WO2017169683A1 - 液体吐出ヘッド及び液体の循環方法 - Google Patents

液体吐出ヘッド及び液体の循環方法 Download PDF

Info

Publication number
WO2017169683A1
WO2017169683A1 PCT/JP2017/009917 JP2017009917W WO2017169683A1 WO 2017169683 A1 WO2017169683 A1 WO 2017169683A1 JP 2017009917 W JP2017009917 W JP 2017009917W WO 2017169683 A1 WO2017169683 A1 WO 2017169683A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
electrode
discharge port
flow path
liquid flow
Prior art date
Application number
PCT/JP2017/009917
Other languages
English (en)
French (fr)
Inventor
喜幸 中川
山田 和弘
議靖 永井
山▲崎▼ 拓郎
中窪 亨
輝 山本
将文 森末
亮 葛西
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to SG11201808349RA priority Critical patent/SG11201808349RA/en
Priority to BR112018069680A priority patent/BR112018069680A2/pt
Priority to EP17774227.7A priority patent/EP3437869B1/en
Priority to KR1020187030694A priority patent/KR102223257B1/ko
Priority to CN201780019939.4A priority patent/CN108883636B/zh
Priority to RU2018137786A priority patent/RU2710677C1/ru
Publication of WO2017169683A1 publication Critical patent/WO2017169683A1/ja
Priority to US16/141,055 priority patent/US10717273B2/en
Priority to PH12018502051A priority patent/PH12018502051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/1404Geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14072Electrical connections, e.g. details on electrodes, connecting the chip to the outside...
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14395Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/12Embodiments of or processes related to ink-jet heads with ink circulating through the whole print head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer

Definitions

  • the present invention relates to a liquid discharge head and a liquid circulation method, and more particularly to a configuration for causing a liquid to flow in the vicinity of a discharge port.
  • the volatile component in the liquid evaporates from the discharge port that discharges the liquid, thereby increasing the viscosity of the liquid near the discharge port.
  • the ejection speed of the ejected droplets may change or the landing accuracy may be affected.
  • the increase in the viscosity of the liquid becomes remarkable, the solid component of the liquid adheres to the vicinity of the discharge port, and the fluid resistance of the liquid increases due to the solid component, resulting in discharge failure. In some cases.
  • a method of flowing a fresh liquid to a discharge port in a pressure chamber is known.
  • a method of circulating the liquid in the head by a differential pressure method is known.
  • a system using a ⁇ pump such as AC electroosmotic flow (ACEOF) is known (Patent Document 1).
  • Patent Document 1 it is possible to allow a fresh liquid to flow into the pressure chamber.
  • the effect of causing the liquid concentrated inside the discharge port to flow out is small. Therefore, the concentrated liquid tends to stay in the pressure chamber. Therefore, the liquid in the pressure chamber is easily thickened by the evaporation of the liquid from the discharge port.
  • the liquid discharge head of the present invention includes a discharge port that discharges a liquid, a first liquid channel that is in communication with the discharge port and through which the liquid flows, and a discharge port on the opposite side of the first liquid channel with respect to the discharge port.
  • FIG. 2 is a schematic diagram of a liquid ejection head according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a liquid ejection head according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a liquid ejection head according to the first embodiment of the present invention.
  • It is a schematic diagram of the flow velocity distribution in the liquid discharge head according to the first embodiment of the present invention.
  • It is a schematic diagram explaining the generation mechanism of the driving force by an electroosmotic flow.
  • It is a schematic diagram explaining the generation mechanism of the driving force by an electroosmotic flow.
  • It is a schematic diagram explaining the generation mechanism of the driving force by an electroosmotic flow.
  • It is a schematic diagram explaining the generation mechanism of the driving force by an electroosmotic flow.
  • FIG. 1A is a perspective view of a recording element substrate of a liquid discharge head according to the first embodiment of the present invention.
  • 1B is a cross-sectional view of the recording element substrate shown in FIG. 1A
  • FIG. 1C is a cross-sectional view taken along the line AA in FIG. 1B
  • FIG. 1D is a schematic diagram showing a flow velocity distribution in the same cross section as FIG.
  • the recording element substrate 1 has a substrate 10 and a discharge port forming member 15.
  • the discharge port forming member 15 is bonded to the substrate 10.
  • the substrate 10 includes an energy generating element 11 that generates energy for discharging ink.
  • a plurality of discharge ports 12 are arranged in the discharge port forming member 15, and the plurality of discharge ports 12 are arranged in a line to form a discharge port array 19.
  • the recording element substrate 1 of the present embodiment has two ejection port arrays 19, but the number of ejection port arrays 19 is not limited to this.
  • the substrate 10 is formed with a plurality of first through holes 16 and a plurality of second through holes 17 that penetrate the substrate 10 from the front surface to the back surface.
  • a plurality of first liquid flow paths 13 and a plurality of second liquid flow paths 14 through which ink flows are formed in the space between the discharge port forming member 15 and the substrate 10.
  • the plurality of first liquid passages 13 and the plurality of second liquid passages 14 are each partitioned by a partition wall 30 in the arrangement direction of the discharge ports 12 and provided in parallel to each other.
  • the pressure chamber 20 is a region sandwiched between the partition walls 30 and a region where the energy generating element 11 is provided. More broadly, a region where pressure acts when the energy generating element 11 is driven is shown.
  • the discharge port 12 faces the energy generating element 11 in a direction perpendicular to the surface of the substrate 10 facing the discharge port forming member 15.
  • the pressure chamber 20, the first through-hole 16, and the second through-hole 17 are provided for each corresponding liquid flow path or each discharge port 12. Accordingly, the first through port 16, the first liquid channel 13, the pressure chamber 20, the second liquid channel 14, and the second through port 17 form an independent channel for each discharge port 12. ing.
  • the plurality of first through holes 16 and the plurality of second through holes 17 form a first through hole array 25 and a second through hole array 26, respectively.
  • the first through-hole row 25 and the second through-hole row 26 extend in parallel to the discharge port row 19 on opposite sides of the discharge port row 19.
  • Ink is supplied from the first through-hole 16 to the pressure chamber 20 through the first liquid flow path 13.
  • the ink supplied to the pressure chamber 20 is heated by the energy generating element 11 and discharged from the discharge port 12 by the pressure of the generated bubbles.
  • the ink that has not been ejected from the ejection port 12 is guided from the pressure chamber 20 through the second liquid channel 14 to the second through-hole 17.
  • the first liquid channel 13 and the second liquid channel 14 are each provided with two types of electrodes. Hereinafter, these electrodes are referred to as a first electrode 21 and a second electrode 22. Both the first electrode 21 and the second electrode 22 are provided on the substrate 10.
  • the first electrode 21 is connected to one end (+ terminal) of the AC power supply AC
  • the second electrode 22 is connected to the other end ( ⁇ end) of the AC power supply AC.
  • the first electrode 21 is smaller in dimension than the second electrode 22 in the direction of ink flow, that is, the direction along the first liquid flow path 13 and the second liquid flow path 14.
  • the dimensions of the first electrode 21 and the second electrode 22 in the direction perpendicular to the ink flow direction are approximately the same.
  • the first electrode 21 has a smaller area facing the ink than the second electrode 22.
  • a plurality of first electrodes 21 and second electrodes 22 are provided in the first liquid flow path 13 and the second liquid flow path 14, respectively, and are alternately provided.
  • the first electrode 21 and the second electrode 22 are formed of the first electrode 21, the second electrode 22, the first electrode 21, and the second electrode 22 from the first through hole 16 toward the pressure chamber 20. ⁇ ⁇
  • the first liquid channel 13 and the second liquid channel 14 may be provided with at least one pair of the first electrode 21 and the second electrode 22 adjacent to each other.
  • the plurality of first electrodes 21 are connected to a common first wiring 24, and the plurality of second electrodes 22 are connected to a common second wiring 23.
  • the first wiring 24 and the second wiring 23 are arranged on opposite sides of the first liquid flow path 13 and the second liquid flow path 14.
  • the plurality of first electrodes 21 and the plurality of second electrodes 22 extend from the first wiring 24 and the second wiring 23 in a comb shape in opposite directions.
  • the first wiring 24 extends along the second liquid flow path 14 and further extends between the second through holes 17 adjacent to each other.
  • the second wiring 23 extends along the first liquid flow path 13 and further extends between the first through holes 16 adjacent to each other.
  • the first wiring 24 and the second wiring 23 are provided in parallel to each other in the lower region of the partition wall 30. Thereby, the first wiring 24 and the second wiring 23 are prevented from being complicated, and an increase in the dimension of the element substrate 10 is suppressed.
  • An AC voltage is applied to the first electrode 21 and the second electrode 22.
  • a negative voltage ( ⁇ V) is applied to the first electrode 21 and a positive voltage (+ V) is applied to the second electrode 22.
  • a negative voltage ( ⁇ V) is applied to the first electrode 21 and a positive voltage (+ V) is applied to the second electrode 22.
  • a positive voltage (+ V) is applied to the second electrode 22, and the ink in contact with the second electrode 22 is negatively charged, so that an electric double layer is formed.
  • a substantially semicircular electric field E is formed in the ink from the second electrode 22 to the first electrode 21.
  • This electric field is symmetrical with respect to a line intermediate between the first electrode 21 and the second electrode 22.
  • An electric field component E1 parallel to the surfaces of the first and second electrodes 21 and 22 is generated on the surfaces of the first and second electrodes 21 and 22.
  • This electric field component E1 exerts a Coulomb force on the charges induced on the first and second electrodes 21 and 22.
  • the electric field component E1 is directed leftward in the figure at a position close to the gap between the electrodes. Since the positive charge receives a force in the same direction as the electric field, as shown in FIG.
  • a rotating vortex F1 in which the ink in contact with the first electrode 21 flows leftward in the figure is generated. Since the negative charge receives a force in the direction opposite to the electric field, a rotating vortex F2 in which the ink in contact with the second electrode 22 flows rightward in the figure is generated. Since the ink flows away from the interelectrode gap, an ink flow F3 that replenishes the ink is generated in the interelectrode gap. In addition, since the direction of the electric field is reversed at the end of the electrode away from the inter-electrode gap, a rotating vortex F4 is generated in which the ink flows toward the inter-electrode gap. However, since the electric field is weak, the Coulomb force received by the ink is small.
  • the dimension in the flow direction of the second electrode 22 is larger than the dimension in the flow direction of the first electrode 21.
  • the electric field distribution differs between the first electrode 21 and the second electrode 22.
  • a small rotating vortex F5 having a high flow velocity is formed in the vicinity of the first electrode 21.
  • a small rotating vortex F7 having a low flow velocity is formed at a low potential portion, and a large rotating vortex F6 having a high flow velocity is formed at a high potential portion.
  • ink is drawn from the first electrode 21 to the inter-electrode gap, and an ink flow in which the ink flows from the first electrode 21 toward the second electrode 22 is generated.
  • Such electroosmotic flow generates a driving force for flowing ink from the first liquid channel 13 toward the second liquid channel 14. That is, the ink passes through the first liquid channel 13 from the first through-hole 16 by the electroosmotic flow generated by the first electrode 21 and the second electrode 22 provided in the first liquid channel 13. Into the pressure chamber 20. When the energy generating element 11 is operating, part of the ink that has flowed into the pressure chamber 20 is ejected from the ejection port 12. The ink that has not been ejected passes through the second liquid channel 14 by the electro-osmotic flow generated by the first electrode 21 and the second electrode 22 provided in the second liquid channel 14, and is supplied to the second liquid channel 14. It flows out of the liquid discharge head from the through-hole 17.
  • the ink that has flowed out of the liquid discharge head flows again into the liquid discharge head after passing through the ink tank or the like of the recording apparatus.
  • the ink in the pressure chamber 20 is circulated between the outside of the pressure chamber 20.
  • the ink circulates inside the liquid discharge head (the ink flows between the inside and the outside of the pressure chamber 20).
  • an electroosmotic flow is generated by the AC power source AC connected to the first electrode 21 and the second electrode 22, so that the ink is in the first liquid flow path 13.
  • the ink is concentrated inside the pressure chamber 20, the accumulation of the concentrated ink in the pressure chamber 20 can be suppressed. Therefore, it is possible to eject relatively fresh ink that is not thickened or has a small degree of thickening from the ejection port 12, and it is possible to reduce color unevenness of the image.
  • FIG. 3A is a cross-sectional view of the recording element substrate of the liquid discharge head according to the second embodiment of the present invention
  • FIG. 3B is a cross-sectional view taken along line AA in FIG. 3A
  • FIG. 3C is a flow velocity in the same cross section as FIG. It is a schematic diagram which shows distribution.
  • FIG. 3A shows only one discharge port 12 and the first and second liquid passages 13 and 14 and the first and second through ports 16 and 17 related to the discharge port 12.
  • the configurations of the first and second through hole arrays 25 and 26 are the same as those in the first embodiment.
  • the first electrode 21 and the second electrode 22 are disposed on the back surface of the discharge port forming member 15.
  • the back surface means the surface of the discharge port forming member 15 facing the substrate 10.
  • the filling of the electric double layer occurs on the electrode on the back surface of the discharge port forming member 15. Therefore, as shown in FIG. 3C, a flow velocity distribution is generated in the flow path, where the flow velocity is large on the back surface side of the discharge port forming member 15 and gradually approaches zero as the surface of the substrate 10 is approached.
  • the flow velocity on the back surface side of the discharge port forming member 15 is large, so the ink in the discharge port 12 It is easy to cancel the concentration. Accordingly, it is possible to more efficiently reduce the viscosity increase of the ink.
  • FIG. 4A is a cross-sectional view of the recording element substrate of the liquid discharge head according to the third embodiment of the present invention
  • FIG. 4B is a cross-sectional view taken along line AA of FIG. 4A
  • FIG. 4C is a flow velocity in the same cross section as FIG. It is a schematic diagram which shows distribution.
  • FIG. 4A shows only one discharge port 12 and the first and second liquid flow paths 13 and 14 and the first and second through ports 16 and 17 related thereto.
  • the configurations of the first and second through hole arrays 25 and 26 are the same as those in the first embodiment.
  • the first electrode 21 and the second electrode 22 of the first liquid channel 13 are provided on the back surface of the discharge port forming member 15, and the first electrode 21 of the second liquid channel 14 A second electrode 22 is disposed on the substrate 10.
  • the electrode of the second liquid channel 14 on the substrate 10, it becomes easy to flow out the concentrated ink. Therefore, in the present embodiment, it is easy to discharge the concentrated ink from the vicinity of the discharge port and discharge the discharged concentrated ink from the pressure chamber 20 to the second through-hole 17.
  • FIG. 5A is a perspective view of a recording element substrate of a liquid ejection head according to the fourth embodiment of the present invention
  • FIG. 5B is a cross-sectional view of the recording element substrate shown in FIG. 5A.
  • two through-hole rows provided with the discharge port row 19 in between are formed by a first one elongated through-hole 116 and a second one elongated through-hole 117, respectively. Since the dimension of the first one elongated through-hole 116 and the second one elongated through-hole 117 in the direction parallel to the discharge port array 19 can be substantially increased, the first one elongated through-hole 116 and the second one The dimension of one elongated through-hole 117 in the direction perpendicular to the discharge port array 19 can be reduced. For this reason, it is easy to reduce the size in the width direction of the recording element substrate as compared with the first embodiment, and the recording element substrate can be downsized. Any one of the elongated through holes may be provided for each of the liquid flow paths 13 and 14 as in the first embodiment.
  • FIGS. 6A and 6B The configuration of the recording element substrate of the liquid discharge head according to the fifth embodiment of the present invention will be described with reference to FIGS. 6A and 6B. In the following description, the differences from the first embodiment will be mainly described, and therefore, the description of the first embodiment should be referred to for the parts that are not specifically described.
  • 6A is a perspective view of a recording element substrate of a liquid ejection head according to a fifth embodiment of the present invention
  • FIG. 6B is a cross-sectional view of the recording element substrate shown in FIG. 6A.
  • one through-hole 226 is provided for each discharge port 12. Further, similarly to the fourth embodiment, one through-hole 226 is common to the plurality of discharge ports 12.
  • the first liquid flow path 13 is connected to one through-hole 226 and is turned 180 degrees in the middle and connected to the pressure chamber 20.
  • the second liquid channel 14 communicating the pressure chamber 20 and one through-hole 226 is a channel formed on a straight line. That is, the ink supplied to the pressure chamber 20 from the one elongated through hole 226 via the first liquid channel 13 is returned to the elongated through port 226 again via the second liquid channel 14. Yes.
  • the configuration of the present embodiment since it is not necessary to arrange two rows of through-hole rows, it is easier to reduce the size in the width direction of the printing element substrate than in the first embodiment, and the printing element substrate can be made smaller. Is possible.
  • a plurality of through-holes connected to the individual discharge ports 12 may be provided instead of the elongated through-holes 226.
  • the ink that has flowed into the first liquid channel 13 and the second liquid channel 14 from one through-hole 226 returns to one through-hole 226 again. Is formed. For this reason, the effect which suppresses the stay of the concentrated ink is acquired like 1st Embodiment.
  • FIG. 7A is a cross-sectional view of a recording element substrate of a liquid discharge head according to a sixth embodiment of the present invention
  • FIG. 7B is a cross-sectional view taken along line AA in FIG. 7A
  • FIG. 7C is a flow velocity in the same cross section as FIG. It is a schematic diagram which shows distribution.
  • first and second through hole arrays 25 and 26 show only one discharge port 12 and the first and second liquid flow paths 13 and 14 and the first and second through ports 16 and 17 related to the discharge port 12,
  • the configurations of the first and second through hole arrays 25 and 26 are the same as those in the first embodiment.
  • a first electrode 21 is provided in the first liquid flow path 13, and a second electrode 22 is provided in the second liquid flow path 14, and the first electrode 21 and the second electrode 22 are It is connected to a DC power source DC. More specifically, the first electrode 21 is connected to the positive electrode of the DC power source DC, and the second electrode 22 is connected to the negative electrode of the DC power source DC.
  • the dimensions of the first electrode 21 and the second electrode 22 are substantially the same, but may be different as in the first embodiment.
  • the electrode may be disposed on either the substrate 10 or the back surface of the discharge port forming member 15.
  • the flow velocity distribution shows a flow velocity distribution substantially close to the plug flow.
  • the reason why such a flow velocity distribution occurs is as follows. When an electric field parallel to the wall surface is applied from the outside, the solid surface becomes negatively charged, and positive ions become excessive in the liquid near the interface. Therefore, the liquid is locally positively charged, and ions in the electric double layer are subjected to a force in the direction of the electric field, causing ink to move near the wall.
  • the first and second electrodes are provided on the substrate 10.
  • the present invention is not limited to this, and the first and second electrodes are formed as ejection openings as shown in the second embodiment.
  • the present invention can also be applied to a configuration provided on the back surface of the member 15. Further, as shown in the third embodiment, one of the first and second electrodes can be applied to the substrate 10 and the other can be applied to the discharge port forming member 15.
  • FIG. 8A is a cross-sectional view of a recording element substrate of a liquid discharge head according to a seventh embodiment of the present invention
  • FIG. 8B is a cross-sectional view taken along line AA in FIG. 8A
  • FIG. 8C is a flow velocity in the same cross section as FIG. It is a schematic diagram which shows distribution.
  • FIG. 8A is a cross-sectional view of a recording element substrate of a liquid discharge head according to a seventh embodiment of the present invention
  • FIG. 8B is a cross-sectional view taken along line AA in FIG. 8A
  • FIG. 8C is a flow velocity in the same cross section as FIG. It is a schematic diagram which shows distribution.
  • FIG. 8A is a cross-sectional view of a recording element substrate of a liquid discharge head according to a seventh embodiment of the present invention
  • FIG. 8B is a cross-sectional view taken along line AA in FIG. 8A
  • FIG. 8C is a flow velocity in the same cross section as FIG
  • FIG. 8A shows only one discharge port 12 and the first and second liquid flow paths 13 and 14 and the first and second through ports 16 and 17 related to the discharge port 12.
  • the configurations of the first and second through hole arrays 25 and 26 are the same as those in the first embodiment.
  • the first electrode 21 is provided in the first liquid flow path 13
  • the second electrode 22 is provided in the second liquid flow path 14, and the first electrode 21 and the second electrode 22 are provided.
  • Each is connected to the + terminal and the-terminal of the AC power supply AC.
  • the dimensions of the first electrode 21 and the second electrode 22 are substantially the same.
  • a flow velocity distribution such as a mixer that rotates about the discharge port 12 or the energy generating element 11 is generated. The reason is as described in FIGS.
  • FIGS. 9A to 9E The configuration of the recording element substrate of the liquid ejection head according to the eighth embodiment of the present invention will be described with reference to FIGS. 9A to 9E.
  • FIG. 9A is a cross-sectional view of a recording element substrate of a liquid discharge head according to an eighth embodiment of the present invention
  • FIG. 9B is a cross-sectional view taken along line AA of FIG. 9A
  • FIG. 9C is a flow velocity in the same cross section as FIG. It is a schematic diagram which shows distribution.
  • FIG. 9D is a cross-sectional view taken along line BB in FIG.
  • FIG. 9A, and FIG. 9E is a schematic diagram showing a flow velocity distribution in the same cross section as FIG. 9D.
  • FIG. 9A shows only one discharge port 12 and the first and second liquid flow paths 13 and 14 and the first and second through ports 16 and 17 related to the discharge port 12.
  • the configurations of the first and second through hole arrays 25 and 26 are the same as those in the first embodiment.
  • a third electrode 27 and a fourth electrode 28 are formed.
  • the third electrode 27 and the fourth electrode 28 are each connected to a wiring (not shown) by a via 29.
  • the first electrode 21 and the second electrode 22 have the same configuration as in the first embodiment, and specifically have the following configuration.
  • the first electrode 21 and the second electrode 22 are connected to the + terminal and the ⁇ terminal of the AC power supply AC.
  • the first electrode 21 and the second electrode 22 are both arranged in the first liquid flow path 13 and the second liquid flow path 14.
  • the dimension in the flow direction of the first electrode 21 is smaller than the dimension in the flow direction of the second electrode 22.
  • the first electrode 21 and the second electrode 22 are disposed on the substrate 10.
  • the third electrode 27 and the fourth electrode 28 are connected to both poles of the AC power supply AC.
  • the third electrode 27 and the fourth electrode 28 are arranged on both sides of the ejection port 12 or the energy generating element 11.
  • the third electrode 27 and the fourth electrode 28 may be disposed in any of the first liquid channel 13, the second liquid channel 14, and the pressure chamber 20.
  • the first electrode 21 and the second electrode 22 generate an ink flow from the first liquid channel 13 toward the second liquid channel 14. This produces a fresh ink flow across the pressure chamber 20. 9E, the third electrode 27 and the fourth electrode 28 generate a flow component toward the discharge port 12. For this reason, the ink concentration inside the ejection port 12 can be efficiently suppressed.
  • the combined effect of the above two has a greater effect of reducing ink thickening than other embodiments. According to the present invention, it is possible to reduce the color unevenness of the image by reducing the thickening of the liquid due to the evaporation of the liquid from the discharge port by flowing the liquid into the pressure chamber and flowing out the liquid from the pressure chamber. It becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Abstract

液体吐出ヘッド1は、液体を吐出する吐出口12と、吐出口12に連通し、液体が流通する第1の液流路13と、吐出口12に関し第1の液流13の反対側で吐出口12に連通し、液体が流通する第2の液流路14と、第1の液流路13に位置する第1の電極21と、第2の液流路14に位置し、第1の電極21とともに液体に電気浸透流を発生させる第2の電極22と、を有する。

Description

液体吐出ヘッド及び液体の循環方法
本発明は液体吐出ヘッドと液体の循環方法に関し、特に吐出口の近傍で液体を流動させるための構成に関する。
インク等の液体を吐出する液体吐出装置に用いられる液体吐出ヘッドにおいては、液体を吐出する吐出口から液体中の揮発成分が蒸発することで、吐出口付近の液体が増粘する。これによって、吐出される液滴の吐出速度が変化したり、着弾精度に影響がでたりすることがある。特に吐出を行った後の休止時間が長い場合、液体の粘度の増加が顕著になり、液体の固形成分が吐出口付近に固着し、この固形成分により液体の流体抵抗が増加し吐出不良となる場合もある。
このような液体の増粘現象に対する対策の1つとして、圧力室内の吐出口にフレッシュな液体を流す方法が知られている。液体を流す手段として、ヘッド内の液体を差圧方式により循環させる方式が知られている。また、交流電気浸透流(ACEOF)のようなμポンプを用いた方式が知られている(特許文献1)。
特許文献1の構成の場合、圧力室内にフレッシュな液体を流入させることは可能である。しかし、吐出口の下流側の流路にポンプの役割を担う電極が存在しないため、吐出口内部で濃縮した液体を流出させる効果が小さい。そのため、濃縮した液体が圧力室内部に留まり易い。従って、吐出口からの液体の蒸発により圧力室内部の液体が増粘し易い。
国際公開第2013/130039号
吐出口からの液体の蒸発による液体の増粘を軽減することで画像の色ムラを低減する液体吐出ヘッドを提供することを目的とする。
本発明の液体吐出ヘッドは、液体を吐出する吐出口と、吐出口に連通し、液体が流通する第1の液流路と、吐出口に関し第1の液流路の反対側で吐出口に連通し、液体が流通する第2の液流路と、第1の液流路に位置する第1の電極と、第2の液流路に位置し、第1の電極とともに液体に電気浸透流を発生させる第2の電極と、を有する。
本発明の第1の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第1の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第1の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第1の実施形態に係る液体吐出ヘッドにおける流速分布の模式図である。 電気浸透流による駆動力の発生メカニズムを説明する模式図である。 電気浸透流による駆動力の発生メカニズムを説明する模式図である。 電気浸透流による駆動力の発生メカニズムを説明する模式図である。 電気浸透流による駆動力の発生メカニズムを説明する模式図である。 本発明の第2の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第2の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第2の実施形態に係る液体吐出ヘッドにおける流速分布の模式図である。 本発明の第3の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第3の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第3の実施形態に係る液体吐出ヘッドにおける流速分布の模式図である。 本発明の第4の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第4の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第5の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第5の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第6の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第6の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第6の実施形態に係る液体吐出ヘッドにおける流速分布の模式図である。 本発明の第7の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第7の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第7の実施形態に係る液体吐出ヘッドにおける流速分布の模式図である。 本発明の第8の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第8の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第8の実施形態に係る液体吐出ヘッドの模式図である。 本発明の第8の実施形態に係る液体吐出ヘッドにおける流速分布の模式図である。 本発明の第8の実施形態に係る液体吐出ヘッドにおける流速分布の模式図である。
以下、図面を参照して、本発明の実施形態に係る液体吐出ヘッドについて説明する。以下の各実施形態は、インクを吐出するインクジェット記録ヘッドとインクジェット記録装置を対象とするが、本発明はこれに限定されるものではない。本発明は、プリンタ、複写機、通信システムを有するファクシミリ、プリンタ部を有するワードプロセッサなどの装置、さらには各種処理装置と複合的に組み合わせた産業記録装置に適用可能である。本発明は例えば、バイオチップ作製、電子回路印刷、及び半導体ウエハーの回路パターンを形成するためのレジストの塗布などの用途としても用いることができる。
以下に述べる実施形態は本発明の好適な具体例であり、技術的に好ましい様々の限定が付けられている。しかし、本発明の思想に沿う限り、本発明は以下に述べる実施形態に限定されるものではない。
(第1の実施形態)
図1Aは本発明の第1の実施形態に係る液体吐出ヘッドの記録素子基板の斜視図である。図1Bは図1Aに示す記録素子基板の断面図、図1Cは図1BのA-A線に沿った断面図、図1Dは図1Cと同じ断面における流速分布を示す模式図である。
記録素子基板1は基板10と、吐出口形成部材15と、を有している。吐出口形成部材15は基板10に接合されている。基板10はインクが吐出するためのエネルギーを発生するエネルギー発生素子11を備えている。吐出口形成部材15には複数の吐出口12が配置されている、複数の吐出口12は一列に配列して吐出口列19を形成している。本実施形態の記録素子基板1は2列の吐出口列19を有しているが、吐出口列19の数はこれに限定されない。
図1Bと図1Cを参照すると、基板10には、基板10を表面から裏面まで貫通する複数の第1の貫通口16と複数の第2の貫通口17とが形成されている。吐出口形成部材15と基板10との間の空間には、インクが流通する複数の第1の液流路13と複数の第2の液流路14が形成されている。複数の第1の液流路13と複数の第2の液流路14は夫々が吐出口12の配列方向に関して隔壁30で仕切られ、互いに並列して設けられている。吐出口形成部材15と基板10の間で、かつ第1の液流路13と第2の液流路14の間には、それぞれがエネルギー発生素子11を内部に備えた複数の圧力室20が形成されている。本発明において圧力室20は隔壁30に挟まれた領域であり、かつエネルギー発生素子11が設けられた領域を示す。より広義的にはエネルギー発生素子11を駆動した際に圧力が作用する領域を示す。吐出口12は基板10の吐出口形成部材15と対向する面と垂直な方向においてエネルギー発生素子11と対向している。圧力室20と第1の貫通口16と第2の貫通口17は対応する液流路毎ないし吐出口12毎に設けられている。従って、第1の貫通口16、第1の液流路13、圧力室20、第2の液流路14及び第2の貫通口17は個々の吐出口12毎の独立した流路を形成している。複数の第1の貫通口16と複数の第2の貫通口17はそれぞれ第1の貫通口列25と第2の貫通口列26を形成している。第1の貫通口列25と第2の貫通口列26は吐出口列19を挟んで互いに反対側を吐出口列19と平行に延びている。
インクは第1の貫通口16から、第1の液流路13を通って圧力室20に供給される。圧力室20に供給されたインクはエネルギー発生素子11で加熱され、発生した気泡の圧力によって吐出口12から吐出する。吐出口12から吐出しなかったインクは圧力室20から第2の液流路14を通って第2の貫通口17に導かれる。
第1の液流路13と第2の液流路14にはそれぞれ2種類の電極が設けられている。以下これらの電極を第1の電極21、第2の電極22と呼ぶ。第1の電極21と第2の電極22はいずれも基板10に設けられている。第1の電極21は交流電源ACの一端(+端子)に接続されており、第2の電極22は交流電源ACの他端(-端)に接続されている。第1の電極21はインクの流れ方向、すなわち第1の液流路13と第2の液流路14に沿った方向について、第2の電極22より寸法が小さい。一方、第1の電極21と第2の電極22のインクの流れ方向と直交する方向の寸法は同程度である。従って、第1の電極21は第2の電極22よりインクに面する面積が小さい。
第1の電極21と第2の電極22はそれぞれ第1の液流路13と第2の液流路14に複数個設けられ、かつ交互に設けられている。第1の電極21と第2の電極22は、第1の貫通口16から圧力室20に向かって、第1の電極21、第2の電極22、第1の電極21、第2の電極22・・の順で設けられている。しかし、第1の液流路13と第2の液流路14には、互いに隣接する第1の電極21と第2の電極22の組が少なくとも一つ設けられていればよい。複数の第1の電極21は共通の第1の配線24に接続されており、複数の第2の電極22は共通の第2の配線23に接続されている。第1の配線24と第2の配線23は第1の液流路13と第2の液流路14を挟んで互いに反対側に配置されている。複数の第1の電極21と複数の第2の電極22は、第1の配線24と第2の配線23から互いに逆方向に櫛状に延びている。第1の配線24は第2の液流路14に沿って延びており、さらに互いに隣接する第2の貫通口17の間を延びている。第2の配線23は第1の液流路13に沿って延びており、さらに互いに隣接する第1の貫通口16の間を延びている。また第1の配線24及び第2の配線23は、隔壁30の下部の領域に互いに並列して設けられている。これによって第1の配線24と第2の配線23の錯綜が防止され、素子基板10の寸法の増加が抑制される。
第1の電極21と第2の電極22に通電すると第1の電極21と第2の電極22には交流電位が印加される。その結果、図1Dで示すように、液流路内に、基板10の表面側で流速が大きく、吐出口形成部材15に近づくにつれて流速がゼロに漸近する流速分布が生じる。この流速分布が生じる理由を、図2A~図2Dを参照して説明する。
第1の電極21と第2の電極22には交流電圧が印加されるが、ここでは、第1の電極21に負電圧(-V)、第2の電極22に正電圧(+V)が印加されているタイミングを考える。図2Aでは第1の電極21と第2の電極22は同じ寸法であるとする。図2Aに示すように、第1の電極21と第2の電極には電気二重層が発生する。すなわち、第1の電極21に負電圧(-V)が掛かり、第1の電極21に接するインクが正電荷を帯びて,電気二重層が形成される。同様に、第2の電極22に正電圧(+V))が掛かり、第2の電極22に接するインクが負電荷を帯びて,電気二重層が形成される。
インク中には第2の電極22から第1の電極21を向く略半円状の電界Eが形成される。この電界は第1の電極21と第2の電極22の中間の線に関し対称形となる。第1及び第2の電極21,22の表面では第1及び第2の電極21,22の表面と平行な電界成分E1が生じる。この電界成分E1は第1及び第2の電極21,22上に誘起された電荷にクーロン力を及ぼす。電界成分E1は電極間ギャップに近い位置では図中左向きとなる。正電荷は電界と同じ向きの力を受けるため、図2Bに示すように、第1の電極21に接するインクが図中左向きに流れる回転渦F1が生じる。負電荷は電界と逆向きの力を受けるため、第2の電極22に接するインクが図中右向きに流れる回転渦F2が生じる。インクは電極間ギャップから離れる方向に流れるため、電極間ギャップにはインクを補充するようなインク流れF3が発生する。また、電極の電極間ギャップから離れた方の端部では電界の向きが逆になるため、インクが電極間ギャップに向かって流れる回転渦F4が生じる。ただし、電界が弱いためインクが受けるクーロン力は小さい。この結果、電極間ギャップから第1及び第2の電極21,22に向かい、第1及び第2の電極21,22上を電極間ギャップから離れる向きに流れる撹拌流のような流れが形成される。この流れは第1の電極21と第2の電極22で左右略対称形となる。
一方、図2C,図2Dでは、第2の電極22の流路方向寸法が第1の電極21の流路方向寸法より大きくなっている。このため、第1の電極21と第2の電極22で電界分布が異なる。第1の電極21の近傍では流速の早い小さな回転渦F5が形成される。第2の電極22の近傍では、電位の低い部分で流速の遅い小さな回転渦F7が形成され、電位の高い部分で流速の早い大きな回転渦F6が形成される。その結果、第1の電極21から電極間ギャップにインクが引き込まれ、第1の電極21から第2の電極22に向けてインクが流れるインク流が生じる。
以上は第1の電極21に正電圧(+V)、第2の電極に負電圧(-V)が印加されていても同じである。すなわち、印加電圧の極性が反転しても、電荷の符号と電界の向きが共に反転するため、生じる流れの向きは変化しない。従って、流路方向の寸法が小さい第1の電極21から流路方向の寸法が大きい第2の電極22に向かう定常的な流れが生じることになる。
このような電気浸透流により、インクを第1の液流路13から第2の液流路14に向けて流す駆動力が発生する。すなわち、第1の液流路13に設けられた第1の電極21と第2の電極22によって発生した電気浸透流により、インクは第1の貫通口16から第1の液流路13を通って圧力室20に流入する。エネルギー発生素子11が作動しているときは、圧力室20に流入したインクの一部が吐出口12から吐出される。吐出されなかったインクは、第2の液流路14に設けられた第1の電極21と第2の電極22によって発生した電気浸透流により、第2の液流路14を通って第2の貫通口17から液体吐出ヘッドの外部に流出する。液体吐出ヘッドの外部に流出したインクは記録装置のインクタンク等を経由した後に再度液体吐出ヘッドに流入する。このように、本発明の形態により圧力室20内のインクは圧力室20の外部との間で循環される。尚、本発明においては液体吐出ヘッドの外部との間で循環される構成だけでなく、液体吐出ヘッドの内部でインクが循環(圧力室20の内部と外部との間でインクが流動)する構成も適用できる。
エネルギー発生素子11が作動していないときにも、第1の電極21と第2の電極22に接続された交流電源ACによる電気浸透流が生じているため、インクは第1の液流路13から第2の液流路14に向けて流れる。従って、仮に圧力室20の内部でインクが濃縮しても、圧力室20内における濃縮インクの滞留を抑制することができる。従って、吐出口12からは増粘していない、または増粘の程度が小さい比較的フレッシュなインクを吐出することができ、画像の色ムラを低減することが可能となる。
(第2の実施形態)
図3A~図3Cを用いて、本発明の第2の実施形態に係る液体吐出ヘッドの記録素子基板の構成を説明する。なお、以下の説明においては第1の実施形態との違いを主に説明するため、具体的な説明を省略した個所については第1の実施形態の説明を参照されたい。
図3Aは本発明の第2の実施形態に係る液体吐出ヘッドの記録素子基板の断面図、図3Bは図3AのA-A線に沿った断面図、図3Cは図3Bと同じ断面における流速分布を示す模式図である。図3Aは一つの吐出口12と、それに関連する第1及び第2の液流路13,14、第1及び第2の貫通口16,17だけを示しているが、吐出口列19と第1及び第2の貫通口列25,26の構成は第1の実施形態と同様である。
本実施形態では、第1の電極21と第2の電極22は吐出口形成部材15の裏面に配置されている。裏面とは吐出口形成部材15の基板10に面する面を意味する。電気二重層の充填は吐出口形成部材15の裏面にある電極上で生じる。そのため、図3Cに示すように、流路内に、吐出口形成部材15の裏面側で流速が大きく、基板10の表面に近づくにつれて流速がゼロに漸近する流速分布が生じる。第1の実施形態と同じ交流電源ACと同じ周波数で第1の電極21と第2の電極22を駆動する場合、吐出口形成部材15の裏面側の流速が大きいため、吐出口12内のインクの濃縮を解消し易い。従って、インクの増粘をさらに効率的に軽減することができる。
(第3の実施形態)
図4A~図4Cを用いて、本発明の第3の実施形態に係る液体吐出ヘッドの記録素子基板の構成を説明する。なお、以下の説明においては第1の実施形態との違いを主に説明するため、具体的な説明を省略した個所については第1の実施形態の説明を参照されたい。
図4Aは本発明の第3の実施形態に係る液体吐出ヘッドの記録素子基板の断面図、図4Bは図4AのA-A線に沿った断面図、図4Cは図4Bと同じ断面における流速分布を示す模式図である。図4Aは一つの吐出口12と、それに関連する第1及び第2の液流路13,14、第1及び第2の貫通口16,17だけを示しているが、吐出口列19と第1及び第2の貫通口列25,26の構成は第1の実施形態と同様である。
本実施形態では、第1の液流路13の第1の電極21と第2の電極22が吐出口形成部材15の裏面に設けられ、第2の液流路14の第1の電極21と第2の電極22が基板10上に配置されている。第1の液流路13の電極を吐出口形成部材15の裏面に設けることで吐出口形成部材15の裏面側の流速を高め、吐出口12内部の濃縮を抑制することが容易となる。また、第2の液流路14の電極を基板10上に配置することで濃縮インクを流出させることが容易となる。従って、本実施形態では濃縮インクを吐出口の近傍から排出し、排出した濃縮インクを圧力室20から第2の貫通口17に排出することが容易となる。
(第4の実施形態)
図5A、図5Bを用いて、本発明の第4の実施形態に係る液体吐出ヘッドの記録素子基板の構成を説明する。なお、以下の説明においては第1の実施形態との違いを主に説明するため、具体的な説明を省略した個所については第1の実施形態の説明を参照されたい。
図5Aは本発明の第4の実施形態に係る液体吐出ヘッドの記録素子基板の斜視図、図5Bは図5Aに示す記録素子基板の断面図である。
本実施形態では、吐出口列19を挟んで設けられた2つの貫通口列がそれぞれ第1の1つの細長い貫通口116および第2の1つの細長い貫通口117で形成されている。第1の1つの細長い貫通口116および第2の1つの細長い貫通口117の吐出口列19と平行な方向の寸法を実質的に大きくできるため、第1の1つの細長い貫通口116および第2の1つの細長い貫通口117の吐出口列19と直交する方向の寸法を小さくすることができる。このため、第1の実施形態に比べて記録素子基板の幅方向寸法を縮小することが容易で、記録素子基板の小型化が可能である。いずれか一方の1つの細長い貫通口は第1の実施形態と同様、個々の液流路13,14毎に設けられていてもよい。
(第5の実施形態)
図6A、図6Bを用いて、本発明の第5の実施形態に係る液体吐出ヘッドの記録素子基板の構成を説明する。なお、以下の説明においては第1の実施形態との違いを主に説明するため、具体的な説明を省略した個所については第1の実施形態の説明を参照されたい。
図6Aは本発明の第5の実施形態に係る液体吐出ヘッドの記録素子基板の斜視図、図6Bは図6Aに示す記録素子基板の断面図である。
本実施形態では、各吐出口12について一つの貫通口226が設けられている。また、第4の実施形態と同様、一つの貫通口226は複数の吐出口12に対して共通である。第1の液流路13は一つの貫通口226に接続され、途中で180度向きを変え圧力室20に接続されている。圧力室20と一つの貫通口226とを連通する第2の液流路14は直線上に形成された流路である。すなわち、細長い一つの貫通口226から第1の液流路13を介して圧力室20に供給されたインクは、第2の液流路14を介して再び細長い貫通口226に戻るようにされている。本実施形態の構成によれば2列の貫通口列を配置する必要がないため、第1の実施形態に比べて記録素子基板の幅方向寸法を縮小することが容易で、記録素子基板の小型化が可能である。なお、細長い貫通口226に代えて、個々の吐出口12に接続された複数の貫通口を設けることも可能である。
本実施形態では、インクが吐出されていないときも、一つの貫通口226から第1の液流路13及び第2の液流路14に流入したインクが、再び一つの貫通口226に戻る流れが形成される。このため、第1の実施形態と同様、濃縮されたインクの滞留を抑制する効果が得られる。
(第6の実施形態)
図7A~図7Cを用いて、本発明の第6の実施形態に係る液体吐出ヘッドの記録素子基板の構成を説明する。なお、以下の説明においては第1の実施形態との違いを主に説明するため、具体的な説明を省略した個所については第1の実施形態の説明を参照されたい。
図7Aは本発明の第6の実施形態に係る液体吐出ヘッドの記録素子基板の断面図、図7Bは図7AのA-A線に沿った断面図、図7Cは図7Bと同じ断面における流速分布を示す模式図である。図7Aは一つの吐出口12と、それに関連する第1及び第2の液流路13,14、第1及び第2の貫通口16,17だけを示しているが、吐出口列19と第1及び第2の貫通口列25,26の構成は第1の実施形態と同様である。
本実施形態では第1の液流路13に第1の電極21が、第2の液流路14に第2の電極22が設けられており、第1の電極21と第2の電極22は直流電源DCに接続されている。より具体的には、第1の電極21が直流電源DCの正極に接続され、第2の電極22が直流電源DCの負極に接続されている。第1の電極21と第2の電極22の寸法は実質的に同じであるが、第1の実施形態のように異なっていてもよい。電極は基板10上と吐出口形成部材15の裏面のいずれに配置されてもよい。
図7Cに示すように、流速分布は概ね栓流に近い流速分布を示す。このような流速分布が生じる理由は以下の通りである。壁面に平行な電界が外部から印加されると、固体表面が負に帯電し、界面近傍の液体中では正イオンが過剰になる。そのため、局所的に液体が正に帯電し電気二重層のイオンが電界の方向に力を受け、壁近傍でインクの移動が生じるためである。直流電源DCのため、液体の電気分解が生じない電圧で電極を駆動する必要があり(水の場合、電圧は約1V以下が好ましい)、交流電源ACを用いる場合と比べて得られる流速は小さい。しかし、第1の電極21と第2の電極22を直流電源DCに接続するだけでインク流れを発生させることができるため、第1の実施形態よりシンプルな構成が得られる。
尚、本実施形態においては第1及び第2の電極を基板10に設ける構成であるが、これに限らず、第2の実施形態で示したように第1及び第2の電極を吐出口形成部材15の裏面に設ける構成にも適用できる。また第3の実施形態に示すように第1及び第2電極の一方を基板10に、他方を吐出口形成部材15に設ける構成にも適用できる。
(第7の実施形態)
図8A~図8Cを用いて、本発明の第7の実施形態に係る液体吐出ヘッドの記録素子基板の構成を説明する。なお、以下の説明においては第1の実施形態との違いを主に説明するため、具体的な説明を省略した個所については第1の実施形態の説明を参照されたい。
図8Aは本発明の第7の実施形態に係る液体吐出ヘッドの記録素子基板の断面図、図8Bは図8AのA-A線に沿った断面図、図8Cは図8Bと同じ断面における流速分布を示す模式図である。図8Aは一つの吐出口12と、それに関連する第1及び第2の液流路13,14、第1及び第2の貫通口16,17だけを示しているが、吐出口列19と第1及び第2の貫通口列25,26の構成は第1の実施形態と同様である。
本実施形態では第1の液流路13に第1の電極21が、第2の液流路14に第2の電極22が設けられており、第1の電極21と第2の電極22がそれぞれ交流電源ACの+端子と-端子に接続されている。第1の電極21と第2の電極22の寸法は概ね同等である。
図8Cで示すように、本実施形態では概ね吐出口12もしくはエネルギー発生素子11を中心に回転するミキサーのような流速分布が生じる。その理由は図2A,図2Bで説明した通りである。吐出口12の近傍を通る流れ成分が形成されているため、吐出口12近傍の濃縮したインクを流動させることができる。従って、吐出口12近傍でのインクの濃縮を抑制できる。交流電源ACに接続されているため、電気分解による泡の発生が抑制され、高電圧化が可能になる。そのため、第6の実施形態よりインクを高流速で流すことが容易である。従って、シンプルな構成でインクの高流速化が可能である。
(第8の実施形態)
図9A~図9Eを用いて、本発明の第8の実施形態に係る液体吐出ヘッドの記録素子基板の構成を説明する。なお、以下の説明においては第1の実施形態との違いを主に説明するため、具体的な説明を省略した個所については第1の実施形態の説明を参照されたい。
図9Aは本発明の第8の実施形態に係る液体吐出ヘッドの記録素子基板の断面図、図9Bは図9AのA-A線に沿った断面図、図9Cは図9Bと同じ断面における流速分布を示す模式図である。図9Dは図9AのB-B線に沿った断面図、図9Eは図9Dと同じ断面における流速分布を示す模式図である。図9Aは一つの吐出口12と、それに関連する第1及び第2の液流路13,14、第1及び第2の貫通口16,17だけを示しているが、吐出口列19と第1及び第2の貫通口列25,26の構成は第1の実施形態と同様である。
本実施形態では、第1の電極21,第2の電極22に加えて、第3の電極27と第4の電極28が形成されている。第3の電極27と第4の電極28はそれぞれビア29によって配線(図示せず)に接続されている。第1の電極21、第2の電極22は第1の実施形態と同様の構成であり、具体的には以下の構成を有している。まず、第1の電極21と第2の電極22は交流電源ACの+端子と-端子に接続されている。第1の電極21は第2の電極22は第1の液流路13及び第2の液流路14に共に配置されている。第1の電極21の流路方向寸法は第2の電極22の流路方向寸法より小さい。第1の電極21と第2の電極22は基板10上に配置されている。第3の電極27と第4の電極28は交流電源ACの両極に接続されているが、第6の実施形態と異なり、吐出口12もしくはエネルギー発生素子11を挟んだ両側に配置されている。第3の電極27と第4の電極28は第1の液流路13、第2の液流路14、圧力室20のいずれに配置されてもよい。
第1の電極21と第2の電極22により、第1の液流路13から第2の液流路14に向かうインク流が生じる。このため、圧力室20を横断するフレッシュなインク流が生じる。また、図9Eに示すように第3の電極27と第4の電極28により、吐出口12に向かう流れ成分が発生する。このため、吐出口12内部のインク濃縮を効率的に抑制することができる。本実施形態では、以上の2つを組合せた構成により、他の実施形態と比べてインクの増粘の軽減効果が大きい。
本発明によれば、圧力室内に液体を流入させ、圧力室内から液体を流出させることにより、吐出口からの液体の蒸発による液体の増粘を軽減することで画像の色ムラを低減することが可能となる。
この出願は2016年3月29日に出願された日本国特許出願番号2016-065628の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。
1 記録素子基板
10 基板
11 エネルギー発生素子
12 吐出口
13 第1の液流路
14 第2の液流路
15 吐出口形成部材
16 第1の貫通口
17 第2の貫通口
20 圧力室
21 第1の電極
22 第2の電極
23 第2の配線
24 第1の配線

Claims (17)

  1. 液体を吐出する吐出口と、
    前記吐出口に連通する第1の液流路と、
    前記吐出口に関し前記第1の液流路の反対側で前記吐出口と流通する第2の液流路と、
    前記第1の液流路に設けられる第1の電極と、
    前記第2の液流路に設けられる、前記第1の電極とともに前記吐出口に供給される液体に電気浸透流を発生させる第2の電極と、
    を有する液体吐出ヘッド。
  2. 前記吐出口と対向して位置し、液体を吐出するためのエネルギーを発生するエネルギー発生素子と、
    前記エネルギー発生素子が設けられた基板と、
    を有し、前記第1の電極と前記第2の電極は前記基板に配置されている、請求項1に記載の液体吐出ヘッド。
  3. 前記吐出口が設けられた吐出口形成部材を有し、前記第1の電極と前記第2の電極は前記吐出口形成部材に配置されている、請求項1に記載の液体吐出ヘッド。
  4. 前記吐出口と対向して位置し、前記液体を吐出するためのエネルギーを発生するエネルギー発生素子と、
    前記エネルギー発生素子が設けられた基板と、
    前記吐出口が設けられた吐出口形成部材を有し、
    前記第1の電極は前記基板に配置され、前記第2の電極は前記吐出口形成部材に配置されている、請求項1に記載の液体吐出ヘッド。
  5. 前記第1の電極が交流電源の一端に接続され、前記第2の電極が前記交流電源の他端に接続されている、請求項1から4のいずれか1項に記載の液体吐出ヘッド。
  6. 少なくとも一つの前記第1の電極が前記第1及び第2の液流路にそれぞれ配置され、少なくとも一つの前記第2の電極が前記第1及び第2の液流路にそれぞれ配置され、
    前記第1及び第2の液流路の夫々において、前記第1の電極と前記第2の電極は交互に配置され、前記第1及び第2の電極の前記第1及び第2の液流路に沿った方向の寸法が互いに異なっている、請求項5に記載の液体吐出ヘッド。
  7. 一つの前記第1の電極が前記第1の液流路に配置され、一つの前記第2の電極が前記第2の液流路に配置され、前記第1の電極の前記第1の液流路に沿った方向の寸法が、前記第2の電極の前記第2の液流路に沿った方向の寸法と同じである、請求項5に記載の液体吐出ヘッド。
  8. 液体を吐出するためのエネルギーを発生するエネルギー発生素子を内部に備える圧力室と、
    前記圧力室、前記第1の液流路、または前記第2の液流路内に、前記吐出口を挟むように配置された第3及び第4の電極と、
    を有し、
    前記第3の電極が第2の交流電源の一端に接続され、前記第4の電極が前記第2の交流電源の他端に接続されている、請求項6または7に記載の液体吐出ヘッド。
  9. 前記第1の電極が直流電源の一端に接続され、前記第2の電極が前記直流電源の他端に接続されている、請求項1から4のいずれか1項に記載の液体吐出ヘッド。
  10. 前記液体を吐出するためのエネルギーを発生するエネルギー発生素子が設けられた基板を貫通し、前記第1の液流路または前記第2の液流路と接続された貫通口を有し、前記貫通口は前記第1の液流路または前記第2の液流路毎に設けられている、請求項1から9のいずれか1項に記載の液体吐出ヘッド。
  11. 前記液体を吐出するためのエネルギーを発生するエネルギー発生素子が設けられた基板を貫通し、前記第1の液流路または前記第2の液流路と接続された貫通口を有し、前記貫通口は複数の前記第1の液流路または複数の前記第2の液流路に共有されている、請求項1から9のいずれか1項に記載の液体吐出ヘッド。
  12. 前記液体を吐出するためのエネルギーを発生するエネルギー発生素子と、当該エネルギー発生素子を内部に備える圧力室とを有し、前記圧力室内の液体は当該圧力室の外部との間で循環される、請求項1から11のいずれか1項に記載の液体吐出ヘッド。
  13. 液体を吐出する吐出口と、
    前記吐出口に流通する第1の液流路と、
    前記吐出口に関し前記第1の液流路の反対側で前記吐出口と連通する第2の液流路と、
    前記第1の液流路及び前記第2の液流路の夫々に設けられる、第1の電極、及び前記第1の電極とともに前記吐出口に供給される液体に電気浸透流を発生させる第2の電極と、
    を有する液体吐出ヘッド。
  14. 前記第1の電極が交流電源の一端に接続され、前記第2の電極が前記交流電源の他端に接続されている、請求項13に記載の液体吐出ヘッド。
  15. 前記第1の電極と前記第2の電極は、前記第1及び第2の液流路に沿った方向の寸法が互いに異なっている、請求項13または14に記載の液体吐出ヘッド。
  16. 液体を吐出する吐出口に連通する第1の液流路と、前記吐出口に関し前記第1の液流路の反対側で前記吐出口に連通する第2の液流路と、に液体を充填することと、
    前記第1の液流路に位置する第1の電極と、前記第2の液流路に位置する第2の電極を直流または交流電源に接続し、前記液体に電気浸透流を発生させることと、を有する液体の循環方法。
  17. 前記第1及び第2の電極に通電し液体を流動させた状態で、エネルギー発生素子を駆動して吐出口から液体を吐出させる、請求項16に記載の液体の循環方法。
PCT/JP2017/009917 2016-03-29 2017-03-13 液体吐出ヘッド及び液体の循環方法 WO2017169683A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
SG11201808349RA SG11201808349RA (en) 2016-03-29 2017-03-13 Liquid ejection head and method for circulating liquid
BR112018069680A BR112018069680A2 (pt) 2016-03-29 2017-03-13 cabeça de ejeção de líquido e método para circulação de líquido
EP17774227.7A EP3437869B1 (en) 2016-03-29 2017-03-13 Liquid-discharging head and liquid circulation method
KR1020187030694A KR102223257B1 (ko) 2016-03-29 2017-03-13 액체 토출 헤드 및 액체의 순환 방법
CN201780019939.4A CN108883636B (zh) 2016-03-29 2017-03-13 液体喷射头和用于循环液体的方法
RU2018137786A RU2710677C1 (ru) 2016-03-29 2017-03-13 Головка выброса жидкости и способ циркуляции жидкости
US16/141,055 US10717273B2 (en) 2016-03-29 2018-09-25 Liquid ejection head and method for circulating liquid
PH12018502051A PH12018502051A1 (en) 2016-03-29 2018-09-25 Liquid ejection head and method for circulating liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-065628 2016-03-29
JP2016065628A JP6708457B2 (ja) 2016-03-29 2016-03-29 液体吐出ヘッド及び液体の循環方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/141,055 Continuation US10717273B2 (en) 2016-03-29 2018-09-25 Liquid ejection head and method for circulating liquid

Publications (1)

Publication Number Publication Date
WO2017169683A1 true WO2017169683A1 (ja) 2017-10-05

Family

ID=59964278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009917 WO2017169683A1 (ja) 2016-03-29 2017-03-13 液体吐出ヘッド及び液体の循環方法

Country Status (10)

Country Link
US (1) US10717273B2 (ja)
EP (1) EP3437869B1 (ja)
JP (1) JP6708457B2 (ja)
KR (1) KR102223257B1 (ja)
CN (1) CN108883636B (ja)
BR (1) BR112018069680A2 (ja)
PH (1) PH12018502051A1 (ja)
RU (1) RU2710677C1 (ja)
SG (1) SG11201808349RA (ja)
WO (1) WO2017169683A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260658B2 (en) 2018-07-31 2022-03-01 Canon Kabushiki Kaisha Liquid ejection head, liquid ejection apparatus, and liquid ejection module
TWI760631B (zh) * 2018-07-31 2022-04-11 日商佳能股份有限公司 液體噴射頭,液體噴射設備及液體噴射模組

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6918636B2 (ja) * 2017-08-22 2021-08-11 キヤノン株式会社 液体吐出ヘッド用基板、液体吐出ヘッド、液体吐出装置、および液体吐出ヘッドの制御方法
JP6910911B2 (ja) 2017-09-27 2021-07-28 キヤノン株式会社 液体吐出ヘッド
JP7039231B2 (ja) 2017-09-28 2022-03-22 キヤノン株式会社 液体吐出ヘッドおよび液体吐出装置
JP7134752B2 (ja) 2018-07-06 2022-09-12 キヤノン株式会社 液体吐出ヘッド
JP7237531B2 (ja) 2018-11-02 2023-03-13 キヤノン株式会社 液体吐出ヘッドとその製造方法
JP7309359B2 (ja) * 2018-12-19 2023-07-18 キヤノン株式会社 液体吐出装置
JP7237567B2 (ja) * 2018-12-25 2023-03-13 キヤノン株式会社 液体吐出ヘッド及び液体吐出ヘッドの制御方法
US11453213B2 (en) 2018-12-28 2022-09-27 Canon Kabushiki Kaisha Driving method of liquid feeding apparatus
JP7292876B2 (ja) 2018-12-28 2023-06-19 キヤノン株式会社 液体吐出ヘッドおよび液体吐出装置
US11225075B2 (en) 2019-02-19 2022-01-18 Canon Kabushiki Kaisha Liquid ejection head, liquid ejection module, and liquid ejection apparatus
US11179935B2 (en) 2019-02-19 2021-11-23 Canon Kabushiki Kaisha Liquid ejection head, liquid ejection module, and method of manufacturing liquid ejection head

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244694B1 (en) * 1999-08-03 2001-06-12 Hewlett-Packard Company Method and apparatus for dampening vibration in the ink in computer controlled printers
JP2005161547A (ja) * 2003-11-28 2005-06-23 Fuji Photo Film Co Ltd インクジェットヘッド及びインクジェット記録装置
WO2013130039A1 (en) * 2012-02-28 2013-09-06 Hewlett-Packard Development Company, L.P. Fluid ejection device with aceo pump
JP2014531349A (ja) * 2011-09-28 2014-11-27 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 流体吐出デバイスにおけるスロット間の循環

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825543B2 (en) 2000-12-28 2004-11-30 Canon Kabushiki Kaisha Semiconductor device, method for manufacturing the same, and liquid jet apparatus
JP4011952B2 (ja) 2002-04-04 2007-11-21 キヤノン株式会社 液体吐出ヘッドおよび該液体吐出ヘッドを備える記録装置
US7311385B2 (en) * 2003-11-12 2007-12-25 Lexmark International, Inc. Micro-fluid ejecting device having embedded memory device
JP4274556B2 (ja) 2004-07-16 2009-06-10 キヤノン株式会社 液体吐出素子の製造方法
JP4926669B2 (ja) 2005-12-09 2012-05-09 キヤノン株式会社 インクジェットヘッドのクリーニング方法、インクジェットヘッドおよびインクジェット記録装置
US20130146459A1 (en) * 2009-06-16 2013-06-13 Massachusetts Institute Of Technology Multiphase non-linear electrokinetic devices
JP5578810B2 (ja) 2009-06-19 2014-08-27 キヤノン株式会社 静電容量型の電気機械変換装置
US8939531B2 (en) * 2010-10-28 2015-01-27 Hewlett-Packard Development Company, L.P. Fluid ejection assembly with circulation pump
JP6300486B2 (ja) 2013-10-18 2018-03-28 キヤノン株式会社 液体吐出ヘッドおよび液体吐出装置
JP6468929B2 (ja) 2015-04-09 2019-02-13 キヤノン株式会社 液体吐出ヘッドおよび液体吐出装置
US10040290B2 (en) 2016-01-08 2018-08-07 Canon Kabushiki Kaisha Liquid ejection head, liquid ejection apparatus, and method of supplying liquid
JP6669393B2 (ja) 2016-03-25 2020-03-18 キヤノン株式会社 液体吐出ヘッド、液体吐出装置、および液体吐出ヘッドの温度制御方法
JP7057071B2 (ja) 2017-06-29 2022-04-19 キヤノン株式会社 液体吐出モジュール
JP7019318B2 (ja) 2017-06-29 2022-02-15 キヤノン株式会社 液体吐出ヘッドおよび液体吐出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244694B1 (en) * 1999-08-03 2001-06-12 Hewlett-Packard Company Method and apparatus for dampening vibration in the ink in computer controlled printers
JP2005161547A (ja) * 2003-11-28 2005-06-23 Fuji Photo Film Co Ltd インクジェットヘッド及びインクジェット記録装置
JP2014531349A (ja) * 2011-09-28 2014-11-27 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 流体吐出デバイスにおけるスロット間の循環
WO2013130039A1 (en) * 2012-02-28 2013-09-06 Hewlett-Packard Development Company, L.P. Fluid ejection device with aceo pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260658B2 (en) 2018-07-31 2022-03-01 Canon Kabushiki Kaisha Liquid ejection head, liquid ejection apparatus, and liquid ejection module
TWI759618B (zh) * 2018-07-31 2022-04-01 日商佳能股份有限公司 液體噴射頭,液體噴射設備及液體噴射模組
TWI760631B (zh) * 2018-07-31 2022-04-11 日商佳能股份有限公司 液體噴射頭,液體噴射設備及液體噴射模組

Also Published As

Publication number Publication date
PH12018502051A1 (en) 2019-07-01
US20190023016A1 (en) 2019-01-24
CN108883636A (zh) 2018-11-23
JP6708457B2 (ja) 2020-06-10
BR112018069680A2 (pt) 2019-01-29
CN108883636B (zh) 2020-07-31
EP3437869B1 (en) 2021-08-04
EP3437869A1 (en) 2019-02-06
JP2017177437A (ja) 2017-10-05
US10717273B2 (en) 2020-07-21
SG11201808349RA (en) 2018-10-30
RU2710677C1 (ru) 2019-12-30
KR20180122457A (ko) 2018-11-12
EP3437869A4 (en) 2019-11-20
KR102223257B1 (ko) 2021-03-08

Similar Documents

Publication Publication Date Title
WO2017169683A1 (ja) 液体吐出ヘッド及び液体の循環方法
JP6736324B2 (ja) 液体吐出ヘッド
US8205968B2 (en) Liquid discharge head and liquid discharge method
JP2018103601A (ja) 液体噴射ヘッドおよび液体噴射装置
JP6449629B2 (ja) 液体噴射ヘッド及び液体噴射装置
KR20190002349A (ko) 액체 토출 모듈
KR20190002321A (ko) 액체 토출 헤드 및 액체 토출 장치
JP6652304B2 (ja) 液体吐出ヘッドおよび液体吐出装置
US20190092012A1 (en) Liquid ejection head
WO2018116846A1 (ja) 液体噴射ヘッドおよび液体噴射装置
JP7237567B2 (ja) 液体吐出ヘッド及び液体吐出ヘッドの制御方法
WO2018116833A1 (ja) 液体噴射ヘッドおよび液体噴射装置
JP2018079671A (ja) 液体吐出ヘッド、液体吐出装置および制御方法
JP2021062577A (ja) 液体吐出ヘッド
US11110719B2 (en) Liquid discharge head
US20230311499A1 (en) Liquid ejection head
JP2019059162A (ja) 液体吐出ヘッド及びその製造方法
JP2020104493A (ja) 液体吐出ヘッドおよび液体吐出装置
JP2022010587A (ja) 液体吐出ヘッド
JP2020097199A (ja) 液体吐出ヘッド、液体吐出装置、および液体吐出方法
JP2001088307A (ja) インクジェット記録装置
JP2017144570A (ja) 液体吐出ヘッド
JP2000326513A (ja) インクジェット記録装置及び記録ヘッドの製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018069680

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187030694

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017774227

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774227

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018069680

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180926