WO2017163347A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2017163347A1
WO2017163347A1 PCT/JP2016/059247 JP2016059247W WO2017163347A1 WO 2017163347 A1 WO2017163347 A1 WO 2017163347A1 JP 2016059247 W JP2016059247 W JP 2016059247W WO 2017163347 A1 WO2017163347 A1 WO 2017163347A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
insulating layer
emitting device
layer
distance
Prior art date
Application number
PCT/JP2016/059247
Other languages
English (en)
French (fr)
Inventor
田中 信介
真滋 中嶋
範明 和氣
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2016/059247 priority Critical patent/WO2017163347A1/ja
Publication of WO2017163347A1 publication Critical patent/WO2017163347A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to a light emitting device.
  • Patent Document 1 describes an example of such a light emitting device.
  • a plurality of organic insulating layers are arranged on a substrate so as to be separated from each other.
  • a light emitting portion is located on each organic insulating layer.
  • the light emitting unit includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode.
  • an inorganic insulating layer is located across a groove between adjacent organic insulating layers.
  • an insulating layer for defining a light emitting part may be formed on a substrate.
  • Such an insulating layer may contain a photosensitive resin (for example, polyimide).
  • a photosensitive resin for example, polyimide
  • the present inventor has studied to form the insulating layer from an inorganic material.
  • the luminance of the light emitting portion may be lowered due to the inorganic material of the insulating layer.
  • An example of a problem to be solved by the present invention is to suppress a decrease in luminance of the light emitting part even when the insulating layer defining the light emitting part is made of an inorganic material.
  • the invention described in claim 1 A substrate, A light emitting unit on the substrate and having a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode; A first insulating layer that defines the light emitting portion on the substrate and is made of an inorganic material; A second insulating layer outside the light emitting portion and made of an organic material; It is a light-emitting device provided with.
  • FIG. 3 is a view in which a second conductive layer and a partition wall are removed from FIG. 2. It is the figure which removed the 1st insulating layer and the 2nd insulating layer from FIG.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 3 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 3 is a DD sectional view of FIG. 2.
  • FIG. 9 is a graph for explaining luminance characteristics of the light emitting device shown in FIGS. 1 to 8.
  • FIG. 12 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 12 is a sectional view taken along line BB in FIG.
  • FIG. 12 is a sectional view taken along the line CC of FIG.
  • FIG. 12 is a DD cross-sectional view of FIG. 11.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment.
  • FIG. 2 is a view in which the covering layer 200 is removed from FIG.
  • FIG. 3 is a diagram in which the second conductive layer 130a and the partition 160 are removed from FIG.
  • FIG. 4 is a diagram in which the first insulating layer 150 and the second insulating layer 156 are removed from FIG. 3.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG. 6 is a cross-sectional view taken along the line BB in FIG. 7 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 8 is a sectional view taken along the line DD of FIG.
  • the light emitting device 10 includes a substrate 100, a light emitting unit 140, a first insulating layer 150, and a second insulating layer 156.
  • the light emitting unit 140 is on the substrate 100.
  • the light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the organic layer 120 is between the first electrode 110 and the second electrode 130.
  • the first insulating layer 150 defines a light emitting unit 140 on the substrate 100.
  • the first insulating layer 150 is made of an inorganic material.
  • the second insulating layer 156 is outside the light emitting unit 140.
  • the second insulating layer 156 is made of an organic material, specifically, for example, polyimide. Details will be described below.
  • the light emitting device 10 is a display.
  • the light emitting device 10 includes a substrate 100, a conductive layer 170, a conductive layer 180, a first insulating layer 150, a second insulating layer 156, an organic layer 120 a, a second conductive layer 130 a, a partition wall 160, and a covering layer 200.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the second surface 104 is on the opposite side of the first surface 102 and is the back surface of the substrate 100.
  • the shape of the first surface 102 is a rectangle.
  • the shape of the first surface 102 may be a polygon other than a rectangle, for example.
  • the light emitting device 10 may be either bottom emission or top emission.
  • the substrate 100 is made of a translucent material (for example, glass or resin).
  • the light emitting device 10 is top emission, the light from the plurality of light emitting units 140 is emitted from above the first surface 102 of the substrate 100.
  • the substrate 100 may be made of the above-described translucent material or may be made of a material that does not have translucency.
  • the substrate 100 may have flexibility or may not have flexibility.
  • the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
  • the substrate 100 is flexible and includes a resin
  • the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • the first surface 102 (preferably both the first surface 102 and the second surface 104) of the substrate 100 may be covered with an inorganic barrier film (eg, SiN x or SiON). In this case, even if the substrate 100 includes a material (for example, resin) having a high water vapor transmission rate, the water vapor is prevented from reaching the first surface 102 of the substrate 100.
  • an inorganic barrier film eg, SiN x or SiON
  • the plurality of conductive layers 170 are on the first surface 102 of the substrate 100.
  • the plurality of conductive layers 170 include a plurality of conductive layers 170a and a plurality of conductive layers 170b.
  • Each conductive layer 170 a includes a first conductive layer 110 a and a first wiring 114.
  • the first conductive layer 110a is a part of the conductive layer 170a.
  • the first wiring 114 is another part of the conductive layer 170a.
  • the first conductive layer 110a and the first wiring 114 are connected to each other.
  • Each conductive layer 170 b includes a second wiring 134.
  • the first terminal 112 is located at one end of the first wiring 114. A potential is applied to the first terminal 112. Thereby, the potential of the first terminal 112 is applied to the first conductive layer 110a (first electrode 110) through the first wiring 114.
  • the second terminal 132 is located at one end of the second wiring 134. A potential is applied to the second terminal 132. Thereby, the potential of the second terminal 132 is applied to the second conductive layer 130a (second electrode 130) through the second wiring 134.
  • each conductive layer 170 There is a conductive layer 180 on the top surface of each conductive layer 170.
  • the electric resistance of the conductive layer 180 is lower than the electric resistance of the conductive layer 170. Thereby, the voltage drop between the first terminal 112 and the first electrode 110 and the voltage drop between the second terminal 132 and the second electrode 130 can be suppressed.
  • the conductive layer 180 is positioned so as not to overlap the light emitting unit 140. For this reason, the conductive layer 180 does not need to have translucency.
  • the conductive layer 180 is made of, for example, Al or Ag.
  • the conductive layer 180 may include, for example, a Mo alloy layer on the top surface of the first conductive layer 110a, an Al alloy layer on the Mo alloy layer, and a Mo alloy layer on the Al alloy layer.
  • the plurality of first conductive layers 110a are arranged in the first direction (X direction in the figure).
  • Each first conductive layer 110a extends in a second direction (specifically, the Y direction in the figure) that intersects the first direction (specifically, orthogonal to the first direction).
  • the first insulating layer 150 is on the first surface 102 of the substrate 100 and on the plurality of first conductive layers 110a.
  • the first insulating layer 150 is made of an inorganic material (for example, silicon oxide or silicon nitride).
  • the first insulating layer 150 has a plurality of openings 152.
  • the planar shape of each opening 152 is a rectangle. As shown in FIGS.
  • each opening 152 in each opening 152, a part of the first conductive layer 110a (first electrode 110) and a part of the second conductive layer 130a (second electrode 130) overlap each other. . Thereby, the region surrounded by the edge of the opening 152 functions as the light emitting unit 140. That is, the first insulating layer 150 defines the light emitting unit 140.
  • each side of the light emitting unit 140 is defined by the lower end of the inner surface of the opening 152.
  • the opening 152 has a first inner surface and a second inner surface.
  • the second inner surface is on the opposite side of the first inner surface.
  • the first inner side surface of the opening 152 is inclined so that the upper end of the first inner side surface is located outside the lower end of the first inner side surface.
  • the second inner side surface of the opening 152 is inclined so that the upper end of the second inner side surface is located outside the lower end of the second inner side surface.
  • the first side of the light emitting unit 140 is defined by the lower end of the first inner side surface of the opening 152.
  • the second side of the light emitting unit 140 is defined by the lower end of the second inner side surface of the opening 152.
  • the opening 152 has a third inner surface and a fourth inner surface.
  • the fourth inner surface is on the opposite side of the third inner surface.
  • the third inner side surface of the opening 152 is inclined so that the upper end of the third inner side surface is located outside the lower end of the third inner side surface.
  • the fourth inner side surface of the opening 152 is inclined so that the upper end of the fourth inner side surface is located outside the lower end of the fourth inner side surface.
  • the third side of the light emitting unit 140 is defined by the lower end of the third inner side surface of the opening 152.
  • the fourth side of the edge of the light emitting unit 140 is defined by the lower end of the fourth inner side surface of the opening 152.
  • the first insulating layer 150 has an opening 154. As shown in FIG. 7, the second conductive layer 130 a is connected to the second wiring 134 through the opening 154.
  • the second insulating layer 156 is on the first insulating layer 150.
  • the second insulating layer 156 is made of an organic material (for example, polyimide).
  • the second insulating layer 156 surrounds the light emitting region 141 of the first surface 102 of the substrate 100.
  • the plurality of light emitting units 140 are arranged in a matrix as described above.
  • the first insulating layer 150 is made of an inorganic material, and thus does not transmit to the organic layer 120a through the first insulating layer.
  • the shape of the light emitting region 141 is a rectangle having a first side, a second side, a third side, and a fourth side.
  • the first side extends along the first direction (X direction in the figure).
  • the second side is on the opposite side of the first side.
  • the third side is between the first side and the second side.
  • the fourth side is on the opposite side of the third side.
  • the second insulating layer 156 is located along the first side, the second side, the third side, and the fourth side. Note that the second insulating layer 156 may not surround the light emitting region 141.
  • the second insulating layer 156 may be positioned along only one side of the first side to the fourth side of the light emitting region 141. As shown in FIG. 5, the second insulating layer 156 is separated from the partition wall 160.
  • the partition wall 160 is on the first insulating layer 150.
  • the partition 160 includes a photosensitive resin (for example, polyimide).
  • the plurality of partition walls 160 are arranged in the second direction (Y direction in the figure).
  • Each partition wall 160 extends in the first direction (X direction in the figure).
  • the width of the upper surface of the partition wall 160 is wider than the width of the lower surface of the partition wall 160 in a cross section perpendicular to the first direction (the X direction in FIGS. 1 to 4). More specifically, in the cross section perpendicular to the first direction (the X direction in FIGS. 1 to 4), the partition wall 160 has a first side surface and a second side surface.
  • the second side surface is on the opposite side of the first inner surface.
  • the first side surface of the partition wall 160 is inclined so that the upper end of the first side surface is located outside the lower end of the first side surface.
  • the second side surface of the partition wall 160 is inclined so that the upper end of the second side surface is located outside the lower end of the second side surface.
  • the organic layer 120 a is on the first surface 102 of the substrate 100, on the plurality of first conductive layers 110 a, and on the first insulating layer 150. As shown in FIG. 5, the plurality of organic layers 120a are arranged in the second direction (Y direction in FIGS. 1 to 4). The organic layers 120a adjacent to each other face each other with the partition wall 160 interposed therebetween. As shown in FIGS. 5 and 6, a part of the organic layer 120a overlaps a part (first electrode 110) of the first conductive layer 110a. This part of the organic layer 120 a functions as the organic layer 120 of the light emitting unit 140.
  • the organic layer 120a is preferably not in contact with the partition wall 160.
  • a substance that degrades the organic layer 120a can be prevented from propagating from the partition wall 160 to the organic layer 120a.
  • the partition 160 may contain a substance (for example, water) that degrades the organic layer 120a.
  • this material may propagate from the organic layer 120 a to the partition wall 160.
  • the partition wall 160 is on the first insulating layer 150 made of an inorganic material, even if the partition wall 160 contains the above-described substance, it is possible to suppress the propagation of this substance to the organic layer 120a.
  • the organic layer 120 b is on the upper surface of the partition wall 160.
  • the material included in the organic layer 120b is the same as the material included in the organic layer 120a.
  • the organic layer 120 a and the organic layer 120 b are formed by depositing an organic layer on the first surface 102 of the substrate 100 and the partition 160. In this case, the organic layer is separated into the organic layer 120 a and the organic layer 120 b by the partition wall 160.
  • the organic layer 120a has, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the total thickness of the organic layer 120a is, for example, not less than 50 nm and not more than 200 nm. Holes move in the hole injection layer and the hole transport layer.
  • the thickness of the hole injection layer is, for example, not less than 50 nm and not more than 100 nm.
  • the thickness of the hole transport layer is thinner than the thickness of the hole injection layer.
  • the thickness of the hole transport layer is, for example, 20 nm or more and 50 nm or less.
  • the color of light from the light emitting layer is, for example, red, green, or blue.
  • electrons are transported.
  • the thickness of the electron transport layer is, for example, 5 nm or more and 100 nm or less.
  • the electron injection layer is made of an alkali metal compound (for example, LiF), a metal oxide (for example, aluminum oxide) or a metal complex (for example, lithium 8-hydroxyquinolate (Liq)).
  • the thickness of the electron injection layer is, for example, not less than 0.1 nm and not more than 10 nm.
  • One of the hole injection layer and the hole transport layer may be omitted.
  • One of the electron transport layer and the electron injection layer may be omitted.
  • the hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer are formed by, for example, a coating process.
  • the hole injection layer, the hole transport layer, and the light emitting layer are formed by a coating process
  • the electron transport layer and the electron injection layer are formed by vapor deposition.
  • the second conductive layer 130a is on the organic layer 120a.
  • a plurality of second conductive layers 130a are arranged in the second direction (Y direction in the figure).
  • Each second conductive layer 130a extends in the first direction (X direction in the figure).
  • the second conductive layers 130a adjacent to each other are opposed to each other with the partition wall 160 interposed therebetween.
  • a part of the second conductive layer 130a overlaps a part of the first conductive layer 110a (first electrode 110). This part of the second conductive layer 130 a functions as the second electrode 130 of the light emitting unit 140.
  • the conductive layer 130 b is provided on the upper surface of the partition wall 160.
  • the material included in the conductive layer 130b is the same as the material included in the second conductive layer 130a.
  • the second conductive layer 130 a and the conductive layer 130 b are formed by depositing a conductive layer on the first surface 102 and the partition 160 of the substrate 100. In this case, the conductive layer is separated into the second conductive layer 130 a and the conductive layer 130 b by the partition 160.
  • the first conductive layer 110a is a conductive layer having translucency. In this case, the second conductive layer 130a does not need to have translucency.
  • the second conductive layer 130a is a light-transmitting conductive layer. In this case, the first conductive layer 110a does not need to have translucency.
  • the first conductive layer 110a and the second conductive layer 130a are light-transmitting conductive layers
  • the first conductive layer 110a and the second conductive layer 130a include, for example, a metal oxide, and more specifically, for example, It contains ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide) or ZnO (Zinc Oxide).
  • the first conductive layer 110a and the second conductive layer 130a are conductive layers that do not have translucency
  • the first conductive layer 110a and the second conductive layer 130a include, for example, Al, Au, Ag, Pt, Mg, Sn, A metal selected from the first group consisting of Zn and In or an alloy of a metal selected from the first group is included.
  • the covering layer 200 covers the first insulating layer 150, the plurality of light emitting portions 140, and the plurality of partition walls 160.
  • the coating layer 200 seals the first insulating layer 150, the plurality of light emitting units 140, and the plurality of partition walls 160.
  • the covering layer 200 is formed by ALD (Atomic Layer Deposition). Accordingly, the covering layer 200 continuously covers the side surfaces and the upper surface of the first insulating layer 150, the second insulating layer 156, the light emitting unit 140, and the partition 160.
  • the covering layer 200 includes, for example, an insulating material, more specifically, for example, a metal oxide.
  • the covering layer 200 includes, for example, a titanium oxide layer and an aluminum oxide layer.
  • the aluminum oxide layer is on the titanium oxide layer or below the titanium oxide layer.
  • the thickness of the coating layer 200 is, for example, not less than 50 nm and not more than 300 nm.
  • the covering layer 200 may be formed by, for example, CVD (Chemical Vapor Deposition) or sputtering.
  • the covering layer 200 includes, for example, a SiO 2 layer or a SiN layer.
  • the film thickness of the coating layer 200 is, for example, not less than 10 nm and not more than 1000 nm.
  • the covering layer 200 may be covered with a resin layer.
  • the resin layer is provided to protect the covering layer 200.
  • the resin layer contains, for example, an epoxy resin or an acrylic resin.
  • a method for manufacturing the light emitting device 10 will be described.
  • a conductive layer is formed on the first surface 102 of the substrate 100, and this conductive layer is patterned.
  • a plurality of conductive layers 170 (first conductive layer 110a, first wiring 114, and second wiring 134) are formed.
  • a conductive layer 180 is formed on the upper surface of each conductive layer 170.
  • the first insulating layer 150 is formed on the first surface 102 of the substrate 100 and the plurality of conductive layers 170.
  • a plurality of openings 152 and a plurality of openings 154 are formed in the first insulating layer 150.
  • a second insulating layer 156 is formed on the first insulating layer 150.
  • a plurality of partition walls 160 are formed on the first insulating layer 150.
  • an organic layer is formed on the first insulating layer 150 and the plurality of partition walls 160. Accordingly, the organic layer is separated into the organic layer 120a and the organic layer 120b by the partition 160.
  • a conductive layer is formed on the first insulating layer 150 and the plurality of partition walls 160. Accordingly, the conductive layer is separated into the second conductive layer 130a and the conductive layer 130b by the partition 160.
  • the coating layer 200 is formed by ALD on the first surface 102 of the substrate 100, the first insulating layer 150, and the plurality of partition walls 160. Accordingly, the first insulating layer 150, the plurality of light emitting units 140, and the plurality of partition walls 160 are sealed with the coating layer 200.
  • FIG. 9 is a graph for explaining the luminance characteristics of the light emitting device 10 shown in FIGS.
  • FIGS. 10A and 10B are graphs for explaining the chromaticity characteristics of the light-emitting device 10 shown in FIGS. 9, 10 ⁇ / b> A, and 10 ⁇ / b> B, the “organic insulating layer area ratio” means (area of the second insulating layer 156) / (areas of the plurality of light emitting units 140 located in the light emitting region 141). ) ⁇ 100.
  • the opening of the second insulating layer 156 is a region where the light emitting region 141 is exposed in the example shown in FIGS. As shown in FIGS. 2 and 3, the shape of the opening of the second insulating layer 156 is a rectangle. In other words, the opening of the second insulating layer 156 includes the first edge, the second edge, the third edge, and the fourth edge along the first side, the second side, the third side, and the fourth side of the light emitting region 141,
  • the inorganic material of the first insulating layer 150 was silicon oxide.
  • the organic material of the second insulating layer 156 was polyimide.
  • the organic insulating layer area ratio is 0%, 2%, 4%, 6%, 8%, 12%, 24%, 37% and 49%.
  • Nine light emitting devices 10 were produced. Each of the nine light emitting devices 10 was placed in an environment at a temperature of 100 ° C. for 158 hours.
  • the luminance L 0 before being placed in an environment at a temperature of 100 ° C. for 158 hours and the luminance L 158 after being placed in an environment at a temperature of 100 ° C. for 158 hours were measured.
  • the “initial luminance ratio” indicates (L 158 / L 0 ) ⁇ 100.
  • the chromaticity (x 0 , y 0 ) before being placed in an environment at a temperature of 100 ° C. for 158 hours and the chromaticity after being placed in an environment at a temperature of 100 ° C. for 158 hours (x 158 , y 158 ).
  • the chromaticity (x 0 , y 0 ) and the chromaticity (x 158 , y 158 ) indicate positions in the CIE 1931 chromaticity diagram.
  • “ ⁇ x” represents x 158 ⁇ x 0 .
  • “ ⁇ y” indicates y 158 ⁇ y 0 .
  • the initial luminance ratio became high when the organic insulating layer area ratio was 8% or more.
  • ⁇ x was low when the organic insulating layer area ratio was 8% or more.
  • ⁇ y was low when the organic insulating layer area ratio was 8% or more. This result indicates that the luminance and chromaticity of the light emitting device 10 are maintained to some extent when the organic insulating layer area ratio is 8% or more even when the light emitting device 10 is left in a high temperature environment for a long time. .
  • the first edge, the second edge, the third edge, and the fourth edge of the opening of the second insulating layer 156 are the first distance, the second distance, the third distance, and the first distance from the center of the light emitting region 141, respectively. 4 distances away.
  • the longest distance among the first distance, the second distance, the third distance, and the fourth distance is preferably 8 mm or less.
  • the first edge, the second edge, the third edge, and the fourth edge of the opening of the second insulating layer 156 are the fifth distance, the sixth distance, the seventh distance, and the eighth distance from the center of each light emitting unit 140, respectively. Just away.
  • the longest distance among the fifth distance, the sixth distance, the seventh distance, and the eighth distance is preferably 8 mm or less.
  • the light emitting region 141 is a region defined by the outermost light emitting unit 140 among the plurality of light emitting units 140. More specifically, as described above, the plurality of light emitting units 140 are arranged in a matrix. The first side of the light emitting unit 140 in the row farthest from the second side of the light emitting region 141 overlaps the first side of the light emitting region 141. The second side of the light emitting unit 140 in the row farthest from the first side of the light emitting region 141 overlaps the second side of the light emitting region 141.
  • the third side of the light emitting unit 140 in the row farthest from the fourth side of the light emitting region 141 overlaps the third side of the light emitting region 141.
  • the fourth side of the light emitting unit 140 in the row farthest from the third side of the light emitting region 141 overlaps the fourth side of the light emitting region 141.
  • the second insulating layer 156 is provided around the light emitting unit 140.
  • the second insulating layer 156 is made of an organic material.
  • the second insulating layer 156 functions to improve the luminance of the light emitting unit 140. For this reason, even if the first insulating layer 150 (inorganic material) functions to deteriorate the luminance of the light emitting unit 140, the luminance deterioration due to the first insulating layer 150 (inorganic material) can be suppressed. it can.
  • the above-described substances that degrade the light emitting unit 140 may be generated outside the region including the plurality of light emitting units 140 arranged in a matrix, for example, due to ultraviolet rays. It became clear that there was sex. Further examination by the present inventor reveals that the above substances tend to propagate widely in the first insulating layer 150 when the first insulating layer 150 contains a photosensitive resin (eg, polyimide). became. This is presumed to be because the photosensitive resin functions to propagate the above-described substances. Further examination by the present inventor has revealed that the above-described substances tend to propagate widely in the first insulating layer 150 when the covering layer 200 is formed by ALD.
  • a photosensitive resin eg, polyimide
  • the first insulating layer 150 is made of an inorganic material. For this reason, even if the coating layer 200 is formed by ALD, the above-described substances can be prevented from being widely propagated in the first insulating layer 150.
  • FIG. 11 is a plan view showing a light emitting device 10 according to a modification, and corresponds to FIG. 2 of the embodiment.
  • FIG. 12 is a diagram in which the second conductive layer 130a and the partition 160 are removed from FIG. 11, and corresponds to FIG. 3 of the embodiment.
  • FIG. 13 is a cross-sectional view taken along the line AA in FIG. 11, and corresponds to FIG. 5 of the embodiment.
  • FIG. 14 is a cross-sectional view taken along the line BB of FIG. 11 and corresponds to FIG. 6 of the embodiment.
  • 15 is a cross-sectional view taken along the line CC of FIG. 11 and corresponds to FIG. 7 of the embodiment.
  • 16 is a cross-sectional view taken along the line DD of FIG. 11, and corresponds to FIG. 8 of the embodiment.
  • the light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except for the following points.
  • the second insulating layer 156 is formed so as to surround each of the plurality of light emitting units 140.
  • the shape of each light emitting unit 140 is a rectangle having a first side, a second side, a third side, and a fourth side.
  • the first side extends in the first direction (X direction in the figure).
  • the second side is on the opposite side of the first side.
  • the third side is between the first side and the second side.
  • the fourth side is on the opposite side of the third side.
  • the second insulating layer 156 is located along the first side, the second side, the third side, and the fourth side. Note that the second insulating layer 156 may not surround the light emitting unit 140.
  • the second insulating layer 156 may be located along only one side of the first side to the fourth side of the light emitting unit 140.
  • the second insulating layer 156 is not in contact with the partition wall 160 or the organic layer 120a. For this reason, it can suppress that the substance (for example, water) which degrades the organic layer 120a propagates to the organic layer 120a from the partition 160 via the 2nd insulating layer 156 (for example, polyimide).
  • a part (first portion 156 a) of the second insulating layer 156 is between the light emitting unit 140 and the partition 160.
  • the organic layer 120 a includes an organic layer 120 (first region) located in the light emitting unit 140 and a portion outside the organic layer 120 (second region). The first portion 156 a of the second insulating layer 156 is separated from the partition wall 160.
  • the second region of the organic layer 120 (the portion between the light emitting unit 140 and the partition 160) faces the partition 160 with the first portion 156a of the second insulating layer 156 interposed therebetween, and the first portion of the second insulating layer 156. It is spaced from 156a.
  • the second insulating layer 156 is provided around the light emitting unit 140.
  • the second insulating layer 156 is made of an organic material.
  • the second insulating layer 156 functions to improve the luminance of the light emitting unit 140. For this reason, even if the first insulating layer 150 (inorganic material) functions to deteriorate the luminance of the light emitting unit 140, the luminance deterioration due to the first insulating layer 150 (inorganic material) can be suppressed. it can.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

発光装置(10)は、基板(100)、発光部(140)、第1絶縁層(150)及び第2絶縁層(156)を備えている。発光部(140)は、基板(100)上にある。発光部(140)は、第1電極(110)、有機層(120)及び第2電極(130)を有する。有機層(120)は、第1電極(110)と第2電極(130)の間にある。第1絶縁層(150)は、基板(100)上で発光部(140)を画定している。第1絶縁層(150)は、無機材料からなる。第2絶縁層(156)は、発光部(140)の外側にある。第2絶縁層(156)は、有機材料からなり、具体的には、例えばポリイミドからなる。

Description

発光装置
 本発明は、発光装置に関する。
 近年、有機層を備えた発光装置が開発されている。特許文献1には、このような発光装置の一例が記載されている。特許文献1では、複数の有機絶縁層が互いに離間して基板上に配置されている。各有機絶縁層上には、発光部が位置している。発光部は、第1電極、第2電極及び第1電極と第2電極の間の有機層を有している。特許文献1では、互いに隣接する有機絶縁層の間の溝を跨って無機絶縁層が位置している。
特開2011-138635号公報
 発光装置では、発光部を画定するための絶縁層を基板上に形成することがある。このような絶縁層は、感光性樹脂(例えばポリイミド)を含んでいることがある。一方、本発明者が検討したところ、絶縁層が感光性樹脂を含んでいる場合、発光部を劣化させる物質が絶縁層を伝搬している可能性があることが明らかとなった。このような物質が絶縁層を伝搬することを抑制するため、本発明者は、絶縁層を無機材料により形成することを検討した。しかしながら本発明者が検討したところ、絶縁層が無機材料からなる場合、発光部の輝度が絶縁層の無機材料に起因して低下している可能性があることが明らかとなった。
 本発明が解決しようとする課題としては、発光部を画定する絶縁層が無機材料からなる場合であっても、発光部の輝度が低下することを抑制することが一例として挙げられる。
 請求項1に記載の発明は、
 基板と、
 前記基板上にあり、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を有する発光部と、
 前記基板上で前記発光部を画定し、無機材料からなる第1絶縁層と、
 前記発光部の外側にあり、有機材料からなる第2絶縁層と、
を備える発光装置である。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態に係る発光装置を示す平面図である。 図1から被覆層を取り除いた図である。 図2から第2導電層及び隔壁を取り除いた図である。 図3から第1絶縁層及び第2絶縁層を取り除いた図である。 図2のA-A断面図である。 図2のB-B断面図である。 図2のC-C断面図である。 図2のD-D断面図である。 図1~図8に示した発光装置の輝度特性を説明するためのグラフである。 (a)は、図1~図8に示した発光装置の色度特性を説明するためのグラフであり、(b)は、図1~図8に示した発光装置の色度特性を説明するためのグラフである。 変形例に係る発光装置を示す平面図である。 図11から第2導電層及び隔壁を取り除いた図である。 図11のA-A断面図である。 図11のB-B断面図である。 図11のC-C断面図である。 図11のD-D断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図1は、実施形態に係る発光装置10を示す平面図である。図2は、図1から被覆層200を取り除いた図である。図3は、図2から第2導電層130a及び隔壁160を取り除いた図である。図4は、図3から第1絶縁層150及び第2絶縁層156を取り除いた図である。図5は、図2のA-A断面図である。図6は、図2のB-B断面図である。図7は、図2のC-C断面図である。図8は、図2のD-D断面図である。
 図2に示すように、発光装置10は、基板100、発光部140、第1絶縁層150及び第2絶縁層156を備えている。図2、図5及び図6に示すように、発光部140は、基板100上にある。図5及び図6に示すように、発光部140は、第1電極110、有機層120及び第2電極130を有する。有機層120は、第1電極110と第2電極130の間にある。図5及び図6に示すように、第1絶縁層150は、基板100上で発光部140を画定している。第1絶縁層150は、無機材料からなる。図2及び図3に示すように、第2絶縁層156は、発光部140の外側にある。第2絶縁層156は、有機材料からなり、具体的には、例えばポリイミドからなる。以下、詳細に説明する。
 図1~図8に示す例において、発光装置10は、ディスプレイである。発光装置10は、基板100、導電層170、導電層180、第1絶縁層150、第2絶縁層156、有機層120a、第2導電層130a、隔壁160及び被覆層200を有している。
 図5~図8に示すように、基板100は、第1面102及び第2面104を有している。第2面104は、第1面102の反対側にあり、基板100の裏面である。図1~図4に示す例では、第1面102の形状は、矩形である。ただし、第1面102の形状は、例えば矩形以外の多角形であってもよい。
 発光装置10は、ボトムエミッション及びトップエミッションのいずれであってもよい。発光装置10がボトムエミッションである場合、複数の発光部140からの光は、基板100の第2面104から出射される。この場合、基板100は、透光性の材料(例えばガラス又は樹脂)からなる。これに対して、発光装置10がトップエミッションである場合、複数の発光部140からの光は、基板100の第1面102の上方から出射される。この場合、基板100は、上記した透光性の材料からなってもよいし、又は透光性を有しない材料からなってもよい。
 基板100は、可撓性を有していてもよいし、又は可撓性を有していなくてもよい。基板100が可撓性を有する場合、基板100の厚さは、例えば10μm以上1000μm以下である。基板100が可撓性を有し、かつガラスを含む場合、基板100の厚さは、例えば200μm以下である。基板100が可撓性を有し、かつ樹脂を含む場合、基板100は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)又はポリイミドを含む。なお、基板100の第1面102(好ましくは、第1面102及び第2面104の双方)は、無機バリア膜(例えばSiN又はSiON)により覆われていてもよい。この場合、基板100が水蒸気透過率の高い材料(例えば樹脂)を含んでいても、水蒸気が基板100の第1面102よりも上に達することが抑制される。
 図1~図4に示すように、複数の導電層170は、基板100の第1面102上にある。複数の導電層170は、複数の導電層170a及び複数の導電層170bを含んでいる。各導電層170aは、第1導電層110a及び第1配線114を含む。第1導電層110aは、導電層170aの一部である。第1配線114は、導電層170aの他の一部である。第1導電層110aと第1配線114は、互いに接続している。各導電層170bは、第2配線134を含む。
 第1配線114の一端には、第1端子112が位置している。第1端子112には、電位が与えられる。これにより、第1端子112の電位は、第1配線114を介して第1導電層110a(第1電極110)に与えられる。第2配線134の一端には、第2端子132が位置している。第2端子132には、電位が与えられる。これにより、第2端子132の電位は、第2配線134を介して第2導電層130a(第2電極130)に与えられる。
 各導電層170の上面上には、導電層180がある。導電層180の電気抵抗は、導電層170の電気抵抗よりも低い。これにより、第1端子112と第1電極110の間の電圧降下及び第2端子132と第2電極130の間の電圧降下を抑制することができる。導電層180は、発光部140と重ならないように位置している。このため、導電層180は、透光性を有する必要がない。具体的には、導電層180は、例えばAl又はAgからなる。その他の例として、導電層180は、例えば第1導電層110aの上面上のMo合金層、Mo合金層上のAl合金層及びAl合金層上のMo合金層を含んでいてもよい。
 図4に示すように、複数の第1導電層110aは、第1方向(図中、X方向)に並んでいる。各第1導電層110aは、第1方向に交わる(具体的には、第1方向に直交する)第2方向(図中、Y方向)に延伸している。
 図5及び図6に示すように、第1絶縁層150は、基板100の第1面102上及び複数の第1導電層110a上にある。第1絶縁層150は、無機材料(例えば、シリコン酸化物又はシリコン窒化物)からなる。図2~図4に示すように、第1絶縁層150は、複数の開口152を有する。複数の開口152は、第2方向(図中、Y方向)に並ぶm個の行及び第1方向(図中、X方向)に並ぶn個の列を含むm×nの行列状(本図に示す例では、m=4、n=5)に並んでいる。各開口152の平面形状は、矩形である。図5及び図6に示すように、各開口152内では、第1導電層110aの一部(第1電極110)と第2導電層130aの一部(第2電極130)が互いに重なっている。これにより、開口152の縁によって囲まれた領域が発光部140として機能する。すなわち、第1絶縁層150は、発光部140を画定している。
 なお、図5及び図6に示すように、発光部140の各辺は、開口152の内側面の下端によって画定されている。詳細には、図5に示すように、第1方向(図1~図4において、X方向)に垂直な断面において、開口152は、第1内側面及び第2内側面を有している。第2内側面は、第1内側面の反対側にある。開口152の第1内側面は、第1内側面の上端が第1内側面の下端よりも外側に位置するように傾いている。開口152の第2内側面は、第2内側面の上端が第2内側面の下端よりも外側に位置するように傾いている。発光部140の第1辺は、開口152の第1内側面の下端によって画定されている。発光部140の第2辺は、開口152の第2内側面の下端によって画定されている。同様にして、図6に示すように、第2方向(図1~図4において、Y方向)に垂直な断面において、開口152は、第3内側面及び第4内側面を有している。第4内側面は、第3内側面の反対側にある。開口152の第3内側面は、第3内側面の上端が第3内側面の下端よりも外側に位置するように傾いている。開口152の第4内側面は、第4内側面の上端が第4内側面の下端よりも外側に位置するように傾いている。発光部140の第3辺は、開口152の第3内側面の下端によって画定されている。発光部140の縁の第4辺は、開口152の第4内側面の下端によって画定されている。
 第1絶縁層150は、開口154を有する。図7に示すように、第2導電層130aは、開口154を介して第2配線134に接続している。
 図5に示すように、第2絶縁層156は、第1絶縁層150上にある。第2絶縁層156は、有機材料(例えば、ポリイミド)からなる。図2に示すように、第2絶縁層156は、基板100の第1面102の発光領域141を囲んでいる。発光領域141では、複数の発光部140が上記したように行列状に並んでいる。また、第2絶縁層156に劣化させる物質を含んでいる場合、第1絶縁層150は無機材料からなるため、第1絶縁層を介して有機層120aに伝達しない。
 より詳細には、図2に示す例において、発光領域141の形状は、第1辺、第2辺、第3辺及び第4辺を有する矩形である。第1辺は、第1方向(図中、X方向)に沿って延伸している。第2辺は、第1辺の反対側にある。第3辺は、第1辺と第2辺の間にある。第4辺は、第3辺の反対側にある。第2絶縁層156は、第1辺、第2辺、第3辺及び第4辺に沿って位置している。なお、第2絶縁層156は、発光領域141を囲んでいなくてもよい。例えば、第2絶縁層156は、発光領域141の第1辺~第4辺のうちのいずれか一辺のみに沿って位置していてもよい。なお、図5に示すように、第2絶縁層156は、隔壁160から離間している。
 図5、図7及び図8に示すように、隔壁160は、第1絶縁層150上にある。隔壁160は、感光性樹脂(例えばポリイミド)を含んでいる。図2に示すように、複数の隔壁160が第2方向(図中、Y方向)に並んでいる。各隔壁160は、第1方向(図中、X方向)に延伸している。図5及び図7に示すように、第1方向(図1~図4のX方向)に垂直な断面において、隔壁160の上面の幅は、隔壁160の下面の幅よりも広い。より詳細には、第1方向(図1~図4のX方向)に垂直な断面において、隔壁160は、第1側面及び第2側面を有している。第2側面は、第1内側面の反対側にある。隔壁160の第1側面は、第1側面の上端が第1側面の下端よりも外側に位置するように傾いている。隔壁160の第2側面は、第2側面の上端が第2側面の下端よりも外側に位置するように傾いている。
 図5及び図6に示すように、有機層120aは、基板100の第1面102上、複数の第1導電層110a上及び第1絶縁層150上にある。図5に示すように、複数の有機層120aが第2方向(図1~図4のY方向)に並んでいる。互いに隣接する有機層120aは、隔壁160を挟んで互いに対向している。図5及び図6に示すように、有機層120aの一部は、第1導電層110aの一部(第1電極110)と重なっている。有機層120aのこの一部は、発光部140の有機層120として機能する。
 なお、図5に示すように、有機層120aは、隔壁160とは接していないことが好ましい。この場合、有機層120aを劣化させる物質が隔壁160から有機層120aに伝搬することを抑制することができる。詳細には、隔壁160は、有機層120aを劣化させる物質(例えば、水)を含んでいることがある。この場合、有機層120aが隔壁160と接していると、この物質が有機層120aから隔壁160に伝搬することがある。これに対して図5に示す例では、隔壁160が上記した物質を含んでいたとしても、この物質が有機層120aに伝搬することを抑制することができる。また、隔壁160は無機材料からなる第1絶縁層150上にあるため、同様に隔壁160が上記した物質を含んでいたとしても、この物質が有機層120aに伝搬することを抑制することができる。
 図5及び図8に示すように、隔壁160の上面上には、有機層120bがある。有機層120bに含まれる材料は、有機層120aに含まれる材料と同一である。有機層120a及び有機層120bは、基板100の第1面102上及び隔壁160上に有機層を堆積することにより形成される。この場合、有機層は、隔壁160によって有機層120aと有機層120bに分離される。
 有機層120aは、例えば正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を有している。有機層120a全体の厚さは、例えば50nm以上200nm以下である。正孔注入層内及び正孔輸送層内では、正孔が移動する。正孔注入層の厚さは、例えば50nm以上100nm以下である。正孔輸送層の厚さは、正孔注入層の厚さよりも薄い。正孔輸送層の厚さは、例えば20nm以上50nm以下である。発光層では、電子と正孔が再結合する。これにより、発光層からは、光が発せられる。発光層からの光の色は、例えば赤、緑又は青である。電子輸送層では、電子が輸送される。電子輸送層の厚さは、例えば5nm以上100nm以下である。電子注入層は、アルカリ金属化合物(例えばLiF)、金属酸化物(例えば酸化アルミニウム)又は金属錯体(例えばリチウム8-ヒドロキシキノレート(Liq))からなる。電子注入層の厚さは、例えば0.1nm以上10nm以下である。
 なお、正孔注入層及び正孔輸送層の一方はなくてもよい。電子輸送層及び電子注入層の一方はなくてもよい。
 正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層は、例えば塗布プロセスにより形成される。具体的には、例えば正孔注入層、正孔輸送層及び発光層は、塗布プロセスにより形成され、電子輸送層及び電子注入層は、蒸着により形成される。
 図5及び図6に示すように、第2導電層130aは、有機層120a上にある。図2に示すように、複数の第2導電層130aが第2方向(図中、Y方向)に並んでいる。各第2導電層130aは、第1方向(図中、X方向)に延伸している。互いに隣接する第2導電層130aは、隔壁160を挟んで互いに対向している。図5及び図6に示すように、第2導電層130aの一部は、第1導電層110aの一部(第1電極110)と重なっている。第2導電層130aのこの一部は、発光部140の第2電極130として機能する。
 図5、図7及び図8に示すように、隔壁160の上面上には、導電層130bがある。導電層130bに含まれる材料は、第2導電層130aに含まれる材料と同一である。第2導電層130a及び導電層130bは、基板100の第1面102上及び隔壁160上に導電層を堆積することにより形成される。この場合、導電層は、隔壁160によって第2導電層130aと導電層130bに分離される。
 発光装置10がボトムエミッションである場合、第1導電層110aは、透光性を有する導電層である。この場合、第2導電層130aは、透光性を有する必要はない。これに対して、発光装置10がトップエミッションである場合、第2導電層130aは、透光性を有する導電層である。この場合、第1導電層110aは、透光性を有する必要はない。
 第1導電層110a及び第2導電層130aが透光性を有する導電層である場合、第1導電層110a及び第2導電層130aは、例えば金属酸化物を含み、より具体的には、例えばITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)又はZnO(Zinc Oxide)を含んでいる。
 第1導電層110a及び第2導電層130aが透光性を有しない導電層である場合、第1導電層110a及び第2導電層130aは、例えばAl、Au、Ag、Pt、Mg、Sn、Zn及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金を含んでいる。
 図4~図7に示すように、被覆層200は、第1絶縁層150、複数の発光部140及び複数の隔壁160を覆っている。これにより、被覆層200は、第1絶縁層150、複数の発光部140及び複数の隔壁160を封止している。より具体的には、本図に示す例では、被覆層200は、ALD(Atomic Layer Deposition)によって形成されている。これにより、被覆層200は、第1絶縁層150、第2絶縁層156、発光部140並びに隔壁160の側面及び上面を連続して覆っている。被覆層200は、例えば絶縁材料、より具体的には例えば金属酸化物を含んでいる。被覆層200は、例えば酸化チタン層及び酸化アルミニウム層を含んでいる。この場合、酸化アルミニウム層は、酸化チタン層上又は酸化チタン層下にある。被覆層200の厚さは、例えば50nm以上300nm以下である。
 なお、被覆層200は、例えばCVD(Chemical Vapor Deposition)又はスパッタにより形成してもよい。この場合、被覆層200は、例えばSiO層又はSiN層を含んでいる。この場合、被覆層200の膜厚は、例えば10nm以上1000nm以下である。
 被覆層200は、樹脂層により覆われていてもよい。樹脂層は、被覆層200を保護するために設けられている。樹脂層は、例えばエポキシ樹脂又はアクリル樹脂を含んでいる。
 次に、発光装置10の製造方法について説明する。まず、基板100の第1面102上に導電層を形成し、この導電層をパターニングする。これにより、複数の導電層170(第1導電層110a、第1配線114及び第2配線134)が形成される。次いで、各導電層170の上面上に導電層180を形成する。
 次いで、基板100の第1面102上及び複数の導電層170上に第1絶縁層150を形成する。次いで、第1絶縁層150に複数の開口152及び複数の開口154を形成する。
 次いで、第1絶縁層150上に第2絶縁層156を形成する。
 次いで、第1絶縁層150上に複数の隔壁160を形成する。
 次いで、第1絶縁層150上及び複数の隔壁160上に有機層を形成する。これにより、有機層は、隔壁160によって有機層120a及び有機層120bに分離される。
 次いで、第1絶縁層150上及び複数の隔壁160上に導電層を形成する。これにより、導電層は、隔壁160によって第2導電層130a及び導電層130bに分離される。
 次いで、基板100の第1面102上、第1絶縁層150上及び複数の隔壁160上に被覆層200をALDにより形成する。これにより、第1絶縁層150、複数の発光部140及び複数の隔壁160は、被覆層200によって封止される。
 図9は、図1~図8に示した発光装置10の輝度特性を説明するためのグラフである。図10(a)及び図10(b)は、図1~図8に示した発光装置10の色度特性を説明するためのグラフである。図9、図10(a)及び図10(b)において、「有機絶縁層面積比」とは、(第2絶縁層156の面積)/(発光領域141に位置する複数の発光部140の面積の合計)×100を示す。第2絶縁層156の開口とは、図2及び図3に示す例において発光領域141が露出されている領域である。図2及び図3に示すように、第2絶縁層156の開口の形状は、矩形とした。言い換えると、第2絶縁層156の開口は、発光領域141の第1辺、第2辺、第3辺及び第4辺にそれぞれ沿った第1縁、第2縁、第3縁及び第4縁を有している。
 第1絶縁層150の無機材料は、シリコン酸化物とした。第2絶縁層156の有機材料は、ポリイミドとした。
 図9、図10(a)及び図10(b)では、有機絶縁層面積比について、0%、2%、4%、6%、8%、12%、24%、37%及び49%の9つの発光装置10を作製した。9つの発光装置10の各々を温度100℃の環境に158時間置いた。
 図9では、9つの発光装置10の各々について、温度100℃の環境に158時間置く前の輝度L及び温度100℃で158時間の環境で置いた後の輝度L158を測定した。本図において、「初期輝度比」とは、(L158/L)×100を示す。
 図10では、9つの発光装置10の各々について、温度100℃の環境で158時間置く前の色度(x,y)及び温度100℃の環境で158時間置いた後の色度(x158,y158)を測定した。色度(x,y)及び色度(x158,y158)は、CIE 1931 色度図における位置を示す。図10(a)において、「Δx」とは、x158-xを示す。図10(b)において、「Δy」とは、y158-yを示す。
 図9に示すように、初期輝度比は、有機絶縁層面積比8%以上で高くなった。図10(a)に示すように、Δxは、有機絶縁層面積比8%以上で低くなった。図10(b)に示すように、Δyは、有機絶縁層面積比8%以上で低くなった。この結果は、発光装置10の輝度及び色度は、発光装置10が高温環境下に長時間置かれても、有機絶縁層面積比8%以上である場合はある程度維持されることを示している。
 なお、上述した9つの発光装置10の各々を温度100℃の環境に158時間置いた評価において輝度の劣化及び色度の劣化は、第2絶縁層156から離れている程劣化する傾向があることが確認できた。具体的には第2絶縁層156から8mmよりも離れている発光部140において主に観測された。このことから発光領域141の中心は、第2絶縁層156から8mm以内にあることが好ましい。より詳細には、第2絶縁層156の開口の第1縁、第2縁、第3縁及び第4縁は、発光領域141の中心からそれぞれ第1距離、第2距離、第3距離及び第4距離だけ離れている。第1距離、第2距離、第3距離及び第4距離のうち最も長い距離は、8mm以下であることが好ましい。さらに、第2絶縁層156の開口の第1縁、第2縁、第3縁及び第4縁は、各発光部140の中心からそれぞれ第5距離、第6距離、第7距離及び第8距離だけ離れている。発光領域141内の複数の発光部140のいずれについても、第5距離、第6距離、第7距離及び第8距離のうち最も長い距離は、8mm以下であることが好ましい。
 なお、図2及び図3に示す例において、発光領域141は、複数の発光部140のうちの最外周の発光部140によって規定されている領域である。より詳細には、上記したように、複数の発光部140は、行列状に並んでいる。発光領域141の第2辺から最も離れた行内の発光部140の第1辺は、発光領域141の第1辺と重なっている。発光領域141の第1辺から最も離れた行内の発光部140の第2辺は、発光領域141の第2辺と重なっている。発光領域141の第4辺から最も離れた列内の発光部140の第3辺は、発光領域141の第3辺と重なっている。発光領域141の第3辺から最も離れた列内の発光部140の第4辺は、発光領域141の第4辺と重なっている。
 以上、本実施形態によれば、発光部140の周辺に第2絶縁層156がある。第2絶縁層156は有機材料からなる。第2絶縁層156は、発光部140の輝度を向上させるように機能する。このため、第1絶縁層150(無機材料)が発光部140の輝度を劣化させるように機能していたとしても、第1絶縁層150(無機材料)に起因した輝度の劣化を抑制することができる。
 なお、本発明者が検討したところ、発光部140を劣化させる上記した物質は、行列状に配置された複数の発光部140を含む領域の外側において、例えば紫外線に起因して発生している可能性があることが明らかとなった。本発明者がさらに検討したところ、上記した物質は、第1絶縁層150が感光性樹脂(例えばポリイミド)を含んでいる場合、第1絶縁層150内で広く伝搬する傾向があることが明らかとなった。これは、感光性樹脂が、上記した物質を伝搬させるように機能しているためであると推定される。本発明者がさらに検討したところ、上記した物質は、被覆層200がALDにより形成されている場合、第1絶縁層150内で広く伝搬する傾向があることが明らかとなった。これは、被覆層200がALDにより形成されている場合、第1絶縁層150の表面が高い気密性で封止されるためであると推定される。この場合、上記した物質が第1絶縁層150の外側に排出されることが阻害される。これに対して、本実施形態においては、第1絶縁層150が無機材料からなる。このため、被覆層200がALDにより形成されていても、上記した物質が第1絶縁層150内で広く伝搬することを抑制することができる。
(変形例)
 図11は、変形例に係る発光装置10を示す平面図であり、実施形態の図2に対応する。図12は、図11から第2導電層130a及び隔壁160を取り除いた図であり、実施形態の図3に対応する。図13は、図11のA-A断面図であり、実施形態の図5に対応する。図14は、図11のB-B断面図であり、実施形態の図6に対応する。図15は、図11のC-C断面図であり、実施形態の図7に対応する。図16は、図11のD-D断面図であり、実施形態の図8に対応する。本変形例に係る発光装置10は、以下の点を除いて、実施形態に係る発光装置10と同様である。
 図11及び図12に示すように、第2絶縁層156は、複数の発光部140の各々を囲むように形成されている。詳細には、各発光部140の形状は、第1辺、第2辺、第3辺及び第4辺を有する矩形である。第1辺は、第1方向(図中、X方向)に延伸している。第2辺は、第1辺の反対側にある。第3辺は、第1辺と第2辺の間にある。第4辺は、第3辺の反対側にある。第2絶縁層156は、第1辺、第2辺、第3辺及び第4辺に沿って位置している。なお、第2絶縁層156は、発光部140を囲んでいなくてもよい。例えば、第2絶縁層156は、発光部140の第1辺~第4辺のうちのいずれか一辺のみに沿って位置していてもよい。
 図13に示すように、第2絶縁層156は、隔壁160にも有機層120aにも接していない。このため、有機層120aを劣化させる物質(例えば、水)が隔壁160から第2絶縁層156(例えば、ポリイミド)を介して有機層120aに伝搬することを抑制することができる。詳細には、図13に示すように、第2絶縁層156の一部(第1部分156a)は、発光部140と隔壁160の間にある。有機層120aは、発光部140に位置する有機層120(第1領域)及び有機層120の外側の部分(第2領域)を含んでいる。第2絶縁層156の第1部分156aは、隔壁160から離間している。有機層120の第2領域(発光部140と隔壁160の間の部分)は、第2絶縁層156の第1部分156aを挟んで隔壁160と対向し、かつ第2絶縁層156の第1部分156aから離間している。
 本変形例によれば、発光部140の周辺に第2絶縁層156がある。第2絶縁層156は有機材料からなる。第2絶縁層156は、発光部140の輝度を向上させるように機能する。このため、第1絶縁層150(無機材料)が発光部140の輝度を劣化させるように機能していたとしても、第1絶縁層150(無機材料)に起因した輝度の劣化を抑制することができる。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。

Claims (16)

  1.  基板と、
     前記基板上にあり、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を有する発光部と、
     前記基板上で前記発光部を画定し、無機材料からなる第1絶縁層と、
     前記発光部の外側にあり、有機材料からなる第2絶縁層と、
    を備える発光装置。
  2.  請求項1に記載の発光装置において、
     前記発光部は、第1辺、前記第1辺の反対側の第2辺、前記第1辺と前記第2辺の間の第3辺及び前記第3辺の反対側の第4辺を有し、
     前記第2絶縁層は、前記発光部の前記第1辺、前記第2辺、前記第3辺及び前記第4辺のうちの少なくとも一辺に沿って位置している発光装置。
  3.  請求項2に記載の発光装置において、
     前記第2絶縁層は、前記第1辺、前記第2辺、前記第3辺及び前記第4辺に沿って位置している発光装置。
  4.  請求項2又は3に記載の発光装置において、
     前記第1絶縁層上の隔壁を有し、
     前記第2絶縁層は、前記隔壁と前記発光部の間の第1部分を有し、
     前記有機層は、前記発光部に位置する第1領域及び前記第1絶縁層上の第2領域を含み、
     前記第2領域は、前記第1部分を挟んで前記隔壁に対向し、かつ前記第1部分から離間している発光装置。
  5.  請求項4に記載の発光装置において、
     前記第1部分は、前記隔壁から離間している発光装置。
  6.  請求項1に記載の発光装置において、
     前記基板は、複数の前記発光部が配置された発光領域を含み、
     前記第2絶縁層は、前記発光領域の外側にある発光装置。
  7.  請求項6に記載の発光装置において、
     前記発光領域は、第1辺、前記第1辺の反対側の第2辺、前記第1辺と前記第2辺の間の第3辺及び前記第3辺の反対側の第4辺を有し、
     前記第2絶縁層は、前記発光領域の前記第1辺、前記第2辺、前記第3辺及び前記第4辺のうちの少なくとも一辺に沿って位置している発光装置。
  8.  請求項7に記載の発光装置において、
     前記第2絶縁層は、前記第1辺、前記第2辺、前記第3辺及び前記第4辺に沿って位置している発光装置。
  9.  請求項6~8のいずれか一項に記載の発光装置において、
     前記第1絶縁層上の隔壁を有し、
     前記有機層は、前記発光部に位置する第1領域及び前記第1絶縁層上の第2領域を含み、
     前記有機層の前記第2領域は、前記隔壁から離間している発光装置。
  10.  請求項6~9のいずれか一項に記載の発光装置において、
     前記第2絶縁層の面積は、前記発光領域に位置する発光部の面積の合計に対して8%以上である発光装置。
  11.  請求項10に記載の発光装置において、
     前記第2絶縁層は、前記発光領域の前記第1辺、前記第2辺、前記第3辺及び前記第4辺にそれぞれ沿った第1縁、第2縁、第3縁及び第4縁を有する開口を含み、
     前記第2絶縁層の前記第1縁、前記第2縁、前記第3縁及び前記第4縁は、前記発光領域の中心からそれぞれ、第1距離、第2距離、第3距離及び第4距離だけ離れており、
     前記第1距離、前記第2距離、前記第3距離及び前記第4距離のうち最も長い距離は、8mm以下である発光装置。
  12.  請求項10に記載の発光装置において、
     前記第2絶縁層の前記第1縁、前記第2縁、前記第3縁及び前記第4縁は、前記発光部の中心からそれぞれ、第5距離、第6距離、第7距離及び第8距離だけ離れており、
     前記複数の発光部のいずれについても、前記第5距離、前記第6距離、前記第7距離及び前記第8距離のうち最も長い距離は、8mm以下である発光装置。
  13.  請求項1又は12に記載の発光装置において、
     前記発光領域内の前記複数の発光部は、前記発光領域の前記第1辺に沿った第1方向に並ぶ複数の列及び前記発光領域の前記第3辺に沿った第2方向に並ぶ複数の行を含む行列状に並んでおり、
     各発光部は、前記第1方向に延伸する第1辺、前記第1辺の反対側の第2辺、前記第2方向に延伸していて前記第1辺と前記第2辺の間の第3辺及び前記第3辺の反対側の第4辺を有しており、
     前記発光領域の前記第2辺から最も離れた行内の発光部の第1辺は、前記発光領域の前記第1辺と重なっており、
     前記発光領域の前記第1辺から最も離れた行内の発光部の第2辺は、前記発光領域の前記第2辺と重なっており、
     前記発光領域の前記第4辺から最も離れた列内の発光部の第3辺は、前記発光領域の前記第3辺と重なっており、
     前記発光領域の前記第3辺から最も離れた列内の発光部の第4辺は、前記発光領域の前記第4辺と重なっている発光装置。
  14.  請求項1~8のいずれか一項に記載の発光装置において、
     前記第2絶縁層は、前記第1絶縁層上にある発光装置。
  15.  請求項4、5、9~14のいずれか一項に記載の発光装置において、
     前記第1絶縁層、前記第2絶縁層、前記発光部、前記隔壁の側面及び上面を連続して覆う被覆層を備える発光装置。
  16.  請求項1~14のいずれか一項に記載の発光装置において、
     前記第2絶縁層は、ポリイミドからなる発光装置。
PCT/JP2016/059247 2016-03-23 2016-03-23 発光装置 WO2017163347A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059247 WO2017163347A1 (ja) 2016-03-23 2016-03-23 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059247 WO2017163347A1 (ja) 2016-03-23 2016-03-23 発光装置

Publications (1)

Publication Number Publication Date
WO2017163347A1 true WO2017163347A1 (ja) 2017-09-28

Family

ID=59900122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059247 WO2017163347A1 (ja) 2016-03-23 2016-03-23 発光装置

Country Status (1)

Country Link
WO (1) WO2017163347A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251721A (ja) * 2003-09-24 2005-09-15 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、及び電子機器
JP2007220393A (ja) * 2006-02-15 2007-08-30 Seiko Epson Corp 有機el装置、その製造方法およびこれを備える電子機器
JP2007280622A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 発光素子およびその製造方法、発光装置
JP2008098130A (ja) * 2006-09-14 2008-04-24 Seiko Epson Corp 電気光学装置、電子機器および電気光学装置の製造方法
JP2008234989A (ja) * 2007-03-20 2008-10-02 Seiko Epson Corp 有機エレクトロルミネッセンス装置、及びラインヘッド
KR20100062536A (ko) * 2008-12-02 2010-06-10 엘지디스플레이 주식회사 듀얼패널 타입 유기전계 발광소자의 제조 방법
JP2011029195A (ja) * 2003-11-27 2011-02-10 Seiko Epson Corp 電気光学装置、半導体装置、電気光学装置用基板、およびそれらの製造方法、並びに電子機器
JP2011171300A (ja) * 2010-02-16 2011-09-01 Samsung Mobile Display Co Ltd 有機発光ディスプレイ装置及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251721A (ja) * 2003-09-24 2005-09-15 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、及び電子機器
JP2011029195A (ja) * 2003-11-27 2011-02-10 Seiko Epson Corp 電気光学装置、半導体装置、電気光学装置用基板、およびそれらの製造方法、並びに電子機器
JP2007220393A (ja) * 2006-02-15 2007-08-30 Seiko Epson Corp 有機el装置、その製造方法およびこれを備える電子機器
JP2007280622A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 発光素子およびその製造方法、発光装置
JP2008098130A (ja) * 2006-09-14 2008-04-24 Seiko Epson Corp 電気光学装置、電子機器および電気光学装置の製造方法
JP2008234989A (ja) * 2007-03-20 2008-10-02 Seiko Epson Corp 有機エレクトロルミネッセンス装置、及びラインヘッド
KR20100062536A (ko) * 2008-12-02 2010-06-10 엘지디스플레이 주식회사 듀얼패널 타입 유기전계 발광소자의 제조 방법
JP2011171300A (ja) * 2010-02-16 2011-09-01 Samsung Mobile Display Co Ltd 有機発光ディスプレイ装置及びその製造方法

Similar Documents

Publication Publication Date Title
KR101746677B1 (ko) 플렉서블 유기전계발광소자
KR20170071152A (ko) 유기 발광 표시 장치
CN110649078B (zh) 一种显示用基板及显示装置
JP2007234572A (ja) El装置
US20240163984A1 (en) Light emitting device
WO2020252865A1 (zh) 有机发光显示面板及其制造方法、封装薄膜
JP7033679B2 (ja) 発光装置
KR102505167B1 (ko) 유기발광소자
JP2017182912A (ja) 発光装置
WO2017163347A1 (ja) 発光装置
JP2007179913A (ja) El装置及びその製造方法
WO2017158767A1 (ja) 発光装置
JP6661373B2 (ja) 発光装置
JP6776329B2 (ja) 発光装置、電子機器及び発光装置の製造方法
WO2017168581A1 (ja) 発光装置
WO2018062273A1 (ja) 発光装置
JP6700309B2 (ja) 発光装置
JP2018056040A (ja) 発光装置及び封止部
JPWO2017094087A1 (ja) 発光装置
JP2018098131A (ja) 発光装置
WO2018062272A1 (ja) 発光装置
WO2017163374A1 (ja) 発光装置の製造方法及び発光装置
WO2018061236A1 (ja) 発光装置
JP2016157645A (ja) 発光装置
WO2019054387A1 (ja) 発光装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895383

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP