WO2017163685A1 - 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体 - Google Patents

映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体 Download PDF

Info

Publication number
WO2017163685A1
WO2017163685A1 PCT/JP2017/005763 JP2017005763W WO2017163685A1 WO 2017163685 A1 WO2017163685 A1 WO 2017163685A1 JP 2017005763 W JP2017005763 W JP 2017005763W WO 2017163685 A1 WO2017163685 A1 WO 2017163685A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation value
value
luminance level
gradation
maximum luminance
Prior art date
Application number
PCT/JP2017/005763
Other languages
English (en)
French (fr)
Inventor
下田 裕紀
神田 貴史
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016181002A external-priority patent/JP2017184220A/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017163685A1 publication Critical patent/WO2017163685A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level

Definitions

  • the present invention relates to a video processing device or the like that converts a gradation value of an HDR signal.
  • HDR High Dynamic Range
  • SDR Standard Dynamic Range
  • the SDR signal is produced on the premise of reproduction in a reproduction environment (hereinafter referred to as “SDR environment”) having an EOTF (Electro-Optical Transfer Function) equivalent to ⁇ 2.2, while the HDR signal is , And SMPTE-ST2084 (hereinafter abbreviated as “ST2084”), etc., are manufactured on the premise of reproduction in a reproduction environment (hereinafter referred to as “SDR environment”) having an EOTF. For this reason, when the HDR signal is reproduced in the SDR environment, the luminance of the obtained video is different from the luminance intended by the manufacturer.
  • Patent Document 1 discloses a liquid crystal display device that performs dimming control of a backlight by changing a change width of an average luminance level before and after dynamic range expansion by an average luminance level and a ⁇ adjustment value of an input video signal. Has been.
  • a scan conversion unit that scan-converts an input video signal into a signal having a predetermined number of scanning lines, a gamma correction unit that gamma-corrects a signal from the scan conversion unit, and a signal level from the input video signal.
  • a plasma display that includes a level detection unit that detects and controls a gamma correction unit based on the detection signal, and controls the average luminance in accordance with the input signal level.
  • Japanese Patent Publication Japanese Patent Publication “Japanese Laid-Open Patent Publication No. 2002-108305 (published on April 10, 2002)” Japanese Patent Publication “Japanese Laid-Open Patent Publication No. 2002-354378 (Released on Dec. 6, 2002)”
  • the EOTF of the HDR signal is different from that of the SDR signal. Therefore, when converting the gradation value taken by each pixel by the HDR signal, if the entire domain of the HDR signal EOTF is mapped to the domain of the SDR signal EOTF, the gradation value is reduced (different levels). The tone value is mapped to the same tone value).
  • the number of gradations per unit luminance difference is particularly large in a low luminance region in order to express a slight difference in brightness in a dark part. For this reason, when the gradation value taken by each pixel is converted by the HDR signal by such mapping, the gradation value is likely to be degenerated in the low luminance region.
  • a range corresponding to a luminance level equal to or lower than the maximum luminance level of content in the EOTF definition region for HDR signals is mapped to the EOTF definition region for SDR signals.
  • a method is conceivable.
  • each pixel can take a gradation value corresponding to a luminance of 10000 cd / m 2 or less, but not all of these gradation values are used in actual content. For this reason, if pixel values taken by each pixel with the HDR signal are converted by such mapping, it is possible to suppress black crushing and gradation value degeneration.
  • the HDR signal includes metadata representing the maximum luminance of content called MAX_CLL (Maximum Content Light Level). The maximum brightness of the content can be specified by referring to this metadata.
  • the maximum luminance level of the content is the luminance level of a specific pixel in a specific frame of a specific scene. Therefore, in a frame other than this specific frame or in a scene other than this specific scene, a gradation value that is not actually used is mapped to the definition area of the SDR signal EOTF. That is, in the method of mapping the range corresponding to the luminance level equal to or lower than the maximum luminance level of the content in the EOTF definition area for the HDR signal to the EOTF definition area for the SDR signal, the level that can occur in the low luminance area There remains room for further suppression of degeneration of the tone value.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gradation value conversion apparatus for converting gradation values of HDR signals, which can reduce gradation values that can occur in a low luminance region. Is to realize a gradation value conversion apparatus in which the above is further suppressed.
  • a video processing device converts a gradation value taken by each pixel in a video signal according to a second video format having a wider luminance range than the first video format.
  • a virtual maximum that sets a virtual maximum luminance level lower than a maximum luminance level indicated by metadata included in the video signal by referring to a gradation value taken by each pixel in the video signal.
  • a luminance level setting unit; and a gradation value conversion unit that converts a gradation value corresponding to each luminance level equal to or lower than the virtual maximum luminance level among gradation values taken by each pixel in the video signal.
  • a video processing method is a video processing method for converting a gradation value taken by each pixel in a video signal according to a second video format having a wider luminance range than the first video format.
  • a virtual maximum luminance level setting step for setting a virtual maximum luminance level lower than a maximum luminance level indicated by metadata included in the video signal by referring to a gradation value taken by each pixel in the video signal;
  • a gradation value conversion apparatus that further suppresses gradation value degeneration that may occur in a low luminance region.
  • Embodiment 1 (Display device 1) A display device 1 including a gradation value conversion device (video processing device) 2 according to a first embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 is a block diagram illustrating a configuration of a display device 1 including a gradation value conversion device 2 according to the present embodiment.
  • FIG. 2 is a perspective view showing the appearance of the display device 1.
  • the display device 1 includes a gradation value conversion device 2, a panel control unit 6, and a display panel 7.
  • the gradation value conversion device 2 is a device that converts the gradation value of each pixel of the HDR signal (video signal according to the second video format), and includes a video data acquisition unit 3, a virtual maximum luminance level setting unit 4, and a floor.
  • a tone value conversion unit 5 is provided.
  • the video data acquisition unit 3 acquires an HDR signal.
  • the HDR signal acquired by the video data acquisition unit 3 is an HDMI signal based on the HDMI (registered trademark) (High-Definition Multimedia Interface) standard, a Tuner signal (a signal received by the tuner), and a CVBS. (Composite Video, Blanking, and Sync: composite video signal) signal or the like.
  • the HDR signal includes metadata such as MAX_CLL indicating the maximum luminance level of content in addition to the gradation value taken by each pixel.
  • the virtual maximum luminance level setting unit 4 refers to the gradation value or metadata included in the HDR signal acquired by the video data acquisition unit 3, and sets a virtual maximum luminance level having a value smaller than the maximum luminance level indicated by MAX_CLL for each frame. Or set for each scene.
  • the gradation value conversion unit 5 refers to the virtual maximum luminance level set by the virtual maximum luminance level setting unit 4, and converts the gradation value taken by each pixel in the HDR signal from the first gradation value to the second gradation. Convert to value.
  • the gradation value converting unit 5 corresponds to each luminance level equal to or lower than the virtual maximum luminance level set by the virtual maximum luminance level setting unit 4 among the gradation values that each pixel can take in the HDR signal. Is used for mapping each tone value in the EOTF domain for the SDR signal (video signal according to the first video format).
  • the panel control unit 6 controls the luminance of each pixel of the display panel 7 to a luminance value corresponding to the gradation value obtained by the gradation value conversion unit 5 in the SDR EOTF. As a result, the video represented by the HDR signal is displayed on the display panel 7 with the original luminance.
  • the display panel 7 may be realized by any device as long as it is capable of displaying images. Specific examples include a liquid crystal display, an organic EL (Electro Luminescence) display, a plasma display, and the like. Is mentioned.
  • FIG. 3 is a flowchart showing the flow of gradation conversion processing.
  • FIG. 4 is a graph showing the content of the gradation conversion process.
  • the gradation value conversion apparatus 2 performs the steps S0 to S4 described below for each frame, thereby changing the gradation value of each pixel constituting the HDR signal from the first gradation value. Conversion to the second gradation value.
  • the video data acquisition unit 3 acquires an HDR signal (step S0).
  • the video data acquisition unit 3 supplies the virtual maximum luminance level setting unit 4 and the gradation value conversion unit 5 with the gradation values taken by each pixel constituting the processing target frame in the acquired HDR signal.
  • the virtual maximum luminance level setting unit 4 acquires the gradation value taken by each pixel constituting the processing target frame from the video data acquisition unit 3, and acquires the maximum value of the acquired gradation value (the maximum gradation value in the frame). ) (The maximum luminance value in the frame) corresponding to) is set as the virtual maximum luminance level (step S1).
  • FIG. 4A shows a correspondence relationship (OETF) between the luminance value and the gradation value in the HDR signal.
  • the maximum luminance value in the frame corresponding to the maximum gradation value in the frame is lower than the maximum luminance level of the content indicated by MAC_CLL. Therefore, the virtual maximum brightness level set in this step is lower than the maximum brightness level of the content indicated by MAC_CLL.
  • the virtual maximum luminance level setting unit 4 supplies the set virtual maximum luminance level to the gradation value conversion unit 5.
  • the gradation value conversion unit 5 acquires the gradation value taken by each pixel constituting the processing target frame from the video data acquisition unit 3, and acquires the acquired gradation value from the first gradation value to the second value. Conversion into gradation values (step S2). For this conversion, the gradation value conversion unit 5 acquires the virtual maximum luminance level from the virtual maximum luminance level setting unit 4, and among the gradation values that each pixel can take for the HDR signal, the acquired virtual maximum luminance level A mapping is used in which the gradation value x corresponding to each luminance level y below the level is associated with each gradation value X in the definition area of the EOTF for the SDR signal.
  • MAX_y represents a virtual maximum brightness level
  • MAX_Y represents a maximum value of the EOTF value range for the SDR signal (corresponding to the maximum brightness level of the display device).
  • 4B is a graph showing the relationship between the luminance value x before conversion and the gradation value y (HETF signal OETF), and FIG. 4C shows the luminance value X after conversion. It is a graph showing the relationship with the gradation value Y (OETF for SDR signal).
  • the gradation value conversion unit 5 supplies the converted gradation value taken by each pixel constituting the processing target frame to the panel control unit 6.
  • the panel control unit 6 acquires the converted gradation value taken by each pixel constituting the processing target frame from the gradation value conversion unit 5, and converts the acquired gradation value into a luminance value (step S3). ).
  • the panel control unit 6 uses an EOTF for SDR, for example, an EOTF equivalent to ⁇ 2.2. This conversion is also called tone mapping, and the correspondence between the gradation value and the luminance value in this conversion is also called a tone curve.
  • the panel control unit 6 controls the luminance of each pixel constituting the display panel 7 to the luminance value obtained by tone mapping. As a result, the processing target frame is displayed on the display panel 7 (step S4).
  • the range corresponding to the luminance value equal to or lower than the virtual maximum luminance level is defined as the EOTF definition region for the SDR signal in the definition region of the HDR signal EOTF.
  • Use mapping to associate Since the virtual maximum luminance level is lower than the maximum luminance level indicated by MAC_CLL, the range corresponding to the luminance value equal to or lower than the maximum luminance level indicated by MAX_CLL is defined in the EOTF definition region for HDR signal. Compared with the case of using the mapping associated with the area, it is possible to suppress the black crushing and the gradation value degeneration.
  • the gradation value conversion process is executed for each frame, and the maximum luminance value in each frame is set as the virtual maximum luminance level.
  • the present embodiment is not limited to this.
  • gradation value conversion processing is executed for each scene, and the maximum in-scene luminance value of each scene (the maximum in-frame of all the frames constituting the scene). It is also possible to adopt a configuration in which the maximum luminance value) is set to the virtual maximum luminance level. In this case, before starting the gradation value conversion of the first frame constituting the processing target scene, the gradation values taken by the pixels constituting all the frames constituting the processing target scene are acquired, and the maximum luminance value in the scene is obtained.
  • the HDR signal includes metadata indicating the in-scene maximum luminance value of each scene
  • a configuration in which the virtual maximum luminance level is set with reference to the metadata may be employed. With such a configuration, gradation value conversion processing can be performed not only on HDR signals recorded on a recorder or the like but also on HDR signals received by a tuner or the like.
  • a configuration in which the temporal average value of the maximum luminance value in each frame is the virtual maximum luminance level may be adopted.
  • a known time average filter may be used.
  • the display device 1 including the gradation value conversion device 2 shown in FIG. 1 is used as in the first embodiment.
  • FIG. 5 is a flowchart showing the flow of the gradation value conversion process executed by the gradation value conversion apparatus according to the present embodiment. Note that the processing executed in steps S10 and S13 to S15 shown in FIG. 5 is the same as the processing executed in steps S0 and S2 to S4 shown in FIG. 3, respectively. For this reason, the processing executed in steps S11 to S12 will be described below.
  • step S11 the virtual maximum luminance level setting unit 4 generates a histogram of luminance values corresponding to the gradation values taken by each pixel constituting the processing target frame, and obtains the maximum histogram value from the generated histogram.
  • step S12 the virtual maximum luminance level setting unit 4 sets the virtual maximum luminance level to the maximum histo value obtained in step S11.
  • the maximum histogram value is a maximum value of luminance values excluding a specifically large luminance value among luminance values corresponding to gradation values taken by pixels constituting the processing target frame, and is an average value M of the histogram.
  • the standard deviation ⁇ is a typical example of the maximum histo value.
  • FIG. 6 shows an example of the histogram generated in step S11.
  • some pixels take a specifically large luminance value close to the maximum luminance level indicated by MAX_CLL.
  • the gradation value conversion step In S13 the region between the specifically large luminance value and the maximum value of the luminance value excluding the specifically large luminance value is unnecessarily associated with the SDR EOTF value range.
  • the luminance value excluding the large luminance value is specifically determined.
  • the SDR EOTF value range can be associated without waste.
  • a configuration has been described in which a histogram of luminance values is created for each frame, and the maximum value within the frame of each frame is a virtual maximum luminance level, but the present embodiment is not limited to this.
  • a histogram of luminance values is executed for each scene and the maximum value of the in-scene hist of each scene is set as a virtual maximum luminance level. It is.
  • a histogram of luminance values corresponding to the gradation values taken by the pixels constituting all the frames constituting the processing target scene is created.
  • the maximum value of the hist in the scene is set to the virtual maximum luminance level.
  • the HDR signal includes metadata indicating the in-scene maximum value of each scene, it is possible to adopt a configuration in which the virtual maximum luminance level is set with reference to this metadata. With such a configuration, gradation value conversion processing can be performed not only on HDR signals recorded on a recorder or the like but also on HDR signals received by a tuner or the like.
  • a configuration in which the time average value of the in-frame maximum value of each frame is the virtual maximum luminance level may be adopted.
  • a known time average filter may be used in calculating the time average value of the intra-frame maximum value of each frame.
  • FIG. 7 is a flowchart showing the flow of the gradation value conversion process executed by the gradation value conversion apparatus according to this embodiment.
  • the processes executed in step S100 and steps S106 to S108 shown in FIG. 7 are the same as the processes executed in steps S0 and S2 to S4 shown in FIG. 3, respectively. For this reason, the processing executed in steps S101 to S105 will be described below.
  • step S101 the virtual maximum luminance level setting unit 4 generates a histogram of luminance values corresponding to the gradation values taken by each pixel constituting the processing target frame, and obtains a maximum histogram value from the generated histogram.
  • the definition of the maximum hysteresis value is the same as that given in the second embodiment.
  • the virtual maximum brightness level setting unit 4 sets a limit value that is lower than the maximum brightness level indicated by MAC_CLL by a predetermined value.
  • the predetermined value is an arbitrary value and may be set at the time of shipment from the factory, or may be set by the user after shipment from the factory.
  • step S103 the virtual maximum luminance level setting unit 4 determines whether or not the maximum histogram value calculated in step S101 is lower than the limit value calculated in step S102.
  • step S104 when the maximum histo value is lower than the limit value, in step S104, the virtual maximum luminance level setting unit 4 sets the virtual maximum luminance level to the limit value.
  • step S106 the range below the limit value in the definition area of the HDR signal OETF is mapped to the whole definition area of the ODR for SDR signal.
  • the virtual maximum luminance level setting unit 4 sets the virtual maximum luminance level to the maximum histogram value in step S105.
  • step S106 the range below the maximum histogram value in the HDR signal EOTF value range is mapped to the entire SDR signal EOTF value range.
  • the virtual maximum luminance that can occur when the maximum value of the histogram becomes extremely small by providing a limit value for the virtual maximum luminance level. It is possible to prevent a decrease in image quality due to a large level fluctuation.
  • the flow of the gradation value conversion process executed by the gradation value conversion apparatus 2 according to the present embodiment is similar to the gradation conversion process executed by the gradation value conversion apparatus 2 according to the third embodiment, as shown in FIG. Is expressed by the flowchart shown in FIG.
  • the limit value setting process S102 in the third embodiment is replaced with a limit value setting process S109 described below.
  • the virtual maximum luminance level setting unit 4 has a predetermined ratio between the difference obtained by subtracting the limit value from the maximum luminance level indicated by MAX_CLL and the difference obtained by subtracting the maximum histogram value in the luminance histogram from the limit value.
  • the predetermined ratio is an arbitrary ratio, and may be set at the time of shipment from the factory, or may be set by the user after shipment from the factory.
  • step S104 when the maximum histo value is lower than the limit value, in step S104, the virtual maximum luminance level setting unit 4 sets the virtual maximum luminance level to the limit value.
  • step S106 the range below the limit value in the definition area of the HDR signal OETF is mapped to the whole definition area of the SDR signal OETF.
  • the virtual maximum luminance level setting unit 4 sets the virtual maximum luminance level to the maximum histogram value in step S105.
  • step S106 the range below the maximum value of the histories of the EOTF for the HDR signal is mapped to the entire range of the EOTF for the SDR signal.
  • the virtual maximum luminance that can occur when the maximum value of the histogram becomes extremely small by providing a limit value for the virtual maximum luminance level. It is possible to prevent a decrease in image quality due to a large level fluctuation.
  • the virtual maximum luminance level setting unit 4 has a luminance value (maximum intra-frame luminance value) corresponding to the maximum gradation value (maximum intra-frame gradation value) taken by each pixel constituting the processing target frame. It was explained that is set to the virtual maximum luminance level. With this configuration, gradation values can be converted according to peak luminance, which is the greatest advantage of HDR.
  • the gradation value in the low gradation value region with respect to the luminance value is relatively lowered (blackout).
  • blackout the area in the image displayed with the gradation value in the low gradation value area becomes completely dark, resulting in insufficient expression.
  • the gradation value conversion apparatus 11 has the gradation value in the low gradation value region among the gradation values converted by the gradation value conversion unit 5.
  • the gradation value taken by each pixel constituting each frame or each scene is adjusted so as to have a lifting portion.
  • the low gradation value region indicates a gradation value region near the origin (a point where the gradation value and the corresponding luminance value are zero) in the converted gradation value.
  • the low gradation value area indicates an area having a gradation value of about one fifth when the gradation value is quantized with 8 bits (256 gradations (0 to 255)). (A region where the gradation value is 0 to 51).
  • the gradation value area having the gradation value larger than the maximum gradation value in the low gradation value area as the lowest gradation value is defined as the intermediate gradation value area, and the largest gradation in the intermediate gradation value area.
  • a region of gradation values having a gradation value larger than the tone value as the lowest gradation value is defined as a high gradation value region.
  • “having a lifting portion in the gradation value of the low gradation value region” means a low-order image generated by converting the gradation value by the gradation value conversion method described in the first embodiment. This means that the gradation value in the low gradation area is increased in order to improve the relative decrease (blackout) in the gradation value area.
  • FIG. 10 is a block diagram illustrating a configuration of the display device 10 including the gradation value conversion device (video processing device) 11 according to the present embodiment. As shown in FIG. 10, the gradation value conversion apparatus 11 further includes a gradation value adjustment unit 12 in addition to the configuration of the gradation value conversion apparatus 2 according to the first embodiment.
  • the gradation value adjustment unit 12 adjusts the gradation value converted by the gradation value conversion unit 5 to have a lifting unit in the gradation value in the low gradation value region.
  • FIG. 11 is a flowchart showing the flow of gradation value conversion processing.
  • the gradation value conversion process is executed for each frame, and the maximum luminance value in each frame is set as the virtual maximum luminance level.
  • the gradation value conversion process is executed for each scene, The same applies to the configuration in which the in-scene maximum luminance value of each scene is set as the virtual maximum luminance level.
  • the video data acquisition unit 3 acquires an HDR signal (step S20).
  • the video data acquisition unit 3 sets a gradation value taken by each pixel constituting the processing target frame in the acquired HDR signal as a virtual maximum luminance level setting unit. 4 and the gradation value converter 5.
  • the virtual maximum luminance level setting unit 4 acquires the gradation value taken by each pixel constituting the processing target frame from the video data acquisition unit 3, and acquires the maximum value of the acquired gradation value (the maximum gradation value in the frame). ) (The maximum luminance value in the frame) corresponding to) is set as the virtual maximum luminance level (step S21).
  • the gradation value conversion unit 5 acquires the gradation value taken by each pixel constituting the processing target frame from the video data acquisition unit 3, and among the acquired gradation values, the virtual maximum luminance level setting unit 4 The gradation value corresponding to each luminance level below the set virtual maximum luminance level is converted from the first gradation value to the second gradation value (step S22).
  • the gradation value adjustment unit 12 adjusts the gradation value converted by the gradation value conversion unit 5 to have a lifting unit in the gradation value in the low gradation value region (step S23).
  • a specific example of how the gradation value adjusting unit 12 adjusts the gradation value will be described later.
  • the gradation value adjusted by the gradation value adjustment unit 12 is preferably larger than the gradation value indicated by the predetermined format in the low gradation value region.
  • An example of the predetermined format is ST2084.
  • the panel control unit 6 acquires the adjusted gradation value taken by each pixel constituting the processing target frame from the gradation value adjustment unit 12, and converts the acquired gradation value into a luminance value (step S24). ) (Tone mapping).
  • the panel control unit 6 controls the luminance of each pixel constituting the display panel 7 to the luminance value obtained by tone mapping. Thereby, the processing target frame is displayed on the display panel 7 (step S25).
  • FIG. 12 is a graph showing the relationship between the converted gradation value and the corresponding luminance value.
  • a region A in FIG. 12 represents the above-described low gradation value region, a dotted line represents a curve before adjustment, and a solid line represents a curve after adjustment.
  • the gradation value adjustment unit 12 adjusts the converted gradation value so that the gradation value in the region A has a lifting part (adjusts from the dotted curve to the solid curve).
  • the gradation value adjusting unit 12 adjusts the gradation value in the low gradation value region by adding a value of about 10% of the gradation value.
  • the gradation value adjustment unit 12 graphs the gradation value corresponding to the gradation value with respect to the gradation value in the low gradation value region. In this case, adjustment is made so that the curve in the graph is equivalent to the curve of ⁇ 2.2.
  • the gradation value adjustment unit 12 may change the low gradation value region with reference to the average value of the luminance level corresponding to the gradation value converted by the gradation value conversion unit 5. Thereby, since the low gradation value region can be set according to the distribution of the luminance level, the gradation value can be adjusted according to the distribution of the luminance level.
  • the average value of the luminance levels referred to by the gradation value adjustment unit 12 may be calculated by the gradation value adjustment unit 12 itself or may be acquired from the outside.
  • the gradation value adjustment unit 12 has a gradation value in the low gradation value region and a gradation value in the high gradation value region in the graph of the gradation value converted by the gradation value conversion unit and the corresponding luminance level. Further, the gradation value in the middle gradation value region may be further adjusted so that “and” continuously change. As a result, in the image displayed with the adjusted gradation value, unnaturalness due to the difference between the gradation value in the low gradation value area and the gradation value in the high gradation value area can be eliminated.
  • the gradation value conversion apparatus 11 sets the virtual maximum luminance level to the maximum value of the luminance level, converts the gradation value with reference to the set virtual maximum luminance level, Of the converted gradation values, the gradation values in the low gradation value region are adjusted to have a lifting portion.
  • the virtual maximum luminance level to the maximum value of the luminance level, it is possible to maintain the fidelity of the peak feeling included in the video signal, and among the converted gradation values, the low gradation value
  • the gradation value of the region By adjusting the gradation value of the region so as to have a raised portion, it is possible to prevent black crushing due to a decrease in the gradation value of the low gradation value region, and to improve the gradation expressing ability of the low gradation value region.
  • the control block (particularly the video data acquisition unit 3, the virtual maximum luminance level setting unit 4 and the gradation value conversion unit 5) of the gradation value conversion device 2 is a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. ) Or by software using a CPU (Central Processing Unit).
  • the gradation value conversion device 2 includes a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only) in which the program and various data are recorded so as to be readable by a computer (or CPU). Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a video processing device (2, 11) converts a gradation value taken by each pixel in a video signal according to a second video format having a wider luminance range than the first video format.
  • a virtual maximum luminance level setting unit that sets a virtual maximum luminance level lower than the maximum luminance level indicated by the metadata included in the video signal by referring to the gradation value taken by each pixel in the video signal.
  • the gradation value conversion unit (5) is a level that each pixel can take in the second video format that the video signal follows.
  • a mapping is used in which tone values corresponding to each luminance level equal to or lower than the virtual maximum luminance level among tone values correspond to the tone values that each pixel can take in the first video format. The gradation value taken by each pixel is converted.
  • the video display quality can be further improved.
  • the first video format is an EOTF equivalent to ⁇ 2.2
  • the second format is an EOTF of SMPTE.
  • the format is ST2084.
  • the display quality of the video in the SDR playback environment can be improved.
  • the virtual maximum luminance level setting unit is a floor taken by each pixel constituting each frame or each scene in the video signal.
  • the virtual maximum luminance level is set by referring to the tone value.
  • the gradation value can be efficiently converted in accordance with the gradation value included in the video signal.
  • the virtual maximum luminance level setting unit (4) sets the virtual maximum luminance level in each frame or each scene in the video signal. Is set to the maximum value of the luminance level corresponding to the gradation value taken by each pixel.
  • the gradation value can be efficiently converted in accordance with the gradation value included in the video signal.
  • the video processing apparatus (11) according to aspect 6 of the present invention has a lifting unit in the gradation value of the low gradation value region among the gradation values converted by the gradation value conversion part in the aspect 5. Further, a gradation value adjusting unit (12) for adjusting to the above is further provided.
  • the gradation value adjustment unit refers to an average value of luminance levels corresponding to the gradation values converted by the gradation value conversion unit. Then, the low gradation value region is changed.
  • the gradation value region can be set according to the luminance level distribution, the gradation value can be adjusted according to the luminance level distribution.
  • the gradation value adjustment unit is a graph of the gradation value converted by the gradation value conversion unit and the corresponding luminance level. , The gradation value in the middle gradation value region is further adjusted so that the gradation value in the low gradation value region and the gradation value in the high gradation value region change continuously.
  • the gradation value adjusted by the gradation value adjustment unit is the gradation indicated by a predetermined format in the low gradation value region. Greater than the value.
  • the video conversion devices according to aspects 6 to 8 can be suitably used.
  • the virtual maximum luminance level setting unit (4) takes each pixel constituting each frame or each scene in the video signal.
  • a virtual maximum luminance level is set by creating a histogram of luminance levels corresponding to gradation values and referring to the histogram.
  • the gradation value can be more efficiently converted in accordance with the gradation value included in the video signal.
  • the virtual maximum luminance level setting unit (4) configures the virtual maximum luminance level and each frame or each scene in the video signal.
  • the effective maximum value of the luminance level corresponding to the gradation value taken by each pixel is set to the effective maximum value defined by a constant multiple of the standard deviation of the histogram.
  • the gradation value can be more efficiently converted in accordance with the gradation value included in the video signal.
  • the virtual maximum luminance level setting unit (4) sets a limit value lower than the maximum luminance level by a predetermined value, and the effective maximum luminance If the value is lower than the limit value, the virtual maximum brightness level is set to the limit value, and if the effective maximum value is greater than or equal to the limit value, the virtual maximum brightness level is set to the effective maximum value. To do.
  • the virtual maximum luminance level setting unit (4) is configured to subtract the limit value from the maximum luminance level, When the effective maximum value is lower than the limit value, the virtual maximum luminance level is set to the limit value when the effective maximum value is lower than the limit value. If the effective maximum value is greater than or equal to the limit value, the virtual maximum luminance level is set to the effective maximum value.
  • the limit value can be set to a desired value.
  • the video processing device (2) according to aspect 14 of the present invention is the image processing apparatus (2) according to aspect 14, wherein the virtual maximum luminance level is a luminance corresponding to a gradation value taken by each pixel constituting each frame or each scene in the HDR signal.
  • the effective maximum value of the level is set to the time average value of the effective maximum value defined by a constant multiple of the standard deviation of the histogram.
  • the video quality can be improved.
  • the display device (1, 10) according to the aspect 15 of the present invention includes any one of the video processing apparatuses according to the above aspects 1 to 14.
  • the display device can obtain the effects that the video processing device has in each aspect.
  • a video processing method is a video processing method for converting a gradation value taken by each pixel in a video signal according to a second video format having a luminance range wider than that of the first video format,
  • a virtual maximum luminance level setting step for setting a virtual maximum luminance level lower than a maximum luminance level indicated by metadata included in the video signal by referring to a gradation value taken by each pixel in the video signal;
  • the display device may be realized by a computer.
  • the display device is realized by the computer by operating the computer as each unit (software element) included in the display device.
  • a control program for the display device and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

SDR信号に対応した表示装置においても、HDR信号が示す階調特性を、効率的に、表示装置に適した階調特性に変換し、表示品位を向上する。映像処理装置(2)は、映像信号に含まれるメタデータが示す最大輝度レベルよりも低い仮想最大輝度レベルを設定する仮想最大輝度レベル設定部(4)と、映像信号において各画素が取る階調値のうち、仮想最大輝度レベル以下の各輝度レベルに対応する階調値を変換する階調値変換部(5)と、を備えている。

Description

映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
 本発明は、HDR信号の階調値を変換する映像処理装置等に関する。
 近年、高画質化技術の1つとして、SDR(Standard Dynamic Range)信号よりも、階調数(取り得る階調値の個数)が多く、かつ、より高輝度の情報を含むHDR(High Dynamic Range)信号が注目を集めている。HDR信号を用いることより、従来よりも高輝度かつ高コントラストな迫力のある映像を得ることができる。
 SDR信号は、γ2.2相当等のEOTF(Electro-Optical Transfer Function)を有する再生環境(以下、「SDR環境」と記載)での再生を前提として製作されているのに対して、HDR信号は、SMPTE-ST2084(以下、「ST2084」と略記)等のEOTFを有する再生環境(以下、「SDR環境」と記載)での再生を前提として製作されている。このため、SDR環境でHDR信号を再生すると、得られる映像の輝度が製作者の意図した輝度と異なってしまう。
 このような問題を回避するための方法としては、例えば、SDR環境でHDR信号を表示する前に、HDR信号で各画素が取る階調値を、HDR環境において作成者の意図した輝度に対応する第1の階調値から、SDR環境において作成者の意図した輝度に対応する第2の階調値に変換することなどが考えられる。例えば、HDR環境におけるEOTFをf、SDR環境におけるEOTFをgとすると、この変換は、第1の階調値xを、第2の階調値y=g-1(f(x))に対応させるマッピングとなる。
 再生環境のEOTF又はガンマカーブに関連する技術を開示した文献としては、例えば、特許文献1~2が挙げられる。特許文献1には、入力映像信号の平均輝度レベル及びγ調整値によりダイナミックレンジ拡大前後の平均輝度レベルの変化幅を毎フレーム変化させることにより、バックライトの調光制御を行う液晶表示装置が開示されている。
 特許文献2には、入力映像信号を所定の走査線数を有する信号に走査変換する走査変換部と、この走査変換部からの信号をガンマ補正するガンマ補正部と、入力映像信号から信号レベルを検出し、この検出信号によりガンマ補正部を制御するレベル検出部とを備え、入力信号レベルに応じて平均輝度を制御するプラズマディスプレイが開示されている。
日本国公開特許公報「 特開2002-108305号公報(2002年4月10日公開)」 日本国公開特許公報「 特開2002-354378号公報(2002年12月6日公開)」
 上述したように、HDR信号は、SDR信号よりも高輝度の情報を含むように構成されているため、HDR信号のEOTFは、SDR信号のものと異なる。したがって、HDR信号で各画素が取る階調値を変換する際に、HDR信号用のEOTFの定義域全体をSDR信号用のEOTFの定義域にマッピングしようとすると、階調値の縮退(異なる階調値が同一の階調値にマッピングされることを指す)が生じることがある。特に、SMPTE-ST2084等のHDR用のEOTFでは、暗部における僅かな明暗の違いを表現するべく、単位輝度差あたり階調数が低輝度領域において特に大きくなっている。このため、このようなマッピングによりHDR信号で各画素が取る階調値を変換すると、低輝度領域において階調値の縮退が生じ易い。
 このような問題を解決するための方法としては、HDR信号用のEOTFの定義域のうち、コンテンツの最大輝度レベル以下の輝度レベルに対応する範囲を、SDR信号用のEOTFの定義域にマッピングする方法が考えられる。HDR信号で各画素は10000cd/m以下の輝度に対応する階調値を取り得るが、これらの階調値の全部が実際のコンテンツで使われるわけではない。このため、このようなマッピングによりHDR信号で各画素が取る画素値を変換すれば、黒潰れの抑制、階調値の縮退の抑制を行うことができる。なお、HDR信号には、MAX_CLL(Maximum Content Light Level)と呼ばれる、コンテンツの最大輝度を表すメタデータが含まれている。コンテンツの最大輝度は、このメタデータを参照することにより特定することが可能である。
 しかしながら、コンテンツの最大輝度レベルは、ある特定のシーンの、ある特定のフレームの、ある特定の画素の輝度レベルである。したがって、この特定のフレーム以外のフレーム、あるいは、この特定のシーン以外のシーンでは、実際に使われない階調値がSDR信号用のEOTFの定義域にマッピングされてしまっていることになる。すなわち、HDR信号用のEOTFの定義域のうち、コンテンツの最大輝度レベル以下の輝度レベルに対応する範囲を、SDR信号用のEOTFの定義域にマッピングする方法には、低輝度領域において生じ得る階調値の縮退を更に抑制する余地が残されている。
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、HDR信号の階調値を変換する階調値変換装置であって、低輝度領域において生じ得る階調値の縮退を更に抑制された階調値変換装置を実現することである。
 上記の課題を解決するために、本発明の一態様に係る映像処理装置は、第1の映像フォーマットよりも輝度範囲の広い第2の映像フォーマットに従う映像信号において各画素が取る階調値を変換する映像処理装置であって、上記映像信号において各画素が取る階調値を参照することによって、上記映像信号に含まれるメタデータが示す最大輝度レベルよりも低い仮想最大輝度レベルを設定する仮想最大輝度レベル設定部と、上記映像信号において各画素が取る階調値のうち、上記仮想最大輝度レベル以下の各輝度レベルに対応する階調値を変換する階調値変換部と、を備えている。
 また、本発明の一態様に係る映像処理方法は、第1の映像フォーマットよりも輝度範囲の広い第2の映像フォーマットに従う映像信号において各画素が取る階調値を変換する映像処理方法であって、上記映像信号において各画素が取る階調値を参照することによって、上記映像信号に含まれるメタデータが示す最大輝度レベルよりも低い仮想最大輝度レベルを設定する仮想最大輝度レベル設定ステップと、上記映像信号において各画素が取る階調値のうち、上記仮想最大輝度レベル以下の各輝度レベルに対応する階調値を変換する階調値変換ステップと、を含んでいる。
 本発明によれば、低輝度領域において生じ得る階調値の縮退を更に抑制された階調値変換装置を実現することができる。
本発明の実施形態1、2および3に係る階調値変換装置を備えた表示装置の構成を示すブロック図である。 上記表示装置の外観を示す図である。 本発明の実施形態1に係る階調値変換方法を説明するフローチャートである。 本発明の実施形態1に係る階調値変換方法を説明するための図である。 本発明の実施形態2に係る階調値変換方法を説明するフローチャートである。 本発明の実施形態2に係る階調値変換方法を説明するための図である。 本発明の実施形態3に係る階調値変換方法を説明するフローチャートである。 本発明の実施形態3に係る階調値変換方法を説明するための図である。 本発明の実施形態4に係る階調値変換方法を説明するための図である。 本発明の実施形態5に係る階調値変換装置を備えた表示装置の構成を示すブロック図である。 本発明の実施形態5に係る階調値変換方法を説明するフローチャートである。 本発明の実施形態5に係る階調値変換方法を説明するための図である。
 以下、本発明の実施形態について、詳細に説明する。ただし、本実施形態に記載されている構成は、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
 〔実施形態1〕
 (表示装置1)
 本発明の第1の実施形態に係る階調値変換装置(映像処理装置)2を備えた表示装置1について、図1および図2を参照して説明する。図1は、本実施形態に係る階調値変換装置2を備えた表示装置1の構成を示すブロック図である。また、図2は、表示装置1の外観を示す斜視図である。図1が示すように、表示装置1は、階調値変換装置2、パネル制御部6、および表示パネル7を備えている。
 (階調値変換装置2)
 階調値変換装置2は、HDR信号(第2の映像フォーマットに従う映像信号)の各画素の階調値を変換する装置であり、映像データ取得部3、仮想最大輝度レベル設定部4、および階調値変換部5を備えている。映像データ取得部3は、HDR信号を取得する。なお、映像データ取得部3が取得するHDR信号は、HDMI(登録商標)(High-Definition Multimedia Interface:高精細度マルチメディアインターフェース)規格に基づくHDMI信号、Tuner信号(チューナーによって受信した信号)およびCVBS(Composite Video, Blanking, and Sync:コンポジット映像信号)信号等であり得る。また、HDR信号には、各画素が取る階調値の他に、コンテンツの最大輝度レベルを示すMAX_CLL等のメタデータとして含まれる。仮想最大輝度レベル設定部4は、映像データ取得部3が取得したHDR信号に含まれる階調値またはメタデータを参照し、MAX_CLLが示す最大輝度レベルよりも値の小さい仮想最大輝度レベルをフレーム毎またはシーン毎に設定する。階調値変換部5は、仮想最大輝度レベル設定部4が設定した仮想最大輝度レベルを参照し、HDR信号において各画素が取る階調値を、第1の階調値から第2の階調値に変換する。この際、階調値変換部5は、HDR信号において各画素が取り得る階調値のうち、仮想最大輝度レベル設定部4が設定した仮想最大輝度レベル以下の各輝度レベルに対応する階調値を、SDR信号(第1の映像フォーマットに従う映像信号)用のEOTFの定義域内の各階調値に対応させるマッピングが用いられる。
 (その他の部材)
 パネル制御部6は、表示パネル7の各画素の輝度を、SDR用のEOTFにおいて階調値変換部5が得た階調値に対応する輝度値に制御する。これにより、HDR信号が表す映像が本来の輝度で表示パネル7に表示される。表示パネル7は、映像の表示が可能な表示装置であればどのような装置によって実現されてもよいが、具体的な例としては、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、およびプラズマディスプレイ等が挙げられる。
 (階調値変換方法)
 本実施形態に係る階調値変換装置2により実行される階調変換処理(映像処理方法)の流れを、図3及び図4を参照して説明する。図3は、階調変換処理の流れを示すフローチャートである。図4は、階調変換処理の内容を示すグラフである。
 本実施形態に係る階調値変換装置2は、以下に説明するステップS0~S4をフレーム毎に実効することによって、HDR信号を構成する各画素の階調値を、第1の階調値から第2の階調値に変換する。
 まず、映像データ取得部3は、HDR信号を取得する(ステップS0)。映像データ取得部3は、取得したHDR信号において処理対象フレームを構成する各画素が取る階調値を仮想最大輝度レベル設定部4及び階調値変換部5に供給する。
 次に、仮想最大輝度レベル設定部4は、処理対象フレームを構成する各画素が取る階調値を映像データ取得部3から取得し、取得した階調値の最大値(フレーム内最大階調値)に対応する輝度値(フレーム内最大輝度値)を仮想最大輝度レベルに設定する(ステップS1)。図4の(a)に、HDR信号における輝度値と階調値との対応関係(OETF)を示す。図4の(a)に示すように、フレーム内最大階調値に対応するフレーム内最大輝度値は、MAC_CLLが示すコンテンツの最大輝度レベルよりも低くなる。したがって、本ステップにおいて設定される仮想最大輝度レベルは、MAC_CLLが示すコンテンツの最大輝度レベルよりも低くなる。仮想最大輝度レベル設定部4は、設定した仮想最大輝度レベルを階調値変換部5に供給する。
 次に、階調値変換部5は、処理対象フレームを構成する各画素が取る階調値を映像データ取得部3から取得し、取得した階調値を第1の階調値から第2の階調値に変換する(ステップS2)。この変換のために、階調値変換部5は、仮想最大輝度レベルを仮想最大輝度レベル設定部4から取得し、HDR信号用において各画素が取り得る階調値のうち、取得した仮想最大輝度レベル以下の各輝度レベルyに対応する階調値xを、SDR信号用のEOTFの定義域内の各階調値Xに対応させるマッピングを用いる。より具体的に言うと、仮想最大輝度レベル以下の各輝度レベルyに対応する階調値xを、SDR信号用のEOTFにおいて輝度レベルY=(MAX_Y/MAX_y)yに対応する階調値Xに対応させるマッピングを用いる。ここで、MAX_yは、仮想最大輝度レベルを表し、MAX_Yは、SDR信号用のEOTFの値域の最大値(表示装置の最大輝度レベルに相当)を表す。図4の(b)は、変換前の輝度値xと階調値yとの関係(HDR信号用のOETF)を表すグラフであり、図4の(c)は、変換後の輝度値Xと階調値Yとの関係(SDR信号用のOETF)を表すグラフである。階調値変換部5は、処理対象フレームを構成する各画素が取る変換後の階調値をパネル制御部6に供給する。
 次に、パネル制御部6は、処理対象フレームを構成する各画素が取る変換後の階調値を階調値変換部5から取得し、取得した階調値を輝度値に変換する(ステップS3)。この変換のために、パネル制御部6は、SDR用のEOTF、例えば、γ2.2相当のEOTFを用いる。この変換は、トーンマッピングとも呼ばれ、この変換における階調値と輝度値との対応関係は、トーンカーブとも呼ばれる。パネル制御部6は、表示パネル7を構成する各画素の輝度を、トーンマッピングにより得られた輝度値に制御する。これにより、処理対象フレームが表示パネル7に表示される(ステップS4)。
 以上のように、本実施形態に係る階調値変換処理では、HDR信号用のEOTFの定義域のうち、仮想最大輝度レベル以下の輝度値に対応する範囲をSDR信号用のEOTFの定義域に対応付けるマッピングを用いる。仮想最大輝度レベルは、MAC_CLLが示す最大輝度レベルよりも低いので、HDR信号用のEOTFの定義域のうち、MAX_CLLが示す最大輝度レベル以下の輝度値に対応する範囲をSDR信号用のEOTFの定義域に対応付けるマッピングを用いる場合と比べて、黒潰れの抑制、階調値の縮退の抑制を行うことができる。
 なお、ここでは、階調値変換処理をフレーム毎に実行し、各フレームのフレーム内最大輝度値を仮想最大輝度レベルとする構成について説明したが、本実施形態はこれに限定されない。例えば、レコーダ等に記録されたHDR信号を再生する場合には、階調値変換処理をシーン毎に実行し、各シーンのシーン内最大輝度値(そのシーンを構成する全てのフレームのフレーム内最大輝度値の最大値)を仮想最大輝度レベルとする構成を採用することも可能である。この場合、処理対象シーンを構成する最初のフレームの階調値変換を開始する前に、処理対象シーンを構成する全てのフレームを構成する画素が取る階調値を取得し、シーン内最大輝度値を仮想最大輝度レベルに設定することになる。また、各シーンのシーン内最大輝度値を示すメタデータがHDR信号に含まれている場合は、このメタデータを参照して仮想最大輝度レベルを設定する構成を採用することもできる。このような構成であれば、レコーダ等に記録されたHDR信号のみならず、チューナ等で受信したHDR信号に対しても階調値変換処理を施すことが可能である。
 また、各フレームのフレーム内最大輝度値そのものを仮想最大輝度レベルとする構成の代わりに、各フレームのフレーム内最大輝度値の時間平均値を仮想最大輝度レベルとする構成を採用してもよい。これにより、各フレームのフレーム内最大輝度値そのものを仮想最大輝度レベルとする構成を採用した場合に生じ得る画面のちらつきを効果的に抑制することが可能である。なお、各フレームのフレーム内輝度値の時間平均値の算出にあたっては、例えば公知の時間平均フィルタなどを用いればよい。
 〔実施形態2〕
 本発明の第2の実施形態について、図面に基づいて説明すれば、以下のとおりである。なお、本実施形態では、図1に示す階調値変換装置2を備える表示装置1を、第1の実施形態と同様に用いる。
 図5は、本実施形態に係る階調値変換装置により実行される階調値変換処理の流れを示すフローチャートである。なお、図5に示すステップS10およびステップS13~S15において実行される処理は、それぞれ、図3に示すステップS0およびステップS2~S4において実行される処理と同様である。このため、以下では、ステップS11~S12にて実行される処理について説明する。
 ステップS11において、仮想最大輝度レベル設定部4は、処理対象フレームを構成する各画素が取る階調値に対応する輝度値のヒストグラム生成し、生成したヒストグラムからヒスト最大値を求める。そして、ステップS12において、仮想最大輝度レベル設定部4は、仮想最大輝度レベルをステップS11にて求めたヒスト最大値に設定する。
 ここで、ヒスト最大値とは、処理対象フレームを構成する画素が取る階調値に対応する輝度値のうち、特異的に大きな輝度値を除く輝度値の最大値であり、ヒストグラムの平均値Mと標準偏差σとから算出できる量である。例えば、M+3σは、ヒスト最大値の典型例である。
 ステップS11に生成されるヒストグラムの例を図6に示す。図6に示す例では、幾つかの画素がMAX_CLLが示す最大輝度レベルに近い特異的に大きな輝度値を取る。このような場合、処理対象フレームを構成する画素が取る階調値に対応する輝度値の最大値を仮想最大輝度レベルとする構成(第1の実施形態参照)を採用すると、階調値変換ステップS13において特異的に大きな輝度値と特異的に大きな輝度値を除く輝度値の最大値との間の領域が、SDR用のEOTFの値域に無駄に対応付けられることになる。これに対して、処理対象フレームを構成する画素が取る階調値に対応する輝度値のヒスト最大値を仮想最大輝度レベルとする構成を採用すれば、特異的に大きな輝度値を除く輝度値を、階調値変換ステップS13においてSDR用のEOTFの値域に無駄なく対応付けることができる。
 なお、ここでは、輝度値のヒストグラムをフレーム毎に作成し、各フレームのフレーム内ヒスト最大値を仮想最大輝度レベルとする構成について説明したが、本実施形態はこれに限定されない。例えば、レコーダ等に記録されたHDR信号を再生する場合には、輝度値のヒストグラムをシーン毎に実行し、各シーンのシーン内ヒスト最大値を仮想最大輝度レベルとする構成を採用することも可能である。この場合、処理対象シーンを構成する最初のフレームの階調値変換を開始する前に、処理対象シーンを構成する全てのフレームを構成する画素が取る階調値に対応する輝度値のヒストグラムを作成し、シーン内ヒスト最大値を仮想最大輝度レベルに設定することになる。また、各シーンのシーン内ヒスト最大値を示すメタデータがHDR信号に含まれている場合は、このメタデータを参照して仮想最大輝度レベルを設定する構成を採用することもできる。このような構成であれば、レコーダ等に記録されたHDR信号のみならず、チューナ等で受信したHDR信号に対しても階調値変換処理を施すことが可能である。
 また、各フレームのフレーム内ヒスト最大値そのものを仮想最大輝度レベルとする構成の代わりに、各フレームのフレーム内ヒスト最大値の時間平均値を仮想最大輝度レベルとする構成を採用してもよい。これにより、各フレームのフレーム内ヒスト最大値そのものを仮想最大輝度レベルとする構成を採用した場合に生じ得る画面のちらつきを効果的に抑制することが可能である。なお、各フレームのフレーム内ヒスト最大値の時間平均値の算出にあたっては、例えば公知の時間平均フィルタなどを用いればよい。
 〔実施形態3〕
 本発明の第3の実施形態について、図面に基づいて説明すれば、以下のとおりである。なお、本実施形態では、図1に示す階調値変換装置2を備える表示装置1を第1の実施形態と同様に用いる。
 図7は、本実施形態に係る階調値変換装置により実行される階調値変換処理の流れを示すフローチャートである。なお、図7に示すステップS100およびステップS106~S108において実行される処理は、それぞれ、図3に示すステップS0およびステップS2~S4において実行される処理と同様である。このため、以下では、ステップS101~S105にて実行される処理について説明する。
 まず、ステップS101において、仮想最大輝度レベル設定部4は、処理対象フレームを構成する各画素が取る階調値に対応する輝度値のヒストグラム生成し、生成したヒストグラムからヒスト最大値を求める。ヒスト最大値の定義は、第2の実施形態において与えたものと同様である。
 次に、ステップS102において、仮想最大輝度レベル設定部4は、MAC_CLLが示す最大輝度レベルよりも所定の値だけ低いリミット値を設定する。ここで、所定の値は、任意の値であり、工場出荷時に設定されたものであってもよいし、工場出荷後にユーザが設定したものであってもよい。
 次に、ステップS103において、仮想最大輝度レベル設定部4は、ステップS101で算出したヒスト最大値がステップS102で算出したリミット値よりも低いか否かを判定する。
 図8の(a)に示すように、ヒスト最大値がリミット値よりも低い場合、ステップS104において、仮想最大輝度レベル設定部4は、仮想最大輝度レベルをリミット値に設定する。このとき、図8の(b)に示すように、ステップS106において、HDR信号用のOETFの定義域のうち、リミット値以下の範囲がSDR信号用のOETFの定義域全体にマッピングされる。
 一方、図8の(c)に示すように、ヒスト最大値がリミット値以上である場合、仮想最大輝度レベル設定部4は、ステップS105において、仮想最大輝度レベルをヒスト最大値に設定する。このとき、図8の(d)に示すように、ステップS106において、HDR信号用のEOTFの値域のうち、ヒスト最大値以下の範囲がSDR信号用のEOTFの値域全体にマッピングされる。
 本実施形態に係る階調値変換装置2の階調値変換方法によれば、仮想最大輝度レベルにリミット値を設けることにより、ヒスト最大値が極端に小さくなった場合に生じ得る、仮想最大輝度レベルの大きな変動に伴う映像品位の低下を防ぐことができる。
 〔実施形態4〕
 本発明の第4の実施形態について、図面に基づいて説明すれば、以下のとおりである。なお、本実施形態では、図1に示す階調値変換装置2を備える表示装置1を第1の実施形態と同様に用いる。
 本実施形態に係る階調値変換装置2により実行される階調値変換処理の流れは、第3の実施形態に係る階調値変換装置2により実行される階調変換処理と同様、図7に示すフローチャートにより表現される。ただし、本実施形態においては、第3の実施形態におけるリミット値設定処理S102は、以下に説明するリミット値設定処理S109に置き換えられる。
 すなわち、ステップS109において、仮想最大輝度レベル設定部4は、MAX_CLLが示す最大輝度レベルからリミット値を減算した差と、リミット値から輝度ヒストグラムにおけるヒスト最大値を減算した差とが所定の比になるようリミット値を設定する。ここで、所定の比は、任意の比であり、工場出荷時に設定されたものであってもよいし、工場出荷後にユーザが設定したものであってもよい。
 図9の(a)に示すように、ヒスト最大値がリミット値よりも低い場合、ステップS104において、仮想最大輝度レベル設定部4は、仮想最大輝度レベルをリミット値に設定する。このとき、図9の(b)に示すように、ステップS106において、HDR信号用のOETFの定義域のうち、リミット値以下の範囲がSDR信号用のOETFの定義域全体にマッピングされる。
 一方、図9の(c)に示すように、ヒスト最大値がリミット値以上である場合、仮想最大輝度レベル設定部4は、ステップS105において、仮想最大輝度レベルをヒスト最大値に設定する。このとき、図9の(d)に示すように、ステップS106において、HDR信号用のEOTFの値域のうち、ヒスト最大値以下の範囲がSDR信号用のEOTFの値域全体にマッピングされる。
 本実施形態に係る階調値変換装置2の階調値変換方法によれば、仮想最大輝度レベルにリミット値を設けることにより、ヒスト最大値が極端に小さくなった場合に生じ得る、仮想最大輝度レベルの大きな変動に伴う映像品位の低下を防ぐことができる。
 〔実施形態5〕
 本発明の第5の実施形態について、図面に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態1において、仮想最大輝度レベル設定部4が、処理対象フレームを構成する各画素が取る階調値の最大値(フレーム内最大階調値)に対応する輝度値(フレーム内最大輝度値)を仮想最大輝度レベルに設定することを説明した。当該構成により、HDRの最大の利点であるピーク輝度に応じて、階調値を変換することができる。
 しかし、このように階調値を変換すると、輝度値に対する低階調値領域の階調値が相対的に低下してしまう(黒つぶれ)。これにより、画像を表示したときに、低階調値領域内の階調値で表示された画像内の領域は、真っ暗になり、表現不足となってしまう。
 上記のような問題を解決するために、本実施形態に係る階調値変換装置11は、階調値変換部5が変換した後の階調値のうち、低階調値領域の階調値に持ち上げ部を有するように、映像信号において各フレーム又は各シーンを構成する各画素が取る階調値を調整する。
 なお、本願明細書において、低階調値領域とは、変換後の階調値において、原点(階調値および対応する輝度値がゼロの点)近傍の階調値領域を示す。例えば、低階調値領域とは、階調値が8ビットで量子化されている場合(256階調(0~255))、その5分の1程度の階調値の領域のことを示す(階調値が0~51である領域)。また、低階調値領域における最大の階調値よりも大きい階調値を最低の階調値として有する階調値の領域を、中階調値領域とし、中階調値領域における最大の階調値よりも大きい階調値を最低の階調値として有する階調値の領域を、高階調値領域として定義する。
 また、本願明細書において、「低階調値領域の階調値に持ち上げ部を有する」とは、実施形態1で説明した階調値変換方法によって階調値を変換することにより生じる、低階調値領域の階調値の相対的な低下(黒つぶれ)を改善するために、低階調領域の階調値を上昇させることを意味する。
 (階調値変換装置11)
 図10は、本実施形態に係る階調値変換装置(映像処理装置)11を備えている表示装置10の構成を示すブロック図である。図10が示すように、階調値変換装置11は、実施形態1に係る階調値変換装置2の構成に加えて、階調値調整部12をさらに備えている。
 階調値調整部12は、階調値変換部5が変換した階調値のうち、低階調値領域の階調値に持ち上げ部を有するように調整する。
 (階調値変換方法)
 本実施形態に係る階調値変換装置11により実行される階調値変換処理の流れを、図11を参照して説明する。図11は、階調値変換処理の流れを示すフローチャートである。なお、以下では、階調値変換処理をフレーム毎に実行し、各フレームのフレーム内最大輝度値を仮想最大輝度レベルとする構成について説明するが、階調値変換処理をシーン毎に実行し、各シーンのシーン内最大輝度値を仮想最大輝度レベルとする構成についても同様である。
 まず、映像データ取得部3は、HDR信号を取得する(ステップS20)映像データ取得部3は、取得したHDR信号において処理対象フレームを構成する各画素が取る階調値を仮想最大輝度レベル設定部4及び階調値変換部5に供給する。
 次に、仮想最大輝度レベル設定部4は、処理対象フレームを構成する各画素が取る階調値を映像データ取得部3から取得し、取得した階調値の最大値(フレーム内最大階調値)に対応する輝度値(フレーム内最大輝度値)を仮想最大輝度レベルに設定する(ステップS21)。
 次に、階調値変換部5は、処理対象フレームを構成する各画素が取る階調値を映像データ取得部3から取得し、取得した階調値のうち、仮想最大輝度レベル設定部4が設定した仮想最大輝度レベル以下の各輝度レベルに対応する階調値を、第1の階調値から第2の階調値に変換する(ステップS22)。
 次に、階調値調整部12は、階調値変換部5が変換した階調値のうち、低階調値領域の階調値に持ち上げ部を有するように調整する(ステップS23)。階調値調整部12が階調値を調整する方法の具体的な例は後述する。なお、階調値調整部12が調整した階調値は、低階調値領域において、所定のフォーマットが示す階調値よりも大きいことが好ましい。当該所定のフォーマットの例として、ST2084が挙げられる。
 次に、パネル制御部6は、処理対象フレームを構成する各画素が取る調整後の階調値を階調値調整部12から取得し、取得した階調値を輝度値に変換する(ステップS24)(トーンマッピング)。
 次に、パネル制御部6は、表示パネル7を構成する各画素の輝度を、トーンマッピングにより得られた輝度値に制御する。これにより、処理対象フレームが表示パネル7に表示される(ステップS25)。
 (階調値調整部12が階調値を調整する方法の例)
 図12は、変換後の階調値と対応する輝度値との関係を示すグラフである。図12の領域Aは、上述の低階調値領域を示し、点線は調整前のカーブ、実線は調整後のカーブを示す。階調値調整部12は、変換後の階調値を、領域Aにおける階調値に持ち上げ部を有するように調整する(点線のカーブから実線のカーブに調整する)。
 例えば、階調値調整部12は、低階調値領域の階調値に対して、当該階調値の10%程度の値を付加することによって調整する。または、調整する階調値がST2084に従う階調値である場合、階調値調整部12は、低階調値領域の階調値に対して、当該階調値と対応する輝度値とをグラフにした場合、当該グラフにおけるカーブがγ2.2のカーブと同等になるように調整する。
 また、階調値調整部12は、階調値変換部5が変換した階調値に対応する輝度レベルの平均値を参照して、上記低階調値領域を変更してもよい。これにより、輝度レベルの分布に応じて、低階調値領域を設定することができるため、輝度レベルの分布に応じた階調値の調整が可能となる。なお、階調値調整部12が参照する輝度レベルの平均値は、階調値調整部12自体が算出してもよいし、外部から取得してもよい。
 また、階調値調整部12は、階調値変換部が変換した階調値と対応する輝度レベルとのグラフにおいて、低階調値領域の階調値と、高階調値領域の階調値とが連続的に変化するように、中階調値領域の階調値をさらに調整してもよい。これにより、調整後の階調値で表示した画像において、低階調値領域の階調値と高階調値領域の階調値との差異による不自然さを解消することができる。
 (実施形態5のまとめ)
 以上のように、本実施形態に係る階調値変換装置11は、仮想最大輝度レベルを、輝度レベルの最大値に設定し、設定した仮想最大輝度レベルを参照して階調値を変換し、変換した階調値のうち、低階調値領域の階調値に持ち上げ部を有するように調整する。当該構成では、仮想最大輝度レベルを輝度レベルの最大値に設定することにより、映像信号が含むピーク感の忠実性を保持することができ、また、変換した階調値のうち、低階調値領域の階調値に持ち上げ部を有するように調整することにより、低階調値領域の階調値の低下による黒つぶれを防ぎ、低階調値領域の階調表現力を改善することができる。
 〔ソフトウェアによる実現例〕
 階調値変換装置2の制御ブロック(特に映像データ取得部3、仮想最大輝度レベル設定部4および階調値変換部5)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、階調値変換装置2は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の態様1に係る映像処理装置(2、11)は、第1の映像フォーマットよりも輝度範囲の広い第2の映像フォーマットに従う映像信号において各画素が取る階調値を変換する映像処理装置であって、上記映像信号において各画素が取る階調値を参照することによって、上記映像信号に含まれるメタデータが示す最大輝度レベルよりも低い仮想最大輝度レベルを設定する仮想最大輝度レベル設定部(4)と、上記映像信号において各画素が取る階調値のうち、上記仮想最大輝度レベル以下の各輝度レベルに対応する階調値を変換する階調値変換部(5)と、を備えている。
 上記の構成によれば、上記映像信号が表す映像を、上記映像信号が従う第2の映像フォーマットよりも輝度のダイナミックレンジの狭い第1の映像フォーマットに対応した表示装置に表示する際に、低輝度領域において生じ得る階調値の縮退を抑制することができる。これにより、映像の表示品位を向上することができる。
 本発明の態様2に係る映像処理装置(2、11)は、上記態様1において、上記階調値変換部(5)は、上記映像信号が従う第2の映像フォーマットにおいて各画素が取り得る階調値のうち、上記仮想最大輝度レベル以下の各輝度レベルに対応する階調値を、上記第1の映像フォーマットにおいて各画素が取り得る階調値に対応させるマッピングを用いて、上記映像信号において各画素が取る階調値を変換する。
 上記の構成によれば、映像の表示品位をさらに向上することができる。
 本発明の態様3に係る映像処理装置(2、11)は、上記態様2において、上記第1の映像フォーマットは、EOTFがγ2.2相当のフォーマットであり、上記第2フォーマットは、EOTFがSMPTE-ST2084であるフォーマットである。
 上記の構成によれば、上記映像信号がHDR信号であるときに、SDR再生環境における映像の表示品位を向上することができる。
 本発明の態様4に係る映像処理装置(2、11)は、上記態様1~3において、上記仮想最大輝度レベル設定部は、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値を参照することによって、上記仮想最大輝度レベルを設定する。
 上記の構成によれば、映像信号が含む階調値に即して、効率的に階調値を変換することができる。
 本発明の態様5に係る映像処理装置(2、11)は、上記態様4において、上記仮想最大輝度レベル設定部(4)は、上記仮想最大輝度レベルを、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルの最大値に設定する。
 上記の構成によれば、映像信号が含む階調値に即して、効率的に階調値を変換することができる。
 本発明の態様6に係る映像処理装置(11)は、上記態様5において、上記階調値変換部が変換した階調値のうち、低階調値領域の階調値に持ち上げ部を有するように調整する階調値調整部(12)をさらに備えている。
 上記の構成によれば、低階調値領域の階調値の低下による黒つぶれを防ぎ、低階調値領域の階調表現力を改善することができる。
 本発明の態様7に係る映像処理装置(11)は、上記態様6において、上記階調値調整部は、上記階調値変換部が変換した階調値に対応する輝度レベルの平均値を参照して、上記低階調値領域を変更する。
 上記の構成によれば、輝度レベルの分布に応じて、低階調値領域を設定することができるため、輝度レベルの分布に応じた階調値の調整が可能となる。
 本発明の態様8に係る映像処理装置(11)は、上記態様5または6において、上記階調値調整部は、上記階調値変換部が変換した階調値と対応する輝度レベルとのグラフにおいて、低階調値領域の階調値と、高階調値領域の階調値とが連続的に変化するように、中階調値領域の階調値をさらに調整する。
 上記の構成によれば、調整後の階調値で表示した画像において、低階調値領域の階調値と高階調値領域の階調値との差異による不自然さを解消することができる。
 本発明の態様9に係る映像処理装置(11)は、上記態様6~8において、上記階調値調整部が調整した階調値は、低階調値領域において、所定のフォーマットが示す階調値よりも大きい。
 上記の構成によれば、上記態様6~8の映像変換装置を好適に用いることができる。
 本発明の態様10に係る映像処理装置(2)は、上記態様1~4において、上記仮想最大輝度レベル設定部(4)は、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルのヒストグラムを作成し、上記ヒストグラムを参照することによって、上記仮想最大輝度レベルを設定することを特徴とする。
 上記の構成によれば、映像信号が含む階調値に即して、さらに効率的に階調値を変換することができる。
 本発明の態様11に係る映像処理装置(2)は、上記態様10において、上記仮想最大輝度レベル設定部(4)は、上記仮想最大輝度レベルを、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルの実効最大値であって、上記ヒストグラムの標準偏差の定数倍により定義される実効最大値に設定する。
 上記の構成によれば、映像信号が含む階調値に即して、さらに効率的に階調値を変換することができる。
 本発明の態様12に係る映像処理装置(2)は、上記態様10において、上記仮想最大輝度レベル設定部(4)は、上記最大輝度レベルから所定値低いリミット値を設定すると共に、上記実効最大値が上記リミット値よりも低い場合、上記仮想最大輝度レベルを上記リミット値の値に設定し、上記実効最大値が上記リミット値以上である場合、上記仮想最大輝度レベルを上記実効最大値に設定する。
 上記の構成によれば、仮想最大輝度レベルにリミット値を設けることにより、仮想最大輝度レベルの大きな変動を防ぎ、輝度およびヒストグラムの大きな変動による映像品位の低下を防ぐことができる。
 本発明の態様13に係る映像処理装置(2)は、上記態様10において、上記仮想最大輝度レベル設定部(4)は、リミット値を、上記最大輝度レベルから当該リミット値を減算した差と、当該リミット値から上記実効最大値を減算した差とが所定の比になるように設定すると共に、上記実効最大値が上記リミット値よりも低い場合、上記仮想最大輝度レベルを上記リミット値の値に設定し、上記実効最大値が上記リミット値以上である場合、上記仮想最大輝度レベルを上記実効最大値に設定する。
 上記の構成によれば、リミット値を所望の値に設定することができる。
 本発明の態様14に係る映像処理装置(2)は、上記態様10において、上記仮想最大輝度レベルを、上記HDR信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルの実効最大値であって、上記ヒストグラムの標準偏差の定数倍により定義される実効最大値の時間平均値に設定する。
 上記の構成によれば、映像品位を向上させることができる。
 本発明の態様15に係る表示装置(1、10)は、上記態様1~14の何れか1つの映像処理装置を備えている。
 上記の構成によれば、上記映像処理装置が上記各態様において奏する効果を上記表示装置において得ることができる。
 本発明の態様16に係る映像処理方法は、第1の映像フォーマットよりも輝度範囲の広い第2の映像フォーマットに従う映像信号において各画素が取る階調値を変換する映像処理方法であって、上記映像信号において各画素が取る階調値を参照することによって、上記映像信号に含まれるメタデータが示す最大輝度レベルよりも低い仮想最大輝度レベルを設定する仮想最大輝度レベル設定ステップと、上記映像信号において各画素が取る階調値のうち、上記仮想最大輝度レベル以下の各輝度レベルに対応する階調値を変換する階調値変換ステップと、を含んでいる。
 上記の構成によれば、上記態様1の映像処理装置と同様の効果を奏することができる。
 本発明の各態様に係る表示装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記表示装置が備える各部(ソフトウェア要素)として動作させることにより上記表示装置をコンピュータにて実現させる表示装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1、10 表示装置 
 2、11 階調値変換装置 
 3 映像データ取得部 
 4 仮想最大輝度レベル設定部 
 5 階調値変換部 
 6 パネル制御部 
 7 表示パネル 
 12 階調値調整部

Claims (18)

  1.  第1の映像フォーマットよりも輝度範囲の広い第2の映像フォーマットに従う映像信号において各画素が取る階調値を変換する映像処理装置であって、
     上記映像信号において各画素が取る階調値を参照することによって、上記映像信号に含まれるメタデータが示す最大輝度レベルよりも低い仮想最大輝度レベルを設定する仮想最大輝度レベル設定部と、
     上記映像信号において各画素が取る階調値のうち、上記仮想最大輝度レベル以下の各輝度レベルに対応する階調値を変換する階調値変換部と、を備えていることを特徴とする、映像処理装置。
  2.  上記階調値変換部は、上記映像信号が従う第2の映像フォーマットにおいて各画素が取り得る階調値のうち、上記仮想最大輝度レベル以下の各輝度レベルに対応する階調値を、上記第1の映像フォーマットにおいて各画素が取り得る階調値に対応させるマッピングを用いて、上記映像信号において各画素が取る階調値を変換する、
    ことを特徴とする請求項1に記載の映像処理装置。
  3.  上記第1の映像フォーマットは、EOTFがγ2.2相当のフォーマットであり、
     上記第2の映像フォーマットは、EOTFがSMPTE(Society of Motion Picture and Television Engineers)-ST2084であるフォーマットである、
    ことを特徴とする請求項2に記載の映像処理装置。
  4.  上記仮想最大輝度レベル設定部は、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値を参照することによって、上記仮想最大輝度レベルを設定することを特徴とする請求項1~3の何れか1項に記載の映像処理装置。
  5.  上記仮想最大輝度レベル設定部は、上記仮想最大輝度レベルを、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルの最大値に設定する、ことを特徴とする請求項4に記載の映像処理装置。
  6.  上記階調値変換部が変換した階調値のうち、低階調値領域の階調値に持ち上げ部を有するように調整する階調値調整部をさらに備えていることを特徴とする、請求項5に記載の映像処理装置。
  7.  上記階調値調整部は、上記階調値変換部が変換した階調値に対応する輝度レベルの平均値を参照して、上記低階調値領域を変更することを特徴とする、請求項6に記載の映像処理装置。
  8.  上記階調値調整部は、上記階調値変換部が変換した階調値と対応する輝度レベルとのグラフにおいて、低階調値領域の階調値と、高階調値領域の階調値とが連続的に変化するように、中階調値領域の階調値をさらに調整することを特徴とする、請求項6または7に記載の映像処理装置。
  9.  上記階調値調整部が調整した階調値は、低階調値領域において、所定のフォーマットが示す階調値よりも大きいことを特徴とする、請求項6~8の何れか1項に記載の映像処理装置。
  10.  上記仮想最大輝度レベル設定部は、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルのヒストグラムを作成し、上記ヒストグラムを参照することによって、上記仮想最大輝度レベルを設定することを特徴とする請求項1~4の何れか1項に記載の映像処理装置。
  11.  上記仮想最大輝度レベル設定部は、上記仮想最大輝度レベルを、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルの実効最大値であって、上記ヒストグラムの標準偏差の定数倍により定義される実効最大値に設定する、ことを特徴とする請求項10に記載の映像処理装置。
  12.  上記仮想最大輝度レベル設定部は、上記最大輝度レベルから所定値低いリミット値を設定すると共に、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルの実効最大値であって、上記ヒストグラムの標準偏差の定数倍により定義される実効最大値が上記リミット値よりも低い場合、上記仮想最大輝度レベルを上記リミット値の値に設定し、上記実効最大値が上記リミット値以上である場合、上記仮想最大輝度レベルを上記実効最大値に設定することを特徴とする請求項10に記載の映像処理装置。
  13.  上記仮想最大輝度レベル設定部は、リミット値を、上記最大輝度レベルから当該リミット値を減算した差と、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルの実効最大値であって、上記ヒストグラムの標準偏差の定数倍により定義される実効最大値を上記リミット値から減算した差とが所定の比になるように設定すると共に、上記実効最大値が上記リミット値よりも低い場合、上記仮想最大輝度レベルを上記リミット値の値に設定し、上記実効最大値が上記リミット値以上である場合、上記仮想最大輝度レベルを上記実効最大値に設定することを特徴とする請求項10に記載の映像処理装置。
  14.  上記仮想最大輝度レベル設定部は、上記仮想最大輝度レベルを、上記映像信号において各フレーム又は各シーンを構成する各画素が取る階調値に対応する輝度レベルの実効最大値であって、上記ヒストグラムの標準偏差の定数倍により定義される実効最大値の時間平均値に設定する、ことを特徴とする請求項10に記載の映像処理装置。
  15.  請求項1~14の何れか1項に記載の映像処理装置を備えている表示装置。
  16.  第1の映像フォーマットよりも輝度範囲の広い第2の映像フォーマットに従う映像信号において各画素が取る階調値を変換する映像処理方法であって、
     上記映像信号において各画素が取る階調値を参照することによって、上記映像信号に含まれるメタデータが示す最大輝度レベルよりも低い仮想最大輝度レベルを設定する仮想最大輝度レベル設定ステップと、
     上記映像信号において各画素が取る階調値のうち、上記仮想最大輝度レベル以下の各輝度レベルに対応する階調値を変換する階調値変換ステップと、を含んでいることを特徴とする、映像処理方法。
  17.  請求項1に記載の映像処理装置としてコンピュータを機能させるための制御プログラムであって、上記仮想最大輝度レベル設定部および上記階調値変換部としてコンピュータを機能させるための制御プログラム。
  18.  請求項17に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2017/005763 2016-03-24 2017-02-16 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体 WO2017163685A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016060857 2016-03-24
JP2016-060857 2016-03-24
JP2016181002A JP2017184220A (ja) 2016-03-24 2016-09-15 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
JP2016-181002 2016-09-15

Publications (1)

Publication Number Publication Date
WO2017163685A1 true WO2017163685A1 (ja) 2017-09-28

Family

ID=59901183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005763 WO2017163685A1 (ja) 2016-03-24 2017-02-16 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体

Country Status (1)

Country Link
WO (1) WO2017163685A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134394A (ja) * 2001-10-29 2003-05-09 Sony Corp 撮像装置及び撮像結果の処理方法
US20070201560A1 (en) * 2006-02-24 2007-08-30 Sharp Laboratories Of America, Inc. Methods and systems for high dynamic range video coding
JP2012504259A (ja) * 2008-09-30 2012-02-16 ドルビー ラボラトリーズ ライセンシング コーポレイション 高ブライトネスで高ダイナミックレンジのディスプレイのための画像処理における適応ガンマの適用のためのシステムおよび方法
JP2014123896A (ja) * 2012-12-21 2014-07-03 Olympus Imaging Corp 撮像装置、撮像方法、及びプログラム
JP2014520414A (ja) * 2011-04-14 2014-08-21 ドルビー ラボラトリーズ ライセンシング コーポレイション 複数色チャネル多重回帰予測器
JP2014523661A (ja) * 2011-05-27 2014-09-11 ドルビー ラボラトリーズ ライセンシング コーポレイション 様々なレベルのメタデータを含む色管理を制御するスケーラブルシステム
WO2015198560A1 (ja) * 2014-06-27 2015-12-30 パナソニックIpマネジメント株式会社 データ出力装置、データ出力方法及びデータ生成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134394A (ja) * 2001-10-29 2003-05-09 Sony Corp 撮像装置及び撮像結果の処理方法
US20070201560A1 (en) * 2006-02-24 2007-08-30 Sharp Laboratories Of America, Inc. Methods and systems for high dynamic range video coding
JP2012504259A (ja) * 2008-09-30 2012-02-16 ドルビー ラボラトリーズ ライセンシング コーポレイション 高ブライトネスで高ダイナミックレンジのディスプレイのための画像処理における適応ガンマの適用のためのシステムおよび方法
JP2014520414A (ja) * 2011-04-14 2014-08-21 ドルビー ラボラトリーズ ライセンシング コーポレイション 複数色チャネル多重回帰予測器
JP2014523661A (ja) * 2011-05-27 2014-09-11 ドルビー ラボラトリーズ ライセンシング コーポレイション 様々なレベルのメタデータを含む色管理を制御するスケーラブルシステム
JP2014123896A (ja) * 2012-12-21 2014-07-03 Olympus Imaging Corp 撮像装置、撮像方法、及びプログラム
WO2015198560A1 (ja) * 2014-06-27 2015-12-30 パナソニックIpマネジメント株式会社 データ出力装置、データ出力方法及びデータ生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FOGG, C. ET AL.: "Content light level information SEI", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, DOCUMENT: JCTVC-T0101R3, 23 February 2015 (2015-02-23), Retrieved from the Internet <URL:http://phenix.it-sudparis.eu/jct/doc-end''user/documents/20_Geneva/wg11/JCTVC-T0101-v4.zip> [retrieved on 20170327] *

Similar Documents

Publication Publication Date Title
JP7126184B2 (ja) 表示装置、変換装置、表示方法、および、コンピュータプログラム
TWI734978B (zh) 用於執行高動態範圍視訊的色調映射的方法及裝置
JP6731722B2 (ja) 表示方法および表示装置
JP6663214B2 (ja) 表示方法および表示装置
JP4433041B2 (ja) 表示装置、画像信号処理方法、およびプログラム
JP6042583B2 (ja) Edrビデオのコンテンツ生成および支援ディスプレイ管理を行うためのワークフロー
JP6876931B2 (ja) 画像処理装置、および画像処理方法、並びにプログラム
US8970636B2 (en) System and method for color correction between displays with and without average picture dependency
JP6136030B2 (ja) 映像表示制御装置
US10332481B2 (en) Adaptive display management using 3D look-up table interpolation
JP2017184220A (ja) 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
WO2017126309A1 (ja) 表示装置、表示方法、制御プログラム、記録媒体、およびテレビジョン受像機
WO2016181584A1 (ja) 表示方法および表示装置
JP2019041269A (ja) 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
WO2017163685A1 (ja) 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
US7729022B2 (en) Method for processing image
JP2009025505A (ja) 映像信号処理装置、映像信号処理方法、およびプログラム
JPWO2019138942A1 (ja) 表示装置、表示方法、及び表示制御プログラム
JP2019041329A (ja) 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
JP6479732B2 (ja) 映像処理装置、テレビジョン受像機、映像処理方法、制御プログラム、および記録媒体
JP7324151B2 (ja) 表示装置
JP6682322B2 (ja) 階調値変換装置、テレビジョン受像機、階調値変換方法、制御プログラム、および記録媒体
JP6545763B2 (ja) 画像処理装置、テレビジョン受像機、画像処理方法、制御プログラム、および記録媒体
JP2010192948A (ja) テレビジョン受像機

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769732

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769732

Country of ref document: EP

Kind code of ref document: A1