WO2017164645A2 - 비디오 신호 부호화/복호화 방법 및 장치 - Google Patents

비디오 신호 부호화/복호화 방법 및 장치 Download PDF

Info

Publication number
WO2017164645A2
WO2017164645A2 PCT/KR2017/003082 KR2017003082W WO2017164645A2 WO 2017164645 A2 WO2017164645 A2 WO 2017164645A2 KR 2017003082 W KR2017003082 W KR 2017003082W WO 2017164645 A2 WO2017164645 A2 WO 2017164645A2
Authority
WO
WIPO (PCT)
Prior art keywords
block
motion vector
prediction
information
current block
Prior art date
Application number
PCT/KR2017/003082
Other languages
English (en)
French (fr)
Other versions
WO2017164645A3 (ko
Inventor
안용조
심동규
류호찬
박시내
오병태
송병철
Original Assignee
인텔렉추얼디스커버리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160035090A external-priority patent/KR20170113724A/ko
Priority claimed from KR1020160035674A external-priority patent/KR20170111013A/ko
Priority claimed from KR1020160049485A external-priority patent/KR20170121383A/ko
Priority claimed from KR1020160054607A external-priority patent/KR20170125153A/ko
Priority claimed from KR1020160055370A external-priority patent/KR20170125538A/ko
Priority to EP17770615.7A priority Critical patent/EP3435673A4/en
Priority to US16/087,787 priority patent/US10778987B2/en
Application filed by 인텔렉추얼디스커버리 주식회사 filed Critical 인텔렉추얼디스커버리 주식회사
Priority to CN201780029821.XA priority patent/CN109155847A/zh
Priority to EP22177043.1A priority patent/EP4072141A1/en
Priority to CN202210296042.9A priority patent/CN114615493A/zh
Publication of WO2017164645A2 publication Critical patent/WO2017164645A2/ko
Publication of WO2017164645A3 publication Critical patent/WO2017164645A3/ko
Priority to US16/993,628 priority patent/US11388420B2/en
Priority to US17/836,347 priority patent/US11770539B2/en
Priority to US17/836,236 priority patent/US11973960B2/en
Priority to US18/350,040 priority patent/US20230353757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Definitions

  • the present invention relates to a method and apparatus for encoding / decoding a video signal.
  • High efficiency image compression techniques can be used to solve these problems caused by high resolution and high quality image data.
  • An inter-screen prediction technique for predicting pixel values included in the current picture from a picture before or after the current picture using an image compression technique an intra prediction technique for predicting pixel values included in a current picture using pixel information in the current picture
  • the present invention seeks to improve the coding efficiency of the CABAC context model.
  • the present invention seeks to improve the compression efficiency of inter prediction.
  • the present invention seeks to improve the compression efficiency of intra prediction.
  • the present invention proposes a scanning method for non-square transform blocks.
  • the present invention proposes a method of adaptively applying an in-loop filter.
  • the present invention provides a method and apparatus for adaptively initializing a CABAC context model.
  • the present invention provides a method and apparatus for correcting an encoded / decoded motion vector and performing motion compensation based on the corrected motion vector.
  • the present invention provides a unidirectional / bidirectional intra prediction method and apparatus for dividing a current block into a plurality of sub-blocks and reconstructing each sub-block sequentially according to a predetermined priority order.
  • the present invention provides a scanning method and apparatus for selectively using any one of a plurality of scan types based on an NxM coefficient group.
  • the present invention provides a method and apparatus for applying an in-loop filter to the boundaries of a virtual block having different motion vectors.
  • the encoding performance can be improved by setting the state of the stored CABAC context model to an initial value of the CABAC context model of the current picture during encoding of a previous picture or a reference picture using the same QP in encoding / decoding order.
  • encoding performance may be improved by referring to the state of the CABAC context model stored in the parallelization unit in the reference picture corresponding to each parallelization unit of the current picture.
  • the compression efficiency of intra prediction may be improved through a unidirectional / bidirectional intra prediction technique.
  • the in-loop filter by applying the in-loop filter to the boundaries of the virtual blocks having different motion vectors from each other, subjective or objective image quality improvement can be obtained.
  • FIG. 1 is a block diagram illustrating an image encoding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating an image decoding apparatus according to an embodiment of the present invention.
  • FIG. 3 illustrates a schematic configuration of a CABAC encoding / decoding apparatus that adaptively performs initialization of a CABAC context model according to an embodiment to which the present invention is applied.
  • FIG. 4 illustrates an example of adaptive initialization of a CABAC context model according to an embodiment of the present invention.
  • FIG. 5 illustrates an adaptive initialization of a CABAC context model for each parallelization unit according to an embodiment to which the present invention is applied.
  • FIG. 6 and 7 illustrate an initialization method of a CABAC context model based on parallel processing as an embodiment to which the present invention is applied.
  • FIG. 8 illustrates a process of performing inter prediction by selectively performing correction on a motion vector as an embodiment to which the present invention is applied.
  • FIG. 9 illustrates an example in which a block is changed in the correcting of the motion vector when the correcting of the motion vector is repeatedly performed in the embodiment of FIG. 8.
  • FIG. 10 illustrates the size / shape of a divided block in response to an iterative correction of a motion vector as an embodiment to which the present invention is applied.
  • FIG. 11 illustrates a process of performing inter prediction based on selective signaling of a motion vector difference (MVD) according to an embodiment to which the present invention is applied.
  • VMD motion vector difference
  • FIG. 12 illustrates a unidirectional intra prediction method on a sub-block basis as an embodiment to which the present invention is applied.
  • FIG. 13 illustrates a bi-directional intra prediction method in units of sub-blocks as an embodiment to which the present invention is applied.
  • FIG. 14 illustrates a scan method for a square transform block as an embodiment to which the present invention is applied.
  • 15 and 16 illustrate a scanning method for a non-square transform block as an embodiment to which the present invention is applied.
  • 17 is a diagram illustrating a range in which an in-loop filter is applied as an embodiment to which the present invention is applied.
  • FIG. 18 illustrates a method of determining an application range of an in-loop filter as an embodiment to which the present invention is applied.
  • FIG. 19 illustrates a method of applying an in-loop filter to a boundary of a geometric shape as an embodiment to which the present invention is applied.
  • the inter prediction method obtains motion vector correction related information about a current block, reconstructs a motion vector of a current block, performs motion compensation on the current block based on the motion vector, and performs the motion.
  • the motion vector of the current block may be corrected using at least one of a result of the compensation or the motion vector correction related information, and the motion compensation for the current block may be performed again using the corrected motion vector.
  • the intra prediction method performs an intra prediction on a first sub block in the current block based on a reference pixel of a current block, reconstructs the first sub block, and restores the first pixel or the reference pixel of the current block.
  • Intra prediction may be performed on the second subblock in the current block by using at least one of the pixels of the reconstructed first subblock.
  • the scan bitstream is decoded to obtain transform coefficients of a transform block, and the transform coefficients of the transform block are scanned based on a predetermined scan type, and the scanning is performed by using NxM coefficients.
  • the scan type may be performed based on a group, and the scan type may be determined based on a signaled index among a plurality of scan type candidates.
  • the image decoding apparatus may reconstruct the motion vector of the current block and the entropy decoding unit that obtains motion vector correction related information of the current block, and perform motion compensation on the current block based on the motion vector.
  • an inter predictor configured to correct the motion vector of the current block by using at least one of the motion compensation result or the motion vector correction related information, and to re-execute motion compensation on the current block by using the corrected motion vector. It may include.
  • the image decoding apparatus performs an intra prediction on a first subblock in the current block based on a reference pixel of a current block, reconstructs the first subblock, and restores the reference pixel or the
  • An intra prediction unit may perform an intra prediction on a second sub block in the current block by using at least one of the pixels of the reconstructed first sub block.
  • the apparatus for decoding an image includes an entropy decoding unit for decoding a bitstream to obtain transform coefficients of a transform block, and a reordering unit for scanning transform coefficients of the transform block based on a predetermined scan type. Scanning may be performed in units of N ⁇ M coefficient groups, and the scan type may be determined based on a signaled index among a plurality of scan type candidates.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a block diagram illustrating an image encoding apparatus according to an embodiment of the present invention.
  • the image encoding apparatus 100 may include a picture splitter 110, a predictor 120 and 125, a transformer 130, a quantizer 135, a realigner 160, and an entropy encoder. 165, an inverse quantizer 140, an inverse transformer 145, a filter 150, and a memory 155.
  • each of the components shown in FIG. 1 is independently illustrated to represent different characteristic functions in the image encoding apparatus, and does not mean that each of the components is made of separate hardware or one software component unit.
  • each component is included in each component for convenience of description, and at least two of the components may be combined into one component, or one component may be divided into a plurality of components to perform a function.
  • Integrated and separate embodiments of the components are also included within the scope of the present invention without departing from the spirit of the invention.
  • the components may not be essential components for performing essential functions in the present invention, but may be optional components for improving performance.
  • the present invention can be implemented including only the components essential for implementing the essentials of the present invention except for the components used for improving performance, and the structure including only the essential components except for the optional components used for improving performance. Also included in the scope of the present invention.
  • the picture dividing unit 110 may divide the input picture into at least one block.
  • the block may mean a coding unit (CU), a prediction unit (PU), or a transformation unit (TU).
  • the partitioning may be performed based on at least one of a quadtree or a binary tree.
  • Quad tree is a method of dividing an upper block into lower blocks having a width and a height of half of the upper block.
  • the binary tree divides the upper block into lower blocks, which are half of the upper block in either width or height.
  • the upper block is half-height through the above-described binary tree-based partitioning, so that the block may have a square as well as a non-square shape.
  • a coding unit may be used as a unit for encoding or may be used as a unit for decoding.
  • the predictors 120 and 125 may include an inter predictor 120 that performs inter prediction and an intra predictor 125 that performs intra prediction. Whether to use inter prediction or intra prediction on the prediction unit may be determined, and specific information (eg, an intra prediction mode, a motion vector, a reference picture, etc.) according to each prediction method may be determined. In this case, the processing unit in which the prediction is performed may differ from the processing unit in which the prediction method and the details are determined. For example, the method of prediction and the prediction mode may be determined in the prediction unit, and the prediction may be performed in the transform unit. The residual value (residual block) between the generated prediction block and the original block may be input to the transformer 130.
  • specific information eg, an intra prediction mode, a motion vector, a reference picture, etc.
  • prediction mode information and motion vector information used for prediction may be encoded by the entropy encoder 165 together with the residual value and transmitted to the decoder.
  • the original block may be encoded as it is and transmitted to the decoder without generating the prediction block through the prediction units 120 and 125.
  • the inter prediction unit 120 may predict the prediction unit based on the information of at least one of the previous picture or the next picture of the current picture. In some cases, the inter prediction unit 120 may predict the prediction unit based on the information of the partial region in which the encoding is completed in the current picture. You can also predict units.
  • the inter predictor 120 may include a reference picture interpolator, a motion predictor, and a motion compensator.
  • the reference picture interpolator may receive reference picture information from the memory 155 and generate pixel information of an integer pixel or less in the reference picture.
  • a DCT based 8-tap interpolation filter having different filter coefficients may be used to generate pixel information of integer pixels or less in units of 1/4 pixels.
  • a DCT-based interpolation filter having different filter coefficients may be used to generate pixel information of an integer pixel or less in units of 1/8 pixels.
  • the motion predictor may perform motion prediction based on the reference picture interpolated by the reference picture interpolator.
  • various methods such as full search-based block matching algorithm (FBMA), three step search (TSS), and new three-step search algorithm (NTS) may be used.
  • FBMA full search-based block matching algorithm
  • TSS three step search
  • NTS new three-step search algorithm
  • the motion vector may have a motion vector value of 1/2 or 1/4 pixel units based on the interpolated pixels.
  • the motion prediction unit may predict the current prediction unit by using a different motion prediction method.
  • various methods such as a skip method, a merge method, and an advanced motion vector prediction (AMVP) method may be used.
  • AMVP advanced motion vector prediction
  • the intra predictor 125 may generate a prediction unit based on reference pixel information around the current block, which is pixel information in the current picture. If the neighboring block of the current prediction unit is a block that has performed inter prediction, and the reference pixel is a pixel that has performed inter prediction, the reference pixel of the block that has performed intra prediction around the reference pixel included in the block where the inter prediction has been performed Can be used as a substitute for information. That is, when the reference pixel is not available, the unavailable reference pixel information may be replaced with at least one reference pixel among the available reference pixels.
  • a prediction mode may have a directional prediction mode using reference pixel information according to a prediction direction, and a non-directional mode using no directional information when performing prediction.
  • the mode for predicting the luminance information and the mode for predicting the color difference information may be different, and the intra prediction mode information or the predicted luminance signal information used for predicting the luminance information may be utilized to predict the color difference information.
  • the intra prediction method may generate a prediction block after applying an adaptive intra smoothing (AIS) filter to a reference pixel according to a prediction mode.
  • AIS adaptive intra smoothing
  • the type of AIS filter applied to the reference pixel may be different.
  • the intra prediction mode of the current prediction unit may be predicted from the intra prediction mode of the prediction unit existing around the current prediction unit.
  • the prediction mode of the current prediction unit is predicted by using the mode information predicted from the neighboring prediction unit, if the intra prediction mode of the current prediction unit and the neighboring prediction unit is the same, the current prediction unit and the neighboring prediction unit using the predetermined flag information If the prediction modes of the current prediction unit and the neighboring prediction unit are different, entropy encoding may be performed to encode the prediction mode information of the current block.
  • a residual block may include a prediction unit performing prediction based on the prediction units generated by the prediction units 120 and 125 and residual information including residual information that is a difference from an original block of the prediction unit.
  • the generated residual block may be input to the transformer 130.
  • the conversion unit 130 may convert the residual block including the residual data by using a conversion method such as DCT, DST, or the like.
  • the transformation method may be determined based on the intra prediction mode of the prediction unit used to generate the residual block.
  • the quantization unit 135 may quantize the values converted by the transformer 130 into the frequency domain.
  • the quantization coefficient may change depending on the block or the importance of the image.
  • the value calculated by the quantization unit 135 may be provided to the inverse quantization unit 140 and the reordering unit 160.
  • the reordering unit 160 may reorder coefficient values with respect to the quantized residual value.
  • the reordering unit 160 may change the two-dimensional block shape coefficients into a one-dimensional vector form through a coefficient scanning method. For example, the reordering unit 160 may scan a DC coefficient to a coefficient of a high frequency region by using a predetermined scan type and change it into a one-dimensional vector.
  • the entropy encoder 165 may perform entropy encoding based on the values calculated by the reordering unit 160. Entropy encoding may use various encoding methods such as, for example, Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC).
  • Entropy encoding may use various encoding methods such as, for example, Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC).
  • the entropy encoder 165 receives residual value coefficient information, block type information, prediction mode information, partition unit information, prediction unit information, transmission unit information, and motion of the coding unit from the reordering unit 160 and the prediction units 120 and 125.
  • Various information such as vector information, reference frame information, interpolation information of a block, and filtering information can be encoded.
  • the entropy encoder 165 may entropy encode a coefficient value of a coding unit input from the reordering unit 160.
  • the inverse quantizer 140 and the inverse transformer 145 inverse quantize the quantized values in the quantizer 135 and inversely transform the transformed values in the transformer 130.
  • the residual value generated by the inverse quantizer 140 and the inverse transformer 145 is reconstructed by combining the prediction units predicted by the motion estimator, the motion compensator, and the intra predictor included in the predictors 120 and 125. You can create a Reconstructed Block.
  • the filter unit 150 may include at least one of a deblocking filter, an offset correction unit, and an adaptive loop filter (ALF).
  • a deblocking filter may include at least one of a deblocking filter, an offset correction unit, and an adaptive loop filter (ALF).
  • ALF adaptive loop filter
  • the deblocking filter may remove block distortion caused by boundaries between blocks in the reconstructed picture.
  • it may be determined whether to apply a deblocking filter to the current block based on the pixels included in several columns or rows included in the block.
  • a strong filter or a weak filter may be applied according to the required deblocking filtering strength.
  • horizontal filtering and vertical filtering may be performed in parallel when vertical filtering and horizontal filtering are performed.
  • the offset correction unit may correct the offset with respect to the original image on a pixel-by-pixel basis for the deblocking image.
  • the pixels included in the image are divided into a predetermined number of areas, and then, an area to be offset is determined, an offset is applied to the corresponding area, or offset considering the edge information of each pixel. You can use this method.
  • Adaptive Loop Filtering may be performed based on a value obtained by comparing the filtered reconstructed image with the original image. After dividing the pixels included in the image into a predetermined group, one filter to be applied to the group may be determined and filtering may be performed for each group. For information related to whether to apply ALF, a luminance signal may be transmitted for each coding unit (CU), and the shape and filter coefficient of an ALF filter to be applied may vary according to each block. In addition, regardless of the characteristics of the block to be applied, the same type (fixed form) of the ALF filter may be applied.
  • ALF Adaptive Loop Filtering
  • the memory 155 may store the reconstructed block or picture calculated by the filter unit 150, and the stored reconstructed block or picture may be provided to the predictors 120 and 125 when performing inter prediction.
  • FIG. 2 is a block diagram illustrating an image decoding apparatus according to an embodiment of the present invention.
  • the image decoder 200 includes an entropy decoder 210, a reordering unit 215, an inverse quantizer 220, an inverse transformer 225, a predictor 230, 235, and a filter unit ( 240, a memory 245 may be included.
  • the input bitstream may be decoded by a procedure opposite to that of the image encoder.
  • the entropy decoder 210 may perform entropy decoding in a procedure opposite to that of the entropy encoding performed by the entropy encoder of the image encoder. For example, various methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC) may be applied to the method performed by the image encoder.
  • various methods such as Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC) may be applied to the method performed by the image encoder.
  • the entropy decoder 210 may decode information related to intra prediction and inter prediction performed by the encoder.
  • the reordering unit 215 may reorder the entropy decoded bitstream by the entropy decoding unit 210 based on a method of rearranging the bitstream. Coefficients expressed in the form of a one-dimensional vector may be reconstructed by reconstructing the coefficients in a two-dimensional block form.
  • the reordering unit 215 may be realigned by receiving information related to coefficient scanning performed by the encoder and performing reverse scanning based on the scanning order performed by the corresponding encoder.
  • the inverse quantization unit 220 may perform inverse quantization based on the quantization parameter provided by the encoder and the coefficient values of the rearranged block.
  • the inverse transform unit 225 may perform inverse transform on the inverse quantized transform coefficients using a predetermined transform method.
  • the transformation method may be determined based on information on a prediction method (inter / intra prediction), a size / shape of a block, an intra prediction mode, and the like.
  • the prediction units 230 and 235 may generate the prediction block based on the prediction block generation related information provided by the entropy decoder 210 and previously decoded blocks or picture information provided by the memory 245.
  • the predictors 230 and 235 may include a prediction unit determiner, an inter predictor, and an intra predictor.
  • the prediction unit determiner receives various information such as prediction unit information input from the entropy decoder 210, prediction mode information of the intra prediction method, and motion prediction related information of the inter prediction method, and distinguishes the prediction unit from the current coding unit, and predicts It may be determined whether the unit performs inter prediction or intra prediction.
  • the inter prediction unit 230 predicts the current prediction based on information included in at least one of a previous picture or a subsequent picture of the current picture including the current prediction unit by using information required for inter prediction of the current prediction unit provided by the image encoder. Inter prediction may be performed on a unit. Alternatively, inter prediction may be performed based on information of some regions pre-restored in the current picture including the current prediction unit.
  • the motion prediction method of the prediction unit included in the coding unit is skip mode, merge mode, or AMVP mode to perform inter prediction. You can judge.
  • the intra predictor 235 may generate a prediction block based on pixel information in the current picture.
  • intra prediction may be performed based on intra prediction mode information of the prediction unit provided by the image encoder.
  • the intra predictor 235 may include an adaptive intra smoothing (AIS) filter, a reference pixel interpolator, and a DC filter.
  • the AIS filter is a part of filtering the reference pixel of the current block and determines whether to apply the filter according to the prediction mode of the current prediction unit.
  • AIS filtering may be performed on the reference pixel of the current block by using the prediction mode and the AIS filter information of the prediction unit provided by the image encoder. If the prediction mode of the current block is a mode that does not perform AIS filtering, the AIS filter may not be applied.
  • the reference pixel interpolator may generate a reference pixel having an integer value or less by interpolating the reference pixel. If the prediction mode of the current prediction unit is a prediction mode for generating a prediction block without interpolating the reference pixel, the reference pixel may not be interpolated.
  • the DC filter may generate the prediction block through filtering when the prediction mode of the current block is the DC mode.
  • the reconstructed block or picture may be provided to the filter unit 240.
  • the filter unit 240 may include a deblocking filter, an offset correction unit, and an ALF.
  • Information about whether a deblocking filter is applied to a corresponding block or picture, and when the deblocking filter is applied to the corresponding block or picture, may be provided with information about whether a strong filter or a weak filter is applied.
  • the deblocking filter related information provided by the image encoder may be provided and the deblocking filtering of the corresponding block may be performed in the image decoder.
  • the offset correction unit may perform offset correction on the reconstructed image based on the type of offset correction and offset value information applied to the image during encoding.
  • the ALF may be applied to a coding unit based on ALF application information, ALF coefficient information, and the like provided from the encoder. Such ALF information may be provided included in a specific parameter set.
  • the memory 245 may store the reconstructed picture or block to use as a reference picture or reference block, and may provide the reconstructed picture to the output unit.
  • parallelization unit refers to a set of one or more coding units constituting one picture for parallel processing in a video encoding and decoding step.
  • the coding unit may be generally referred to as including both a coding unit that is split into a plurality of lower coding units through tree-based splitting or a coding unit that is no longer split.
  • FIG. 3 illustrates a schematic configuration of a CABAC encoding / decoding apparatus that adaptively performs initialization of a CABAC context model according to an embodiment to which the present invention is applied.
  • the CABAC encoding / decoding apparatus may include a context initialization determining unit 310, a reference context loading unit 320, a context initial value loading unit 330, or a context initialization unit 340. It may include at least one of).
  • the context initialization determination unit 310 may determine whether the adaptive initialization of the CABAC context model is performed based on the information indicating whether the adaptive initialization of the CABAC context model is performed.
  • the information may be determined by the video encoding apparatus whether to perform the adaptive initialization of the CABAC context model, and may be encoded in the form of a flag. Alternatively, the information may include the form of a specific value indicating the reference CABAC context state.
  • the information may be included in a high-level syntax of the bitstream and signaled to the image decoding apparatus. For example, the information may be included and signaled in at least one of a sequence parameter set or a picture parameter set. The information may be signaled for each parallelization unit constituting the picture. Through this, it may be allowed to independently perform the adaptive initialization of the CABAC context model for each parallelization unit.
  • the reference context load unit 320 may obtain the reference CABAC context state.
  • the context initializer 340 may initialize the CABAC context model based on the obtained reference CABAC context state.
  • the reference CABAC context state may refer to the CABAC context state stored in the previous decoding process.
  • the reference CABAC context state may refer to a CABAC context state stored at a specific position in a pre-decoded picture.
  • the reference CABAC context state may be stored at a specific position in the same picture as a picture to which the current CABAC context model belongs or a reference picture of a different time zone.
  • the specific location may mean a specific location in parallel units corresponding to the current CABAC context model or in parallel / spatial parallel units.
  • the specific position may be a fixed position pre- promised to the CABAC encoding / decoding apparatus. Alternatively, the specific location may be determined based on the information signaled through the bitstream.
  • the signaled information may include information encoded for specifying a specific position in the CABAC encoding apparatus, reference relations of the current picture, and information about attributes of a block constituting the picture (eg, a segmentation scheme, size, shape, Depth, etc.).
  • the reference CABAC context state may refer to a CABAC context state stored at a specific position in a corresponding parallelization unit in an already decoded picture.
  • the corresponding parallelism unit may be determined as a parallelism unit at the same position in the reference picture or a parallelism unit using the same quantization parameter QP in the reference picture.
  • the location of the reference CABAC context state may mean a specific position in a corresponding parallelization unit in a picture that is already decoded when the size and / or number of parallelization units are the same.
  • one of the CABAC context states stored in the decoded picture may be selected.
  • the selection may be performed taking into account the difference between the location of the pre-stored CABAC context state and the location of the parallelism unit. For example, the CABAC context state with the smallest position difference with the parallelism unit may be selected as the reference CABAC context state.
  • the parallelization unit in the already decoded picture occupies the largest area when the parallelization unit is matched based on the location information of the CABAC context state stored in the already decoded picture.
  • the stored CABAC context state can also be used as the reference CABAC context state.
  • the CABAC context state stored at a specific position of each subpicture present in the picture may be used as the reference CABAC context state.
  • FIG. 4 illustrates an example of adaptive initialization of a CABAC context model according to an embodiment of the present invention.
  • a reference picture 410 is a picture that is pre-encoded / decoded before the current picture 420, which may mean a picture referred to for initialization of the CABAC context model of the current picture 420.
  • the reference picture 410 may be any one of a plurality of reference pictures that the current picture 420 references for inter prediction.
  • the reference picture 410 may be a reference picture having a predetermined index in the reference picture list for the current picture.
  • the predetermined index may be a fixed value pre-committed to the CABAC encoding / decoding apparatus.
  • the predetermined index may be a signal that is signaled through the bitstream or may be a value that is variably determined by being derived from a reference picture index of a block belonging to the current picture 420.
  • a picture using the same quantization parameter (QP) as the current picture 420 may be selected and used as the reference picture 410.
  • the current picture 420 may refer to the CABAC context state stored at a specific location of the reference picture 410 for adaptive initialization of the CABAC context model.
  • the specific location of the reference picture 410 may mean a location of a coding unit pre-committed to the CABAC encoding / decoding device, and in this case, information indicating the specific location may not be signaled.
  • the CABAC encoding apparatus may determine an optimal specific position in the reference picture 410 in consideration of encoding efficiency, encode the same, and signal it to the CABAC decoding apparatus.
  • Referencing the stored CABAC context state at a specific position of the reference picture 410 may include loading the stored CABAC context state at the time of encoding / decoding a block corresponding to the specific position of the reference picture 410. have.
  • the initialization process of the CABAC context model of the current picture 420 means to initialize the CABAC context state of the start block of the current picture 420 based on the loaded CABAC context state.
  • FIG. 5 illustrates an adaptive initialization of a CABAC context model for each parallelization unit according to an embodiment to which the present invention is applied.
  • the parallelization unit is a tile
  • the reference picture 510 is described in detail with reference to FIG. 4, and a redundant description thereof will be omitted.
  • the reference picture 510 includes four parallelization units 511, 512, 513, and 514, and the same number and size of parallelism units 521, 522, and 523 of the current picture 520. , 524).
  • the parallelization unit of the current picture 520 may refer to the CABAC context state stored at a specific position of the parallelization unit of the reference picture 510 for adaptive initialization of the CABAC context model.
  • the parallelization unit of the current picture 520 may refer to the parallelization unit of the same position in the reference picture 510 or may refer to the parallelization unit of another position.
  • the parallelization unit of the other position may be determined as the parallelization unit of the reference picture 510 using the same quantization parameter QP as the parallelization unit of the current picture 520.
  • the specific location of the parallelization unit may mean a location of a coding unit pre-committed to the CABAC encoding / decoding device, and in this case, information indicating the specific location may not be signaled.
  • the CABAC encoding apparatus may determine an optimal specific position in each parallelization unit in consideration of encoding efficiency, encode the same, and signal the CABAC decoding apparatus.
  • the CABAC context state stored at a specific position of the parallelization unit in the reference picture 510 may be determined. It may include the process of loading.
  • the initialization process of the CABAC context model for each parallelization unit of the current picture 520 is based on the loaded CABAC context state.
  • the CABAC context state of the start block of each parallelization unit belonging to the current picture 520 is initialized. I mean.
  • FIG. 6 and 7 illustrate an initialization method of a CABAC context model based on parallel processing as an embodiment to which the present invention is applied.
  • the CABAC context model is initialized for each block line 610, 620, 630, 640, and 650, and the block line is initialized.
  • the first block may perform initialization of the CABAC context model by referring to the CABAC context state of the second block of the previous block line.
  • the block may mean a coding unit, and in detail, may mean a coding tree block (CTB), a coding block generated through splitting based on a tree structure, or a minimum coding block (SCU).
  • CTB coding tree block
  • SCU minimum coding block
  • the current picture 720 may refer to a CABAC context state stored at a specific location of a reference picture 710 to refer to a CABAC context of an initial block line 721 of the current picture 720.
  • Initialization of the CABAC context model for the remaining block lines except for the first block line of the current picture 720 may be performed with reference to the previous block line as described with reference to FIG. 6.
  • initialization of the CABAC context model for at least one of the remaining block lines 722, 723, 724, and 725 may be performed with reference to the CABAC context state stored at a specific location of the reference picture 710.
  • a specific position (hereinafter, referred to as a first specific position) of the reference picture 710 referred to by the block line 821 and a specific position of the reference picture 710 referred to by at least one of the remaining block lines (hereinafter, referred to as first) Two specific positions) may be the same or different.
  • the specific position described above may be variably determined in consideration of the position of a block line belonging to the current picture 720, or may be a fixed position allocated to each block line.
  • the specific position may be a fixed position pre- promised to the CABAC encoding / decoding apparatus.
  • the specific location may be determined based on the information signaled through the bitstream.
  • the signaled information may include information encoded for specifying a specific position in the CABAC encoding apparatus, reference relations of the current picture, and information about attributes of a block constituting the picture (eg, a segmentation scheme, size, shape, Depth, etc.).
  • the inter prediction unit may determine a motion vector of the current block based on a predetermined inter mode (eg, a skip mode, a merge mode, an AMVP mode), and perform inter prediction using the determined motion vector.
  • a predetermined inter mode eg, a skip mode, a merge mode, an AMVP mode
  • the determined motion vector may be used as it is, or the determined motion vector may be corrected based on the motion vector correction related information.
  • the motion vector correction information includes information on whether or not to perform correction, whether correction is repeatedly performed, the number of corrections, information on the resolution of the motion vector, information on the range in which correction is allowed, and whether motion vector correction information is signaled. It may include at least one of information about, or information about blocks, slices, pictures that are referenced to correct the motion vector.
  • the motion vector may be selectively corrected based on information about whether to correct the motion vector.
  • the information on whether to correct the information is information specifying whether to correct the motion vector and may be expressed in the form of a flag.
  • the motion vector may be corrected to a resolution according to the information about the resolution of the motion vector.
  • the resolution candidates available in this embodiment may include at least one of a small number of pels such as integer pels, 1/2 pels, 1/4 pels, 1/8 pels, 1/16 pels, and the like. Any one of the above-described resolution candidates can be specified.
  • the information about the range in which the correction is allowed may mean a range of resolution in which correction is allowed, a range of a block in which motion vector correction is performed, and the like.
  • the above-described motion vector correction related information may be signaled through a bitstream, and at least one of the motion vector correction related information may be spatially adjacent neighboring blocks (eg, left, top, top left, bottom left, top right neighboring blocks). Etc.) and / or temporally adjacent neighboring blocks.
  • at least one of the motion vector correction-related information may be pre-committed to the image encoding / decoding apparatus, and may include attributes of the current block (eg, inter prediction type, bidirectional prediction, near reference picture usage, block size). / Shape / depth, division technique, presence of residual coefficients, quantization parameters, etc.) may be variably determined.
  • the motion vector correction related information may be signaled at various levels, such as a sequence, a picture, a slice, a tile, a block (for example, a coding block, a prediction block) or the like, depending on the characteristics of the information or the promise between the image encoding / decoding devices. Can be induced. In some cases, at least one of the motion vector correction related information may be omitted by the appointment between the image encoding / decoding apparatus.
  • the corrected motion vector may be stored in an image encoding / decoding apparatus.
  • the image encoding / decoding apparatus may use a separate buffer for storing the motion vector. Not shown).
  • the present invention is not limited thereto, and the same may be applied to the predicted motion vector.
  • FIG. 8 illustrates a process of performing inter prediction by selectively performing correction on a motion vector as an embodiment to which the present invention is applied.
  • motion vector correction related information about a current block may be obtained (S800).
  • the motion vector correction related information is as described above. That is, as motion vector correction information, information about whether to correct, information about the number of corrections, information about the resolution of a motion vector, information about a range in which correction is allowed, and information about whether motion vector correction related information is signaled At least one of information, or information about a block, a slice, and a picture, referred to for correction of a motion vector, may be obtained.
  • the motion vector may be corrected (S810).
  • the correction of the motion vector may be performed at the same resolution as that of the motion vector performed by the image encoding apparatus, or may be performed at a different resolution than the correction performed by the image encoding apparatus. That is, it may be corrected to a resolution larger or smaller than the resolution of the video encoding apparatus.
  • the image encoding apparatus encodes and signals a motion vector in an integer pel unit
  • the image decoding apparatus encodes the decoded motion vector as a small number of pels (eg, 1/2 pel. 1/4 pel, 1/8). Pel, etc.) can be corrected by a motion vector.
  • information on whether to correct the pixel in more detailed pixel units may also be included in the motion vector correction related information.
  • the motion vector may be corrected using a pre-decoded prediction value / restored value.
  • the pre-decoded prediction value / restoration value may be a prediction value / restoration value of the current block obtained by performing inter prediction based on the motion vector of the current block to be corrected, or the prediction value / restoration of the reference block referenced by the current block. It may be a value.
  • the pre-decoded prediction value / restoration value may be a prediction value / restoration value of a neighboring block spatially / temporally adjacent to the current block.
  • the correction of the motion vector according to the present invention may include calculating an offset vector to compensate for the motion vector by using the pre-decoded prediction value / restoration value.
  • the corrected motion vector may be derived based on the motion vector before correction and the calculated offset vector.
  • inter prediction may be performed again based on the corrected motion vector to obtain a predicted value / restored value of the current block (S820).
  • the corrected motion vector may be stored in a buffer provided in the image encoding / decoding apparatus, which may be used to determine motion vectors of neighboring blocks and / or pictures that are encoded / decoded in descending order.
  • inter prediction of the current block may be performed using the motion vector as it is without additional correction (S830).
  • the above-described correction of the motion vector may be repeatedly performed a predetermined number of times.
  • the number of times may be determined based on the information about the number of corrections.
  • Information about the number of corrections may be signaled through the bitstream, when the image encoding / decoding apparatus promises the number of corrections to each other, or when it is known that the correction of the motion vector is no longer performed according to a predetermined condition. Information regarding the number of corrections may not be signaled.
  • the correction of the motion vector is repeatedly performed, only the final motion vector may be stored, and at least one of the motion vectors obtained through the iterative correction process may be repeatedly stored in the buffer of the image encoding / decoding apparatus.
  • FIG. 9 illustrates an example in which a block is changed in the correcting of the motion vector when the correcting of the motion vector is repeatedly performed in the embodiment of FIG. 8.
  • the size of the block for motion vector correction by the number of corrections is shown in FIG. 4. It can be changed as shown in block 400.
  • Whether the correction of the motion vector is repeatedly performed for a block having the same size as the previous correction step may be included in the motion vector correction related information.
  • FIG. 10 illustrates the size / shape of a divided block in response to an iterative correction of a motion vector as an embodiment to which the present invention is applied.
  • the block may be divided into blocks having a constant size according to the split depth information, and may be divided into non-square blocks as shown in FIG. 10 (b).
  • some blocks may be divided by the number of times (depth) that are not the same as other blocks. It may be divided into asymmetric blocks as shown in FIG. 10 (e), (f), and (g) show a case in which the divided form is not a quadrangle, and may be divided by a triangle or a combination of squares and triangles.
  • the block may be divided into non-square blocks of the same size.
  • FIG. 10 illustrates some of the embodiments, and may be divided into various sizes / types through a combination, and corresponding information may be included in the motion vector correction related information.
  • the minimum unit of the division may be allowed up to a pixel unit, and blocks having the same or all of the motion vector correction related information may be merged with each other.
  • the first coding unit may be divided into various shapes as in the embodiment of FIG. 10.
  • One, two, three or more reference pictures may be used to correct the motion vector in FIG. 9.
  • the reference picture may vary, and the method used to obtain motion vector correction related information in the reference picture may also vary.
  • each block may have different motion vectors, and in this case, artifacts may occur between blocks having different motion vectors.
  • In-loop filtering may be performed to remove this, which will be described with reference to FIGS. 17 to 19.
  • FIG. 11 illustrates a process of performing inter prediction based on selective signaling of a motion vector difference (MVD) according to an embodiment to which the present invention is applied.
  • VMD motion vector difference
  • the motion vector is changed through the correction of the motion vector, and the offset vector calculated in this process is the same as the motion vector difference (MVD), it is decoded for the current block without signaling the motion vector difference.
  • VMD motion vector difference
  • information indicating whether signaling of motion vector differences is skipped may be used.
  • the corresponding information may be signaled through the bitstream or may be derived to a specific value in consideration of the attributes of the above-described block. For example, when the value of the information is the first value, the motion vector difference for the current block is not signaled, and in this case, the motion vector difference may be replaced with an offset vector calculated through correction of the motion vector. On the other hand, when the value of the information is the second value, the motion vector difference for the current block may be signaled through the bitstream.
  • the information may be signaled at various levels such as a sequence, a picture, a slice, a tile, a block, and the signaling may be omitted due to a pre-committed condition between the image encoding / decoding devices. For example, when the motion vector is corrected in the current block, if the motion vector difference is not signaled, signaling of the corresponding information may be omitted.
  • motion vector correction related information may be obtained (S1100).
  • the motion vector correction related information is as described above, and a redundant description thereof will be omitted.
  • motion compensation may be performed based on the motion vector derived from the sum of the predicted motion vector and the motion vector difference (S1120).
  • the information on whether the correction indicates that the motion vector is corrected it may be determined whether signaling of the motion vector difference for the current block is skipped (S1130).
  • whether the signaling of the motion vector difference is skipped may be determined using a predetermined flag (eg, mvd_skip_flag).
  • motion compensation may be performed based on the motion vector derived from the sum of the predicted motion vector and the motion vector difference (S1140).
  • the motion vector derived in S1140 may be corrected using the prediction value / restoration value obtained through the motion compensation (S1150). That is, an offset vector to compensate for the motion vector may be derived by using the predicted value / restored value obtained through the motion compensation.
  • the derived offset vector may be added to the motion vector to obtain a corrected motion vector.
  • Motion compensation may be performed based on the corrected motion vector (S1160).
  • motion compensation may be performed based on the predicted motion vector PMV (S1170).
  • the predicted motion vector PMV of S1170 may be corrected using the predicted value / restored value obtained through the motion compensation (S1180). That is, an offset vector for compensating the predicted motion vector PMV may be derived using the predicted value / restored value obtained through the motion compensation. The derived offset vector may be added to the predicted motion vector PMV to obtain a corrected motion vector.
  • Motion compensation may be performed based on the corrected motion vector (S1190).
  • the motion vector may be repeatedly corrected a predetermined number of times, as described above with reference to FIGS. 8 to 10.
  • FIG. 12 illustrates a unidirectional intra prediction method on a sub-block basis as an embodiment to which the present invention is applied.
  • the current block may consist of n subblocks.
  • the current block may mean a coding block or a prediction block.
  • the current block may mean a block unit to which one intra prediction mode is applied.
  • n means a natural number
  • the n value may be a fixed value pre-committed to the image encoding / decoding apparatus, or may be variably determined according to an attribute of a block.
  • the image encoding apparatus may determine an optimal n value, encode the signal, and signal the same.
  • the image decoding apparatus may determine the n value based on the signaled information.
  • the subblock has an N ⁇ M size, where N and M are natural numbers of 1, 2 or more, and N and M may be the same or different. That is, the sub block may be composed of one pixel, and may be represented by a pixel group (pixel row, pixel column) or the like in a forward or non-square manner.
  • the size of the sub block may be a fixed size pre-committed to the image encoding / decoding apparatus or may be a variable size according to the attributes of the block.
  • the size / shape of the sub block may be determined in consideration of the directionality of the intra prediction mode of the current block.
  • the image encoding apparatus may encode and signal an optimal subblock size, and the image decoding apparatus may determine the size of the subblock based on the signaled information.
  • the information may be signaled at least one of a sequence, a picture, a slice, a tile, and a block level.
  • intra prediction and reconstruction may be performed on the first sub-block 1210 located at the top of the current block based on a neighboring pixel adjacent to the current block and a predetermined intra prediction mode. Can be.
  • the second sub block 1220 may perform intra prediction and reconstruction using the neighboring pixel and / or the pixel of the reconstructed first sub block.
  • the remaining subblocks 1230 and 1240 may also be intra predicted and reconstructed.
  • the accuracy of intra prediction can be improved, and further, the energy of the residual error can be reduced.
  • the embodiment of FIG. 12 does not limit the prediction and reconstruction order of subblocks.
  • prediction and reconstruction may be sequentially performed in the order of the fourth subblock to the first subblock.
  • the prediction and reconstruction may be sequentially performed in the order of the left subblock to the right subblock or the right subblock to the left subblock according to the size / shape of the subblock.
  • the order of prediction and reconstruction may be determined dependent on the intra prediction mode of the current block and / or neighboring blocks. For example, when the direction of the intra prediction mode is from top to bottom, the order of prediction and reconstruction may be the order of the first sub block to the fourth sub block. On the other hand, when the direction of the intra prediction mode is from the bottom to the top, the order of prediction and reconstruction may be the order of the first sub block in the fourth sub block.
  • the order of prediction and reconstruction may be a fixed order pre-committed to the image encoding / decoding apparatus.
  • FIG. 13 illustrates a bi-directional intra prediction method in units of sub-blocks as an embodiment to which the present invention is applied.
  • intra prediction may be performed on the first sub-block 1300 to obtain a prediction value, and a residual value may be added to the prediction value to restore the current block.
  • the first sub block 1300 may be a sub block located at the bottom of the current block, a sub block located at the rightmost side, or a sub block located at the center.
  • the present invention is not limited thereto, and the first sub block 1300 may be any one of a plurality of sub blocks constituting the current block.
  • the first sub block 1300 may be defined as a block that is first predicted and reconstructed from among a plurality of sub blocks in the current block.
  • the second sub block 1310 may be predicted using at least one of a reference pixel of the current block or a pixel of the reconstructed first sub block. That is, like the first sub block, the second sub block 1310 may be predicted using only the reference picture of the current block or may be predicted using only the pixels of the reconstructed first sub block. Alternatively, the second subblock 1310 may be predicted and reconstructed through bidirectional prediction, that is, first direction prediction and second direction prediction.
  • the first direction prediction may mean prediction based on the reference pixel of the current block
  • the second direction prediction may mean prediction based on the pixel of the reconstructed first sub-block.
  • the first direction may mean upward, the second direction downward, or the first direction may mean left and the second direction may mean right.
  • the first direction and the second direction may be different directions from each other, or may represent the same direction.
  • the first direction prediction and the second direction prediction may be performed using the same intra prediction mode.
  • the first direction prediction and the second direction prediction may be performed using different intra prediction modes.
  • the intra prediction mode used for the second direction prediction (hereinafter referred to as the second intra prediction mode) may be derived based on the intra prediction mode used for the first direction prediction (hereinafter referred to as the first intra prediction mode).
  • the second intra prediction mode may be derived by adding / subtracting a predetermined constant to the value of the first intra prediction mode.
  • the second intra prediction mode may be derived in a mode corresponding to the reverse direction of the first intra prediction mode.
  • the first direction prediction may be performed based on the encoded intra prediction mode
  • the second direction prediction may be performed based on the default mode.
  • the default mode is an intra prediction mode pre-committed to the image encoding / decoding apparatus, and any one of a planar mode, a DC mode, and a horizontal / vertical mode may be selectively used. In this case, the selection may depend on the size / shape of the subblock. Or, a specific mode may be fixedly used regardless of the size / shape of the sub block.
  • the plurality of sub blocks constituting the current block may be predicted and / or reconstructed sequentially based on the patterned prediction order.
  • the image encoding apparatus may pattern the prediction order and signal information about the patterned prediction order.
  • the image decoding apparatus may predict and / or reconstruct the subblocks sequentially in a predetermined prediction order based on the signaled information.
  • the image decoding apparatus may determine the prediction order of the sub-blocks based on the surrounding reference pixel values, the amount of change of the surrounding reference pixel values, encoding information of the neighboring blocks, and the like.
  • the change amount may be calculated using a plurality of reference pixels, and the plurality of reference pixels may be two, three, four, or more.
  • the plurality of reference pixels may be continuously arranged or may be arranged at a predetermined interval (eg, one, two or more pixel intervals).
  • the prediction and / or reconstruction of the sub-blocks may be performed in the order from which the difference D of the reference pixel values is largest to smallest.
  • the difference D of the reference pixel value with respect to the R2 reference pixel may be calculated as in Equation 1 below.
  • the difference D may be calculated for each reference pixel, and the prediction order may be determined in the order of the minimum difference from the maximum difference. Prediction and / or reconstruction may be performed sequentially in the order of subblocks corresponding to the reference pixel having the minimum difference Dmin in the subblock corresponding to the reference pixel having the maximum difference Dmax.
  • the prediction order may be any one of left to right, right to left, top to bottom, or bottom to top, depending on the size / shape of the subblock.
  • the prediction order may be determined dependent on the intra prediction mode of the current block and / or the neighboring block. For example, when the direction of the intra prediction mode is from top to bottom, the order of prediction and reconstruction may be the order of the first sub block to the fourth sub block. On the other hand, when the direction of the intra prediction mode is from the bottom to the top, the order of prediction and reconstruction may be the order of the first sub block in the fourth sub block.
  • the order of prediction and reconstruction may be a fixed order pre-committed to the image encoding / decoding apparatus.
  • the transform coefficients of the transform block may be scanned based on a predetermined scan type.
  • the transform block may consist of one or more coefficient groups. Based on the scan order according to the scan type, the transform coefficients belonging to the coefficient group and the coefficient group belonging to the transform block may be sequentially scanned.
  • the coefficient group may be a NxM sized block.
  • N and M are natural numbers, N and M may be the same or different from each other, N may be larger or smaller than M.
  • the coefficient group may be a square or non-square block.
  • the size / shape of the coefficient group may be fixed pre-committed to the image encoding apparatus or may be variably determined according to the size / shape of the transform block. Alternatively, the image encoding apparatus may determine the size / shape of the optimal coefficient group in consideration of encoding efficiency and encode the same.
  • the scan type a diagonal scan, a vertical scan, a horizontal scan, or the like can be used. However, the present invention is not limited thereto, and one or more scan types having a predetermined angle may be further added. Diagonal scan is a method of scanning from the upper right to the lower left, vertical scan is a method of scanning from the bottom to the top, horizontal scanning is a method of scanning from the right to the left.
  • the scanning may include at least one of the following.
  • the scan type may include coding block related information (eg, maximum / minimum size, splitting technique, etc.), transform block size / shape, coefficient group size / shape, prediction mode, intra prediction related information (eg, intra prediction). The value of the mode, directionality, angle, etc.) or inter prediction related information.
  • the image encoding apparatus may determine an optimal scan type among scan type candidates available for the transform block, and encode an index that specifies the determined scan type.
  • the scan type candidate may include at least one of the foregoing diagonal scan, vertical scan, horizontal scan, zigzag scan, or z scan.
  • the number and / or types of scan type candidates may be different for each transform block, and for this, coding block related information, a size / shape / depth of a transform block, a size / shape of a coefficient group, a prediction mode, and intra prediction At least one of related information or inter prediction related information may be considered.
  • a transform coefficient belonging to a partial region of the transform block may be set to zero.
  • the size of the transform block may be expressed by at least one of a width, a height, a sum of the width and the height, or the number of transform coefficients.
  • the predetermined threshold may mean a size predefined in the image encoding apparatus.
  • the partial region may include at least one of one or more coefficient rows located at the bottom of the transform block and one or more coefficient columns located at the right side. The partial region may be determined dependent on the threshold value. For example, within a transform block, an area exceeding the size according to the threshold may be specified, and a transform coefficient belonging to the corresponding area may be set to zero.
  • the transform coefficients located in the 64 columns on the top and / or left side are maintained as they are, and the remaining transform coefficients may be set to zero.
  • M is greater than the threshold 64, the transform coefficients located in the 64 rows on the top and / or left side remain the same, and the remaining transform coefficients may be set to zero.
  • FIG. 14 illustrates a scan method for a square transform block as an embodiment to which the present invention is applied.
  • an 8x8 transform block includes four coefficient groups, and the transform coefficients of the 8x8 transform block can be scanned in units of coefficient groups.
  • FIG. 14A illustrates a diagonal scan, in which a scan is performed in the order of the lower right coefficient group, the upper right coefficient group, the lower left coefficient group, and the upper left coefficient group of the transform block in the scanning order according to the diagonal scan. The transform coefficients of the groups are scanned from the top right to the bottom left.
  • FIG. 14 (b) shows a horizontal scan, in which the lower right coefficient group, the lower left coefficient group, the upper right coefficient group, and the upper left coefficient group of the transform block are scanned in the scanning order according to the horizontal scan. The transform coefficients of the group are also scanned from right to left.
  • FIG. 14A illustrates a diagonal scan, in which a scan is performed in the order of the lower right coefficient group, the upper right coefficient group, the lower left coefficient group, and the upper left coefficient group of the transform block in the scanning order according to the diagonal scan. The transform coefficients of
  • FIG. 14C illustrates a vertical scan, in which the right bottom coefficient group, the right top coefficient group, the bottom left coefficient group, and the top left coefficient group of the transform block are scanned in the order of scanning according to the vertical scan.
  • the transform coefficients of the group are also scanned from bottom to top.
  • 15 and 16 illustrate a scanning method for a non-square transform block as an embodiment to which the present invention is applied.
  • 15 illustrates a scan method for an 8x4 transform block.
  • FIG. 15A illustrates a case in which the scan type is a diagonal scan and is scanned in units of a 4x4 coefficient group.
  • the transform coefficients of the transform block are scanned in order from the lower coefficient group to the upper coefficient group, and the transform coefficients of each coefficient group are scanned from the upper right to the lower left according to the diagonal scan.
  • FIG. 15B illustrates a case in which the scan type is a vertical scan and is scanned in units of a 4x4 coefficient group.
  • the transform coefficients of the transform block are scanned in order from the lower coefficient group to the upper coefficient group, and the transform coefficients of each coefficient group are scanned from the lower edge to the upper edge in accordance with the vertical scan.
  • FIG. 15A illustrates a case in which the scan type is a diagonal scan and is scanned in units of a 4x4 coefficient group.
  • the transform coefficients of the transform block are scanned in order from the lower coefficient group to the upper coefficient group, and the transform coefficients of each coefficient group are scanned from the lower edge
  • the transform coefficients of the transform block are scanned in order from the lower coefficient group to the upper coefficient group, and the transform coefficients of each coefficient group are scanned from right to left according to a horizontal scan.
  • the transform coefficients of the 8 ⁇ 4 transform block may be scanned from the bottom to the top based on the vertical scan in units of 8 ⁇ 4 coefficient groups.
  • At least one of a diagonal scan, a vertical scan, or a horizontal scan may be used as a scan type candidate, and a unit of a coefficient group may selectively use either 4x4 or 8x4.
  • the determination of the scan type and the unit determination of the coefficient group are as described above.
  • 16 illustrates a scan method for a 4x8 transform block.
  • FIG. 16A illustrates a case where a scan type is a diagonal scan and is scanned in units of a 4x4 coefficient group.
  • the transform coefficients of the transform block are scanned in order from the coefficient group on the right to the coefficient group on the left, and the transform coefficients of each coefficient group are scanned from the upper right to the lower left according to the diagonal scan.
  • FIG. 16B illustrates a case in which the scan type is a vertical scan and is scanned in units of a 4x4 coefficient group.
  • the transform coefficients of the transform block are scanned in order from the coefficient group on the right to the coefficient group on the left, but the transform coefficients of each coefficient group are scanned from the bottom to the top according to the vertical scan.
  • FIG. 16A illustrates a case where a scan type is a diagonal scan and is scanned in units of a 4x4 coefficient group.
  • the transform coefficients of the transform block are scanned in order from the coefficient group on the right to the coefficient group on the left, but the transform coefficients of each coefficient
  • 16C illustrates a case in which the scan type is a horizontal scan and is scanned in units of a 4x4 coefficient group.
  • the transform coefficients of the transform block are scanned in order from the coefficient group on the right to the coefficient group on the left, but the transform coefficients of each coefficient group are scanned from right to left according to the horizontal scan.
  • the transform coefficients of the 4x8 transform block may be scanned from right to left based on a horizontal scan in units of 4x8 coefficient groups.
  • a diagonal scan, a vertical scan, or a horizontal scan may be used as a scan type candidate, and a unit of a coefficient group may optionally use either 4x4 or 4x8.
  • the determination of the scan type and the unit determination of the coefficient group are as described above.
  • the image decoding apparatus may entropy decode the input bitstream to obtain transform coefficients of the transform block.
  • the apparatus for decoding an image may include coding block related information (eg, maximum / minimum size, splitting technique, etc.), transform block size / shape, coefficient group size / shape, prediction mode, intra prediction related information (eg, The scan type of the transform block may be determined based on at least one of intra prediction mode value, directionality, angle, etc.) or inter prediction related information.
  • coding block related information eg, maximum / minimum size, splitting technique, etc.
  • transform block size / shape e.g, coefficient group size / shape
  • prediction mode eg, intra prediction related information
  • intra prediction related information eg, The scan type of the transform block may be determined based on at least one of intra prediction mode value, directionality, angle, etc.
  • inter prediction related information e.g, The scan type of the transform block may be determined based on at least one of intra prediction mode value, directionality, angle, etc.
  • 17 is a diagram illustrating a range in which an in-loop filter is applied as an embodiment to which the present invention is applied.
  • a dotted line represents a boundary of a virtual block
  • a thick solid line represents a boundary of a coding block
  • a thin solid line represents a boundary between pixels.
  • the virtual block may mean a sub block having any size and / or shape constituting the coding block.
  • the in-loop filter may be applied symmetrically or asymmetrically about the boundary of the virtual block or the coding block. In this case, the in-loop filter may be applied to the same range for all blocks, or may be applied to different ranges for each block according to the attributes of the block.
  • the shape of the range to which the in-loop filter is applied may be applied in the unit of a line of a one-dimensional form, or may be applied in the unit of a block of a two-dimensional form.
  • the information about the in-loop filter of the present invention may be determined according to an appointment between video encoding / decoding devices, or may be signaled through a bitstream.
  • the filter has a one-dimensional shape, and the application range is two pixels to the left and the right of the block boundary.
  • gray-shaded pixels are pixels to which an in-loop filter is applied at the boundary 401 of the virtual block. If the size of the virtual block is small as shown in FIG. 17B, the application range at the virtual block boundary 411 and the application range at the virtual block boundary 412 overlap. On the other hand, as shown in FIG. 17C, when the size of the virtual block increases, an area that does not correspond to any of the coverage at the virtual block boundary 421 and the coverage at the virtual block boundary 422 may exist. have. That is, various embodiments may occur according to at least one of an application range of a filter or a size of a virtual block.
  • the filter application range is three pixels left / right around a boundary, an area in which the in-loop filter is applied to both of FIGS. 17A and 17B overlaps.
  • the application range of the filter is one pixel to the left and right of the boundary, the region to which the in-loop filter is applied in both FIGS. 17A to 17C does not occur.
  • the case where the application range of the filter is 0 pixels around the boundary may appear.
  • the dark gray shaded region represents the coverage of the in-loop filter on the boundaries of the coding block
  • the light gray shaded region represents the coverage of the in-loop filter on the boundaries of the virtual block.
  • the shape / size of the in-loop filter applied to the coding block and the virtual block may be the same.
  • the in-loop filter may be applied only to the boundaries of the coding block, and the application of the in-loop filter to the boundaries of the virtual block may be skipped.
  • the in-loop filter for the boundary of the coding block and the in-loop filter for the boundary of the virtual block may have different application ranges.
  • the size of the virtual block is not square, at least one of the size, shape, or application range of the filter applied at the horizontal boundary and the vertical boundary may be different.
  • the application of the in-loop filter may be omitted for all or overlapping areas of the in-loop filter.
  • FIG. 18 illustrates a method of determining an application range of an in-loop filter as an embodiment to which the present invention is applied.
  • in-loop filter related information may be obtained (S1800).
  • the in-loop filter related information may include at least one of filter information for the boundary of the virtual block or filter information for the boundary of the coding block.
  • One in-loop filter related information may be shared by a coding block and a virtual block. Filter information for the boundary of the virtual block may be used for the boundary of the coding block, and conversely, filter information for the boundary of the coding block may be used for the boundary of the virtual block.
  • coding blocks and virtual blocks may be distinguished and different filter information may be used.
  • the information may be signaled or derived through a bitstream, or may be information pre-committed to an image encoding / decoding apparatus. Some of the information may be signaled through the bitstream, and others may be information pre-committed to the image encoding / decoding apparatus.
  • the method of determining a boundary of a coding block and / or a virtual block to which an in-loop filter is applied may be derived / determined based on information signaled through a bitstream, and is pre-configured or derived from the image decoding apparatus. It may be determined based on.
  • the in-loop filter may be applied to the current boundary (S1820).
  • Application of the in-loop filter may include determining an in-loop filter suitable for the current boundary.
  • the shape / size of the in-loop filter corresponding to the current boundary is a quantization parameter (QP), a pixel value located at the boundary or one or more surrounding pixel values, a reference picture index, a luminance component, a type of chrominance component, a boundary It may be determined in consideration of at least one of an attribute of a block to which a length or a boundary belongs.
  • QP quantization parameter
  • the application of the in-loop filter to the current boundary may be omitted (S1830).
  • the ON / OFF information regarding the application of the in-loop filter may be signaled through the bitstream, which is a coding unit group such as sequence, picture, slice, tile, block, coding unit, sub coding unit, etc. It can be signaled at various levels. Even if it is turned ON at the upper level, it can be selectively applied according to ON / OFF information at the lower level. That is, ON information indicating that the in-loop filter is applied at the boundary of the coding block and the virtual block at the image sequence level may be signaled, and the in-loop filter is not applied at the boundary of the coding block and the virtual block in a specific picture. OFF information indicating no can be signaled.
  • the bitstream which is a coding unit group such as sequence, picture, slice, tile, block, coding unit, sub coding unit, etc. It can be signaled at various levels. Even if it is turned ON at the upper level, it can be selectively applied according to ON / OFF information at the lower level
  • each pixel constituting the virtual block may have a different motion vector.
  • application of the in-loop filter to the boundary of the virtual block can be omitted.
  • the application range of the in-loop filter overlaps at two boundaries, the application of the in-loop filter to one boundary may be omitted.
  • the in-loop filter may be applied only to the boundary of the coding block, and the application of the in-loop filter may be selectively skipped on the boundary of the virtual block.
  • FIG. 19 illustrates a method of applying an in-loop filter to a boundary of a geometric shape as an embodiment to which the present invention is applied.
  • the boundary may have any shape other than a rectangle according to a block division form as shown in FIGS. 10 (f) and 10 (g).
  • an in-loop filter may be applied as shown in FIG. 19.
  • 19 (a) and (b) show block boundaries, and FIGS. 19 (c) and (d) respectively enlarge them.
  • 19 (c) and (d) the square block represents a pixel, and shows that the in-loop filter is applied by two pixels about a boundary.
  • the shape of the boundary and the application range of the filter may vary.
  • Exemplary methods of the present disclosure are represented as a series of operations for clarity of description, but are not intended to limit the order in which the steps are performed, and each step may be performed simultaneously or in a different order as necessary.
  • the illustrated step may further include other steps, may include other steps except some, or may include additional other steps except some.
  • various embodiments of the present disclosure may be implemented by hardware, firmware, software, or a combination thereof.
  • one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), General Purpose It may be implemented by a general processor, a controller, a microcontroller, a microprocessor, and the like.
  • scope of the disclosure include software or machine-executable instructions (eg, an operating system, an application, firmware, a program, etc.) to cause an operation in accordance with various embodiments of the method to be executed on an apparatus or a computer, and such software or Instructions, and the like, including non-transitory computer-readable media that are stored and executable on a device or computer.
  • software or machine-executable instructions eg, an operating system, an application, firmware, a program, etc.
  • the present invention can be used to encode / decode video signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명에 따른 영상 부호화/복호화 장치는, 모션 벡터 보정 관련 정보를 획득하고, 현재 블록의 모션 벡터를 기반으로 모션 보상을 수행하며, 모션 벡터 보정 관련 정보 또는 모션 보상 수행 결과 중 적어도 하나를 이용하여 상기 현재 블록의 모션 벡터를 보정하고, 보정된 모션 벡터를 이용하여 모션 보상을 재수행할 수 있다.

Description

비디오 신호 부호화/복호화 방법 및 장치
본 발명은 비디오 신호를 부호화/복호화하는 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 고효율의 영상 압축 기술들이 활용될 수 있다.
영상 압축 기술로 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면 내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
한편, 고해상도 영상에 대한 수요가 증가함과 함께, 새로운 영상 서비스로서 입체 영상 컨텐츠에 대한 수요도 함께 증가하고 있다. 고해상도 및 초고해상도의 입체 영상 콘텐츠를 효과적으로 제공하기 위한 비디오 압축 기술에 대하여 논의가 진행되고 있다.
본 발명은 CABAC 컨텍스트 모델의 부호화 효율을 향상시키고자 한다.
본 발명은 인터 예측의 압축 효율을 향상시키고자 한다.
본 발명은 인트라 예측의 압축 효율을 향상시키고자 한다.
본 발명은 비정방형의 변환 블록에 대한 스캔 방법을 제안한다.
본 발명은 적응적으로 인-루프 필터를 적용하는 방법을 제안한다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
본 발명은 CABAC 컨텍스트 모델을 적응적으로 초기화하는 방법 및 장치를 제공한다.
본 발명은 부호화/복호화된 모션 벡터를 보정하고, 보정된 모션 벡터를 기반으로 모션 보상을 수행하는 방법 및 장치를 제공한다.
본 발명은 현재 블록을 복수의 서브 블록으로 분할하고, 소정의 우선순서에 따라 순차적으로 각 서브 블록을 복원하는 단방향/양방향 인트라 예측 방법 및 장치를 제공한다.
본 발명은 NxM 계수 그룹을 기반으로, 복수의 스캔 타입 중 어느 하나를 선택적으로 이용하는 스캔 방법 및 장치를 제공한다.
본 발명은 서로 상이한 모션 벡터를 가진 가상 블록의 경계에 인-루프 필터를 적용하는 방법 및 장치를 제공한다.
본 발명에 따르면, 부호화/복호화 순서상 이전 픽쳐 혹은 동일한 QP를 사용하는 참조 픽쳐의 부호화 과정에서, 저장된 CABAC 컨텍스트 모델의 상태를 현재 픽쳐의 CABAC 컨텍스트 모델의 초기 값으로 설정하여 부호화 성능을 향상시킬 수 있다.
또한, 본 발명에 따르면, 현재 픽쳐의 병렬화 단위 별로, 이에 대응하는 참조 픽쳐 내 병렬화 단위에 저장된 CABAC 컨텍스트 모델의 상태를 참조함으로써, 부호화 성능을 향상시킬 수 있다.
또한, 본 발명에 따르면, 부호화/복호화된 모션 벡터에 추가적인 보정을 수행함으로써, 보다 정밀한 비디오 복원이 가능하고, 부호화 효율이 향상될 수 있다.
본 발명에 따르면, 단방향/양방향 인트라 예측 기법을 통해 인트라 예측의 압축 효율이 향상될 수 있다.
본 발명에 따르면, 변환 계수의 스캐닝을 효율적으로 할 수 있다.
본 발명에 따르면, 서로 상이한 모션 벡터를 가진 가상 블록의 경계에 대해 인-루프 필터를 적용함으로써, 주관적인 또는 객관적인 화질의 향상을 얻을 수 있다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 3은 본 발명이 적용되는 일실시예로서, CABAC 컨텍스트 모델의 초기화를 적응적으로 수행하는 CABAC 부호화/복호화 장치의 개략적인 구성을 도시한 것이다.
도 4는 본 발명의 일 실시예에 따른 CABAC 컨텍스트 모델의 적응적 초기화의 일 예를 도시한 것이다.
도 5는 본 발명이 적용되는 일실시예로서, 병렬화 단위 별 CABAC 컨텍스트 모델의 적응적 초기화를 도시한 것이다.
도 6과 도 7은 본 발명이 적용되는 일실시예로서, 병렬 처리 기반의 CABAC 컨텍스트 모델의 초기화 방법을 도시한 것이다.
도 8은 본 발명이 적용되는 일실시예로서, 모션 벡터에 대한 보정을 선택적으로 수행하여 인터 예측을 수행하는 과정을 도시한 것이다.
도 9는 도 8의 실시 예에서 모션 벡터의 보정이 반복적으로 수행된 경우, 모션 벡터의 보정 단계에서 블록이 변경되는 예를 도시한 것이다.
도 10은 본 발명이 적용되는 일실시예로서, 모션 벡터의 반복적 보정에 대응하여 분할된 블록의 크기/형태를 도시한 것이다.
도 11은 본 발명이 적용되는 일실시예로서, 모션 벡터 차이(MVD)의 선택적 시그날링을 기반으로 인터 예측을 수행하는 과정을 도시한 것이다.
도 12는 본 발명이 적용되는 일실시예로서, 서브 블록 단위의 단방향 인트라 예측 방법을 도시한 것이다.
도 13은 본 발명이 적용되는 일실시예로서, 서브 블록 단위의 양방향 인트라 예측 방법을 도시한 것이다.
도 14는 본 발명이 적용되는 일실시예로서, 정방형의 변환 블록에 대한 스캔 방법을 도시한 것이다.
도 15과 도 16은 본 발명이 적용되는 일실시예로서, 비정방형의 변환 블록에 대한 스캔 방법을 도시한 것이다.
도 17은 본 발명이 적용되는 일실시예로서, 인-루프가 필터가 적용되는 범위를 도시한 것이다.
도 18은 본 발명이 적용되는 일실시예로서, 인-루프 필터의 적용 범위를 결정하는 방법을 도시한 것이다.
도 19는 본 발명이 적용되는 일실시예로서, 기하학적 모양의 경계에 인-루프 필터를 적용하는 방법을 도시한 것이다.
본 발명에 따른 인터 예측 방법은, 현재 블록에 대한 모션 벡터 보정 관련 정보를 획득하고, 현재 블록의 모션 벡터를 복원하며, 상기 모션 벡터를 기반으로 상기 현재 블록에 대한 모션 보상을 수행하고, 상기 모션 보상 수행 결과 또는 상기 모션 벡터 보정 관련 정보 중 적어도 하나를 이용하여 상기 현재 블록의 모션 벡터를 보정하며, 상기 보정된 모션 벡터를 이용하여 상기 현재 블록에 대한 모션 보상을 재수행할 수 있다.
본 발명에 따른 인트라 예측 방법은, 현재 블록의 참조 픽셀을 기반으로 상기 현재 블록 내 제1 서브 블록에 대해 인트라 예측을 수행하여, 상기 제1 서브 블록을 복원하고, 상기 현재 블록의 참조 픽셀 또는 상기 복원된 제1 서브 블록의 픽셀 중 적어도 하나를 이용하여, 상기 현재 블록 내 제2 서브 블록에 대해 인트라 예측을 수행할 수 있다.
본 발명에 따른 변환 계수 스캐닝 방법은, 스캔 비트스트림을 디코딩하여, 변환 블록의 변환 계수를 획득하고, 소정의 스캔 타입을 기반으로, 상기 변환 블록의 변환 계수를 스캐닝하며, 상기 스캐닝은, NxM 계수 그룹의 단위로 수행되고, 상기 스캔 타입은, 복수의 스캔 타입 후보 중에서, 시그날링된 인덱스에 기초하여 결정될 수 있다.
본 발명에 따른 영상 복호화 장치는, 현재 블록에 대한 모션 벡터 보정 관련 정보를 획득하는 엔트로피 디코딩부와 현재 블록의 모션 벡터를 복원하고, 상기 모션 벡터를 기반으로 상기 현재 블록에 대한 모션 보상을 수행하며, 상기 모션 보상 수행 결과 또는 상기 모션 벡터 보정 관련 정보 중 적어도 하나를 이용하여 상기 현재 블록의 모션 벡터를 보정하고, 상기 보정된 모션 벡터를 이용하여 상기 현재 블록에 대한 모션 보상을 재수행하는 인터 예측부를 포함할 수 있다.
본 발명에 따른 영상 복호화 장치는, 현재 블록의 참조 픽셀을 기반으로 상기 현재 블록 내 제1 서브 블록에 대해 인트라 예측을 수행하여, 상기 제1 서브 블록을 복원하고, 상기 현재 블록의 참조 픽셀 또는 상기 복원된 제1 서브 블록의 픽셀 중 적어도 하나를 이용하여, 상기 현재 블록 내 제2 서브 블록에 대해 인트라 예측을 수행하는 인트라 예측부를 포함할 수 있다.
본 발명에 따른 영상 복호화 장치는, 비트스트림을 디코딩하여, 변환 블록의 변환 계수를 획득하는 엔트로피 디코딩부와 소정의 스캔 타입을 기반으로, 상기 변환 블록의 변환 계수를 스캐닝하는 재정렬부를 포함하고, 상기 스캐닝은, NxM 계수 그룹의 단위로 수행되고, 상기 스캔 타입은 복수의 스캔 타입 후보 중에서, 시그날링된 인덱스에 기초하여 결정될 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 1을 참조하면, 영상 부호화 장치(100)는 픽쳐 분할부(110), 예측부(120, 125), 변환부(130), 양자화부(135), 재정렬부(160), 엔트로피 부호화부(165), 역양자화부(140), 역변환부(145), 필터부(150) 및 메모리(155)를 포함할 수 있다.
도 1에 나타난 각 구성부들은 영상 부호화 장치에서 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시한 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
픽쳐 분할부(110)는 입력된 픽쳐를 적어도 하나의 블록으로 분할할 수 있다. 이때, 블록은 부호화 단위(CU), 예측 단위(PU) 또는 변환 단위(TU)를 의미할 수 있다. 상기 분할은 쿼드 트리(Quadtree) 또는 바이너리 트리(Biniary tree) 중 적어도 하나에 기반하여 수행될 수 있다. 쿼드 트리는 상위 블록을 너비와 높이가 상위 블록의 절반인 하위 블록으로 사분할하는 방식이다. 바이너리 트리는 상위 블록을 너비 또는 높이 중 어느 하나가 상위 블록의 절반인 하위 블록으로 이분할하는 방식이다. 바이너리 트리에서는 상위 블록이 높이가 절반이 전술한 바이너리 트리 기반의 분할을 통해, 블록은 정방형뿐만 아니라 비정방형의 형태를 가질 수 있다.
이하, 본 발명의 실시예에서는 부호화 단위는 부호화를 수행하는 단위의 의미로 사용할 수도 있고, 복호화를 수행하는 단위의 의미로 사용할 수도 있다.
예측부(120, 125)는 인터 예측을 수행하는 인터 예측부(120)와 인트라 예측을 수행하는 인트라 예측부(125)를 포함할 수 있다. 예측 단위에 대해 인터 예측을 사용할 것인지 또는 인트라 예측을 수행할 것인지를 결정하고, 각 예측 방법에 따른 구체적인 정보(예컨대, 인트라 예측 모드, 모션 벡터, 참조 픽쳐 등)를 결정할 수 있다. 이때, 예측이 수행되는 처리 단위와 예측 방법 및 구체적인 내용이 정해지는 처리 단위는 다를 수 있다. 예컨대, 예측의 방법과 예측 모드 등은 예측 단위로 결정되고, 예측의 수행은 변환 단위로 수행될 수도 있다. 생성된 예측 블록과 원본 블록 사이의 잔차값(잔차 블록)은 변환부(130)로 입력될 수 있다. 또한, 예측을 위해 사용한 예측 모드 정보, 모션 벡터 정보 등은 잔차값과 함께 엔트로피 부호화부(165)에서 부호화되어 복호화기에 전달될 수 있다. 특정한 부호화 모드를 사용할 경우, 예측부(120, 125)를 통해 예측 블록을 생성하지 않고, 원본 블록을 그대로 부호화하여 복호화부에 전송하는 것도 가능하다.
인터 예측부(120)는 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐의 정보를 기초로 예측 단위를 예측할 수도 있고, 경우에 따라서는 현재 픽쳐 내의 부호화가 완료된 일부 영역의 정보를 기초로 예측 단위를 예측할 수도 있다. 인터 예측부(120)는 참조 픽쳐 보간부, 모션 예측부, 움직임 보상부를 포함할 수 있다.
참조 픽쳐 보간부에서는 메모리(155)로부터 참조 픽쳐 정보를 제공받고 참조 픽쳐에서 정수 화소 이하의 화소 정보를 생성할 수 있다. 휘도 화소의 경우, 1/4 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 8탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다. 색차 신호의 경우 1/8 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 4탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다.
모션 예측부는 참조 픽쳐 보간부에 의해 보간된 참조 픽쳐를 기초로 모션 예측을 수행할 수 있다. 모션 벡터를 산출하기 위한 방법으로 FBMA(Full search-based Block Matching Algorithm), TSS(Three Step Search), NTS(New Three-Step Search Algorithm) 등 다양한 방법이 사용될 수 있다. 모션 벡터는 보간된 화소를 기초로 1/2 또는 1/4 화소 단위의 모션 벡터값을 가질 수 있다. 모션 예측부에서는 모션 예측 방법을 다르게 하여 현재 예측 단위를 예측할 수 있다. 모션 예측 방법으로 스킵(Skip) 방법, 머지(Merge) 방법, AMVP(Advanced Motion Vector Prediction) 방법 등 다양한 방법이 사용될 수 있다.
인트라 예측부(125)는 현재 픽쳐 내의 화소 정보인 현재 블록 주변의 참조 픽셀 정보를 기초로 예측 단위를 생성할 수 있다. 현재 예측 단위의 주변 블록이 인터 예측을 수행한 블록이어서, 참조 픽셀이 인터 예측을 수행한 픽셀일 경우, 인터 예측을 수행한 블록에 포함되는 참조 픽셀을 주변의 인트라 예측을 수행한 블록의 참조 픽셀 정보로 대체하여 사용할 수 있다. 즉, 참조 픽셀이 가용하지 않는 경우, 가용하지 않은 참조 픽셀 정보를 가용한 참조 픽셀 중 적어도 하나의 참조 픽셀로 대체하여 사용할 수 있다.
인트라 예측에서 예측 모드는 참조 픽셀 정보를 예측 방향에 따라 사용하는 방향성 예측 모드와 예측을 수행시 방향성 정보를 사용하지 않는 비방향성 모드를 가질 수 있다. 휘도 정보를 예측하기 위한 모드와 색차 정보를 예측하기 위한 모드가 상이할 수 있고, 색차 정보를 예측하기 위해 휘도 정보를 예측하기 위해 사용된 인트라 예측 모드 정보 또는 예측된 휘도 신호 정보를 활용할 수 있다.
인트라 예측 방법은 예측 모드에 따라 참조 화소에 AIS(Adaptive Intra Smoothing) 필터를 적용한 후 예측 블록을 생성할 수 있다. 참조 화소에 적용되는 AIS 필터의 종류는 상이할 수 있다. 인트라 예측 방법을 수행하기 위해 현재 예측 단위의 인트라 예측 모드는 현재 예측 단위의 주변에 존재하는 예측 단위의 인트라 예측 모드로부터 예측할 수 있다. 주변 예측 단위로부터 예측된 모드 정보를 이용하여 현재 예측 단위의 예측 모드를 예측하는 경우, 현재 예측 단위와 주변 예측 단위의 인트라 예측 모드가 동일하면 소정의 플래그 정보를 이용하여 현재 예측 단위와 주변 예측 단위의 예측 모드가 동일하다는 정보를 전송할 수 있고, 만약 현재 예측 단위와 주변 예측 단위의 예측 모드가 상이하면 엔트로피 부호화를 수행하여 현재 블록의 예측 모드 정보를 부호화할 수 있다.
또한, 예측부(120, 125)에서 생성된 예측 단위를 기초로 예측을 수행한 예측 단위와 예측 단위의 원본 블록과 차이값인 잔차값(Residual) 정보를 포함하는 잔차 블록이 생성될 수 있다. 생성된 잔차 블록은 변환부(130)로 입력될 수 있다.
변환부(130)에서는 잔차 데이터를 포함한 잔차 블록을 DCT, DST 등과 같은 변환 방법을 사용하여 변환시킬 수 있다. 이때 변환 방법은 잔차 블록을 생성하기 위해 사용된 예측 단위의 인트라 예측 모드에 기반하여 결정될 수 있다.
양자화부(135)는 변환부(130)에서 주파수 영역으로 변환된 값들을 양자화할 수 있다. 블록에 따라 또는 영상의 중요도에 따라 양자화 계수는 변할 수 있다. 양자화부(135)에서 산출된 값은 역양자화부(140)와 재정렬부(160)에 제공될 수 있다.
재정렬부(160)는 양자화된 잔차값에 대해 계수값의 재정렬을 수행할 수 있다.
재정렬부(160)는 계수 스캐닝(Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다. 예를 들어, 재정렬부(160)에서는 소정의 스캔 타입을 이용하여 DC 계수부터 고주파수 영역의 계수까지 스캔하여 1차원 벡터 형태로 변경시킬 수 있다.
엔트로피 부호화부(165)는 재정렬부(160)에 의해 산출된 값들을 기초로 엔트로피 부호화를 수행할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 부호화 방법을 사용할 수 있다.
엔트로피 부호화부(165)는 재정렬부(160) 및 예측부(120, 125)로부터 부호화 단위의 잔차값 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, 예측 단위 정보 및 전송 단위 정보, 모션 벡터 정보, 참조 프레임 정보, 블록의 보간 정보, 필터링 정보 등 다양한 정보를 부호화할 수 있다.
엔트로피 부호화부(165)에서는 재정렬부(160)에서 입력된 부호화 단위의 계수값을 엔트로피 부호화할 수 있다.
역양자화부(140) 및 역변환부(145)에서는 양자화부(135)에서 양자화된 값들을 역양자화하고 변환부(130)에서 변환된 값들을 역변환한다. 역양자화부(140) 및 역변환부(145)에서 생성된 잔차값(Residual)은 예측부(120, 125)에 포함된 움직임 추정부, 움직임 보상부 및 인트라 예측부를 통해서 예측된 예측 단위와 합쳐져 복원 블록(Reconstructed Block)을 생성할 수 있다.
필터부(150)는 디블록킹 필터, 오프셋 보정부, ALF(Adaptive Loop Filter)중 적어도 하나를 포함할 수 있다.
디블록킹 필터는 복원된 픽쳐에서 블록간의 경계로 인해 생긴 블록 왜곡을 제거할 수 있다. 디블록킹을 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행 처리되도록 할 수 있다.
오프셋 보정부는 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽쳐에 대한 오프셋 보정을 수행하기 위해 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
ALF(Adaptive Loop Filtering)는 필터링한 복원 영상과 원래의 영상을 비교한 값을 기초로 수행될 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 하나의 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. ALF를 적용할지 여부에 관련된 정보는 휘도 신호는 부호화 단위(Coding Unit, CU) 별로 전송될 수 있고, 각각의 블록에 따라 적용될 ALF 필터의 모양 및 필터 계수는 달라질 수 있다. 또한, 적용 대상 블록의 특성에 상관없이 동일한 형태(고정된 형태)의 ALF 필터가 적용될 수도 있다.
메모리(155)는 필터부(150)를 통해 산출된 복원 블록 또는 픽쳐를 저장할 수 있고, 저장된 복원 블록 또는 픽쳐는 인터 예측을 수행 시 예측부(120, 125)에 제공될 수 있다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 2를 참조하면, 영상 복호화기(200)는 엔트로피 복호화부(210), 재정렬부(215), 역양자화부(220), 역변환부(225), 예측부(230, 235), 필터부(240), 메모리(245)가 포함될 수 있다.
영상 부호화기에서 영상 비트스트림이 입력된 경우, 입력된 비트스트림은 영상 부호화기와 반대의 절차로 복호화될 수 있다.
엔트로피 복호화부(210)는 영상 부호화기의 엔트로피 부호화부에서 엔트로피 부호화를 수행한 것과 반대의 절차로 엔트로피 복호화를 수행할 수 있다. 예를 들어, 영상 부호화기에서 수행된 방법에 대응하여 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 방법이 적용될 수 있다.
엔트로피 복호화부(210)에서는 부호화기에서 수행된 인트라 예측 및 인터 예측에 관련된 정보를 복호화할 수 있다.
재정렬부(215)는 엔트로피 복호화부(210)에서 엔트로피 복호화된 비트스트림을 부호화부에서 재정렬한 방법을 기초로 재정렬을 수행할 수 있다. 1차원 벡터 형태로 표현된 계수들을 다시 2차원의 블록 형태의 계수로 복원하여 재정렬할 수 있다. 재정렬부(215)에서는 부호화부에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 해당 부호화부에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통해 재정렬을 수행할 수 있다.
역양자화부(220)는 부호화기에서 제공된 양자화 파라미터와 재정렬된 블록의 계수값을 기초로 역양자화를 수행할 수 있다.
역변환부(225)는 역양자화된 변환 계수를 소정의 변환 방법으로 역변환을 수행할 수 있다. 이때, 변환 방법은 예측 방법(인터/인트라 예측), 블록의 크기/형태, 인트라 예측 모드 등에 관한 정보를 기반으로 결정될 수 있다.
예측부(230, 235)는 엔트로피 복호화부(210)에서 제공된 예측 블록 생성 관련 정보와 메모리(245)에서 제공된 이전에 복호화된 블록 또는 픽쳐 정보를 기초로 예측 블록을 생성할 수 있다.
예측부(230, 235)는 예측 단위 판별부, 인터 예측부 및 인트라 예측부를 포함할 수 있다. 예측 단위 판별부는 엔트로피 복호화부(210)에서 입력되는 예측 단위 정보, 인트라 예측 방법의 예측 모드 정보, 인터 예측 방법의 모션 예측 관련 정보 등 다양한 정보를 입력 받고 현재 부호화 단위에서 예측 단위를 구분하고, 예측 단위가 인터 예측을 수행하는지 아니면 인트라 예측을 수행하는지 여부를 판별할 수 있다. 인터 예측부(230)는 영상 부호화기에서 제공된 현재 예측 단위의 인터 예측에 필요한 정보를 이용해 현재 예측 단위가 포함된 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 정보를 기초로 현재 예측 단위에 대한 인터 예측을 수행할 수 있다. 또는, 현재 예측 단위가 포함된 현재 픽쳐 내에서 기-복원된 일부 영역의 정보를 기초로 인터 예측을 수행할 수도 있다.
인터 예측을 수행하기 위해 부호화 단위를 기준으로 해당 부호화 단위에 포함된 예측 단위의 모션 예측 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), AMVP 모드(AMVP Mode) 중 어떠한 방법인지 여부를 판단할 수 있다.
인트라 예측부(235)는 현재 픽쳐 내의 화소 정보를 기초로 예측 블록을 생성할 수 있다. 예측 단위가 인트라 예측을 수행한 예측 단위인 경우, 영상 부호화기에서 제공된 예측 단위의 인트라 예측 모드 정보를 기초로 인트라 예측을 수행할 수 있다. 인트라 예측부(235)에는 AIS(Adaptive Intra Smoothing) 필터, 참조 화소 보간부, DC 필터를 포함할 수 있다. AIS 필터는 현재 블록의 참조 화소에 필터링을 수행하는 부분으로써 현재 예측 단위의 예측 모드에 따라 필터의 적용 여부를 결정하여 적용할 수 있다. 영상 부호화기에서 제공된 예측 단위의 예측 모드 및 AIS 필터 정보를 이용하여 현재 블록의 참조 화소에 AIS 필터링을 수행할 수 있다. 현재 블록의 예측 모드가 AIS 필터링을 수행하지 않는 모드일 경우, AIS 필터는 적용되지 않을 수 있다.
참조 화소 보간부는 예측 단위의 예측 모드가 참조 화소를 보간한 화소값을 기초로 인트라 예측을 수행하는 예측 단위일 경우, 참조 화소를 보간하여 정수값 이하의 화소 단위의 참조 화소를 생성할 수 있다. 현재 예측 단위의 예측 모드가 참조 화소를 보간하지 않고 예측 블록을 생성하는 예측 모드일 경우 참조 화소는 보간되지 않을 수 있다. DC 필터는 현재 블록의 예측 모드가 DC 모드일 경우 필터링을 통해서 예측 블록을 생성할 수 있다.
복원된 블록 또는 픽쳐는 필터부(240)로 제공될 수 있다. 필터부(240)는 디블록킹 필터, 오프셋 보정부, ALF를 포함할 수 있다.
영상 부호화기로부터 해당 블록 또는 픽쳐에 디블록킹 필터를 적용하였는지 여부에 대한 정보 및 디블록킹 필터를 적용하였을 경우, 강한 필터를 적용하였는지 또는 약한 필터를 적용하였는지에 대한 정보를 제공받을 수 있다. 영상 복호화기의 디블록킹 필터에서는 영상 부호화기에서 제공된 디블록킹 필터 관련 정보를 제공받고 영상 복호화기에서 해당 블록에 대한 디블록킹 필터링을 수행할 수 있다.
오프셋 보정부는 부호화시 영상에 적용된 오프셋 보정의 종류 및 오프셋 값 정보 등을 기초로 복원된 영상에 오프셋 보정을 수행할 수 있다.
ALF는 부호화기로부터 제공된 ALF 적용 여부 정보, ALF 계수 정보 등을 기초로 부호화 단위에 적용될 수 있다. 이러한 ALF 정보는 특정한 파라메터 셋에 포함되어 제공될 수 있다.
메모리(245)는 복원된 픽쳐 또는 블록을 저장하여 참조 픽쳐 또는 참조 블록으로 사용할 수 있도록 할 수 있고 또한 복원된 픽쳐를 출력부로 제공할 수 있다.
이하, 본 발명의 일 실시예에 따른 CABAC 부호화 방법 및 장치, 그리고 CABAC 복호화 방법 및 장치에 대하여 도 3 내지 도 7을 참조하여 구체적으로 설명하기로 한다. 또한, 본 명세서에 기재된 본 발명의 다양한 실시예들에서, ‘병렬화 단위’는 비디오 부호화 및 복호화 단계에서 병렬 처리를 위하여 하나의 픽쳐를 구성하는 하나 또는 그 이상의 부호화 단위의 집합을 지칭한다. 여기서, 부호화 단위는 트리 구조 기반의 분할을 통해 복수의 하위 부호화 단위로 분할되는 부호화 단위 또는 더 이상 분할되지 않는 부호화 단위를 모두 포함하여 포괄적으로 지칭될 수 있다.
도 3은 본 발명이 적용되는 일실시예로서, CABAC 컨텍스트 모델의 초기화를 적응적으로 수행하는 CABAC 부호화/복호화 장치의 개략적인 구성을 도시한 것이다.
도 3을 참조하면, 본 발명의 일실시예에 따른 CABAC 부호화/복호화 장치는 컨텍스트 초기화 판단부(310), 참조 컨텍스트 로드부(320), 컨텍스트 초기값 로드부(330) 또는 컨텍스트 초기화부(340) 중 적어도 하나를 포함할 수 있다.
컨텍스트 초기화 판단부(310)는 CABAC 컨텍스트 모델의 적응적 초기화가 수행되는지 여부를 나타내는 정보를 기반으로, CABAC 컨텍스트 모델의 적응적 초기화가 수행되는지 여부를 판단할 수 있다. 상기 정보는, 영상 부호화 장치에서 CABAC 컨텍스트 모델의 적응적 초기화를 수행할지 여부를 결정하고, 이를 플래그 등의 형태로 부호화한 것일 수도 있다. 또는, 상기 정보는 참조 CABAC 컨텍스트 상태를 나타내는 특정한 값의 형태를 포함할 수 있다. 상기 정보는 비트스트림의 하이-레벨 신택스(high-level syntax)에 포함되어 영상 복호화 장치로 시그날링될 수 있다. 예를 들어, 상기 정보는 시퀀스 파라미터 세트(sequence parameter set) 또는 픽쳐 파라미터 세트(picture parameter set) 중 적어도 하나에 포함되어 시그날링될 수 있다. 상기 정보는, 픽쳐를 구성하는 병렬화 단위 별로 시그날링될 수 있다. 이를 통해, 병렬화 단위 별로 CABAC 컨텍스트 모델의 적응적 초기화를 독립적으로 수행하는 것이 허용될 수 있다.
CABAC 컨텍스트가 적응적 초기화를 수행함을 나타내는 정보에 대응하여, 참조 컨텍스트 로드부(320)는 참조 CABAC 컨텍스트 상태를 획득할 수 있다. 컨텍스트 초기화부(340)는 획득된 참조 CABAC 컨텍스트 상태를 기반으로 CABAC 컨텍스트 모델을 초기화할 수 있다.
여기서, 참조 CABAC 컨텍스트 상태는, 이전 복호화 과정에서 저장된 CABAC 컨텍스트 상태를 의미할 수 있다. 또한, 참조 CABAC 컨텍스트 상태는, 기-복호화된 픽쳐에서 특정 위치에 저장된 CABAC 컨텍스트 상태를 의미할 수 있다. 예를 들어, 상기 참조 CABAC 컨텍스트 상태는 현재 CABAC 컨텍스트 모델이 속한 픽쳐와 동일한 픽쳐 또는 다른 시간대의 참조 픽쳐에서 특정 위치에 저장된 것일 수도 있다. 여기서, 특정 위치는 현재 CABAC 컨텍스트 모델에 대응하는 병렬한 단위 또는 이에 공간적/시간적으로 인접한 병렬화 단위에서의 특정 위치를 의미할 수 있다. 상기 특정 위치는 CABAC 부호화/복호화 장치에 기-약속된 고정된 위치일 수 있다. 또는, 상기 특정 위치는 비트스트림을 통해 시그날링된 정보를 기반으로 결정될 수도 있다. 이때, 시그날링된 정보는, CABAC 부호화 장치에서 특정 위치를 특정하기 위해 부호화된 정보, 현재 픽쳐의 참조 관계, 픽쳐를 구성하는 블록의 속성에 관한 정보(예를 들어, 분할 기법, 크기, 형태, 뎁스 등) 등을 의미할 수 있다.
픽쳐가 병렬화 단위(예를 들어, 타일)로 분할된 경우, 참조 CABAC 컨텍스트 상태는, 이미 복호화된 픽쳐 내 대응되는 병렬화 단위에서의 특정 위치에 저장된 CABAC 컨텍스트 상태를 의미할 수 있다. 이때, 상기 대응되는 병렬화 단위는 참조 픽쳐 내 동일 위치의 병렬화 단위 또는 참조 픽쳐 내에서 동일한 양자화 파라미터(QP)를 사용하는 병렬화 단위로 결정될 수 있다.
픽쳐가 병렬화 단위로 분할된 경우, 참조 CABAC 컨텍스트 상태의 위치는, 병렬화 단위의 크기 및/또는 개수가 동일한 경우에 이미 복호화된 픽쳐 내 대응되는 병렬화 단위에서의 특정 위치를 의미할 수 있다.
반면, 병렬화 단위의 크기 및/또는 개수가 동일하지 않은 경우, 이미 복호화된 픽쳐에 저장된 CABAC 컨텍스트 상태 중에서 어느 하나를 선택할 수 있다. 상기 선택은, 기-저장된 CABAC 컨텍스트 상태의 위치와 병렬화 단위의 위치의 차이를 고려하여 수행될 수 있다. 예를 들어, 병렬화 단위와의 위치 차이가 가장 작은 CABAC 컨텍스트 상태가 참조 CABAC 컨텍스트 상태로 선택될 수 있다. 또는, 병렬화 단위의 크기 및/또는 개수가 동일하지 않은 경우, 이미 복호화된 픽쳐에 저장된 CABAC 컨텍스트 상태의 위치 정보를 기반으로 병렬화 단위와 대응시켰을 때 가장 넓은 면적을 차지하는 이미 복호화된 픽쳐 내 병렬화 단위에 저장된 CABAC 컨텍스트 상태를 참조 CABAC 컨텍스트 상태로 사용할 수도 있다.
또한, 360도 비디오와 같이 하나의 픽쳐 내에 다수의 서브 픽쳐가 존재하는 경우에는, 픽쳐 내에 존재하는 각각의 서브 픽쳐의 특정 위치에 저장된 CABAC 컨텍스트 상태가 참조 CABAC 컨텍스트 상태로 이용될 수 있다.
도 4는 본 발명의 일 실시예에 따른 CABAC 컨텍스트 모델의 적응적 초기화의 일 예를 도시한 것이다.
도 4에서, 참조 픽쳐(reference picture, 410)는 현재 픽쳐(420) 이전에 기-부호화/복호화된 픽쳐이며, 이는 현재 픽쳐(420)의 CABAC 컨텍스트 모델의 초기화에 참조되는 픽쳐를 의미할 수 있다. 여기서, 참조 픽쳐(410)는 현재 픽쳐(420)가 인터 예측을 위해 참조하는 복수의 참조 픽쳐 중 어느 하나일 수 있다. 예를 들어, 참조 픽쳐(410)는 현재 픽쳐를 위한 참조 픽쳐 리스트에서 소정의 인덱스를 가진 참조 픽쳐일 수 있다. 이때, 소정의 인덱스는 CABAC 부호화/복호화 장치에 기-약속된 고정된 값일 수 있다. 또는 소정의 인덱스는 비트스트림을 통해 시그날링되거나, 현재 픽쳐(420)에 속한 블록의 참조 픽쳐 인덱스로부터 유도되어 가변적으로 결정되는 값일 수도 있다. 현재 픽쳐(420)와 동일한 양자화 파라미터(QP)를 사용하는 픽쳐를 참조 픽쳐(410)로 선택하여 이용할 수도 있다.
도 4에 도시된 바와 같이, 현재 픽쳐(420)는 CABAC 컨텍스트 모델의 적응적 초기화를 위해 참조 픽쳐(410)의 특정 위치에 저장된 CABAC 컨텍스트 상태를 참조할 수 있다.
상기 참조 픽쳐(410)의 특정 위치라 함은, CABAC 부호화/복호화 장치에 기-약속된 부호화 단위의 위치를 의미할 수 있고, 이 경우 특정 위치를 나타내는 정보는 시그날링되지 않을 수 있다. 또는, CABAC 부호화 장치는 부호화 효율을 고려하여, 참조 픽쳐(410) 내에서 최적의 특정 위치를 결정하고, 이를 부호화하여 CABAC 복호화 장치로 시그날링할 수도 있다.
참조 픽쳐(410)의 특정 위치에서 저장된 CABAC 컨텍스트 상태를 참조하는 과정은 상기 참조 픽쳐(410)의 특정 위치에 대응하는 블록을 부호화/복호화하는 시점에 저장된 CABAC 컨텍스트 상태를 로드하는 과정을 포함할 수 있다.
그리고, 현재 픽쳐(420)의 CABAC 컨텍스트 모델의 초기화 과정은 상기 로드한 CABAC 컨텍스트 상태를 기반으로 현재 픽쳐(420)의 시작 블록의 CABAC 컨텍스트 상태를 초기화하는 것을 의미한다.
도 5는 본 발명이 적용되는 일실시예로서, 병렬화 단위 별 CABAC 컨텍스트 모델의 적응적 초기화를 도시한 것이다.
본 실시예에서는 설명의 편의를 위해, 병렬화 단위가 타일인 경우를 예로 들어 살펴 보기로 한다. 도 5에서, 참조 픽쳐(reference picture, 510)는 도 4를 참조하여 자세히 살펴본 바, 여기서 중복적인 설명은 생략하기로 한다. 도 5에 도시된 바와 같이, 참조 픽쳐(510)는 4개의 병렬화 단위(511, 512, 513, 514)로 구성되고, 현재 픽쳐(520) 동일 개수와 동일 크기의 병렬화 단위(521, 522, 523, 524)로 구성될 수 있다.
도 5에 도시된 바와 같이, 현재 픽쳐(520)의 병렬화 단위는, CABAC 컨텍스트 모델의 적응적 초기화를 위해, 참조 픽쳐(510)의 병렬화 단위의 특정 위치에 저장된 CABAC 컨텍스트 상태를 참조할 수 있다. 이때, 현재 픽쳐(520)의 병렬화 단위는 참조 픽쳐(510) 내 동일 위치의 병렬화 단위를 참조할 수도 있고, 다른 위치의 병렬화 단위를 참조할 수도 있다. 상기 다른 위치의 병렬화 단위는 현재 픽쳐(520)의 병렬화 단위와 동일한 양자화 파라미터(QP)를 이용하는 참조 픽쳐(510)의 병렬화 단위로 결정될 수도 있다.
상기 병렬화 단위의 특정 위치라 함은, CABAC 부호화/복호화 장치에 기-약속된 부호화 단위의 위치를 의미할 수 있고, 이 경우 특정 위치를 나타내는 정보는 시그날링되지 않을 수 있다. 또는, CABAC 부호화 장치는 부호화 효율을 고려하여, 각 병렬화 단위 내에서 최적의 특정 위치를 결정하고, 이를 부호화하여 CABAC 복호화 장치로 시그날링할 수도 있다.
참조 픽쳐(510) 내 병렬화 단위의 특정 위치에서 저장된 CABAC 컨텍스트 상태를 참조하는 과정은, 상기 참조 픽쳐(510)의 병렬화 단위의 특정 위치에 대응하는 블록을 부호화/복호화하는 시점에 저장된 CABAC 컨텍스트 상태를 로드하는 과정을 포함할 수 있다.
그리고, 현재 픽쳐(520)의 각 병렬화 단위에 대한 CABAC 컨텍스트 모델의 초기화 과정은, 상기 로드한 CABAC 컨텍스트 상태를 기반으로, 현재 픽쳐(520)에 속한 각 병렬화 단위의 시작 블록의 CABAC 컨텍스트 상태를 초기화하는 것을 의미한다.
도 6과 도 7은 본 발명이 적용되는 일실시예로서, 병렬 처리 기반의 CABAC 컨텍스트 모델의 초기화 방법을 도시한 것이다.
도 6을 참조하면, 본 실시예에 따른 병렬 처리 기반의 CABAC 컨텍스트 모델의 초기화 방법은, 블록 라인(610, 620, 630, 640, 650) 별로 CABAC 컨텍스트 모델의 초기화를 수행하고, 상기 블록 라인의 첫번째 블록은 이전 블록 라인의 두번째 블록의 CABAC 컨텍스트 상태를 참조하여 CABAC 컨텍스트 모델의 초기화를 수행할 수 있다. 여기서, 블록은 부호화 단위를 의미할 수 있고, 구체적으로 코딩 트리 블록(CTB), 트리 구조 기반의 분할을 통해 생성되는 코딩 블록, 또는 최소 코딩 블록(SCU) 등을 의미할 수 있다.
도 7을 참조하면, 현재 픽쳐(Current Picture, 720)는 참조 픽쳐(Reference Picture, 710)의 특정 위치에서 저장된 CABAC 컨텍스트 상태를 참조하여 현재 픽쳐(720)의 최초 블록 라인(721)에 대한 CABAC 컨텍스트 모델의 초기화를 수행할 수 있다. 현재 픽쳐(720)의 최초 블록 라인을 제외한 나머지 블록 라인에 대한 CABAC 컨텍스트 모델의 초기화는, 도 6에서 설명한 바와 같이 이전 블록 라인을 참조하여 수행될 수 있다. 또는, 일정한 경우, 상기 나머지 블록 라인(722, 723, 724, 725) 중 적어도 하나에 대한 CABAC 컨텍스트 모델의 초기화도 참조 픽쳐(710)의 특정 위치에서 저장된 CABAC 컨텍스트 상태를 참조하여 수행될 수 있다. 여기서, 블록 라인(821)이 참조하는 참조 픽쳐(710)의 특정 위치(이하, 제1 특정 위치라 함)와 나머지 블록 라인 중 적어도 하나가 참조하는 참조 픽쳐(710)의 특정 위치(이하, 제2 특정 위치라 함)는 동일할 수도 있고, 상이할 수도 있다.
전술한 특정 위치는 현재 픽쳐(720)에 속한 블록 라인의 위치를 고려하여 가변적으로 결정될 수도 있고, 블록 라인 별로 각각 할당된 고정된 위치일 수도 있다.
상기 특정 위치는 CABAC 부호화/복호화 장치에 기-약속된 고정된 위치일 수 있다. 또는, 상기 특정 위치는 비트스트림을 통해 시그날링된 정보를 기반으로 결정될 수도 있다. 이때, 시그날링된 정보는, CABAC 부호화 장치에서 특정 위치를 특정하기 위해 부호화된 정보, 현재 픽쳐의 참조 관계, 픽쳐를 구성하는 블록의 속성에 관한 정보(예를 들어, 분할 기법, 크기, 형태, 뎁스 등) 중 적어도 하나를 포함할 수 있다.
이하, 도 8 내지 도 11을 참조하여, 인터 예측부에서 모션 벡터의 보정을 기반으로 인터 예측을 수행하는 방법에 대해서 살펴 보기로 한다.
인터 예측부는, 소정의 인터 모드(예를 들어, 스킵 모드, 머지 모드, AMVP 모드)를 기반으로 현재 블록의 모션 벡터를 결정하고, 결정된 모션 벡터를 이용하여 인터 예측을 수행할 수 있다. 이때, 결정된 모션 벡터를 그대로 이용할 수도 있고, 모션 벡터 보정 관련 정보를 기반으로 결정된 모션 벡터를 보정하여 이용할 수도 있다.
여기서, 모션 벡터 보정 관련 정보는 보정 여부에 관한 정보, 보정의 반복적 수행 여부, 보정 횟수, 모션 벡터의 해상도에 관한 정보, 보정이 허용되는 범위에 관한 정보, 모션 벡터 보정 관련 정보가 시그날링되는지 여부에 관한 정보, 또는 모션 벡터의 보정을 위하 참조하는 블록, 슬라이스, 픽쳐에 관한 정보 중 적어도 하나를 포함할 수 있다.
상기 모션 벡터는 보정 여부에 관한 정보를 기반으로 선택적으로 보정될 수 있다. 보정 여부에 관한 정보는 모션 벡터에 대해서 보정을 할지 여부를 특정하는 정보이며, 플래그의 형태로 표현될 수 있다. 상기 모션 벡터는 상기 모션 벡터의 해상도에 관한 정보에 따른 해상도로 보정될 수 있다. 본 실시예에서 이용 가능한 해상도 후보는 정수 펠, 1/2 펠, 1/4 펠, 1/8 펠, 1/16 펠 등과 같은 소수 펠 중 적어도 하나를 포함할 수 있고, 모션 벡터의 해상도 정보는 전술한 해상도 후보 중 어느 하나를 특정할 수 있다. 보정이 허용되는 범위에 관한 정보라 함은, 보정이 허용되는 해상도의 범위, 모션 벡터 보정이 수행되는 블록의 범위 등을 의미할 수 있다.
전술한 모션 벡터 보정 관련 정보는 비트스트림을 통해 시그날링될 수도 있고, 모션 벡터 보정 관련 정보 중 적어도 하나는 공간적으로 인접한 주변 블록(예를 들어, 좌측, 상단, 좌상단, 좌하단, 우상단의 주변 블록 등) 및/또는 시간적으로 인접한 주변 블록으로부터 유도될 수도 있다. 또는, 모션 벡터 보정 관련 정보 중 적어도 하나는 영상 부호화/복호화 장치에 기-약속된 것일 수도 있고, 현재 블록의 속성(예를 들어, 인터 예측 타입, 양방향 예측 여부, 근거리 참조 픽쳐 이용 여부, 블록 크기/형태/깊이, 분할 기법, 잔차 계수의 존부, 양자화 파라미터 등)을 고려하여 가변적으로 결정될 수도 있다. 한편, 모션 벡터 보정 관련 정보는, 정보의 특성 혹은 영상 부호화/복호화 장치 간의 약속에 따라, 시퀀스, 픽쳐, 슬라이스, 타일, 블록(예를 들어, 코딩 블록, 예측 블록) 등 다양한 레벨에서 시그날링되거나 유도될 수 있다. 일정한 경우, 모션 벡터 보정 관련 정보 중 적어도 하나는 영상 부호화/복호화 장치에 간의 약속에 의해 시그날링이 생략될 수도 있다.
현재 블록이 보정된 모션 벡터를 이용하여 인터 예측을 수행한 경우, 보정된 모션 벡터는 영상 부호화/복호화 장치에 저장될 수 있고, 이를 위해 영상 부호화/복호화 장치는 모션 벡터 저장의 위한 별도의 버퍼(미도시)를 구비할 수도 있다.
또한, 본 발명에 따른 모션 벡터의 보정은 복원된 모션 벡터에 대해서 적용되는 경우를 예로 들어 설명하였으나, 이에 한정되지 아니하며, 예측된 모션 벡터에 대해서 동일/유사하게 적용될 수 있음은 물론이다.
도 8은 본 발명이 적용되는 일실시예로서, 모션 벡터에 대한 보정을 선택적으로 수행하여 인터 예측을 수행하는 과정을 도시한 것이다.
도 8을 참조하면, 현재 블록에 대한 모션 벡터 보정 관련 정보를 획득할 수 있다(S800). 여기서, 모션 벡터 보정 관련 정보는 전술한 바와 같다. 즉, 모션 벡터 보정 관련 정보로서, 보정 여부에 관한 정보, 보정 횟수에 관한 정보, 모션 벡터의 해상도에 관한 정보, 보정이 허용되는 범위에 관한 정보, 모션 벡터 보정 관련 정보가 시그날링되는지 여부에 관한 정보, 또는 모션 벡터의 보정을 위하 참조하는 블록, 슬라이스, 픽쳐에 관한 정보 중 적어도 하나가 획득될 수 있다.
상기 보정 여부에 관한 정보가 모션 벡터가 보정됨을 지시하는 경우, 모션 벡터는 보정될 수 있다(S810).
상기 모션 벡터의 보정은 영상 부호화 장치에서 수행된 모션 백터의 보정과 동일한 해상도로 수행될 수도 있고, 영상 부호화 장치에서 수행된 보정과 상이한 해상도로 수행될 수도 있다. 즉, 영상 부호화 장치에서의 해상도보다 크거나 작은 해상도로 보정할 수 있다. 예를 들어, 영상 부호화 장치는 정수 펠 단위의 모션 벡터를 부호화하여 시그날링하고, 영상 복호화 장치는 복호화된 모션 벡터를 소수 펠(예를 들어, 1/2 펠. 1/4 펠, 1/8 펠 등) 단위의 모션 벡터로 보정할 수 있다. 이와 같이, 더 세세한 픽셀 단위로의 보정 여부에 관한 정보도, 상기 모션 벡터 보정 관련 정보에 포함될 수 있다.
상기 모션 벡터는 기-복호화된 예측값/복원값을 이용하여 보정될 수 있다. 여기서, 기-복호화된 예측값/복원값은, 보정 대상인 현재 블록의 모션 벡터를 기반으로 인터 예측을 수행하여 획득된 현재 블록의 예측값/복원값일 수도 있고, 현재 블록이 참조하는 참조 블록의 예측값/복원값일 수도 있다. 상기 기-복호화된 예측값/복원값은 현재 블록에 공간적/시간적으로 인접한 주변 블록의 예측값/복원값일 수도 있다.
본 발명에 따른 모션 벡터의 보정은, 상기 기-복호화된 예측값/복원값을 이용하여, 모션 벡터를 보상할 오프셋 벡터(offset vector)를 산출하는 과정을 포함할 수 있다. 이 경우, 보정된 모션 벡터는 보정 전 모션 벡터와 상기 산출된 오프셋 벡터를 기반으로 유도될 수 있다.
그런 다음, 보정된 모션 벡터를 기반으로 인터 예측을 재수행하여 현재 블록의 예측값/복원값을 획득할 수 있다(S820).
전술한 바와 같이, 보정된 모션 벡터는 영상 부호화/복호화 장치에 구비된 버퍼에 저장될 수 있고, 이는 후순위로 부호화/복호화되는 주변 블록 및/또는 픽쳐의 모션 벡터를 결정하는데 이용될 수 있다.
반면, 상기 보정 여부에 관한 정보가 모션 벡터가 보정되지 않음을 지시하는 경우, 별도 보정없이 모션 벡터를 그대로 이용하여 현재 블록의 인터 예측을 수행할 수 있다(S830)
한편, 전술한 모션 벡터의 보정은 소정의 횟수만큼 반복적으로 수행될 수 있다. 이때, 횟수는 보정 횟수에 관한 정보에 기초하여 결정될 수 있다. 보정 횟수에 관한 정보는 비트스트림을 통해 시그날링될 수도 있고, 영상 부호화/복호화 장치가 서로 보정 횟수를 약속한 경우 혹은 소정의 조건에 따라 모션 벡터의 보정이 더 이상 수행되지 않음을 알 수 있는 경우에는 보정 횟수에 관한 정보는 시그날링되지 않을 수 있다. 모션 벡터의 보정이 반복적으로 수행되는 경우, 최종 모션 벡터만이 저장될 수도 있고, 반복적인 보정 과정을 통해 획득되는 모션 벡터 중 적어도 하나는 영상 부호화/복호화 장치의 버퍼에 반복적으로 저장될 수 있다.
도 9는 도 8의 실시 예에서 모션 벡터의 보정이 반복적으로 수행된 경우, 모션 벡터의 보정 단계에서 블록이 변경되는 예를 도시한 것이다.
N×M 크기(여기서, N과 M은 동일하거나 상이할 수 있음)를 가진 현재 블록에서 반복적으로 모션 벡터의 보정이 수행되는 경우, 보정 횟수 별로 모션 벡터 보정에 관한 블록의 크기가 도 4에 도시된 블록(400)과 같이 변경될 수 있다.
도 9를 참조하면, 첫번째 보정 단계에서는 (N/2)×(M/2)의 크기로 보정이 수행되고, 두번째 보정 단게에서는 좌상측 블록(402)에 대해서만 (N/4)×(M/4)의 크기로 분할된 형태로 수행되고, 다른 블록(403)에 대해서는 동일한 크기로 수행된다.
이전 보정 단계와 동일한 크기의 블록(즉, 분할이 수행되지 않은 블록)에 대해, 모션 벡터의 보정을 반복적으로 수행할 것인지 여부도 모션 벡터 보정 관련 정보에 포함될 수 있다.
도 10은 본 발명이 적용되는 일실시예로서, 모션 벡터의 반복적 보정에 대응하여 분할된 블록의 크기/형태를 도시한 것이다.
도 10(a)와 같이 분할 깊이 정보에 따라 크기가 일정한 블록으로 분할될 수 있고, 도 10(b)와 같이 비정방형의 블록으로 분할될 수도 있다. 도 10(c)와 같이 일부 블록이 다른 블록과 동일하지 않은 횟수(깊이)로 분할될 수도 있다. 도 10(d)와 같이 비대칭형의 블록으로 분할될 수도 있다. 도 10(e),(f),(g)는 분할 형태가 사각형이 아닌 경우이며, 삼각형 혹은 사각형과 삼각형이 조합되어 분할될 수 있다. 도 10(h)과 같이 3개의 수평 라인을 기반으로, 동일한 크기의 비정방형의 블록으로 분할될 수도 있다. 도 10은 실시예 중의 일부를 도시한 것으로, 조합을 통해 다양한 크기/형태로 분할될 수 있고, 해당 정보는 모션 벡터 보정 관련 정보에 포함될 수도 있다.
또한, 상기 분할의 최소 단위는 픽셀 단위까지 허용되며, 모션 벡터 보정 관련 정보 전부 또는 일부가 동일한 블록들은 서로 병합되는 것도 허용될 수 있다. 최초 코딩 유닛의 형태가 직사각형이 아닌 경우에도 도 10의 실시예와 같이 다양한 형태로 분할될 수 있다. 도 9에서 모션 벡터를 보정하기 위해 1개, 2개, 3개 또는 그 이상의 참조 픽쳐가 이용될 수도 있다. 또한, 모션 벡터의 보정이 반복적으로 수행되면서 참조 픽쳐가 달라질 수도 있고, 참조 픽쳐에서 모션 벡터 보정 관련 정보를 획득하기 위해 사용하는 방법 또한 달라질 수 있다.
도 10와 같이 다양한 형태로 분할될 경우, 각 블록은 서로 상이한 모션 벡터를 가질 수 있고, 이러한 경우 서로 상이한 모션 벡터를 가진 블록 간에 아티팩트가 발생할 수 있다. 이를 제거하기 위한 인-루프 필터링이 수행될 수 있으며, 이는 도 17 내지 도 19를 참조하여 살펴 보기로 한다.
도 11은 본 발명이 적용되는 일실시예로서, 모션 벡터 차이(MVD)의 선택적 시그날링을 기반으로 인터 예측을 수행하는 과정을 도시한 것이다.
모션 벡터의 보정을 통해 모션 벡터가 변경될 수 있고, 이 과정에서 산출되는 오프셋 벡터(offset vector)가 모션 벡터 차이(MVD)와 동일한 경우, 이는 모션 벡터 차이에 대한 시그날링없이도 현재 블록에 대한 복호화가 가능함을 의미한다. 즉, 모션 벡터의 보정을 통해, 일정한 경우 모션 벡터 차이의 시그날링이 생략되어 부호화 효율이 향상될 수 있다.
모션 벡터 차이의 선택적 시그날링을 위해, 모션 벡터 차이의 시그날링이 스킵되는지 여부를 나타내는 정보가 이용될 수 있다. 해당 정보는 비트스트림을 통해 시그날링될 수도 있고, 전술한 블록의 속성 등을 고려하여 특정값으로 유도될 수도 있다. 예를 들어, 상기 정보의 값이 제1 값인 경우, 현재 블록에 대한 모션 벡터 차이는 시그날링되지 않고, 이 경우 모션 벡터의 보정을 통해 산출되는 오프셋 벡터로 대체될 수 있다. 반면, 상기 정보의 값이 제2 값인 경우, 현재 블록에 대한 모션 벡터 차이는 비트스트림을 통해 시그날링될 수 있다.
상기 정보는, 시퀀스, 픽쳐, 슬라이스, 타일, 블록 등 다양한 레벨에서 시그날링될 수 있고, 영상 부호화/복호화 장치 간에 기-약속된 조건에 의해 시그날링이 생략될 수 있다. 예를 들어, 현재 블록에 모션 벡터의 보정이 수행되는 경우에는 모션 벡터 차이가 시그날링되지 않는다는 약속이 있는 경우, 해당 정보는 시그날링이 생략될 수 있다.
도 11을 참조하면, 모션 벡터 보정 관련 정보를 획득할 수 있다(S1100). 모션 벡터 보정 관련 정보는 앞서 살펴본 바와 같으며, 여기서 중복 설명은 생략하기로 한다.
S1100에서 획득된 모션 벡터 보정 관련 정보를 기반으로, 현재 블록의 모션 벡터를 보정할 것인지 여부를 결정할 수 있다(S1110).
만일, 보정 여부에 관한 정보가 모션 벡터가 보정되지 않음을 지시하는 경우, 예측된 모션 벡터와 모션 벡터 차이의 합으로 유도된 모션 벡터를 기반으로 모션 보상을 수행할 수 있다(S1120).
반면, 보정 여부에 관한 정보가 모션 벡터가 보정됨을 지시하는 경우, 현재 블록에 대한 모션 벡터 차이의 시그날링이 스킵되는지 여부를 결정할 수 있다(S1130). 여기서, 모션 벡터 차이의 시그날링이 스킵되는지 여부는 소정의 플래그(예를 들어, mvd_skip_flag)를 이용하여 결정될 수 있다.
만일, 모션 벡터 차이의 시그날링이 스킵되지 않는 것으로 결정된 경우, 예측된 모션 벡터와 모션 벡터 차이의 합으로 유도된 모션 벡터를 기반으로 모션 보상을 수행할 수 있다(S1140). 상기 모션 보상을 통해 획득되는 예측값/복원값을 이용하여, S1140에서 유도된 모션 벡터를 보정할 수 있다(S1150). 즉, 상기 모션 보상을 통해 획득되는 예측값/복원값을 이용하여 상기 모션 벡터를 보상할 오프셋 벡터를 유도할 수 있다. 상기 유도된 오프셋 벡터를 상기 모션 벡터에 가산하여 보정된 모션 벡터를 획득할 수 있다. 상기 보정된 모션 벡터를 기반으로 모션 보상을 수행할 수 있다(S1160).
반면, 모션 벡터 차이의 시그날링이 스킵되는 것으로 결정된 경우, 예측된 모션 벡터(PMV)를 기반으로 기반으로 모션 보상을 수행할 수 있다(S1170). 마찬가지로, 상기 모션 보상을 통해 획득되는 예측값/복원값을 이용하여, S1170의 예측된 모션 벡터(PMV)를 보정할 수 있다(S1180). 즉, 상기 모션 보상을 통해 획득되는 예측값/복원값을 이용하여 상기 예측된 모션 벡터(PMV)를 보상할 오프셋 벡터를 유도할 수 있다. 상기 유도된 오프셋 벡터를 상기 예측된 모션 벡터(PMV)에 가산하여 보정된 모션 벡터를 획득할 수 있다. 상기 보정된 모션 벡터를 기반으로 모션 보상을 수행할 수 있다(S1190).
또한, 도 11의 실시예에서도 모션 벡터의 보정이 소정의 횟수만큼 반복적으로 수행될 수 있으며, 이는 도 8 내지 도 10을 참조하여 살펴본 바와 같다.
이하, 도 12 내지 도 13을 참조하여, 서브 블록 기반의 인트라 예측 방법을 살펴 보기로 한다.
도 12는 본 발명이 적용되는 일실시예로서, 서브 블록 단위의 단방향 인트라 예측 방법을 도시한 것이다.
도 12를 참조하면, 현재 블록은 n개의 서브 블록으로 구성될 수 있다. 여기서, 현재 블록은 코딩 블록 또는 예측 블록을 의미할 수 있다. 현재 블록은 하나의 인트라 예측 모드가 적용되는 블록 단위를 의미할 수도 있다. n은 자연수를 의미하며, n값은 영상 부호화/복호화 장치에 기-약속된 고정된 값일 수도 있고, 블록의 속성에 따라 가변적으로 결정될 수도 있다. 또는, 영상 부호화 장치는 최적의 n값을 결정하고, 이를 부호화하여 시그날링할 수 있다. 영상 복호화 장치는 시그날링된 정보에 기초하여 n값을 결정할 수도 있다.
상기 서브 블록은 NxM 크기를 가지며, 여기서 N과 M은 1, 2 또는 그 이상의 자연수이며, N과 M은 서로 동일하거나 상이할 수 있다. 즉, 상기 서브 블록은 하나의 픽셀로 구성될 수도 있고, 정방향 혹은 비정방형의 픽셀 그룹, 픽셀 라인(pixel row, pixel column) 등으로 표현될 수 있다. 서브 블록의 크기는 영상 부호화/복호화 장치에 기-약속된 고정된 크기이거나, 블록의 속성에 따른 가변적인 크기일 수 있다. 상기 서브 블록의 크기/형태는 현재 블록의 인트라 예측 모드의 방향성을 고려하여 결정될 수도 있다. 예를 들어, 인트라 예측 모드가 수평 방향성을 가진 경우, 서브 블록은 M이 N보다 큰 형태의 직사각형으로 결정되고, 반대로 인트라 예측 모드가 수직 방향성을 가진 경우, 서브 블록은 N이 M보다 큰 형태의 직사각형으로 결정될 수 있다. 또는, 영상 부호화 장치는, 최적의 서브 블록의 크기를 부호화하여 시그날링할 수 있고, 영상 복호화 장치는 시그날링된 정보를 기반으로 서브 블록의 크기를 결정할 수 있다. 상기 정보는, 시퀀스, 픽쳐, 슬라이스, 타일, 블록 레벨 중 적어도 하나에서 시그날링될 수 있다.
본 발명의 단방향 기반의 인트라 예측 방법을 살펴보면, 현재 블록에 인접한 주변 픽셀과 소정의 인트라 예측 모드를 기반으로, 현재 블록 내 최상단에 위치한 제1 서브 블록(1210)에 대해서 인트라 예측 및 복원을 수행할 수 있다. 제2 서브 블록(1220)은 상기 주변 픽셀 및/또는 복원된 제1 서브 블록의 픽셀을 이용하여 인트라 예측 및 복원을 수행할 수 있다. 이러한 방식으로, 나머지 서브 블록(1230, 1240)도 인트라 예측 및 복원될 수 있다. 이 경우, 인트라 예측의 정확도가 향상되고, 나아가 잔차 에러의 에너지를 감소시킬 수 있다. 다만, 도 12의 실시예는 서브 블록의 예측 및 복원 순서를 한정한 것은 아니다. 즉, 역으로, 제4 서브 블록에서 제1 서브 블록의 순서로 예측 및 복원을 순차적으로 수행할 수도 있다. 또는, 서브 블록의 크기/형태에 따라, 좌측 서브 블록에서 우측 서브 블록, 또는 우측 서브 블록에서 좌측 서브 블록의 순서로 예측 및 복원을 순차적으로 수행할 수 있다. 예측 및 복원의 순서는 현재 블록 및/또는 주변 블록의 인트라 예측 모드에 종속적으로 결정될 수도 있다. 예를 들어, 인트라 예측 모드의 방향이 상단에서 하단으로 향하는 경우, 예측 및 복원의 순서는 제1 서브 블록에서 제4 서브 블록의 순서일 수 있다. 반면, 인트라 예측 모드의 방향이 하단에서 상단으로 향하는 경우, 예측 및 복원의 순서는 제4 서브 블록에서 제1 서브 블록의 순서일 수 있다. 또는, 예측 및 복원의 순서는 영상 부호화/복호화 장치에 기-약속된 고정된 순서일 수도 있다.
도 13은 본 발명이 적용되는 일실시예로서, 서브 블록 단위의 양방향 인트라 예측 방법을 도시한 것이다.
도 13을 참조하면, 현재 블록의 참조 픽셀을 기반으로, 제1 서브 블록(1300)에 대해 인트라 예측을 수행하여 예측값을 획득하고, 상기 예측값에 잔차값을 가산하여 현재 블록을 복원할 수 있다. 여기서, 제1 서브 블록(1300)은, 현재 블록의 최하단에 위치한 서브 블록, 최우측에 위치한 서브 블록, 또는 중앙에 위치한 서브 블록일 수 있다. 다만, 이에 한정되지 아니하며, 제1 서브 블록(1300)은 현재 블록을 구성하는 복수의 서브 블록 중 어느 하나일 수 있다. 제1 서브 블록(1300)은 현재 블록 내 복수의 서브 블록 중 최초로 예측 및 복원되는 블록으로 정의될 수도 있다.
그런 다음, 제2 서브 블록(1310)은 현재 블록의 참조 픽셀 또는 복원된 제1 서브 블록의 픽셀 중 적어도 하나를 이용하여 예측될 수 있다. 즉, 제2 서브 블록(1310)은 제1 서브 블록과 마찬가지로 현재 블록의 참조 픽쳐만을 이용하여 예측될 수도 있고, 또는 복원된 제1 서브 블록의 픽셀만을 이용하여 예측될 수도 있다. 또는, 제2 서브 블록(1310)은 양방향 예측 즉, 제1 방향 예측과 제2 방향 예측을 통해 예측 및 복원될 수 있다. 여기서, 제1 방향 예측은 현재 블록의 참조 픽셀에 기반한 예측을, 제2 방향 예측은 복원된 제1 서브 블록의 픽셀에 기반한 예측을 각각 의미할 수 있다. 서브 블록의 형태에 따라, 제1 방향은 위쪽, 제2 방향은 아래쪽을 각각 의미할 수도 있고, 또는 제1 방향은 왼쪽, 제2 방향은 오른쪽을 각각 의미할 수도 있다. 도 13에 도시된 바와 같이, 제1 방향과 제2 방향은 서로 상이한 방향일 수도 있고, 서로 동일한 방향을 나타낼 수도 있다.
상기 제1 방향 예측과 제2 방향 예측은 서로 동일한 인트라 예측 모드를 이용하여 수행될 수 있다. 또는, 제1 방향 예측과 제2 방향 예측은 서로 다른 인트라 예측 모드를 이용하여 수행될 수 있다. 제2 방향 예측에 이용되는 인트라 예측 모드(이하, 제2 인트라 예측 모드라 함)는 제1 방향 예측에 이용되는 인트라 예측 모드(이하, 제1 인트라 예측 모드라 함)에 기초하여 유도될 수도 있다. 예를 들어, 제2 인트라 예측 모드는, 제1 인트라 예측 모드의 값에 소정의 상수를 가산/감산하여 유도될 수 있다. 제2 인트라 예측 모드는 제1 인트라 예측 모드의 역방향에 대응하는 모드로 유도될 수 있다.
제1 방향 예측은 부호화된 인트라 예측 모드를 기반으로 수행되고, 제2 방향 예측은 Default mode를 기반으로 수행될 수 있다. 상기 Default mode는 영상 부호화/복호화 장치에 기-약속된 인트라 예측 모드로서, Planar 모드, DC 모드, 수평/수직 모드 중 어느 하나가 선택적으로 이용될 수 있다. 이때, 선택은 서브 블록의 크기/형태에 종속적일 수 있다. 또는, 서브 블록의 크기/형태에 관계없이 특정 모드가 고정적으로 이용될 수도 있다.
현재 블록을 구성하는 복수의 서브 블록은, 패턴화된 예측 순서를 기반으로 순차적으로 예측 및/또는 복원될 수 있다. 이를 위해, 영상 부호화 장치는 예측 순서를 패턴화하고, 패턴화된 예측 순서에 대한 정보를 시그날링할 수 있다. 영상 복호화 장치는 시그날링된 정보를 기반으로, 소정의 예측 순서에 따라 순차적으로 서브 블록을 예측 및/또는 복원할 수 있다.
또는, 영상 복호화 장치는, 주변의 참조 픽셀값, 주변의 참조 픽셀값의 변화량, 주변 블록의 부호화 정보 등을 기반으로 서브 블록의 예측 순서를 결정할 수도 있다. 여기서, 상기 변화량은 복수의 참조 픽셀을 이용하여 산출될 수 있고, 이때 복수의 참조 픽셀은 2개, 3개, 4개 또는 그 이상일 수 있다. 복수의 참조 픽셀은 연속적으로 배열된 것일 수도 있고, 일정 간격(예를 들어, 1개, 2개 또는 그 이상의 픽셀 간격)으로 배열된 것일 수도 있다.
예를 들어, 참조 픽셀값의 차이(D)가 가장 큰 것에서 가장 작은 것의 순서로, 서브 블록의 예측 및/또는 복원을 수행할 수 있다. R2 참조 픽셀에 대한 참조 픽셀값의 차이(D)는, 다음 수학식 1과 같이 산출될 수 있다.
Figure PCTKR2017003082-appb-M000001
이러한 방식으로 참조 픽셀 별로 상기 차이(D)를 산출하고, 최대 차이에서 최소 차이의 순서로 예측 순서를 결정할 수 있다. 최대 차이(Dmax)를 가진 참조 픽셀에 대응하는 서브 블록에서 최소 차이(Dmin)를 가진 참조 픽셀에 대응하는 서브 블록의 순서로 순차적으로 예측 및/또는 복원을 수행할 수 있다.
또는, 상기 예측 순서는, 서브 블록의 크기/형태에 따라, 좌측에서 우측, 우측에서 좌측, 상단에서 하단, 또는 하단에서 상단으로의 순서 중 어느 하나일 수 있다. 상기 예측 순서는 현재 블록 및/또는 주변 블록의 인트라 예측 모드에 종속적으로 결정될 수도 있다. 예를 들어, 인트라 예측 모드의 방향이 상단에서 하단으로 향하는 경우, 예측 및 복원의 순서는 제1 서브 블록에서 제4 서브 블록의 순서일 수 있다. 반면, 인트라 예측 모드의 방향이 하단에서 상단으로 향하는 경우, 예측 및 복원의 순서는 제4 서브 블록에서 제1 서브 블록의 순서일 수 있다. 또는, 예측 및 복원의 순서는 영상 부호화/복호화 장치에 기-약속된 고정된 순서일 수도 있다.
이하, 도 14 내지 도 16을 참조하여, 변환 블록의 변환 계수를 스캐닝(scanning)하는 방법에 대해서 살펴 보도록 한다.
영상 부호화 장치에서, 변환 블록의 변환 계수는 소정의 스캔 타입에 기초하여 스캐닝될 수 있다. 변환 블록은 하나 또는 그 이상의 계수 그룹(coefficient group)으로 구성될 수 있다. 스캔 타입에 따른 스캔 순서를 기반으로, 계수 그룹에 속한 변환 계수 및 변환 블록에 속한 계수 그룹을 순차적으로 스캐닝할 수 있다.
상기 계수 그룹은 NxM 크기의 블록일 수 있다. 여기서, N과 M은 자연수이며, N과 M은 서로 동일하거나 상이할 수 있고, N은 M보다 크거나 작을 수 있다. 즉, 계수 그룹은 정방형 또는 비정방형의 블록일 수 있다. 계수 그룹의 크기/형태는 영상 부호화 장치에 기-약속된 고정된 것일 수도 있고, 변환 블록의 크기/형태에 따라 가변적으로 결정될 수도 있다. 또는, 영상 부호화 장치는 부호화 효율을 고려하여 최적의 계수 그룹의 크기/형태를 결정하고, 이를 부호화할 수도 있다. 상기 스캔 타입으로, 대각선 스캔, 수직 스캔, 수평 스캔 등이 이용될 수 있다. 다만, 이에 한정되지 아니하며, 소정의 각도를 가진 하나 또는 그 이상의 스캔 타입이 더 추가될 수도 있다. 대각선 스캔은 우상단에서 좌하단으로 스캔하는 방식이고, 수직 스캔은 하단에서 상단으로 스캔하는 방식이며, 수평 스캔은 우측에서 좌측으로 스캔하는 방식이다. 상기 스캐닝은 중 적어도 하나를 포함할 수 있다.
스캔 타입은 코딩 블록 관련 정보(예를 들어, 최대/최소 크기, 분할 기법 등), 변환 블록의 크기/형태, 계수 그룹의 크기/형태, 예측 모드, 인트라 예측 관련 정보(예를 들어, 인트라 예측 모드의 값, 방향성, 각도 등) 또는 인터 예측 관련 정보 중 적어도 하나에 기초하여 결정될 수 있다. 또는, 영상 부호화 장치는, 변환 블록이 이용 가능한 스캔 타입 후보 중에서 최적의 스캔 타입을 결정하고, 결정된 스캔 타입을 특정하는 인덱스를 부호화할 수도 있다. 이때, 스캔 타입 후보는 전술한 대각선 스캔, 수직 스캔, 수평 스캔, 지그재그 스캔 또는 z 스캔 중 적어도 하나를 포함할 수 있다. 스캔 타입 후보의 개수 및/또는 종류는, 변환 블록 별로 상이할 수 있고, 이를 위해 코딩 블록 관련 정보, 변환 블록의 크기/형태/깊이(depth), 계수 그룹의 크기/형태, 예측 모드, 인트라 예측 관련 정보, 또는 인터 예측 관련 정보 중 적어도 하나를 고려할 수 있다.
변환 블록의 크기가 소정의 임계값보다 큰 경우, 변환 블록의 일부 영역에 속한 변환 계수를 0으로 설정할 수도 있다. 여기서, 변환 블록의 크기는 너비, 높이, 너비와 높이의 합 또는 변환 계수의 개수 중 적어도 하나로 표현될 수 있다. 소정의 임계값은 영상 부호화 장치에 기-정의된 크기를 의미할 수도 있다. 상기 일부 영역은 변환 블록의 하단에 위치한 하나 또는 그 이상의 계수행, 우측에 위치한 하나 또는 그 이상의 계수열 중 적어도 하나를 포함할 수 있다. 상기 일부 영역은 상기 임계값에 종속적으로 결정될 수 있다. 예를 들어, 변환 블록 내에서, 상기 임계값에 따른 크기를 초과하는 영역을 특정하고, 해당 영역에 속하는 변환 계수를 0으로 설정할 수 있다. 즉, NxM 변환 블록에서, N이 임계값 64보다 큰 경우, 상단 및/또는 좌측의 64개 열에 위치한 변환 계수는 그대로 유지되고, 나머지 변환 계수는 0으로 설정될 수 있다. 마찬가지로, M이 임계값 64보다 큰 경우, 상단 및/또는 좌측의 64개 행에 위치한 변환 계수는 그대로 유지되고, 나머지 변환 계수는 0으로 설정될 수 있다.
도 14는 본 발명이 적용되는 일실시예로서, 정방형의 변환 블록에 대한 스캔 방법을 도시한 것이다.
도 14을 참조하면, 8x8 변환 블록은 4개의 계수 그룹으로 구성되며, 8x8 변환 블록의 변환 계수는 계수 그룹 단위로 스캐닝될 수 있다. 도 14(a)는 대각선 스캔을 도시한 것으로서, 대각선 스캔에 따른 스캔 순서에 따라, 변환 블록의 우하단 계수 그룹, 우상단 계수 그룹, 좌하단 계수 그룹, 좌상단 계수 그룹의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수는 우상단에서 좌하단으로 스캐닝된다. 도 14(b)는 수평 스캔을 도시한 것으로서, 수평 스캔에 따른 스캔 순서에 따라, 변환 블록의 우하단 계수 그룹, 좌하단 계수 그룹, 우상단 계수 그룹, 좌상단 계수 그룹의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수 역시 우측에서 좌측으로 스캐닝된다. 도 14(c)는 수직 스캔을 도시한 것으로서, 수직 스캔에 따른 스캔 순서에 따라, 변환 블록의 우하단 계수 그룹, 우상단 계수 그룹, 좌하단 계수 그룹, 좌상단 계수 그룹 의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수 역시 하단에서 상단으로 스캐닝된다.
도 15과 도 16은 본 발명이 적용되는 일실시예로서, 비정방형의 변환 블록에 대한 스캔 방법을 도시한 것이다.
도 15는 8x4 변환 블록에 대한 스캔 방법을 도시한 것이다.
도 15(a)는 스캔 타입이 대각선 스캔이고, 4x4 계수 그룹의 단위로 스캔되는 경우를 도시한 것이다. 이 경우, 변환 블록의 변환 계수는, 하단의 계수 그룹에서 상단의 계수 그룹의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수는, 대각선 스캔에 따라 우상단에서 좌하단으로 스캐닝된다. 도 15(b)는 스캔 타입이 수직 스캔이고, 4x4 계수 그룹의 단위로 스캔되는 경우를 도시한 것이다. 이 경우, 변환 블록의 변환 계수는, 하단의 계수 그룹에서 상단의 계수 그룹의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수는, 수직 스캔에 따라 하단에서 상단으로 스캐닝된다. 도 15(c)는 스캔 타입이 수평 스캔이고, 4x4 계수 그룹의 단위로 스캔되는 경우를 도시한 것이다. 이 경우, 변환 블록의 변환 계수는, 하단의 계수 그룹에서 상단의 계수 그룹의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수는, 수평 스캔에 따라 우측에서 좌측으로 스캐닝된다. 또는, 도 15(d)에 도시된 바와 같이, 8x4 변환 블록의 변환 계수는, 8x4 계수 그롭의 단위로, 수직 스캔에 기초하여 하단에서 상단으로 스캐닝될 수도 있다. 즉, 8x4 블록의 경우, 대각선 스캔, 수직 스캔 또는 수평 스캔 중 적어도 하나를 스캔 타입 후보로 이용할 수 있고, 계수 그룹의 단위도 4x4 또는 8x4 중 어느 하나를 선택적으로 이용할 수 있다. 스캔 타입의 결정 및 계수 그룹의 단위 결정은 전술한 바와 같다.
도 16은 4x8 변환 블록에 대한 스캔 방법을 도시한 것이다.
도 16(a)은 스캔 타입이 대각선 스캔이고, 4x4 계수 그룹의 단위로 스캔되는 경우를 도시한 것이다. 이 경우, 변환 블록의 변환 계수는, 우측의 계수 그룹에서 좌측의 계수 그룹의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수는, 대각선 스캔에 따라 우상단에서 좌하단으로 스캐닝된다. 도 16(b)은 스캔 타입이 수직 스캔이고, 4x4 계수 그룹의 단위로 스캔되는 경우를 도시한 것이다. 이 경우, 변환 블록의 변환 계수는, 우측의 계수 그룹에서 좌측의 계수 그룹의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수는, 수직 스캔에 따라 하단에서 상단으로 스캐닝된다. 도 16(c)은 스캔 타입이 수평 스캔이고, 4x4 계수 그룹의 단위로 스캔되는 경우를 도시한 것이다. 이 경우, 변환 블록의 변환 계수는, 우측의 계수 그룹에서 좌측의 계수 그룹의 순으로 스캐닝되되, 각 계수 그룹의 변환 계수는, 수평 스캔에 따라 우측에서 좌측으로 스캐닝된다. 또는, 도 16(d)에 도시된 바와 같이, 4x8 변환 블록의 변환 계수는, 4x8 계수 그롭의 단위로, 수평 스캔에 기초하여 우측에서 좌측으로 스캐닝될 수도 있다. 즉, 4x8 블록의 경우, 대각선 스캔, 수직 스캔 또는 수평 스캔 중 적어도 하나를 스캔 타입 후보로 이용할 수 있고, 계수 그룹의 단위도 4x4 또는 4x8 중 어느 하나를 선택적으로 이용할 수 있다. 스캔 타입의 결정 및 계수 그룹의 단위 결정은 전술한 바와 같다.
영상 복호화 장치는 입력 비트스트림을 엔트로피 디코딩하여 변환 블록의 변환 계수를 획득할 수 있다. 영상 복호화 장치는, 코딩 블록 관련 정보(예를 들어, 최대/최소 크기, 분할 기법 등), 변환 블록의 크기/형태, 계수 그룹의 크기/형태, 예측 모드, 인트라 예측 관련 정보(예를 들어, 인트라 예측 모드의 값, 방향성, 각도 등) 또는 인터 예측 관련 정보 중 적어도 하나에 기초하여, 변환 블록의 스캔 타입을 결정할 수 있다. 상기 인트라 예측 모드가 수평 방향성을 가진 경우에는 수직 스캔을 사용하고, 인트라 예측 모드가 수직 방향성을 가진 경우에는 수평 스캔을 사용할 수 있다. 변환 계수의 에너지는 또는, 영상 복호화 장치는, 영상 부호화 장치에서 시그날링된 인덱스를 기반으로, 복수의 스캔 타입 후보 중 어느 하나를 특정할 수도 있다.
이하, 도 17 내지 도 19를 참조하여, 블록 경계에 인-루프 필터를 적용하는 방법을 살펴 보기로 한다.
도 17은 본 발명이 적용되는 일실시예로서, 인-루프가 필터가 적용되는 범위를 도시한 것이다.
도 17를 참조하면, 점선은 가상 블록의 경계를 나타내고, 굵은 실선은 코딩 블록의 경계를 나타내며, 가는 실선은 픽셀 간의 경계를 나타낸다. 여기서, 가상 블록은 코딩 블록을 구성하는 임의의 크기 및/또는 형태를 가진 서브 블록을 의미할 수 있다. 인-루프 필터는 가상 블록 혹은 코딩 블록의 경계를 중심으로 대칭적 또는 비대칭적으로 적용될 수 있다. 이때, 인-루프 필터는 모든 블록에 대해 동일한 범위로 적용될 수도 있고, 블록의 속성에 따라 블록 별로 상이한 범위에 적용될 수도 있다. 인-루프 필터가 적용되는 범위의 모양은 1차원 형태의 라인 단위로 적용될 수도 있고, 2차원 형태의 블록 단위로 적용될 수도 있다. 본 발명의 인-루프 필터에 관한 정보는 영상 부호화/복호화 장치 간의 약속에 따라 정해진 것일 수도 있고, 비트스트림을 통해 시그날링될 수도 있다.
본 실시예에서는 설명의 편의를 위해 필터의 모양이 1차원 형태이고, 적용 범위가 블록 경계를 기준으로 좌/우측으로 2개의 픽셀인 경우를 가정한다.
도 17(a)를 참조하면, 가상 블록의 경계(401)에서는 회색 음영의 픽셀이 인-루프 필터가 적용되는 픽셀이다. 만일, 가상 블록의 크기가 도 17(b)와 같이 작을 경우, 가상 블록 경계(411)에서의 적용 범위와 가상 블록 경계(412)에서의 적용 범위가 겹쳐지게 된다. 반면, 도 17(c)와 같이, 가상 블록의 크기가 커질 경우, 가상 블록 경계(421)에서의 적용 범위와 가상 블록 경계(422)에서의 적용 범위 중 어느 하나에도 해당되지 않는 영역이 존재할 수 있다. 즉, 필터의 적용 범위 또는 가상 블록의 크기 중 적어도 하나에 따라 다양한 실시예가 발생할 수 있다.
예를 들어, 필터의 적용 범위가 경계를 중심으로 좌/우측으로 3개의 픽셀인 경우, 도 17(a),(b) 모두 중복적으로 인-루프 필터가 적용되는 영역이 발생한다. 반면, 필터의 적용 범위가 경계를 중심으로 좌/우측으로 1개의 픽셀인 경우, 도 17(a) 내지 (c) 모두 인-루프 필터가 중복적으로 적용되는 영역이 발생하지 않는다. 실시예에 따라 필터의 적용 범위가 경계를 중심으로 0개의 픽셀인 경우(즉, 인-루프 필터의 적용이 생략되는 경우)가 나타날 수도 있다.
도 17(e),(f),(g)는 코딩 블록과 가상 블록의 경계를 함께 도시한 것이다. 여기서, 짙은 회색 음영 영역은 코딩 블록의 경계에 대한 인-루프 필터의 적용 범위를 나타내고, 옅은 회색 음영은 가상 블록의 경계에 대한 인-루프 필터의 적용 범위를 나타낸다. 도 17(e)와 같이, 코딩 블록과 가상 블록에 적용되는 인-루프 필터의 모양/크기는 서로 동일할 수도 있다. 도 17(f)와 같이, 코딩 블록의 경계에 대해서만 인-루프 필터를 적용하고, 가상 블록의 경계에 대한 인-루프 필터의 적용은 스킵될 수 있다. 도 17(g)와 같이, 코딩 블록의 경계에 대한 인-루프 필터와 가상 블록의 경계에 대한 인-루프 필터는 서로 상이한 적용 범위를 가질 수도 있다. 가상 블록의 크기가 정방형이 아닐 경우, 가로 경계와 세로 경계에서 적용되는 필터의 크기, 모양 또는 적용 범위 중 적어도 하나가 상이할 수 있다. 인-루프 필터가 중복적으로 적용되는 블록의 경우, 인-루프 필터의 적용 범위 전부 또는 중복 영역에 대해서는 인-루프 필터의 적용이 생략될 수 있다.
도 18는 본 발명이 적용되는 일실시예로서, 인-루프 필터의 적용 범위를 결정하는 방법을 도시한 것이다.
도 18를 참조하면, 인-루프 필터 관련 정보를 획득할 수 있다(S1800).
여기서, 인-루프 필터 관련 정보는, 가상 블록의 경계를 위한 필터 정보 또는 코딩 블록의 경계를 위한 필터 정보 중 적어도 하나를 포함할 수 있다. 하나의 인-루프 필터 관련 정보를 코딩 블록과 가상 블록이 서로 공유할 수도 있다. 가상 블록의 경계를 위한 필터 정보가 코딩 블록의 경계에 이용될 수도 있고, 역으로 코딩 블록의 경계를 위한 필터 정보가 가상 블록의 경계에 이용될 수도 있다. 또는, 코딩 블록과 가상 블록을 구별하여, 서로 상이한 필터 정보를 이용할 수도 있다.
상기 정보는, 비트스트림을 통해 시그날링되거나 유도될 수도 있고, 영상 부호화/복호화 장치에 기-약속된 정보일 수도 있다. 상기 정보 중 일부는 비트스트림을 통해 시그날링되고, 나머지는 영상 부호화/복호화 장치에 기-약속된 정보일 수도 있다.
현재 경계가 인-루프 필터가 적용되는 경계인지 여부를 결정할 수 있다(S1810). 인-루프 필터가 적용되는 코딩 블록 및/또는 가상 블록의 경계를 결정하는 방법은, 비트스트림을 통해 시그날링된 정보를 기반으로 유도/결정될 수 있고, 영상 복호화 장치에 기-설정되거나 유도된 정보를 기반으로 결정될 수도 있다.
만일, 현재 경계가 인-루프 필터가 적용되는 경계로 결정된 경우, 현재 경계에 인-루프 필터를 적용할 수 있다(S1820). 상기 인-루프 필터의 적용은, 현재 경계에 적합한 인-루프 필터를 결정하는 과정을 포함할 수 있다. 현재 경계에 대응하는 인-루프 필터의 형태/크기는, 양자화 파라미터(QP), 경계에 위치한 픽셀값 또는 하나 또는 그 이상의 주변 픽셀값, 참조 픽쳐 인덱스, 휘도 성분인지 여부, 색차 성분의 타입, 경계 길이 또는 경계가 속한 블록의 속성 중 적어도 하나를 고려하여 결정될 수 있다.
반면, 현재 경계가 인-루프 필터가 적용되지 않는 경계로 결정된 경우, 현재 경계에 대한 인-루프 필터의 적용을 생략할 수 있다(S1830).
본 실시예에서, 인-루프 필터의 적용에 관한 ON/OFF 정보는 비트스트림을 통해 시그날링될 수 있고, 이는 시퀀스, 픽쳐, 슬라이스, 타일, 블록 등 코딩유닛 그룹, 코딩유닛, 서브 코딩 유닛 등 다양한 레벨에서 시그날링될 수 있다. 상위 레벨에서 ON이 되었어도, 하위 레벨에서의 ON/OFF 정보에 따라 선택적 적용이 가능하다. 즉, 영상 시퀀스 레벨에서 코딩 블록 및 가상 블록의 경계에서 모두 인-루프 필터가 적용됨을 나타내는 ON 정보가 시그날링될 수 있고, 특정 픽쳐에서 코딩 블록 및 가상 블록의 경계에서 인-루프 필터가 적용되지 않음을 나타내는 OFF 정보가 시그날링될 수 있다.
상기 가상 블록의 크기가 하나의 픽셀 크기인 경우, 가상 블록의 구성하는 각 픽셀마다 서로 상이한 모션 벡터를 가질 수 있다. 이 경우, 가상 블록의 경계에 대한 인-루프 필터의 적용은 생략될 수 있다. 또한, 도 17(b)와 같이, 인-루프 필터의 적용 범위가 두 경계에서 중복되는 경우, 하나의 경계에 대한 인-루프 필터의 적용은 생략될 수 있다. 또는, 일정한 경우, 코딩 블록의 경계에 대해서만 인-루프 필터를 적용하고, 가상 블록의 경계에 대해서는 인-루프 필터의 적용을 선택적으로 스킵할 수도 있다.
도 19는 본 발명이 적용되는 일실시예로서, 기하학적 모양의 경계에 인-루프 필터를 적용하는 방법을 도시한 것이다.
상기 경계는, 도 10(f),(g)와 같은 블록 분할 형태에 따라 사각형이 아닌 임의의 형태를 가질 수 있다. 이 경우, 도 19와 같이 인-루프 필터가 적용될 수 있다. 도 19(a),(b)는 블록 경계를 도시한 것이고, 도 19(c),(d)는 이를 각각 확대한 것이다. 도 19(c),(d)에서 정사각형 블록은 픽셀을 나타내며, 인-루프 필터가 경계를 중심으로 2개의 픽셀씩 적용되는 것을 도시한 것이다. 실시예에 따라 경계의 모양, 필터의 적용 범위가 달라질 수 있다.
본 개시의 예시적인 방법들은 설명의 명확성을 위해서 동작의 시리즈로 표현되어 있지만, 이는 단계가 수행되는 순서를 제한하기 위한 것은 아니며, 필요한 경우에는 각각의 단계가 동시에 또는 상이한 순서로 수행될 수도 있다. 본 개시에 따른 방법을 구현하기 위해서, 예시하는 단계에 추가적으로 다른 단계를 포함하거나, 일부의 단계를 제외하고 나머지 단계를 포함하거나, 또는 일부의 단계를 제외하고 추가적인 다른 단계를 포함할 수도 있다.
본 개시의 다양한 실시 예는 모든 가능한 조합을 나열한 것이 아니고 본 개시의 대표적인 양상을 설명하기 위한 것이며, 다양한 실시 예에서 설명하는 사항들은 독립적으로 적용되거나 또는 둘 이상의 조합으로 적용될 수도 있다.
또한, 본 개시의 다양한 실시 예는 하드웨어, 펌웨어(firmware), 소프트웨어, 또는 그들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 범용 프로세서(general processor), 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
본 개시의 범위는 다양한 실시 예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다.
본 발명은 비디오 신호를 부호화/복호화하는데 이용될 수 있다.

Claims (6)

  1. 현재 블록에 대한 모션 벡터 보정 관련 정보를 획득하는 단계;
    현재 블록의 모션 벡터를 복원하는 단계;
    상기 모션 벡터를 기반으로 상기 현재 블록에 대한 모션 보상을 수행하는 단계;
    상기 모션 보상 수행 결과 또는 상기 모션 벡터 보정 관련 정보 중 적어도 하나를 이용하여 상기 현재 블록의 모션 벡터를 보정하는 단계; 및
    상기 보정된 모션 벡터를 이용하여 상기 현재 블록에 대한 모션 보상을 재수행하는 단계를 포함하는 인터 예측 방법.
  2. 현재 블록의 참조 픽셀을 기반으로 상기 현재 블록 내 제1 서브 블록에 대해 인트라 예측을 수행하여, 상기 제1 서브 블록을 복원하는 단계;
    상기 현재 블록의 참조 픽셀 또는 상기 복원된 제1 서브 블록의 픽셀 중 적어도 하나를 이용하여, 상기 현재 블록 내 제2 서브 블록에 대해 인트라 예측을 수행하는 단계를 포함하는 인트라 예측 방법.
  3. 비트스트림을 디코딩하여, 변환 블록의 변환 계수를 획득하는 단계; 및
    소정의 스캔 타입을 기반으로, 상기 변환 블록의 변환 계수를 스캐닝하는 단계를 포함하되,
    상기 스캐닝은, NxM 계수 그룹의 단위로 수행되고,
    상기 스캔 타입은, 복수의 스캔 타입 후보 중에서, 시그날링된 인덱스에 기초하여 결정되는 변환 계수 스캐닝 방법.
  4. 현재 블록에 대한 모션 벡터 보정 관련 정보를 획득하는 엔트로피 디코딩부;
    현재 블록의 모션 벡터를 복원하고, 상기 모션 벡터를 기반으로 상기 현재 블록에 대한 모션 보상을 수행하며, 상기 모션 보상 수행 결과 또는 상기 모션 벡터 보정 관련 정보 중 적어도 하나를 이용하여 상기 현재 블록의 모션 벡터를 보정하고, 상기 보정된 모션 벡터를 이용하여 상기 현재 블록에 대한 모션 보상을 재수행하는 인터 예측부를 포함하는 영상 복호화 장치.
  5. 현재 블록의 참조 픽셀을 기반으로 상기 현재 블록 내 제1 서브 블록에 대해 인트라 예측을 수행하여, 상기 제1 서브 블록을 복원하고, 상기 현재 블록의 참조 픽셀 또는 상기 복원된 제1 서브 블록의 픽셀 중 적어도 하나를 이용하여, 상기 현재 블록 내 제2 서브 블록에 대해 인트라 예측을 수행하는 인트라 예측부를 포함하는 영상 복호화 장치.
  6. 비트스트림을 디코딩하여, 변환 블록의 변환 계수를 획득하는 엔트로피 디코딩부; 및
    소정의 스캔 타입을 기반으로, 상기 변환 블록의 변환 계수를 스캐닝하는 재정렬부를 포함하되,
    상기 스캐닝은, NxM 계수 그룹의 단위로 수행되고,
    상기 스캔 타입은, 복수의 스캔 타입 후보 중에서, 시그날링된 인덱스에 기초하여 결정되는 영상 복호화 장치.
PCT/KR2017/003082 2016-03-24 2017-03-22 비디오 신호 부호화/복호화 방법 및 장치 WO2017164645A2 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202210296042.9A CN114615493A (zh) 2016-03-24 2017-03-22 视频解码方法、视频编码方法和可读记录介质
EP22177043.1A EP4072141A1 (en) 2016-03-24 2017-03-22 Method and apparatus for encoding/decoding video signal
CN201780029821.XA CN109155847A (zh) 2016-03-24 2017-03-22 用于编码/解码视频信号的方法和装置
EP17770615.7A EP3435673A4 (en) 2016-03-24 2017-03-22 VIDEO SIGNAL ENCODING / DECODING METHOD AND APPARATUS
US16/087,787 US10778987B2 (en) 2016-03-24 2017-03-22 Method and apparatus for encoding/decoding video signal
US16/993,628 US11388420B2 (en) 2016-03-24 2020-08-14 Method and apparatus for encoding/decoding video signal
US17/836,347 US11770539B2 (en) 2016-03-24 2022-06-09 Method and apparatus for encoding/decoding video signal
US17/836,236 US11973960B2 (en) 2016-03-24 2022-06-09 Method and apparatus for encoding/decoding video signal
US18/350,040 US20230353757A1 (en) 2016-03-24 2023-07-11 Method and apparatus for encoding/decoding video signal

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020160035090A KR20170113724A (ko) 2016-03-24 2016-03-24 컨텍스트 모델의 적응적 초기화를 사용하는 cabac 부호화 방법 및 장치, 그리고 cabac 복호화 방법 및 장치
KR10-2016-0035090 2016-03-24
KR10-2016-0035674 2016-03-25
KR1020160035674A KR20170111013A (ko) 2016-03-25 2016-03-25 직사각형 변환 블록을 위한 선택적 스캔 방식을 이용한 동영상 부호화 및 복호화 방법 및 장치
KR10-2016-0049485 2016-04-22
KR1020160049485A KR20170121383A (ko) 2016-04-22 2016-04-22 움직임 백터 보정을 통한 비디오 복호화 방법 및 장치
KR10-2016-0054607 2016-05-03
KR1020160054607A KR20170125153A (ko) 2016-05-03 2016-05-03 가상 블록의 인-루프 필터 방법 및 장치
KR10-2016-0055370 2016-05-04
KR1020160055370A KR20170125538A (ko) 2016-05-04 2016-05-04 비디오 압축의 인트라 모드 예측 구조 개선

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/087,787 A-371-Of-International US10778987B2 (en) 2016-03-24 2017-03-22 Method and apparatus for encoding/decoding video signal
US16/993,628 Continuation US11388420B2 (en) 2016-03-24 2020-08-14 Method and apparatus for encoding/decoding video signal

Publications (2)

Publication Number Publication Date
WO2017164645A2 true WO2017164645A2 (ko) 2017-09-28
WO2017164645A3 WO2017164645A3 (ko) 2017-11-16

Family

ID=59900472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003082 WO2017164645A2 (ko) 2016-03-24 2017-03-22 비디오 신호 부호화/복호화 방법 및 장치

Country Status (4)

Country Link
US (5) US10778987B2 (ko)
EP (2) EP4072141A1 (ko)
CN (2) CN114615493A (ko)
WO (1) WO2017164645A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019144930A1 (en) * 2018-01-26 2019-08-01 Mediatek Inc. Hardware friendly constrained motion vector refinement
WO2020013673A1 (ko) * 2018-07-13 2020-01-16 엘지전자 주식회사 Dmvr에 기반하여 인터 예측을 수행하는 방법 및 장치
CN110933419A (zh) * 2018-09-20 2020-03-27 杭州海康威视数字技术股份有限公司 一种运动矢量确定、边界强度确定方法和设备
CN112544078A (zh) * 2018-08-31 2021-03-23 联发科技股份有限公司 用于虚拟边界的环内滤波的方法和设备
WO2021060938A1 (ko) * 2019-09-26 2021-04-01 현대자동차주식회사 360도 비디오 가상 경계의 인루프 필터를 제한하는 방법
CN112602325A (zh) * 2018-12-27 2021-04-02 Kddi 株式会社 图像解码装置、图像编码装置、程序和图像处理***
JP2022502912A (ja) * 2018-09-24 2022-01-11 ビー1、インスティテュート、オブ、イメージ、テクノロジー、インコーポレイテッドB1 Institute Of Image Technology, Inc. 画像符号化/復号化方法及び装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190037217A1 (en) * 2016-02-16 2019-01-31 Samsung Electronics Co., Ltd. Video encoding method and apparatus, and decoding method and apparatus therefor
CN114615493A (zh) * 2016-03-24 2022-06-10 英迪股份有限公司 视频解码方法、视频编码方法和可读记录介质
CA3025334C (en) * 2016-05-25 2021-07-13 Arris Enterprises Llc Binary ternary quad tree partitioning for jvet coding of video data
US11736712B2 (en) * 2016-05-28 2023-08-22 Industry Academy Cooperation Foundation Of Sejong University Method and apparatus for encoding or decoding video signal
WO2018128247A1 (ko) * 2017-01-03 2018-07-12 엘지전자 주식회사 360도 비디오에 대한 영상 코딩 시스템에서 인트라 예측 방법 및 장치
KR102257829B1 (ko) * 2017-04-13 2021-05-28 엘지전자 주식회사 영상의 부호화/복호화 방법 및 이를 위한 장치
GB2564133B (en) * 2017-07-04 2021-03-17 Canon Kk Method and apparatus for encoding or decoding video data with sub-pixel motion vector refinement
CN116668677A (zh) * 2018-05-10 2023-08-29 Lg电子株式会社 解码设备、编码设备和数据发送设备
US11140418B2 (en) * 2018-07-17 2021-10-05 Qualcomm Incorporated Block-based adaptive loop filter design and signaling
US20200036991A1 (en) * 2018-07-27 2020-01-30 FG Innovation Company Limited Device and method for coding video data with block sub-partition and reference sample selection
US11765349B2 (en) * 2018-08-31 2023-09-19 Mediatek Inc. Method and apparatus of in-loop filtering for virtual boundaries
US11094088B2 (en) * 2018-08-31 2021-08-17 Mediatek Inc. Method and apparatus of in-loop filtering for virtual boundaries in video coding
KR102627844B1 (ko) * 2018-09-19 2024-01-23 후아웨이 테크놀러지 컴퍼니 리미티드 이중선형 보간 기반 디코더-측 움직임 벡터 정밀화에서 패치 유사성에 기반하여 정밀화를 건너뛰기 위한 방법
KR20210052566A (ko) 2018-09-25 2021-05-10 디지털인사이트 주식회사 인터 모드 기반의 영상 부호화/복호화 방법 및 장치
US11563975B2 (en) * 2018-12-26 2023-01-24 Interdigital Madison Patent Holdings, Sas Motion compensation boundary filtering
WO2020143830A1 (en) * 2019-01-11 2020-07-16 Beijing Bytedance Network Technology Co., Ltd. Integer mv motion compensation
CN111246216B (zh) * 2019-01-17 2022-05-06 北京达佳互联信息技术有限公司 一种基于三角预测的视频编解码方法及设备
EP4333435A3 (en) * 2019-02-08 2024-05-08 Beijing Dajia Internet Information Technology Co., Ltd. Method and device for selectively applying decoder-side motion vector refinement for video coding
JP7293369B2 (ja) 2019-02-14 2023-06-19 エルジー エレクトロニクス インコーポレイティド Dmvr基盤のインター予測方法及び装置
WO2020168509A1 (zh) * 2019-02-21 2020-08-27 富士通株式会社 视频编码方法、视频解码方法、装置以及电子设备
CN116600139A (zh) * 2019-03-11 2023-08-15 华为技术有限公司 视频图像解码方法、编码方法及装置
CN116996690A (zh) * 2019-06-11 2023-11-03 Lg电子株式会社 图像编码/解码设备和图像数据发送设备
US11095916B2 (en) * 2019-07-23 2021-08-17 Qualcomm Incorporated Wraparound motion compensation in video coding
US11533491B2 (en) * 2019-08-28 2022-12-20 Qualcomm Incorporated Picture and sub-picture boundary processing for combined bilateral filter and Hadamard transform domain filter as in-loop filters
JP7436674B2 (ja) * 2019-12-23 2024-02-21 エルジー エレクトロニクス インコーポレイティド サブピクチャに基づく映像コーディング装置及び方法
US11477490B2 (en) * 2020-01-03 2022-10-18 Mediatek Inc. Video processing method with sample adaptive offset filtering disabled across virtual boundary in reconstructed frame and associated video processing apparatus
US20230254477A1 (en) * 2022-02-07 2023-08-10 Tencent America LLC Sub-block based constraint on bi-prediction for out-of-boundary conditions
US11968356B2 (en) * 2022-03-16 2024-04-23 Qualcomm Incorporated Decoder-side motion vector refinement (DMVR) inter prediction using shared interpolation filters and reference pixels

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855522B2 (ja) 1999-02-23 2006-12-13 松下電器産業株式会社 動画変換装置
KR20010105361A (ko) 1999-12-28 2001-11-28 요트.게.아. 롤페즈 Snr 스케일가능 비디오 엔코딩 방법 및 대응 디코딩 방법
CN100588257C (zh) * 2004-06-23 2010-02-03 新加坡科技研究局 采用栅格运动估计和补偿的可扩展视频编码
EP1900222A4 (en) * 2005-01-21 2009-10-28 Lg Electronics Inc METHOD AND APPARATUS FOR ENCODING / DECODING VIDEO SIGNALS USING BLOCK PREDICTION INFORMATION
KR100913088B1 (ko) * 2005-01-21 2009-08-21 엘지전자 주식회사 베이스 레이어의 내부모드 블록의 예측정보를 이용하여영상신호를 엔코딩/디코딩하는 방법 및 장치
WO2007042063A1 (en) * 2005-10-12 2007-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Video codec supporting quality-scalability
EP2210421A4 (en) 2007-10-16 2013-12-04 Lg Electronics Inc METHOD AND APPARATUS FOR PROCESSING A VIDEO SIGNAL
US8149915B1 (en) * 2007-11-29 2012-04-03 Lsi Corporation Refinement of motion vectors in hierarchical motion estimation
KR20090097689A (ko) * 2008-03-12 2009-09-16 삼성전자주식회사 영상의 인트라 예측 부호화/복호화 방법 및 장치
KR101703362B1 (ko) * 2008-09-04 2017-02-06 톰슨 라이센싱 암시적 모션 예측을 이용한 예측 리파인먼트를 위한 방법들 및 장치들
KR101749269B1 (ko) 2009-06-30 2017-06-22 삼성전자주식회사 적응적인 인루프 필터를 이용한 동영상 부호화와 복호화 장치 및 그 방법
HUE045579T2 (hu) * 2010-04-13 2020-01-28 Ge Video Compression Llc Síkközi predikció
BR112012026391B1 (pt) * 2010-04-13 2020-12-15 Ge Video Compression, Llc Herança em amostra de arranjo em subdivisão multitree
KR20120090740A (ko) 2011-02-07 2012-08-17 (주)휴맥스 정밀한 단위의 필터 선택을 적용한 영상 부호화/복호화 장치 및 방법
EP3419290B1 (en) 2011-06-30 2020-12-23 JVC KENWOOD Corporation Image coding device, image coding method, image coding program, image decoding device, image decoding method, and image decoding program
EP2735154A1 (en) 2011-07-22 2014-05-28 Motorola Mobility LLC Device and methods for scanning rectangular-shaped transforms in video coding
CN105306932B (zh) * 2011-10-24 2018-11-13 英孚布瑞智有限私人贸易公司 用于图像解码的方法和装置
KR20130049526A (ko) * 2011-11-04 2013-05-14 오수미 복원 블록 생성 방법
KR20130049524A (ko) * 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 방법
US9998726B2 (en) * 2012-06-20 2018-06-12 Nokia Technologies Oy Apparatus, a method and a computer program for video coding and decoding
KR102257542B1 (ko) * 2012-10-01 2021-05-31 지이 비디오 컴프레션, 엘엘씨 향상 레이어에서 변환 계수 블록들의 서브블록-기반 코딩을 이용한 스케일러블 비디오 코딩
WO2014178563A1 (ko) * 2013-04-29 2014-11-06 인텔렉추얼 디스커버리 주식회사 인트라 예측 방법 및 장치
US9609343B1 (en) * 2013-12-20 2017-03-28 Google Inc. Video coding using compound prediction
US10097851B2 (en) * 2014-03-10 2018-10-09 Euclid Discoveries, Llc Perceptual optimization for model-based video encoding
KR101483495B1 (ko) * 2014-07-15 2015-01-20 에스케이텔레콤 주식회사 서브블록 내 임의 화소를 이용한 영상 부호화/복호화 방법 및 장치
KR101608895B1 (ko) * 2014-11-13 2016-04-21 에스케이텔레콤 주식회사 영상 부호화/복호화 방법 및 장치
KR101608888B1 (ko) * 2014-11-13 2016-04-21 에스케이텔레콤 주식회사 영상 부호화/복호화 방법 및 장치
US10356416B2 (en) * 2015-06-09 2019-07-16 Qualcomm Incorporated Systems and methods of determining illumination compensation status for video coding
US20180242004A1 (en) * 2015-08-23 2018-08-23 Lg Electronics Inc. Inter prediction mode-based image processing method and apparatus therefor
US10397600B1 (en) * 2016-01-29 2019-08-27 Google Llc Dynamic reference motion vector coding mode
CN114615493A (zh) * 2016-03-24 2022-06-10 英迪股份有限公司 视频解码方法、视频编码方法和可读记录介质
US10631002B2 (en) * 2016-09-30 2020-04-21 Qualcomm Incorporated Frame rate up-conversion coding mode
CN109844424B (zh) 2016-10-24 2022-02-11 康明斯有限公司 车辆废热回收冷却优化
CN110115032B (zh) * 2016-12-22 2021-07-20 联发科技股份有限公司 用于视频编解码的运动细化的方法以及装置
WO2018124329A1 (ko) * 2016-12-28 2018-07-05 엘지전자(주) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
US10931969B2 (en) * 2017-01-04 2021-02-23 Qualcomm Incorporated Motion vector reconstructions for bi-directional optical flow (BIO)
US10904565B2 (en) * 2017-06-23 2021-01-26 Qualcomm Incorporated Memory-bandwidth-efficient design for bi-directional optical flow (BIO)
US10757442B2 (en) * 2017-07-05 2020-08-25 Qualcomm Incorporated Partial reconstruction based template matching for motion vector derivation
US11012715B2 (en) * 2018-02-08 2021-05-18 Qualcomm Incorporated Intra block copy for video coding
US10958928B2 (en) * 2018-04-10 2021-03-23 Qualcomm Incorporated Decoder-side motion vector derivation for video coding
JP2022503464A (ja) * 2018-07-17 2022-01-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ ビデオコーディング用動きベクトル予測

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP3435673A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11310526B2 (en) 2018-01-26 2022-04-19 Mediatek Inc. Hardware friendly constrained motion vector refinement
CN111886866B (zh) * 2018-01-26 2023-12-26 寰发股份有限公司 用于编码或解码视频序列的方法及电子装置
CN111886866A (zh) * 2018-01-26 2020-11-03 联发科技股份有限公司 硬件友善限制的运动向量细化修正
WO2019144930A1 (en) * 2018-01-26 2019-08-01 Mediatek Inc. Hardware friendly constrained motion vector refinement
WO2020013673A1 (ko) * 2018-07-13 2020-01-16 엘지전자 주식회사 Dmvr에 기반하여 인터 예측을 수행하는 방법 및 장치
CN112544078A (zh) * 2018-08-31 2021-03-23 联发科技股份有限公司 用于虚拟边界的环内滤波的方法和设备
CN112544078B (zh) * 2018-08-31 2023-03-10 联发科技股份有限公司 用于虚拟边界的环内滤波的方法和设备
CN110933419B (zh) * 2018-09-20 2022-07-01 杭州海康威视数字技术股份有限公司 一种运动矢量确定、边界强度确定方法和设备
CN110933419A (zh) * 2018-09-20 2020-03-27 杭州海康威视数字技术股份有限公司 一种运动矢量确定、边界强度确定方法和设备
JP2022502912A (ja) * 2018-09-24 2022-01-11 ビー1、インスティテュート、オブ、イメージ、テクノロジー、インコーポレイテッドB1 Institute Of Image Technology, Inc. 画像符号化/復号化方法及び装置
EP3860127A4 (en) * 2018-09-24 2022-08-10 B1 Institute of Image Technology, Inc. IMAGE CODING/DECODING METHOD AND DEVICE
JP7447097B2 (ja) 2018-09-24 2024-03-11 ビー1、インスティテュート、オブ、イメージ、テクノロジー、インコーポレイテッド 画像符号化/復号化方法及び装置
CN112602325A (zh) * 2018-12-27 2021-04-02 Kddi 株式会社 图像解码装置、图像编码装置、程序和图像处理***
WO2021060938A1 (ko) * 2019-09-26 2021-04-01 현대자동차주식회사 360도 비디오 가상 경계의 인루프 필터를 제한하는 방법

Also Published As

Publication number Publication date
EP3435673A4 (en) 2019-12-25
US20220303553A1 (en) 2022-09-22
US20220303552A1 (en) 2022-09-22
US11770539B2 (en) 2023-09-26
US10778987B2 (en) 2020-09-15
US11973960B2 (en) 2024-04-30
EP3435673A2 (en) 2019-01-30
US11388420B2 (en) 2022-07-12
WO2017164645A3 (ko) 2017-11-16
US20200374529A1 (en) 2020-11-26
US20230353757A1 (en) 2023-11-02
CN114615493A (zh) 2022-06-10
EP4072141A1 (en) 2022-10-12
US20190089961A1 (en) 2019-03-21
CN109155847A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2017164645A2 (ko) 비디오 신호 부호화/복호화 방법 및 장치
WO2017188652A1 (ko) 영상 부호화/복호화 방법 및 장치
WO2017039256A1 (ko) 비디오 신호 처리 방법 및 장치
WO2017179835A1 (ko) 인트라 예측 기반의 비디오 신호 처리 방법 및 장치
WO2017222325A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018212577A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018088805A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018106047A1 (ko) 비디오 신호 처리 방법 및 장치
WO2016052977A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018066959A1 (ko) 비디오 신호 처리 방법 및 장치
WO2019240448A1 (ko) 성분 간 참조 기반의 비디오 신호 처리 방법 및 장치
WO2018044088A1 (ko) 비디오 신호 처리 방법 및 장치
WO2017164441A1 (ko) 비디오 코딩 시스템에서 인터 예측 방법 및 장치
WO2018008904A2 (ko) 비디오 신호 처리 방법 및 장치
WO2016175549A1 (ko) 비디오 신호의 처리 방법 및 이를 위한 장치
WO2020009419A1 (ko) 병합 후보를 사용하는 비디오 코딩 방법 및 장치
WO2018236028A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2013154366A1 (ko) 블록 정보에 따른 변환 방법 및 이러한 방법을 사용하는 장치
WO2017014412A1 (ko) 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
WO2019240449A1 (ko) 양자화 파라미터 기반의 잔차 블록 부호화/복호화 방법 및 장치
WO2016159610A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018044089A1 (ko) 비디오 신호 처리 방법 및 장치
WO2016048092A1 (ko) 비디오 신호 처리 방법 및 장치
WO2019194484A1 (ko) 인트라 예측을 이용한 영상 부호화/복호화 방법 및 장치
WO2016114583A1 (ko) 비디오 신호 처리 방법 및 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017770615

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770615

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770615

Country of ref document: EP

Kind code of ref document: A2