copolymer; (Meth) acrylic acid ester-styrene- (meth) acrylic acid copolymer, (meth) acrylic acid ester-styrene- (meth) acrylic acid N, N-dialkylaminoalkyl ester copolymer, styrene- ⁇ -methylstyrene -Acrylic acid copolymer, styrene- ⁇ -methyl Styrene- (meth) acrylic resins such as styrene-acrylic acid-acrylic acid ester copolymers; styrene-maleic acid copolymers; styrene-maleic anhydride copolymers; vinylnaphthalene-acrylic acid copolymers, and The salt of this
  • anionic functional group-containing polyurethane resin cationic functional group-containing polyurethane resin, (meth) acrylic acid ester-styrene- (meth) acrylic acid copolymer, (meth) acrylic acid ester-styrene- (meth) acrylic Acid N, N-dimethylaminoethyl copolymer, polyvinylpyrrolidone, and vinyl-modified epoxy ester resin are preferred.
  • the amount of the aqueous resin used is not particularly limited, but is preferably 0.1 to 5 parts by mass with respect to 1 part by mass of the polyarylene sulfide fine particle dispersion. It is more preferably 1 to 3 parts by mass, still more preferably 0.1 to 2 parts by mass, and particularly preferably 0.1 to 1.5 parts by mass.
  • the method for producing a polyarylene sulfide composition of the present invention includes the following steps (A) to (F).
  • step (A) in order to obtain a PAS dispersion, the PAS resin is dissolved in an organic solvent.
  • the form of the PAS resin that can be used in this step is not particularly limited. If specifically exemplified, powders, granules, pellets, fibers, films, molded products, etc. may be mentioned. From the viewpoint of shortening, powders, granules or pellets are desirable. Of these, powdered PAS resin is particularly preferably used.
  • the PAS resin and the organic solvent are added to the container and then dissolved, but the order of adding them to the container is not limited. Since the container is used at a high temperature, it is preferable to use a pressure-resistant container.
  • the atmosphere in the container may be either an air atmosphere or an inert gas atmosphere. However, an atmosphere that can react with the PAS resin or an atmosphere that degrades the PAS resin itself should be avoided. A gas atmosphere is preferred.
  • the inert gas includes nitrogen gas, carbon dioxide, helium gas, argon gas, neon gas, krypton gas, xenon gas, etc., taking into consideration economic efficiency and availability, nitrogen gas, argon gas, Carbon dioxide gas is desirable, more preferably nitrogen gas or argon gas is used.
  • an inorganic salt may be further used.
  • an inorganic salt usually, chlorides, bromides, carbonates, sulfates, etc., such as an alkali metal, an alkaline earth metal, and ammonia, are used.
  • chlorides such as sodium chloride, lithium chloride, potassium chloride, calcium chloride, magnesium chloride, ammonium chloride; sodium bromide, lithium bromide, potassium bromide, calcium bromide, magnesium bromide, ammonium bromide Bromides such as; carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, magnesium carbonate, and ammonium carbonate; sulfates such as calcium sulfate, sodium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, and ammonium sulfate are used.
  • chlorides such as sodium chloride, lithium chloride, potassium chloride, calcium chloride, magnesium chloride, and ammonium chloride are preferable.
  • the mass ratio of the inorganic salt to the PAS resin is in the range of 0.1 to 10 parts by mass, preferably in the range of 0.5 to 5 parts by mass with respect to 1 part by mass of the PAS resin.
  • the solvent is not particularly limited as long as it dissolves the PAS resin.
  • -2-At least one solvent selected from imidazolidinone at least one solvent selected from imidazolidinone.
  • N-methyl-2-pyrrolidone, 1-chloronaphthalene, and 1,3-dimethyl-2-imidazolidinone are preferably used in consideration of workability and water solubility.
  • the mass ratio of the PAS resin to the solvent is not particularly limited as long as PAS is dissolved in the solvent, but can be exemplified by a range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the solvent.
  • the amount is 1 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the mixed reaction liquid is raised to a temperature necessary for the PAS resin to dissolve.
  • the temperature required for dissolution varies depending on the solvent, but is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and more preferably 250 ° C. or higher.
  • the upper limit is the temperature at which the PAS resin does not decompose, and is preferably 400 ° C. or lower.
  • the dissolution is performed under pressure as necessary.
  • the PAS resin By adjusting to the above temperature, the PAS resin can be uniformly dissolved, and PAS coarse particles can be stably produced.
  • reaction solution may or may not be stirred, but it is preferable that the reaction solution is stirred, thereby shortening the time required for dissolution.
  • the maintaining time is in the range of 10 minutes to 10 hours, preferably in the range of 10 minutes to 6 hours, and more preferably in the range of 20 minutes to 2 hours.
  • the PAS resin can be more sufficiently dissolved.
  • step (B) In the step (B), first, an aqueous solution of an ionic functional group-containing aqueous polymer compound is prepared in advance.
  • the ionic functional group-containing aqueous polymer compound is as described above.
  • the ionic functional group-containing aqueous polymer compound is completely dissolved in an acidic aqueous solution or a basic aqueous solution.
  • a basic aqueous solution is used, and when the ionic functional group-containing aqueous polymer compound is cationic, an acidic aqueous solution is used. It is done.
  • the acid or base in the acidic aqueous solution or basic aqueous solution is as described above.
  • the ionic functional group-containing aqueous polymer compound covers a part or the entire surface of the PAS particles, an effect on the dispersion stability can be obtained. Therefore, it is preferable to use 1 part by mass to 200 parts by mass with respect to 100 parts by mass of PAS. Of these, the use of 5 parts by mass to 150 parts by mass is preferable because the dispersion stability is the highest.
  • the PAS dispersion (crystallization solution) can be obtained by pouring the PAS solution adjusted in the step (A) into the adjusted aqueous solution of the ionic functional group-containing aqueous polymer compound. .
  • the PAS dispersion (crystallization liquid) obtained at this time is different from the “polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound” of the present invention.
  • the PAS particle state in this crystallization process is as described later.
  • the prepared ionic functional group-containing aqueous polymer compound aqueous solution produces a water stream stirred at high speed with a stirrer such as a stirring blade.
  • a stirrer such as a stirring blade.
  • a turbulent flow or a laminar flow may be used, but a higher peripheral speed is preferable because the crystallized particle size can be reduced.
  • a water injection method there is a method in which water is directly injected into a solution obtained by strongly stirring the prepared ionic functional group-containing aqueous polymer compound solution.
  • the stirring of the ionic functional group-containing aqueous polymer compound solution is preferably strong stirring in order to form fine PAS particles.
  • the mechanical pulverization can be performed using a mechanical pulverizer, and examples of the mechanical pulverizer include commercially available mechanical pulverizers.
  • ball mill equipment, bead mill equipment, sand mill equipment, colloid mill equipment, disper dispersion stirring are suitable as mechanical grinding equipment for efficiently dispersing and pulverizing PAS coarse particles to produce a dispersion of PAS fine particles with a small particle size.
  • Apparatus, wet atomizer selected from a ball mill apparatus, a bead mill apparatus, a sand mill apparatus, and a wet atomizer.
  • An apparatus is preferred.
  • the volume average particle size of the obtained fine particles tends to decrease as the pulverization force during mechanical pulverization generally increases and the pulverization time increases. However, if these are excessive, aggregation tends to occur. It is controlled in the range. For example, a bead mill can be controlled by selecting the bead diameter and the bead amount and adjusting the peripheral speed.
  • the PAS particle state in this crystallization process is not a state in which the ionic functional group-containing aqueous polymer compound is present on the surface layer of the PAS resin particles and is still firmly fixed. This is because the acidic group or basic group at the end of the ionic functional group-containing aqueous polymer compound is in an ion-bonded state with an alkali metal, and thus is presumably flexibly present on the surface layer of the PAS particle.
  • a salt exchange reaction of the functional group of the ionic functional group-containing aqueous polymer compound is caused by an acid or a base in a subsequent acid precipitation / base precipitation step, and is fixed to the PAS surface.
  • step (C) the PAS resin particles in which the water-soluble resin obtained in the above step (B) is present on the surface layer are acid precipitated with an acid or base precipitated with a base, so that This is a step of preparing a slurry in which PAS resin particles coated with molecular compounds are precipitated.
  • Examples of the acid used for acid precipitation include hydrochloric acid, sulfuric acid, acetic acid, nitric acid, and hydrochloric acid is preferable.
  • the acid concentration depends on the number of terminal substituents of the anionic functional group-containing aqueous polymer compound, although it depends on various anionic functional group-containing aqueous polymer compounds and various PAS resins. Adjust to ⁇ 5.
  • Examples of the base used for base precipitation include ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, N, N-dimethylaminoethanol, and potassium hydroxide is preferable.
  • the base concentration depends on the number of terminal functional groups of the cationic functional group-containing aqueous polymer compound, although it depends on various cationic functional group-containing aqueous polymer compounds and various PAS resins. Adjust to ⁇ 13.
  • step (D) ionic functional group-containing aqueous solution is obtained from the slurry obtained by precipitating PAS resin particles coated with the ionic functional group-containing aqueous polymer compound obtained in the acid precipitation / base precipitation step (C).
  • This is a step of filtering the PAS resin particles coated with the polymer compound into a wet cake.
  • any method may be used as long as particles and liquid can be separated, such as filtration and centrifugation.
  • the moisture content in the filtered wet cake is preferably in the range of 15 to 55%. If the moisture content is too low, it becomes difficult to loosen by redispersion in the subsequent step, and the redispersibility becomes poor.
  • the wet cake is washed with ion-exchanged water, distilled water, pure water, tap water or the like in order to wash the remaining organic solvent and undeposited resin.
  • the wet cake may be filtered and washed with a washing solvent, or the wet cake may be washed again by peptizing with a washing solvent.
  • step (E) the wet cake obtained in the wet cake preparation step (D) is re-peptized with water using a bead mill or an ultrasonic disperser, and the pH is adjusted to 6 to 10 with an acid or base.
  • This is a step of obtaining a coated PAS dispersion.
  • a base is used when acidifying is performed in the step (C)
  • an acid is used when basic precipitation is performed in the step (C).
  • the acid and base those similar to those mentioned as the acid and base used in the acid precipitation / base precipitation in step (C) can be used.
  • the non-volatile content of the dispersion obtained here is 15 to 40%, and the conventional PAS dispersion is about 5 to 10%. Thus, it can be seen that a significantly high concentration PAS dispersion can be obtained. .
  • Step (F) is a step of obtaining a polyarylene sulfide composition by mixing the polyarylene sulfide fine particle dispersion obtained in the dispersion preparation step (E) with an aqueous resin.
  • the aqueous resin in the step (F) is the same as described above.
  • the mixing in the step (F) may be performed at room temperature or may be performed under heating conditions. Moreover, you may carry out in air and may carry out in inert gas atmosphere like nitrogen.
  • the mixing in the step (F) can be performed using a commercially available stirring device or the like.
  • the timing of adding the aqueous resin is not necessarily limited to the step (F).
  • the polyarylene sulfide particle wet cake coated with the water-containing ionic functional group-containing aqueous polymer obtained in the step (D) is aqueous.
  • the polyarylene sulfide composition of the present invention can also be obtained by a method of neutralizing with an acid or a base after mixing the resin.
  • a precipitate may be included in some cases.
  • the precipitation part and the dispersion part may be used separately.
  • the precipitation part and the dispersion part may be separated.
  • decantation, filtration, or the like may be performed.
  • centrifugation or the like is performed to completely settle the larger particle size, and decantation or filtration is performed to remove the precipitated portion.
  • the PAS microparticles and the aqueous solution of ionic functional group-containing aqueous polymer compound are not separated even after standing for 24 hours.
  • the polyarylene sulfide composition thus obtained is a useful material in the paint, adhesive and polymer compound fields because of its properties.
  • Various additives can be added to the composition obtained in the present invention depending on the application.
  • leveling agents, antifoaming agents, thickeners, waxes and other coating additives used conventionally known leveling agents, antifoaming agents, thickeners, waxes and other coating additives used; rust preventive pigments, extender pigments, Pigments such as coloring pigments can be added.
  • the autoclave was sealed and cooled to 180 ° C., and 17.874 kg of paradichlorobenzene (hereinafter abbreviated as “p-DCB”) and 16.0 kg of NMP were charged.
  • the temperature was raised by pressurizing to 0.1 MPa with a gauge pressure using nitrogen gas at a liquid temperature of 150 ° C.
  • the reaction was carried out at 260 ° C. for 2 hours while cooling by sprinkling the upper part of the autoclave.
  • the upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping.
  • the temperature was lowered and cooling of the upper part of the autoclave was stopped.
  • the maximum pressure during the reaction was 0.87 MPa.
  • the reaction mixture was cooled, the bottom valve was opened at 100 ° C., the reaction slurry was transferred to a 150 liter flat plate filter and pressure filtered at 120 ° C.
  • 50 kg of 70 ° C. warm water was added and stirred, followed by filtration. Further, 25 kg of warm water was added and filtered. Next, 25 kg of warm water was added, stirred for 1 hour, filtered, and then the operation of adding 25 kg of warm water and filtering was repeated twice.
  • the obtained cake was dried at 120 ° C. for 15 hours using a hot air circulating dryer to obtain PAS-1.
  • the melt viscosity of the obtained PAS-1 was 10 Pa ⁇ s.
  • Production Example 2 Production of Polyarylene Sulfide Resin (PAS-2) A 150-liter autoclave was charged with 19.222 kg of flaky Na 2 S (60.9 mass%) and 45.0 kg of NMP. While stirring under a nitrogen stream, the temperature was raised to 204 ° C. to distill 4.438 kg of water (the amount of water remaining was 1.14 mol per 1 mol of Na 2 S). Thereafter, the autoclave was sealed and cooled to 180 ° C., and charged with 22.999 kg of p-DCB, 2.555 kg of m-DCB (15 mol% with respect to the total of m-DCB and p-DCB) and 18.0 kg of NMP. It is.
  • PAS-2 Polyarylene Sulfide Resin
  • the temperature was increased by pressurizing to 0.1 MPa using nitrogen gas at a liquid temperature of 150 ° C. While stirring at a liquid temperature of 220 ° C. for 3 hours, an 80 ° C. refrigerant was passed through a coil wound around the outside of the upper part of the autoclave to cool it. Thereafter, the temperature was raised and the mixture was stirred at a liquid temperature of 260 ° C. for 3 hours, and then the temperature was lowered and cooling of the upper part of the autoclave was stopped. The upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping. The maximum pressure during the reaction was 0.87 MPa.
  • the obtained slurry was repeatedly filtered and washed with water twice by a conventional method to obtain a filter cake containing about 50% by mass of water.
  • 60 kg of water and 100 g of acetic acid were added to the filter cake to re-slurry, stirred at 50 ° C. for 30 minutes, and then filtered again.
  • the pH of the slurry was 4.6.
  • the operation of adding 60 kg of water to the obtained filter cake and stirring for 30 minutes and then filtering again was repeated 5 times. Thereafter, the obtained filter cake was dried in a hot air circulating dryer at 120 ° C.
  • PAS-2 para-metapolyarylene sulfide copolymer resin
  • the obtained PAS-2 had a melting point of 230 ° C., a linear type, and a V6 melt viscosity of 8.5 Pa ⁇ s.
  • the liquid was transferred to a 3 liter separable round bottom flask and a portion of the water was distilled off. After cooling to room temperature, the concentration was adjusted with ion-exchanged water to obtain an aqueous resin (B-2) containing an ionic functional group having a solid content of 25.6%.
  • an autoclave [1] having a valve that can be opened and closed at the bottom 50 g of PAS-1 produced in Production Example 1 and 1200 g of NMP were placed. Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
  • Step (E) [Fine particle dispersion preparation step] 2650 g of the wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake obtained in the step (D) and 22.9 g of 50% dimethylaminoethanol aqueous solution are put in a 5 L stainless steel cup, and an ultrasonic disperser manufactured by Hielscher is used. Ultrasonic waves were irradiated for 45 minutes at UP400ST (output 400 W, frequency 24 kHz), and adjusted to have a non-volatile content of 23% with ion-exchanged water to obtain a PAS fine particle dispersion (D-1). The dispersion particle size (D 50 ) of the obtained dispersion was 240 nm.
  • Production Example 12 Production / Process (A) [Dissolution Process] of Anionic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-2)
  • A [Dissolution Process] of Anionic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-2)
  • D-2 Aqueous Dispersion
  • An autoclave [1] having a valve that can be opened and closed at the bottom 50 g of PAS-2 produced in Production Example 2 and 1200 g of NMP were placed. Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
  • Step (E) [Fine particle dispersion preparation step] 1960 g of the wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake obtained in the step (D) and 41.6 g of 50% dimethylaminoethanol aqueous solution are put in a 5 L stainless steel cup, and an ultrasonic disperser manufactured by Hielscher is used. Ultrasonic waves were irradiated for 45 minutes at UP400ST (output 400 W, frequency 24 kHz), and adjusted to have a non-volatile content of 20% with ion-exchanged water to obtain a PAS fine particle dispersion (D-2). The resulting dispersion had a dispersed particle size (D 50 ) of 170 nm.
  • Production Example 13 Production / Process (A) [Dissolution Process] of Cationic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-3)
  • A [Dissolution Process] of Cationic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-3)
  • A autoclave having a valve that can be opened and closed at the bottom
  • Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
  • Step (E) [Fine particle dispersion preparation step]
  • the wet cationic group-containing aqueous polymer compound-coated PAS particle wet cake 1613.3 g obtained in the step (D), 68.9 g of 10% acetic acid, and 253.8 g of ion-exchanged water were placed in a 5 L stainless steel cup.
  • a PAS fine particle dispersion (D-3) was obtained.
  • the dispersed particle diameter (D 50 ) of the obtained dispersion was 149 nm.
  • Production Example 14 Production / Process (A) [Dissolution Process] of Anionic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-4)
  • A [Dissolution Process] of Anionic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-4)
  • an autoclave [1] having a valve that can be opened and closed at the bottom 50 g of PAS-1 produced in Production Example 2 and 1200 g of NMP were placed. Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
  • Step (E) [Fine particle dispersion preparation step] 432 g of the wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake obtained in the step (D) and 8.28 g of 50% dimethylaminoethanol aqueous solution are put in a 1 L stainless steel cup, and an ultrasonic disperser manufactured by Hielscher is used. Ultrasonic waves were irradiated for 45 minutes at UP400ST (output 400 W, frequency 24 kHz), and adjusted to have a non-volatile content of 18.8% with ion-exchanged water to obtain a PAS fine particle dispersion (D-4). The obtained dispersion had a dispersed particle size (D 50 ) of 182 nm.
  • Paint PB-1 and water-based resin (B-1) were prepared in the same manner as in Production Example 30 in the quantities shown in the following table (Table 3). Then, paints PB-3 to PB-8 were prepared.
  • Paint PD-1 and aqueous resin (vinyl-modified epoxy ester resin: EFD-5530, non-volatile content: 37.4%, manufactured by DIC) are shown in the following table (No. 6 The quantity described in Table) was put in a container and stirred well to prepare paint PD-2 and paint PD-3.
  • Example 1 Confirmation of coating film setting performance
  • the paint PA-2 obtained in Production Example 15 was applied to a zinc phosphate-treated SPCC steel plate with an applicator 6 mil. Then, the setting property of the coating film obtained by drying at 60 ° C. for 30 minutes was confirmed. The results are shown in the table below.
  • Examples 2 to 31 In the same manner as in Example 1, using the coating materials PA-3 to 14, PB-2 to 8, PC-2 to 10, and PD-2 to 3 obtained in the respective production examples, setting property and appearance of the baked coating film It was confirmed. The results are shown in the table below.
  • Example 32 (Example 32) -Salt water spray test of coating film A salt aqueous solution having a sodium chloride concentration of 50 g / L was sprayed on the coating film obtained in Example 31 for 300 hours using an SST tester (ISO type caster / manufactured by Suga Test Instruments Co., Ltd.) The anticorrosiveness against salt water was confirmed. As a result, no defects were confirmed in the coating film.
  • polyether polyol type urethane resin, polyester type urethane resin, styrene- (meth) acrylic resin, polyvinyl pyrrolidone, vinyl modified epoxy ester resin were used as aqueous resins (Examples 1-7, 14- 20, 8 to 10, 21 to 24, 11 to 13, 30 to 31), and polyarylene sulfide compositions that are particularly excellent in setting performance as compared with the comparative examples were obtained.
  • a vinyl-modified epoxy ester resin is more preferable to use as the aqueous resin from the viewpoint of the anticorrosive property of the coating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing a polyarylene sulfide microparticle dispersion liquid having high dispersion stability in high concentrations and excellent adhesiveness and adherence to metals. A polyarylene sulfide (PAS) composition including an aqueous resin and a polyarylene sulfide microparticle dispersion liquid coated by an ionic functional group-containing aqueous polymer compound; and a production method having a step for heating PAS in a solvent to produce a solution; a step for adding an ionic group-containing polymer compound to water, dissolving, adding the PAS solution, and forming PAS microparticles; a step for neutralizing the functional groups present in the surface layer of the PAS microparticles using an acid or a base and causing depositing of the PAS microparticles coated by the ionic group-containing polymer through precipitation; a step for filtering and washing the coated PAS particles and obtaining a coated PAS microparticle wet cake; a step for neutralizing the functional groups of the wet cake using an acid or a base and obtaining a coated PAS microparticle dispersion liquid, and a step for mixing the coated PAS microparticle dispersion liquid and an aqueous resin to obtain a PAS composition.

Description

ポリアリーレンスルフィド組成物、その製造方法及び塗膜Polyarylene sulfide composition, method for producing the same, and coating film
 本発明は、イオン性官能基含有水性高分子化合物で被覆されたポリアリーレンスルフィド微粒子分散液と、水性樹脂とを含むポリアリーレンスルフィド組成物、その製造方法及びそれを用いて得られた塗膜に関する。 TECHNICAL FIELD The present invention relates to a polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound and an aqueous resin, a method for producing the same, and a coating film obtained using the same. .
 ポリアリーレンスルフィド(以下PASと略すことがある)樹脂は、機械的強度、耐熱性、耐薬品性、成形加工性、寸法安定性に優れ、これら特性を利用して、電気・電子機器部品、自動車部品材料等として使用されている。 Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) resin is excellent in mechanical strength, heat resistance, chemical resistance, molding processability, and dimensional stability. Used as part material.
 一方で、ポリアリーレンスルフィド樹脂は、異なる素材との密着性、接着性に劣ることから、用途拡大が進まないといった側面を持っている。そこで、塗料分野、接着材料分野、コーティング分野、ポリマーコンパウンド分野などにおいて、ポリアリーレンスルフィドの微粒子化さらには、分散液化することができれば、需要は高いと予想されるものの、密着性、接着性の要求特性を満たす微粒子、分散液を得る事は困難であった。 On the other hand, polyarylene sulfide resin has an aspect that its application expansion does not proceed because it is inferior in adhesion and adhesion to different materials. Therefore, in the paint field, adhesive material field, coating field, polymer compound field, etc., demand for adhesion and adhesiveness is expected, although demand is expected if polyarylene sulfide can be made into fine particles and dispersed into liquid. It was difficult to obtain fine particles and dispersion liquid that satisfy the characteristics.
 PAS微粒子やPAS分散液を得る手段として、近年ではいくつかの手法が提案されている。例えば特許文献1~2では、無機塩の存在下でポリアリーレンスルフィド樹脂を有機溶媒中で加熱溶解し、その後、冷却しポリアリーレンスルフィド粗粒子を析出させ懸濁液としたのち、界面活性剤を添加、磨砕することで微粒子の分散液を得る製造方法が提案されている。また、特許文献3では、高分子界面活性剤、ポリアリーレンスルフィド樹脂微粒子、アルコール系溶媒からなるポリアリーレンスルフィド樹脂微粒子分散液が提案されている。しかしながら、特許文献1~3の様な従来技術で得られるPAS微粒子からなる分散液は、有効成分濃度が低く、塗膜形成に十分なポリアリーレンスルフィド濃度の塗料を作製することが困難であり、所望の塗膜を得ることができなかった。 In recent years, several methods have been proposed as means for obtaining PAS fine particles and a PAS dispersion. For example, in Patent Documents 1 and 2, a polyarylene sulfide resin is heated and dissolved in an organic solvent in the presence of an inorganic salt, and then cooled to precipitate polyarylene sulfide coarse particles to form a suspension. A production method for obtaining a fine particle dispersion by adding and grinding has been proposed. Patent Document 3 proposes a polyarylene sulfide resin fine particle dispersion comprising a polymer surfactant, polyarylene sulfide resin fine particles, and an alcohol solvent. However, dispersions composed of PAS fine particles obtained by conventional techniques such as Patent Documents 1 to 3 have a low active ingredient concentration, and it is difficult to produce a coating having a polyarylene sulfide concentration sufficient for coating formation. A desired coating film could not be obtained.
 上記のような現状に対して最近では、酸析法によってPAS微粒子をアニオン性基含有有機高分子化合物で被覆することにより、高濃度で安定性の高いPAS分散体が得られることが示されている(特許文献4参照)。 Recently, it has been shown that a highly stable PAS dispersion can be obtained at a high concentration by coating PAS fine particles with an anionic group-containing organic polymer compound by an acid precipitation method. (See Patent Document 4).
特開2009-173878号公報JP 2009-173878 A 特開2012-177010号公報JP 2012-177010 A 特開2011-122108号公報JP 2011-122108 A 国際公開第2015/178105号International Publication No. 2015/178105
 特許文献4に開示された発明では、PAS樹脂の濃度が高い場合にも安定なPAS分散体が得られることが確認されており、該PAS分散体は、各種の基材に対する接着性及び密着性に優れるとされている。しかしながら、特許文献4に記載のPAS分散体は、金属に対する密着性の点において未だ改良の余地があり、金属密着性が高く、且つ金属へのコーティング塗料として好適に用い得るポリアリーレンスルフィド微粒子分散液が求められている。 In the invention disclosed in Patent Document 4, it has been confirmed that a stable PAS dispersion can be obtained even when the concentration of the PAS resin is high. The PAS dispersion has adhesiveness and adhesion to various substrates. It is said to be excellent. However, the PAS dispersion described in Patent Document 4 still has room for improvement in terms of adhesion to metal, has high metal adhesion, and can be suitably used as a coating paint on metal. Is required.
 本発明は上記事情に鑑みてなされたものであって、高濃度においても分散安定性が高く、且つ、金属への接着性及び密着性に優れたポリアリーレンスルフィド微粒子分散液を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polyarylene sulfide fine particle dispersion having high dispersion stability even at a high concentration and having excellent adhesion and adhesion to metal. And
 本発明者らは上記課題を解決するため鋭意検討を重ねた結果、ポリアリーレンスルフィド微粒子をイオン性官能基含有水性高分子化合物で被覆することにより得られる分散液に、さらに水性樹脂を含有させて得られるポリアリーレンスルフィド組成物が、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the inventors of the present invention further added an aqueous resin to a dispersion obtained by coating polyarylene sulfide fine particles with an ionic functional group-containing aqueous polymer compound. The present inventors have found that the obtained polyarylene sulfide composition can solve the above-mentioned problems, and have completed the present invention.
 すなわち、本発明のポリアリーレンスルフィド組成物等は、以下の特徴を有する。
(1)イオン性官能基含有水性高分子化合物で被覆されたポリアリーレンスルフィド微粒子分散液と、水性樹脂とを含むことを特徴とする、ポリアリーレンスルフィド組成物。
(2)前記ポリアリーレンスルフィド微粒子分散液は、ポリアリーレンスルフィド微粒子、イオン性官能基含有水性高分子化合物、酸又は塩基、及び水性媒体からなる、(1)のポリアリーレンスルフィド組成物。
(3)前記イオン性官能基含有水性高分子化合物のイオン性官能基が、カルボキシル基、カルボキシレート基、スルホン酸基、スルホネート基及びリン酸基からなる群より選ばれる少なくとも一種のアニオン性基である、(1)又は(2)のポリアリーレンスルフィド組成物。
(4)前記アニオン性官能基含有水性高分子化合物の酸価が、10~300mgKOH/gである、(3)のポリアリーレンスルフィド組成物。
(5)前記イオン性官能基含有水性高分子化合物のイオン性官能基が、カチオン性基であって、3級アミノ基である、(1)又は(2)のポリアリーレンスルフィド組成物。
(6)前記カチオン性官能基含有水性高分子化合物のアミン価が、10~300mgKOH/gである、(5)のポリアリーレンスルフィド組成物。
(7)前記イオン性官能基含有水性高分子化合物の主骨格が、(メタ)アクリル酸エステル樹脂、スチレン-(メタ)アクリル酸エステル樹脂、ビニル変性エポキシエステル樹脂、ビニル樹脂、ポリウレタン樹脂及びポリアミドイミド樹脂からなる群より選ばれる少なくとも一種の水性高分子化合物である、(1)~(6)のいずれかのポリアリーレンスルフィド組成物。
(8)前記イオン性官能基含有水性高分子化合物において、イオン性官能基の中和に用いられる酸又は塩基が、無機酸、スルホン酸、カルボン酸及びビニル性カルボン酸からなる群から選ばれる少なくとも一種の酸、又は、金属水酸化物及び有機アミンからなる群より選ばれる少なくとも一種の塩基である、(1)~(7)のいずれかのポリアリーレンスルフィド組成物。
(9)前記ポリアリーレンスルフィド微粒子分散液中のポリアリーレンスルフィド粒子の体積平均粒径が、1μm以下である、(1)~(8)のいずれかのポリアリーレンスルフィド組成物。
(10)ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程(A)と、
 水にイオン性官能基含有水性高分子化合物を添加して溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えて、ポリアリーレンスルフィド微粒子を形成させる工程(B)と、
 工程(B)で得られたポリアリーレンスルフィド微粒子の表層に存在するイオン性官能基含有水性高分子化合物の官能基を酸又は塩基で中和し、ポリアリーレンスルフィド微粒子表面にイオン性官能基含有水性高分子化合物を析出させて、イオン性官能基含有水性高分子で被覆されたポリアリーレンスルフィド微粒子を沈殿させる工程(C)と、
 工程(C)で得られたイオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄して、含水イオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド微粒子ウェットケーキを得る工程(D)と、
 工程(D)で得られた含水イオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキが有する官能基を酸又は塩基で中和し、イオン性官能基含有水性高分子化合物で被覆されたポリアリーレンスルフィド微粒子分散液を得る工程(E)と、
 工程(E)で得られた被覆ポリアリーレンスルフィド微粒子分散液と、水性樹脂とを混合してポリアリーレンスルフィド組成物を得る工程(F)と、
を有することを特徴とする、ポリアリーレンスルフィド組成物の製造方法。
(11)前記工程(A)に用いる有機溶媒がN-メチル-2-ピロリドン、1-クロロナフタレン、1,3-ジメチル-2-イミダゾリジノンの中から選択される少なくとも一種の有機溶媒である、(10)のポリアリーレンスルフィド組成物の製造方法。
(12)前記工程(B)の後に、工程(B)で得られたポリアリーレンスルフィド粒子分散液に対し、機械的粉砕を行う、(10)又は(11)のポリアリーレンスルフィド組成物の製造方法。
(13)前記(1)~(9)のいずれかに記載のポリアリーレンスルフィド組成物を用いて得られた塗膜。
(14)前記(1)~(9)のいずれかに記載のポリアリーレンスルフィド組成物を用いて被塗装物を塗装する工程、及び前記工程で得られた塗膜を乾燥させる乾燥工程を含む、塗膜の製造方法。
That is, the polyarylene sulfide composition of the present invention has the following characteristics.
(1) A polyarylene sulfide composition comprising a polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound and an aqueous resin.
(2) The polyarylene sulfide fine particle dispersion according to (1), wherein the polyarylene sulfide fine particle dispersion comprises polyarylene sulfide fine particles, an ionic functional group-containing aqueous polymer compound, an acid or a base, and an aqueous medium.
(3) The ionic functional group of the ionic functional group-containing aqueous polymer compound is at least one anionic group selected from the group consisting of a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and a phosphoric acid group. A polyarylene sulfide composition according to (1) or (2).
(4) The polyarylene sulfide composition according to (3), wherein the acid value of the anionic functional group-containing aqueous polymer compound is 10 to 300 mgKOH / g.
(5) The polyarylene sulfide composition according to (1) or (2), wherein the ionic functional group of the ionic functional group-containing aqueous polymer compound is a cationic group and is a tertiary amino group.
(6) The polyarylene sulfide composition according to (5), wherein the amine value of the cationic functional group-containing aqueous polymer compound is 10 to 300 mgKOH / g.
(7) The main skeleton of the ionic functional group-containing aqueous polymer compound is (meth) acrylate resin, styrene- (meth) acrylate resin, vinyl-modified epoxy ester resin, vinyl resin, polyurethane resin, and polyamideimide. The polyarylene sulfide composition according to any one of (1) to (6), which is at least one aqueous polymer compound selected from the group consisting of resins.
(8) In the ionic functional group-containing aqueous polymer compound, the acid or base used for neutralization of the ionic functional group is at least selected from the group consisting of inorganic acids, sulfonic acids, carboxylic acids, and vinylic carboxylic acids. The polyarylene sulfide composition according to any one of (1) to (7), which is at least one base selected from the group consisting of a single acid or a metal hydroxide and an organic amine.
(9) The polyarylene sulfide composition according to any one of (1) to (8), wherein the volume average particle diameter of the polyarylene sulfide particles in the polyarylene sulfide fine particle dispersion is 1 μm or less.
(10) Step (A) of heating polyarylene sulfide in an organic solvent to form a solution;
Step (B) of forming polyarylene sulfide fine particles by adding the polyarylene sulfide solution obtained in Step (A) to an aqueous resin solution in which an ionic functional group-containing aqueous polymer compound is added and dissolved in water. When,
The functional group of the ionic functional group-containing aqueous polymer compound present in the surface layer of the polyarylene sulfide fine particles obtained in the step (B) is neutralized with an acid or a base, and the ionic functional group-containing aqueous solution on the surface of the polyarylene sulfide fine particles. Precipitating a polymer compound to precipitate polyarylene sulfide fine particles coated with an ionic functional group-containing aqueous polymer (C);
The polyarylene sulfide particles coated with the water-containing ionic functional group-containing aqueous polymer obtained by filtering and washing the polyarylene sulfide particles coated with the ionic functional group-containing aqueous polymer obtained in the step (C) are washed. Obtaining a cake (D);
The polyarylene sulfide particle wet cake coated with the hydrous ionic functional group-containing aqueous polymer obtained in the step (D) is neutralized with an acid or a base, and an ionic functional group-containing aqueous polymer compound is used. A step (E) of obtaining a coated polyarylene sulfide fine particle dispersion; and
Step (F) of obtaining a polyarylene sulfide composition by mixing the coated polyarylene sulfide fine particle dispersion obtained in step (E) and an aqueous resin;
A process for producing a polyarylene sulfide composition, comprising:
(11) The organic solvent used in the step (A) is at least one organic solvent selected from N-methyl-2-pyrrolidone, 1-chloronaphthalene, and 1,3-dimethyl-2-imidazolidinone. (10) The manufacturing method of the polyarylene sulfide composition of.
(12) The method for producing a polyarylene sulfide composition according to (10) or (11), wherein after the step (B), the polyarylene sulfide particle dispersion obtained in the step (B) is mechanically pulverized. .
(13) A coating film obtained using the polyarylene sulfide composition according to any one of (1) to (9).
(14) including a step of coating an object to be coated using the polyarylene sulfide composition according to any one of (1) to (9), and a drying step of drying the coating film obtained in the step. A method for producing a coating film.
 本発明により、ポリアリーレンスルフィド樹脂の濃度が高くても安定であり、且つ、金属を含む各種基材に対する接着性及び密着性が優れた、ポリアリーレンスルフィド分散液を含む組成物が得られる。
 このようなポリアリーレンスルフィド組成物は、金属に対して特に良好な密着性を示すことから、高い機械的強度、高い耐熱性、高い耐薬品性等が求められる金属部材、金属設備用の塗料(例えば、ライニング剤等)として、好適に使用可能である。
According to the present invention, a composition containing a polyarylene sulfide dispersion, which is stable even when the concentration of the polyarylene sulfide resin is high, and has excellent adhesion and adhesion to various substrates containing metal, is obtained.
Since such a polyarylene sulfide composition exhibits particularly good adhesion to metal, it is required to have high mechanical strength, high heat resistance, high chemical resistance, etc. For example, it can be suitably used as a lining agent or the like.
 以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
<ポリアリーレンスルフィド組成物>
 本発明のポリアリーレンスルフィド組成物は、イオン性官能基含有水性高分子化合物で被覆されたポリアリーレンスルフィド微粒子分散液と、水性樹脂とを含むものである。
<Polyarylene sulfide composition>
The polyarylene sulfide composition of the present invention comprises a polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound and an aqueous resin.
[ポリアリーレンスルフィド微粒子分散液]
 本発明において、ポリアリーレンスルフィド微粒子分散液は、本発明のポリアリーレンスルフィド(イオン性官能基含有水性高分子化合物で被覆されたポリアリーレンスルフィド)が分散されたものであれば特に限定されるものではないが、ポリアリーレンスルフィド粒子、イオン性官能基含有水性高分子化合物、酸又は塩基、及び水性媒体からなるものであることが好ましい。
 以下、ポリアリーレンスルフィド微粒子分散液中の各成分について説明する。
[Polyarylene sulfide fine particle dispersion]
In the present invention, the polyarylene sulfide fine particle dispersion is not particularly limited as long as the polyarylene sulfide of the present invention (polyarylene sulfide coated with an ionic functional group-containing aqueous polymer compound) is dispersed. However, it is preferably composed of polyarylene sulfide particles, an ionic functional group-containing aqueous polymer compound, an acid or base, and an aqueous medium.
Hereinafter, each component in the polyarylene sulfide fine particle dispersion will be described.
・ポリアリーレンスルフィド微粒子
 ポリアリーレンスルフィド微粒子分散液に含有されるポリアリーレンスルフィド微粒子は、ポリアリーレンスルフィド樹脂が、イオン性官能基含有水性高分子化合物を用いて、水性媒体中に微粒子として分散されたものである。ポリアリーレンスルフィド微粒子の分散方法の詳細については後述する。
・ Polyarylene sulfide fine particles The polyarylene sulfide fine particles contained in the polyarylene sulfide fine particle dispersion are those in which a polyarylene sulfide resin is dispersed as fine particles in an aqueous medium using an ionic functional group-containing aqueous polymer compound. It is. Details of the method for dispersing the polyarylene sulfide fine particles will be described later.
 本発明においてポリアリーレンスルフィド樹脂とは、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものである。より具体的には、下記式(1)で表される構造部位を繰り返し単位とする樹脂が挙げられる。 In the present invention, the polyarylene sulfide resin has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded. More specifically, a resin having a structural unit represented by the following formula (1) as a repeating unit is exemplified.
Figure JPOXMLDOC01-appb-C000001
[式中、R及びRは、それぞれ独立して、水素原子、炭素原子数1~4のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基又はエトキシ基を表す。]
Figure JPOXMLDOC01-appb-C000001
[Wherein, R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group or an ethoxy group. ]
 ここで、前記式(1)で表される構造部位において、式中のR及びRは、前記ポリアリーレンスルフィド樹脂の機械的強度の点から水素原子であることが特に好ましい。
 また、R及びRが共に水素原子である場合、芳香族環における結合位置としては、下記式(2)で表されるパラ位で結合するものが好ましい。
Here, in the structural portion represented by the formula (1), R 1 and R 2 in the formula are particularly preferably hydrogen atoms from the viewpoint of mechanical strength of the polyarylene sulfide resin.
Moreover, when R < 1 > and R < 2 > are both hydrogen atoms, what is couple | bonded in the para position represented by following formula (2) as a coupling | bonding position in an aromatic ring is preferable.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記構造式(2)で表されるパラ位で結合した構造であることが前記ポリアリーレンスルフィド樹脂の耐熱性や結晶性の面で好ましい。また、パラ位で結合した構造とメタ位で結合した構造、パラ位で結合した構造とオルト位で結合した構造を混合して使用することも可能である。 Among these, in particular, the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para position represented by the structural formula (2). In terms of surface. It is also possible to use a mixture of a structure bonded at the para position and a structure bonded at the meta position, and a structure bonded at the para position and a structure bonded at the ortho position.
 また、前記ポリアリーレンスルフィド樹脂は、前記式(1)で表される構造部位のみならず、下記の構造式(3)~(6)で表される構造部位を、前記式(1)で表される構造部位との合計の30モル%以下で含んでいてもよい。 In addition, the polyarylene sulfide resin represents not only the structural moiety represented by the formula (1) but also the structural moiety represented by the following structural formulas (3) to (6) by the formula (1). It may be contained in an amount of 30 mol% or less of the total with the structural site.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 特に本発明では、上記式(3)~(6)で表される構造部位は10モル%以下であることが、ポリアリーレンスルフィド樹脂の耐熱性、機械的強度の点から好ましい。前記ポリアリーレンスルフィド樹脂中に、上記式(3)~(6)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合、ブロック共重合の何れであってもよい。 In particular, in the present invention, the structural site represented by the above formulas (3) to (6) is preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin. When the polyarylene sulfide resin contains structural parts represented by the above formulas (3) to (6), their bonding mode may be either random copolymerization or block copolymerization.
 また、前記ポリアリーレンスルフィド樹脂は、その分子構造中に、下記式(7)で表される3官能性の構造部位、或いは、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。 The polyarylene sulfide resin may have a trifunctional structural site represented by the following formula (7) or a naphthyl sulfide bond in the molecular structure, but other structural sites. Is preferably 3 mol% or less, particularly preferably 1 mol% or less, based on the total number of moles.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記ポリアリーレンスルフィド樹脂の製造方法としては特に限定されないが、例えば下記(1)~(3)の方法により製造することができる。
 (1)ジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物と、更に必要ならばその他の共重合成分とを、硫黄と炭酸ソーダの存在下で重合させる方法。
 (2)ジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物と、更に必要ならばその他の共重合成分とを、極性溶媒中でスルフィド化剤等の存在下に、重合させる方法
 (3)p-クロルチオフェノールと、更に必要ならばその他の共重合成分とを自己縮合させる方法。
The method for producing the polyarylene sulfide resin is not particularly limited. For example, it can be produced by the following methods (1) to (3).
(1) A method of polymerizing a dihalogenoaromatic compound, a polyhalogenoaromatic compound, and, if necessary, other copolymerization components in the presence of sulfur and sodium carbonate.
(2) A method of polymerizing a dihalogenoaromatic compound, a polyhalogenoaromatic compound, and, if necessary, other copolymerization components in a polar solvent in the presence of a sulfidizing agent, etc. (3) p-chlorothio A method of self-condensing phenol and, if necessary, other copolymer components.
 これらの方法のなかでも、(2)の方法が汎用的であり好ましい。
 重合反応の際、重合度を調節するため、カルボン酸やスルホン酸のアルカリ金属塩を添加したり、水酸化アルカリを添加したりしても良い。
 上記(2)の方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物とを含む混合物に、含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物とスルフィド化剤とを反応させ、且つ、反応系内の水分量を該有機極性溶媒1モルに対して0.02~0.5モルの範囲にコントロールすることによりポリアリーレンスルフィド樹脂を製造する方法(特開平07-228699号公報参照。)が特に好ましい。
 また、上記(2)の方法としては、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下で、ジハロゲノ芳香族化合物と、ポリハロゲノ芳香族化合物、アルカリ金属水硫化物及び有機酸アルカリ金属塩とを、硫黄源1モルに対して0.01~0.9モルの有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モルの範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)も特に好ましい。
 ジハロゲノ芳香族化合物の具体例としては、p-ジハロベンゼン、m-ジハロベンゼン、o-ジハロベンゼン、2,5-ジハロトルエン、1,4-ジハロナフタレン、1-メトキシ-2,5-ジハロベンゼン、4,4’-ジハロビフェニル、3,5-ジハロ安息香酸、2,4-ジハロ安息香酸、2,5-ジハロニトロベンゼン、2,4-ジハロニトロベンゼン、2,4-ジハロアニソール、p,p’-ジハロジフェニルエーテル、4,4’-ジハロベンゾフェノン、4,4’-ジハロジフェニルスルホン、4,4’-ジハロジフェニルスルホキシド、4,4’-ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1~18のアルキル基を核置換基として有する化合物が挙げられる。
 ポリハロゲノ芳香族化合物の具体例としては、1,2,3-トリハロベンゼン、1,2,4-トリハロベンゼン、1,3,5-トリハロベンゼン、1,2,3,5-テトラハロベンゼン、1,2,4,5-テトラハロベンゼン、1,4,6-トリハロナフタレン等が挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
Among these methods, the method (2) is versatile and preferable.
In the polymerization reaction, an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization.
Among the above methods (2), a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent, a dihalogenoaromatic compound, and a polyhalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, A dihalogenoaromatic compound, a polyhalogenoaromatic compound and a sulfidizing agent are reacted in an organic polar solvent, and the water content in the reaction system is 0.02 to 0.5 mol relative to 1 mol of the organic polar solvent. A method for producing a polyarylene sulfide resin by controlling in the above range (see JP-A-07-228699) is particularly preferred.
In the method (2), a dihalogeno aromatic compound, a polyhalogeno aromatic compound, an alkali metal hydrosulfide, and an organic acid alkali metal in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent. Salt, 0.01 to 0.9 mol of organic acid alkali metal salt with respect to 1 mol of sulfur source, and the amount of water in the reaction system is in the range of 0.02 mol with respect to 1 mol of aprotic polar organic solvent. A method in which the reaction is carried out while controlling (see pamphlet of WO2010 / 058713) is also particularly preferable.
Specific examples of dihalogenoaromatic compounds include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4,4 ′ -Dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p'- Dihalodiphenyl ether, 4,4′-dihalobenzophenone, 4,4′-dihalodiphenyl sulfone, 4,4′-dihalodiphenyl sulfoxide, 4,4′-dihalodiphenyl sulfide, and the fragrance of each of the above compounds And compounds having an alkyl group having 1 to 18 carbon atoms in the ring as a nuclear substituent.
Specific examples of the polyhalogenoaromatic compound include 1,2,3-trihalobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1 2,4,5-tetrahalobenzene, 1,4,6-trihalonaphthalene and the like. Moreover, it is desirable that the halogen atom contained in each compound is a chlorine atom or a bromine atom.
 重合工程により得られたポリアリーレンスルフィド樹脂を含む反応混合物の後処理方法としては特に限定されないが、例えば下記(i)~(iii)の方法が挙げられる。
 (i)重合反応終了後、先ず反応混合物をそのまま、或いは、酸又は塩基を加えた後、減圧下又は常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は、低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類等の溶媒で1回又は2回以上洗浄し、更に中和、水洗、濾過及び乾燥する方法。
 (ii)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素等の溶媒(使用した重合溶媒に可溶であり、且つ、少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法。
 (iii)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌した後、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類等の溶媒で1回又は2回以上洗浄し、その後中和、水洗、濾過及び乾燥する方法。
The post-treatment method of the reaction mixture containing the polyarylene sulfide resin obtained by the polymerization step is not particularly limited, and examples thereof include the following methods (i) to (iii).
(I) After the completion of the polymerization reaction, the reaction mixture is first left as it is, or an acid or a base is added, and then the solvent is distilled off under reduced pressure or normal pressure. Or an organic solvent having an equivalent solubility in a low-molecular polymer), a method of washing once or twice with a solvent such as acetone, methyl ethyl ketone, alcohol, and the like, followed by neutralization, washing with water, filtration and drying.
(Ii) After completion of the polymerization reaction, the reaction mixture is soluble in water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons, aromatic hydrocarbons, aliphatic hydrocarbons and the like (soluble in the polymerization solvent used). And at least a solvent that is a poor solvent for polyarylene sulfide) is added as a precipitating agent to precipitate solid products such as polyarylene sulfide and inorganic salts, which are filtered, washed, and dried. Method.
(Iii) After the completion of the polymerization reaction, a reaction solvent (or an organic solvent having an equivalent solubility with respect to the low molecular weight polymer) is added to the reaction mixture and stirred, then filtered to remove the low molecular weight polymer, water, A method of washing once or more with a solvent such as acetone, methyl ethyl ketone, alcohols, etc., and then neutralizing, washing with water, filtering and drying.
 上記(i)~(iii)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよく、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。
 また、ポリアリーレンスルフィド樹脂は、酸素濃度が5~30体積%の範囲の酸化性雰囲気中又は減圧条件下で熱処理を行い、酸化架橋させることもできる。
 ポリアリーレンスルフィド樹脂の物性は、本発明の効果を損ねない限り特に限定されないが、例えば以下のような物性を有するポリアリーレンスルフィド樹脂が好ましい。
In the post-treatment methods exemplified in the above (i) to (iii), the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. .
The polyarylene sulfide resin can also be oxidized and crosslinked by heat treatment in an oxidizing atmosphere having an oxygen concentration in the range of 5 to 30% by volume or under reduced pressure.
The physical properties of the polyarylene sulfide resin are not particularly limited as long as the effects of the present invention are not impaired. For example, polyarylene sulfide resins having the following physical properties are preferable.
(溶融粘度)
 本発明に用いるポリアリーレンスルフィド樹脂は、300℃で測定した溶融粘度(V6)が、0.1~1000〔Pa・s〕の範囲であることが好ましく、さらに流動性および機械的強度のバランスが良好となることから0.1~100〔Pa・s〕の範囲がより好ましく、特に0.1~50〔Pa・s〕の範囲であることが特に好ましい。
(Melt viscosity)
The polyarylene sulfide resin used in the present invention preferably has a melt viscosity (V6) measured at 300 ° C. in the range of 0.1 to 1000 [Pa · s], and further has a balance between fluidity and mechanical strength. The range of 0.1 to 100 [Pa · s] is more preferable from the viewpoint of goodness, and the range of 0.1 to 50 [Pa · s] is particularly preferable.
(非ニュートン指数)
 本発明に用いるポリアリーレンスルフィド樹脂の非ニュートン指数は、本発明の効果を損ねない限り特に限定されないが、0.90~2.00の範囲であることが好ましい。リニア型ポリアリーレンスルフィド樹脂を用いる場合には、非ニュートン指数が0.90~1.50の範囲であることが好ましく、さらに0.95~1.20の範囲であることがより好ましい。このようなポリアリーレンスルフィド樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、非ニュートン指数(N値)は、キャピログラフを用いて300℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度及び剪断応力を測定し、下記式を用いて算出した値である。
(Non-Newtonian index)
The non-Newtonian index of the polyarylene sulfide resin used in the present invention is not particularly limited as long as the effect of the present invention is not impaired, but it is preferably in the range of 0.90 to 2.00. When the linear polyarylene sulfide resin is used, the non-Newtonian index is preferably in the range of 0.90 to 1.50, and more preferably in the range of 0.95 to 1.20. Such a polyarylene sulfide resin is excellent in mechanical properties, fluidity, and abrasion resistance. However, the non-Newtonian index (N value) is measured by measuring the shear rate and shear stress using a capillograph at 300 ° C, the ratio of the orifice length (L) to the orifice diameter (D), and L / D = 40. These are values calculated using the following formula.
Figure JPOXMLDOC01-appb-M000005
[SRは剪断速度(秒-1)を示し、SSは剪断応力(ダイン/cm)を示し、Kは定数を示す。]
Figure JPOXMLDOC01-appb-M000005
[SR indicates shear rate (second −1 ), SS indicates shear stress (dyne / cm 2 ), and K indicates a constant. ]
 N値は1に近いほどポリアリーレンスルフィド樹脂は線状に近い構造であり、N値が高いほど分岐が進んだ構造であることを示す。 The closer the N value is to 1, the closer the polyarylene sulfide resin is to a linear structure, and the higher the N value is, the more branched the structure is.
 上述のようなポリアリーレンスルフィド樹脂を水性媒体中に分散して得られる微粒子は、その体積平均粒径が1μm以下であることが好ましく、500nm未満であることがさらに好ましい。
 体積平均粒径の測定方法、及び上記のような体積平均粒径を有するポリアリーレンスルフィド樹脂の製造方法については後述する。
The fine particles obtained by dispersing the polyarylene sulfide resin as described above in an aqueous medium preferably have a volume average particle size of 1 μm or less, more preferably less than 500 nm.
A method for measuring the volume average particle diameter and a method for producing the polyarylene sulfide resin having the volume average particle diameter as described above will be described later.
・イオン性官能基含有水性高分子化合物
 本発明において、イオン性官能基含有水性高分子化合物は、イオン性官能基をその構造内に有し、且つ、親水性を呈し得る高分子化合物であれば特に限定されるものではない。
 イオン性官能基は、アニオン性官能基であってもカチオン性官能基であってもよい。
-Ionic functional group-containing aqueous polymer compound In the present invention, the ionic functional group-containing aqueous polymer compound is a polymer compound that has an ionic functional group in its structure and can exhibit hydrophilicity. It is not particularly limited.
The ionic functional group may be an anionic functional group or a cationic functional group.
 イオン性官能基含有水性高分子化合物の主骨格は、(メタ)アクリル酸エステル樹脂、スチレン-(メタ)アクリル酸エステル樹脂、(メタ)アクリル酸エステル-エポキシ樹脂、ビニル樹脂、ポリウレタン樹脂及びポリアミドイミド樹脂からなる群より選ばれる少なくとも一種であることが好ましい。 The main skeleton of the ionic functional group-containing aqueous polymer compound is (meth) acrylate resin, styrene- (meth) acrylate resin, (meth) acrylate-epoxy resin, vinyl resin, polyurethane resin, and polyamideimide. It is preferably at least one selected from the group consisting of resins.
 アニオン性官能基としては、例えば、カルボキシル基、カルボキシレート基、スルホン酸基、スルホネート基、リン酸基等が挙げられる。なかでも、前記カルボキシル基やスルホン酸基の一部または全部が塩基性化合物等によって中和されたカルボキシレート基やスルホネート基を使用することが、良好な水分散安定性を付与する上で好ましい。
 また、カチオン性官能基としては、例えば3級アミノ基が挙げられ、具体的には、ジメチルアミノ基、ジエチルアミノ基、メチルエチルアミノ基等が挙げられる。
Examples of the anionic functional group include a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and a phosphoric acid group. Among them, it is preferable to use a carboxylate group or a sulfonate group in which a part or all of the carboxyl group or sulfonic acid group is neutralized with a basic compound or the like in order to impart good water dispersion stability.
Examples of the cationic functional group include a tertiary amino group, and specific examples include a dimethylamino group, a diethylamino group, and a methylethylamino group.
 イオン性官能基含有水性高分子化合物がアニオン性である場合、その酸価は、良好な分散安定性の観点から10~300mgKOH/gが好ましく、50~240mgKOH/gが好ましい。
 また、イオン性官能基含有水性高分子化合物がカチオン性である場合、そのアミン価は、良好な分散安定性の観点から10~300mgKOH/gが好ましく、50~240mgKOH/gが好ましい。
When the ionic functional group-containing aqueous polymer compound is anionic, its acid value is preferably 10 to 300 mgKOH / g, more preferably 50 to 240 mgKOH / g, from the viewpoint of good dispersion stability.
When the ionic functional group-containing aqueous polymer compound is cationic, its amine value is preferably 10 to 300 mgKOH / g, more preferably 50 to 240 mgKOH / g, from the viewpoint of good dispersion stability.
 上記イオン性官能基含有水性高分子化合物としては、1種を単独で用いてもよく、2種以上を併用してもよい。 As the ionic functional group-containing aqueous polymer compound, one kind may be used alone, or two or more kinds may be used in combination.
・酸又は塩基
 本発明のポリアリーレンスルフィド微粒子分散液が含有する酸又は塩基は、上記イオン性官能基含有水性高分子化合物を、当該酸又は塩基中で溶解させる際に使用された酸又は塩基である。具体的には、イオン性官能基含有水性高分子化合物がアニオン性である場合には、溶解の際に用いられる塩基が当該分散液中に含まれる。一方、イオン性官能基含有水性高分子化合物がカチオン性である場合には、溶解の際に用いられる酸が当該分散液中に含まれる。
Acid or base The acid or base contained in the polyarylene sulfide fine particle dispersion of the present invention is the acid or base used when the ionic functional group-containing aqueous polymer compound is dissolved in the acid or base. is there. Specifically, when the ionic functional group-containing aqueous polymer compound is anionic, a base used for dissolution is included in the dispersion. On the other hand, when the ionic functional group-containing aqueous polymer compound is cationic, an acid used for dissolution is included in the dispersion.
 塩基としては、アンモニアや、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の無機の金属水酸化物、メチルアミン、エチルアミン、n-ブチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミンの如きアルキルアミン類;N-メチルアミノエタノール、N,N-ジメチルアミノエタノール、N,N-ジエチルアミノエタノール、2-アミノ-2-メチルプロパノール、ジエタノールアミン、トリエタノールアミンの如きヒドロキシルアミン類;エチレンジアミン、ジエチレントリアミンの如き多価アミン類等の有機アミン等が好ましい。
 塩基は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the base include ammonia, inorganic metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, methylamine, ethylamine, n-butylamine, dimethylamine, diethylamine, trimethylamine, triethylamine, tri-n-butylamine. Alkylamines such as: hydroxylamines such as N-methylaminoethanol, N, N-dimethylaminoethanol, N, N-diethylaminoethanol, 2-amino-2-methylpropanol, diethanolamine, triethanolamine; ethylenediamine, diethylenetriamine Organic amines such as polyamines such as are preferred.
A base may be used individually by 1 type and may use 2 or more types together.
 酸としては、塩酸、硫酸、硝酸、リン酸等の無機の酸性物質(無機酸);メタンスルホン酸、エタンスルホン酸、p-トルエンスルホン酸等のスルホン酸類;酢酸、ギ酸、シュウ酸、アクリル酸、メタクリル酸、アスコルビン酸、メルドラム酸等のカルボン酸類;ビニル性カルボン酸類等の有機の酸性物質が好ましい。
 酸は、1種を単独で用いてもよく、2種以上を併用してもよい。
Acids include inorganic acidic substances (inorganic acids) such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; sulfonic acids such as methanesulfonic acid, ethanesulfonic acid and p-toluenesulfonic acid; acetic acid, formic acid, oxalic acid and acrylic acid Carboxylic acids such as methacrylic acid, ascorbic acid, and Meldrum's acid; and organic acidic substances such as vinylic carboxylic acids are preferred.
An acid may be used individually by 1 type and may use 2 or more types together.
 イオン性官能基含有水性高分子化合物に対する酸又は塩基の量としては、高分子化合物を完全に溶解させるため、イオン性官能基含有水性高分子化合物のアミン価又は酸価に対して、70~300%が好ましい。 The amount of acid or base relative to the ionic functional group-containing aqueous polymer compound is 70 to 300 with respect to the amine value or acid value of the ionic functional group-containing aqueous polymer compound in order to completely dissolve the polymer compound. % Is preferred.
・水性媒体
 水性媒体としては、水単独であってもよく、水と水溶性溶媒からなる混合溶媒でもよい。水溶性溶媒としては、例えば、アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、等のケトン類;メタノール、エタノール、2-プロパノール、2-メチル-1-プロパノール、1-ブタノール、2-メトキシエタノール、等のアルコール類;テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、等のエーテル類;ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類が挙げられ、とりわけ炭素数が3~6のケトン及び炭素数が1~5のアルコールからなる群から選ばれる化合物を用いるのが好ましい。
 また、その他、水性媒体に溶解しうる水溶性有機溶剤を含んでいてもよい。例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどのグリコール類;ブタンジオール、ペンタンジオール、ヘキサンジオール、およびこれらと同族のジオールなどのジオール類;ラウリン酸プロピレングリコールなどのグリコールエステル;ジエチレングリコールモノエチル、ジエチレングリコールモノブチル、ジエチレングリコールモノヘキシルの各エーテル、プロピレングリコールエーテル、ジプロピレングリコールエーテル、およびトリエチレングリコールエーテルを含むセロソルブなどのグリコールエーテル類;あるいは、スルホラン;γ-ブチロラクトンなどのラクトン類;N-(2-ヒドロキシエチル)ピロリドンなどのラクタム類;グリセリンおよびその誘導体、ポリオキシエチレンベンジルアルコールエーテルなど、水溶性有機溶剤として知られる他の各種の溶剤などを挙げることができる。これらの水溶性有機溶剤は1種または2種以上混合して用いることができる。
-Aqueous medium As an aqueous medium, water alone may be sufficient and the mixed solvent which consists of water and a water-soluble solvent may be sufficient. Examples of the water-soluble solvent include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, and methyl isobutyl ketone; methanol, ethanol, 2-propanol, 2-methyl-1-propanol, 1-butanol, 2-methoxyethanol, Alcohols such as tetrahydrofuran; ethers such as 1,4-dioxane and 1,2-dimethoxyethane; and amides such as dimethylformamide and N-methyl-2-pyrrolidone. It is preferable to use a compound selected from the group consisting of a ketone and an alcohol having 1 to 5 carbon atoms.
In addition, a water-soluble organic solvent that can be dissolved in an aqueous medium may be included. For example, glycols such as ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, polyethylene glycol, and polypropylene glycol; diols such as butanediol, pentanediol, hexanediol, and diols similar to these; propylene laurate Glycol esters such as glycol; glycol ethers such as cellosolve including diethylene glycol monoethyl, diethylene glycol monobutyl, diethylene glycol monohexyl ethers, propylene glycol ether, dipropylene glycol ether, and triethylene glycol ether; or sulfolane; γ- Lactones such as butyrolactone; N- (2-hydride Kishiechiru) lactams, such as pyrrolidone; glycerol and its derivatives, such as polyoxyethylene alcohol ethers, and the like other various solvents, known as water-soluble organic solvent. These water-soluble organic solvents can be used alone or in combination.
[水性樹脂]
 本発明のポリアリーレンスルフィド組成物が含有する水性樹脂としては、アニオン性官能基含有ポリウレタン樹脂、カチオン性官能基含有ポリウレタン樹脂などのポリウレタン樹脂類;ポリビニルアルコール類;ポリビニルピロリドン類;ビニル変性エポキシエステル樹脂;(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸エステル-(メタ)アクリル酸N,N-ジアルキルアミノアルキルエステル共重合体などの(メタ)アクリル系樹脂類;(メタ)アクリル酸エステル-スチレン-(メタ)アクリル酸共重合体、(メタ)アクリル酸エステル-スチレン-(メタ)アクリル酸N,N-ジアルキルアミノアルキルエステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレン-(メタ)アクリル系樹脂類;スチレン-マレイン酸共重合体;スチレン-無水マレイン酸共重合体;ビニルナフタレン-アクリル酸共重合体、及び該水性樹脂の塩が挙げられる。
 なかでも、アニオン性官能基含有ポリウレタン樹脂、カチオン性官能基含有ポリウレタン樹脂、(メタ)アクリル酸エステル-スチレン-(メタ)アクリル酸共重合体、(メタ)アクリル酸エステル-スチレン-(メタ)アクリル酸N,N-ジメチルアミノエチル共重合体、ポリビニルピロリドン、ビニル変性エポキシエステル樹脂が好ましい。
[Aqueous resin]
Examples of the aqueous resin contained in the polyarylene sulfide composition of the present invention include polyurethane resins such as anionic functional group-containing polyurethane resins and cationic functional group-containing polyurethane resins; polyvinyl alcohols; polyvinyl pyrrolidones; vinyl-modified epoxy ester resins. (Meth) acrylic resins such as (meth) acrylic acid ester- (meth) acrylic acid copolymer, (meth) acrylic acid ester- (meth) acrylic acid N, N-dialkylaminoalkyl ester copolymer; (Meth) acrylic acid ester-styrene- (meth) acrylic acid copolymer, (meth) acrylic acid ester-styrene- (meth) acrylic acid N, N-dialkylaminoalkyl ester copolymer, styrene-α-methylstyrene -Acrylic acid copolymer, styrene-α-methyl Styrene- (meth) acrylic resins such as styrene-acrylic acid-acrylic acid ester copolymers; styrene-maleic acid copolymers; styrene-maleic anhydride copolymers; vinylnaphthalene-acrylic acid copolymers, and The salt of this aqueous resin is mentioned.
Among them, anionic functional group-containing polyurethane resin, cationic functional group-containing polyurethane resin, (meth) acrylic acid ester-styrene- (meth) acrylic acid copolymer, (meth) acrylic acid ester-styrene- (meth) acrylic Acid N, N-dimethylaminoethyl copolymer, polyvinylpyrrolidone, and vinyl-modified epoxy ester resin are preferred.
 本発明のポリアリーレンスルフィド組成物において、水性樹脂の使用量は特に限定されるものではないが、ポリアリーレンスルフィド微粒子分散液1質量部に対して、0.1~5質量部が好ましく、0.1~3質量部がより好ましく、0.1~2質量部がさらに好ましく、0.1~1.5質量部が特に好ましい。 In the polyarylene sulfide composition of the present invention, the amount of the aqueous resin used is not particularly limited, but is preferably 0.1 to 5 parts by mass with respect to 1 part by mass of the polyarylene sulfide fine particle dispersion. It is more preferably 1 to 3 parts by mass, still more preferably 0.1 to 2 parts by mass, and particularly preferably 0.1 to 1.5 parts by mass.
<ポリアリーレンスルフィド組成物の製造方法>
 本発明のポリアリーレンスルフィド組成物の製造方法は、以下の工程(A)~(F)を有するものである。
 工程(A):ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程。 工程(B):水にイオン性官能基含有水性高分子化合物を添加して溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えて、ポリアリーレンスルフィド微粒子を形成させる工程。
 工程(C):工程(B)で得られたポリアリーレンスルフィド微粒子の表層に存在するイオン性官能基含有水性高分子化合物の官能基を酸又は塩基で中和し、ポリアリーレンスルフィド微粒子表面にイオン性官能基含有水性高分子化合物を析出させて、イオン性官能基含有水性高分子で被覆されたポリアリーレンスルフィド微粒子を沈殿させる工程。
 工程(D):工程(C)で得られたイオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄して、含水イオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド微粒子ウェットケーキを得る工程。
 工程(E):工程(D)で得られた含水イオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキが有する官能基を酸又は塩基で中和し、イオン性官能基含有水性高分子化合物で被覆されたポリアリーレンスルフィド微粒子分散液を得る工程。
 工程(F):工程(E)で得られた被覆ポリアリーレンスルフィド微粒子分散液と、水性樹脂とを混合してポリアリーレンスルフィド組成物を得る工程。
 以下、詳細に説明する。
<Method for producing polyarylene sulfide composition>
The method for producing a polyarylene sulfide composition of the present invention includes the following steps (A) to (F).
Step (A): A step of heating polyarylene sulfide in an organic solvent to obtain a solution. Step (B): Polyarylene sulfide fine particles are formed by adding the polyarylene sulfide solution obtained in step (A) to an aqueous resin solution in which an ionic functional group-containing aqueous polymer compound is added and dissolved in water. Process.
Step (C): The functional groups of the ionic functional group-containing aqueous polymer compound present in the surface layer of the polyarylene sulfide fine particles obtained in the step (B) are neutralized with an acid or base, and ions are formed on the surface of the polyarylene sulfide fine particles. A step of precipitating polyarylene sulfide fine particles coated with an ionic functional group-containing aqueous polymer by precipitating the functional functional group-containing aqueous polymer compound.
Step (D): The polyarylene sulfide particles coated with the ionic functional group-containing aqueous polymer obtained in Step (C) were filtered and washed, and then coated with the aqueous ionic functional group-containing aqueous polymer. A step of obtaining a polyarylene sulfide fine particle wet cake.
Step (E): The polyarylene sulfide particle wet cake coated with the water-containing ionic functional group-containing aqueous polymer obtained in the step (D) is neutralized with an acid or base to contain an ionic functional group. A step of obtaining a polyarylene sulfide fine particle dispersion coated with an aqueous polymer compound.
Step (F): A step of obtaining a polyarylene sulfide composition by mixing the coated polyarylene sulfide fine particle dispersion obtained in step (E) and an aqueous resin.
Details will be described below.
[加熱溶解工程(A)]
 まず工程(A)として、PAS分散体を得るため、PAS樹脂を有機溶媒で溶解させる。
 本工程に用いることのできるPAS樹脂の形態は特に問わないが、具体的に例示するならば粉体、顆粒、ペレット、繊維、フィルム、成形品等が挙げられ、操作性及び溶解に要する時間を短縮させる観点から、粉末、顆粒又はペレットが望ましい。これらの中でも特に粉体のPAS樹脂が好ましく用いられる。
[Heating and dissolving step (A)]
First, as step (A), in order to obtain a PAS dispersion, the PAS resin is dissolved in an organic solvent.
The form of the PAS resin that can be used in this step is not particularly limited. If specifically exemplified, powders, granules, pellets, fibers, films, molded products, etc. may be mentioned. From the viewpoint of shortening, powders, granules or pellets are desirable. Of these, powdered PAS resin is particularly preferably used.
 通常、PAS樹脂及び有機溶媒を容器中に投入した後、溶解を行うが、容器へ投入する順序は問わない。
 容器としては、高温下で使用することから、耐圧製容器を用いる方が好ましい。
Usually, the PAS resin and the organic solvent are added to the container and then dissolved, but the order of adding them to the container is not limited.
Since the container is used at a high temperature, it is preferable to use a pressure-resistant container.
 容器中の雰囲気は、空気雰囲気下、不活性ガス雰囲気下のいずれでもよいが、PAS樹脂と反応し得るような雰囲気や、PAS樹脂自身を劣化させるような雰囲気を避けるべきであるため、不活性ガス雰囲気下が好ましい。 The atmosphere in the container may be either an air atmosphere or an inert gas atmosphere. However, an atmosphere that can react with the PAS resin or an atmosphere that degrades the PAS resin itself should be avoided. A gas atmosphere is preferred.
 ここでいう不活性ガスとは、窒素ガス、二酸化炭素、ヘリウムガス、アルゴンガス、ネオンガス、クリプトンガス、キセノンガスなどが挙げられ、経済性、入手容易性を勘案して、窒素ガス、アルゴンガス、二酸化炭素ガスが望ましく、より好ましくは窒素ガス或いはアルゴンガスが用いられる。 As used herein, the inert gas includes nitrogen gas, carbon dioxide, helium gas, argon gas, neon gas, krypton gas, xenon gas, etc., taking into consideration economic efficiency and availability, nitrogen gas, argon gas, Carbon dioxide gas is desirable, more preferably nitrogen gas or argon gas is used.
 本工程では、さらに無機塩を用いてもよい。
 無機塩として、特に制限はないが、通常、アルカリ金属、アルカリ土類金属、アンモニアなどの塩化物、臭化物、炭酸塩、硫酸塩等が用いられる。具体的には、塩化ナトリウム、塩化リチウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化アンモニウム等の塩化物;臭化ナトリウム、臭化リチウム、臭化カリウム、臭化カルシウム、臭化マグネシウム、臭化アンモニウム等の臭化物;炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム、炭酸アンモニウム等の炭酸塩;硫酸カルシウム、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸アンモニウム等の硫酸塩等が用いられるが、塩化ナトリウム、塩化リチウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化アンモニウム等の塩化物が好ましい。これらは一種または二種以上で用いることができる。
 無機塩を加える場合のPAS樹脂に対する無機塩の質量比率は、PAS樹脂1質量部に対して0.1~10質量部の範囲、好ましくは、0.5~5質量部の範囲である。
In this step, an inorganic salt may be further used.
Although there is no restriction | limiting in particular as an inorganic salt, Usually, chlorides, bromides, carbonates, sulfates, etc., such as an alkali metal, an alkaline earth metal, and ammonia, are used. Specifically, chlorides such as sodium chloride, lithium chloride, potassium chloride, calcium chloride, magnesium chloride, ammonium chloride; sodium bromide, lithium bromide, potassium bromide, calcium bromide, magnesium bromide, ammonium bromide Bromides such as; carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, magnesium carbonate, and ammonium carbonate; sulfates such as calcium sulfate, sodium sulfate, potassium sulfate, lithium sulfate, magnesium sulfate, and ammonium sulfate are used. However, chlorides such as sodium chloride, lithium chloride, potassium chloride, calcium chloride, magnesium chloride, and ammonium chloride are preferable. These can be used alone or in combination of two or more.
When the inorganic salt is added, the mass ratio of the inorganic salt to the PAS resin is in the range of 0.1 to 10 parts by mass, preferably in the range of 0.5 to 5 parts by mass with respect to 1 part by mass of the PAS resin.
 溶媒としては、PAS樹脂を溶解するものであれば、特に制限はないが、例えば、クロロホルム、ブロモホルム、塩化メチレン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン、p-ジクロロベンゼン、2,6-ジクロロトルエン、1-クロロナフタレン、ヘキサフルオロイソプロパノール等のハロゲン系溶媒;N-メチル-2-ピロリジノン、N-エチル-2-ピロリジノン等のN-アルキルピロリジノン系溶媒;N-メチル-ε-カプロラクタム、N-エチル-ε-カプロラクタム等のN-アルキルカプロラクタム系溶媒;1,3-ジメチル-2-イミダゾリジノン、N、N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、ジメチルスルホキシド、ジメチルスルホン、テトラメチレンスルホン等の極性溶媒の中から少なくとも一種選ばれる溶媒が挙げられ、好ましくは、N-メチル-2-ピロリドン、1-クロロナフタレン、o-ジクロロベンゼン、1,3-ジメチル-2-イミダゾリジノンの中から選ばれる少なくとも一種の溶媒である。これらの中でも特に、作業性、水溶性を考慮するとN-メチル-2-ピロリドン、1-クロロナフタレン、1,3-ジメチル-2-イミダゾリジノンが好ましく用いられる。 The solvent is not particularly limited as long as it dissolves the PAS resin. For example, chloroform, bromoform, methylene chloride, 1,2-dichloroethane, 1,1,1-trichloroethane, chlorobenzene, o-dichlorobenzene, halogen solvents such as p-dichlorobenzene, 2,6-dichlorotoluene, 1-chloronaphthalene, hexafluoroisopropanol; N-alkylpyrrolidinone solvents such as N-methyl-2-pyrrolidinone and N-ethyl-2-pyrrolidinone; N-alkylcaprolactam solvents such as N-methyl-ε-caprolactam and N-ethyl-ε-caprolactam; 1,3-dimethyl-2-imidazolidinone, N, N-dimethylacetamide, N, N-dimethylformamide, Hexamethyl phosphate triamide, dimethyl sulfo Examples thereof include at least one solvent selected from polar solvents such as xoxide, dimethylsulfone, and tetramethylenesulfone, preferably N-methyl-2-pyrrolidone, 1-chloronaphthalene, o-dichlorobenzene, 1,3-dimethyl. -2-At least one solvent selected from imidazolidinone. Among these, N-methyl-2-pyrrolidone, 1-chloronaphthalene, and 1,3-dimethyl-2-imidazolidinone are preferably used in consideration of workability and water solubility.
 溶媒に対するPAS樹脂の質量比率は、溶媒にPASが溶解する限り特に制限はないが、溶媒100質量部に対して0.1~20質量部の範囲を例示することができ、好ましくは、0.1~10質量部であり、より好ましくは、0.1~5質量部である。PAS樹脂を溶解させるために、混合した反応液を、PAS樹脂が溶解するために必要な温度まで上昇させる。 The mass ratio of the PAS resin to the solvent is not particularly limited as long as PAS is dissolved in the solvent, but can be exemplified by a range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the solvent. The amount is 1 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass. In order to dissolve the PAS resin, the mixed reaction liquid is raised to a temperature necessary for the PAS resin to dissolve.
 溶解に必要な温度は、溶媒により異なるが、150℃以上が好ましく、さらに好ましくは200℃以上であり、より好ましくは、250℃以上である。上限としてはPAS樹脂が分解しない温度以下であり、400℃以下が好ましい。上記溶解は必要に応じ加圧下で行われる。 The temperature required for dissolution varies depending on the solvent, but is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and more preferably 250 ° C. or higher. The upper limit is the temperature at which the PAS resin does not decompose, and is preferably 400 ° C. or lower. The dissolution is performed under pressure as necessary.
 上記温度にすることにより、PAS樹脂を均一に溶解することが可能になり、PAS粗粒子を安定に製造することができる。 By adjusting to the above temperature, the PAS resin can be uniformly dissolved, and PAS coarse particles can be stably produced.
 また、反応液を攪拌してもしなくても良いが、好ましくは攪拌したほうが良く、これにより溶解に要する時間を短くすることができる。 In addition, the reaction solution may or may not be stirred, but it is preferable that the reaction solution is stirred, thereby shortening the time required for dissolution.
 所定の温度まで上昇させた後、反応液をしばらくの時間維持することが好ましい。維持する時間は、10分~10時間の範囲であり、好ましくは、10分~6時間、より好ましくは20分~2時間の範囲である。 It is preferable to maintain the reaction solution for a while after raising the temperature to a predetermined temperature. The maintaining time is in the range of 10 minutes to 10 hours, preferably in the range of 10 minutes to 6 hours, and more preferably in the range of 20 minutes to 2 hours.
 この操作を行うことにより、PAS樹脂をより十分に溶解させることができる。 By performing this operation, the PAS resin can be more sufficiently dissolved.
 次に上記で得られたポリアリーレンスルフィド溶解液を基に、本発明に用いるポリアリーレンスルフィド分散体について、製造工程順に詳細に説明する。 Next, based on the polyarylene sulfide solution obtained above, the polyarylene sulfide dispersion used in the present invention will be described in detail in the order of the production steps.
[晶析工程(B)]
 工程(B)では、まず、イオン性官能基含有水性高分子化合物水溶液を予め調整する。
 イオン性官能基含有水性高分子化合物については、上述の通りである。
[Crystalling step (B)]
In the step (B), first, an aqueous solution of an ionic functional group-containing aqueous polymer compound is prepared in advance.
The ionic functional group-containing aqueous polymer compound is as described above.
 イオン性官能基含有水性高分子化合物を、酸性水溶液又は塩基性水溶液中で完全に溶解させる。このとき、イオン性官能基含有水性高分子化合物がアニオン性である場合には、塩基性水溶液が用いられ、イオン性官能基含有水性高分子化合物がカチオン性である場合には、酸性水溶液が用いられる。
 酸性水溶液又は塩基性水溶液における酸又は塩基としては、上述の通りである。
The ionic functional group-containing aqueous polymer compound is completely dissolved in an acidic aqueous solution or a basic aqueous solution. At this time, when the ionic functional group-containing aqueous polymer compound is anionic, a basic aqueous solution is used, and when the ionic functional group-containing aqueous polymer compound is cationic, an acidic aqueous solution is used. It is done.
The acid or base in the acidic aqueous solution or basic aqueous solution is as described above.
 さらに、本発明では、イオン性官能基含有水性高分子化合物により、PAS粒子の一部または表面全体を被覆しても、分散安定性に効果が得られる。そのため、PAS100質量部に対して、1質量部~200質量部を使用することが好ましい。中でも5質量部~150質量部になるように使用するのが、最も分散安定性が高くなるため好ましい。 Furthermore, in the present invention, even if the ionic functional group-containing aqueous polymer compound covers a part or the entire surface of the PAS particles, an effect on the dispersion stability can be obtained. Therefore, it is preferable to use 1 part by mass to 200 parts by mass with respect to 100 parts by mass of PAS. Of these, the use of 5 parts by mass to 150 parts by mass is preferable because the dispersion stability is the highest.
 工程(B)では次いで、調整したイオン性官能基含有水性高分子化合物水溶液に、上記工程(A)で調整したPAS溶解液を注ぐことで、PAS分散液(晶析液)を得ることができる。
 なお、この時点で得られるPAS分散液(晶析液)は、本発明の「イオン性官能基含有水性高分子化合物により被覆されたポリアリーレンスルフィド微粒子分散液」とは異なるものである。この晶析工程にけるPAS粒子状態については後述の通りである。
Next, in the step (B), the PAS dispersion (crystallization solution) can be obtained by pouring the PAS solution adjusted in the step (A) into the adjusted aqueous solution of the ionic functional group-containing aqueous polymer compound. .
The PAS dispersion (crystallization liquid) obtained at this time is different from the “polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound” of the present invention. The PAS particle state in this crystallization process is as described later.
 調整したイオン性官能基含有水性高分子化合物水溶液は、撹拌羽根等の撹拌機で高速撹拌された水流を作製する。乱流、または層流でも構わないが、周速は速い方が晶析した粒子サイズを細かく出来るため好ましい。 The prepared ionic functional group-containing aqueous polymer compound aqueous solution produces a water stream stirred at high speed with a stirrer such as a stirring blade. A turbulent flow or a laminar flow may be used, but a higher peripheral speed is preferable because the crystallized particle size can be reduced.
 PAS溶解液の注水速度は、遅いほど細かい粒子を形成し得る上で好適である。注水方法としては、調整したイオン性官能基含有水性高分子化合物溶液を強撹拌した溶液に、直接注水する方法がある。ここで、イオン性官能基含有水性高分子化合物溶液の撹拌は、微細なPAS粒子を形成するために、強撹拌が好ましい。 The lower the water injection speed of the PAS solution, the better the fine particles can be formed. As a water injection method, there is a method in which water is directly injected into a solution obtained by strongly stirring the prepared ionic functional group-containing aqueous polymer compound solution. Here, the stirring of the ionic functional group-containing aqueous polymer compound solution is preferably strong stirring in order to form fine PAS particles.
 また、PAS溶解液を注ぎ終えた後に得られたPAS分散液(晶析液)に対して機械的粉砕を行うことにより分散させる工程[分散工程]を経ることもできる。これにより、より良好な分散安定性を保持することができる。
 ここで機械的粉砕は機械的粉砕装置を用いて行うことができ、機械的粉砕装置としては市販の機械的粉砕装置を挙げることができる。特にPAS粗粒子を効率よく分散、粉砕し、粒径の小さなPAS微粒子の分散液を作製するために好適な機械的粉砕装置として、ボールミル装置、ビーズミル装置、サンドミル装置、コロイドミル装置、ディスパー分散攪拌装置、湿式微粒化装置(例えば、スギノマシン製のアルティマイザー、Hielscher社製の超音波分散機等)が挙げられるが、なかでもボールミル装置、ビーズミル装置、サンドミル装置、湿式微粒化装置、から選択される装置が好ましい。機械的粉砕の際の粉砕の力は一般に大きくなるほど、また粉砕時間が長くなるほど得られる微粒子の体積平均粒径は、小さくなる方向にあるが、これらが過度になると凝集が生じやすくなるので、適切な範囲に制御される。例えばビーズミルではビーズ径やビーズ量の選択、周速の調整で、その制御が可能である。
Moreover, it can also pass through the process [dispersion process] made to disperse | distribute by performing mechanical grinding | pulverization with respect to the PAS dispersion liquid (crystallization liquid) obtained after pouring PAS solution. Thereby, better dispersion stability can be maintained.
Here, the mechanical pulverization can be performed using a mechanical pulverizer, and examples of the mechanical pulverizer include commercially available mechanical pulverizers. In particular, ball mill equipment, bead mill equipment, sand mill equipment, colloid mill equipment, disper dispersion stirring are suitable as mechanical grinding equipment for efficiently dispersing and pulverizing PAS coarse particles to produce a dispersion of PAS fine particles with a small particle size. Apparatus, wet atomizer (eg, Sugino Machine optimizer, Hielscher ultrasonic disperser, etc.), among others, selected from a ball mill apparatus, a bead mill apparatus, a sand mill apparatus, and a wet atomizer. An apparatus is preferred. The volume average particle size of the obtained fine particles tends to decrease as the pulverization force during mechanical pulverization generally increases and the pulverization time increases. However, if these are excessive, aggregation tends to occur. It is controlled in the range. For example, a bead mill can be controlled by selecting the bead diameter and the bead amount and adjusting the peripheral speed.
 この晶析工程にけるPAS粒子状態は、イオン性官能基含有水性高分子化合物がPAS樹脂粒子の表層に存在しており、まだ強固に固着している状態ではないと思われる。イオン性官能基含有水性高分子化合物末端の酸性基又は塩基性基がアルカリ金属とのイオン結合状態であるため、柔軟にPAS粒子の表層上に存在していると推測されるためである。後工程の酸析・塩基析工程で酸又は塩基により、イオン性官能基含有水性高分子化合物の官能基の塩交換反応がおき、PAS表面に固着されるものである。 It is considered that the PAS particle state in this crystallization process is not a state in which the ionic functional group-containing aqueous polymer compound is present on the surface layer of the PAS resin particles and is still firmly fixed. This is because the acidic group or basic group at the end of the ionic functional group-containing aqueous polymer compound is in an ion-bonded state with an alkali metal, and thus is presumably flexibly present on the surface layer of the PAS particle. A salt exchange reaction of the functional group of the ionic functional group-containing aqueous polymer compound is caused by an acid or a base in a subsequent acid precipitation / base precipitation step, and is fixed to the PAS surface.
[酸析・塩基析工程(C)]
 工程(C)は、上記工程(B)で得られた水溶性樹脂が表層に存在するPAS樹脂粒子を、酸によって酸析出させる、或いは塩基によって塩基析出させることにより、イオン性官能基含有水性高分子化合物により被覆されたPAS樹脂粒子を沈殿させたスラリーを作製する工程である。
[Acid precipitation / base precipitation process (C)]
In the step (C), the PAS resin particles in which the water-soluble resin obtained in the above step (B) is present on the surface layer are acid precipitated with an acid or base precipitated with a base, so that This is a step of preparing a slurry in which PAS resin particles coated with molecular compounds are precipitated.
 酸析出に使用される酸としては、塩酸、硫酸、酢酸、硝酸等が挙げられ、なかでも塩酸が好ましい。
 酸濃度は、各種アニオン性官能基含有水性高分子化合物、各種PAS樹脂にもよるが、アニオン性官能基含有水性高分子化合物の末端置換基数による設定が必要で、酸により系内のpHを2~5に調整する。
Examples of the acid used for acid precipitation include hydrochloric acid, sulfuric acid, acetic acid, nitric acid, and hydrochloric acid is preferable.
The acid concentration depends on the number of terminal substituents of the anionic functional group-containing aqueous polymer compound, although it depends on various anionic functional group-containing aqueous polymer compounds and various PAS resins. Adjust to ~ 5.
 塩基析出に使用される塩基としては、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、N,N-ジメチルアミノエタノール等が挙げられ、なかでも水酸化カリウムが好ましい。
 塩基濃度は、各種カチオン性官能基含有水性高分子化合物、各種PAS樹脂にもよるが、カチオン性官能基含有水性高分子化合物の末端置換基数による設定が必要で、塩基により系内のpHを10~13に調整する。
Examples of the base used for base precipitation include ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, N, N-dimethylaminoethanol, and potassium hydroxide is preferable.
The base concentration depends on the number of terminal functional groups of the cationic functional group-containing aqueous polymer compound, although it depends on various cationic functional group-containing aqueous polymer compounds and various PAS resins. Adjust to ~ 13.
[ウェットケーキ作製工程(D)]
 工程(D)は、上記酸析・塩基析工程(C)で得られた、イオン性官能基含有水性高分子化合物により被覆されたPAS樹脂粒子を沈殿させたスラリーから、イオン性官能基含有水性高分子化合物により被覆されたPAS樹脂粒子をろ別し、ウェットケーキにする工程である。
 ろ別する方法としては、ろ過や遠心分離等、粒子と液体が分離可能であれば如何なる方法でも構わない。ろ別されたウェットケーキ中の水分量は、15~55%の範囲が好ましく、水分量が低すぎると後段の工程での再分散でほぐれにくくなり、再分散性が悪くなるため、好ましい水分量は、20~45%である。
 ウェットケーキは、残存する有機溶媒や、未析出の樹脂を洗浄するため、イオン交換水、蒸留水、純水、水道水等で洗浄を行う。洗浄方法は、ウェットケーキ上から、洗浄溶媒をかけてろ過洗浄してもよいし、ウェットケーキを洗浄溶媒に再解膠して洗浄してもよい。
[Wet cake preparation process (D)]
In step (D), ionic functional group-containing aqueous solution is obtained from the slurry obtained by precipitating PAS resin particles coated with the ionic functional group-containing aqueous polymer compound obtained in the acid precipitation / base precipitation step (C). This is a step of filtering the PAS resin particles coated with the polymer compound into a wet cake.
As a method for filtering, any method may be used as long as particles and liquid can be separated, such as filtration and centrifugation. The moisture content in the filtered wet cake is preferably in the range of 15 to 55%. If the moisture content is too low, it becomes difficult to loosen by redispersion in the subsequent step, and the redispersibility becomes poor. Is 20-45%.
The wet cake is washed with ion-exchanged water, distilled water, pure water, tap water or the like in order to wash the remaining organic solvent and undeposited resin. As the washing method, the wet cake may be filtered and washed with a washing solvent, or the wet cake may be washed again by peptizing with a washing solvent.
[分散液作製工程(E)]
 工程(E)は、上記ウェットケーキ作製工程(D)で得られたウェットケーキを水にビーズミルや超音波分散機等で、再解膠し、酸又は塩基でpHを6~10に調整して、被覆PAS分散液を得る工程である。
 工程(E)で用いる酸又は塩基としては、工程(C)で酸析を行った場合には塩基が用いられ、工程(C)で塩基析を行った場合には酸が用いられる。酸、塩基はそれぞれ、工程(C)の酸析・塩基析に用いる酸、塩基として挙げられたものと同様のものを用いることができる。
 ここで得られた分散液中の不揮発分は、15~40%であり、従来のPAS分散液が5~10%程度であることから、顕著に高濃度のPAS分散液が得られることがわかる。
[Dispersion Preparation Step (E)]
In step (E), the wet cake obtained in the wet cake preparation step (D) is re-peptized with water using a bead mill or an ultrasonic disperser, and the pH is adjusted to 6 to 10 with an acid or base. This is a step of obtaining a coated PAS dispersion.
As the acid or base used in the step (E), a base is used when acidifying is performed in the step (C), and an acid is used when basic precipitation is performed in the step (C). As the acid and base, those similar to those mentioned as the acid and base used in the acid precipitation / base precipitation in step (C) can be used.
The non-volatile content of the dispersion obtained here is 15 to 40%, and the conventional PAS dispersion is about 5 to 10%. Thus, it can be seen that a significantly high concentration PAS dispersion can be obtained. .
[組成物作製工程(F)]
 工程(F)は、上記分散液作製工程(E)で得られたポリアリーレンスルフィド微粒子分散液と、水性樹脂とを混合してポリアリーレンスルフィド組成物を得る工程である。
 工程(F)における水性樹脂としては上記同様である。
 工程(F)における混合は、常温下で行ってもよく、加熱条件下で行ってもよい。また、空気中で行ってもよく、窒素のような不活性ガス雰囲気中で行なってもよい。
 工程(F)における混合は、市販の撹拌装置等を用いて行うことができる。
[Composition Preparation Step (F)]
Step (F) is a step of obtaining a polyarylene sulfide composition by mixing the polyarylene sulfide fine particle dispersion obtained in the dispersion preparation step (E) with an aqueous resin.
The aqueous resin in the step (F) is the same as described above.
The mixing in the step (F) may be performed at room temperature or may be performed under heating conditions. Moreover, you may carry out in air and may carry out in inert gas atmosphere like nitrogen.
The mixing in the step (F) can be performed using a commercially available stirring device or the like.
 ただし、水性樹脂を加えるタイミングについては必ずしも前記工程(F)に限定されるものではない。
 例えば、本発明のポリアリーレンスルフィド組成物の製法の別の態様としては、前記工程(D)で得られた含水イオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキに、水性樹脂を混合した後で、酸又は塩基で中和する方法によっても本発明のポリアリーレンスルフィド組成物を得ることができる。
However, the timing of adding the aqueous resin is not necessarily limited to the step (F).
For example, as another embodiment of the method for producing the polyarylene sulfide composition of the present invention, the polyarylene sulfide particle wet cake coated with the water-containing ionic functional group-containing aqueous polymer obtained in the step (D) is aqueous. The polyarylene sulfide composition of the present invention can also be obtained by a method of neutralizing with an acid or a base after mixing the resin.
 上述のようにして得られるポリアリーレンスルフィド組成物においても、場合によっては沈殿物を含む場合もある。その際には、沈殿部と分散部を分離して利用してもよい。分散液のみを得る場合には、沈殿部と分散部の分離を行えばよく、そのためには、デカンテーション、ろ過などを行えば良い。また、より粒径の細かい粒子まで必要な場合には、遠心分離などを行い、粒径の大きなものを完全に沈降させ、デカンテーションやろ過を行い、沈殿部分を除去すればよい。 Even in the polyarylene sulfide composition obtained as described above, a precipitate may be included in some cases. In that case, the precipitation part and the dispersion part may be used separately. When only the dispersion liquid is obtained, the precipitation part and the dispersion part may be separated. For this purpose, decantation, filtration, or the like may be performed. In addition, when particles having a finer particle size are required, centrifugation or the like is performed to completely settle the larger particle size, and decantation or filtration is performed to remove the precipitated portion.
 本発明で得られたポリアリーレンスルフィド組成物は、通常24時間静置してもPAS微粒子とイオン性官能基含有水性高分子化合物水溶液とが分離しない。 In the polyarylene sulfide composition obtained in the present invention, the PAS microparticles and the aqueous solution of ionic functional group-containing aqueous polymer compound are not separated even after standing for 24 hours.
 このようにして得られたポリアリーレンスルフィド組成物は、その特性から塗料、接着、ポリマーコンパウンド分野における有用な材料となる。
 本発明で得られた組成物に対しては、用途に応じて各種添加剤を添加することができる。
 例えば、本発明で得られた組成物を塗料材料として用いる場合、使用される従来公知のレベリング剤、消泡剤、増粘剤、ワックスなどの塗料用添加剤類;防錆顔料、体質顔料、着色顔料などの顔料類などを添加することができる。
The polyarylene sulfide composition thus obtained is a useful material in the paint, adhesive and polymer compound fields because of its properties.
Various additives can be added to the composition obtained in the present invention depending on the application.
For example, when the composition obtained in the present invention is used as a coating material, conventionally known leveling agents, antifoaming agents, thickeners, waxes and other coating additives used; rust preventive pigments, extender pigments, Pigments such as coloring pigments can be added.
 以下、実施例を挙げることにより、本発明をより詳細に説明する。しかし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail by giving examples. However, the present invention is not limited to these.
(製造例1)ポリアリーレンスルフィド樹脂(PAS-1)の製造
 圧力計、温度計、コンデンサを連結した撹拌翼および底弁付き150リットルオートクレーブに、45%水硫化ソーダ(47.55重量%NaSH)14.148kg、48%苛性ソーダ(48.8重量%NaOH)9.541kgと、N-メチル-2-ピロリドン(以下、NMPと略すことがある)38.0kgを仕込んだ。
 窒素気流下攪拌しながら209℃まで昇温して、水 12.150kgを留出させた(残存する水分量はNaSH 1モル当り 1.13モル)。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン(以下、「p-DCB」と略記する。) 17.874kg及びNMP 16.0kgを仕込んだ。
 液温150℃で窒素ガスを用いてゲージ圧で0.1MPaに加圧して昇温を開始した。昇温して260℃になった時点でオートクレーブ上部を散水することで冷却しながら、260℃で2時間反応した。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。
 次に降温させると共にオートクレーブ上部の冷却を止めた。反応中の最高圧力は、0.87MPaであった。反応後、冷却し、100℃で底弁を開き、反応スラリーを150リットル平板ろ過機に移送し120℃で加圧ろ過した。得られたケーキに70℃温水50kgを加え撹拌したのち、濾過し、さらに温水25kgを加え濾過した。次に温水25kgを加え1時間撹拌し、濾過したのち、温水25kgを加えろ過する操作を2回繰り返した。得られたケーキを、熱風循環乾燥機を用いて120℃で15時間乾燥し、PAS-1を得た。
 得られたPAS-1の溶融粘度は10Pa・sであった。
(Production Example 1) Production of polyarylene sulfide resin (PAS-1) 45% sodium hydrosulfide (47.55 wt% NaSH) was added to a 150 liter autoclave with a pressure gauge, a thermometer, a stirring blade connected with a condenser and a bottom valve. 14.148 kg, 48% caustic soda (48.8 wt% NaOH) 9.541 kg, and N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) 38.0 kg were charged.
While stirring under a nitrogen stream, the temperature was raised to 209 ° C. to distill 12.150 kg of water (the amount of water remaining was 1.13 mol per 1 mol of NaSH). Thereafter, the autoclave was sealed and cooled to 180 ° C., and 17.874 kg of paradichlorobenzene (hereinafter abbreviated as “p-DCB”) and 16.0 kg of NMP were charged.
The temperature was raised by pressurizing to 0.1 MPa with a gauge pressure using nitrogen gas at a liquid temperature of 150 ° C. When the temperature was raised to 260 ° C., the reaction was carried out at 260 ° C. for 2 hours while cooling by sprinkling the upper part of the autoclave. The upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping.
Next, the temperature was lowered and cooling of the upper part of the autoclave was stopped. The maximum pressure during the reaction was 0.87 MPa. After the reaction, the reaction mixture was cooled, the bottom valve was opened at 100 ° C., the reaction slurry was transferred to a 150 liter flat plate filter and pressure filtered at 120 ° C. To the obtained cake, 50 kg of 70 ° C. warm water was added and stirred, followed by filtration. Further, 25 kg of warm water was added and filtered. Next, 25 kg of warm water was added, stirred for 1 hour, filtered, and then the operation of adding 25 kg of warm water and filtering was repeated twice. The obtained cake was dried at 120 ° C. for 15 hours using a hot air circulating dryer to obtain PAS-1.
The melt viscosity of the obtained PAS-1 was 10 Pa · s.
(製造例2)ポリアリーレンスルフィド樹脂(PAS-2)の製造
 150リットルオートクレーブに、フレーク状のNaS(60.9質量%) 19.222kgと、NMP 45.0kgを仕込んだ。窒素気流下攪拌しながら204℃まで昇温して、水 4.438kgを留出させた(残存する水分量はNaS 1モル当り1.14モル)。その後、オートクレーブを密閉して180℃まで冷却し、p-DCB 22.999kg、m-DCB 2.555kg(m-DCBとp-DCBの合計に対して15モル%)及びNMP 18.0kgを仕込んだ。液温150℃で窒素ガスを用いて0.1MPaに加圧して昇温を開始した。液温220℃で3時間攪拌しつつ、オートクレーブ上部の外側に巻き付けたコイルに80℃の冷媒を流し冷却した。その後昇温して、液温260℃で3時間攪拌し、次に降温させると共にオートクレーブ上部の冷却を止めた。オートクレーブ上部を冷却中、液温が下がらないように一定に保持した。反応中の最高圧力は、0.87MPaであった。得られたスラリーを常法により濾過温水洗を二回繰り返し、水を約50質量%含む濾過ケークを得た。
 次に、この濾過ケークに水60kg及び酢酸100gを加えて再スラリー化し、50℃で30分間攪拌後、再度濾過した。この際、上記スラリーのpHは4.6であった。ここで得られた濾過ケークに、水60kgを加え30分間攪拌後、再度濾過する操作を5回繰り返した。その後に得られた濾過ケークを120℃で、4.5時間熱風循環乾燥機中で乾燥し、白色粉末状のパラ-メタポリアリーレンスルフィド共重合樹脂(以下、PAS-2と表記する)を得た。
 得られたPAS-2は融点230℃、リニア型、V6溶融粘度8.5Pa・sであった。
Production Example 2 Production of Polyarylene Sulfide Resin (PAS-2) A 150-liter autoclave was charged with 19.222 kg of flaky Na 2 S (60.9 mass%) and 45.0 kg of NMP. While stirring under a nitrogen stream, the temperature was raised to 204 ° C. to distill 4.438 kg of water (the amount of water remaining was 1.14 mol per 1 mol of Na 2 S). Thereafter, the autoclave was sealed and cooled to 180 ° C., and charged with 22.999 kg of p-DCB, 2.555 kg of m-DCB (15 mol% with respect to the total of m-DCB and p-DCB) and 18.0 kg of NMP. It is. The temperature was increased by pressurizing to 0.1 MPa using nitrogen gas at a liquid temperature of 150 ° C. While stirring at a liquid temperature of 220 ° C. for 3 hours, an 80 ° C. refrigerant was passed through a coil wound around the outside of the upper part of the autoclave to cool it. Thereafter, the temperature was raised and the mixture was stirred at a liquid temperature of 260 ° C. for 3 hours, and then the temperature was lowered and cooling of the upper part of the autoclave was stopped. The upper part of the autoclave was kept constant during cooling to prevent the liquid temperature from dropping. The maximum pressure during the reaction was 0.87 MPa. The obtained slurry was repeatedly filtered and washed with water twice by a conventional method to obtain a filter cake containing about 50% by mass of water.
Next, 60 kg of water and 100 g of acetic acid were added to the filter cake to re-slurry, stirred at 50 ° C. for 30 minutes, and then filtered again. At this time, the pH of the slurry was 4.6. The operation of adding 60 kg of water to the obtained filter cake and stirring for 30 minutes and then filtering again was repeated 5 times. Thereafter, the obtained filter cake was dried in a hot air circulating dryer at 120 ° C. for 4.5 hours to obtain a para-metapolyarylene sulfide copolymer resin (hereinafter referred to as PAS-2) in the form of a white powder. It was.
The obtained PAS-2 had a melting point of 230 ° C., a linear type, and a V6 melt viscosity of 8.5 Pa · s.
(製造例3)カチオン性基含有スチレン-(メタ)アクリル系共重合体(KR-1)の製造
 攪拌装置、モノマー専用滴下装置、開始剤専用滴下装置、温度センサー、および上部に窒素導入装置を有する還流装置を取り付けた反応容器を有する自動重合反応装置(重合試験機DSL-2AS型、轟産業(株)製)の反応容器にプロピレングリコールモノメチルエーテルアセテート(PGMAc)240部とイソブチルアルコール(iBuOH)240部を仕込み、攪拌しながら反応容器内を窒素置換した。
 反応容器内を窒素雰囲気に保ちながら80℃に昇温させた後、モノマー専用滴下装置より、スチレン240部、メタクリル酸メチル198.3部、メタクリル酸N,N-ジメチルアミノエチル360部、アクリル酸ブチル0.8部、アクリル酸イソブチル0.8部、メタクリル酸0.08部の混合液、および開始剤専用滴下装置より、「ABN-E(登録商標)」(有効成分2,2’-アゾビス(2-メチルブチロニトリル、(株)日本ファインケム製)40.0部とPGMAc312部の混合液を5時間かけて滴下した。滴下終了2時間後に「パーブチルO(登録商標)」(有効成分ペルオキシ2-エチルヘキサン酸t-ブチル、日油(株)製)1.6部とPGMAc8.0部の混合液を添加した。
 その後同温度で4時間反応を継続させた後、不揮発分を50%に調整し、カチオン性基含有スチレンー(メタ)アクリル系共重合体(KR-1)のPGMAc/iBuOH溶液を得た(固形分アミン価160.8mgKOH/g)。
Production Example 3 Production of Cationic Group-Containing Styrene- (Meth) Acrylic Copolymer (KR-1) Stirrer, Monomer Dedicated Dropper, Initiator Dedicated Dropper, Temperature Sensor, and Nitrogen Introducing Device at the Top A reaction vessel of an automatic polymerization reaction device (polymerization tester DSL-2AS type, manufactured by Sakai Sangyo Co., Ltd.) having a reaction vessel equipped with a reflux device having 240 parts of propylene glycol monomethyl ether acetate (PGMAc) and isobutyl alcohol (iBuOH) 240 The reaction vessel was purged with nitrogen while stirring.
The temperature inside the reaction vessel was raised to 80 ° C. while maintaining a nitrogen atmosphere, and then 240 parts of styrene, 198.3 parts of methyl methacrylate, 360 parts of N, N-dimethylaminoethyl methacrylate, and acrylic acid from a monomer dropping device. From a mixed solution of 0.8 part of butyl, 0.8 part of isobutyl acrylate and 0.08 part of methacrylic acid, and a dropping device dedicated to the initiator, “ABN-E®” (active ingredient 2,2′-azobis) A mixture of 40.0 parts of 2-methylbutyronitrile (manufactured by Nippon Finechem Co., Ltd.) and 312 parts of PGMAc was added dropwise over 5 hours, and “Perbutyl O®” (active ingredient peroxy) was added 2 hours after the completion of the addition. A mixed solution of 1.6 parts of t-butyl 2-ethylhexanoate (manufactured by NOF Corporation) and 8.0 parts of PGMAc was added.
Thereafter, the reaction was continued at the same temperature for 4 hours, and then the nonvolatile content was adjusted to 50% to obtain a PGMAc / iBuOH solution of a cationic group-containing styrene- (meth) acrylic copolymer (KR-1) (solid) Min amine number 160.8 mg KOH / g).
(製造例4)カチオン性基含有スチレン-(メタ)アクリル系共重合体(KR-2)の製造
 スチレン240部、メタクリル酸メチル80部、メタクリル酸N,N-ジメチルアミノエチル360部、アクリエステルSL(三菱レイヨン社製)120部を全単量体とする以外は、KR-1の製造例と同様にして、不揮発分50%のカチオン性基含有スチレン-(メタ)アクリル系共重合体(KR-2)のPGMAc/iBuOH溶液を得た(固形分アミン価160.8mgKOH/g)。
(Production Example 4) Production of cationic group-containing styrene- (meth) acrylic copolymer (KR-2) 240 parts of styrene, 80 parts of methyl methacrylate, 360 parts of N, N-dimethylaminoethyl methacrylate, acrylate A cationic group-containing styrene- (meth) acrylic copolymer having a non-volatile content of 50% (similar to KR-1 except that 120 parts of SL (Mitsubishi Rayon Co., Ltd.) are all monomers) A PGMAc / iBuOH solution of KR-2) was obtained (solid content amine value 160.8 mgKOH / g).
(製造例5)アニオン性基含有スチレン-(メタ)アクリル系共重合体(AR-1)の製造
 攪拌装置、滴下装置、温度センサー、および上部に窒素導入装置を有する還流装置を取り付けた反応容器を有する自動重合反応装置(重合試験機DSL-2AS型、轟産業(株)製)の反応容器に重合溶剤として2-プロパノール(以下、IPAと表記する)720部を仕込み、攪拌しながら反応容器内を窒素置換した。
 反応容器内を窒素雰囲気に保ちながら80℃に昇温させた後、滴下装置よりメタクリル酸ベンジル120部、メタクリル酸2-ヒドロキシエチル49.8部、メタクリル酸153.72部、スチレン180部、メタクリル酸グリシジル0.6部、メタクリル酸n-ブチル34.62部、アクリル酸ブチル60.66部、メタクリル酸メチル0.6部および「パーブチル(登録商標)O」(有効成分ペルオキシ2-エチルヘキサン酸t-ブチル、日油(株)製)48部、チオグリセロール24部の混合液を4時間かけて滴下した。
 滴下終了後、さらに同温度で15時間反応を継続させた後、樹脂分濃度を45%に調整し、実測酸価157mgKOH/gのアニオン性基含有高分子化合物である、スチレン(メタ)アクリル系共重合体(AR-1)のIPA溶液を得た。
(Production Example 5) Production of anionic group-containing styrene- (meth) acrylic copolymer (AR-1) A reaction vessel equipped with a stirrer, a dropping device, a temperature sensor, and a reflux device having a nitrogen introducing device at the top Charged with 720 parts of 2-propanol (hereinafter referred to as IPA) as a polymerization solvent in a reaction vessel of an automatic polymerization reactor (polymerization tester DSL-2AS type, manufactured by Sakai Sangyo Co., Ltd.) having Was replaced with nitrogen.
The temperature inside the reaction vessel was raised to 80 ° C. while maintaining a nitrogen atmosphere, and then 120 parts of benzyl methacrylate, 49.8 parts of 2-hydroxyethyl methacrylate, 153.72 parts of methacrylic acid, 180 parts of styrene, 0.6 parts of glycidyl acid, 34.62 parts of n-butyl methacrylate, 60.66 parts of butyl acrylate, 0.6 parts of methyl methacrylate and “Perbutyl® O” (active ingredient peroxy 2-ethylhexanoic acid A mixed solution of 48 parts of t-butyl (manufactured by NOF Corporation) and 24 parts of thioglycerol was added dropwise over 4 hours.
After completion of the dropwise addition, the reaction was further continued for 15 hours at the same temperature, and then the resin concentration was adjusted to 45%, and a styrene (meth) acrylic polymer, which is an anionic group-containing polymer compound having an actually measured acid value of 157 mgKOH / g. An IPA solution of copolymer (AR-1) was obtained.
(製造例6)カチオン性基含有スチレンー(メタ)アクリル系共重合体(AR-2)の製造
 スチレン240部、メタクリル酸メチル72部、メタクリル酸200部、アクリル酸ブチル8部、アクリエステルSL(三菱レイヨン社製)280部を全単量体とする以外は、KR-1の製造例と同様にして、不揮発分45%のカチオン性基含有スチレンー(メタ)アクリル系共重合体(AR-2)のPGMAc/iBuOH溶液を得た(固形分酸価151.3mgKOH/g)。
(Production Example 6) Production of cationic group-containing styrene- (meth) acrylic copolymer (AR-2) Styrene 240 parts, methyl methacrylate 72 parts, methacrylic acid 200 parts, butyl acrylate 8 parts, acrylate SL ( (Mitsubishi Rayon Co., Ltd.) Cationic group-containing styrene (meth) acrylic copolymer (AR-2) having a nonvolatile content of 45% in the same manner as in the production example of KR-1, except that 280 parts of all monomers are used. ) Was obtained (solid acid value 151.3 mg KOH / g).
(製造例7)アニオン性基含有ポリエーテルポリオール系ウレタン化合物(U-1)の製造
 数平均分子量2,000のポリ(オキシテトラメチレン)グリコール(n=27.5、PTMG2000)480部、イソホロンジイソシアネート(IPDI)282部、ジブチル錫ジラウレート(DBTDL)0.007部仕込み、窒素雰囲気下100℃で1時間反応させた。その後65℃以下に冷却し、ジメチロールプロピオン酸(DMPA)0.007部、ネオペンチルグリコール(NPG)およびMEK448部を添加し、80℃で16時間反応させた後、MEK408部、メタノールを加えて反応を停止し、不揮発分50%、酸価55mgKOH/gの直鎖状のポリエーテルポリオール系ポリウレタンのMEK溶液(U-1)を得た。
(Production Example 7) Production of anionic group-containing polyether polyol urethane compound (U-1) 480 parts of poly (oxytetramethylene) glycol (n = 27.5, PTMG2000) having a number average molecular weight of 2,000, isophorone diisocyanate (IPDI) 282 parts, dibutyltin dilaurate (DBTDL) 0.007 part was charged and reacted at 100 ° C. for 1 hour in a nitrogen atmosphere. After cooling to 65 ° C or lower, 0.007 part of dimethylolpropionic acid (DMPA), neopentyl glycol (NPG) and 448 parts of MEK were added and reacted at 80 ° C for 16 hours, and then 408 parts of MEK and methanol were added. The reaction was stopped to obtain a MEK solution (U-1) of a linear polyether polyol polyurethane having a nonvolatile content of 50% and an acid value of 55 mgKOH / g.
(製造例8)水性樹脂(B-1)の製造
 3リットルのステンレス容器に、ポリエーテルポリオール系ポリウレタンのMEK溶液(U-1)1000g、5%水酸化カリウム水溶液550g、イオン交換水1200gを混合し、1時間攪拌後、混合液を3リットルのセパラブル丸底フラスコに移し変えて、MEK全量と水の一部を留去した。室温まで冷却後、イオン交換水にて濃度調節し、固形分20%のポリウレタン水溶液である、水性樹脂(B-1)を得た。
(Production Example 8) Manufacture of aqueous resin (B-1) In a 3 liter stainless steel container, 1000 g of polyether polyol polyurethane (U-1), 550 g of 5% potassium hydroxide aqueous solution, and 1200 g of ion-exchanged water were mixed. Then, after stirring for 1 hour, the mixed solution was transferred to a 3 liter separable round bottom flask, and the total amount of MEK and a part of water were distilled off. After cooling to room temperature, the concentration was adjusted with ion-exchanged water to obtain an aqueous resin (B-1) which is a polyurethane aqueous solution having a solid content of 20%.
(製造例9)水性樹脂(B-2)の製造
 3リットルのステンレス容器に、カチオン性基含有スチレン-(メタ)アクリル系共重合体(KR-2)のPGMAc/iBuOH溶液500g、イオン交換水2000gを混合し、析出した白色沈殿物をろ集してイオン交換水で洗浄した。イオン交換水で洗浄して得られた白色沈殿物 480g(不揮発分50%)、20%塩酸125.2g、イオン交換水1000 gを3リットルのガラスビーカー内で混合し、1時間攪拌後、混合液を3リットルのセパラブル丸底フラスコに移し変えて、水の一部を留去した。室温まで冷却後、イオン交換水にて濃度調節し、固形分25.6%のイオン性官能基を含有する水性樹脂(B-2)を得た。
(Production Example 9) Production of aqueous resin (B-2) 500 g of a PGMAc / iBuOH solution of cationic group-containing styrene- (meth) acrylic copolymer (KR-2), ion-exchanged water in a 3 liter stainless steel container 2000 g was mixed, and the precipitated white precipitate was collected by filtration and washed with ion-exchanged water. 480 g of white precipitate obtained by washing with ion-exchanged water (non-volatile content: 50%), 125.2 g of 20% hydrochloric acid and 1000 g of ion-exchanged water were mixed in a 3 liter glass beaker, stirred for 1 hour, and mixed. The liquid was transferred to a 3 liter separable round bottom flask and a portion of the water was distilled off. After cooling to room temperature, the concentration was adjusted with ion-exchanged water to obtain an aqueous resin (B-2) containing an ionic functional group having a solid content of 25.6%.
(製造例10)水性樹脂(B-3)の製造
 1リットルのステンレス容器に、ポリビニルピロリドンK30 100g、イオン交換水 400gを入れて攪拌することにより固形分20%の水性樹脂(B-3)を得た。
(Production Example 10) Production of aqueous resin (B-3) In a 1 liter stainless steel container, 100 g of polyvinylpyrrolidone K30 and 400 g of ion exchange water were added and stirred to obtain an aqueous resin (B-3) having a solid content of 20%. Obtained.
(製造例11)アニオン性基含有水性高分子化合物被覆PAS微粒子水性分散液(D-1)の製造
・工程(A)[溶解工程]
 下部に開閉可能なバルブを有するオートクレーブ[1]に上記製造例1で製造したPAS-1 50gとNMP 1200gを入れた。系内に窒素を通気させ、攪拌しながら加圧下で内温250℃まで上昇させた後、30分間攪拌した。
・工程(B)[晶析工程]
 前記工程(A)に用いたオートクレーブの開閉可能なバルブとパイプで連結させたオートクレーブ[2]に、予め、上記製造例5で製造したAR-1 10gと25%KOH水溶液3.3gと水6000gを混合させたアニオン性基含有水性高分子化合物水溶液を入れた。このオートクレーブ[2]に、前記工程(A)で溶解させたPASのNMP溶液をオートクレーブ[1]のバルブを開くことで流し込み、オートクレーブ[2]内に晶析液を得た。PASのNMP溶解液をアニオン性基含有水性高分子化合物水溶液に流し込む操作を11回繰り返して得られた晶析液78.7kgから、目開き45μmの金属メッシュを用いて溶け残りを除去した(得られた晶析液のpHは8.0であった)。
・工程(C)[酸析工程]
 前記工程(B)で得られた晶析液に2%塩酸を606.1g滴下することで表面にアニオン性基含有水性高分子化合物が被覆したPAS微粒子を凝集させた酸析スラリーを得た(得られた液のpHは2.8であった)。
・工程(D)[ウェットケーキ作製工程]
 前記工程(C)で得られた酸析スラリーより水性媒体を吸引ろ過し、ろ集した残渣の洗液の電気伝導度が0.5mS/cm以下になるまでイオン交換水で洗浄して、不揮発分23.5%の含水アニオン性基含有水性高分子化合物被覆PAS粒子ウェットケーキを2650g得た。
・工程(E)[微粒子分散体作製工程]
 前記工程(D)で得られた含水アニオン性基含有水性高分子化合物被覆PAS粒子ウェットケーキ2650gと50%ジメチルアミノエタノール水溶液22.9gを5Lのステンレスカップに入れて、Hielscher社製超音波分散機 UP400ST(出力400W、周波数24kHz)にて45分間超音波を照射し、イオン交換水にて不揮発分23%になるように調整してPAS微粒子分散体(D-1)を得た。得られた分散体の分散粒径(D50)は240nmだった。
(Production Example 11) Production / process (A) [dissolution process] of an anionic group-containing aqueous polymer compound-coated PAS fine particle aqueous dispersion (D-1)
In an autoclave [1] having a valve that can be opened and closed at the bottom, 50 g of PAS-1 produced in Production Example 1 and 1200 g of NMP were placed. Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
-Process (B) [crystallization process]
In the autoclave [2] connected to the autoclave openable / closable valve used in the step (A) by a pipe, 10 g of AR-1 produced in Production Example 5 above, 3.3 g of 25% KOH aqueous solution and 6000 g of water were previously prepared. An anionic group-containing aqueous polymer compound aqueous solution mixed with was added. The NMP solution of PAS dissolved in the step (A) was poured into the autoclave [2] by opening the valve of the autoclave [1] to obtain a crystallization solution in the autoclave [2]. Undissolved residue was removed from 78.7 kg of the crystallization solution obtained by repeating the operation of pouring the NMP solution of PAS into the aqueous solution of an anionic group-containing aqueous polymer compound 11 times using a metal mesh having an opening of 45 μm (obtained). The pH of the obtained crystallization solution was 8.0).
Process (C) [acid precipitation process]
By dropping 606.1 g of 2% hydrochloric acid into the crystallization solution obtained in the step (B), an acid precipitation slurry in which PAS fine particles coated with an anionic group-containing aqueous polymer compound were aggregated on the surface was obtained ( The pH of the obtained liquid was 2.8).
-Process (D) [wet cake preparation process]
The aqueous medium is suction-filtered from the acid precipitation slurry obtained in the step (C), washed with ion-exchanged water until the electric conductivity of the washing liquid of the collected residue is 0.5 mS / cm or less, and nonvolatile 2650 g of a wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake having a content of 23.5% was obtained.
Step (E) [Fine particle dispersion preparation step]
2650 g of the wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake obtained in the step (D) and 22.9 g of 50% dimethylaminoethanol aqueous solution are put in a 5 L stainless steel cup, and an ultrasonic disperser manufactured by Hielscher is used. Ultrasonic waves were irradiated for 45 minutes at UP400ST (output 400 W, frequency 24 kHz), and adjusted to have a non-volatile content of 23% with ion-exchanged water to obtain a PAS fine particle dispersion (D-1). The dispersion particle size (D 50 ) of the obtained dispersion was 240 nm.
(製造例12)アニオン性基含有水性高分子化合物被覆PAS微粒子水性分散液(D-2)の製造
・工程(A)[溶解工程]
 下部に開閉可能なバルブを有するオートクレーブ[1]に上記製造例2で製造したPAS-2 50gとNMP 1200gを入れた。系内に窒素を通気させ、攪拌しながら加圧下で内温250℃まで上昇させた後、30分間攪拌した。
・工程(B)[晶析工程]
 前記工程(A)に用いたオートクレーブの開閉可能なバルブとパイプで連結させたオートクレーブ[2]に、予め、上記製造例5で製造したAR-1 22.2gと25%KOH水溶液6.6 gと水6000 gを混合させたアニオン性基含有水性高分子化合物水溶液を入れた。このオートクレーブ[2]に、前記工程(A)で溶解させたPASのNMP溶液をオートクレーブ[1]のバルブを開くことで流し込み、オートクレーブ[2]内に晶析液を得た。PASのNMP溶解液をアニオン性基含有水性高分子化合物水溶液に流し込む操作を10回繰り返して得られた晶析液72.6 kgから、目開き45μmの金属メッシュを用いて溶け残りを除去した(得られた晶析液のpHは9.0であった)。
・工程(C)[酸析工程]
 前記工程(B)で得られた晶析液に2%塩酸を773.6g滴下することで表面にアニオン性基含有水性高分子化合物が被覆したPAS微粒子を凝集させた酸析スラリーを得た(得られた液のpHは2.7であった)。
・工程(D)[ウェットケーキ作製工程]
 前記工程(C)で得られた酸析スラリーより水性媒体を吸引ろ過し、ろ集した残渣の洗液の電気伝導度が0.5mS/cm以下になるまでイオン交換水で洗浄して、不揮発分28%の含水アニオン性基含有水性高分子化合物被覆PAS粒子ウェットケーキを1960g得た。
・工程(E)[微粒子分散体作製工程]
 前記工程(D)で得られた含水アニオン性基含有水性高分子化合物被覆PAS粒子ウェットケーキ1960gと50%ジメチルアミノエタノール水溶液41.6gを5Lのステンレスカップに入れて、Hielscher社製超音波分散機 UP400ST(出力400W、周波数24kHz)にて45分間超音波を照射し、イオン交換水にて不揮発分20%になるように調整してPAS微粒子分散体(D-2)を得た。得られた分散体の分散粒径(D50)は170nmだった。
Production Example 12 Production / Process (A) [Dissolution Process] of Anionic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-2)
In an autoclave [1] having a valve that can be opened and closed at the bottom, 50 g of PAS-2 produced in Production Example 2 and 1200 g of NMP were placed. Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
-Process (B) [crystallization process]
In the autoclave [2] connected to the autoclave openable / closable valve used in the step (A) by a pipe, 22.2 g of AR-1 produced in Production Example 5 and 6.6 g of 25% KOH aqueous solution were previously prepared. And an aqueous solution of an anionic group-containing aqueous polymer compound in which 6000 g of water was mixed. The NMP solution of PAS dissolved in the step (A) was poured into the autoclave [2] by opening the valve of the autoclave [1] to obtain a crystallization solution in the autoclave [2]. The undissolved residue was removed from 72.6 kg of the crystallization solution obtained by repeating the operation of pouring the NMP solution of PAS into the anionic group-containing aqueous polymer compound aqueous solution 10 times using a metal mesh having an opening of 45 μm ( The pH of the obtained crystallization solution was 9.0).
Process (C) [acid precipitation process]
By dropping 773.6 g of 2% hydrochloric acid into the crystallization liquid obtained in the step (B), an acid precipitation slurry in which PAS fine particles coated with an anionic group-containing aqueous polymer compound were aggregated on the surface was obtained ( The pH of the obtained liquid was 2.7).
-Process (D) [wet cake preparation process]
The aqueous medium is suction-filtered from the acid precipitation slurry obtained in the step (C), washed with ion-exchanged water until the electric conductivity of the washing liquid of the collected residue is 0.5 mS / cm or less, and nonvolatile 1960 g of a wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake having a water content of 28% was obtained.
Step (E) [Fine particle dispersion preparation step]
1960 g of the wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake obtained in the step (D) and 41.6 g of 50% dimethylaminoethanol aqueous solution are put in a 5 L stainless steel cup, and an ultrasonic disperser manufactured by Hielscher is used. Ultrasonic waves were irradiated for 45 minutes at UP400ST (output 400 W, frequency 24 kHz), and adjusted to have a non-volatile content of 20% with ion-exchanged water to obtain a PAS fine particle dispersion (D-2). The resulting dispersion had a dispersed particle size (D 50 ) of 170 nm.
(製造例13)カチオン性基含有水性高分子化合物被覆PAS微粒子水性分散液(D-3)の製造
・工程(A)[溶解工程]
 下部に開閉可能なバルブを有するオートクレーブ(A)に上記製造例1で製造したPAS-1 50gとNMP 1200gを入れた。系内に窒素を通気させ、攪拌しながら加圧下で内温250℃まで上昇させた後、30分間攪拌した。
・工程(B)[晶析工程]
 前記工程(A)に用いたオートクレーブの開閉可能なバルブとパイプで連結させたオートクレーブ[2]に、予め、上記製造例3で製造したカチオン性基含有水性高分子化合物KR-1 10gと2%塩酸 26.2gと水 6000gを混合させたカチオン性基含有水性高分子化合物水溶液を入れた。このオートクレーブ[2]に、前記工程(A)で溶解させたPASのNMP溶液をオートクレーブ[1]のバルブを開くことで流し込み、オートクレーブ[2]内に晶析液を得た。PASのNMP溶解液をカチオン性基含有水性高分子化合物水溶液に流し込む操作を10回繰り返して得られた晶析液72.6kgから目開き180μmの金属メッシュを用いて溶け残りを除去した(得られた晶析液のpHは3.2であった)。
・工程(C)[塩基析工程]
 工程(B)で得られた晶析液に25%水酸化カリウム水溶液を滴下してpHを12.8に調整し、25%食塩水 3000gを添加することで表面にカチオン性基含有水性高分子化合物が被覆したPAS微粒子を凝集させた塩基析スラリーを得た。
・工程(D)[ウェットケーキ作製工程]
 前記工程(C)で得られた塩基析スラリーより水性媒体を吸引ろ過し、ろ集した残渣の洗液の電気伝導度が0.5mS/cm以下になるまでイオン交換水で洗浄して、不揮発分30.0%の含水カチオン性基含有水性高分子化合物被覆PAS粒子ウェットケーキを1613.3g得た。
・工程(E)[微粒子分散体作製工程]
 前記工程(D)で得られた含水カチオン性基含有水性高分子化合物被覆PAS粒子ウェットケーキ1613.3gと10%酢酸 68.9g、イオン交換水253.8gを5Lのステンレスカップに入れて、Hielscher社製超音波分散機 UP400ST(出力400W、周波数24kHz)にて45分間超音波を照射した後、ナイロン製200メッシュにて沈殿物を除き、イオン交換水にて不揮発分20%になるように調整してPAS微粒子分散体(D-3)を得た。得られた分散体の分散粒径(D50)は149nmであった。
Production Example 13 Production / Process (A) [Dissolution Process] of Cationic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-3)
In an autoclave (A) having a valve that can be opened and closed at the bottom, 50 g of PAS-1 produced in Production Example 1 and 1200 g of NMP were placed. Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
-Process (B) [crystallization process]
In the autoclave [2] connected to the autoclave openable / closable valve used in the step (A) by a pipe, 10 g of the cationic group-containing aqueous polymer compound KR-1 prepared in the above Production Example 3 in advance and 2% A cationic group-containing aqueous polymer solution in which 26.2 g of hydrochloric acid and 6000 g of water were mixed was added. The NMP solution of PAS dissolved in the step (A) was poured into the autoclave [2] by opening the valve of the autoclave [1] to obtain a crystallization solution in the autoclave [2]. The operation of pouring the NMP solution of PAS into the aqueous cationic polymer solution containing cationic groups was repeated 10 times to remove undissolved residue from a 72.6 kg of crystallization solution obtained using a metal mesh with an opening of 180 μm. The pH of the crystallized solution was 3.2).
-Process (C) [base analysis process]
A 25% aqueous potassium hydroxide solution is added dropwise to the crystallization solution obtained in step (B) to adjust the pH to 12.8, and 3000 g of 25% saline is added to the surface to form a cationic group-containing aqueous polymer. A base precipitation slurry in which PAS fine particles coated with the compound were aggregated was obtained.
-Process (D) [wet cake preparation process]
The aqueous medium is suction filtered from the base precipitation slurry obtained in the step (C), and the residue is washed with ion-exchanged water until the electric conductivity of the washing liquid of the residue is 0.5 mS / cm or less. 1613.3 g of a wet cationic group-containing aqueous polymer compound-coated PAS particle wet cake having a content of 30.0% was obtained.
Step (E) [Fine particle dispersion preparation step]
The wet cationic group-containing aqueous polymer compound-coated PAS particle wet cake 1613.3 g obtained in the step (D), 68.9 g of 10% acetic acid, and 253.8 g of ion-exchanged water were placed in a 5 L stainless steel cup. After irradiating ultrasonic waves with UP400ST (output 400W, frequency 24kHz) for 45 minutes, remove precipitates with nylon 200 mesh and adjust the ion-exchanged water to 20% non-volatile content. As a result, a PAS fine particle dispersion (D-3) was obtained. The dispersed particle diameter (D 50 ) of the obtained dispersion was 149 nm.
(製造例14)アニオン性基含有水性高分子化合物被覆PAS微粒子水性分散液(D-4)の製造
・工程(A)[溶解工程]
 下部に開閉可能なバルブを有するオートクレーブ[1]に上記製造例2で製造したPAS-1 50gとNMP 1200gを入れた。系内に窒素を通気させ、攪拌しながら加圧下で内温250℃まで上昇させた後、30分間攪拌した。
・工程(B)[晶析工程]
 前記工程(A)に用いたオートクレーブの開閉可能なバルブとパイプで連結させたオートクレーブ[2]に、予め、上記製造例5で製造したAR-2 22.2gと25%KOH水溶液6.6 gと水6000 gを混合させたアニオン性基含有水性高分子化合物水溶液を入れた。このオートクレーブ[2]に、前記工程(A)で溶解させたPASのNMP溶液をオートクレーブ[1]のバルブを開くことで流し込み、オートクレーブ[2]内に晶析液を得た。PASのNMP溶解液をアニオン性基含有水性高分子化合物水溶液に流し込む操作を2回繰り返して得られた晶析液14.7 kgから、目開き45μmの金属メッシュを用いて溶け残りを除去した(得られた晶析液のpHは8.2であった)。
・工程(C)[酸析工程]
 前記工程(B)で得られた晶析液に2%塩酸を167.43g滴下することで表面にアニオン性基含有水性高分子化合物が被覆したPAS微粒子を凝集させた酸析スラリーを得た(得られた液のpHは2.8であった)。
・工程(D)[ウェットケーキ作製工程]
 前記工程(C)で得られた酸析スラリーより水性媒体を吸引ろ過し、ろ集した残渣の洗液の電気伝導度が0.5mS/cm以下になるまでイオン交換水で洗浄して、不揮発分25%の含水アニオン性基含有水性高分子化合物被覆PAS粒子ウェットケーキを432g得た。
・工程(E)[微粒子分散体作製工程]
 前記工程(D)で得られた含水アニオン性基含有水性高分子化合物被覆PAS粒子ウェットケーキ432gと50%ジメチルアミノエタノール水溶液8.28gを1Lのステンレスカップに入れて、Hielscher社製超音波分散機 UP400ST(出力400W、周波数24kHz)にて45分間超音波を照射し、イオン交換水にて不揮発分18.8%になるように調整してPAS微粒子分散体(D-4)を得た。得られた分散体の分散粒径(D50)182nmであった。
Production Example 14 Production / Process (A) [Dissolution Process] of Anionic Group-Containing Aqueous Polymer Compound-Coated PAS Fine Particles Aqueous Dispersion (D-4)
In an autoclave [1] having a valve that can be opened and closed at the bottom, 50 g of PAS-1 produced in Production Example 2 and 1200 g of NMP were placed. Nitrogen was bubbled through the system, and the internal temperature was raised to 250 ° C. under pressure while stirring, followed by stirring for 30 minutes.
-Process (B) [crystallization process]
In the autoclave [2] connected to the autoclave openable / closable valve used in the step (A) by a pipe, 22.2 g of AR-2 produced in the above Production Example 5 and 6.6 g of 25% KOH aqueous solution were previously prepared. And an aqueous solution of an anionic group-containing aqueous polymer compound in which 6000 g of water was mixed. The NMP solution of PAS dissolved in the step (A) was poured into the autoclave [2] by opening the valve of the autoclave [1] to obtain a crystallization solution in the autoclave [2]. The undissolved residue was removed from the 14.7 kg of the crystallization solution obtained by repeating the operation of pouring the NMP solution of PAS into the aqueous solution of an anionic group-containing aqueous polymer compound twice using a metal mesh having an opening of 45 μm ( The pH of the obtained crystallization solution was 8.2).
Process (C) [acid precipitation process]
By dropping 167.43 g of 2% hydrochloric acid into the crystallization liquid obtained in the step (B), an acid precipitation slurry in which PAS fine particles coated with an anionic group-containing aqueous polymer compound were aggregated on the surface was obtained ( The pH of the obtained liquid was 2.8).
-Process (D) [wet cake preparation process]
The aqueous medium is suction-filtered from the acid precipitation slurry obtained in the step (C), washed with ion-exchanged water until the electric conductivity of the washing liquid of the collected residue is 0.5 mS / cm or less, and nonvolatile 432 g of a wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake with a content of 25% was obtained.
Step (E) [Fine particle dispersion preparation step]
432 g of the wet anionic group-containing aqueous polymer compound-coated PAS particle wet cake obtained in the step (D) and 8.28 g of 50% dimethylaminoethanol aqueous solution are put in a 1 L stainless steel cup, and an ultrasonic disperser manufactured by Hielscher is used. Ultrasonic waves were irradiated for 45 minutes at UP400ST (output 400 W, frequency 24 kHz), and adjusted to have a non-volatile content of 18.8% with ion-exchanged water to obtain a PAS fine particle dispersion (D-4). The obtained dispersion had a dispersed particle size (D 50 ) of 182 nm.
(製造例15)塗料PA-1の製造
 製造例11で得られたPAS微粒子分散体(D-1) 310gとBYK348(ビックケミージャパン社製 ポリエーテル変性シロキサン) 0.375gを容器に入れ、よくかき混ぜて塗料PA-1を作製した。
(Production Example 15) Production of paint PA-1 310 g of the PAS fine particle dispersion (D-1) obtained in Production Example 11 and 0.375 g of BYK348 (polyether-modified siloxane manufactured by Big Chemie Japan) were placed in a container, and The paint PA-1 was prepared by stirring.
(製造例16)塗料PA-2の製造
 前記製造例15で得た塗料PA-1 15.017gと前記製造例8で得られた水性樹脂(B-1) 1.716gを容器に入れ、よくかき混ぜて塗料PA-2を作製した。
(Production Example 16) Production of paint PA-2 In a container, 15.017 g of paint PA-1 obtained in Production Example 15 and 1.716 g of aqueous resin (B-1) obtained in Production Example 8 were placed in a container. The paint PA-2 was prepared by stirring.
(製造例17~22)塗料PA-3~塗料PA-8の製造
 塗料PA-1と水性樹脂(B-1)を、下表(第1表)に記載した数量にて前記製造例16と同様の方法により、塗料PA-3~塗料PA-8を作製した。
(Production Examples 17 to 22) Production of coating material PA-3 to coating material PA-8 The coating material PA-1 and the aqueous resin (B-1) were prepared in the quantity described in the following table (Table 1) and the production example 16 In the same manner, paint PA-3 to paint PA-8 were prepared.
(製造例23)塗料PA-9の製造
 前記製造例15で得た塗料PA-1 15.017gと水性樹脂であるHW178(DIC社製 ポリエステルポリウレタンディスパージョン 不揮発分34.9%) 1.977gを容器に入れ、よくかき混ぜて塗料PA-9を作製した。
(Production Example 23) Production of paint PA-9 15.017 g of paint PA-1 obtained in Production Example 15 and HW178 which is an aqueous resin (polyester polyurethane dispersion produced by DIC, non-volatile content: 34.9%) 1.977 g It was put in a container and stirred well to prepare paint PA-9.
(製造例24~25)塗料PA-10及び塗料PA-11の製造
 塗料PA-1と水性樹脂(HW178)を下表(第2表)に記載した数量にて前記製造例23と同様の方法により、塗料PA-10及び塗料PA-11を作製した。
(Production Examples 24 to 25) Production of paint PA-10 and paint PA-11 A method similar to that of Production Example 23 in the amount of paint PA-1 and aqueous resin (HW178) listed in the following table (Table 2) Thus, paint PA-10 and paint PA-11 were prepared.
(製造例26)塗料PA-12の製造
 前記製造例15で得た塗料PA-1 15.017gと前記製造例10で得られた水性樹脂(B-3) 3.450gを容器に入れ、よくかき混ぜて塗料PA-12を作製した。
(Production Example 26) Production of paint PA-12 15.017 g of paint PA-1 obtained in Production Example 15 and 3.450 g of aqueous resin (B-3) obtained in Production Example 10 were put in a container. A paint PA-12 was prepared by stirring.
(製造例27~28)塗料PA-13及び塗料PA-14の製造
 塗料PA-1と水性樹脂(B-3)を下表(第2表)に記載した数量にて前記製造例26と同様の方法により、塗料PA-13及び塗料PA-14を作製した。
(Production Examples 27 to 28) Production of paint PA-13 and paint PA-14 Paint PA-1 and aqueous resin (B-3) were the same as in Production Example 26 in the quantities described in the following table (Table 2). By this method, paint PA-13 and paint PA-14 were prepared.
(製造例29)塗料PB-1の製造
 前記製造例12で得られたPAS微粒子分散体(D-2) 110gとBYK348 0.112gを容器に入れ、よくかき混ぜて塗料PB-1を作製した。
(Production Example 29) Production of Paint PB-1 110 g of the PAS fine particle dispersion (D-2) obtained in Production Example 12 and 0.112 g of BYK348 were placed in a container and stirred well to produce paint PB-1.
(製造例30)塗料PB-2の製造
 前記製造例29で得た塗料PB-1 15.015gと前記製造例10で得られた水性樹脂(B-1) 1.515gを容器に入れ、よくかき混ぜて塗料PB-2を作製した。
(Production Example 30) Production of Paint PB-2 15.15 g of the paint PB-1 obtained in Production Example 29 and 1.515 g of the aqueous resin (B-1) obtained in Production Example 10 were put in a container. The paint PB-2 was prepared by stirring.
(製造例31~36)塗料PB-3~8の製造
 塗料PB-1と水性樹脂(B-1)を下表(第3表)に記載した数量にて前記製造例30と同様の方法により、塗料PB-3~塗料PB-8を作製した。
(Production Examples 31 to 36) Production of paint PB-3 to 8 Paint PB-1 and water-based resin (B-1) were prepared in the same manner as in Production Example 30 in the quantities shown in the following table (Table 3). Then, paints PB-3 to PB-8 were prepared.
(製造例37)塗料PC-1の製造
 前記製造例12で得られたPAS微粒子分散体(D-3) 230gとBYK348 0.232gを容器に入れ、よくかき混ぜて塗料PC-1を作製した。
(Production Example 37) Production of Paint PC-1 230 g of the PAS fine particle dispersion (D-3) obtained in Production Example 12 and 0.232 g of BYK348 were placed in a container and stirred well to produce paint PC-1.
(製造例38)塗料PC-2の製造
 前記製造例37で得られた塗料PC-1 15.015gと前記製造例9で得られた水性樹脂(B-2) 2.367gを容器に入れ、よくかき混ぜて塗料PC-2を作製した。
(Production Example 38) Production of paint PC-2 15.015 g of the paint PC-1 obtained in Production Example 37 and 2.367 g of the aqueous resin (B-2) obtained in Production Example 9 were placed in a container. Stir well to prepare paint PC-2.
(製造例39~43)塗料PC-3~塗料PC-7の製造
 塗料PC-1と水性樹脂(B-2)を下表に記載した数量にて前記製造例38と同様の方法により、塗料PC-3~塗料PC-7を作製した。
(Production Examples 39 to 43) Production of Paint PC-3 to Paint PC-7 The paint PC-1 and water-based resin (B-2) were produced in the same manner as in Production Example 38 in the quantities shown in the table below. PC-3 to paint PC-7 were prepared.
(製造例44)塗料PC-8の製造
 前記製造例37で得られた塗料PC-1 15.015gと前記製造例10で得られた水性樹脂(B-3) 3.03gを容器に入れ、よくかき混ぜて塗料PC-8を作製した。
(Production Example 44) Production of Paint PC-8 In a container, 15.15 g of the paint PC-1 obtained in Production Example 37 and 3.03 g of the aqueous resin (B-3) obtained in Production Example 10 were placed. The paint PC-8 was prepared by stirring well.
(製造例45~46)塗料PC-9及び塗料PC-10の製造
 塗料PC-1と水性樹脂(B-3)を下表(第5表)に記載した数量にて前記製造例44と同様の方法により、塗料PC-9及び塗料PC-10を作製した。
(Production Examples 45 to 46) Production of paint PC-9 and paint PC-10 Paint PC-1 and aqueous resin (B-3) were the same as in Production Example 44 in the quantities shown in the following table (Table 5). By this method, paint PC-9 and paint PC-10 were produced.
(製造例47)塗料PD-1の製造
 前記製造例14で得られたPAS微粒子分散体(D-4) 80gとBYK348 0.075gを容器に入れ、よくかき混ぜて塗料PD-1を作製した。
(Production Example 47) Production of Paint PD-1 80 g of the PAS fine particle dispersion (D-4) obtained in Production Example 14 and 0.075 g of BYK348 were placed in a container and stirred well to produce a paint PD-1.
(製造例48~49)塗料PD-2及び塗料PD-3の製造
 塗料PD-1と水性樹脂(ビニル変性エポキシエステル樹脂:EFD-5530 不揮発分37.4 % DIC製)を下表(第6表)に記載した数量を容器に入れ、よくかき混ぜて塗料PD-2及び塗料PD-3を作製した。
(Production Examples 48 to 49) Production of paint PD-2 and paint PD-3 Paint PD-1 and aqueous resin (vinyl-modified epoxy ester resin: EFD-5530, non-volatile content: 37.4%, manufactured by DIC) are shown in the following table (No. 6 The quantity described in Table) was put in a container and stirred well to prepare paint PD-2 and paint PD-3.
(実施例1)
 ・塗膜セッティング性能の確認
  製造例15で得た塗料PA-2をリン酸亜鉛処理SPCC鋼板にアプリケーター 6mil.を用いて塗布した後、60℃で30分間乾燥させて得られた塗膜のセッティング性を確認した。結果を下表に示す。
Example 1
-Confirmation of coating film setting performance The paint PA-2 obtained in Production Example 15 was applied to a zinc phosphate-treated SPCC steel plate with an applicator 6 mil. Then, the setting property of the coating film obtained by drying at 60 ° C. for 30 minutes was confirmed. The results are shown in the table below.
 ・焼付塗膜外観の確認
  上記セッティング性を確認した後、イナートオーブンに320℃で20分間静置させて得られた塗膜の外観を確認した。結果を下表に示す。
-Confirmation of appearance of baked coating film After confirming the above setting properties, the appearance of the coating film obtained by allowing it to stand at 320 ° C for 20 minutes in an inert oven was confirmed. The results are shown in the table below.
 ・塗膜セッティング性能の評価
  A:塗膜の欠落が全くない
  B:塗膜の欠落がほとんどない
  C:塗膜に若干の欠落が見られる
  D:塗膜に欠落が見られる
  E:塗膜の欠落が多い
・ Evaluation of coating film setting performance A: No missing film B: Little missing film C: Some missing film D: Missing film E: Many missing
 ・焼付塗膜外観の確認
  A:塗膜欠陥がなく、高い光沢と鮮映性を有する
  B:塗膜にクラックやシワなどの欠陥がなく、光沢を有する
  C:塗膜の外縁部に若干の塗膜欠陥がみられる
  D:塗膜全体の10%以上20%未満にわたり塗膜欠陥がみられる
  E:塗膜全体の20%以上で塗膜欠陥がみられる
  ※:塗膜の光沢が無く、白濁がみられる
-Confirmation of the appearance of the baked coating film A: No defects in the coating film, high gloss and sharpness B: The coating film has no defects such as cracks and wrinkles, and has a glossiness C: Slightly on the outer edge of the coating film Film defects are observed D: Film defects are observed over 10% to less than 20% of the entire film E: Film defects are observed at 20% or more of the entire film Cloudiness is seen
(実施例2~31)
 実施例1と同様の操作で、それぞれ製造例で得られた塗料PA-3~14、PB-2~8、PC-2~10、PD-2~3を用いてセッティング性及び焼付塗膜外観を確認した。結果を下表に示す。
(Examples 2 to 31)
In the same manner as in Example 1, using the coating materials PA-3 to 14, PB-2 to 8, PC-2 to 10, and PD-2 to 3 obtained in the respective production examples, setting property and appearance of the baked coating film It was confirmed. The results are shown in the table below.
(比較例1~4)
 実施例1と同様の操作で、それぞれ製造例で得られた塗料PA-1、PB-1、PC-1、PD-1を用いてセッティング性及び焼付塗膜外観を確認した。結果を下表に示す。
(Comparative Examples 1 to 4)
In the same manner as in Example 1, the setting property and the appearance of the baked coating film were confirmed using the paints PA-1, PB-1, PC-1, and PD-1 obtained in the respective production examples. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例32)
 ・塗膜の塩水噴霧試験
 実施例31で得た塗膜に、SST試験機(ISO型キャス試験機/スガ試験機株式会社製)を用いて塩化ナトリウム濃度50g/Lの塩水溶液を300時間噴霧させて塩水に対する防食性を確認した。その結果、塗膜に欠陥は確認されなかった。
(Example 32)
-Salt water spray test of coating film A salt aqueous solution having a sodium chloride concentration of 50 g / L was sprayed on the coating film obtained in Example 31 for 300 hours using an SST tester (ISO type caster / manufactured by Suga Test Instruments Co., Ltd.) The anticorrosiveness against salt water was confirmed. As a result, no defects were confirmed in the coating film.
 これらの結果から、水性樹脂としてポリエーテルポリオール系ウレタン樹脂、ポリエステル系ウレタン樹脂、スチレン-(メタ)アクリル樹脂、ポリビニルピロリドン、ビニル変性エポキシエステル樹脂を用いたことで(実施例1~7、14~20、8~10、21~24、11~13、30~31)、比較例に比べてセッティング性能の点で特に優れるポリアリーレンスルフィド組成物を得られた。なかでも、水性樹脂としてポリエステル系ウレタン樹脂、ポリビニルピロリドン、ビニル変性エポキシエステル樹脂を用いることが塗膜外観良化の点で好ましいことがわかる。また、水性樹脂としてビニル変性エポキシエステル樹脂を用いることが、塗膜の防食性の観点からさらに好ましい。 From these results, polyether polyol type urethane resin, polyester type urethane resin, styrene- (meth) acrylic resin, polyvinyl pyrrolidone, vinyl modified epoxy ester resin were used as aqueous resins (Examples 1-7, 14- 20, 8 to 10, 21 to 24, 11 to 13, 30 to 31), and polyarylene sulfide compositions that are particularly excellent in setting performance as compared with the comparative examples were obtained. Especially, it turns out that it is preferable from the point of the coating-film external appearance improvement to use a polyester-type urethane resin, polyvinylpyrrolidone, and a vinyl modified epoxy ester resin as an aqueous resin. Further, it is more preferable to use a vinyl-modified epoxy ester resin as the aqueous resin from the viewpoint of the anticorrosive property of the coating film.

Claims (11)

  1.  イオン性官能基含有水性高分子化合物で被覆されたポリアリーレンスルフィド微粒子分散液と、水性樹脂とを含むことを特徴とする、ポリアリーレンスルフィド組成物。 A polyarylene sulfide composition comprising a polyarylene sulfide fine particle dispersion coated with an ionic functional group-containing aqueous polymer compound and an aqueous resin.
  2.  前記ポリアリーレンスルフィド微粒子分散液は、ポリアリーレンスルフィド微粒子、イオン性官能基含有水性高分子化合物、酸又は塩基、及び水性媒体からなる、請求項1に記載のポリアリーレンスルフィド組成物。 The polyarylene sulfide fine particle dispersion according to claim 1, wherein the polyarylene sulfide fine particle dispersion is composed of polyarylene sulfide fine particles, an ionic functional group-containing aqueous polymer compound, an acid or a base, and an aqueous medium.
  3.  前記イオン性官能基含有水性高分子化合物のイオン性官能基が、カルボキシル基、カルボキシレート基、スルホン酸基、スルホネート基及びリン酸基からなる群より選ばれる少なくとも一種のアニオン性基である、請求項1又は2に記載のポリアリーレンスルフィド組成物。 The ionic functional group of the ionic functional group-containing aqueous polymer compound is at least one anionic group selected from the group consisting of a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, and a phosphoric acid group. Item 3. The polyarylene sulfide composition according to Item 1 or 2.
  4.  前記アニオン性官能基含有水性高分子化合物の酸価が、10~300mgKOH/gである、請求項3に記載のポリアリーレンスルフィド組成物。 The polyarylene sulfide composition according to claim 3, wherein the acid value of the anionic functional group-containing aqueous polymer compound is 10 to 300 mgKOH / g.
  5.  前記イオン性官能基含有水性高分子化合物のイオン性官能基が、カチオン性基であって、3級アミノ基である、請求項1又は2に記載のポリアリーレンスルフィド組成物。 The polyarylene sulfide composition according to claim 1 or 2, wherein the ionic functional group of the aqueous polymer compound containing an ionic functional group is a cationic group and a tertiary amino group.
  6.  前記カチオン性官能基含有水性高分子化合物のアミン価が、10~300mgKOH/gである、請求項5に記載のポリアリーレンスルフィド組成物。 The polyarylene sulfide composition according to claim 5, wherein the cationic functional group-containing aqueous polymer compound has an amine value of 10 to 300 mgKOH / g.
  7.  前記イオン性官能基含有水性高分子化合物の主骨格が、(メタ)アクリル酸エステル樹脂、スチレン-(メタ)アクリル酸エステル、ビニル変性エポキシエステル樹脂、ビニル樹脂、ポリウレタン樹脂及びポリアミドイミド樹脂からなる群より選ばれる少なくとも一種の水性高分子化合物である、請求項1~6のいずれか一項に記載のポリアリーレンスルフィド組成物。 The main skeleton of the ionic functional group-containing aqueous polymer compound is a group consisting of (meth) acrylate resin, styrene- (meth) acrylate ester, vinyl-modified epoxy ester resin, vinyl resin, polyurethane resin, and polyamideimide resin The polyarylene sulfide composition according to any one of claims 1 to 6, wherein the polyarylene sulfide composition is at least one aqueous polymer compound selected from the group consisting of:
  8.  前記イオン性官能基含有水性高分子化合物において、イオン性官能基の中和に用いられる酸又は塩基が、無機酸、スルホン酸、カルボン酸及びビニル性カルボン酸からなる群から選ばれる少なくとも一種の酸、又は、金属水酸化物及び有機アミンからなる群より選ばれる少なくとも一種の塩基である、請求項1~7のいずれか一項に記載のポリアリーレンスルフィド組成物。 In the ionic functional group-containing aqueous polymer compound, the acid or base used for neutralization of the ionic functional group is at least one acid selected from the group consisting of inorganic acids, sulfonic acids, carboxylic acids, and vinylic carboxylic acids. The polyarylene sulfide composition according to any one of claims 1 to 7, which is at least one base selected from the group consisting of metal hydroxides and organic amines.
  9.  前記ポリアリーレンスルフィド微粒子分散液中のポリアリーレンスルフィド粒子の体積平均粒径が、1μm以下である、請求項1~8のいずれか一項に記載のポリアリーレンスルフィド組成物。 The polyarylene sulfide composition according to any one of claims 1 to 8, wherein the volume average particle diameter of the polyarylene sulfide particles in the polyarylene sulfide fine particle dispersion is 1 µm or less.
  10.  ポリアリーレンスルフィドを有機溶媒中で加熱して、溶解液とする工程(A)と、
     水にイオン性官能基含有水性高分子化合物を添加して溶解させた樹脂水溶液に、工程(A)で得られたポリアリーレンスルフィド溶解液を加えて、ポリアリーレンスルフィド微粒子を形成させる工程(B)と、
     工程(B)で得られたポリアリーレンスルフィド微粒子の表層に存在するイオン性官能基含有水性高分子化合物の官能基を酸又は塩基で中和し、ポリアリーレンスルフィド微粒子表面にイオン性官能基含有水性高分子化合物を析出させて、イオン性官能基含有水性高分子で被覆されたポリアリーレンスルフィド微粒子を沈殿させる工程(C)と、
     工程(C)で得られたイオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド粒子をろ別、洗浄して、含水イオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド微粒子ウェットケーキを得る工程(D)と、
     工程(D)で得られた含水イオン性官能基含有水性高分子により被覆されたポリアリーレンスルフィド粒子ウェットケーキが有する官能基を酸又は塩基で中和し、イオン性官能基含有水性高分子化合物で被覆されたポリアリーレンスルフィド微粒子分散液を得る工程(E)と、
     工程(E)で得られた被覆ポリアリーレンスルフィド微粒子分散液と、水性樹脂とを混合してポリアリーレンスルフィド組成物を得る工程(F)と、
    を有することを特徴とする、ポリアリーレンスルフィド組成物の製造方法。
    A step (A) of heating polyarylene sulfide in an organic solvent to form a solution;
    Step (B) of forming polyarylene sulfide fine particles by adding the polyarylene sulfide solution obtained in Step (A) to an aqueous resin solution in which an ionic functional group-containing aqueous polymer compound is added and dissolved in water. When,
    The functional group of the ionic functional group-containing aqueous polymer compound present in the surface layer of the polyarylene sulfide fine particles obtained in the step (B) is neutralized with an acid or a base, and the ionic functional group-containing aqueous solution on the surface of the polyarylene sulfide fine particles. Precipitating a polymer compound to precipitate polyarylene sulfide fine particles coated with an ionic functional group-containing aqueous polymer (C);
    The polyarylene sulfide particles coated with the water-containing ionic functional group-containing aqueous polymer obtained by filtering and washing the polyarylene sulfide particles coated with the ionic functional group-containing aqueous polymer obtained in the step (C) are washed. Obtaining a cake (D);
    The polyarylene sulfide particle wet cake coated with the hydrous ionic functional group-containing aqueous polymer obtained in the step (D) is neutralized with an acid or a base, and an ionic functional group-containing aqueous polymer compound is used. A step (E) of obtaining a coated polyarylene sulfide fine particle dispersion; and
    Step (F) of obtaining a polyarylene sulfide composition by mixing the coated polyarylene sulfide fine particle dispersion obtained in step (E) and an aqueous resin;
    A process for producing a polyarylene sulfide composition, comprising:
  11.  請求項1~9のいずれか一項に記載のポリアリーレンスルフィド組成物を用いて得られた塗膜。 A coating film obtained using the polyarylene sulfide composition according to any one of claims 1 to 9.
PCT/JP2017/011649 2016-03-31 2017-03-23 Polyarylene sulfide composition, method for producing same, and coating film WO2017170102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509166A JP6977712B2 (en) 2016-03-31 2017-03-23 Polyarylene sulfide composition, its production method and coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-073736 2016-03-31
JP2016073736 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170102A1 true WO2017170102A1 (en) 2017-10-05

Family

ID=59965517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011649 WO2017170102A1 (en) 2016-03-31 2017-03-23 Polyarylene sulfide composition, method for producing same, and coating film

Country Status (2)

Country Link
JP (1) JP6977712B2 (en)
WO (1) WO2017170102A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240780A (en) * 2000-02-29 2001-09-04 Nippon Steel Chem Co Ltd Red color resist ink and color filter
JP2009173878A (en) * 2007-12-27 2009-08-06 Toray Ind Inc Polyphenylene sulfide fine particle, dispersion thereof, and production method therefor
JP2011122108A (en) * 2009-12-14 2011-06-23 Toray Ind Inc Dispersion of polyphenylene sulfide resin fine particle and method for producing the same
JP2012177010A (en) * 2011-02-25 2012-09-13 Toray Ind Inc Method for producing dispersion of polyphenylene sulfide resin micro-particles
WO2015178105A1 (en) * 2014-05-22 2015-11-26 Dic株式会社 Polyarylene sulfide dispersion, powder particles, method for producing polyarylene sulfide dispersion, and method for producing powder particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067966A (en) * 2007-09-18 2009-04-02 Dic Corp Coating agent
JP5741142B2 (en) * 2011-03-31 2015-07-01 Dic株式会社 Cationic urethane resin composition and metal coating agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240780A (en) * 2000-02-29 2001-09-04 Nippon Steel Chem Co Ltd Red color resist ink and color filter
JP2009173878A (en) * 2007-12-27 2009-08-06 Toray Ind Inc Polyphenylene sulfide fine particle, dispersion thereof, and production method therefor
JP2011122108A (en) * 2009-12-14 2011-06-23 Toray Ind Inc Dispersion of polyphenylene sulfide resin fine particle and method for producing the same
JP2012177010A (en) * 2011-02-25 2012-09-13 Toray Ind Inc Method for producing dispersion of polyphenylene sulfide resin micro-particles
WO2015178105A1 (en) * 2014-05-22 2015-11-26 Dic株式会社 Polyarylene sulfide dispersion, powder particles, method for producing polyarylene sulfide dispersion, and method for producing powder particles

Also Published As

Publication number Publication date
JP6977712B2 (en) 2021-12-08
JPWO2017170102A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6090639B2 (en) Polyarylene sulfide dispersion and powder particles, and production method thereof
CN108883434A (en) The method for forming multilayer film
CN102317386A (en) Water-based coating composition and method of forming multilayered coating film
JP2010007124A (en) Method for producing silver-containing powder, silver-containing powder, and dispersion liquid thereof
JP7462765B2 (en) Aqueous polycarboxylic acid-containing coating compositions having improved leveling properties - Patents.com
JP4451084B2 (en) Polyolefin resin dispersion and method for producing the same
JP6325111B2 (en) Pigment paste and method for producing aqueous electrodeposition material, method for using them, method for electrophoretic electrodeposition, and coated article
JP7350077B2 (en) Polycarboxylic acid-containing aqueous coating with improved effect pigment arrangement
JP6977712B2 (en) Polyarylene sulfide composition, its production method and coating film
JP2017186391A (en) Electrodeposition coating composition, production process therefor, and electrodeposition coating film
JP6274548B2 (en) Polyarylene sulfide dispersion and fine particles, and production method thereof
JP2005336336A (en) Water-based pigment dispersion and water-based pigment recording liquid
FR2547592A1 (en) AQUEOUS COATING COMPOSITION AND PROCESS FOR PREPARING THE SAME
JP4276692B2 (en) Glittering paint composition, glittering coating film forming method and glittering paint
JP2008007629A (en) Aqueous coloring material and powdery coloring material
JP2010069372A (en) Method of coating abs base material and coated article
JP2004298838A (en) Method for forming multi-layer coating film
JP2004292577A (en) Aqueous coating composition for plastic-made substrate and method for forming coating film
JP2017095563A (en) Composite particle dispersed body made of polyarylene sulfide and wholly aromatic linear polymer, powder particle, and method for producing them
WO2024052234A1 (en) Aqueous coating material containing cellulose nanofibers
JP2005187512A (en) Aqueous powder slurry coating composition
JPH0364374A (en) Matte coating composition
WO2016171121A1 (en) Resin dispersion, fine particles, and production processes therefor
WO2016185857A1 (en) Resin dispersion, fine particles and methods for producing same
JPH1081849A (en) Color coating material composition, pigment-dispersed paste composition and method for forming coating film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509166

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774643

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774643

Country of ref document: EP

Kind code of ref document: A1