WO2017163806A1 - 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 - Google Patents

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 Download PDF

Info

Publication number
WO2017163806A1
WO2017163806A1 PCT/JP2017/008352 JP2017008352W WO2017163806A1 WO 2017163806 A1 WO2017163806 A1 WO 2017163806A1 JP 2017008352 W JP2017008352 W JP 2017008352W WO 2017163806 A1 WO2017163806 A1 WO 2017163806A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrode
mass
water
soluble polymer
Prior art date
Application number
PCT/JP2017/008352
Other languages
English (en)
French (fr)
Inventor
祐作 松尾
政憲 渋谷
園部 健矢
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP17769851.1A priority Critical patent/EP3435456B1/en
Priority to JP2018507174A priority patent/JP7031576B2/ja
Priority to US16/081,135 priority patent/US10985374B2/en
Priority to KR1020187025516A priority patent/KR102338192B1/ko
Priority to PL17769851.1T priority patent/PL3435456T3/pl
Priority to CN201780015145.0A priority patent/CN108780892B/zh
Publication of WO2017163806A1 publication Critical patent/WO2017163806A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/025Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for non-aqueous secondary battery electrodes, a slurry composition for non-aqueous secondary battery electrodes, an electrode for non-aqueous secondary batteries, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes abbreviated as “secondary batteries”) have the characteristics of being small and lightweight, having high energy density, and capable of repeated charge and discharge. It is used for a wide range of purposes.
  • the positive electrode and the negative electrode of a secondary battery are formed by applying and drying a slurry composition containing an electrode active material and a binder composition binding the electrode active material on each current collector.
  • a slurry composition containing an electrode active material and a binder composition binding the electrode active material on each current collector For example, refer to Patent Document 1.
  • the binder composition for a non-aqueous secondary battery electrode according to the present invention is: A binder composition for a non-aqueous secondary battery electrode having a water-soluble polymer containing an acid group-containing monomer unit and water, The content ratio of the acid group-containing monomer unit of the water-soluble polymer is 5% by mass or more and 70% by mass or less, It is a binder composition for non-aqueous secondary battery electrodes in which the ratio of the water-soluble polymer having an inertial radius of 200 nm or less is 95% by mass or more and 100% by mass or less. When the composition has such a composition, the low temperature characteristics of the non-aqueous secondary battery can be improved.
  • the water-soluble polymer preferably has a weight average molecular weight of 100,000 or more and 4,000,000 or less. Thereby, cycling characteristics improve and the swelling of an electrode is suppressed.
  • the water-soluble polymer further contains a (meth) acrylamide monomer unit, and the (meth) acrylamide monomer unit of the water-soluble polymer. Is preferably 30% by mass or more and 85% by mass or less. As a result, the resistance can be reduced and the cycle characteristics are improved.
  • the water-soluble polymer further contains a hydroxyl group-containing monomer unit
  • the content ratio of the acid group-containing monomer unit of the water-soluble polymer is 5% by mass or more and 65% by mass or less
  • the content ratio of the hydroxyl group-containing monomer unit in the water-soluble polymer is preferably 0.5% by mass or more and 50% by mass or less.
  • the slurry composition for a non-aqueous secondary battery electrode according to the present invention is a slurry composition for a non-aqueous secondary battery electrode containing any one of the above binder compositions for a non-aqueous secondary battery electrode and an electrode active material. Thereby, the low temperature characteristic of a non-aqueous secondary battery can be improved.
  • An electrode for a non-aqueous secondary battery according to the present invention is an electrode for a non-aqueous secondary battery comprising an electrode mixture layer using the above slurry composition for a non-aqueous secondary battery electrode on an electrode substrate. . Thereby, the low temperature characteristic of a non-aqueous secondary battery can be improved.
  • a non-aqueous secondary battery according to the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte solution, A non-aqueous secondary battery in which at least one of the positive electrode and the negative electrode is the electrode for a non-aqueous secondary battery.
  • the low temperature characteristic of a non-aqueous secondary battery is favorable.
  • the present invention it is possible to provide a binder composition for a non-aqueous secondary battery electrode that can improve the low temperature characteristics of the non-aqueous secondary battery.
  • ADVANTAGE OF THE INVENTION According to this invention, the slurry composition for non-aqueous secondary battery electrodes which can improve the low temperature characteristic of a non-aqueous secondary battery can be provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the electrode for non-aqueous secondary batteries which can improve the low temperature characteristic of a non-aqueous secondary battery can be provided. According to the present invention, it is possible to provide a non-aqueous secondary battery with good low-temperature characteristics.
  • the radius of inertia of the water-soluble polymer is measured by the method described in the examples.
  • a certain substance is water-soluble means that when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C., the insoluble content is 0% by mass or more and less than 1.0% by mass.
  • a certain substance is water-insoluble means that an insoluble content is 90% by mass or more and 100% by mass or less when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • (meth) acrylamide means one or more selected from the group consisting of acrylamide, methacrylamide and combinations thereof.
  • an acid group-containing monomer unit means a structural unit formed by polymerizing a monomer having an acid group.
  • a (meth) acrylamide monomer unit means a structural unit formed by polymerizing a (meth) acrylamide monomer.
  • a hydroxyl group-containing monomer unit means a structural unit formed by polymerizing a monomer having a hydroxyl group.
  • the ratio of monomer units formed by polymerizing a certain monomer in the polymer is described in the following. Unless there is, normally, it corresponds with the ratio (preparation ratio) of the mass of the said certain monomer to the mass of all the monomers used for superposition
  • the binder composition for a non-aqueous secondary battery electrode according to the present invention is: A binder composition for a non-aqueous secondary battery electrode having a water-soluble polymer containing an acid group-containing monomer unit and water, The content ratio of the acid group-containing monomer unit of the water-soluble polymer is 5% by mass or more and 70% by mass or less, It is a binder composition for non-aqueous secondary battery electrodes in which the ratio of the water-soluble polymer having an inertial radius of 200 nm or less is 95% by mass or more and 100% by mass or less. When the composition has such a composition, the low temperature characteristics of the non-aqueous secondary battery can be improved.
  • the water-soluble polymer has a binding property and an electrolytic solution resistance, and has a function of binding the electrode active material in the secondary battery.
  • the water-soluble polymer includes an acid group-containing monomer unit.
  • the content ratio of the acid group-containing monomer unit in the water-soluble polymer is 5% by mass or more and 70% by mass or less.
  • the proportion of the water-soluble polymer having an inertia radius of 200 nm or less is 95% by mass or more and 100% by mass or less.
  • the water-soluble polymer contains at least an acid group-containing monomer unit.
  • Other water-soluble polymers include, for example, (meth) acrylamide monomer units, hydroxyl group-containing monomer units, crosslinkable monomer units, (meth) acrylic acid alkyl ester monomer units, and aromatic monovinyl units.
  • One or more types of units selected from the group consisting of monomer units may be included.
  • Examples of the acid group-containing monomer that can form an acid group-containing monomer unit include a carboxylic acid group-containing monomer, a sulfonic acid group-containing monomer, and a phosphoric acid group-containing monomer. it can.
  • One acid group-containing monomer may be used alone, or two or more acid group-containing monomers may be used in combination.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropane sulfone. Acid, 3-allyloxy-2-hydroxypropanesulfonic acid and the like.
  • Examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate. Can be mentioned.
  • the content ratio of the acid group-containing monomer unit in the water-soluble polymer is 5% by mass or more and 70% by mass or less, may be 7% by mass or more, or 15% by mass or more, and is 40% by mass or less, 35% by mass or less or 25 mass% or less may be sufficient, 5 mass% or more and 65 mass% or less are preferable, 8 mass% or more and 50 mass% or less are more preferable, and 10 mass% or more and 30 mass% or less are more preferable.
  • the covering property to an electrode active material improves, a side reaction is suppressed, and cycling characteristics improve.
  • the dispersion stability of a slurry improves, a slurry does not settle, but it can reduce resistance (Li precipitation suppression or a low-temperature characteristic improvement).
  • the mass ratio between the acid group-containing monomer unit and the (meth) acrylamide monomer unit is preferably from 0.05 to 1.00, more preferably from 0.085 to 0.8. 0.1 to 0.6 is more preferable.
  • the acid group-containing monomer unit is less than 0.05, the inertial radius of the water-soluble polymer is small, the spread of the water-soluble polymer in the slurry is small, and the stability of the slurry is lowered.
  • there are more acid group containing monomer units than 1.00 the inertial radius of a water-soluble polymer will become large, and coatability will fall.
  • Examples of the (meth) acrylamide monomer that can form a (meth) acrylamide monomer unit include acrylamide and methacrylamide.
  • a (meth) acrylamide monomer may be used alone or in combination of two or more.
  • the content ratio of the (meth) acrylamide monomer unit in the water-soluble polymer may be appropriately adjusted. For example, 30 mass% or more and 85 mass% or less are preferable, 35 mass% or more and 80 mass% or less are more preferable, and 40 mass% or more and 75 mass% or less are more preferable.
  • the content By setting the content to 30% by mass or more, the dispersion stability of the slurry is improved, the slurry does not settle, and the resistance can be reduced (Li precipitation suppression or low-temperature characteristics can be improved).
  • the covering property to an electrode active material improves, a side reaction is suppressed, and cycling characteristics improve.
  • Examples of the hydroxyl group-containing monomer capable of forming a hydroxyl group-containing monomer unit include hydroxyethyl acrylamide, hydroxyethyl methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, methacrylic acid- Examples thereof include 2-hydroxyethyl and 2-hydroxypropyl methacrylate.
  • the hydroxyl group-containing monomers may be used alone or in combination of two or more.
  • the content ratio of the hydroxyl group-containing monomer unit in the water-soluble polymer may be appropriately adjusted. For example, 0.5 mass% or more and 50 mass% or less are preferable, 5 mass% or more and 40 mass% or less are more preferable, and 10 mass% or more and 30 mass% or less are more preferable.
  • sucks to an electrode active material and peel strength improves.
  • formation of the undissolved gel with an inertial radius larger than 200 nm can be suppressed, and resistance can be reduced.
  • crosslinkable monomer examples include a polyfunctional monomer having two or more polymerizable reactive groups in the monomer.
  • a polyfunctional monomer is not particularly limited.
  • divinyl compounds such as divinylbenzene; ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, 1,3-butylene glycol diacrylate
  • Polyfunctional (meth) acrylate compounds such as trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, ethoxylated pentaerythritol tetraacrylate; ethylenically unsaturated monomers containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate Examples include the body.
  • the crosslinkable monomers may be used alone or in combination of two or more.
  • the inertia radius of the water-soluble polymer represents the radius of the water-soluble polymer particles in water.
  • the proportion of the water-soluble polymer having an inertial radius of 200 nm or less in the water-soluble polymer is 95% by mass or more and 100% by mass or less.
  • a polymer with an inertial radius greater than 200 nm is considered an undissolved gel, and the less undissolved gel, the more uniform the water-soluble polymer distribution in the electrode. It is considered that the resistance can be reduced.
  • the proportion of the water-soluble polymer having an inertial radius of 200 nm or less is preferably 99% by mass or more and 100% by mass or less, and more preferably 99.5% by mass or more and 100% by mass or less.
  • the inertial radius of the water-soluble polymer of 95% by mass to 100% by mass is 200 nm or less, preferably 10 nm to 200 nm, more preferably 30 nm to 180 nm. .
  • the radius of inertia of the water-soluble polymer is, for example, the above-described mass ratio of the acid group-containing monomer unit and the (meth) acrylamide monomer unit in the water-soluble polymer; the weight average molecular weight of the water-soluble polymer; It can be adjusted by changing or selecting the polymerization temperature, the type of polymerization initiator, and the type of polymerization accelerator, which will be described later.
  • the molecular weight of the water-soluble polymer is not particularly limited and can be adjusted as appropriate.
  • the weight average molecular weight (Mw) is preferably from 100,000 to 4,000,000, more preferably from 500,000 to 3,800,000, and more preferably from 1,500,000 to 3,500,000. More preferred.
  • Mw is 100,000 or more
  • the electrode strength is improved, thereby improving the cycle characteristics and suppressing the swelling of the electrode.
  • the covering property is lowered. Therefore, when Mw is 4,000,000 or less, the covering property to the electrode active material is improved and the side reaction is suppressed, thereby the cycle characteristics. Will improve.
  • the water-soluble polymer for example, it can be prepared as follows. The above acid group-containing monomer and other monomers are mixed. A polymerization accelerator is added to the mixture. Thereafter, a polymerization initiator is added to start the polymerization reaction. Thereafter, one or two or more polymerization accelerators, polymerization initiators, and polymerization cycles may be performed as necessary.
  • the polymerization temperature is preferably 35 ° C. or more and 65 ° C. or less, and more preferably 40 ° C. or more and 50 ° C. or less. By setting this range, the inertial radius of the water-soluble polymer can be reduced.
  • the time for the polymerization reaction between the addition of the polymerization initiator and the addition of the polymerization accelerator is preferably, for example, 10 minutes to 40 minutes, and more preferably 15 minutes to 30 minutes. By setting it as 10 minutes or more, there exists an effect of suppressing the stirring nonuniformity of a polymerization accelerator and suppressing the increase in the inertial radius by a local polymerization reaction. Moreover, the side reaction before initiator addition is suppressed by setting it as 40 minutes or less.
  • the polymerization reaction is stopped using a reaction stopper. The product is then cooled and placed in an air atmosphere. Next, the pH is adjusted to 7.5 or more and 8.5 or less using a lithium hydroxide aqueous solution or the like.
  • the polymerization initiator is not particularly limited, and a known polymerization initiator can be used.
  • examples of the polymerization initiator include potassium persulfate, sodium persulfate, and ammonium persulfate. Of these, potassium persulfate is preferable.
  • the polymerization initiator is added a plurality of times, the polymerization initiator at each time may be the same or different.
  • the amount of the polymerization initiator may be appropriately adjusted.
  • the amount is preferably 0.1 parts by mass (solid content conversion) or more and 1.5 parts by mass (solid content conversion) or less.
  • the polymerization accelerator examples include L-ascorbic acid and sodium bisulfite.
  • the polymerization accelerator at each time may be the same or different.
  • L-ascorbic acid is present in the polymerization system as a polymerization accelerator at the start of the polymerization reaction.
  • the presence of L-ascorbic acid as a polymerization accelerator suppresses side reactions at the initial stage of the polymerization reaction, thereby suppressing an increase in the inertia radius. It is speculated that you can.
  • the amount of the polymerization accelerator may be appropriately adjusted. For example, it is preferably 0.01 parts by mass (solid content conversion) or more and 0.3 parts by mass (solid content conversion) or less.
  • the blending amount of the water-soluble polymer and water in the binder composition for non-aqueous secondary battery electrodes is not particularly limited, and may be adjusted as appropriate.
  • the solid content concentration is preferably 3% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 15% by mass or less.
  • the binder composition for non-aqueous secondary battery electrodes may contain other components known as binder compositions. Examples thereof include a wetting agent, a leveling agent, and an electrolytic solution decomposition inhibitor.
  • the preparation method of the binder composition for non-aqueous secondary battery electrodes is not particularly limited, for example, it can be prepared by dissolving or dispersing the water-soluble polymer and other optional components in water. Specifically, using ball mills, sand mills, pigment dispersers, crushers, ultrasonic dispersers, homogenizers, planetary mixers, bead mills, roll mills, fill mixes, etc., water-soluble polymers and other An optional component is dispersed or dissolved in water to prepare a binder composition for a non-aqueous secondary battery electrode.
  • the slurry composition for nonaqueous secondary battery electrodes which concerns on this invention is a slurry composition for nonaqueous secondary battery electrodes containing the binder composition for any of the said nonaqueous secondary battery electrodes, and an electrode active material. Thereby, the low temperature characteristic of a non-aqueous secondary battery can be improved.
  • the electrode active material a known electrode active material of a non-aqueous secondary battery can be used. Since the slurry composition for a non-aqueous secondary battery electrode according to the present invention is typically used for a lithium ion secondary battery, an electrode active material for a lithium ion secondary battery will be described below as an example.
  • the electrode active material for the lithium ion secondary battery may be any material that can reversibly insert and release lithium ions by applying a potential in the electrolyte, and may be an inorganic compound or an organic compound.
  • the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • Examples of the transition metal include Fe, Co, Ni, and Mn.
  • the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13, etc. Can be mentioned.
  • the positive electrode active material made of an organic compound for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used. Furthermore, you may use the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the negative electrode active material examples include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; and conductive polymers such as polyacene.
  • carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers
  • conductive polymers such as polyacene.
  • metals such as silicon, tin, zinc, manganese, iron and nickel and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys;
  • metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, Li—Sn—Cd; lithium transition metal nitride; silicon and the like can be used.
  • these negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the slurry composition for non-aqueous secondary battery electrodes may contain other components known as slurry compositions.
  • a conductive material conductive auxiliary agent
  • a reinforcing material etc. are mentioned.
  • Examples of the conductive material include conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube; carbon powder such as graphite; fibers and foils of various metals And so on.
  • conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube
  • carbon powder such as graphite
  • fibers and foils of various metals And so on By using a conductive material, electrical contact between electrode active materials can be improved, and output characteristics can be improved particularly when used in a lithium ion secondary battery.
  • the reinforcing material for example, various inorganic and organic spherical, plate, rod or fiber fillers can be used.
  • the solid content concentration of the slurry composition for a non-aqueous secondary battery electrode may be appropriately set within a range in which the slurry composition has a viscosity that does not impair workability when the electrode mixture layer is manufactured.
  • the solid content concentration of the slurry composition for a non-aqueous secondary battery electrode can be set to 40% by mass or more and 55% by mass or less, for example.
  • the preparation method of the slurry composition for non-aqueous secondary battery electrodes is not specifically limited, For example, the preparation method of the said binder composition can be used.
  • An electrode for a non-aqueous secondary battery according to the present invention is an electrode for a non-aqueous secondary battery comprising an electrode mixture layer using the above slurry composition for a non-aqueous secondary battery electrode on an electrode substrate. . Thereby, the low temperature characteristic of a non-aqueous secondary battery can be improved.
  • a known current collector such as one made of a metal material such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum can be used.
  • a current collector made of aluminum is preferably used.
  • a current collector made of copper is preferably used.
  • the electrode mixture layer is a layer formed from the slurry composition for non-aqueous secondary battery electrodes.
  • the electrode mixture layer can be formed using a known technique.
  • the prepared slurry composition for a non-aqueous secondary battery electrode is applied to both sides or one side of a current collector and then dried, and then heated at 120 ° C. or higher for 1 hour or longer to form an electrode mixture layer. be able to.
  • the electrode mixture layer is preferably subjected to pressure treatment using a mold press, a roll press or the like.
  • the electrode may be provided with components other than the electrode base material and the electrode mixture layer as long as they do not depart from the spirit of the present invention. For example, you may equip the surface of an electrode compound-material layer with other layers, such as a protective layer, as needed.
  • a non-aqueous secondary battery according to the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte solution, A non-aqueous secondary battery in which at least one of the positive electrode and the negative electrode is the electrode for a non-aqueous secondary battery.
  • the low temperature characteristic of a non-aqueous secondary battery is favorable.
  • the positive electrode and the negative electrode are an electrode mixture layer using a slurry composition for a non-aqueous secondary battery electrode on the electrode base for a positive electrode and / or an electrode base for a negative electrode described in Non-aqueous secondary battery electrode. It is an electrode for non-aqueous secondary batteries.
  • the separator is not particularly limited, and a known separator can be used.
  • microporous membrane, porous membrane or nonwoven fabric containing polyolefin resin such as polyethylene, polypropylene, polybutene, polyvinyl chloride or aromatic polyamide resin
  • porous resin coat containing inorganic ceramic powder such as polyethylene terephthalate, polycycloolefin, polyether
  • Microporous membrane made of resin such as sulfone, polyamide, polyimide, polyimide amide, polyaramid, nylon, polytetrafluoroethylene or woven polyolefin fiber, or its nonwoven fabric, aggregate of insulating material particles; combinations thereof Etc.
  • the electrolytic solution is not particularly limited, and a known electrolytic solution can be appropriately selected and used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in a solvent (organic solvent) is usually used.
  • a lithium salt is used as the supporting electrolyte.
  • lithium salt examples include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation.
  • the electrolyte (supporting electrolyte) may be used alone or in combination of two or more.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and can be appropriately selected and used.
  • the solvent include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and ethyl methyl carbonate (EMC); ⁇ -butyrolactone And esters such as methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; and sulfur-containing compounds such as sulfolane and dimethyl sulfoxide.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • EMC ethyl methyl carbonate
  • ⁇ -butyrolactone And esters such as methyl formate
  • ethers such as 1,2-dimethoxyethane and t
  • the solvent is, in one example, one or more carbonates selected from the group consisting of dimethyl carbonate, ethylene carbonate, diethyl carbonate, propylene carbonate, butylene carbonate, and ethyl methyl carbonate, and in another example, EC and EMC. In another example, a mixed solution of EC, EMC, and DEC. What is necessary is just to adjust the mixing ratio of these liquid mixture suitably.
  • a known additive such as vinylene carbonate (VC), fluoroethylene carbonate (FEC), or ethyl methyl sulfone may be added to the electrolytic solution.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • ethyl methyl sulfone ethyl methyl sulfone
  • the shape of the secondary battery is not particularly limited and can be appropriately selected.
  • a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like can be given.
  • the non-aqueous secondary battery according to the present invention is preferably a wound type or a stacked type. Thereby, there exists an effect that the energy density of a secondary battery can be improved.
  • the method for producing a non-aqueous secondary battery according to the present invention is not particularly limited except that the non-aqueous secondary battery electrode is used for at least one of the positive electrode and the negative electrode, and a known method for producing a non-aqueous secondary battery is used. Can be used.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is put into a battery container by winding or folding according to the battery shape as necessary, and an electrolytic solution is injected into the battery container and sealed.
  • an overcurrent prevention element such as a fuse and a PTC element, an expanded metal, a lead board, etc. as needed.
  • the blending amount means parts by mass.
  • the inertial radius of the water-soluble polymer was measured as follows.
  • the binder composition for non-aqueous secondary battery electrodes can be separated by a field-flow fractionation (hereinafter referred to as FFF) apparatus.
  • FFF field-flow fractionation
  • MALS multiangle light scattering
  • the FFF device is a device capable of molecular weight fractionation by passing a sample solution through a gap (channel) of 100 ⁇ m or more and 500 ⁇ m or less and applying a field when passing through the channel.
  • the absolute molecular weight is measured by a static light scattering method using MALS.
  • MALS FFF apparatus
  • PN3621 MALS manufactured by Postnova MALS detector
  • RI detector PN3150 RI manufactured by Postnova was used.
  • polyether sulfone membrane 10 kDa was used, and the developing solution was carried out with 1 mM phosphate buffer.
  • the sample was adjusted to a solid content of 0.1% by mass by diluting 100 ⁇ L of the binder composition for non-aqueous secondary battery electrodes diluted to 1% with ion-exchanged water with 900 ⁇ L of 1 mM pH 7.4 phosphate buffer. 50 ⁇ L of this adjusted sample was injected into FFF-MALS, and measurement was performed at a flow rate of 1.0 mL / min.
  • ⁇ Slurry stability> The slurry composition for non-aqueous secondary battery electrodes prepared as described later was allowed to stand at room temperature. And the time-dependent change of the viscosity of the slurry composition for non-aqueous secondary battery electrodes 24 hours after immediately after preparation was measured with a B-type viscometer. And slurry stability was evaluated according to the following criteria. A shows the best slurry stability and D shows the lowest slurry stability. A: Viscosity change is less than 5.0% B: Viscosity change is 5.0% or more and less than 10.0% C: Viscosity change is 10.0% or more and less than 20.0% D: Viscosity change is 20.0% or more
  • a negative electrode for a lithium ion secondary battery produced as described later was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece.
  • a double-sided adhesive cellophane tape (as defined in JIS Z1522) was attached to the surface of the negative electrode composite material layer of the test piece, and the negative electrode composite material layer side was fixed on the test stand.
  • the stress was measured when one end of the current collector was pulled off in the vertical direction at a pulling speed of 50 mm / min. The measurement was performed three times, the average value was obtained, and this was taken as the peel strength. And it evaluated on the following references
  • standards were evaluated on the following references
  • A indicates the highest peel strength (adhesiveness between the negative electrode composite material layer and the current collector), and C indicates the lowest peel strength.
  • ⁇ Cycle characteristics of lithium ion secondary battery> A lithium ion secondary battery produced as described later was allowed to stand at a temperature of 25 ° C. for 5 hours after electrolyte injection. Next, the cell voltage was charged to 3.65 V by a constant current method at a temperature of 25 ° C. and 0.2 C, and then an aging treatment was performed at a temperature of 60 ° C. for 12 hours. And it discharged to cell voltage 3.00V by the constant current method of temperature 25 degreeC and 0.2C. Then, CC-CV (constant current-constant voltage) charge (upper limit cell voltage 4.20V) is performed by the constant current method of 0.2C, and CC is discharged to 3.00V by the constant current method of 0.2C.
  • CC-CV constant current-constant voltage
  • the initial discharge capacity X1 was measured. Thereafter, 50 cycles of charge and discharge operations were performed at a cell voltage of 4.20 to 3.00 V and a charge and discharge rate of 1.0 C in an environment of 45 ° C. Subsequently, 50 cycles of charge and discharge operations were performed at a cell voltage of 4.20 to 3.00 V and a charge and discharge rate of 0.5 C in an environment of 0 ° C. After that, CC-CV charge (cell voltage 4.20V) was performed by a constant current method at a temperature of 25 ° C. and 0.2C, and a cell voltage was discharged to 3.00V by a constant current method of 0.2C. The discharge capacity X2 was measured.
  • a capacity maintenance ratio represented by ⁇ C ′ (X2 / X1) ⁇ 100 (%) was obtained and evaluated according to the following criteria.
  • A shows the best cycle characteristics and D shows the lowest cycle characteristics.
  • ⁇ Low temperature characteristics (rate characteristics)> A lithium ion secondary battery produced as described later was allowed to stand at a temperature of 25 ° C. for 5 hours after electrolyte injection. Next, the cell voltage was charged to 3.65 V by a constant current method at a temperature of 25 ° C. and 0.2 C, and then an aging treatment was performed at a temperature of 60 ° C. for 12 hours. And it discharged to cell voltage 3.00V by the constant current method of temperature 25 degreeC and 0.2C. Thereafter, CC-CV (constant current-constant voltage) charge (upper limit cell voltage 4.35V) is performed at a constant current of 0.2C, and CC discharge is performed to a cell voltage of 3.00V at a constant current of 0.2C. went.
  • CC-CV constant current-constant voltage
  • A indicates the best low-temperature characteristics (high discharge capacity at high current and low internal resistance in a low-temperature environment), and D indicates the lowest low-temperature characteristics.
  • Acid group-containing monomer Acrylic acid (meth) acrylamide monomer: Acrylamide hydroxyl group-containing monomer: Hydroxyethylacrylamide
  • Crosslinkable monomer Ethoxylated pentaerythritol tetraacrylate (product name ATM manufactured by Shin-Nakamura Chemical Co., Ltd.) -35E)
  • Comparative water-soluble polymer (carboxymethylcellulose): Product name CMC Daicel 2200 manufactured by Daicel Corporation
  • Polymerization initiator Potassium persulfate polymerization accelerator: L-ascorbic acid and sodium bisulfite reaction terminator: Sodium nitrite acetylene black: HS-100 manufactured by Denka
  • Example 1 Preparation of binder composition for non-aqueous secondary battery electrode> Into a 10 L flask with a septum, 842 parts by mass of ion-exchanged water was added, heated to a temperature of 40 ° C., and the inside of the flask was replaced with nitrogen gas at a flow rate of 100 mL / min. Next, acrylamide, acrylic acid and hydroxyethyl acrylamide of the amounts shown in Table 1 were mixed and injected into the flask with a syringe. Thereafter, 0.05 part by mass (converted to solid content) of a 2.0% aqueous solution of L-ascorbic acid was added to the flask with a syringe.
  • Examples 2 to 15 and Comparative Examples 1 to 3 As shown in Table 1, a water-soluble polymer was polymerized in the same manner as in Example 1 except that each monomer and the polymerization initiator at the start of the reaction were changed, and a binder for a non-aqueous secondary battery electrode was obtained. A composition was prepared. In Example 15, the above-mentioned crosslinkable monomer: ATM-35E was used as the other monomer.
  • Example 4 In Example 1, the following points were changed, the comparative water-soluble polymer was polymerized, and the binder composition for non-aqueous secondary battery electrodes was prepared. The reaction temperature was changed to 70 ° C. The monomer was changed as shown in Table 1. In Comparative Example 4, 10 parts by mass of ethyl acrylate (EA) was used as the unsaturated carboxylic acid ester (other monomer). Furthermore, the polymerization initiator was changed to sodium persulfate. L-ascorbic acid was not used. Then, 2 hours after the start of the reaction, the temperature was raised to 90 ° C., and the reaction was further continued for 2 hours.
  • EA ethyl acrylate
  • L-ascorbic acid was not used.
  • Example 6 a binder composition for a nonaqueous secondary battery electrode was prepared in the same manner as in Example 1 except that carboxymethylcellulose (Daicel 2200) was used as a comparative water-soluble polymer instead of the water-soluble polymer. did.
  • carboxymethylcellulose Daicel 2200
  • slurry composition for lithium ion secondary battery negative electrodes was prepared.
  • the solid content concentration of the slurry composition for a lithium ion secondary battery negative electrode at this time was 45% by mass.
  • slurry stability was evaluated as mentioned above.
  • ion-exchange water was added so that a viscosity might be set to 4000 +/- 300 mPa * s (B type viscometer, measured at 60 rpm), and the slurry composition for lithium ion secondary battery positive electrodes was prepared.
  • the solid content concentration of the slurry composition for a lithium ion secondary battery positive electrode at this time was 50% by mass.
  • the prepared slurry composition for a negative electrode of a lithium ion secondary battery was applied on a copper foil (thickness 15 ⁇ m) as a current collector with a comma coater so that the coating amount was 10 mg / cm 2 to 12 mg / cm 2. And dried. Drying was performed by conveying the copper foil coated with the slurry composition for a lithium ion secondary battery negative electrode in an oven at a temperature of 80 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, the current collector was further heat-treated at a temperature of 120 ° C. for 2 minutes to obtain a negative electrode raw material.
  • the prepared slurry composition for a lithium ion secondary battery positive electrode was applied onto an aluminum foil (thickness 20 ⁇ m) as a current collector with a comma coater and dried. Drying was performed by conveying the aluminum foil coated with the slurry composition for a lithium ion secondary battery positive electrode in an oven at a temperature of 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, the current collector was further heat-treated at a temperature of 120 ° C. for 2 minutes to obtain a positive electrode original fabric.
  • the obtained positive electrode raw material is pressed with a roll press machine so that the density becomes 3.10 g / cm 3 to 3.20 g / cm 3 , so that the positive electrode mixture layer is formed on one side of the current collector.
  • a formed positive electrode was obtained.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by a dry method; porosity 55%) was prepared and cut into a 5 cm ⁇ 5 cm square.
  • the aluminum packaging material exterior was prepared as a battery exterior.
  • the produced positive electrode was cut out into a 4 cm x 4 cm square, and it has arrange
  • a square separator was disposed on the surface of the positive electrode mixture layer side of the positive electrode.
  • Comparative Examples 1 to 3 in which the ratio of the acid group-containing monomer units was outside the predetermined range, the low temperature characteristics and other performances were low. Further, Comparative Examples 4 and 5 in which the ratio of the water-soluble polymer having an inertial radius of 200 nm or less was less than 95% by mass also had low low temperature characteristics and other performances. Comparative Example 6 using a comparative water-soluble polymer also had low low temperature characteristics and other performances.
  • Example 1 with the highest proportion of water-soluble polymer having an inertial radius of 200 nm or less was superior to Examples 2 and 3 in low temperature characteristics.
  • Example 1 is superior to Example 4 in that the ratio of the water-soluble polymer having an inertial radius of 200 nm or less is higher, and thus the low-temperature characteristics are superior.
  • Example 1 was superior to Example 4 in that the water-soluble polymer had a smaller weight average molecular weight, and thus the active material had good coverage and cycle characteristics.
  • Example 1 has a higher water-soluble polymer weight average molecular weight than Example 5, and therefore has a better peel strength than Example 5, thereby improving electrode strength. Further, the cycle characteristics and the resistance to swelling of the electrode were better than those of Example 5.
  • Example 1 and Example 6 were compared, the water-soluble polymer of Example 1 had excellent peel strength because it had hydroxyl group-containing monomer units that were not found in the water-soluble polymer of Example 6.
  • Example 1 and Examples 7 and 8 were compared, Example 1 had a larger amount of hydroxyl group-containing monomer units than Examples 7 and 8, and had excellent peel strength.
  • the water-soluble polymer had a larger weight average molecular weight than Examples 7 and 8, and was excellent in slurry stability and cycle characteristics.
  • Example 9 had a greater amount of hydroxyl group-containing monomer units than Example 8, and was superior in peel strength. Comparing Examples 1, 11, and 12, Example 1 has a ratio of acid group-containing monomer units / (meth) acrylamide monomer units smaller than that of Examples 11 and 12, and therefore, an aqueous solution having an inertia radius of 200 nm or less. The ratio of the conductive polymer was large and the low temperature characteristics were excellent.
  • Example 6 and Example 13 were compared, Example 6 had better properties than Example 13 because the weight average molecular weight of the water-soluble polymer was larger than Example 13.
  • Example 6 and Example 14 are compared, Example 6 has a smaller weight average molecular weight of the water-soluble polymer than Example 14, and therefore has better active material coverage and better cycle characteristics than Example 14. It was.
  • the present invention it is possible to provide a binder composition for a non-aqueous secondary battery electrode that can improve the low temperature characteristics of the non-aqueous secondary battery.
  • ADVANTAGE OF THE INVENTION According to this invention, the slurry composition for non-aqueous secondary battery electrodes which can improve the low temperature characteristic of a non-aqueous secondary battery can be provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the electrode for non-aqueous secondary batteries which can improve the low temperature characteristic of a non-aqueous secondary battery can be provided. According to the present invention, it is possible to provide a non-aqueous secondary battery with good low-temperature characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

非水系二次電池の低温特性を向上可能な、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極を提供すること。低温特性が良好な非水系二次電池を提供すること。酸基含有単量体単位を含む水溶性重合体と水とを有し、水溶性重合体の酸基含有単量体単位の含有割合が、5質量%以上70質量%以下であり、水溶性重合体のうち、慣性半径200nm以下の水溶性重合体の割合が、95質量%以上100質量%以下である、非水系二次電池電極用バインダー組成物。バインダー組成物および電極活物質を含む、非水系二次電池電極用スラリー組成物。電極基材上に、スラリー組成物を用いた電極合材層を備える、非水系二次電池用電極。正極、負極、セパレータおよび電解液を備え、正極と負極の少なくとも一方が非水系二次電池用電極である、非水系二次電池。

Description

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
 本発明は、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池に関する。
 リチウムイオン二次電池などの非水系二次電池(以下、「二次電池」と略記する場合がある)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。
 通常、二次電池の正極および負極は、それぞれの集電体上に、電極活物質とこの電極活物質を結着するバインダー組成物とを含むスラリー組成物を塗布、乾燥することにより形成される(例えば、特許文献1参照)。
特開2016-031911号公報
 近年、二次電池のさらなる高性能化を達成するため、電池特性の向上、例えば、低温特性の向上が求められている。
 そこで、本発明は、非水系二次電池の低温特性を向上可能な非水系二次電池電極用バインダー組成物を提供することを目的とする。また、本発明の他の目的は、非水系二次電池の低温特性を向上可能な非水系二次電池電極用スラリー組成物を提供することである。また、本発明の他の目的は、非水系二次電池の低温特性を向上可能な非水系二次電池用電極を提供することである。また、本発明の他の目的は、低温特性が良好な非水系二次電池を提供することである。
 本発明に係る非水系二次電池電極用バインダー組成物は、
 酸基含有単量体単位を含む水溶性重合体と水とを有する非水系二次電池電極用バインダー組成物であって、
 前記水溶性重合体の酸基含有単量体単位の含有割合が、5質量%以上70質量%以下であり、
 前記水溶性重合体のうち、慣性半径200nm以下の水溶性重合体の割合が、95質量%以上100質量%以下である、非水系二次電池電極用バインダー組成物である。組成物がこのような組成を有することにより、非水系二次電池の低温特性を向上可能である。
 本発明に係る非水系二次電池電極用バインダー組成物は、前記水溶性重合体の重量平均分子量が、100,000以上4,000,000以下であることが好ましい。これにより、サイクル特性が向上し、電極のふくらみが抑制される。
 本発明に係る非水系二次電池電極用バインダー組成物は、前記水溶性重合体が、さらに(メタ)アクリルアミド単量体単位を含み、前記水溶性重合体の前記(メタ)アクリルアミド単量体単位の含有割合が、30質量%以上85質量%以下であることが好ましい。これにより、低抵抗化することができ、サイクル特性が向上する。
 本発明に係る非水系二次電池電極用バインダー組成物は、前記水溶性重合体が、さらにヒドロキシル基含有単量体単位を含み、
 前記水溶性重合体の前記酸基含有単量体単位の含有割合が、5質量%以上65質量%以下であり、
 前記水溶性重合体の前記ヒドロキシル基含有単量体単位の含有割合が、0.5質量%以上50質量%以下であることが好ましい。これにより、低抵抗化することができ、ピール強度が向上する。
 本発明に係る非水系二次電池電極用スラリー組成物は、上記いずれかの非水系二次電池電極用バインダー組成物および電極活物質を含む、非水系二次電池電極用スラリー組成物である。これにより、非水系二次電池の低温特性を向上可能である。
 本発明に係る非水系二次電池用電極は、電極基材上に、上記の非水系二次電池電極用スラリー組成物を用いた電極合材層を備える、非水系二次電池用電極である。これにより、非水系二次電池の低温特性を向上可能である。
 本発明に係る非水系二次電池は、正極、負極、セパレータおよび電解液を備える非水系二次電池であって、
 前記正極と負極の少なくとも一方が、上記非水系二次電池用電極である、非水系二次電池である。これにより、非水系二次電池の低温特性が良好である。
 本発明によれば、非水系二次電池の低温特性を向上可能な非水系二次電池電極用バインダー組成物を提供することができる。本発明によれば、非水系二次電池の低温特性を向上可能な非水系二次電池電極用スラリー組成物を提供することができる。本発明によれば、非水系二次電池の低温特性を向上可能な非水系二次電池用電極を提供することができる。本発明によれば、低温特性が良好な非水系二次電池を提供することができる。
 以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
 本発明では、水溶性重合体の慣性半径の測定は、実施例に記載の方法により行う。
 本明細書において、ある物質が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が0質量%以上1.0質量%未満であることをいう。また、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90質量%以上100質量%以下であることをいう。
 本明細書において、(メタ)アクリルアミドは、アクリルアミド、メタクリルアミドおよびこれらの組み合わせからなる群より選択される1種以上を意味する。
 本明細書において、酸基含有単量体単位は、酸基を有する単量体を重合して形成される構造単位を意味する。本明細書において、(メタ)アクリルアミド単量体単位は、(メタ)アクリルアミド単量体を重合して形成される構造単位を意味する。本明細書において、ヒドロキシル基含有単量体単位は、ヒドロキシル基を有する単量体を重合して形成される構造単位を意味する。
 本明細書において、2種以上の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別段の記載がない限り、通常は、その重合体の重合に用いる全単量体の質量に占める当該ある単量体の質量の比率(仕込み比)と一致する。
 (非水系二次電池電極用バインダー組成物)
 本発明に係る非水系二次電池電極用バインダー組成物は、
 酸基含有単量体単位を含む水溶性重合体と水とを有する非水系二次電池電極用バインダー組成物であって、
 前記水溶性重合体の酸基含有単量体単位の含有割合が、5質量%以上70質量%以下であり、
 前記水溶性重合体のうち、慣性半径200nm以下の水溶性重合体の割合が、95質量%以上100質量%以下である、非水系二次電池電極用バインダー組成物である。組成物がこのような組成を有することにより、非水系二次電池の低温特性を向上可能である。
 <水溶性重合体>
 水溶性重合体は、結着性および耐電解液性を有し、二次電池において、電極活物質を結着する働きを有する。水溶性重合体は、酸基含有単量体単位を含む。水溶性重合体における酸基含有単量体単位の含有割合は、5質量%以上70質量%以下である。水溶性重合体のうち、慣性半径200nm以下の水溶性重合体の割合は、95質量%以上100質量%以下である。
 水溶性重合体は、少なくとも酸基含有単量体単位を含む。その他、水溶性重合体は、例えば、(メタ)アクリルアミド単量体単位、ヒドロキシル基含有単量体単位、架橋性単量体単位、(メタ)アクリル酸アルキルエステル単量体単位および芳香族モノビニル単量体単位からなる群より選択される1種以上の単位を含んでいてもよい。
 酸基含有単量体単位を形成し得る酸基含有単量体としては、例えば、カルボン酸基含有単量体、スルホン酸基含有単量体、リン酸基含有単量体などを挙げることができる。酸基含有単量体は、1種単独で、または2種以上を組み合わせて用いてもよい。
 カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 水溶性重合体における酸基含有単量体単位の含有割合は、5質量%以上70質量%以下であり、7質量%以上または15質量%以上でもよく、40質量%以下、35質量%以下または25質量%以下でもよく、5質量%以上65質量%以下が好ましく、8質量%以上50質量%以下がより好ましく、10質量%以上30質量%以下がより好ましい。5質量%以上とすることにより、電極活物質への被覆性が向上し、副反応が抑制され、サイクル特性が向上する。また、70質量%以下とすることにより、スラリーの分散安定性が向上し、スラリーが沈降せず、低抵抗化(Liの析出抑制または低温特性向上)することができる。
 水溶性重合体が、酸基含有単量体単位に加えて、(メタ)アクリルアミド単量体単位を含む場合、酸基含有単量体単位と(メタ)アクリルアミド単量体単位との質量比(酸基含有単量体単位の質量を、(メタ)アクリルアミド単量体単位の質量で除した値)は、0.05以上1.00以下が好ましく、0.085以上0.8以下がより好ましく、0.1以上0.6以下がより好ましい。酸基含有単量体単位が0.05より少ないと、水溶性重合体の慣性半径が小さく、スラリー中での水溶性重合体の広がりが小さく、スラリーの安定性が低下する。また、酸基含有単量体単位が1.00より多いと、水溶性重合体の慣性半径が大きくなり、被覆性が低下する。
 (メタ)アクリルアミド単量体単位を形成し得る(メタ)アクリルアミド単量体としては、例えば、アクリルアミド、メタクリルアミドなどが挙げられる。(メタ)アクリルアミド単量体は、1種単独で、または2種以上を組み合わせて用いてもよい。
 水溶性重合体における(メタ)アクリルアミド単量体単位の含有割合は、適宜調節すればよい。例えば、30質量%以上85質量%以下が好ましく、35質量%以上80質量%以下がより好ましく、40質量%以上75質量%以下がより好ましい。30質量%以上とすることにより、スラリーの分散安定性が向上し、スラリーが沈降せず、低抵抗化(Liの析出抑制または低温特性向上)することができる。また、85質量%以下とすることにより、電極活物質への被覆性が向上し、副反応が抑制され、サイクル特性が向上する。
 ヒドロキシル基含有単量体単位を形成し得るヒドロキシル基含有単量体としては、例えば、ヒドロキシエチルアクリルアミド、ヒドロキシエチルメタクリルアミド、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピルなどが挙げられる。ヒドロキシル基含有単量体は、1種単独で、または2種以上を組み合わせて用いてもよい。
 水溶性重合体におけるヒドロキシル基含有単量体単位の含有割合は、適宜調節すればよい。例えば、0.5質量%以上50質量%以下が好ましく、5質量%以上40質量%以下がより好ましく、10質量%以上30質量%以下がより好ましい。0.5質量%以上とすることにより、ヒドロキシル基が電極活物質に吸着してピール強度が向上する。また、50質量%以下とすることにより、慣性半径が200nmより大きい未溶解ゲルの形成を抑制して、低抵抗化することができる。
 架橋性単量体単位を形成し得る架橋性単量体としては、例えば、単量体中に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、特に限定されないが、例えば、ジビニルベンゼンなどのジビニル化合物;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレートなどの多官能(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレートなどのエポキシ基を含有するエチレン性不飽和単量体などが挙げられる。架橋性単量体は、1種単独で、または2種以上を組み合わせて用いてもよい。
 水溶性重合体における架橋性単量体単位の含有割合は、適宜調節すればよい。例えば、0.01質量%以上5質量%以下が好ましく、0.1質量%以上4質量%以下がより好ましく、0.5質量%以上3質量%以下がより好ましい。0.01質量%以上とすることにより、水溶性重合体の電解液への溶出が抑制される。また、5質量%以下とすることにより、水溶性重合体の接着性を十分に確保することができる。
 水溶性重合体の慣性半径は、水中での水溶性重合体粒子の半径を表す。本発明では、水溶性重合体のうち、慣性半径200nm以下の水溶性重合体の割合が、95質量%以上100質量%以下である。理論に束縛されることを望むものではないが、慣性半径が200nmより大きい重合体は、未溶解ゲルと考えられ、その未溶解ゲルが少ないほど、電極中での水溶性重合体の分布が均一になり、低抵抗化できると考えられる。慣性半径200nm以下の水溶性重合体の割合は、99質量%以上100質量%以下が好ましく、99.5質量%以上100質量%以下がより好ましい。
 上述したように、水溶性重合体のうち、95質量%以上100質量%以下の水溶性重合体の慣性半径は、200nm以下であるが、10nm以上200nm以下が好ましく、30nm以上180nm以下がより好ましい。
 水溶性重合体の慣性半径は、例えば、上述した、水溶性重合体中の酸基含有単量体単位と(メタ)アクリルアミド単量体単位との質量比;水溶性重合体の重量平均分子量;後述する重合反応時の重合温度、重合開始剤の種類、および重合促進剤の種類を変更ないし選択することにより、調節することができる。
 水溶性重合体の分子量は、特に限定されず、適宜調節することができる。例えば、重量平均分子量(Mw)が、100,000以上4,000,000以下が好ましく、500,000以上3,800,000以下がより好ましく、1,500,000以上3,500,000以下がより好ましい。Mwが、100,000以上であることにより、電極強度が向上し、それによりサイクル特性が向上し、電極のふくらみも抑制される。一方、分子量が大きすぎると、被覆性が低下するため、Mwが、4,000,000以下であることにより、電極活物質への被覆性が向上し、副反応が抑制され、それによりサイクル特性が向上する。
 水溶性重合体の調製方法としては、例えば、以下のように調製することができる。上述した酸基含有単量体およびその他の単量体を混合する。その混合物に重合促進剤を添加する。その後、重合開始剤を添加して、重合反応を開始する。その後、必要に応じて、重合促進剤の追加、重合開始剤の追加および重合のサイクルを、1または2以上行ってもよい。重合開始剤を添加して重合反応を開始する際に、重合温度は、例えば、35℃以上65℃以下が好ましく、40℃以上50℃以下がより好ましい。この範囲とすることにより、水溶性重合体の慣性半径を小さくすることができる。また、重合開始剤の添加と、重合促進剤の添加との間の重合反応の時間は、例えば、10分以上40分以下が好ましく、15分以上30分以下がより好ましい。10分以上とすることにより、重合促進剤の撹拌不均一を抑え局所的な重合反応による慣性半径増大を抑制するという効果がある。また、40分以下とすることで開始剤添加前の副反応を抑制する。重合後、反応停止剤を用いて、重合反応を停止する。次いで、生成物を冷却し、空気雰囲気下に置く。次いで、水酸化リチウム水溶液などを用いて、pHを7.5以上8.5以下に調整する。
 重合開始剤としては、特に限定されず、公知の重合開始剤を用いることができる。重合開始剤としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどが挙げられる。なかでも、過硫酸カリウムが好ましい。重合開始剤の添加を複数回行う場合、各回の重合開始剤は同じでもよいし、異なっていてもよい。
 重合開始剤の量は、適宜調節すればよく、例えば、0.1質量部(固形分換算)以上1.5質量部(固形分換算)以下が好ましい。
 重合促進剤としては、例えば、L-アスコルビン酸、亜硫酸水素ナトリウムなどが挙げられる。重合促進剤の添加を複数回行う場合、各回の重合促進剤は同じでもよいし、異なっていてもよい。特に、重合反応開始時に、重合促進剤としてL-アスコルビン酸が重合系内に存在することが好ましい。理論に束縛されることを望むものではないが、重合反応開始時に、重合促進剤としてL-アスコルビン酸が存在することにより、重合反応初期の副反応を抑制することで、慣性半径の増大を抑制することができると推測される。
 重合促進剤の量は、適宜調節すればよく、例えば、0.01質量部(固形分換算)以上0.3質量部(固形分換算)以下が好ましい。
 非水系二次電池電極用バインダー組成物における水溶性重合体と水の配合量は、特に限定されず、適宜調節すればよい。例えば、固形分濃度が、3質量%以上20質量%以下が好ましく、5質量%以上15質量%以下がより好ましい。
 <非水系二次電池電極用バインダー組成物のその他の成分>
 非水系二次電池電極用バインダー組成物は、バインダー組成物として公知のその他の成分を含んでいてもよい。例えば、濡れ剤、レベリング剤、電解液分解抑制剤などが挙げられる。
 <非水系二次電池電極用バインダー組成物の調製方法>
 非水系二次電池電極用バインダー組成物の調製方法は、特に限定されないが、例えば、上記水溶性重合体と、その他の任意成分とを水に溶解または分散させて調製することができる。具体的には、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ビーズミル、ロールミル、フィルミックスなどの分散機を使用し、水溶性重合体と、その他の任意成分とを水中に分散または溶解させて非水系二次電池電極用バインダー組成物を調製する。
 (非水系二次電池電極用スラリー組成物)
 本発明に係る非水系二次電池電極用スラリー組成物は、上記いずれかの非水系二次電池電極用バインダー組成物および電極活物質を含む、非水系二次電池電極用スラリー組成物である。これにより、非水系二次電池の低温特性を向上可能である。
 電極活物質は、公知の非水系二次電池の電極活物質を使用することができる。本発明に係る非水系二次電池電極用スラリー組成物は、典型的には、リチウムイオン二次電池に使用されるため、以下、リチウムイオン二次電池用の電極活物質を例に説明する。
 リチウムイオン二次電池用の電極活物質は、電解質中で電位をかけることにより可逆的にリチウムイオンを挿入放出できるものであればよく、無機化合物でも有機化合物でも用いることができる。
 正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。無機化合物からなる正極活物質としては、例えば、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、例えば、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVO等のリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13等の遷移金属酸化物などが挙げられる。
 有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性重合体を用いることもできる。さらに、無機化合物および有機化合物を組み合わせた複合材料からなる正極活物質を用いてもよい。
 正極活物質は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性重合体;などが挙げられる。また、ケイ素、錫、亜鉛、マンガン、鉄およびニッケル等の金属並びにこれらの合金;前記金属または合金の酸化物;前記金属または合金の硫酸塩;なども挙げられる。また、金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等を使用できる。なお、これらの負極活物質は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 <非水系二次電池電極用スラリー組成物のその他の成分>
 非水系二次電池電極用スラリー組成物は、スラリー組成物として公知のその他の成分を含んでいてもよい。例えば、導電材(導電助剤)、補強材などが挙げられる。
 導電材(導電助剤)としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボン;黒鉛などの炭素粉末;各種金属のファイバー及び箔;などが挙げられる。導電材を用いることにより、電極活物質同士の電気的接触を向上させることができ、特にリチウムイオン二次電池に用いる場合には出力特性を改善できる。
 補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。
 非水系二次電池電極用スラリー組成物の固形分濃度は、電極合材層を製造する際に作業性を損なわない範囲の粘度をスラリー組成物が有する範囲で適宜設定すればよい。具体的には、非水系二次電池電極用スラリー組成物の固形分濃度は、例えば、40質量%以上55質量%以下とすることができる。
 <非水系二次電池電極用スラリー組成物の調製方法>
 非水系二次電池電極用スラリー組成物の調製方法は、特に限定されず、例えば、上記バインダー組成物の調製方法を用いることができる。
 (非水系二次電池用電極)
 本発明に係る非水系二次電池用電極は、電極基材上に、上記の非水系二次電池電極用スラリー組成物を用いた電極合材層を備える、非水系二次電池用電極である。これにより、非水系二次電池の低温特性を向上可能である。
 電極基材としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料からなるものなど、公知の集電体を用いることができる。
 正極用の電極基材としては、アルミニウムからなる集電体を用いることが好ましい。
 負極用の電極基材としては、銅からなる集電体を用いることが好ましい。
 電極合材層は、上記非水系二次電池電極用スラリー組成物から形成された層である。電極合材層の形成は、既知の手法を用いて行うことができる。例えば、調製した非水系二次電池電極用スラリー組成物を集電体の両面または片面に塗布した後に乾燥し、次いで、120℃以上で1時間以上加熱処理することにより電極合材層を形成することができる。電極合材層には、任意に、金型プレスおよびロールプレスなどを用いて加圧処理を施すことが好ましい。
 電極は、本発明の趣旨を逸脱しない限り、電極基材と電極合材層以外の構成要素を備えていてもよい。例えば、必要に応じて、電極合材層の表面に保護層などの他の層を備えていてもよい。
 (非水系二次電池)
 本発明に係る非水系二次電池は、正極、負極、セパレータおよび電解液を備える非水系二次電池であって、
 前記正極と負極の少なくとも一方が、上記非水系二次電池用電極である、非水系二次電池である。これにより、非水系二次電池の低温特性が良好である。
 正極および負極は、非水系二次電池用電極で説明した正極用の電極基材および/または負極用の電極基材上に、非水系二次電池電極用スラリー組成物を用いた電極合材層を備える非水系二次電池用電極である。
 セパレータは、特に限定されず、公知のセパレータを用いることができる。例えばポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニルなどのポリオレフィン樹脂または芳香族ポリアミド樹脂を含む微多孔膜、多孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ナイロン、ポリテトラフルオロエチレンなどの樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体;これらの組み合わせなどが挙げられる。
 電解液としては、特に限定されず、公知の電解液を適宜選択して用いることができる。電解液としては、通常、溶媒(有機溶媒)に支持電解質を溶解した有機電解液が用いられる。例えば、非水系二次電池がリチウムイオン二次電池である場合には、支持電解質としては、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。
 電解質(支持電解質)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液に用いる溶媒としては、支持電解質を溶解できるものであれば特に限定されず、適宜選択して用いることができる。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類などが挙げられる。
 溶媒は、一例では、ジメチルカーボネート、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびエチルメチルカーボネートからなる群より選択される1種以上のカーボネート類であり、別の例では、ECとEMCとの混合液であり、さらに別の例では、ECとEMCとDECとの混合液である。これらの混合液の混合比率は適宜調節すればよい。
 電解液には、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)やエチルメチルスルホンなどの公知の添加剤を添加してもよい。
 二次電池の形状は、特に限定されず、適宜選択することができる。例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型などが挙げられる。本発明に係る非水系二次電池は、捲回型または積層型であることが好ましい。これにより、二次電池のエネルギー密度を向上させることができるという効果がある。
 <非水系二次電池の製造方法>
 本発明に係る非水系二次電池の製造方法は、正極と負極の少なくとも一方に、上記非水系二次電池用電極を用いること以外は特に限定されず、公知の非水系二次電池の製造方法を用いることができる。
 例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。また、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。
 以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。特に断らない限り、配合量は、質量部を意味する。
<慣性半径の測定>
 水溶性重合体の慣性半径は、以下のように測定した。非水系二次電池電極用バインダー組成物は、Field-Flow Fractionation(フィールド・フロー・フラクショネーション、以下FFF)装置により分離することができる。非水系二次電池電極用バインダー組成物中の水溶性重合体の分子量と慣性半径を測定するためにMulti angle light scattering(多角度光散乱、以下MALS)検出器を接続したFFF装置(以下、「FFF-MALS」)により分析した。ここで、FFF装置とは、100μm以上500μm以下の空隙(チャンネル)に試料溶液を通過させて、チャンネルを通過させる際に場(フィールド)を引加することにより分子量分別ができる装置である。分子量分別後、MALSによる静的光散乱法で絶対分子量を測定する。FFF装置は、Postnova社製のAF2000を用いた。MALS検出器は、Postnova社製のPN3621 MALSを用いた。RI検出器は、Postnova社製のPN3150 RI を用いた。チャンネルは、ポリエーテルサルホンメンブラン10kDaを使用して、展開液をリン酸バッファー1mMで実施した。サンプルは、イオン交換水で1%に希釈した非水系二次電池電極用バインダー組成物100μLを、pH7.4リン酸バッファー1mM 900μLで希釈して、固形分0.1質量%に調整した。この調整したサンプル50μLをFFF-MALSに注入し、流速1.0 mL/minで測定を行った。
<スラリー安定性>
 後述するように調製した非水系二次電池電極用スラリー組成物を室温下で静置した。そして、調製直後に対する24時間後の非水系二次電池電極用スラリー組成物の粘度の経時変化をB型粘度計により測定した。そして、以下の基準でスラリー安定性を評価した。Aが最もスラリー安定性に優れ、Dが最もスラリー安定性が低いことを示す。
A:粘度変化が5.0%未満
B:粘度変化が5.0%以上10.0%未満
C:粘度変化が10.0%以上20.0%未満
D:粘度変化が20.0%以上
<ピール強度>
 後述するように作製したリチウムイオン二次電池用負極を長さ100mm、幅10mmの長方形に切り出して試験片とした。その試験片の負極合材層表面に両面粘着セロハンテープ(JIS Z1522に規定されるもの)を貼り付け、その負極合材層側の面を下にして試験台上に固定した。集電体の一端を垂直方向に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。測定を3回行い、その平均値を求めてこれをピール強度とした。そして、以下の基準で評価した。Aが最もピール強度(負極合材層と集電体の密着性)に優れ、Cが最もピール強度が低いことを示す。
A:ピール強度が15.0N/m以上
B:ピール強度が10.0N/m以上15.0N/m未満
C:ピール強度が10.0N/m未満
<リチウムイオン二次電池のサイクル特性>
 後述するように作製したリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV(定電流-定電圧)充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電し、その初期放電容量X1を測定した。その後、温度45℃の環境下、セル電圧4.20-3.00V、1.0Cの充放電レートにて充放電の操作を50サイクル行った。引き続き、0℃の環境下、セル電圧4.20-3.00V、0.5Cの充放電レートにて充放電の操作を50サイクル行った。さらにその後、温度25℃、0.2Cの定電流法にて、CC-CV充電(セル電圧4.20V)して、0.2Cの定電流法にてセル電圧3.00Vまで放電し、その放電容量X2を測定した。初期放電容量X1および放電容量X2を用いて、ΔC’=(X2/X1)×100(%)で示される容量維持率を求め、以下の基準で評価した。Aが最もサイクル特性に優れ、Dが最もサイクル特性が低いことを示す。
A:容量維持率ΔC’が80%以上
B:容量維持率ΔC’が75%以上80%未満
C:容量維持率ΔC’が70%以上75%未満
D:容量維持率ΔC’が70%未満
<低温特性(レート特性)>
 後述するように作製したリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流にて、CC-CV(定電流-定電圧)充電(上限セル電圧4.35V)を行い、0.2Cの定電流にてセル電圧3.00VまでCC放電を行った。この0.2Cにおける充放電を3回繰り返し実施した。次に、温度25℃の環境下、セル電圧4.35-3.00V間で、0.5Cの定電流充放電を実施し、このときの放電容量をC0と定義した。その後、同様に0.2Cの定電流にてCC-CV充電し、温度-20℃の環境下において、0.5Cの定電流にて2.5Vまで放電を実施し、このときの放電容量をC1と定義した。そして、レート特性として、ΔC=(C1/C0)×100(%)で示される容量維持率を求め、以下の基準で評価した。Aが、最も低温特性に優れること(低温環境下、高電流での放電容量が高く、そして内部抵抗が低いこと)を示し、Dが最も低温特性が低いことを示す。
A:容量維持率ΔCが75%以上
B:容量維持率ΔCが70%以上75%未満
C:容量維持率ΔCが65%以上70%未満
D:容量維持率ΔCが65%未満
<サイクル後の電極膨らみ耐性>
 上記50サイクル後のセルを25℃環境下、1Cにて充電を行い、充電状態のセルを解体して負極を取り出し、負極(集電体の厚みを除く)の厚み(d2)を測定した。そして、サイクル前(リチウムイオン二次電池の作製前)の負極(集電体の厚みを除く)の厚み(d0)に対するサイクル後の負極の厚みの変化率({(d2-d0)/d0}×100(%))を求めた。そして、以下の基準で評価した。Aが最もサイクル後の電極膨らみ耐性に優れ、Dが最もサイクル後の電極膨らみ耐性が低いことを示す。
A:厚みの変化率が25%未満
B:厚みの変化率が25%以上30%未満
C:厚みの変化率が30%以上35%未満
D:厚みの変化率が35%以上
 実施例で用いた各成分は、以下のとおりである。
酸基含有単量体:アクリル酸
(メタ)アクリルアミド単量体:アクリルアミド
ヒドロキシル基含有単量体:ヒドロキシエチルアクリルアミド
架橋性単量体:エトキシ化ペンタエリスリトールテトラアクリレート(新中村化学社製の製品名ATM-35E)
比較水溶性重合体(カルボキシメチルセルロース):ダイセル社製の製品名CMCダイセル2200
重合開始剤:過硫酸カリウム
重合促進剤:L-アスコルビン酸および亜硫酸水素ナトリウム
反応停止剤:亜硝酸ナトリウム
アセチレンブラック:デンカ社製のHS-100
(実施例1)
<非水系二次電池電極用バインダー組成物の調製>
 セプタム付き10Lフラスコに、イオン交換水842質量部を投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換した。次に、表1に示す量のアクリルアミド、アクリル酸およびヒドロキシエチルアクリルアミドを混合して、シリンジでフラスコ内に注入した。その後、L-アスコルビン酸の2.0%水溶液0.05質量部(固形分換算)をシリンジでフラスコ内に添加した。その15分後に過硫酸カリウムの2.0%水溶液を用いて、表1に示す量(固形分換算)の過硫酸カリウムをシリンジでフラスコ内に添加して反応を開始し、反応温度を55℃に昇温した。2時間後、反応転化率をさらに上げるために、過硫酸カリウムの2.0%水溶液0.2質量部(固形分換算)と、亜硫酸水素ナトリウム0.077質量部(固形分換算)とを添加した。さらに2時間後、過硫酸カリウムの2.0%水溶液0.2質量部(固形分換算)と、亜硫酸水素ナトリウムの1.0%水溶液0.077質量部(固形分換算)を添加した。2時間後、亜硝酸ナトリウム10%水溶液0.1質量部(固形分換算)をフラスコ内に添加して、撹拌した。その後、そのフラスコを40℃まで冷却し、空気雰囲気下とし、5%水酸化リチウム水溶液を用いて、水溶性重合体と水を含むバインダー組成物のpHを8.0とした。
(実施例2~15および比較例1~3)
 表1に示すように、各単量体および反応開始時の重合開始剤を変更したこと以外は、実施例1と同様にして、水溶性重合体を重合し、非水系二次電池電極用バインダー組成物を調製した。実施例15では、その他の単量体として、上述した架橋性単量体:ATM-35Eを用いた。
(比較例4,5)
 実施例1において、以下の点を変更して、比較水溶性重合体を重合し、非水系二次電池電極用バインダー組成物を調製した。反応温度を70℃に変更した。単量体を表1に示すように変更した。比較例4では、不飽和カルボン酸エステル(その他単量体)としてアクリル酸エチル(EA)10質量部を使用した。さらに、重合開始剤を過硫酸ナトリウムに変更した。L-アスコルビン酸を使用しなかった。そして、反応開始から2時間後、90℃に昇温してさらに2時間反応させた。
(比較例6)
 実施例1において、水溶性重合体の代わりに、比較水溶性重合体としてカルボキシメチルセルロース(ダイセル2200)を用いたこと以外は、実施例1と同様に非水系二次電池電極用バインダー組成物を調製した。
<リチウムイオン二次電池負極用スラリー組成物の調製>
 プラネタリーミキサーに、負極活物質としての人造黒鉛(理論容量:350mAh/g)100質量部と、導電材としてのアセチレンブラック1質量部と、調製した非水系二次電池電極用バインダー組成物(固形分濃度:5.0%)を固形分換算で1.50質量部とを投入した。さらにイオン交換水で固形分濃度が60%となるように希釈した。その後、回転速度45rpmで60分間混練した。そして、粘度が1100±100mPa・s(B型粘度計、12rpmで測定)となるようにイオン交換水を加え、リチウムイオン二次電池負極用スラリー組成物を調製した。このときのリチウムイオン二次電池負極用スラリー組成物の固形分濃度は45質量%であった。そして、調製したリチウムイオン二次電池負極用スラリー組成物について、上述したようにスラリー安定性を評価した。
<リチウムイオン二次電池正極用スラリー組成物の調製>
 プラネタリーミキサーに、正極活物質としてのコバルト酸リチウム(理論容量:150mAh/g)100質量部と、導電材としてのアセチレンブラック3質量部と、調製した非水系二次電池電極用バインダー組成物(固形分濃度:5.0%)を固形分換算で4.00質量部とを投入した。さらにイオン交換水にて固形分濃度が60%となるように希釈した。その後、回転速度45rpmで60分間混練した。そして、粘度が4000±300mPa・s(B型粘度計、60rpmで測定)となるようにイオン交換水を加え、リチウムイオン二次電池正極用スラリー組成物を調製した。このときのリチウムイオン二次電池正極用スラリー組成物の固形分濃度は50質量%であった。
<非水系二次電池用負極の作製>
 調製したリチウムイオン二次電池負極用スラリー組成物を、集電体としての銅箔(厚さ15μm)の上にコンマコーターで塗付量が10mg/cm~12mg/cmとなるように塗布し、乾燥させた。乾燥は、温度80℃のオーブン内に、リチウムイオン二次電池負極用スラリー組成物が塗布された銅箔を0.5m/分の速度で2分間かけて搬送することにより行った。その後、その集電体をさらに温度120℃にて2分間加熱処理することにより、負極原反を得た。次に、得られた負極原反を、ロールプレス機にて密度が1.60g/cm~1.75g/cmとなるようプレスすることにより、集電体の片面に負極合材層が形成された負極を得た。そして、作製したリチウムイオン二次電池用負極について、上述したようにピール強度を評価した。
<非水系二次電池用正極の作製>
 調製したリチウムイオン二次電池正極用スラリー組成物を、集電体としてのアルミ箔(厚さ20μm)の上にコンマコーターで塗布し、乾燥させた。乾燥は、温度60℃のオーブン内に、リチウムイオン二次電池正極用スラリー組成物が塗布されたアルミ箔を0.5m/分の速度で2分間かけて搬送することにより行った。その後、その集電体をさらに温度120℃にて2分間加熱処理することにより、正極原反を得た。次に、得られた正極原反をロールプレス機にて密度が3.10g/cm~3.20g/cmとなるようにプレスすることにより、集電体の片面に正極合材層が形成された正極を得た。
<非水系二次電池の組立て>
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意し、5cm×5cmの正方形に切り抜いた。また、電池の外装として、アルミ包材外装を用意した。そして、作製した正極を、4cm×4cmの正方形に切り出し、正極の集電体側の表面がアルミ包材外装に接するように配置した。次に、正極の正極合材層側の表面上に、正方形のセパレータを配置した。さらに、作製した負極を、4.2cm×4.2cmの正方形に切り出し、セパレータの正極合材層側とは反対側の表面上に、負極合材層側の表面が向かい合うように配置した。その後、電解液として濃度1.0MのLiPF溶液(溶媒:エチレンカーボネート/エチルメチルカーボネート=3/7(体積比)、添加剤:ビニレンカーボネート2質量%(溶媒比))を充填した。次に、アルミ包材外装に対して150℃のヒートシールをしてアルミ包材外装の開口を密封閉口することにより、非水系二次電池としてのリチウムイオン二次電池を製造した。そして、製造したリチウムイオン二次電池について、上述したようにサイクル特性、低温特性および、サイクル後の電極膨らみ耐性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、酸基含有単量体単位の割合が所定範囲外である比較例1~3では、低温特性およびその他の性能が低かった。また、慣性半径200nm以下の水溶性重合体の割合が95質量%未満の比較例4,5も、低温特性およびその他の性能が低かった。比較水溶性重合体を用いた比較例6も低温特性およびその他の性能が低かった。
 これに対して、実施例では、良好な低温特性を示した。また、実施例1~3に示すように、慣性半径200nm以下の水溶性重合体の割合が最も多い実施例1では、実施例2,3よりもさらに低温特性に優れていた。同様に、実施例1と4を比較すると、実施例4よりも実施例1は、慣性半径200nm以下の水溶性重合体の割合が多いため、低温特性に優れていた。さらに実施例4よりも実施例1は、水溶性重合体の重量平均分子量が小さいため、活物質の被覆性が良好で、サイクル特性も優れていた。実施例1と実施例5を比較すると、実施例1は実施例5よりも水溶性重合体の重量平均分子量が大きいため、実施例5よりもピール強度が良好で、それによる電極強度の向上により、実施例5よりもサイクル特性と電極膨らみ耐性が良好であった。実施例1と実施例6を比較すると、実施例1の水溶性重合体は実施例6の水溶性重合体にはないヒドロキシル基含有単量体単位を有するため、ピール強度が優れていた。同様に、実施例1と実施例7、8を比較すると、実施例1は実施例7,8よりもヒドロキシル基含有単量体単位の量が多く、ピール強度が優れていた。また、実施例1は、実施例7,8よりも水溶性重合体の重量平均分子量が大きく、スラリー安定性やサイクル特性に優れていた。実施例8と実施例9を比較すると、実施例9は、実施例8よりもヒドロキシル基含有単量体単位の量が多く、ピール強度が優れていた。実施例1,11,12を比較すると、実施例1は酸基含有単量体単位/(メタ)アクリルアミド単量体単位の比が実施例11,12よりも少ないため、慣性半径200nm以下の水溶性重合体の割合が多く、低温特性に優れていた。実施例6と実施例13を比較すると、実施例6は実施例13よりも水溶性重合体の重量平均分子量が大きいため、実施例13よりも各特性が良好であった。実施例6と実施例14を比較すると、実施例6は実施例14よりも水溶性重合体の重量平均分子量が小さいため、実施例14よりも活物質の被覆性が良好で、サイクル特性も優れていた。
 本発明によれば、非水系二次電池の低温特性を向上可能な非水系二次電池電極用バインダー組成物を提供することができる。本発明によれば、非水系二次電池の低温特性を向上可能な非水系二次電池電極用スラリー組成物を提供することができる。本発明によれば、非水系二次電池の低温特性を向上可能な非水系二次電池用電極を提供することができる。本発明によれば、低温特性が良好な非水系二次電池を提供することができる。

Claims (7)

  1.  酸基含有単量体単位を含む水溶性重合体と水とを有する非水系二次電池電極用バインダー組成物であって、
     前記水溶性重合体の酸基含有単量体単位の含有割合が、5質量%以上70質量%以下であり、
     前記水溶性重合体のうち、慣性半径200nm以下の水溶性重合体の割合が、95質量%以上100質量%以下である、
    非水系二次電池電極用バインダー組成物。
  2.  前記水溶性重合体の重量平均分子量が、100,000以上4,000,000以下である、請求項1に記載の非水系二次電池電極用バインダー組成物。
  3.  前記水溶性重合体が、さらに(メタ)アクリルアミド単量体単位を含み、
    前記水溶性重合体の前記(メタ)アクリルアミド単量体単位の含有割合が、30質量%以上85質量%以下である、請求項1または2に記載の非水系二次電池電極用バインダー組成物。
  4.  前記水溶性重合体が、さらにヒドロキシル基含有単量体単位を含み、
     前記水溶性重合体の前記酸基含有単量体単位の含有割合が、5質量%以上65質量%以下であり、
     前記水溶性重合体の前記ヒドロキシル基含有単量体単位の含有割合が、0.5質量%以上50質量%以下である、請求項1~3のいずれか一項に記載の非水系二次電池電極用バインダー組成物。
  5.  請求項1~4のいずれか一項に記載の非水系二次電池電極用バインダー組成物および電極活物質を含む、非水系二次電池電極用スラリー組成物。
  6.  電極基材上に、請求項5に記載の非水系二次電池電極用スラリー組成物を用いた電極合材層を備える、非水系二次電池用電極。
  7.  正極、負極、セパレータ及び電解液を備える非水系二次電池であって、
     前記正極と前記負極の少なくとも一方が請求項6に記載の非水系二次電池用電極である、非水系二次電池。
     
     
PCT/JP2017/008352 2016-03-24 2017-03-02 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 WO2017163806A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17769851.1A EP3435456B1 (en) 2016-03-24 2017-03-02 Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2018507174A JP7031576B2 (ja) 2016-03-24 2017-03-02 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US16/081,135 US10985374B2 (en) 2016-03-24 2017-03-02 Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery
KR1020187025516A KR102338192B1 (ko) 2016-03-24 2017-03-02 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
PL17769851.1T PL3435456T3 (pl) 2016-03-24 2017-03-02 Kompozycja spoiwa do elektrod niewodnych akumulatorów, kompozycja zawiesiny do elektrod niewodnych akumulatorów, elektroda do niewodnych akumulatorów i niewodny akumulator
CN201780015145.0A CN108780892B (zh) 2016-03-24 2017-03-02 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极及非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-059917 2016-03-24
JP2016059917 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163806A1 true WO2017163806A1 (ja) 2017-09-28

Family

ID=59901178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008352 WO2017163806A1 (ja) 2016-03-24 2017-03-02 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Country Status (8)

Country Link
US (1) US10985374B2 (ja)
EP (1) EP3435456B1 (ja)
JP (1) JP7031576B2 (ja)
KR (1) KR102338192B1 (ja)
CN (1) CN108780892B (ja)
HU (1) HUE064159T2 (ja)
PL (1) PL3435456T3 (ja)
WO (1) WO2017163806A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098197A1 (ja) * 2017-11-14 2019-05-23 旭化成株式会社 正極塗工液、正極前駆体、及び非水系リチウム蓄電素子
WO2019159706A1 (ja) * 2018-02-19 2019-08-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP2019160690A (ja) * 2018-03-15 2019-09-19 日立化成株式会社 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
JP2019160691A (ja) * 2018-03-15 2019-09-19 日立化成株式会社 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
WO2021020061A1 (ja) * 2019-07-31 2021-02-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
WO2021241404A1 (ja) * 2020-05-26 2021-12-02 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314209B (zh) * 2016-06-21 2021-05-11 日本瑞翁株式会社 非水系二次电池功能层用组合物、非水系二次电池用功能层以及非水系二次电池
CN109565051A (zh) * 2016-07-29 2019-04-02 花王株式会社 蓄电设备电极用树脂组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135129A (ja) * 1997-08-04 1999-05-21 Alcatel Cit 有機電解質型電池の電極用ポリマー粘結剤
JP2005060208A (ja) * 2002-11-08 2005-03-10 Murata Mfg Co Ltd 水溶性アクリルバインダおよびその製造方法、セラミックスラリー組成物およびその製造方法、ならびに積層セラミック電子部品およびその製造方法
JP2010182548A (ja) * 2009-02-06 2010-08-19 Hymo Corp リチウムイオン二次電池用負極及びその作成方法
JP2015022956A (ja) * 2013-07-22 2015-02-02 Jsr株式会社 蓄電デバイス用スラリー、蓄電デバイス電極、セパレーターおよび蓄電デバイス
WO2015098050A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2016031911A (ja) 2014-07-30 2016-03-07 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3545473B2 (ja) * 1993-12-24 2004-07-21 三井化学株式会社 アクリルアミド系ポリマー、およびその用途
US7135264B2 (en) * 2002-11-12 2006-11-14 Samsung Electronics Company Organosol including amphipathic copolymeric binder and use of the organosol to make dry toners for electrographic applications
US20120095131A1 (en) * 2009-04-03 2012-04-19 Toyochem Co., Ltd. Binder composition for non-aqueous secondary battery electrode
KR101464841B1 (ko) * 2010-03-30 2014-11-25 가부시끼가이샤 구레하 비수 전해질 2 차 전지용 합제, 비수 전해질 2 차 전지용 전극 및 비수 전해질 2 차 전지
EP2626930B1 (en) * 2010-10-07 2019-03-06 Zeon Corporation Slurry for secondary battery porous membrane, secondary battery porous membrane, secondary battery electrode, secondary battery separator, and secondary battery
JP6187168B2 (ja) * 2012-12-05 2017-08-30 日本ゼオン株式会社 電気化学素子の正極用複合粒子、電気化学素子、及び、電気化学素子の正極用複合粒子の製造方法
US10014525B2 (en) * 2013-01-29 2018-07-03 Osaka Soda Co., Ltd. Binder for battery electrode, and electrode and battery using same
WO2014185072A1 (ja) * 2013-05-15 2014-11-20 日本ゼオン株式会社 リチウムイオン二次電池正極用結着材組成物、リチウムイオン二次電池正極用スラリー組成物およびその製造方法、リチウムイオン二次電池用正極の製造方法、並びに、リチウムイオン二次電池
JP2015018776A (ja) * 2013-07-12 2015-01-29 株式会社日本触媒 電池用水系電極組成物用バインダー
JP2015022945A (ja) * 2013-07-19 2015-02-02 パナソニックIpマネジメント株式会社 照明システム
JPWO2015186363A1 (ja) 2014-06-04 2017-04-20 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135129A (ja) * 1997-08-04 1999-05-21 Alcatel Cit 有機電解質型電池の電極用ポリマー粘結剤
JP2005060208A (ja) * 2002-11-08 2005-03-10 Murata Mfg Co Ltd 水溶性アクリルバインダおよびその製造方法、セラミックスラリー組成物およびその製造方法、ならびに積層セラミック電子部品およびその製造方法
JP2010182548A (ja) * 2009-02-06 2010-08-19 Hymo Corp リチウムイオン二次電池用負極及びその作成方法
JP2015022956A (ja) * 2013-07-22 2015-02-02 Jsr株式会社 蓄電デバイス用スラリー、蓄電デバイス電極、セパレーターおよび蓄電デバイス
WO2015098050A1 (ja) * 2013-12-26 2015-07-02 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2016031911A (ja) 2014-07-30 2016-03-07 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019098197A1 (ja) * 2017-11-14 2020-07-27 旭化成株式会社 正極塗工液、正極前駆体、及び非水系リチウム蓄電素子
EP3712916A4 (en) * 2017-11-14 2021-01-27 Asahi Kasei Kabushiki Kaisha POSITIVE ELECTRODE COATING LIQUID, POSITIVE ELECTRODE PRECURSOR AND WATERLESS ELECTRIC LITHIUM STORAGE ELEMENT
WO2019098197A1 (ja) * 2017-11-14 2019-05-23 旭化成株式会社 正極塗工液、正極前駆体、及び非水系リチウム蓄電素子
US11942621B2 (en) 2017-11-14 2024-03-26 Asahi Kasei Kabushiki Kaisha Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium electric storage element
WO2019159706A1 (ja) * 2018-02-19 2019-08-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2019159706A1 (ja) * 2018-02-19 2021-02-12 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7327379B2 (ja) 2018-02-19 2023-08-16 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7192224B2 (ja) 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
JP2019160690A (ja) * 2018-03-15 2019-09-19 日立化成株式会社 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
JP2019160691A (ja) * 2018-03-15 2019-09-19 日立化成株式会社 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
JP7192223B2 (ja) 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
WO2021020061A1 (ja) * 2019-07-31 2021-02-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
CN114097117A (zh) * 2019-07-31 2022-02-25 日本瑞翁株式会社 非水系二次电池耐热层用粘结剂组合物、非水系二次电池耐热层用浆料组合物、非水系二次电池用耐热层及非水系二次电池
WO2021241404A1 (ja) * 2020-05-26 2021-12-02 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途

Also Published As

Publication number Publication date
HUE064159T2 (hu) 2024-02-28
EP3435456A4 (en) 2019-08-07
KR20180127335A (ko) 2018-11-28
CN108780892A (zh) 2018-11-09
PL3435456T3 (pl) 2024-04-08
CN108780892B (zh) 2021-10-26
EP3435456A1 (en) 2019-01-30
JPWO2017163806A1 (ja) 2019-01-31
KR102338192B1 (ko) 2021-12-09
EP3435456B1 (en) 2023-09-27
JP7031576B2 (ja) 2022-03-08
US10985374B2 (en) 2021-04-20
US20190006677A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
JP7031576B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
KR101819067B1 (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
JP5381974B2 (ja) 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
WO2017094252A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池
KR102393257B1 (ko) 이차 전지 전극용 도전재 페이스트, 이차 전지 정극용 슬러리의 제조 방법, 이차 전지용 정극의 제조 방법 및 이차 전지
CN108475786B (zh) 二次电池电极用水系粘合剂组合物、二次电池电极用浆料、粘合剂、二次电池电极及二次电池
JP6191471B2 (ja) リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2016152056A1 (ja) 非水電解質二次電池
JP6398191B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
KR20190125329A (ko) 전기 화학 소자 전극용 도전재 분산액, 전기 화학 소자 전극용 슬러리 조성물 및 그 제조 방법, 전기 화학 소자용 전극, 및 전기 화학 소자
CN108475789B (zh) 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极及非水系二次电池
JP2017117597A (ja) 非水系二次電池電極用バインダー組成物の製造方法、非水系二次電池電極用スラリー組成物の製造方法、非水系二次電池用電極の製造方法、および非水系二次電池の製造方法
JPWO2019013102A1 (ja) 電気化学素子機能層用バインダー組成物、電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
JP6651931B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP2017069108A (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2018174150A (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP2022041230A (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2016199653A1 (ja) 非水系電池電極用バインダー用組成物、非水系電池電極用バインダー、非水系電池電極用組成物、非水系電池電極、及び非水系電池
JP2022041229A (ja) 電気化学素子用電極及び電気化学素子
WO2014132935A1 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池、及びリチウムイオン二次電池用正極の製造方法
KR20210021975A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물 및 그 제조 방법, 비수계 이차 전지용 전극, 그리고 비수계 이차 전지
WO2021193665A1 (ja) 二次電池用正極及び二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507174

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187025516

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017769851

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017769851

Country of ref document: EP

Effective date: 20181024

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769851

Country of ref document: EP

Kind code of ref document: A1