WO2017168797A1 - Izo sintered compact sputtering target and method for producing same - Google Patents

Izo sintered compact sputtering target and method for producing same Download PDF

Info

Publication number
WO2017168797A1
WO2017168797A1 PCT/JP2016/080086 JP2016080086W WO2017168797A1 WO 2017168797 A1 WO2017168797 A1 WO 2017168797A1 JP 2016080086 W JP2016080086 W JP 2016080086W WO 2017168797 A1 WO2017168797 A1 WO 2017168797A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
izo
target
oxide
powder
Prior art date
Application number
PCT/JP2016/080086
Other languages
French (fr)
Japanese (ja)
Inventor
崇 掛野
洋平 山口
瑶輔 遠藤
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN201680023954.1A priority Critical patent/CN107614741B/en
Priority to KR1020177029392A priority patent/KR102045661B1/en
Publication of WO2017168797A1 publication Critical patent/WO2017168797A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to an indium oxide-zinc oxide based oxide sintered body (IZO) sputtering target and a method for producing the same.
  • IZO indium oxide-zinc oxide based oxide sintered body
  • ITO indium oxide-tin oxide-based oxide
  • IZO indium oxide-zinc oxide-based oxide
  • There are various properties required as a sputtering target. Among them, the density of the sintered body is important. If the density is low, even if there is no particular problem at the beginning of sputter deposition, if the sputtering is continued for a long time, nodules that are black projections will be generated on the target surface, and that part As a starting point, abnormal discharge occurs and particles adhere to the produced film, making it impossible to obtain a good film, resulting in a significant decrease in yield and productivity.
  • Patent Document 1 shows that a high-density ITO sintered body can be obtained by adding a metal element such as zinc to ITO.
  • a metal element such as zinc
  • indium oxide and tin oxide are the basic components, and the weight ratio is about 90:10, and the sintering density for ITO in which tin is added in a high concentration in the oxide sintered body. It is a technology related to improvement of
  • Patent Document 2 discloses a technique for reducing the bulk resistance of an IZO sputtering target by adding a small amount of tin to IZO.
  • this technique utilizes the effect of tin acting as an electrical dopant.
  • 101-No. The results of No. 103 show that the bulk resistance decreases as the tin concentration increases.
  • the density of the sintered body conversely, as the tin concentration increases. It is getting smaller. That is, regarding IZO, tin addition has been shown to have an adverse effect on improving the density of the sintered body.
  • Patent Document 3 the density is improved by controlling the raw material powder properties used for IZO and increasing the temperature rise rate during sintering.
  • it is applied when calcined zinc oxide powder and indium oxide powder are mixed and sintered after molding this mixed powder, and indium oxide and zinc oxide used in the present invention described later. This is different from the case of calcining after mixing and molding and sintering the calcined powder.
  • the mixed powder of indium oxide and zinc oxide after mixing may be calcined to promote the formation of a hexagonal layered compound.
  • the calcining temperature is 800 to 1500. ° C is preferable, more preferably 900 to 1400 ° C, and particularly preferably 1000 to 1300 ° C. Below 800 ° C, no hexagonal layered compound is formed, and when it exceeds 1500 ° C, indium oxide or zinc oxide is formed. Will evaporate. " However, in Patent Document 4, calcination is actually performed at 1000 ° C., and a sufficient density improvement cannot be obtained at this temperature.
  • JP-A-7-54132 Japanese Patent No. 3721080 Japanese Patent No. 3734540 Japanese Patent Laid-Open No. 09-071860
  • the present invention relates to an IZO sintered sputtering target obtained by molding and sintering calcined powder obtained by calcining indium oxide powder and zinc oxide powder.
  • the object is to improve the quality of film formation by increasing the density and reducing the fine holes (micropores) remaining between crystal grains.
  • the present invention provides the following IZO sputtering target and method for producing the same.
  • IZO Indium oxide-zinc oxide based oxide
  • An IZO sintered sputtering target which is an oxide and has a target relative density of 98.4% or more.
  • the IZO sintered sputtering target according to any one of 1) to 4) above, wherein the brightness of the target is a measured value L * of a spectrocolor difference meter of 35 or less.
  • a method for producing an IZO sintered body sputtering target produced by molding and sintering a calcined powder obtained by calcining indium oxide powder and zinc oxide powder.
  • the IZO sintered sputtering target according to 6), wherein the oxide structure of the calcined powder is a composite oxide of In 2 O 3 and Zn k In 2 O k + 3 (k 3, 4). Manufacturing method. 8) The above-mentioned 6), wherein the calcined powder is adjusted to have a specific surface area of 1.0 to 10.0 m 2 / g and an average particle diameter of 1.0 to 2.0 ⁇ m. Or the manufacturing method of the IZO sintered compact sputtering target as described in 7). 9) The method for producing an IZO sintered sputtering target according to any one of 6) to 8) above, wherein the sintering temperature is from 1400 ° C. to 1500 ° C.
  • an IZO sintered body in which fine holes (micropores) remaining in crystal grain boundaries are reduced can be manufactured at a high density. Can be improved.
  • sputtering is performed using this IZO target, stable thin film characteristics (film uniformity) are obtained, and generation of nodules on the target surface is suppressed even after long-time sputtering, and arcing is performed. It is possible to suppress the occurrence of the above, and it has an excellent effect of preventing abnormal discharge during sputtering and generation of particles on the film.
  • the left side is a photograph of the surface of the sintered body after mirror polishing of Comparative Example 12 at a magnification of 2,000 times
  • the right side is a photograph of the surface of the sintered body after mirror polishing of Example 2 at a magnification of 2,000 times. It is a figure which shows the measurement place of a micropore in the sputtering target of this invention.
  • the rapid progress of the phase change is suppressed by pre-calcining the mixed powder of In 2 O 3 and ZnO under appropriate conditions in advance (the value of k is not changed so much). It improves the properties of the sintered body, such as an increase in density.
  • the relative density is obtained by the ratio of Archimedes density to the theoretical density of 6.999 g / cm 3 .
  • the sputtering target of the present invention has a feature that fine holes (micropores) remaining in crystal grain boundaries can be reduced with increasing density.
  • the number of 50 to 300 nm micropores present in the target is 10 or less / 2600 ⁇ m 2 . Thereby, abnormal discharge at the time of sputtering or generation of particles on the film can be prevented.
  • the micropore is a fine hole mainly remaining at the grain boundary, and refers to a portion that appears black mainly at the grain boundary when observed with an SEM. Also simply called pores or micropores.
  • SEM image x2000 field of view (corresponding to 2600 ⁇ m 2 ) is taken as one field, and as shown in FIG. 2, the number of micropores is measured at each of three locations and two fields (surface and cross section) of the sputtering target, The average number of 6 locations is the number of pores.
  • the atomic ratio Zn / (In + Zn) between Zn and In is preferably in the range of 0.1 to 0.2.
  • This composition range is a range desired for a thin film formed using a sputtering target to exhibit a function as a transparent conductive film, and is irrelevant to control of the structure of the sintered body.
  • the atomic ratio of Zn and In can be set to a desired range by adjusting the mixing ratio of the raw material indium oxide powder and zinc oxide powder.
  • the composition of the target can be confirmed by pulverizing the target and performing wet analysis (ICP analysis) or dry analysis (XRF analysis). When the amount of Zn is small, the value of k tends to be small, and when the amount of Zn is large, the value of k tends to be large.
  • the sputtering target of the present invention preferably has a volume resistivity of 5.0 m ⁇ ⁇ cm or less. Lowering the resistance of the target can contribute to the stability of sputtering. Further, the sputtering target of the present invention preferably has a measurement value L * measured by a spectrocolorimeter of 35 or less.
  • L * measured by a spectrocolorimeter
  • the brightness of the target does not directly affect the sputtering characteristics, it may be difficult to adopt as a product if the target appearance is poor.
  • the target is composed of a plurality of sintered bodies arranged side by side. The appearance of the product can be improved by reducing the color difference between the sintered bodies when the bonded bodies are arranged. When the value of k is large, the color is light and the density tends to be low.
  • the oxide sintered body of the present invention can be produced by a process of mixing, calcining, pulverizing, molding and sintering each raw material powder.
  • the raw material powder indium oxide powder and zinc oxide powder having a specific surface area of 3 to 10 m 2 / g are used. The same specific surface area may be advantageous for efficient mixing or the like, but when calcination is performed, the calcination may progress better if there is a certain difference in specific surface area.
  • each raw material powder is weighed so as to have a desired composition ratio and then mixed.
  • the mixing method include a method of drying the obtained slurry after wet mixing using a ball mill.
  • the uniformity of the slurry can be increased by adding a dispersant as appropriate.
  • Other methods may be used as long as they can achieve the purpose of uniform mixing of raw materials.
  • the mixed powder is calcined by holding the mixed powder in an electric furnace in an atmosphere having an oxygen concentration of 20 vol.
  • This calcined powder characterizes the IZO sintered body sputtering target of the present invention, and is suitable for producing an IZO sintered body with reduced fine holes (micropores) remaining in the crystal grain boundaries at high density. It is a condition.
  • productivity is inferior at the temperature exceeding 1300 degreeC, the characteristic as calcined powder is not impaired.
  • the coarsened calcined powder is pulverized. It is preferable to carry out until the specific surface area of the calcined powder after pulverization is in the range of 1.0 to 10.0 m 2 / g and the average particle diameter (median diameter) is in the range of 0.5 to 2.0 ⁇ m. More preferably, the specific surface area is 1.0 to 5.0 m 2 / g and the average particle size (median diameter) is 1.0 to 2.0 ⁇ m.
  • a wet medium stirring mill such as a bead mill, an airflow pulverization method called a jet mill, or these can be used in combination.
  • granulated pulverized calcined powder is performed as necessary. This is because by improving the fluidity of the powder by granulation, the powder is uniformly filled in the mold at the time of press molding in the next step, and a homogeneous molded body is obtained.
  • granulation There are various types of granulation, and one method for obtaining granulated powder suitable for press molding is a method using a spray-type drying device (spray dryer).
  • strength can be improved by adding binders, such as polyvinyl alcohol (PVA), in a slurry, and making it contain in granulated powder.
  • PVA polyvinyl alcohol
  • press molding is performed.
  • the powder is filled in a mold and molded by holding a pressure of 400 to 1000 kgf / cm 2 for 1 to 3 minutes.
  • a pressure of 400 to 1000 kgf / cm 2 When the pressure is less than 400 kgf / cm 2 , a molded body having sufficient strength and density cannot be obtained.
  • the pressure When the pressure is 1000 kgf / cm 2 or more, the molded body itself is out of pressure when taken out from the mold. It may break due to deformation due to being released, which is not preferable in production.
  • the molded body obtained by press molding may be further pressurized at 1600 to 2000 kgf / cm 2 by a hydrostatic pressure device (CIP). Thereby, a more uniform and high-density molded body can be obtained.
  • CIP hydrostatic pressure device
  • the molded body is sintered in an oxygen atmosphere to obtain a sintered body.
  • the temperature is raised from room temperature to 1000 ° C. at a temperature rising rate of 3.0 ° C./min, and then raised from 1400 ° C. to 1500 ° C. at a temperature rising rate of 0.5 to 2.0 ° C./min.
  • the temperature is maintained for 10 to 26 hours, and thereafter the temperature is lowered by furnace cooling or at a temperature lowering rate of 1.0 to 5.0 ° C./min.
  • the sintering temperature is lower than 1400 ° C., a high-density sintered body cannot be obtained.
  • the volatilization of zinc oxide causes a decrease in sintering density and a composition shift, and there is a cost problem that the life of the furnace heater is reduced, so the upper limit is 1500 ° C. It is desirable to do.
  • the holding time at the sintering temperature is shorter than 10 hours, the sintering does not proceed sufficiently, and the density of the sintered body does not increase sufficiently, or the sintered body warps. Even if the holding time exceeds 14 hours, unnecessary energy and time is wasted, which is not preferable for production.
  • the rate of temperature increase is less than 0.5 ° C./min, it takes time to reach a predetermined temperature. If the rate of temperature increase is greater than 5.0 ° C./min, the temperature distribution in the furnace is Care must be taken because unevenness occurs and the sintered body breaks without rising uniformly.
  • the above sintering conditions show a suitable range, and the selection is basically arbitrary.
  • Identification of the oxide constituting the target is performed using a fully automatic multipurpose X-ray diffractometer (model: D8-ADVANCE) manufactured by BRUKER.
  • a measurement sample is made into a powder of 100 ⁇ m or less, and an X-ray diffraction profile is obtained using a powder X-ray diffraction method.
  • the obtained X-ray diffraction profile is subjected to data processing such as background removal and K ⁇ 2 removal, and then the phase of k is identified using a PDF (Powder Diffraction File) of ICDD (International Center for Diffraction Data). I do.
  • volume resistivity is measured using a model: ⁇ -5 + manufactured by NP Corporation. First, four metal probes are placed on a straight line on the surface of the measurement sample, a constant current is passed between the two outer probes, the potential difference generated between the two inner probes is measured, and the resistance is obtained. Next, the volume resistivity is calculated by multiplying the obtained resistance by the sample thickness and the correction coefficient RCF (Resitivity Correction Factor).
  • RCF Resitivity Correction Factor
  • the brightness of the target is measured using Nippon Denshoku Industries Co., Ltd., model: NF333. First, the surface of the sample is set to a surface roughness of about # 400, and measurement is performed under the following measurement conditions and the like. Next, using the L * a * b * color system, the brightness of the target is represented by L * , and the chromaticity is represented by a * and b * .
  • Illumination / light reception conditions 0 °: 45c (0 ° illumination: 45 ° circumference light reception)
  • Measurement method double beam method, pre-spectral method Measurement wavelength: 400 nm to 700 nm, 20 nm interval output
  • Measurement light source A, B, C, D50, D55, D65, D75, F2, F6, F2, F6, F7, F8, F10, F11, F12 Observation conditions: 2 ° and 10 ° fields of view for each measurement light source
  • Example 1 After mixing indium oxide powder and zinc oxide powder at a predetermined ratio, the mixed powder was calcined at 1300 ° C. for 10 hours in an air atmosphere. Further, during the calcination, it was held at 1100 ° C., 1200 ° C. and 1260 ° C. for a certain time.
  • the calcined powder is finely pulverized using a jet mill pulverizer and a wet medium stirring mill, and further granulated to obtain particles having a specific surface area of 2.22 m 2 / g and an average particle diameter of 1.71 ⁇ m. It was. And this was shape
  • this molded body was held in an oxygen atmosphere at a sintering temperature of 1430 ° C. for 14 hours to produce an indium oxide-zinc oxide based oxide (IZO) sintered body.
  • this sintered body was machined to produce an IZO target having a thickness of 10 mm.
  • the relative density of the target was 98.67%
  • the volume resistivity was 2.15 m ⁇ ⁇ cm
  • the lightness L * value of the target was 31.7
  • the average number of micropores in the target was 3/2600 ⁇ m 2. It was.
  • an ideal IZO sintered sputtering target having a high relative density and low brightness could be produced.
  • generation of nodules on the target surface can be suppressed even after long-time sputtering, and arcing can be suppressed.
  • the effect of preventing the generation of particles was observed.
  • Stable thin film characteristics (film uniformity) were obtained.
  • Example 2-16 In Example 2-16, as shown in Table 1, calcining conditions (calcining temperature, calcining time, calcining midway holding temperature, calcining midway holding time), calcining powder grinding conditions, sintering conditions The conditions of (sintering temperature, sintering time) and composition ratio of the sintered body (mixing ratio of raw materials, etc.) were changed. As a result, as shown in Table 1, an ideal IZO sintered sputtering target having high relative density and low brightness could be produced. When sputtering was performed using this sputtering target, generation of nodules on the target surface can be suppressed even after long-time sputtering, and arcing can be suppressed. The effect of preventing the generation of particles was observed. Stable thin film characteristics (film uniformity) were obtained.
  • Comparative Example 1-12 In Comparative Example 1-12, as shown in Table 1, calcination conditions (no calcination, calcination temperature, calcination time, no calcination hold, calcination hold temperature, calcination hold time) The pulverization conditions of the calcined powder, the sintering conditions (sintering temperature, sintering time), and the composition ratio of the sintered body (such as the mixing ratio of raw materials) were changed. As a result, as shown in Table 1, a relative density of 98.4% could not be achieved in any case. In addition, the number of micropores was relatively large. When sputtering was performed using these sputtering targets, an increase in particles was observed after prolonged sputtering.
  • an IZO sintered body with high density and reduced fine pores (micropores) remaining in the grain boundaries can be manufactured, so that the amount of grinding of unusable parts when processing into a sputtering target is small. , Productivity can be improved. Further, when sputtering is performed using this IZO target, stable thin film characteristics (film uniformity) can be obtained, and generation of nodules on the target surface can be suppressed even after long-time sputtering, and arcing can be prevented. Since it has an excellent effect of suppressing generation and preventing abnormal discharge during sputtering and generation of particles on the film, it is an electrode material for pixel electrodes of various flat panel display devices such as liquid crystal display devices. Useful as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is an indium oxide-zinc oxide-based oxide (IZO) sintered compact target that is characterized in that an oxide that constitutes the target is a composite oxide of In2O3 and ZnkIn2Ok+3 (k=3, 4 or 5) and that the relative density of the target is 98.4% or more. The present invention addresses the problem of increasing the density of an IZO sintered compact and reducing the number of fine holes (micropores) remaining between crystal grains so as to improve the quality of a formed film.

Description

IZO焼結体スパッタリングターゲット及びその製造方法IZO sintered compact sputtering target and manufacturing method thereof
 本発明は、酸化インジウム-酸化亜鉛系酸化物焼結体(IZO)スパッタリングターゲット及びその製造方法に関する。 The present invention relates to an indium oxide-zinc oxide based oxide sintered body (IZO) sputtering target and a method for producing the same.
 酸化インジウム-酸化スズ系酸化物(「ITO」と表記される。)や酸化インジウム-酸化亜鉛系酸化物(「IZO」と表記される)などの酸化インジウムを主成分とする酸化物の薄膜は、高い導電性と可視光域での透過性を有することから、液晶ディスプレイ装置等の各種フラットパネルディスプレイ装置の画素電極として広く使用されている。
 特に、IZOに関しては、安定した非晶質の膜が得られるため、エッチング特性が良く、膜表面の平坦度も高いなどの特性を有している。透明導電性薄膜の形成方法としては、これらの酸化物焼結体から製造されたスパッタリングターゲットを用いたスパッタリング法が広く行われている。
An oxide thin film mainly composed of indium oxide, such as indium oxide-tin oxide-based oxide (denoted as “ITO”) or indium oxide-zinc oxide-based oxide (denoted as “IZO”), Since it has high conductivity and transparency in the visible light region, it is widely used as a pixel electrode in various flat panel display devices such as liquid crystal display devices.
In particular, with respect to IZO, since a stable amorphous film can be obtained, it has characteristics such as good etching characteristics and high film surface flatness. As a method for forming a transparent conductive thin film, a sputtering method using a sputtering target manufactured from these oxide sintered bodies is widely performed.
 スパッタリングターゲットとして必要な特性には各種のものが有るが、その中でも焼結体の密度は重要である。密度が低いとスパッタ成膜当初は、特に問題が無い場合であっても、スパッタを長時間し続けていくと、ターゲット表面に黒色の突起物であるノジュールが生成されるようになり、その部分を起点として、異常放電が起こり、作製された膜にパーティクルが付着したりして、良好な膜を得ることができなくなり、歩留、生産性の著しい低下を引き起こすからである。 特性 There are various properties required as a sputtering target. Among them, the density of the sintered body is important. If the density is low, even if there is no particular problem at the beginning of sputter deposition, if the sputtering is continued for a long time, nodules that are black projections will be generated on the target surface, and that part As a starting point, abnormal discharge occurs and particles adhere to the produced film, making it impossible to obtain a good film, resulting in a significant decrease in yield and productivity.
 ITOの高密度化については、これまで色々な報告があり(特許文献1)、高密度化がなされてきている。また、IZOに関しても、いくつかの報告がある(特許文献2、3)。
 例えば、下記特許文献1には、ITOに亜鉛等の金属元素を添加することで、高密度のITO焼結体が得られることが示されている。しかしながら、この技術はあくまで、酸化インジウムと酸化スズが基本成分であり、その重量比が約90:10と、錫が酸化物焼結体中に高濃度に添加されているITOについての焼結密度の向上に関する技術である。
There have been various reports on increasing the density of ITO (Patent Document 1), and the density has been increased. There are also some reports on IZO (Patent Documents 2 and 3).
For example, Patent Document 1 below shows that a high-density ITO sintered body can be obtained by adding a metal element such as zinc to ITO. However, in this technology, indium oxide and tin oxide are the basic components, and the weight ratio is about 90:10, and the sintering density for ITO in which tin is added in a high concentration in the oxide sintered body. It is a technology related to improvement of
 特許文献2には、IZOに微量の錫を添加することで、IZOスパッタリングターゲットのバルク抵抗を低下させる技術が示されている。しかしながら、この技術は錫を電気的ドーパントとして作用させる効果を利用したものであり、実施例のNo.101~No.103の結果からは、確かに錫の添加濃度が増加するにつれて、バルク抵抗が低下していくことが示されているが、焼結体の密度に関しては、逆に錫の添加濃度が増加するにつれて小さくなっている。すなわち、IZOに関しては、錫添加は焼結体の密度向上には逆効果であることが示されている。 Patent Document 2 discloses a technique for reducing the bulk resistance of an IZO sputtering target by adding a small amount of tin to IZO. However, this technique utilizes the effect of tin acting as an electrical dopant. 101-No. The results of No. 103 show that the bulk resistance decreases as the tin concentration increases. However, as regards the density of the sintered body, conversely, as the tin concentration increases. It is getting smaller. That is, regarding IZO, tin addition has been shown to have an adverse effect on improving the density of the sintered body.
 特許文献3は、IZOに使用する原料粉性状を制御するとともに、焼結時の昇温速度を速くすることで密度を向上させている。しかし、仮焼した酸化亜鉛粉と酸化インジウム粉とを混合し、この混合粉末を成型した後に焼結した場合に適用されるものであり、後述の本発明で用いている酸化インジウムと酸化亜鉛とを混合した後に仮焼し、この仮焼粉を成型、焼結した場合とは異なっている。 In Patent Document 3, the density is improved by controlling the raw material powder properties used for IZO and increasing the temperature rise rate during sintering. However, it is applied when calcined zinc oxide powder and indium oxide powder are mixed and sintered after molding this mixed powder, and indium oxide and zinc oxide used in the present invention described later. This is different from the case of calcining after mixing and molding and sintering the calcined powder.
 特許文献4には、段落[0038]において、「混合後の酸化インジウムと酸化亜鉛の混合粉末は六方晶層状化合物の生成を促進するため仮焼処理しても良い。仮焼温度は800~1500°Cが好ましく、より好ましくは900~1400°C、特に好ましくは1000~1300°Cである。800°C未満では六方晶層状化合物が生成せず、1500°Cを超えると酸化インジウム又は酸化亜鉛の蒸発が起こる。」と記載されている。しかし、特許文献4では、実際には、仮焼を1000℃で行っており、この温度では十分な密度の向上は得られなかった。 In Patent Document 4, in paragraph [0038], “the mixed powder of indium oxide and zinc oxide after mixing may be calcined to promote the formation of a hexagonal layered compound. The calcining temperature is 800 to 1500. ° C is preferable, more preferably 900 to 1400 ° C, and particularly preferably 1000 to 1300 ° C. Below 800 ° C, no hexagonal layered compound is formed, and when it exceeds 1500 ° C, indium oxide or zinc oxide is formed. Will evaporate. " However, in Patent Document 4, calcination is actually performed at 1000 ° C., and a sufficient density improvement cannot be obtained at this temperature.
特開平7-54132号公報JP-A-7-54132 特許第3721080号公報Japanese Patent No. 3721080 特許第3734540号公報Japanese Patent No. 3734540 特開平09-071860号公報Japanese Patent Laid-Open No. 09-071860
 本発明は、酸化インジウム粉と酸化亜鉛粉とを仮焼して得られた仮焼粉を成型、焼結することで得られる、IZO焼結体スパッタリングターゲットに関するものであり、IZO焼結体の高密度化を図り、結晶粒間に残留する微細な穴(マイクロポア)を低減させることで、成膜の品質を向上させることを目的とする。 The present invention relates to an IZO sintered sputtering target obtained by molding and sintering calcined powder obtained by calcining indium oxide powder and zinc oxide powder. The object is to improve the quality of film formation by increasing the density and reducing the fine holes (micropores) remaining between crystal grains.
 本発明者らは鋭意研究した結果、酸化インジウム粉と酸化亜鉛粉とを仮焼する際、仮焼条件を厳密に制御することで、これまでよりも高密度で、且つマイクロポアの少ない焼結体が得られることを明らかにした。本発明は、以下のIZOスパッタリングターゲット及びその製造方法提供するものである。
 1)酸化インジウム-酸化亜鉛系酸化物(IZO)焼結体ターゲットであって、ターゲットを構成する酸化物がInとZnInk+3(k=3、4、5)の複合酸化物であり、ターゲットの相対密度が98.4%以上であることを特徴とするIZO焼結体スパッタリングターゲット。
 2)ターゲットに存在する50~300nmのマイクロポアの数が10個以下であることと特徴とする上記1)に記載のIZO焼結体スパッタリングターゲット。
 3)ZnとInの原子比Zn/(In+Zn)が0.1~0.2の範囲にあることを特徴とする上記1)又は2)に記載のIZO焼結体スパッタリングターゲット。
 4)ターゲットの体積抵抗率が5.0mΩ・cm以下であることを特徴とする上記1)~3)のいずれか一に記載のIZO焼結体スパッタリングターゲット。
 5)ターゲットの明度が分光色差計におる測定値Lが35以下であることを特徴とする上記1)~4)のいずれか一に記載のIZO焼結体スパッタリングターゲット。
 6)酸化インジウム粉と酸化亜鉛粉とを仮焼した仮焼粉を、成形、焼結して製造されるIZO焼結体スパッタリングターゲットの製造方法であって、1150℃以上1300℃以下、5~20時間で仮焼すると共に、仮焼途中、相変化する温度域で3時間以上保持することを特徴とするIZO焼結体スパッタリングターゲットの製造方法。
 7)仮焼粉の酸化物構造をInとZnInk+3(k=3、4)の複合酸化物とすることを特徴とする上記6)記載のIZO焼結体スパッタリングターゲットの製造方法。
 8)仮焼粉を、比表面積を1.0~10.0m/g、平均粒子径を1.0~2.0μmの範囲に調整することを特徴とすることを特徴とする上記6)又は7)に記載のIZO焼結体スパッタリングターゲットの製造方法。
 9)焼結温度を1400℃以上1500℃以下とすることを特徴とする上記6)~8)のいずれか一に記載のIZO焼結体スパッタリングターゲットの製造方法。
As a result of intensive research, the inventors of the present invention have sintered indium oxide powder and zinc oxide powder by strictly controlling the calcining conditions, thereby achieving higher density and less micropore sintering. Revealed that the body was obtained. The present invention provides the following IZO sputtering target and method for producing the same.
1) Indium oxide-zinc oxide based oxide (IZO) sintered body target, wherein the oxide constituting the target is a composite of In 2 O 3 and Zn k In 2 O k + 3 (k = 3, 4, 5) An IZO sintered sputtering target, which is an oxide and has a target relative density of 98.4% or more.
2) The IZO sintered sputtering target according to 1) above, wherein the number of 50 to 300 nm micropores existing in the target is 10 or less.
3) The IZO sintered sputtering target according to 1) or 2) above, wherein the atomic ratio Zn / (In + Zn) between Zn and In is in the range of 0.1 to 0.2.
4) The IZO sintered sputtering target according to any one of 1) to 3) above, wherein the volume resistivity of the target is 5.0 mΩ · cm or less.
5) The IZO sintered sputtering target according to any one of 1) to 4) above, wherein the brightness of the target is a measured value L * of a spectrocolor difference meter of 35 or less.
6) A method for producing an IZO sintered body sputtering target produced by molding and sintering a calcined powder obtained by calcining indium oxide powder and zinc oxide powder. A method for producing an IZO sintered sputtering target, characterized by being calcined in 20 hours and maintained for 3 hours or more in a temperature range where the phase changes during calcination.
7) The IZO sintered sputtering target according to 6), wherein the oxide structure of the calcined powder is a composite oxide of In 2 O 3 and Zn k In 2 O k + 3 (k = 3, 4). Manufacturing method.
8) The above-mentioned 6), wherein the calcined powder is adjusted to have a specific surface area of 1.0 to 10.0 m 2 / g and an average particle diameter of 1.0 to 2.0 μm. Or the manufacturing method of the IZO sintered compact sputtering target as described in 7).
9) The method for producing an IZO sintered sputtering target according to any one of 6) to 8) above, wherein the sintering temperature is from 1400 ° C. to 1500 ° C.
 本発明によれば、結晶粒界に残存する微細な穴(マイクロポア)を低減させたIZO焼結体を、高密度で製造できるので、スパッタリングターゲットに加工する際に、研削量が少なく、生産性を向上させることができる。また、このIZOターゲットを使用してスパッタリングした場合には、安定した薄膜特性(膜の均一性)が得られ、さらに、長時間のスパッタリング後においても、ターゲット表面のノジュールの発生を抑制し、アーキングの発生を抑制することができ、スパッタ時の異常放電や膜へのパーティクル発生等を防止することができるという優れた効果を有する。 According to the present invention, an IZO sintered body in which fine holes (micropores) remaining in crystal grain boundaries are reduced can be manufactured at a high density. Can be improved. In addition, when sputtering is performed using this IZO target, stable thin film characteristics (film uniformity) are obtained, and generation of nodules on the target surface is suppressed even after long-time sputtering, and arcing is performed. It is possible to suppress the occurrence of the above, and it has an excellent effect of preventing abnormal discharge during sputtering and generation of particles on the film.
左側が比較例12の鏡面研磨後の焼結体表面2,000倍の写真であり、右側が実施例2の鏡面研磨後の焼結体表面2,000倍の写真である。The left side is a photograph of the surface of the sintered body after mirror polishing of Comparative Example 12 at a magnification of 2,000 times, and the right side is a photograph of the surface of the sintered body after mirror polishing of Example 2 at a magnification of 2,000 times. 本発明のスパッタリングターゲットにおいて、マイクロポアの測定場所を示す図である。It is a figure which shows the measurement place of a micropore in the sputtering target of this invention.
 従来、HIP(熱間静水圧プレス)等を用いて焼結することで高密度化が図られていたが、このような焼結方法を変更することによる高密度化には限界があった。この原因についてさらに分析を進めたところ、焼結原料がInとZnOの場合、焼結温度が高くなるにつれて、InとZnの複合酸化物であるZnInk+3(k=3、4、5)の相変化(kが大きな値からk=3に近づく)が急速に進むために密度が上らないことが考えられた。通常、kの値が小さい方が密度の向上が見込めるが、相変化の急速な進行は、かえって密度の向上を妨げると共に、ポアの発生や焼結体の色を薄くするという問題を生じさせていた。 Hitherto, densification was achieved by sintering using HIP (hot isostatic pressing) or the like, but there was a limit to densification by changing such a sintering method. When the cause was further analyzed, when the sintering raw materials were In 2 O 3 and ZnO, as the sintering temperature increased, Zn k In 2 O k + 3 (k = 3), which is a composite oxide of In and Zn. It was considered that the density did not increase because the phase change of (4, 5) (k approached k = 3 from a large value) proceeded rapidly. Usually, the smaller the value of k, the better the density can be expected, but the rapid progress of the phase change hinders the improvement of the density and causes problems such as the generation of pores and the color of the sintered body. It was.
 このようなことから、本発明では、InとZnOの混合粉を、予め適切な条件で仮焼することで、相変化の急速な進行を抑制し(kの値をあまり変化させない)、密度の向上など焼結体の特性を改善するものである。そして、本発明によって得られるIZOスパッタリングターゲットは、InとZnInk+1(k=3、4、5のいずれか一種以上を含む)の複合酸化物から構成されると共に、従来では達成し得なかった相対密度98.4%以上を実現したことを特徴とするものである。ここで、相対密度は、理論密度6.999g/cmに対するアルキメデス密度の比で求められるものである。 For this reason, in the present invention, the rapid progress of the phase change is suppressed by pre-calcining the mixed powder of In 2 O 3 and ZnO under appropriate conditions in advance (the value of k is not changed so much). It improves the properties of the sintered body, such as an increase in density. The IZO sputtering target obtained by the present invention is composed of a composite oxide of In 2 O 3 and Zn k In 2 O k + 1 (including at least one of k = 3, 4, and 5), and has been conventionally used. Then, a relative density of 98.4% or more which could not be achieved was realized. Here, the relative density is obtained by the ratio of Archimedes density to the theoretical density of 6.999 g / cm 3 .
 また、本発明のスパッタリングターゲットは、高密度化とともに結晶粒界に残存する微細な穴(マイクロポア)を低減させることができるという特徴を有する。好ましくは、ターゲットに存在する50~300nmのマイクロポアの数が10個以下/2600μmである。これにより、スパッタ時の異常放電や膜へのパーティクル発生等を防止することができる。 In addition, the sputtering target of the present invention has a feature that fine holes (micropores) remaining in crystal grain boundaries can be reduced with increasing density. Preferably, the number of 50 to 300 nm micropores present in the target is 10 or less / 2600 μm 2 . Thereby, abnormal discharge at the time of sputtering or generation of particles on the film can be prevented.
 本発明において、マイクロポアとは、主に粒界に残存する微細な孔のことであり、SEMで観察したときに主に粒界に見られる黒く見える部位を指す。単にポアや微細孔とも呼ばれる。SEM像にて×2000の視野(2600μmに相当する)を1視野として、図2に示すようにスパッタリングターゲットの3箇所、2視野(表面と断面)についてそれぞれマイクロポアの個数を測定して、6箇所の平均の数をポアの数とする。 In the present invention, the micropore is a fine hole mainly remaining at the grain boundary, and refers to a portion that appears black mainly at the grain boundary when observed with an SEM. Also simply called pores or micropores. In the SEM image, x2000 field of view (corresponding to 2600 μm 2 ) is taken as one field, and as shown in FIG. 2, the number of micropores is measured at each of three locations and two fields (surface and cross section) of the sputtering target, The average number of 6 locations is the number of pores.
 本発明のスパッタリングターゲットは、ZnとInの原子比Zn/(In+Zn)が0.1~0.2の範囲にあることが好ましい。この組成範囲は、スパッタリングターゲットを用いて形成される薄膜が、透明導電膜としての機能を発揮するために所望される範囲であり、焼結体の組織の制御等とは無関係である。上記ZnとInの原子比は、原料の酸化インジウム粉と酸化亜鉛粉の混合比を調整することで所望の範囲とすることができる。また、ターゲットの組成は、ターゲットを粉砕し、湿式分析(ICP分析)、乾式分析(XRF分析)で確認することができる。なお、Znの量が少ない場合、上記kの値が小さくなる傾向にあり、Znの量が多い場合、kの値が大きくなる傾向にある。 In the sputtering target of the present invention, the atomic ratio Zn / (In + Zn) between Zn and In is preferably in the range of 0.1 to 0.2. This composition range is a range desired for a thin film formed using a sputtering target to exhibit a function as a transparent conductive film, and is irrelevant to control of the structure of the sintered body. The atomic ratio of Zn and In can be set to a desired range by adjusting the mixing ratio of the raw material indium oxide powder and zinc oxide powder. The composition of the target can be confirmed by pulverizing the target and performing wet analysis (ICP analysis) or dry analysis (XRF analysis). When the amount of Zn is small, the value of k tends to be small, and when the amount of Zn is large, the value of k tends to be large.
 また、本発明のスパッタリングターゲットは、体積抵抗率が5.0mΩ・cm以下であることが好ましい。ターゲットの低抵抗化は、スパッタリングの安定性に寄与することができる。さらに、本発明のスパッタリングターゲットは、分光色差計による測定値Lが35以下であることが好ましい。ターゲットの明度がスパッタリング特性に直接の影響を及ぼすことはないが、ターゲットの外観が悪いと製品として採用され難いことがあり、また通常、ターゲットは複数の焼結体を並べて一つとするが、焼結体を並べた際各焼結体の色の差を小さくすることで製品の外観を改善することができる。なお、kの値が大きいと色が薄く、密度が低い傾向にある。 The sputtering target of the present invention preferably has a volume resistivity of 5.0 mΩ · cm or less. Lowering the resistance of the target can contribute to the stability of sputtering. Further, the sputtering target of the present invention preferably has a measurement value L * measured by a spectrocolorimeter of 35 or less. Although the brightness of the target does not directly affect the sputtering characteristics, it may be difficult to adopt as a product if the target appearance is poor. Usually, the target is composed of a plurality of sintered bodies arranged side by side. The appearance of the product can be improved by reducing the color difference between the sintered bodies when the bonded bodies are arranged. When the value of k is large, the color is light and the density tends to be low.
 次に、本発明の酸化インジウム-酸化亜鉛系酸化物(IZO)焼結体ターゲットを製造方法について説明する。
 本発明の酸化物焼結体は、各原料粉の混合、仮焼、粉砕、成型、焼結のプロセスによって作製することができる。原料粉としては、酸化インジウム粉、および酸化亜鉛粉であって、比表面積が3~10m/gのものを使用する。比表面積が同じ方が効率的な混合等に有利である場合もあるが、仮焼を実施する場合は、比表面積の差がある程度あったほうが、より良く仮焼が進む場合もある。
Next, a method for producing the indium oxide-zinc oxide based oxide (IZO) sintered compact target of the present invention will be described.
The oxide sintered body of the present invention can be produced by a process of mixing, calcining, pulverizing, molding and sintering each raw material powder. As the raw material powder, indium oxide powder and zinc oxide powder having a specific surface area of 3 to 10 m 2 / g are used. The same specific surface area may be advantageous for efficient mixing or the like, but when calcination is performed, the calcination may progress better if there is a certain difference in specific surface area.
 次に、各原料粉を所望の組成比となるように秤量後、混合を行う。混合方法としては、ボールミルを用いた湿式混合を行った後、得られたスラリーを乾燥する方法などが挙げられる。また、湿式混合の場合、適宜、分散剤を添加することでスラリーの均一性を上げることも出来る。その他の方法でも原料の均一混合という趣旨を実現できる方法であればかまわない。 Next, each raw material powder is weighed so as to have a desired composition ratio and then mixed. Examples of the mixing method include a method of drying the obtained slurry after wet mixing using a ball mill. In the case of wet mixing, the uniformity of the slurry can be increased by adding a dispersant as appropriate. Other methods may be used as long as they can achieve the purpose of uniform mixing of raw materials.
 次に、混合粉を電気炉にて、酸素濃度20vol%以上の雰囲気中、1150℃以上1300℃以下の温度範囲、5時間以上20時間保持することで、混合粉の仮焼を行う。
 ここで、複合酸化物のZnInk+1について、k=5、4、3の順に緩やかに相変化させることが重要ある。k=5は1100℃付近、k=4は1200℃付近、k=3は1260℃付近で相変化が生じるため、各々の温度域(1100℃~1110℃、1200℃~1210℃、1260℃~1270℃)で、それぞれ3時間以上保持することにより、kの値が小さい、均質な仮焼粉を得ることが可能となる。なお、例えば、仮焼の最高温度が1150℃の場合は、当然ながら、1200℃付近や1260℃付近の途中保持は不要である。
 この仮焼粉は本発明のIZO焼結体スパッタリングターゲットを特徴付けるものであり、結晶粒界に残存する微細な穴(マイクロポア)を低減させたIZO焼結体を、高密度で製造できる好適な条件である。なお、1300℃を超える温度では生産性が劣るものの、仮焼粉としての特性を損なうものではない。
Next, the mixed powder is calcined by holding the mixed powder in an electric furnace in an atmosphere having an oxygen concentration of 20 vol.
Here, it is important to gradually change the phase of the composite oxide Zn k In 2 O k + 1 in the order of k = 5, 4, and 3. Since k = 5 is around 1100 ° C., k = 4 is around 1200 ° C., and k = 3 is around 1260 ° C., phase changes occur, so each temperature range (1100 ° C.-1110 ° C., 1200 ° C.-1210 ° C. 1270 ° C.), each of which is held for 3 hours or more, whereby it is possible to obtain a homogeneous calcined powder having a small k value. In addition, for example, when the maximum temperature of calcination is 1150 ° C., it is of course not necessary to hold midway around 1200 ° C. or 1260 ° C.
This calcined powder characterizes the IZO sintered body sputtering target of the present invention, and is suitable for producing an IZO sintered body with reduced fine holes (micropores) remaining in the crystal grain boundaries at high density. It is a condition. In addition, although productivity is inferior at the temperature exceeding 1300 degreeC, the characteristic as calcined powder is not impaired.
 次に粗大化した仮焼粉を粉砕する。粉砕後の仮焼粉の比表面積が1.0~10.0m/g、平均粒子径(メジアン径)が0.5~2.0μmの範囲となるまで行うのが好ましい。より好ましくは、比表面積が1.0~5.0m/g、平均粒子径(メジアン径)が1.0~2.0μmの範囲である。粉砕方法には求める粒度、被粉砕物質に応じて様々な方法があるが、ビーズミル等の湿式媒体攪拌ミル、ジェットミルと呼ばれる気流粉砕方法、あるいはこれらを併用することができる。 Next, the coarsened calcined powder is pulverized. It is preferable to carry out until the specific surface area of the calcined powder after pulverization is in the range of 1.0 to 10.0 m 2 / g and the average particle diameter (median diameter) is in the range of 0.5 to 2.0 μm. More preferably, the specific surface area is 1.0 to 5.0 m 2 / g and the average particle size (median diameter) is 1.0 to 2.0 μm. There are various pulverization methods depending on the desired particle size and the material to be pulverized, but a wet medium stirring mill such as a bead mill, an airflow pulverization method called a jet mill, or these can be used in combination.
 次に、必要に応じて、微粉砕した仮焼粉の造粒を行う。これは、造粒により粉体の流動性を向上させることで、次工程のプレス成型時に粉体を均一に金型へ充填し、均質な成形体を得るためである。造粒には様々な方式があるが、プレス成型に適した造粒粉を得る方法の一つに、噴霧式乾燥装置(スプレードライヤー)を用いる方法がある。また、スラリー中にポリビニルアルコール(PVA)等のバインダーを添加し造粒粉中に含有させることで、成形体強度を向上させることが出来る。 Next, granulated pulverized calcined powder is performed as necessary. This is because by improving the fluidity of the powder by granulation, the powder is uniformly filled in the mold at the time of press molding in the next step, and a homogeneous molded body is obtained. There are various types of granulation, and one method for obtaining granulated powder suitable for press molding is a method using a spray-type drying device (spray dryer). Moreover, a molded object intensity | strength can be improved by adding binders, such as polyvinyl alcohol (PVA), in a slurry, and making it contain in granulated powder.
 次に、プレス成型を行う。粉末を金型に充填し、400~1000kgf/cmの圧力を、1~3分間保持して成形する。圧力400kgf/cm未満であると、充分な強度と密度の成形体を得ることができず、また圧力1000kgf/cm以上では、成形体を金型から取り出す際に、成形体自身が圧力から解放されることによる変形のため破壊する場合があり、生産上好ましくない。プレス成形によって得られた成形体は、さらに静水圧加圧装置(CIP)により1600~2000kgf/cmで加圧しても良い。これにより、さらに均一で密度の高い成形体を得ることが出来る。 Next, press molding is performed. The powder is filled in a mold and molded by holding a pressure of 400 to 1000 kgf / cm 2 for 1 to 3 minutes. When the pressure is less than 400 kgf / cm 2 , a molded body having sufficient strength and density cannot be obtained. When the pressure is 1000 kgf / cm 2 or more, the molded body itself is out of pressure when taken out from the mold. It may break due to deformation due to being released, which is not preferable in production. The molded body obtained by press molding may be further pressurized at 1600 to 2000 kgf / cm 2 by a hydrostatic pressure device (CIP). Thereby, a more uniform and high-density molded body can be obtained.
 次に、電気炉を使用し、酸素雰囲気中で成形体を焼結し、焼結体を得る。好適な焼結条件としては、昇温速度3.0℃/minで室温~1000℃まで昇温後、昇温速度0.5~2.0℃/minで、1400℃以上1500℃以下まで昇温した後、10~26時間温度を保持し、その後、炉冷または降温速度1.0~5.0℃/minで降温することである。この場合、焼結温度が1400℃より低いと、高密度の焼結体を得ることが出来ない。また、1500℃を超える焼結温度では、酸化亜鉛の揮発により、焼結密度の低下や組成ずれが生じ、また炉ヒーター寿命が低下してしまうというコスト的問題もあるので、上限は1500℃とすることが望ましい。 Next, using an electric furnace, the molded body is sintered in an oxygen atmosphere to obtain a sintered body. As a suitable sintering condition, the temperature is raised from room temperature to 1000 ° C. at a temperature rising rate of 3.0 ° C./min, and then raised from 1400 ° C. to 1500 ° C. at a temperature rising rate of 0.5 to 2.0 ° C./min. After heating, the temperature is maintained for 10 to 26 hours, and thereafter the temperature is lowered by furnace cooling or at a temperature lowering rate of 1.0 to 5.0 ° C./min. In this case, if the sintering temperature is lower than 1400 ° C., a high-density sintered body cannot be obtained. Further, at a sintering temperature exceeding 1500 ° C., the volatilization of zinc oxide causes a decrease in sintering density and a composition shift, and there is a cost problem that the life of the furnace heater is reduced, so the upper limit is 1500 ° C. It is desirable to do.
 焼結温度における保持時間が10時間より短いと、焼結が充分進まず、焼結体の密度が充分高くならなかったり、焼結体が反ってしまったりする。保持時間が14時間を越えても、不必要なエネルギーと時間を要する無駄が生じて生産上好ましくない。昇温速度が0.5℃/minより小さいと、所定温度になるまでに不必要に時間を要してしまい、昇温速度が5.0℃/minより大きいと、炉内の温度分布が均一に上昇せずに、むらが生じたり、焼結体が割れてしまったりするので、注意が必要である。以上の焼結条件は、好適な範囲を示すもので、その選択は任意であることを基本とする。 保持 When the holding time at the sintering temperature is shorter than 10 hours, the sintering does not proceed sufficiently, and the density of the sintered body does not increase sufficiently, or the sintered body warps. Even if the holding time exceeds 14 hours, unnecessary energy and time is wasted, which is not preferable for production. If the rate of temperature increase is less than 0.5 ° C./min, it takes time to reach a predetermined temperature. If the rate of temperature increase is greater than 5.0 ° C./min, the temperature distribution in the furnace is Care must be taken because unevenness occurs and the sintered body breaks without rising uniformly. The above sintering conditions show a suitable range, and the selection is basically arbitrary.
 後述の実施例、比較例を含め、本発明における評価方法等は、以下の通りである。
(酸化物の同定)
 ターゲットを構成する酸化物の同定は、BRUKER製の全自動多目的X線回折装置(型式:D8-ADVANCE)を用いて行う。まず、測定試料を100μm以下の粉末状にし、粉末X線回折法を用いて、X線回折プロファイルを得る。次に、得られたX線回折プロファイルをバックグラウンド除去、Kα2除去などのデータ処理を施した後、ICDD(International Centre for Diffraction Data)のPDF(Powder Diffraction File)を用いて、kの相の同定を行う。
Evaluation methods and the like in the present invention including the examples and comparative examples described below are as follows.
(Identification of oxide)
Identification of the oxide constituting the target is performed using a fully automatic multipurpose X-ray diffractometer (model: D8-ADVANCE) manufactured by BRUKER. First, a measurement sample is made into a powder of 100 μm or less, and an X-ray diffraction profile is obtained using a powder X-ray diffraction method. Next, the obtained X-ray diffraction profile is subjected to data processing such as background removal and Kα2 removal, and then the phase of k is identified using a PDF (Powder Diffraction File) of ICDD (International Center for Diffraction Data). I do.
(体積抵抗率の測定)
 体積抵抗率は、エヌピイエス株式会社製、型式:Σ-5+を用いて測定する。まず、測定試料の表面に金属製の探針を4本一直線上に立て、外側の二探針間に一定電流を流し、内側の二探針間に生じる電位差を測定し抵抗を求める。次に、求めた抵抗に試料厚さ、補正係数RCF(Resistivity Correction Factor)をかけて、体積抵抗率を算出する。
(Measurement of volume resistivity)
The volume resistivity is measured using a model: Σ-5 + manufactured by NP Corporation. First, four metal probes are placed on a straight line on the surface of the measurement sample, a constant current is passed between the two outer probes, the potential difference generated between the two inner probes is measured, and the resistance is obtained. Next, the volume resistivity is calculated by multiplying the obtained resistance by the sample thickness and the correction coefficient RCF (Resitivity Correction Factor).
(ターゲットの明度)
 ターゲットの明度は、日本電色工業株式会社製、型式:NF333を用いて測定する。まず、試料表面を#400程度の表面粗さとし、下記の測定条件等で測定を実施する。次に、L表色系を用いて、ターゲットの明度をL、色度をa、bで表す。
  照明・受光条件 :0°:45c(0°照明:45°円周受光)
  測定方法:ダブルビーム方式,先分光方式 
  測定波長:400nm~700nm、20nm間隔出力
  測定光源:A,B,C,D50,D55,D65,D75,F2,F6,F2,F6,F7,F8,F10,F11,F12
  観察条件:各測定光源の2°および10°視野
(Target brightness)
The brightness of the target is measured using Nippon Denshoku Industries Co., Ltd., model: NF333. First, the surface of the sample is set to a surface roughness of about # 400, and measurement is performed under the following measurement conditions and the like. Next, using the L * a * b * color system, the brightness of the target is represented by L * , and the chromaticity is represented by a * and b * .
Illumination / light reception conditions: 0 °: 45c (0 ° illumination: 45 ° circumference light reception)
Measurement method: double beam method, pre-spectral method
Measurement wavelength: 400 nm to 700 nm, 20 nm interval output Measurement light source: A, B, C, D50, D55, D65, D75, F2, F6, F2, F6, F7, F8, F10, F11, F12
Observation conditions: 2 ° and 10 ° fields of view for each measurement light source
  (実施例1)
 酸化インジウム粉と酸化亜鉛粉を所定の比率で混合した後、この混合粉を大気雰囲気中、1300℃、10時間仮焼した。また、仮焼途中、1100℃、1200℃、1260℃において一定時間保持した。該仮焼粉の酸化物構造はInとZnInk+3(k=3)の複合酸化物であった。この仮焼粉を、ジェットミル粉砕機と湿式媒体攪拌ミルを用いて微粉砕し、さらに造粒を行い、比表面積が2.22m/g、平均粒子径が1.71μmである粒子を得た。そして、これを成型して、IZO組成の成型体を作製した。
Example 1
After mixing indium oxide powder and zinc oxide powder at a predetermined ratio, the mixed powder was calcined at 1300 ° C. for 10 hours in an air atmosphere. Further, during the calcination, it was held at 1100 ° C., 1200 ° C. and 1260 ° C. for a certain time. The oxide structure of the calcined powder was a composite oxide of In 2 O 3 and Zn k In 2 O k + 3 (k = 3). The calcined powder is finely pulverized using a jet mill pulverizer and a wet medium stirring mill, and further granulated to obtain particles having a specific surface area of 2.22 m 2 / g and an average particle diameter of 1.71 μm. It was. And this was shape | molded and the molded object of the IZO composition was produced.
 次に、この成型体を酸素雰囲気中、1430℃の焼結温度で14時間保持し、酸化インジウム-酸化亜鉛系酸化物(IZO)焼結体を製造した。該焼結体のZnとInの原子比Zn/(In+Zn)は0.17であり、該焼結体の酸化物構造はInとZnInk+3(k=3)の複合酸化物であった。さらに、この焼結体を機械加工し、厚み10mmのIZOターゲットを作製した。この結果、ターゲットの相対密度は98.67%、体積抵抗率は2.15mΩ・cm、ターゲットの明度L値は31.7、ターゲット中のマイクロポアの平均個数は3個/2600μmであった。 Next, this molded body was held in an oxygen atmosphere at a sintering temperature of 1430 ° C. for 14 hours to produce an indium oxide-zinc oxide based oxide (IZO) sintered body. The Zn / In atomic ratio Zn / (In + Zn) of the sintered body is 0.17, and the oxide structure of the sintered body is a composite of In 2 O 3 and Zn k In 2 O k + 3 (k = 3). It was an oxide. Further, this sintered body was machined to produce an IZO target having a thickness of 10 mm. As a result, the relative density of the target was 98.67%, the volume resistivity was 2.15 mΩ · cm, the lightness L * value of the target was 31.7, and the average number of micropores in the target was 3/2600 μm 2. It was.
 このように、相対密度が高く、明度が低いという理想的なIZO焼結体スパッタリングターゲットを製造することができた。このスパッタリングターゲットを使用してスパッタリングを実施したところ、長時間のスパッタリング後においても、ターゲット表面のノジュールの発生を抑制し、またアーキングの発生を抑制することができ、スパッタ時の異常放電や膜へのパーティクル発生等の防止効果が認められた。そして、安定した薄膜特性(膜の均一性)が得られた。 Thus, an ideal IZO sintered sputtering target having a high relative density and low brightness could be produced. When sputtering was performed using this sputtering target, generation of nodules on the target surface can be suppressed even after long-time sputtering, and arcing can be suppressed. The effect of preventing the generation of particles was observed. Stable thin film characteristics (film uniformity) were obtained.
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
(実施例2-16)
 実施例2-16では、表1に示す通り、仮焼条件(仮焼温度、仮焼時間、仮焼時途中保持温度、仮焼時途中保持時間)、仮焼粉の粉砕条件、焼結条件(焼結温度、焼結時間)、焼結体の組成比(原料の混合比など)の条件を、それぞれ変化させた。その結果、表1に示す通り、相対密度が高く、明度が低いという理想的なIZO焼結体スパッタリングターゲットを製造することができた。このスパッタリングターゲットを使用してスパッタリングを実施したところ、長時間のスパッタリング後においても、ターゲット表面のノジュールの発生を抑制し、またアーキングの発生を抑制することができ、スパッタ時の異常放電や膜へのパーティクル発生等の防止効果が認められた。そして、安定した薄膜特性(膜の均一性)が得られた。
(Example 2-16)
In Example 2-16, as shown in Table 1, calcining conditions (calcining temperature, calcining time, calcining midway holding temperature, calcining midway holding time), calcining powder grinding conditions, sintering conditions The conditions of (sintering temperature, sintering time) and composition ratio of the sintered body (mixing ratio of raw materials, etc.) were changed. As a result, as shown in Table 1, an ideal IZO sintered sputtering target having high relative density and low brightness could be produced. When sputtering was performed using this sputtering target, generation of nodules on the target surface can be suppressed even after long-time sputtering, and arcing can be suppressed. The effect of preventing the generation of particles was observed. Stable thin film characteristics (film uniformity) were obtained.
(比較例1-12)
 比較例1-12では、表1に示す通り、仮焼条件(仮焼なし、仮焼温度、仮焼時間、仮焼時途中保持なし、仮焼時途中保持温度、仮焼時途中保持時間)、仮焼粉の粉砕条件、焼結条件(焼結温度、焼結時間)、焼結体の組成比(原料の混合比など)の条件をそれぞれ変化させた。その結果、表1に示す通り、いずれの場合も相対密度98.4%を達成することができていなかった。また、マイクロポアの数も比較的多いものとなっていた。これらのスパッタリングターゲットを使用してスパッタリングを実施したところ、長時間のスパッタリング後において、パーティクルの増加がみられた。
(Comparative Example 1-12)
In Comparative Example 1-12, as shown in Table 1, calcination conditions (no calcination, calcination temperature, calcination time, no calcination hold, calcination hold temperature, calcination hold time) The pulverization conditions of the calcined powder, the sintering conditions (sintering temperature, sintering time), and the composition ratio of the sintered body (such as the mixing ratio of raw materials) were changed. As a result, as shown in Table 1, a relative density of 98.4% could not be achieved in any case. In addition, the number of micropores was relatively large. When sputtering was performed using these sputtering targets, an increase in particles was observed after prolonged sputtering.
 本発明によれば、高密度で、結晶粒界に残存した微細な穴(マイクロポア)を低減したIZO焼結体を製造できるので、スパッタリングターゲットに加工する際に使用不可部分の研削量が少なく、生産性を向上させることができる。また、このIZOターゲットを使用してスパッタリングした場合には、安定した薄膜特性(膜の均一性)が得られ、さらに長時間のスパッタリング後においても、ターゲット表面のノジュールの発生を抑制し、アーキングの発生を抑制することができ、スパッタ時の異常放電や膜へのパーティクル発生等の防止効果があるという優れた効果を有するので、液晶ディスプレイ装置等の各種フラットパネルディスプレイ装置の画素電極等の電極材として有用である。 According to the present invention, an IZO sintered body with high density and reduced fine pores (micropores) remaining in the grain boundaries can be manufactured, so that the amount of grinding of unusable parts when processing into a sputtering target is small. , Productivity can be improved. Further, when sputtering is performed using this IZO target, stable thin film characteristics (film uniformity) can be obtained, and generation of nodules on the target surface can be suppressed even after long-time sputtering, and arcing can be prevented. Since it has an excellent effect of suppressing generation and preventing abnormal discharge during sputtering and generation of particles on the film, it is an electrode material for pixel electrodes of various flat panel display devices such as liquid crystal display devices. Useful as.

Claims (9)

  1.  酸化インジウム-酸化亜鉛系酸化物(IZO)焼結体ターゲットであって、ターゲットを構成する酸化物がInとZnInk+3(k=3、4、5)の複合酸化物であり、ターゲットの相対密度が98.4%以上であることを特徴とするIZO焼結体スパッタリングターゲット。 Indium oxide-zinc oxide-based oxide (IZO) sintered body target, wherein the oxide constituting the target is In 2 O 3 and Zn k In 2 O k + 3 (k = 3, 4, 5) An IZO sintered sputtering target characterized in that the relative density of the target is 98.4% or more.
  2.  ターゲットに存在する50~300nmのマイクロポアの数が10個以下であることと特徴とする請求項1に記載のIZO焼結体スパッタリングターゲット。 2. The IZO sintered sputtering target according to claim 1, wherein the number of 50 to 300 nm micropores existing in the target is 10 or less.
  3.  ZnとInの原子比Zn/(In+Zn)が0.1~0.2の範囲にあることを特徴とする請求項1又は2に記載のIZO焼結体スパッタリングターゲット。 3. The IZO sintered sputtering target according to claim 1, wherein the atomic ratio Zn / (In + Zn) between Zn and In is in the range of 0.1 to 0.2.
  4.  ターゲットの体積抵抗率が5.0mΩ・cm以下であることを特徴とする請求項1~3のいずれか一項に記載のIZO焼結体スパッタリングターゲット。 The IZO sintered sputtering target according to any one of claims 1 to 3, wherein the volume resistivity of the soot target is 5.0 mΩ · cm or less.
  5.  ターゲットの明度が分光色差計におる測定値(L)が35以下であることを特徴とする請求項1~4のいずれか一項に記載のIZO焼結体スパッタリングターゲット。 The IZO sintered body sputtering target according to any one of claims 1 to 4, wherein the lightness of the target has a measured value (L * ) measured by a spectral color difference meter of 35 or less.
  6.  酸化インジウム粉と酸化亜鉛粉とを仮焼した仮焼粉を、成形、焼結して製造されるIZO焼結体スパッタリングターゲットの製造方法であって、1150℃以上1300℃以下、5~20時間で仮焼すると共に、仮焼途中、相変化する温度域で3時間以上保持することを特徴とするIZO焼結体スパッタリングターゲットの製造方法。 A method for producing an IZO sintered body sputtering target produced by molding and sintering a calcined powder obtained by calcining indium oxide powder and zinc oxide powder, wherein the temperature is 1150 ° C. or higher and 1300 ° C. or lower and 5 to 20 hours. And a method for producing an IZO sintered sputtering target characterized by holding for 3 hours or more in a temperature range where the phase changes during calcining.
  7.  仮焼粉の酸化物構造をInとZnInk+3(k=3、4)の複合酸化物とすることを特徴とする請求項6に記載のIZO焼結体スパッタリングターゲットの製造方法。 The oxide structure of the calcined powder is a composite oxide of In 2 O 3 and Zn k In 2 O k + 3 (k = 3, 4). The IZO sintered sputtering target according to claim 6, Production method.
  8.  仮焼粉を、比表面積を1.0~10.0m/g、平均粒子径を1.0~2.0μmの範囲に調整することを特徴とすることを特徴とする請求項6又は7に記載のIZO焼結体スパッタリングターゲットの製造方法。 8. The calcined powder is adjusted to have a specific surface area of 1.0 to 10.0 m 2 / g and an average particle diameter of 1.0 to 2.0 μm. The manufacturing method of the IZO sintered compact sputtering target of description.
  9.  焼結温度を1400℃以上1500℃以下とすることを特徴とする請求項6~8のいずれか一項に記載のIZO焼結体スパッタリングターゲットの製造方法。 The method for producing an IZO sintered sputtering target according to any one of claims 6 to 8, wherein the sintering temperature is 1400 ° C or higher and 1500 ° C or lower.
PCT/JP2016/080086 2016-03-31 2016-10-11 Izo sintered compact sputtering target and method for producing same WO2017168797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680023954.1A CN107614741B (en) 2016-03-31 2016-10-11 IZO sintered sputtering target and method for producing same
KR1020177029392A KR102045661B1 (en) 2016-03-31 2016-10-11 Izo sintered compact sputtering target and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071397 2016-03-31
JP2016071397A JP6078189B1 (en) 2016-03-31 2016-03-31 IZO sintered compact sputtering target and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2017168797A1 true WO2017168797A1 (en) 2017-10-05

Family

ID=57981511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080086 WO2017168797A1 (en) 2016-03-31 2016-10-11 Izo sintered compact sputtering target and method for producing same

Country Status (5)

Country Link
JP (1) JP6078189B1 (en)
KR (1) KR102045661B1 (en)
CN (1) CN107614741B (en)
TW (1) TWI644866B (en)
WO (1) WO2017168797A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410960B2 (en) * 2016-01-28 2018-10-24 Jx金属株式会社 Cylindrical ceramics sputtering target material and cylindrical ceramics sputtering target constructed by joining one or more cylindrical ceramics sputtering target material to a backing tube
WO2018211724A1 (en) * 2017-05-16 2018-11-22 住友電気工業株式会社 Oxide sintered body and production method therefor, sputtering target, oxide semiconductor film, and method for producing semiconductor device
JP6397593B1 (en) * 2017-10-02 2018-09-26 住友化学株式会社 Sputtering target
JP6523510B1 (en) * 2018-03-30 2019-06-05 Jx金属株式会社 Sputtering target
TWI818210B (en) * 2020-11-30 2023-10-11 光洋應用材料科技股份有限公司 Indium zinc tin oxide sputtering target and its conductive film
CN113402261B (en) * 2021-06-04 2022-06-21 长沙壹纳光电材料有限公司 IZO target precursor and preparation method and application thereof
CN116162908A (en) * 2022-12-15 2023-05-26 先导薄膜材料(广东)有限公司 Indium zinc oxide target and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111444A (en) * 1995-10-13 1997-04-28 Mitsui Mining & Smelting Co Ltd Production of indium oxide-zinc oxide based sintered body target
WO2000068456A1 (en) * 1999-05-10 2000-11-16 Japan Energy Corporation Sputtering target and production method therefor
JP2005281862A (en) * 2004-03-05 2005-10-13 Tosoh Corp Cylindrical sputtering target, ceramic sintered compact and production method therefor
JP2007008781A (en) * 2005-07-01 2007-01-18 Idemitsu Kosan Co Ltd Manufacturing method of izo sputtering target
JP2008001554A (en) * 2006-06-22 2008-01-10 Idemitsu Kosan Co Ltd Sintered body, film, and organic electroluminescent element
JP2008308385A (en) * 2007-06-18 2008-12-25 Sumitomo Metal Mining Co Ltd Method of manufacturing indium oxide-based sputtering target
JP2010024087A (en) * 2008-07-18 2010-02-04 Idemitsu Kosan Co Ltd Method for manufacturing oxide sintered compact, methods for manufacturing oxide sintered compact, sputtering target, oxide thin film and thin film transistor, and semiconductor device
JP2011098855A (en) * 2009-11-05 2011-05-19 Idemitsu Kosan Co Ltd Indium oxide-zinc oxide-based sintered compact target and method of manufacturing the same
JP2016065311A (en) * 2014-09-19 2016-04-28 住友化学株式会社 Sputtering target and sputtering target set

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827334B2 (en) 1993-08-11 2006-09-27 東ソー株式会社 ITO sintered body and sputtering target
JP3746094B2 (en) * 1995-06-28 2006-02-15 出光興産株式会社 Target and manufacturing method thereof
EP1233082B1 (en) * 1999-11-25 2009-01-07 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive oxide, and method for preparing sputtering target
CN104710163A (en) * 2005-07-01 2015-06-17 出光兴产株式会社 method for producing IZO sputtering target
JP4758697B2 (en) * 2005-07-01 2011-08-31 出光興産株式会社 Manufacturing method of IZO sputtering target
KR20080076935A (en) * 2005-12-13 2008-08-20 이데미쓰 고산 가부시키가이샤 Sintered body for vacuum vapor deposition
KR20110027805A (en) * 2008-06-27 2011-03-16 이데미쓰 고산 가부시키가이샤 Sputtering target for oxide semiconductor, comprising ingao3(zno) crystal phase and process for producing the sputtering target
CN102245532A (en) * 2008-12-15 2011-11-16 出光兴产株式会社 Composite oxide sintered body and sputtering target comprising same
JP4891381B2 (en) * 2009-11-19 2012-03-07 出光興産株式会社 In-Ga-Zn-based sintered body and sputtering target
JP5337224B2 (en) * 2011-11-04 2013-11-06 株式会社コベルコ科研 Oxide sintered body, sputtering target, and manufacturing method thereof
JP5993700B2 (en) * 2012-10-15 2016-09-14 住友化学株式会社 Method for producing zinc oxide-based sintered body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111444A (en) * 1995-10-13 1997-04-28 Mitsui Mining & Smelting Co Ltd Production of indium oxide-zinc oxide based sintered body target
WO2000068456A1 (en) * 1999-05-10 2000-11-16 Japan Energy Corporation Sputtering target and production method therefor
JP2005281862A (en) * 2004-03-05 2005-10-13 Tosoh Corp Cylindrical sputtering target, ceramic sintered compact and production method therefor
JP2007008781A (en) * 2005-07-01 2007-01-18 Idemitsu Kosan Co Ltd Manufacturing method of izo sputtering target
JP2008001554A (en) * 2006-06-22 2008-01-10 Idemitsu Kosan Co Ltd Sintered body, film, and organic electroluminescent element
JP2008308385A (en) * 2007-06-18 2008-12-25 Sumitomo Metal Mining Co Ltd Method of manufacturing indium oxide-based sputtering target
JP2010024087A (en) * 2008-07-18 2010-02-04 Idemitsu Kosan Co Ltd Method for manufacturing oxide sintered compact, methods for manufacturing oxide sintered compact, sputtering target, oxide thin film and thin film transistor, and semiconductor device
JP2011098855A (en) * 2009-11-05 2011-05-19 Idemitsu Kosan Co Ltd Indium oxide-zinc oxide-based sintered compact target and method of manufacturing the same
JP2016065311A (en) * 2014-09-19 2016-04-28 住友化学株式会社 Sputtering target and sputtering target set

Also Published As

Publication number Publication date
CN107614741B (en) 2020-04-21
TW201802030A (en) 2018-01-16
TWI644866B (en) 2018-12-21
JP2017179537A (en) 2017-10-05
KR20170128479A (en) 2017-11-22
CN107614741A (en) 2018-01-19
KR102045661B1 (en) 2019-11-15
JP6078189B1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6078189B1 (en) IZO sintered compact sputtering target and manufacturing method thereof
KR102322184B1 (en) Indium zinc oxide (izo) based sputtering target, and method for producing same
KR102030892B1 (en) Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
WO2010007989A1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP2012126937A (en) Ito sputtering target and manufacturing method thereof
EP2767610B1 (en) ZnO-Al2O3-MgO sputtering target and method for the production thereof
KR102089842B1 (en) Target for forming transparent conductive film, transparent conductive film, method of manufacturing target for forming transparent conductive film and method of manufacturing transparent conductive film
JP6582698B2 (en) Oxide sintered body and sputtering target
JP6287327B2 (en) Oxide sintered body and oxide transparent conductive film
TWI711596B (en) Oxide sintered body, its manufacturing method and sputtering target
JP6637948B2 (en) IZO target and method for manufacturing the same
WO2016017589A1 (en) Oxide sintered compact, method for producing same, and sputtering target
TWI697458B (en) Sputtering target
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
TWI575094B (en) In-ce-o based sputtering target and method for producing the same
JP2017186655A (en) Indium oxide-zinc oxide-based (izo) sputtering target, and production method thereof
WO2013042747A1 (en) Oxide sintered body, method for producing same, and oxide transparent conductive film
JP2013256425A (en) Tin oxide powder for ito sputtering target, method of manufacturing mixed powder of tin oxide and indium oxide for ito sputtering target, and sintered body for ito sputtering target
WO2017119381A1 (en) Oxide sintered body, method for producing same and sputtering target

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177029392

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897014

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897014

Country of ref document: EP

Kind code of ref document: A1