WO2017166432A1 - 用户辅助的时分双工多天线小基站信道校准方法 - Google Patents

用户辅助的时分双工多天线小基站信道校准方法 Download PDF

Info

Publication number
WO2017166432A1
WO2017166432A1 PCT/CN2016/085169 CN2016085169W WO2017166432A1 WO 2017166432 A1 WO2017166432 A1 WO 2017166432A1 CN 2016085169 W CN2016085169 W CN 2016085169W WO 2017166432 A1 WO2017166432 A1 WO 2017166432A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user
antenna
reference antenna
antennas
Prior art date
Application number
PCT/CN2016/085169
Other languages
English (en)
French (fr)
Inventor
粟欣
曾捷
林小枫
容丽萍
许希斌
王京
赵明
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2017166432A1 publication Critical patent/WO2017166432A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the invention belongs to the technical field of channel calibration of a wireless communication multiple input multiple output system, and particularly relates to a user-assisted time division duplex multi-antenna small base station channel calibration method in the field of wireless communication.
  • MIMO multi-input and multiple-output
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • FDD Frequency division duplex
  • the main feature is that the uplink and downlink channels operate in different frequency bands.
  • the frequency division duplex (FDD) has a large pilot overhead when estimating the downlink channel state. If the time division duplex (TDD) mode is adopted, since the uplink and downlink channels all work in the same frequency band, the uplink and downlink are performed.
  • the channel has reciprocity, so the downlink channel state information can be estimated according to the uplink channel state information (CSI).
  • CSI uplink channel state information
  • the uplink and downlink transmitting and receiving devices are not perfect and the channel reciprocity is broken, the downlink channel state information cannot be accurately estimated by using the uplink channel state information. Therefore, it is necessary to calibrate the difference between the uplink and downlink channels to satisfy the reciprocity.
  • Absolute channel calibration requires additional hardware to measure and compensate for channel calibration, increasing the complexity and cost of the entire system; relative channel calibration requires no additional hardware, and the channel can be calibrated by simply exchanging CSI between the base station and the user.
  • the purpose of the invention is to promote a time-division duplex multi-input multi-output technology application in the field of wireless communication, and propose a user-assisted time division duplex multi-antenna small base station channel calibration method, device and computer storage medium, which can be more accurate
  • the difference between the uplink and downlink channels of the time division duplex multi-input and multi-output system is calibrated, and the channel state information of the downlink channel can be obtained relatively simply by the principle of reciprocity.
  • the user-assisted time-division duplex multi-antenna small-base station channel calibration method proposed by the present invention takes the number of small base stations as three as an example, and arbitrarily selects one antenna as a reference antenna among the plurality of antennas of each small base station, and obtains the reference antenna and The base
  • the uplink and downlink channel state information of the other antennas of the station, according to the obtained uplink and downlink channel state information, the channel calibration coefficients of the reference antenna and other antennas of the base station are obtained; and under the premise that the user has large-scale fading, the auxiliary calibration user is selected to obtain three Channel calibration coefficients between the three reference antennas of the small base stations; estimating the channel calibration coefficients between the reference antennas and other antennas of the base station and the channel calibration coefficients between the three reference antennas Channel calibration factor.
  • the method specifically includes the following steps:
  • each small base station has N antennas, and the three small base stations serve a total of K users, and N and K are any positive integers.
  • Each user has only one antenna; one of each of the N antennas of each small base station is used as a reference antenna;
  • n is the transmission link equivalent parameter of the nth antenna of the mth base station
  • t m N is the transmit link equivalent parameter of the mth base station reference antenna
  • r m, n is the receive link equivalent parameter of the nth antenna of the mth base station
  • r m, N is the mth base station reference antenna Receive link equivalent parameter
  • ⁇ m, n, N is the large-scale fading of the nth antenna from the user to the mth base station
  • c m, n, N is the small scale of the nth antenna from the user to the mth base station Decline
  • N is the ratio of the equivalent parameters of the transmission link of the mth base station reference antenna and the equivalent parameters of the receiving link, a channel calibration coefficient for the mth base station reference antenna to the other nth antenna of the base station;
  • the reference antenna of the small base station system Determining the reference antenna of the small base station system: the sum of the large-scale fading of the two auxiliary calibration users a and b is related to the same base station, and if the base station is just the base station 2, the reference antenna of the base station is determined as Small base station system reference antenna;
  • the MMSE estimation method is used to separately estimate the reference antenna uplink and downlink channel state information g 1, N, a , h 1, N, a of the auxiliary calibration user a to the base station 1 , and assist the calibration user a to the reference antenna uplink and downlink channel state information of the base station 2 g 2, N, a , h 2, N, a , auxiliary calibration user b to the reference antenna of the base station 2 uplink and downlink channel state information g 2, N, b , h 2, N, b , auxiliary calibration user b to the base station Uplink and downlink channel state information g 3, N, b , h 3, N, b of the reference antenna of 3 ;
  • the uplink and downlink channel state information of the base station 1 and the base station 2 based on the auxiliary calibration user a auxiliary calibration are g 1, N, a h 2, N, a , g 2, N, a h 1, N, a
  • the uplink and downlink channel state information of the base station 2 and the base station 3 based on the auxiliary calibration user b auxiliary calibration are g 2, N, b h 3, N, b , g 3, N, b h 2, N, b ;
  • c m, N, j are the reference antennas of user j to the mth base station Small-scale fading;
  • ⁇ m, N, j is the large-scale fading of user j to the mth base station reference antenna;
  • ⁇ 1,2 is a channel calibration coefficient of the reference antenna of the base station 1 to the reference antenna of the base station 2;
  • the channel calibration coefficients of the nth antenna of the mth base station to the reference antenna of the base station 2 are:
  • the channel calibration coefficient of the small base station system in which the reference antenna of the base station 2 is the reference antenna of the small base station system can be obtained, and thus the channel calibration coefficient of any antenna to the reference antenna of the small base station system in the small base station system is obtained.
  • Another object of embodiments of the present invention is to provide an apparatus comprising: one or more processors; a memory; one or more programs, the one or more programs being stored in the memory when Or when the plurality of processors are executed, the user-assisted time division duplex multi-antenna small base station channel calibration method of the above embodiment of the present invention is executed.
  • Another object of embodiments of the present invention is to provide a non-volatile computer storage medium storing one or more programs, when the one or more programs are executed by a device,
  • the apparatus performs the user-assisted time division duplex multi-antenna small base station channel calibration method of the above embodiment of the present invention.
  • the channel calibration method of the present invention is based on a relative channel calibration method.
  • a small base station system the channel calibration coefficients of each base station reference antenna and other antennas of the base station are obtained first, and three reference antennas of three small base stations are obtained.
  • 1 is a schematic diagram of channel calibration of a multiple input multiple output small base station
  • FIG. 2 is a flow chart of a user-assisted time division duplex multi-antenna small base station channel calibration method according to the present invention.
  • the user-assisted time division duplex multi-antenna small base station channel calibration method proposed by the present invention takes the number of small base stations as three as an example, and arbitrarily selects one antenna among a plurality of antennas of each small base station (the base station has multiple antennas) as a reference.
  • An antenna obtains uplink and downlink channel state information of the reference antenna and other antennas of the base station, and obtains channel calibration coefficients of the reference antenna and other antennas of the base station according to the obtained uplink and downlink channel state information; Next, selecting the auxiliary calibration user to obtain the channel calibration coefficient between the three reference antennas of the three small base stations; estimating the channel calibration coefficient between the obtained reference antenna and other antennas of the base station and the channel calibration coefficient between the three reference antennas Channel calibration coefficients between all antennas of the small base station system.
  • the method specifically includes the following steps:
  • each small base station has N antennas, and the three small base stations serve a total of K users (N and K are arbitrary positive integers, N can be taken as a typical value of several hundred, and K can be a typical value. a few or dozens), each user has only one antenna; one antenna, 11, 12, 13 is selected as a reference antenna in each of the N antennas of each small base station;
  • n is the transmission link equivalent parameter of the nth antenna of the mth base station
  • t m N is the transmit link equivalent parameter of the mth base station reference antenna
  • r m, n is the receive link equivalent parameter of the nth antenna of the mth base station
  • r m N is the mth base station reference antenna
  • Receive link equivalent parameter, (t m,n , t m,N , r m,n ,r m,N parameter is channel inherent attribute, is a kind of gain, when the uplink and downlink channels are asymmetric, t m,n ⁇ r m,n ,t m,N ⁇ r m,N , therefore channel calibration is required);
  • ⁇ m,n,N is the large-scale fading of the nth antenna from the user to the mth base station (known by long-term measurement) In this method, to determine the known), c m
  • N is the ratio of the equivalent parameters of the transmission link of the mth base station reference antenna and the equivalent parameters of the receiving link, a channel calibration coefficient for the mth base station reference antenna to the other nth antenna of the base station;
  • determining a reference antenna of the small base station system if the sum of the large-scale fading of the two auxiliary calibration users a and b is related to the same base station, determining the reference antenna of the base station as the reference antenna of the small base station system,
  • the base station is recorded as the base station 2; (ie, the user a is between the base station 1 and the base station 2, the user b is between the base station 2 and the base station 3, and their large-scale fading ⁇ a and ⁇ b are related to the base station 2, then
  • the reference antenna of the base station 2 is a small base station system reference antenna);
  • the MMSE estimation method is used to separately estimate the reference antenna uplink and downlink channel state information g 1, N, a , h 1, N, a of the auxiliary calibration user a to the base station 1 , and assist the calibration user a to the reference antenna uplink and downlink channel state information of the base station 2 g 2, N, a , h 2, N, a , auxiliary calibration user b to the reference antenna of the base station 2 uplink and downlink channel state information g 2, N, b , h 2, N, b , auxiliary calibration user b to the base station Uplink and downlink channel state information g 3, N, b , h 3, N, b of the reference antenna of 3 ;
  • the uplink and downlink channel state information of the base station 1 and the base station 2 based on the auxiliary calibration user a auxiliary calibration are g 1, N, a h 2, N, a , g 2, N, a h 1, N, a
  • the uplink and downlink channel state information of the base station 2 and the base station 3 based on the auxiliary calibration user b auxiliary calibration are g 2, N, b h 3, N, b , g 3, N, b h 2, N, b ;
  • c m, N, j are the reference antennas of user j to the mth base station Small-scale fading (unknown intermediate quantity, which can be approximated in the process of calculating the ratio, without obtaining specific values);
  • ⁇ m, N, j is the large-scale fading of user j to the mth base station reference antenna (known by long-term measurement) , in this method for determining the known);
  • ⁇ 1,2 is a channel calibration coefficient of the reference antenna of the base station 1 to the reference antenna of the base station 2;
  • the channel calibration coefficients of the nth antenna of the mth base station to the reference antenna of the base station 2 are:
  • the channel calibration coefficient of the small base station system in which the reference antenna of the base station 2 is the reference antenna of the small base station system can be obtained, and thus the channel calibration coefficient of any antenna to the reference antenna of the small base station system in the small base station system is obtained.
  • the method embodiment of the present invention is used in the small base station system shown in FIG. 1.
  • Each small base station has 100 antennas, and each small base station serves 10 users, and each user has only one antenna.
  • the uplink and downlink channel state information of the reference antenna of the 2, 3) small base stations and the other nth antennas of the base station are:
  • t m,100 is the transmission link of the mth base station reference antenna, etc.
  • r m,100 is the receiving chain of the mth base station reference antenna Road equivalent parameter.
  • c m,n,100 is the small-scale fading (unknown) of the user to the nth antenna of the mth base station
  • ⁇ m,n,100 is the large-scale fading of the nth antenna from the user to the mth base station (known) .
  • the large-scale fading of the jth user to the mth base station be ⁇ m,j (the large-scale fading of the jth user to the mth base station reference antenna can be considered to be equal to the jth user to the mth Large scale fading of base stations).
  • the channel state information accuracy estimated according to the MMSE method is only related to the large-scale fading of the channel. The larger the large-scale fading, the less accurate the channel estimate is;
  • base station 2 reference antenna is a small base station system reference antenna
  • the MMSE estimation method is used to estimate the uplink and downlink channel state information g 1,100,a , h 1,100,a of the reference antenna of the user a to the base station 1 respectively, and the reference channel uplink and downlink channel state information g 2,100,a ,h 2,100 of the user a to the base station 2 , a, user b to the downlink channel status information of the base station reference antenna 2 g 2,100, b, h 2,100, b, the user b to the downlink channel status information of the base station 3 reference antenna g 3,100, b, h 3,100, b;
  • the uplink and downlink channel state information of the base station 1 and the base station 2 based on the user a is g 1,100, a h 2,100, a , g 2,100, a h 1,100,a , the base station 2 and the base station 3 based on the user b assistance
  • the uplink and downlink channel state information is g 2,100, b h 3,100,b , g 3,100, b h 2,100,b ;
  • c m,100,j is the small-scale fading (unknown) of the jth user to the mth base station reference antenna.
  • ⁇ m, 100, j is the large-scale fading (known) of the jth user to the mth base station reference antenna.
  • ⁇ 1,2 is the channel calibration coefficient of the reference antenna of the base station 1 to the reference antenna of the base station 2.
  • the channel calibration coefficient of the small base station system in which the reference antenna of the second base station is the reference antenna of the small base station system can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及用户辅助的时分双工多天线小基站信道校准方法,属于无线通信多输入多输出***信道校准技术领域,该方法包括在每个小基站的多根天线中任意选择一个天线作为参考天线,获得该参考天线与该基站的其他天线的上下行信道状态信息,根据获得的上下行信道状态信息得到该参考天线与该基站其他天线的信道校准系数;在已知用户大尺度衰落的前提下,选择辅助校准用户得到三个小基站的三个参考天线之间的信道校准系数;根据得到的参考天线与该基站的其他天线的信道校准系数和三个参考天线之间的信道校准系数估算出小基站***所有天线间的信道校准系数。该方法引入辅助校准用户,可提升CSI准确度进而提高信道校准精度,且降低信道校准的复杂度。

Description

用户辅助的时分双工多天线小基站信道校准方法
相关申请的交叉引用
本申请要求清华大学于2016年4月1日提交的、发明名称为“用户辅助的时分双工多输入多输出小基站信道校准方法”的、中国专利申请号“201610204125.5”的优先权。
技术领域
本发明属于无线通信多输入多输出***信道校准技术领域,特别涉及一种无线通信领域用户辅助的时分双工多天线小基站信道校准方法。
背景技术
随着移动终端的不断增加,下行数据的业务量也越来越大,多输入多输出(MIMO)***可以增大信道容量,从而引起产业界和学术界的广泛关注。MIMO有两种双工模式,一种是频分双工(FDD),另一种是时分双工(TDD)。频分双工(FDD)是现在广泛应用的一种双工模式,主要特征为上下行信道工作在不同的频段。在MIMO***中,频分双工(FDD)在对下行信道状态进行估计时导频开销巨大;而若采用时分双工(TDD)模式,因其上下行信道都工作在同一频段,故上下行信道存在互易性,因此可根据上行信道状态信息(CSI)估计下行信道状态信息。然而实际***中,由于上下行发射和接收器件不完美,破坏了信道互易性,所以利用上行信道状态信息不能准确地估算出下行信道状态信息。故需要对上下行信道的差异进行校准,使其满足互易性。
目前对TDD上下行信道校准的方式主要有两种,绝对信道校准和相对信道校准。其中绝对信道校准需要额外硬件对信道校准进行测量和补偿,增加了整个***的复杂度和成本;相对信道校准不需额外硬件,只需交换基站与用户间的CSI即可对信道进行校准。
发明内容
本发明的目的是为推进无线通信领域的时分双工多输入多输出技术的应用,提出一种用户辅助的时分双工多天线小基站信道校准方法、设备及计算机存储介质,该方法可以较为准确地校准时分双工多输入多输出***上下行信道的差异,通过互易性原理可以比较简洁地得到下行信道准确的信道状态信息。
本发明提出的用户辅助的时分双工多天线小基站信道校准方法,以小基站数目为三为例,在每个小基站的多根天线中任意选择一个天线作为参考天线,获得该参考天线与该基 站的其他天线的上下行信道状态信息,根据获得的上下行信道状态信息得到该参考天线与该基站其他天线的信道校准系数;在已知用户大尺度衰落的前提下,选择辅助校准用户得到三个小基站的三个参考天线之间的信道校准系数;根据得到的参考天线与该基站的其他天线的信道校准系数和三个参考天线之间的信道校准系数估算出小基站***所有天线间的信道校准系数。
本方法具体包括以下步骤:
1)设小基站***中的三个小基站记为基站1、基站2和基站3,每个小基站有N根天线,三个小基站共服务K个用户,N、K为任意正整数,每个用户只有一根天线;在每个小基站的N根天线中分别任选一根天线作为参考天线;
2)建立小基站参考天线与该基站的其他天线的信道校准系数:根据最小均方误差(MMSE)方法估计小基站参考天线与该基站的其他天线的上下行信道状态信息;设第m个基站的参考天线与该基站的其他第n根天线的上行信道状态信息gm,n,N和下行信道状态信息hm,n,N分别为:
Figure PCTCN2016085169-appb-000001
Figure PCTCN2016085169-appb-000002
m=1,2,3,n=1,2,...,n,...,N-1,tm,n为第m个基站第n根天线的发送链路等效参数,tm,N为第m个基站参考天线的发送链路等效参数,rm,n为第m个基站第n根天线的接收链路等效参数,rm,N为第m个基站参考天线的接收链路等效参数;βm,n,N为用户到第m个基站第n根天线的大尺度衰落,cm,n,N为用户到第m个基站第n根天线的小尺度衰落;
定义
Figure PCTCN2016085169-appb-000003
为第m个基站的第n根天线发送链路等效参数和接收链路等效参数的比值;
根据上下行信道状态信息及公式(3)得到参考天线与该基站的其他天线的信道校准系数与发送链路和接收链路的比值的关系:
γm,1λm,1,N=γm,2λm,2,N...=γm,N  (3)
其中γm,N为第m个基站参考天线发送链路等效参数和接收链路等效参数的比值,
Figure PCTCN2016085169-appb-000004
为所求的第m个基站参考天线到该基站其他第n根天线的信道校准系数;
3)选出两个用户作为辅助校准用户:
3-1)设第k个用户到第m个基站的大尺度衰落为βm,k,k=1,2,...,k,...,K;设每个基站天线和用户天线的发送接收链路的等效参数服从相同的分布;
3-2)在任意两个小基站之间选择一个用户,使其到两个小基站的大尺度衰落之和最小;三个小基站选出的三个用户分别记为用户a,用户b和用户c,这三个用户到相应的两个小基站的大尺度衰落之和分别记为βabc;在βabc中选出较小的两个所对应的用户作为辅助校准用户,设用户a和用户b为已选出的辅助校准用户;
4)确定小基站***的参考天线:所述两个辅助校准用户a和b的大尺度衰落之和均与同一个基站相关,设该基站恰为基站2,则将该基站的参考天线确定为小基站***参考天线;
5)确定小基站***参考天线到其他基站参考天线之间的信道校准系数:
用MMSE估计方法分别估计辅助校准用户a到基站1的参考天线上下行信道状态信息g1,N,a,h1,N,a,辅助校准用户a到基站2的参考天线上下行信道状态信息g2,N,a,h2,N,a,辅助校准用户b到基站2的参考天线的上下行信道状态信息g2,N,b,h2,N,b,辅助校准用户b到基站3的参考天线的上下行信道状态信息g3,N,b,h3,N,b
5-1)则基于辅助校准用户a辅助校准的基站1和基站2的上下行信道状态信息为g1,N,ah2,N,a,g2,N,ah1,N,a,基于辅助校准用户b辅助校准的基站2和基站3的上下行信道状态信息为g2,N,bh3,N,b,g3,N,bh2,N,b
其中:
Figure PCTCN2016085169-appb-000005
m=1,2,3.j=a,b;tj和rj分别为用户j的发送和接收链路等效参数;cm,N,j为用户j到第m个基站参考天线的小尺度衰落;βm,N,j为用户j到第m个基站参考天线的大尺度衰落;
5-2)则以基站2的参考天线为小基站***参考天线的小基站***中,参考天线之间的信道校准系数与接收链路和发送链路的比值的关系如公式(4)所示:
γ1,Nλ1,2=γ3,Nλ3,2=γ2,N  (4)
其中
Figure PCTCN2016085169-appb-000006
λ1,2为基站1的参考天线到基站2的参考天线的信道校准系数;
6)则第m个基站的第n根天线到基站2的参考天线的信道校准系数为:
λm,n,2,N=λm,n,Nλm,2  (5);
根据公式(5)可得到以基站2的参考天线为小基站***参考天线的小基站***的信道校准系数,至此就得到了小基站***中任意天线到小基站***参考天线的信道校准系数。
本发明实施例的另一目的在于提供一种设备,包括:一个或者多个处理器;存储器;一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行本发明上述实施例的用户辅助的时分双工多天线小基站信道校准方法。
本发明实施例的另一目的在于提供一种非易失性计算机存储介质,所述计算机存储介质存储有一个或者多个程序,当所述一个或者多个程序被一个设备执行时,使得所述设备执行本发明上述实施例的用户辅助的时分双工多天线小基站信道校准方法。
本发明的特点及有益效果:
本发明所提的信道校准方法基于相对信道校准的方式,在小基站***中,先得到每个基站的参考天线与该基站的其他天线的信道校准系数和三个小基站的三个参考天线之间的信道校准系数,再估算小基站***所有天线间的信道校准系数,如此分步进行信道校准,可进一步降低信道校准的复杂度;此外,本发明方法中引入辅助校准用户,可提升CSI准确度进而提高信道校准精度。
附图说明
图1为多输入多输出小基站信道校准示意图;
图2为本发明的用户辅助的时分双工多天线小基站信道校准方法流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明作进一步详细说明。
本发明提出的用户辅助的时分双工多天线小基站信道校准方法,以小基站数目为三为例,在每个小基站(基站具有多根天线)的多根天线中任意选择一个天线作为参考天线,获得该参考天线与该基站的其他天线的上下行信道状态信息,根据获得的上下行信道状态信息得到该参考天线与该基站其他天线的信道校准系数;在已知用户大尺度衰落的前提下,选择辅助校准用户得到三个小基站的三个参考天线之间的信道校准系数;根据得到的参考天线与该基站的其他天线的信道校准系数和三个参考天线之间的信道校准系数估算出小基站***所有天线间的信道校准系数。
本方法具体包括以下步骤:
1)设小基站***,如图1所示,图中标号1、2、3为基站,a、b、c为用户,双向箭 头表示小基站与用户间相互通信,每个小基站有N根天线,三个小基站共服务K个用户(N、K为任意正整数,N可取典型值为几百,K可取典型值为几或几十),每个用户只有一根天线;在每个小基站的N根天线中分别任选一根天线11、12、13作为参考天线;
2)建立小基站参考天线与该基站的其他天线的信道校准系数:根据最小均方误差(MMSE)方法估计小基站参考天线与该基站的其他天线的上下行信道状态信息;设第m个基站的参考天线与该基站的其他第n根天线的上行信道状态信息gm,n,N和下行信道状态信息hm,n,N分别为:
Figure PCTCN2016085169-appb-000007
m=1,2,3,n=1,2,...,n,...,N-1,tm,n为第m个基站第n根天线的发送链路等效参数,tm,N为第m个基站参考天线的发送链路等效参数,rm,n为第m个基站第n根天线的接收链路等效参数,rm,N为第m个基站参考天线的接收链路等效参数,(tm,n、tm,N、rm,n、rm,N参数为信道固有属性,是一种增益,上下行信道不对称时,tm,n≠rm,n,tm,N≠rm,N,因此需要进行信道校准);βm,n,N为用户到第m个基站第n根天线的大尺度衰落(通过长期测量已知,在本方法中为确定已知),cm,n,N为用户到第m个基站第n根天线的小尺度衰落(未知中间量,在计算比值过程中可约分,不需获得具体值);
定义
Figure PCTCN2016085169-appb-000008
为第m个基站的第n根天线发送链路等效参数和接收链路等效参数的比值;
根据上下行信道状态信息及公式(3)得到参考天线与该基站的其他天线的信道校准系数与发送链路和接收链路的比值的关系:
γm,1λm,1,N=γm,2λm,2,N...=γm,N  (3)
其中γm,N为第m个基站参考天线发送链路等效参数和接收链路等效参数的比值,
Figure PCTCN2016085169-appb-000009
为所求的第m个基站参考天线到该基站其他第n根天线的信道校准系数;
3)选出两个用户作为辅助校准用户:
3-1)设第k个用户到第m个基站的大尺度衰落为βm,k(第k个用户到第m个基站参考天线的大尺度衰落等于第k个用户到第m个基站的大尺度衰落),k=1,2,...,k,...,K;设每个基站天线和用户天线的发送接收链路的等效参数服从相同的分布,则根据MMSE方法估计的信道状态信息准确度只与信道的大尺度衰落有关(大尺度衰落越大则信道估计越不准确);
3-2)在任意两个小基站之间选择一个用户,使其到两个小基站的大尺度衰落之和最小;三个小基站选出三个用户分别记为a,b,c,这三个用户到相应的两个基站(即用户介于该相应两个基站之间)的大尺度衰落之和分别记为βabc。在βabc中选出较小的两个,它们所对应的用户作为辅助校准用户,设用户a和用户b为已选出的辅助校准用户;
4)确定小基站***的参考天线:若所述两个辅助校准用户a和b的大尺度衰落之和均与同一个基站相关,则将该基站的参考天线确定为小基站***参考天线,该基站记为基站2;(即用户a介于基站1和基站2之间,用户b介于基站2和基站3之间,它们的大尺度衰落βa和βb均与基站2相关,则称基站2的参考天线为小基站***参考天线);
5)确定小基站***参考天线到其他基站参考天线之间的信道校准系数:
用MMSE估计方法分别估计辅助校准用户a到基站1的参考天线上下行信道状态信息g1,N,a,h1,N,a,辅助校准用户a到基站2的参考天线上下行信道状态信息g2,N,a,h2,N,a,辅助校准用户b到基站2的参考天线的上下行信道状态信息g2,N,b,h2,N,b,辅助校准用户b到基站3的参考天线的上下行信道状态信息g3,N,b,h3,N,b
5-1)则基于辅助校准用户a辅助校准的基站1和基站2的上下行信道状态信息为g1,N,ah2,N,a,g2,N,ah1,N,a,基于辅助校准用户b辅助校准的基站2和基站3的上下行信道状态信息为g2,N,bh3,N,b,g3,N,bh2,N,b
其中:
Figure PCTCN2016085169-appb-000010
m=1,2,3.j=a,b;tj和rj分别为用户j的发送和接收链路等效参数;cm,N,j为用户j到第m个基站参考天线的小尺度衰落(未知中间量,在计算比值过程中可约分,不需获得具体值);βm,N,j为用户j到第m个基站参考天线的大尺度衰落(通过长期测量已知,在本方法中为确定已知);
5-2)则以基站2的参考天线为小基站***参考天线的小基站***中,参考天线之间的信道校准系数与接收链路和发送链路的比值的关系如公式(4)所示:
γ1,Nλ1,2=γ3,Nλ3,2=γ2,N  (4)
其中
Figure PCTCN2016085169-appb-000011
λ1,2为基站1的参考天线到基站2的参考天线的信道校准系数;
6)则第m个基站的第n根天线到基站2的参考天线的信道校准系数为:
λm,n,2,N=λm,n,Nλm,2  (5);
根据公式(5)可得到以基站2的参考天线为小基站***参考天线的小基站***的信道校准系数,至此就得到了小基站***中任意天线到小基站***参考天线的信道校准系数。
实施例
本发明方法实施例用于如图1所示在小基站***中,每个小基站有100根天线,每个小基站服务10个用户,每个用户只有一根天线。
本实施例具体包括以下步骤:
1)在每个小基站的100根天线中分别任选一根天线作为参考天线。
2)根据最小均方误差(MMSE)方法估计小基站参考天线与该基站其他天线的上下行信道状态信息;本实施例的***中,每个小基站有100根天线,第m(m=1,2,3)个小基站的参考天线与该基站其他第n根天线的上下行信道状态信息为:
Figure PCTCN2016085169-appb-000012
Figure PCTCN2016085169-appb-000013
tm,n(n=1,2,...,99)为第m个基站第n根天线的发送链路等效参数,tm,100为第m个基站参考天线的发送链路等效参数;rm,n(n=1,2,..,99)为第m个基站第n根天线的接收链路等效参数,rm,100为第m个基站参考天线的接收链路等效参数。cm,n,100为用户到第m个基站第n根天线的小尺度衰落(未知),βm,n,100为用户到第m个基站第n根天线的大尺度衰落(已知)。
定义
Figure PCTCN2016085169-appb-000014
为第m个基站第n根天线发送链路等效参数和接收链路等效参数的比值;
根据上下行信道状态信息及公式(3)得到参考天线与该基站其他天线的信道校准参数与发送链路和接收链路的比值的关系:
γm,1λm,1,100=γm,2λm,2,100,..,=γm,N  (3)
其中
Figure PCTCN2016085169-appb-000015
为所求的第m个基站参考天线到该基站其他第n根天线的信道校准系数。
3)选出两个用户作为辅助校准用户:
3-1)设第j个用户到第m个基站的大尺度衰落为βm,j(第j个用户到第m个基站参考 天线的大尺度衰落可认为等于第j个用户到第m个基站的大尺度衰落)。假设每个基站天线和用户天线的收发链路的等效参数服从相同的分布,则根据MMSE方法估计的信道状态信息准确度只与信道的大尺度衰落有关。大尺度衰落越大则信道估计越不准确;
3-2)如图1在任意两个基站之间选择一个用户,使其到两个基站的大尺度衰落之和最小;设a,b,c为已选择的三个用户,记这三个用户到相应的两个基站的大尺度衰落之和为βabc。在βabc中选出较小的两个,它们所对应的用户作为辅助校准用户;
4)确定小基站***参考天线:假设用户a和用户b为已选择的辅助校准用户,用户a介于基站1和基站2之间,用户b介于基站2和基站3之间,则称基站2的参考天线为小基站***参考天线
5)确定小基站***参考天线到其他基站参考天线之间的信道校准系数:
用MMSE估计方法分别估计用户a到基站1的参考天线上下行信道状态信息g1,100,a,h1,100,a,用户a到基站2的参考天线上下行信道状态信息g2,100,a,h2,100,a,用户b到基站2的参考天线的上下行信道状态信息g2,100,b,h2,100,b,用户b到基站3参考天线的上下行信道状态信息g3,100,b,h3,100,b
5-1)则基于用户a辅助的基站1和基站2的上下行信道状态信息为g1,100,ah2,100,a,g2,100,ah1,100,a,基于用户b辅助的基站2和基站3的上下行信道状态信息为g2,100,bh3,100,b,g3,100,bh2,100,b
其中
Figure PCTCN2016085169-appb-000016
Figure PCTCN2016085169-appb-000017
m=1,2,3.j=a,b。tj和rj分别为第j个用户的发送和接收链路等效参数。cm,100,j为第j个用户到第m个基站参考天线的小尺度衰落(未知)。βm,100,j为第j个用户到第m个基站参考天线的大尺度衰落(已知)。
5-2)则以第2个基站参考天线为小基站***参考天线的***中,参考天线之间的信道校准系数与接收链路和发送链路的比值的关系如公式(4)所示:
γ1,100λ1,2=γ3,100λ3,2=γ2,100  (4)
其中
Figure PCTCN2016085169-appb-000018
λ1,2为基站1的参考天线到基站2的参考天线的信道校准系数。
6)则第m个基站的第n根天线到第2个基站参考天线的信道校准系数为:
λm,n,2,100=λm,n,100λm,2  (5)
根据公式(5)可得到以第2个基站的参考天线为小基站***参考天线的小基站***的信道校准系数。

Claims (4)

  1. 一种用户辅助的时分双工多天线小基站信道校准方法,其特征在于:在每个小基站的多根天线中任意选择一个天线作为参考天线,获得该参考天线与该基站的其他天线的上下行信道状态信息,根据获得的上下行信道状态信息得到该参考天线与该基站其他天线的信道校准系数;在已知用户大尺度衰落的前提下,选择辅助校准用户得到三个小基站的三个参考天线之间的信道校准系数;根据得到的参考天线与该基站的其他天线的信道校准系数和三个参考天线之间的信道校准系数估算出小基站***所有天线间的信道校准系数。
  2. 如权利要求1所述用户辅助的时分双工多天线小基站信道校准方法,其特征在于,该方法具体包括以下步骤:
    1)设小基站***中的三个基站记为基站1、基站2和基站3,每个小基站有N根天线,三个小基站共服务K个用户,N、K为任意正整数,每个用户只有一根天线;在每个小基站的N根天线中分别任选一根天线作为参考天线;
    2)建立小基站参考天线与该基站的其他天线的信道校准系数:根据最小均方误差(MMSE)方法估计小基站参考天线与该基站的其他天线的上下行信道状态信息;设第m个基站的参考天线与该基站的其他第n根天线的上行信道状态信息gm,n,N和下行信道状态信息hm,n,N分别为:
    Figure PCTCN2016085169-appb-100001
    Figure PCTCN2016085169-appb-100002
    m=1,2,3,n=1,2,...,n,...,N-1,tm,n为第m个基站第n根天线的发送链路等效参数,tm,N为第m个基站参考天线的发送链路等效参数,rm,n为第m个基站第n根天线的接收链路等效参数,rm,N为第m个基站参考天线的接收链路等效参数;βm,n,N为用户到第m个基站第n根天线的大尺度衰落,cm,n,N为用户到第m个基站第n根天线的小尺度衰落;
    定义
    Figure PCTCN2016085169-appb-100003
    为第m个基站的第n根天线发送链路等效参数和接收链路等效参数的比值;
    根据上下行信道状态信息及公式(3)得到参考天线与该基站的其他天线的信道校准系数与发送链路和接收链路的比值的关系:
    γm,1λm,1,N=γm,2λm,2,N...=γm,N  (3)
    其中γm,N为第m个基站参考天线发送链路等效参数和接收链路等效参数的比值,
    Figure PCTCN2016085169-appb-100004
    为所求的第m个基站参考天线到该基站其他第n根天线的信道校准系数;
    3)选出两个用户作为辅助校准用户:
    3-1)设第k个用户到第m个基站的大尺度衰落为βm,k,k=1,2,...,k,...,K;设每个基站天线和用户天线的发送接收链路的等效参数服从相同的分布;
    3-2)在任意两个小基站之间选择一个用户,使其到两个小基站的大尺度衰落之和最小;三个小基站选出的三个用户分别记为用户a,用户b和用户c,这三个用户到相应的两个小基站的大尺度衰落之和分别记为βabc;在βabc中选出较小的两个所对应的用户作为辅助校准用户,设用户a和用户b为已选出的辅助校准用户;
    4)确定小基站***的参考天线:所述两个辅助校准用户a和b的大尺度衰落之和均与同一个基站相关,设该基站恰为基站2,则将该基站的参考天线确定为小基站***参考天线;
    5)确定小基站***参考天线到其他基站参考天线之间的信道校准系数:
    用MMSE估计方法分别估计辅助校准用户a到基站1的参考天线上下行信道状态信息g1,N,a,h1,N,a,辅助校准用户a到基站2的参考天线上下行信道状态信息g2,N,a,h2,N,a,辅助校准用户b到基站2的参考天线的上下行信道状态信息g2,N,b,h2,N,b,辅助校准用户b到基站3的参考天线的上下行信道状态信息g3,N,b,h3,N,b
    5-1)则基于辅助校准用户a辅助校准的基站1和基站2的上下行信道状态信息为(g1,N,ah2,N,a,g2,N,ah1,N,a),基于辅助校准用户b辅助校准的基站2和基站3的上下行信道状态信息为(g2,N,bh3,N,b,g3,N,bh2,N,b);
    其中:
    Figure PCTCN2016085169-appb-100005
    m=1,2,3.j=a,b;tj和rj分别为用户j的发送和接收链路等效参数;cm,N,j为用户j到第m个基站参考天线的小尺度衰落;βm,N,j为用户j到第m个基站参考天线的大尺度衰落;
    5-2)则以基站2的参考天线为小基站***参考天线的小基站***中,参考天线之间的信道校准系数与接收链路和发送链路的比值的关系如公式(4)所示:
    γ1,Nλ1,2=γ3,Nλ3,2=γ2,N  (4)
    其中
    Figure PCTCN2016085169-appb-100006
    λ1,2为基站1的参考天线到基站2的参考天线的信道校准系数;
    6)则第m个基站的第n根天线到基站2的参考天线的信道校准系数为:
    λm,n,2,N=λm,n,Nλm,2  (5);
    根据公式(5)可得到以基站2的参考天线为小基站***参考天线的小基站***的信道校准系数,至此就得到了小基站***中任意天线到小基站***参考天线的信道校准系数。
  3. 一种设备,其特征在于,包括:
    一个或者多个处理器;
    存储器;
    一个或者多个程序,所述一个或者多个程序存储在所述存储器中,当被所述一个或者多个处理器执行时,执行如权利要求1-2任一项所述的用户辅助的时分双工多天线小基站信道校准方法。
  4. 一种非易失性计算机存储介质,其特征在于,所述计算机存储介质存储有一个或者多个程序,当所述一个或者多个程序被一个设备执行时,使得所述设备执行如权利要求1-2任一项所述的用户辅助的时分双工多天线小基站信道校准方法。
PCT/CN2016/085169 2016-04-01 2016-06-07 用户辅助的时分双工多天线小基站信道校准方法 WO2017166432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610204125.5A CN105933047A (zh) 2016-04-01 2016-04-01 用户辅助的时分双工多输入多输出三基站信道校准方法
CN201610204125.5 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017166432A1 true WO2017166432A1 (zh) 2017-10-05

Family

ID=56840110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085169 WO2017166432A1 (zh) 2016-04-01 2016-06-07 用户辅助的时分双工多天线小基站信道校准方法

Country Status (2)

Country Link
CN (1) CN105933047A (zh)
WO (1) WO2017166432A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500187A (zh) * 2021-12-23 2022-05-13 国网电力科学研究院有限公司 多收发节点下行链路终端侧信道估计方法和装置
CN115622639A (zh) * 2022-09-16 2023-01-17 东南大学 一种基于生成树算法的6g无蜂窝大规模mimo信道校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291503A (zh) * 2007-04-17 2008-10-22 展讯通信(上海)有限公司 时分双工mimo多天线通信***射频通路的校准方法与装置
CN102598527A (zh) * 2009-10-30 2012-07-18 三星电子株式会社 多天线***中的多小区多输入多输出传输校准装置和方法
CN104618080A (zh) * 2015-01-30 2015-05-13 清华大学 用于大规模多输入多输出时分双工***的信道校准方法
US20150288462A1 (en) * 2007-12-31 2015-10-08 Apple Inc. Method for Channel Calibration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149124B (zh) * 2011-04-22 2014-08-06 电信科学技术研究院 一种多点协作传输下的干扰测量方法及设备
CN104467933B (zh) * 2014-10-29 2017-11-28 清华大学 时分双工多天线***中基于叠加转发的中继信道校准方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291503A (zh) * 2007-04-17 2008-10-22 展讯通信(上海)有限公司 时分双工mimo多天线通信***射频通路的校准方法与装置
US20150288462A1 (en) * 2007-12-31 2015-10-08 Apple Inc. Method for Channel Calibration
CN102598527A (zh) * 2009-10-30 2012-07-18 三星电子株式会社 多天线***中的多小区多输入多输出传输校准装置和方法
CN104618080A (zh) * 2015-01-30 2015-05-13 清华大学 用于大规模多输入多输出时分双工***的信道校准方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, QIANG ET AL.: "Iterative Grouping Calibration for Channel Reciprocity in TDD MU-MIMO Systems", 2015 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA ( CHINA COM, 31 December 2015 (2015-12-31), pages 874 - 878, XP032915279, Retrieved from the Internet <URL:doi:10.1109/CHINACOM.2015.7498060> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500187A (zh) * 2021-12-23 2022-05-13 国网电力科学研究院有限公司 多收发节点下行链路终端侧信道估计方法和装置
CN114500187B (zh) * 2021-12-23 2023-11-17 国网电力科学研究院有限公司 多收发节点下行链路终端侧信道估计方法和装置
CN115622639A (zh) * 2022-09-16 2023-01-17 东南大学 一种基于生成树算法的6g无蜂窝大规模mimo信道校准方法

Also Published As

Publication number Publication date
CN105933047A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN108696889B (zh) 波束测量和反馈的方法及使用所述方法的基站与用户设备
JP5546679B2 (ja) アンテナ補正情報の報告、アンテナ補正因子の確認方法および設備
WO2018127126A1 (zh) 一种信道状态信息上报方法、基站和用户设备
US20230361842A1 (en) Improving precoding
JP2012531132A (ja) 時分割多元接続mimoシステムにおいて信号を送信する方法および関連の装置
JP2015532051A (ja) 内部相対的送受信機キャリブレーションのための方法および装置
US9716538B2 (en) Method and apparatus for grouping antennas in multiple-input multiple-output antenna system
CN103916168B (zh) 一种天线校准方法及装置
WO2017194007A1 (zh) 一种二级预编码方法及装置
CN111342913B (zh) 一种信道测量方法和通信装置
WO2019120070A1 (zh) 一种获取下行信道信息的方法及装置
CN106788631B (zh) 一种基于局部校准的大规模mimo互易性校准方法
CN106033990B (zh) 一种信道状态信息反馈方法、获取方法及装置
WO2016141778A1 (zh) 信道状态信息获取方法、信道状态信息反馈方法及装置
CN114389785A (zh) 参考信号的调整方法及装置、终端及网络侧设备
US20180006784A1 (en) Methods and devices for transmitting and receiving pilot signal
WO2016169213A1 (zh) 一种信道信息的获取方法和装置
EP3386125A1 (en) Remote radio head reciprocity calibration
US20220407616A1 (en) Method for predicting channel state information and apparatus
WO2019165842A1 (zh) 一种天线校准的方法、装置及设备
WO2021155610A1 (zh) 一种信息传输方法及装置
US8774066B2 (en) Macro-femto inter-cell interference mitigation
WO2017166432A1 (zh) 用户辅助的时分双工多天线小基站信道校准方法
WO2017152750A1 (zh) 一种反馈信息的传输方法和装置
CN112119617B (zh) 基于特征值的信道硬化和显式反馈

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896205

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896205

Country of ref document: EP

Kind code of ref document: A1