WO2017156987A1 - 一种灵活以太网路径建立的方法和装置 - Google Patents

一种灵活以太网路径建立的方法和装置 Download PDF

Info

Publication number
WO2017156987A1
WO2017156987A1 PCT/CN2016/097204 CN2016097204W WO2017156987A1 WO 2017156987 A1 WO2017156987 A1 WO 2017156987A1 CN 2016097204 W CN2016097204 W CN 2016097204W WO 2017156987 A1 WO2017156987 A1 WO 2017156987A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
node
flexible ethernet
lsp
physical layer
Prior art date
Application number
PCT/CN2016/097204
Other languages
English (en)
French (fr)
Inventor
王其磊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017156987A1 publication Critical patent/WO2017156987A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]

Definitions

  • This application relates to, but is not limited to, the field of control plane technology.
  • Flexible Ethernet is an emerging transmission technology that provides a common mechanism to support a variety of existing Ethernet MAC (Media Access Control) signal rates. These Ethernet MAC rates may not Matches to any existing Ethernet Physical Layer (PHY) rate, including those that can be bundled later than the Ethernet physical layer, and those that are sub-rate or channelized later than Ethernet physics A MAC signal with a small layer rate. More visually, it can be seen as a multi-link universalization implementation. Specifically, the capabilities of flexible Ethernet support are as follows:
  • Bundling of multiple Ethernet PHY signals for example by bundling two 100GBASE-R PHYs to carry a 200G MAC signal.
  • the Ethernet PHY signal carries a sub-rate signal, such as a 100GBASE-R PHY, to carry a 50G signal.
  • Channelization within a PHY signal or a set of bound PHY signals for example, supporting transmission of one 150G signal and two 25G signals on three bonded 100GBASE-R PHYs.
  • FlexE An example of the general structure of FlexE is shown in Figure 1.
  • the FlexE group refers to a group of 1 to n Ethernet PHYs bound together.
  • FlexE Clients refer to those based on MAC data rate and can not match any Ethernet.
  • the PHY stream currently supports a client MAC rate of 10, 40 or m*25Gb/s.
  • the FlexE shim is used to map or unmap client signals to the FlexE group.
  • FlexE can support a variety of applications, including the following three:
  • the connection of the first router to the transport network is shown in Figure 2.
  • the transport network does not sense the FlexE signal.
  • the transport network edge device will each 100GBASE-R
  • the signal is mapped to the OPU4 (Overhead Processing Unit) of the OTN (Optical Transport Network) for further transmission.
  • the transport network edge device does not need to perceive what the FlexE transmission technology is, but only needs to perceive one by one.
  • the binary bit stream is fine.
  • the second router connects to the transmission network.
  • the transmission network senses the FlexE signal.
  • the transmission network edge device parses the FlexE client signal and then multiplexes it into the OPU4 signal of the OTN for transmission.
  • the third type of router to the transmission network connection as shown in Figure 4, in this scenario, the transport network edge device discards the unavailable time slots, and only transmits the time slots in use.
  • the FlexE mechanism uses a calendar module (FlexE Calendar) to perform package mapping and decapsulation mapping of client signals.
  • This calendar is used to divide each PHY physical signal in the FlexE group into several 66B blocks for FlexE customers. FlexE Calendar is Based on these location blocks, it is clarified which customers use which slots (slots).
  • each 66B data block in FlexE Calendar has a granularity of 5G, so for each 100G PHY physical signal with 20 slots of time slots, FlexE specifies that each slot allows two states. One is an unused state, and the other is an unavailable state that may be caused by a transport network constraint.
  • the FlexE Calendar is 20*n long.
  • blocks allocated by FlexE Calendar are allocated to n sub-calendars, and each sub-calendar is composed of 20 blocks corresponding to one PHY signal.
  • control plane is required to provide a solution to establish the transport plane end-to-end path.
  • the embodiment of the invention provides a method for establishing a flexible Ethernet path, which is applied to a destination node, and includes:
  • the Resv message includes one or more of the following: a flexible Ethernet group number, a flag bit, a time slot allocation information, a physical layer number, a client indicator, and a number of unavailable time slots.
  • the embodiment of the invention further provides a method for establishing a flexible Ethernet path, which is applied to a source node, and includes:
  • the Resv message includes one or more of the following: a flexible Ethernet group number, a flag bit, a time slot allocation information, a physical layer number, a client indicator, and a number of unavailable time slots. .
  • the embodiment of the invention further provides a device for establishing a flexible Ethernet path, which is set in the destination node, and includes:
  • a first receiving module configured to receive a flexible Ethernet path setup message sent by the source node
  • a first path establishing module configured to perform local resource reservation according to information in the flexible Ethernet path setup message to establish a flexible Ethernet communication path
  • a feedback module configured to send a reservation state Resv message to the source node
  • the Resv message includes one or more of the following: a flexible Ethernet group number, a flag bit, a time slot allocation information, a physical layer number, a client indicator, and a number of unavailable time slots; wherein: the flexible Ethernet group number A flexible Ethernet group for identifying between the source node and the destination node; the flag bit is used to identify a calendar configuration type used by the client and whether to perform time slot resource configuration; the time slot allocation information is used to identify a physical layer path Time slot channel allocation information; the physical layer number is used to identify a physical layer path of a flexible Ethernet group; the client indicator is used to identify a client in a flexible Ethernet group; The number of unavailable time slots is identified.
  • the embodiment of the invention further provides a device for establishing a flexible Ethernet path, which is set at the source node.
  • a device for establishing a flexible Ethernet path which is set at the source node.
  • a requesting module configured to send a flexible Ethernet path setup message to the destination node
  • a second receiving module configured to receive a reservation state Resv message sent by the destination node
  • a second path establishing module configured to perform outbound interface time slot resource reservation according to the Resv message and establish a communication path
  • the Resv message includes one or more of the following: a flexible Ethernet group number, a flag bit, a time slot allocation information, a physical layer number, a client indicator, and a number of unavailable time slots; wherein: the flexible Ethernet group number A flexible Ethernet group for identifying between the source node and the destination node; the flag bit is used to identify a calendar configuration type used by the client and whether to perform time slot resource configuration; the time slot allocation information is used to identify a physical layer path Time slot channel allocation information; the physical layer number is used to identify a physical layer path of a flexible Ethernet group; the client indicator is used to identify a client in a flexible Ethernet group; The number of unavailable time slots is identified.
  • the foregoing flexible Ethernet path establishment method and device can implement the function of establishing a plane-to-end FlexE LSP path.
  • FIG. 1 is a schematic diagram of a general structure of a related art FlexE
  • FIG. 2 is a schematic diagram of a related art transmission network that does not sense a connection of a router to a transmission FlexE;
  • FIG. 3 is a schematic diagram of a connection of a related art transport network aware FlexE
  • FIG. 4 is a schematic diagram of a partial rate transfer of a related art FlexE group
  • FIG. 6 is a flowchart of a method for establishing a flexible Ethernet path according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a method for establishing a flexible Ethernet path according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for establishing a flexible Ethernet path according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an apparatus for establishing a flexible Ethernet path according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a label format of a reservation state Resv message according to an embodiment of the present invention.
  • FIG. 11 is a network application scenario diagram of Embodiments 1 and 2 of the present invention.
  • the embodiment of the present invention provides a method for establishing a flexible Ethernet path, which is applied to a destination node, including:
  • the Resv message includes one or more of the following: a flexible Ethernet group number, a flag bit, a time slot allocation information, a physical layer number, a client indicator, and a number of unavailable time slots. among them:
  • the flexible Ethernet group number is used to identify a flexible Ethernet group between the source node and the destination node;
  • the flag bit is used to identify a calendar configuration type used by the client and whether to perform time slot resource configuration
  • the time slot allocation information is used to identify time slot channel allocation information in a physical layer path
  • the physical layer number is used to identify the physical layer path of the flexible Ethernet group.
  • the client indicator is used to identify the client in the flexible Ethernet group
  • the number of unavailable time slots is used to identify the number of unavailable time slots.
  • the flexible Ethernet path setup message includes a universal label establishment request object, and the universal label establishment request object includes a switch type, a Label Switching Path (LSP) coding type, a G-PID payload type, and Information of bandwidth requirements, source nodes, and target nodes, wherein the G-PID payload type is set to an Ethernet MAC.
  • LSP Label Switching Path
  • the method before step S103, the method further includes:
  • the virtual Ethernet interface According to the load type carried in the load type G-PID, the virtual Ethernet interface.
  • the Resv message further includes a resource reservation protocol hopping RSVP_HOP object, where the RSVP_HOP object includes physical port information of the corresponding physical link, the physical port identified by the physical layer number, and the physical body included in the RSVP_HOP object.
  • the number and order of the ports are the same.
  • the LSP coding type in the label establishment request object is a partial rate flexible Ethernet LSP
  • the flexible Ethernet path establishment message further includes a label switching path attribute LSP_ATTRIBUTES object, and an attribute extended by the LSP_ATTRIBUTES object.
  • the type-length-value TLV carries the number of time slots available for each physical layer path between the source node and the destination node at the flexible Ethernet layer.
  • the destination node performs local resource reservation according to the information in the flexible Ethernet path setup message, including: acquiring each source node to the destination node according to the value of the attribute TLV extended by the LSP_ATTRIBUTES object.
  • Physical Layer Path The number of time slots available at the flexible Ethernet layer, and local resource reservation based on the number of available time slots.
  • the FlexE end-to-end path is carried by the Ethernet PHY path, so when establishing a FlexE-level path, you need to ensure that the PHY link between two adjacent FlexE nodes is established. Based on this, when using the signaling to establish a FlexE path, it needs to contain the information of the Ethernet PHY layer to be established, as shown in Figure 10, where:
  • the FlexE Group Number also called the flexible Ethernet group number, is used to identify the flexible Ethernet group between the source node and the destination node.
  • the FlexE Group Number of this embodiment can use 20 bits: for some The application distinguishes between different FlexE Groups, mainly because of the possibility of duplicate PHY Numbers.
  • an 8-port device can act as a single 8-port group or as two 4-port groups. Root According to the FlexE standard, the FlexE Group Number at both ends of the device should use the same identity, so the FlexE Group Number is dynamically specified by the signaling when the path is established.
  • Flags used to identify the type of calendar configuration used by the client and whether to configure slot resources.
  • two flag bits are allocated, and one flag bit is used to indicate whether the currently established client uses the "A" Calendar configuration or the "B" Calendar configuration. For example, setting to 0 means that the "A" Calendar configuration is used. If set to 1, it means that the "B" Calendar configuration is used; another flag is used in conjunction with the Slots Assignment Information to indicate whether the slot resource configuration needs to be configured on the node. When the flag is set to 1, The node needs to configure local resource reservation according to the label in the signaling.
  • the slots when this flag is set to 0, only need to consider which slots need to be allocated for the customer, regardless of the slots that are not allocated to the client ( The slot in the Slots Assignment Information field with the bit set to 0).
  • the reason is that a PHY cannot be used by multiple FlexEs at the same time, so when setting up a FlexE connection for the first time, you need to consider both the allocation of the slots allocated to the customer and the configuration of the slots that are not allocated to the customer. These are not assigned to the customer.
  • the slots can continue to be used by other customers after the FlexE connection is established. If the remaining bandwidth in the FlexE connection is to be allocated to other customers, you only need to consider which slots to use.
  • the physical layer number also known as the physical layer number, is used to identify the physical layer path of a flexible Ethernet group.
  • the PHY Number of this embodiment is the same at the FlexE shim at both ends of a FlexE Group, and is dynamically allocated by signaling when it is built.
  • a client indicator that identifies a client in a flexible Ethernet group may use 16 bits, and the client indicator after the negotiation of the signaling process carries the client identifier field carried in the time slot in the FlexE header overhead field.
  • Unavailable slots number which is used to identify the number of unavailable time slots; the Unavailable slots Number of this embodiment can use 8 bits, and the unavailable time slots will be used. Arranged in the last few consecutive time slots of each child Calendar.
  • the embodiment further provides a method for establishing a flexible Ethernet path, which is applied to a source node, and includes:
  • the Resv message includes one or more of the following: a flexible Ethernet group number, a flag bit, a time slot allocation information, a physical layer number, a client indicator, and a number of unavailable time slots.
  • the flexible Ethernet group number is used to identify a flexible Ethernet group between the source node and the destination node; the flag bit is used to identify a calendar configuration type used by the client and whether to perform time slot resource configuration;
  • the slot allocation information is used to identify slot channel allocation information in the physical layer path; the physical layer number is used to identify a physical layer path of the flexible Ethernet group; the client indicator is used to identify a client in the flexible Ethernet group
  • the number of unavailable time slots is used to identify the number of unavailable time slots.
  • the flexible Ethernet path setup message includes a universal label establishment request object
  • the universal label establishment request object includes a switch type, a label switched path LSP coding type, a G-PID payload type, a bandwidth requirement, a source node, and Information of the target node, wherein the LSP coding type is set to a partial rate flexible Ethernet LSP.
  • the LSP coding type is set to a partial rate flexible Ethernet LSP;
  • the flexible Ethernet path setup message further includes one or more of the following objects:
  • the ERO including a portion rate identifier for specifying a node performing partial rate encapsulation mapping and/or decapsulation mapping;
  • the label switched path attribute LSP_ATTRIBUTES object includes an attribute type-length-value TLV extended by the LSP_ATTRIBUTES object, and the attribute TLV carries the number of time slots available for each physical layer path between the source node and the destination node at the flexible Ethernet layer. .
  • the Resv message may further include: a resource reservation protocol hopping RSVP_HOP object, where the RSVP_HOP object includes physical port information of the corresponding physical link, where the physical port number identifies the physical port and the RSVP_HOP object includes Number and order of physical ports Consistent.
  • the method before the step S201 sends the setup path message to the destination node, the method further includes: establishing an Ethernet physical layer path with the destination node by using the optical transport network OTN node, and carrying the signal of the flexible Ethernet path by using the physical layer path flow.
  • the method before the step S201 sends the setup path message to the destination node, the method further includes: the source node and the first OTN node establish an Ethernet physical layer path to carry the signal traffic of the flexible Ethernet path, where the An OTN optical channel data unit is established between the OTN node and the second OTN node, and the flexible ODUFlex path carries the signal traffic of the flexible Ethernet path, and the Ethernet physical layer path bearer is established between the second OTN node and the destination node. Signal traffic for flexible Ethernet paths.
  • the LSP end-to-end available time slot TLV of the LSP_ATTRIBUTES object in the flexible Ethernet path setup message carries the source a number of available time slots of each member link between the node and the first OTN node; when the first OTN node transmits the flexible Ethernet path setup message to the second OTN node, establishing a message through the flexible Ethernet path
  • the LSP end-to-end available time slot TLV of the medium LSP_ATTRIBUTES object carries the number of available time slots of each member link between the first OTN node and the second OTN node; the second OTN node establishes the flexible Ethernet path
  • the LSP end-to-end available time slot TLV of the LSP_ATTRIBUTES object in the flexible Ethernet path setup message carries the number of available time slots of each member link between the second OTN node and the destination node.
  • the partial rate identifier is used to identify a partial rate encapsulation mapping or decapsulation mapping at the destination node;
  • the attribute TLV of the LSP_ATTRIBUTES object extension is used to identify a flexible ether between the source node and the destination node. The number of time slots available on each link of the network member path.
  • the Attribute Flag TLV is used.
  • two identifier bits are allocated to indicate whether a partial-rate mapping is required, and when the binary code of the identifier bit is 11 indicates that it is necessary to extract all available time slots in the FlexE (that is, the state of the slot is not unavailable), and then map these time slots to the transmission network to continue transmission; when the binary code of the identification bit is 00, it indicates that it needs to Pass These time slots are recovered in the sending network and then placed in the FlexE network to continue the transmission. For the other "01" and "10" states, no operation is performed.
  • This embodiment extends a new attribute TLV in the LSP_ATTRIBUTES object defined in RFC5420 - the FlexE link available time slot TLV, which contains only a number of 8-bit field, each 8-bit field corresponding to one used by FlexE.
  • the PHY member path uses these 8-byte fields to collect the maximum number of time slots that each end-to-end PHY member path can support.
  • the order in which the 8-bit field corresponds to the PHY is the same as the order in which the PHYs are arranged in the actual tag.
  • the slot granularity information supported by the FlexE can be calculated according to the bandwidth information and the number of bits used, and the slot granularity information to be used can be explicitly indicated in the signaling.
  • the channel used for signaling construction can be an out-of-band channel or a management channel provided by FlexE technology.
  • the embodiment further provides a device for establishing a flexible Ethernet path, which is set in the destination node, and includes:
  • a first receiving module configured to receive a setup path message sent by the source node
  • a first path establishing module configured to perform local resource reservation and establish a communication path according to the information in the flexible Ethernet path establishment message
  • a feedback module configured to send a reservation state Resv message to the source node
  • the Resv message includes one or more of the following: a flexible Ethernet group number, a flag bit, a time slot allocation information, a physical layer number, a client indicator, and a number of unavailable time slots;
  • the flexible Ethernet group number is used to identify a flexible Ethernet group between the source node and the destination node;
  • the flag bit is used to identify the calendar configuration type used by the client and whether to perform time slot resource configuration; Identifying time slot channel allocation information in the physical layer path;
  • the physical layer number is used to identify a physical layer path of the flexible Ethernet group;
  • the client indicator is used to identify a client in the flexible Ethernet group;
  • the number of unavailable time slots is used to identify the number of unavailable time slots.
  • the flexible Ethernet path setup message includes a universal label establishment request object, and the universal label establishment request object includes a switch type, a label switched path LSP coding type, a G-PID payload type, a bandwidth requirement, a source node, and Information of the target node, wherein the G-PID The load type is set to Ethernet MAC;
  • the first path establishing module is further configured to: according to the flexible Ethernet path setup message encapsulation resource reservation protocol hopping RSVP_HOP object, according to a load type carried in the payload type G-PID, a virtual Ethernet interface;
  • the RSVP_HOP object includes the physical port information of the corresponding physical link, and the physical port identified by the physical layer number is consistent with the number and order of the physical ports included in the RSVP_HOP object.
  • the LSP coding type in the label establishment request object is a partial rate flexible Ethernet LSP
  • the flexible Ethernet path establishment message further includes a label switching path attribute LSP_ATTRIBUTES object, and an attribute extended by the LSP_ATTRIBUTES object.
  • the type-length-value TLV carries the number of time slots available for each physical layer path between the source node and the destination node at the flexible Ethernet layer; the first path establishment module performs the information according to the flexible Ethernet path establishment message.
  • the local resource reservation includes: obtaining, according to the value of the attribute TLV of the extended LSP attribute object, the number of time slots available for each physical layer path between the source node and the destination node in the flexible Ethernet layer, according to the available The number of time slots is used for local resource reservation.
  • the embodiment further provides a device for establishing a flexible Ethernet path, which is set at a source node, and includes:
  • a requesting module configured to send a flexible Ethernet path setup message to the destination node
  • a second receiving module configured to receive a reservation state Resv message sent by the destination node
  • a second path establishing module configured to perform outbound interface time slot resource reservation according to the Resv message and establish a communication path
  • the Resv message includes one or more of the following: a flexible Ethernet group number, a flag bit, a time slot allocation information, a physical layer number, a client indicator, and a number of unavailable time slots; wherein: the flexible Ethernet group number A flexible Ethernet group for identifying between the source node and the destination node; the flag bit is used to identify a calendar configuration type used by the client and whether to perform time slot resource configuration; the time slot allocation information is used to identify a physical layer path Time slot channel allocation information; the physical layer number is used to identify a physical layer path of a flexible Ethernet group; the client indicator is used to identify a client in a flexible Ethernet group; The number of unavailable time slots is identified.
  • the flexible Ethernet path setup message sent by the requesting module includes a universal label establishment request object
  • the universal label establishment request object includes a switch type, a label switched path LSP coding type, a G-PID payload type, Information about bandwidth requirements, source nodes, and target nodes.
  • the G-PID payload type is set to an Ethernet MAC;
  • the flexible Ethernet path setup message further includes one or more of the following objects:
  • a routing object ERO including for a partial rate identifier, the partial rate identifier being used to specify a node that performs partial rate encapsulation mapping and/or decapsulation mapping;
  • the label switched path attribute LSP_ATTRIBUTES object includes an attribute type-length-value TLV extended by the LSP_ATTRIBUTES object, and the attribute TLV carries the number of time slots available for each physical layer path between the source node and the destination node at the flexible Ethernet layer. .
  • the attribute TLV extended by the LSP_ATTRIBUTES object in the flexible Ethernet path setup message sent by the requesting module is used to identify a flexible Ethernet group member path between the source node and the destination node.
  • the apparatus further includes a physical layer path establishing module, configured to: before the requesting module sends a flexible Ethernet path establishment message to the destination node, establish an OTN node and the destination node through the optical transport network An Ethernet physical layer path between the two to carry the signal traffic of the flexible Ethernet path; or establish an Ethernet physical layer path between the source node and the first ONT node, the first OTN node, and the second OTN node
  • the OTN optical channel data unit has a flexible ODUFlex path and an Ethernet physical layer path between the second OTN node and the destination node to carry signal traffic of the flexible Ethernet path.
  • the above solution uses the extension of signaling to support the establishment of the FlexE transport plane path, which can fill the gap of the FlexE control plane signaling road, and is used to establish an end-to-end path in the FlexE scenario to complete the end-to-end path on each node.
  • the reservation of resources such as ports and time slots provides the function of establishing the end-to-end FlexE LSP path of the control plane.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the nodes are Ethernet nodes, and the B and E nodes are nodes supporting FlexE technology, such as FlexE Shim nodes, which can support full-rate client layer signal mapping and demapping, C and D are OTN nodes, and C and D nodes are not aware of FlexE applications.
  • the service bandwidth between A and B and E and F is 150G.
  • the carrier signals are carried by three 100G PHY physical lines between B and C and D and E. The physical numbers are 11 and 12, 13, C and D respectively.
  • There is an OTN connection which can be a signal connection of two ODU4s, wherein the granularity of the time slot is 1.25G. In this scenario, the unavailable time slot is usually not used.
  • the user wants to establish a 150G Ethernet service from A to F nodes, and establishes an end-to-end path using the RSVP-TE signaling flow. It is assumed that the path sequence has been calculated and is A-B-C-D-E-F. The process of establishing the entire path is as follows:
  • the node A sends a signaling Path message, where the message includes a general label establishment request object, where the exchange type is set to PSC-1 packet exchange, the LSP coding type (Encoding Type) is Ethernet, the bandwidth to be established is 150G, the source point and the destination node. For information such as A and F, the Path message is sent to the next hop B node.
  • the exchange type is set to PSC-1 packet exchange
  • the LSP coding type Encoding Type
  • the bandwidth to be established is 150G
  • the source point and the destination node For information such as A and F, the Path message is sent to the next hop B node.
  • the Node B After receiving the Path message sent by the A node, the Node B determines that the path to be established and the path initiated by the A node belong to different switching levels according to the exchange type and other fields in the signaling, so the Node B first blocks the A node.
  • Object where the exchange type is set to TDM time slot exchange, LSP Encoding Type is FlexE LSP, G-PID load type is Ethernet MAC, the bandwidth to be established is 150G, and the source and destination nodes are B and E.
  • B first encapsulates two new Ethernet PHY paths to establish a Path message, which is used to establish two PHY paths between the Node B and the E node.
  • the bandwidth to be established is 100G.
  • the source and destination nodes are B and E, and then the Path message is sent to the next hop C node (where the FlexE LSP in the LSP Encoding Type is the newly defined coding type).
  • the C node After receiving the Path message sent by the Node B, the C node judges that the path to be established and the path initiated by the Node B belong to different switching levels according to the exchange type and other fields in the signaling, so the C node first blocks the Node B to send. Path message coming over, and then encapsulating two new ones in turn
  • the OTN path establishes a Path message, and the message includes a universal label establishment request object, where the exchange type is set to OTN-TDM time slot exchange, the LSP Encoding Type is G.709ODUk (Digital Path), and the G-PID load type is FlexE Ethernet PHY.
  • the established bandwidth is 100G
  • the source and destination nodes are C and D
  • the Path message is sent to the next hop D node
  • the two ODU4 path establishment between C and D is completed according to the related technology, then C and D
  • the ODU between the two is the physical connection of the two PHYs for the nodes B and E at both ends.
  • the C node will notify the Ethernet PHY signaling flow blocking on C to continue transmitting.
  • the signaling flow blocked on C is sent to D, and the D node performs a similar operation after receiving the Path message sent by the C node, and then sends it to E.
  • the E node After the E node receives the Path message sent by the D node, because the E node is the destination node, the E node first completes the local resource reservation, completes the path establishment of the Ethernet PHY layer according to the related technology, and sends a signaling Resv message to the D. Node, then to node C, then to node B.
  • the B node After confirming the path establishment of the PHY layer, the B node continues to send the FlexE path to establish the Path message directly to the tail node E.
  • the E node determines that 30 time slots are needed to carry the client signal according to the 150G bandwidth requirement of the client, assuming that the occupied time slot is 1 to 15 slots of 1 and 1 to 15 slots of 2, 16 to 20 slots of 1 and 16 to 20 slots of 2 are unused slots, and resource reservation is also required, where 1, 2 is the PHY path.
  • the number is PHY Number, the PHY path corresponds to the actual PHY link; the second E node encapsulates the RSVP_HOP object, which is used to indicate which two links are to be used. It is assumed that 12 and 13 are used, 12 and 13 are PHY chains.
  • the E node virtualizes the Ethernet interface according to the type of load carried in the G-PID, and the remaining bandwidth of the interface is 50G. That is, for the downstream node F, there is still 50G of available Ethernet bandwidth available. This also ensures that the E-node can demap the Ethernet signal from the FlexE path.
  • the E node sends a Resv message to the Node B, where the Resv message carries the signaling label format given in the present invention, and the assignment values of the fields in the label are:
  • FlexE Group Number Used to uniquely identify a FlexE Group to be used. It exists only between two FlexE Shim nodes. At this time, E allocates an available number according to the usage of its own node FlexE Group Number for unique identification. A FlexE Group between B and E.
  • Flags the bit field, because it is the first time to establish a FlexE connection, so you need to match it on the node. Set resource reservation. Another bit, signaling can be configured here to use the Calendar A type of time slot, to ensure that the nodes at both ends of the path use the same Calendar configuration type.
  • PHY Number A total of two PHY paths are used, so here we need to assign two values to the two PHY Numbers, one for 1 and the other for 2.
  • the order of the specific physical ports identified by the PHY Number should be the same as the order of the member links in the RSVP_HOP object carried in the Resv message.
  • the PHY Number is applied to the end-to-end path and the PHY Number does not change after a few hops.
  • Client Indicator Used to uniquely identify a client in a FlexE group.
  • the client indicator after the negotiation of the signaling process carries the client identifier field carried by the time slot in the FlexE header overhead field (Client carried Calendar) "A" or "B" slot number), it is assumed here that a value of 500 is assigned to identify this client.
  • the first 15 slots in each of the two PHY paths are used, so the FlexE header overhead is required.
  • the time slot carried by the customer identification field is set to 500.
  • the number of occurrences of this field is the same as the number of occurrences of the PHY Number.
  • the bit set to "1" in this field identifies the resource reservation of the time slot allocated to the client, and the bit identifier set to "0" is not Resource reservation for the time slot assigned to the customer. Assuming the FlexE Client uses the first 15 slots in the two PHY paths, the first 15 slots in the two PHYs are set to 1 and the last five slots are set to zero.
  • Unavailable slots Number This field is set to 0 in this embodiment.
  • the Node B After receiving the Resv message sent by the E node, the Node B completes the reservation of the time slot resource on the outbound interface according to the label carried in the signaling, that is, completes the establishment of the FlexE path between the B and the E node. In addition to resource reservation, Node B virtualizes the Ethernet interface according to the type of load carried in the G-PID. The remaining bandwidth of the interface is 50G. That is, for the upstream node A, 50G of Ethernet available bandwidth is still available. This also ensures that Node B can map Ethernet signals to the FlexE path.
  • the Node B will notify the signaling flow blocked on the Node B to continue sending, and the signaling flow blocked on the Node B (the path message sent by the Node A) is sent to the E node (because the intermediate BCDE node) Externally expressed as a one-hop link, that is, the Ethernet link of the BE), and then sent by the E node to the F node.
  • the F node After the F node receives the path message sent from the upstream, because the F node is the destination node, The F node encapsulates the Resv message, sends a Resv message to the E node according to the process of establishing the Ethernet path described in the related art, and then goes to the Node B, and then to the Node A, to complete the establishment of the entire path.
  • an error message is sent to the first node of the corresponding layer according to the relevant process, and after receiving the Error message, the first node recursively completes the sending of each layer of the Error message.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the network scenario of Figure 11 is still used, except that the C and D nodes support partial-rate FlexE applications, assuming that the available bandwidth between the C and D nodes is 180G, and there is 4 between B and C. There are 5 unavailable time slots between D and E. In this scenario, information about unavailable time slots is used.
  • the node A sends a signaling Path message, where the message includes a general label establishment request object, where the exchange type is set to PSC-1 packet exchange, the LSP Encoding Type is Ethernet, the bandwidth to be established is 150G, and the source and destination nodes are A and F.
  • the Path message is sent to the next hop B node.
  • the B node After receiving the Path message sent by the A node, the B node judges that the path to be established and the path established by the A node belong to different switching levels according to the exchange type and other fields in the signaling, so the B node first performs path calculation. Confirm that the end-to-end path can be established by establishing a partial-rate FlexE LSP. Then, Node B blocks the Path message sent by the A node, and then encapsulates a new FlexE path to establish a Path message.
  • the message includes a general label establishment request object, where the exchange is performed.
  • the type is set to TDM time slot switching
  • the LSP Encoding Type is Partial-rate FlexE LSP
  • the G-PID payload type is Ethernet MAC
  • the bandwidth to be established is 150G
  • the source and destination nodes are B and E
  • the flooded capability information according to the extension of the new ERO attribute TLV in this embodiment, explicitly specifies the partial-rate mapping in the C node, and the partial-rate mapping in the D node; meanwhile, the B node will
  • the attribute TLV of the extended LSP_ATTRIBUTES object in this embodiment is added to the signaling Path message (also referred to as LSP end to The available time slot TLV) carries the number of time slots available for each PHY path between B and C at the FlexE layer, here 18 and 18.
  • the next hop address supporting the FlexE time slot exchange is C.
  • B first encapsulates two new Ethernet PHY path setup Path messages, which are used to establish two PHY paths between Node B and C nodes.
  • the bandwidth to be established is 100G.
  • the source and destination nodes are B and C.
  • the establishment of the PHY path between B and C is completed.
  • the C node After receiving the path establishment path message sent by the Node B, the C node checks the G-PID field in the path message as a Partial-rate FlexE LSP, and checks itself. Whether to support the partial-rate mapping, after confirming that there is no problem, return a Resv message to Node B to complete the establishment of the PHY path.
  • the Node B After confirming that the PHY path between B and C is established, the Node B sends a FlexE Path Setup Path message to the C node. After receiving the FlexE path setup message sent by the Node B, the C node receives the message according to the type of exchange in the signaling. The field determines that the path to be established and the path establishment initiated by the Node B belong to different switching levels. In this scenario, the FlexE path can be directly carried over the OTN ODUFlex path to perform multi-path switching at the time slot level. Ethernet PHY path.
  • the C node first blocks the Path message sent by the Node B, and then encapsulates a new OTN ODUFlex Path message, where the exchange type is set to OTN-TDM time slot exchange, and the LSP Encoding Type is G.709 ODUk (Digital Path), G-PID.
  • the load type is Partial-rate FlexE LSP. It also considers that the maximum available bandwidth of the C and D nodes is 180G, and this bandwidth can meet the bandwidth requirement of the FlexE customer's 150G. Then, according to the related technology, the path establishment of the OTN ODUFlex layer is continued. The bandwidth is 180G and the OTN ODUFlex is sent.
  • the FlexE slot granularity of the OTN is 1.25G, so one FlexE slot is carried by four OTN slots, the D node resource reservation binds the mapping between the FlexE slot and the OTN slot, and the D node virtualizes two.
  • the FlexE PHY interface assumes that the two interfaces that are virtualized are identified as 41 and 42.
  • the two FlexE PHY interfaces support FlexE time slots; the C node also virtualizes two FlexE PHY interfaces. Assume that the two interfaces that are virtualized have the IDs 51 and 52, and the upstream FlexE Shim B For the node, the two FlexE PHY interfaces support FlexE time slots. At this point, the link between the C and D nodes is a link that supports the FlexE function for the B and E nodes.
  • the C node After confirming the successful establishment of the path between the C and D nodes, the C node considers that the number of available slots for the two paths between C and D is 18 and 18 respectively, and determines that the bandwidth in the signaling is 180G, the source point and the destination. The nodes are C and D, and then the Path message is sent to the next hop D node. The D node repeats the above process, completes the establishment of the Ethernet PHY layer path, and then continues the FlexE layer path establishment. Since the number of the maximum available FlexE slots between the two nodes between the D node and the E node is 18, 17, the attribute TLV field of the LSP_ATTRIBUTES object. The assignment is modified to the corresponding time slot and the FlexE path setup message continues to be sent to the E node.
  • the E node After the E node receives the Path message sent by the D node, because the E node is the destination node, the E node first completes the local resource reservation.
  • the number of the maximum available time slots of the end-to-end path is 18, 17 time slots, and the node E determines, according to this information, that the 1 to 18 time slots of the PHY 1 are available, and the PHY 2 is 1 to 17 time slots are available; in addition, according to the customer's 150G bandwidth requirement, it is determined that 30 time slots are needed to carry the client signal, assuming that the occupied time slot is 1 to 15 time slots of 1 and 1 to 15 time slots of 2, 1 of 16 The ⁇ 18 time slots and the 16 to 17 time slots of 2 are unused slots, and the resource reservation is also required.
  • the E node encapsulates the RSVP_HOP object, which is used to indicate which two physical links to use, and it is assumed that 12 and 12 are used. 13.
  • the E node virtualizes the Ethernet interface according to the type of load carried in the G-PID, and the remaining bandwidth of the interface is 25G, that is, for the downstream node F, there is still 25G of available Ethernet bandwidth available. This also ensures that the E-node can demap the Ethernet signal from the FlexE path.
  • the E node sends a Resv message to the D node, where the Resv message carries the signaling label format given in the present invention, and the assignment values of the fields in the label are:
  • FlexE Group Number Used to uniquely identify a FlexE Group to be used. There are only two FlexE Shim nodes. At this time, E allocates an available number according to the usage of the FlexE Group Number of its own node to uniquely identify one. FlexE Group between B and E.
  • Flags identify the bit field, because it is the first time to establish a FlexE connection, so you need to configure resource reservation on the node.
  • Another bit, signaling can be configured here using the Calendar A type Time slots, ensure that the nodes at both ends of the path use the same Calendar configuration type.
  • PHY Number A total of two PHYs are used, so here we need to assign two values to the two PHY Numbers, one for 1 and the other for 2.
  • the order of the specific physical ports identified by the PHY Number shall be the same as the order of the member link identifiers in the RSVP_HOP object of the Resv message.
  • the PHY Number is applied to the end-to-end path and the PHY Number does not change after a few hops.
  • Client Indicator (16-bit): used to uniquely identify a client in a FlexE group.
  • the client indicator after the negotiation of the signaling process carries the client identifier field carried by the time slot in the FlexE header overhead field (Client carried Calendar " A”or "B" slot number), it is assumed here that a value of 500 is assigned to identify this client. In this embodiment, the first 15 time slots of the two PHYs are used, so the time in the FlexE header overhead is required.
  • the customer ID field of the slot bearer is set to 500.
  • the number of occurrences of this field is the same as the number of occurrences of the PHY Number.
  • the bit set to "1" in this field identifies the resource reservation of the time slot allocated to the client, and the bit identifier set to "0" is not Resource reservation for the time slot assigned to the customer.
  • the FlexE Client uses the first 15 slots of each of the two PHYs
  • the first 15 slots in the two PHYs are set to 1. If the time slot is not available, since FlexE uses two paths to carry, the number of unavailable time slots of the first path is 3 and the number of unavailable time slots of the second path is 2 according to the result of the negotiation.
  • the 16 to 18 time slots in the first path are set to 0 to indicate the resource reservation of the time slot not allocated to the client, and the 16 to 17 time slots in the second path are set to 0 to indicate the time slot not allocated to the client. Resource reservation.
  • Unavailable slots Number The unavailable time slots are arranged in the last few consecutive time slots of each child Calendar. This field is used to indicate the number of unavailable time slots. For both paths, the number of unavailable time slots for the first path is set to 2, and the number of unavailable time slots for the second path is set to 3.
  • the D node After receiving the Resv message sent by the E node, the D node first determines the time slot that the client needs to use between the own and the upstream C node, assuming that the time slots used for the two PHYs are both 2 to 16, then the D node completes.
  • the process of configuring the time slot resource also configures the 2 to 16 time slots carrying the customer service on the ingress port to the 1 to 15 time slots carrying the customer service on the outbound port, and simultaneously uses the unused time slot 1 and 17 to 20 time slots. Switched to 16 to 20 time slots, where the order of the time slots cannot be changed.
  • the D node identifies the previous one as PHY 1 (the actual port number is 41) and the latter one as the PHY 2 (the actual port number is 42) according to the information of the sub-members carried in the RSVP_HOP object in the Resv message.
  • the D node recovers according to the partial-rate demapping identifier in the path message received before.
  • the D node After completing the configuration of the time slot exchange, the D node sends the 2 to 16 time slot information used for the Resv message encapsulation to the upstream C node, and also encapsulates the RSVP_HOP object to indicate the member link to be used, and the C node according to the previous Path message.
  • the partial-rate mapping identifier in the configuration, the configuration transmission plane extracts the available time slots (the slot status is not unavailable), and maps to the transmission in the transmission network.
  • the C node then repeats a similar process and sends a signaling Resv message to the Node B.
  • the B node After receiving the Resv message sent by the C node, the B node completes the reservation of the time slot resource on the outbound interface according to the label carried in the signaling, that is, completes the establishment of the FlexE path between the B and the E node.
  • the Node B virtualizes the Ethernet interface according to the load type carried in the G-PID. Considering the number of unused slots in the established FlexE path, the remaining bandwidth of the interface is determined to be 25G, that is, the upstream node A. In fact, there is still 25G of Ethernet available bandwidth available.
  • the Node B will notify the signaling process that is blocked on the Node B to continue to send, and the signaling flow blocked on the Node B will be sent to the E node (because the intermediate BCDE node acts as a one-hop link externally, also That is, the Ethernet link of the BE) is then sent by the E node to the F node.
  • the F node After the F node receives the path message sent by the upstream, because the F node is the destination node, the F node encapsulates the Resv message, sends a Resv message to the E node according to the process of establishing the Ethernet path described in the prior art, and then goes to Node B, and then to Node A, complete the establishment of the entire path.
  • the computer program can be implemented in a computer readable storage medium, the computer program being executed on a corresponding hardware platform (such as a system, device, device, device, etc.), when executed, including One or a combination of the steps of the method embodiments.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the solution of the embodiment of the present invention is used to support the establishment of the FlexE transport plane path by using the extension of the signaling.
  • the blank of the FlexE control plane signaling path can be filled, and the end point is established in the FlexE scenario.
  • the path of the end completes the reservation of resources such as ports and time slots on each node in the end-to-end path, and provides the function of establishing the end-to-end FlexE LSP path of the control plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提出一种灵活以太网路径建立的方法和装置,涉及控制平面技术领域,包括:接收源节点发送的灵活以太网路径建立消息;根据所述灵活以太网路径建立消息中的信息进行本地资源预留并建立通信路径;向所述源节点发送预留状态Resv消息;所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目。利用信令的扩展支持FlexE传送平面路径的建立,完成端到端路径上各个节点上的端口、时隙等资源的预留,提供控制平面端到端FlexE LSP路径建立的功能。

Description

一种灵活以太网路径建立的方法和装置 技术领域
本申请涉及但不限于控制平面技术领域。
背景技术
灵活以太网(FlexE)是一种新出现的传送技术,提供了一种通用的机制来支持各种现有以太网MAC(Media Access Control,介质访问控制)信号速率,这些以太网MAC速率可以不匹配到现有的任何以太网物理层(Physical Layer,PHY)速率,包括那些可以捆绑之后比以太网物理层速率更大的MAC信号集合,以及那些子速率或者通道化之后得到的比以太网物理层速率小的MAC信号。更形象的来说,可以看做是一种多链路变速箱(Multi-link)通用化的实现。具体来说,灵活以太网支持的能力如下:
多个以太网PHY信号的捆绑,比如说通过将两个100GBASE-R PHYs绑定起来承载一个200G MAC信号。
将以太网PHY信号承载子速率信号,比如说,100GBASE-R PHY来承载50G的信号。
一个PHY信号内部的通道化或者一组绑定起来的PHY信号,比如说,支持在三个绑定的100GBASE-R PHYs上来传输一个150G信号和两个25G信号。
FlexE的通用结构示例如图1所示。FlexE组(FlexE group)指的是一个由1到n条以太网PHYs绑定起来的一个组,FlexE客户(FlexE Clients)指的是那些基于MAC数据速率的以太流,可以不匹配到任何以太网PHY流,当前可以支持的客户MAC速率有10、40或者m*25Gb/s。其中的FlexE shim(夹层)用来将客户信号映射到或者解映射到FlexE group。
当前,FlexE能够支持多种应用,主要包括下面三种:
第一种路由器到传输网络的连接,如图2所示,这种场景下,传输网络并不感知FlexE信号。具体举例来说,传送网络边缘设备将每条100GBASE-R 信号映射到OTN(光传送网,OpticalTransportNetwork)的OPU4(Overhead Processing Unit,开销处理单元)中来进一步传输,传送网络边缘设备并不需要感知到FlexE传送技术是什么,而只需要感知到一个个的二进制比特流即可。
第二种路由器到传输网络的连接,这种场景如图3所示,传输网络感知FlexE信号,传输网络边缘设备将FlexE client信号解析出来,然后再复用到OTN的OPU4信号中传输。
第三种路由器到传输网络的连接,如图4所示,这种场景下,传送网络边缘设备丢弃掉不可用的时隙,而只传输使用中的时隙。
FlexE机制使用一个日历模块(FlexE Calendar)来完成客户信号的封装映射与解封装映射,通过这个日历来为FlexE group中的每个PHY物理信号划分为若干个66B块给FlexE客户,FlexE Calendar便是根据这些位置块来明确哪些客户使用了哪些时隙(slots)。具体如图5所示,FlexE Calendar中的每个66B数据块的粒度为5G,所以对于每个100G的PHY物理信号拥有20个slots的时隙块,FlexE规定每个slot允许有两种状态,一种是未使用(unused)的状态,另外一种是可能由于传送网络约束而造成的不可用状态(unavailable)。对于一个由n个100G信号组成的FlexE group来说,FlexE Calendar的长度为20*n。如图5所示,由FlexE Calendar分配的块(block)分配到n个子日历(sub-calendar)中,每个sub-calendar由20个block组成,对应到一个PHY信号。
针对上述介绍的FlexE网络,需要控制平面提供解决方案来建立传送平面端到端路径。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种灵活以太网路径建立的方法,应用于目的节点,包括:
接收源节点发送的灵活以太网路径建立消息;
根据所述灵活以太网路径建立消息中的信息进行本地资源预留以建立灵活以太网通信路径;
向所述源节点发送预留状态Resv消息;
所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目。
本发明实施例还提供了一种灵活以太网路径建立的方法,应用于源节点,包括:
向目的节点发送灵活以太网路径建立消息;
接收所述目的节点发送的预留状态Resv消息;
根据所述Resv消息进行出接口时隙资源预留并建立通信路径;
所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目。。
本发明实施例还提供了一种灵活以太网路径建立的装置,设置于目的节点,包括:
第一接收模块,设置为接收源节点发送的灵活以太网路径建立消息;
第一路径建立模块,设置为根据所述灵活以太网路径建立消息中的信息进行本地资源预留以建立灵活以太网通信路径;
反馈模块,设置为向所述源节点发送预留状态Resv消息;
所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目;其中:所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;所述物理层编号用于标识灵活以太网组的物理层路径;所述客户端指示符用于标识灵活以太网组中的客户端;所述不可用时隙数目用于标识不可用时隙的数目。
本发明实施例还提供了一种灵活以太网路径建立的装置,设置于源节点, 包括:
请求模块,设置为向目的节点发送灵活以太网路径建立消息;
第二接收模块,设置为接收所述目的节点发送的预留状态Resv消息;
第二路径建立模块,设置为根据所述Resv消息进行出接口时隙资源预留并建立通信路径;
所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目;其中:所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;所述物理层编号用于标识灵活以太网组的物理层路径;所述客户端指示符用于标识灵活以太网组中的客户端;所述不可用时隙数目用于标识不可用时隙的数目。
上述灵活以太网路径建立的方法和装置,能够实现控制平面端到端FlexE LSP路径建立的功能。
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例而了解。本发明实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是相关技术的FlexE通用结构示意图;
图2是相关技术的传送网络不感知路由器到传送FlexE的连接的示意图;
图3是相关技术的传送网络感知FlexE的连接的示意图;
图4是相关技术的FlexE组的部分速率传送的示意图;
图5是相关技术的FlexE Calendar分配的示意图;
图6是本发明实施例的灵活以太网路径建立的方法的流程图;
图7是本发明实施例的灵活以太网路径建立的方法的流程图;
图8是本发明实施例的灵活以太网路径建立的装置的结构示意图;
图9是本发明实施例的灵活以太网路径建立的装置的结构示意图;
图10是本发明实施例的预留状态Resv消息的标签格式示意图;
图11是本发明实施例1和2的网络应用场景图。
本发明的较佳实施方式
下面结合附图对本发明的实施方式进行描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的各种方式可以相互组合。
如图6所示,本发明实施例提供一种灵活以太网路径建立的方法,应用于目的节点,包括:
S101、接收源节点发送的灵活以太网路径建立消息;
S102、根据所述灵活以太网路径建立消息中的信息进行本地资源预留以建立灵活以太网通信路径;
S103、向所述源节点发送预留状态Resv消息;
本实施例中,所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目。其中:
所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;
所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;
所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;
物理层编号用于标识灵活以太网组的物理层路径;
客户端指示符用于标识灵活以太网组中的客户端;
不可用时隙数目用于标识不可用时隙的数目。
本实施例中,所述灵活以太网路径建立消息包括通用标签建立请求对象,所述通用标签建立请求对象包括交换类型、标签交换路径(LSP:Label Switching Path)编码类型、G-PID负载类型、带宽需求、源节点和目标节点的信息,其中,所述G-PID负载类型设置为以太网MAC。
本实施例中,步骤S103之前还包括:
根据所述灵活以太网路径建立消息封装RSVP_HOP对象;
根据负载类型G-PID中携带的负载类型,虚拟以太网接口。
本实施例中,所述Resv消息还包括资源预留协议跳跃RSVP_HOP对象,所述RSVP_HOP对象包括对应物理链路的物理端口信息,所述物理层编号标识的物理端口与所述RSVP_HOP对象包括的物理端口的数目及顺序一致。
本实施例中,所述标签建立请求对象中的LSP编码类型为部分速率灵活以太网LSP,所述灵活以太网路径建立消息还包括标签交换路径属性LSP_ATTRIBUTES对象,通过所述LSP_ATTRIBUTES对象扩展的的属性类型-长度-值TLV携带源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目。相应地,所述目的节点根据所述灵活以太网路径建立消息中的信息进行本地资源预留,包括:根据所述LSP_ATTRIBUTES对象扩展的的属性TLV的值,获取源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目,根据所述可用的时隙数目进行本地资源预留。
FlexE端到端路径是由Ethernet PHY路径来承载,所以在建立FlexE层次的路径时,需要确保两个相邻FlexE节点之间的PHY链路已经建立起来。基于此,使用信令建立FlexE路径时,需要包含要建立的Ethernet PHY层的信息,如图10所示,其中:
灵活以太网组标识(FlexE Group Number),也叫灵活以太网组编号,用于标识源节点与目的节点之间的灵活以太网组;本实施例的FlexE Group Number可以使用20比特位:对于一些应用,区分不同的FlexE Group,这主要是因为有可能会出现重复的PHY Number导致的。举个例子来说,一个8端口的设备可以作为一个单独的8端口组,也可以作为两个4端口组。根 据FlexE标准定义,设备两端的FlexE Group Number应该使用同样的标识,所以FlexE Group Number由信令在建立路径建立时动态的指定。
标志位(Flags),用于标识客户端使用的日历配置类型和是否进行时隙资源配置。本实施例分配了两个标志位,一个标志位用来说明当前要建立的client使用“A”Calendar配置还是使用“B”Calendar配置,例如,设置为0则表示使用的是“A”Calendar配置,设置为1,则表示使用的是“B”Calendar配置;另外一个标志位结合Slots Assignment Information来使用,用来表示是否需要在节点上做slots资源的配置,当此标志位置为1的时候,节点需要根据信令中的标签配置本地资源预留,其中,既需要考虑配置那些分配给客户使用的slots(Slots Assignment Information字段中比特位设置为1的slot),也需要考虑那些不分配给客户的slots(Slots Assignment Information字段中比特位设置为0的slot),当此标志位置为0的时候,只需要考虑配置哪些slot需要分配给客户使用,而不需要考虑那些不分配给客户的slots(Slots Assignment Information字段中比特位设置为0的slot)。原因在于,一条PHY不能被多条FlexE同时使用,所以在首次建立FlexE连接的时候,既需要考虑分配给客户的slots的配置,也需要考虑未分配给客户的slots的配置,这些未分配给客户的slots在FlexE连接建立之后可以继续被其他客户使用。如果FlexE连接中的剩余带宽要分配给其他客户使用,就只需要考虑使用哪些slots即可。
时隙分配信息(Slots Assignment Information),用于标识物理层中时隙通道分配信息;
物理层序号(PHY Number),也称为物理层编号,用于标识灵活以太网组的物理层路径。本实施例的PHY Number在一个FlexE Group两端的FlexE shim处是相同的,由信令在建路时候动态分配。
客户端指示符(Client Indicator),用于标识灵活以太网组中的客户端。实施例Client Indicator可以使用16比特位,信令流程协商之后的Client Indicator会携带在FlexE头部开销字段中的时隙携带的客户标识字段。
不可用时隙数目(Unavailable slots Number),用于标识不可用时隙的数目;本实施例的Unavailable slots Number可以使用8比特位,不可用时隙会 排列在每个子Calendar最后几个连续的时隙中。
如图7所示,本实施例还提供一种灵活以太网路径建立的方法,应用于源节点,包括:
S201、向目的节点发送灵活以太网路径建立消息;
S202、接收所述目的节点发送的预留状态Resv消息;
S203、根据所述Resv消息进行出接口时隙资源预留并建立通信路径;
本实施例中,所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目。其中,所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;所述物理层编号用于标识灵活以太网组的物理层路径;所述客户端指示符用于标识灵活以太网组中的客户端;所述不可用时隙数目用于标识不可用时隙的数目。
本实施例中,所述灵活以太网路径建立消息包括通用标签建立请求对象,所述通用标签建立请求对象包括交换类型、标签交换路径LSP编码类型、G-PID负载类型、带宽需求、源节点和目标节点的信息,其中,所述LSP编码类型设置为部分速率灵活以太网LSP。
在一个示例中,所述LSP编码类型设置为部分速率灵活以太网LSP;所述灵活以太网路径建立消息还包括以下一种或多种对象:
显示路由对象ERO,所述ERO包括用于部分速率标识符,所述部分速率标识符用于指定进行部分速率封装映射和/或解封装映射的节点;
标签交换路径属性LSP_ATTRIBUTES对象,包括所述LSP_ATTRIBUTES对象扩展的的属性类型-长度-值TLV,所述属性TLV携带源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目。
本实施例中,所述Resv消息还可以包括:资源预留协议跳跃RSVP_HOP对象,所述RSVP_HOP对象包括对应物理链路的物理端口信息,所述物理层编号标识的物理端口与所述RSVP_HOP对象包括的物理端口的数目及顺序 一致。
本实施例中,步骤S201向目的节点发送建立路径消息之前,还包括:通过光传送网OTN节点与目的节点建立以太网物理层路径,通过所述物理层路径承载所述灵活以太网路径的信号流量。
在另一实施例中,步骤S201向目的节点发送建立路径消息之前,还包括:所述源节点与第一OTN节点建立以太网物理层路径承载所述灵活以太网路径的信号流量,所述第一OTN节点与第二OTN节点之间建立OTN光通道数据单元灵活ODUFlex路径承载所述灵活以太网路径的信号流量,所述第二OTN节点与目的节点之间建立以太网物理层路径承载所述灵活以太网路径的信号流量。可选地,所述源节点将所述灵活以太网路径建立消息发送给第一OTN节点时,通过所述灵活以太网路径建立消息中LSP_ATTRIBUTES对象的LSP端到端可用时隙TLV携带所述源节点与第一OTN节点之间的各成员链路可用时隙数目;所述第一OTN节点将所述灵活以太网路径建立消息传输到第二OTN节点时,通过所述灵活以太网路径建立消息中LSP_ATTRIBUTES对象的LSP端到端可用时隙TLV携带所述第一OTN节点与第二OTN节点之间的各成员链路可用时隙数目;所述第二OTN节点将所述灵活以太网路径建立消息传输到目的节点时,通过所述灵活以太网路径建立消息中LSP_ATTRIBUTES对象的LSP端到端可用时隙TLV携带第二OTN节点与目的节点之间的各成员链路可用时隙数目。
可选地,所述部分速率标识符用于标识在目的节点处进行部分速率的封装映射或者解封装映射;所述LSP_ATTRIBUTES对象扩展的的属性TLV用于标识源节点与目的节点之间的灵活以太网组成员路径每段链路上可用的时隙数目。
本实施例在RFC7570中定义的众多Hop Attribute TLV中,使用其中的Attribute Flag TLV,在本实施例中分配两个标识位用于表示是否需要做partial-rate的映射,当标识位的二进制编码为11时候,说明需要抽取FlexE中的所有的可用时隙(也即slot的状态不是unavailable),然后将这些时隙映射到传送网络中继续传输;当标识位的二进制编码为00时,表示需要从传 送网络中恢复出来这些时隙,然后放到FlexE网络中继续传输。对于其他的“01”和“10”的状态,表示不作任何操作。
本实施例在RFC5420中定义的LSP_ATTRIBUTES对象中扩展一个新的属性TLV——FlexE链路可用时隙TLV,该TLV只包含若干个8比特位字段,每个8比特位字段对应到FlexE使用的一条PHY成员路径,使用这些8字节字段来收集每条端到端的PHY成员路径可支持使用时隙的最大数目。8比特位字段对应PHY的排列顺序与实际标签中PHY的排列顺序是一致的。
FlexE支持的时隙颗粒度信息可以根据带宽信息和使用的比特位数目信息计算出来,也可在信令中显式指示要用到的时隙颗粒度信息。
信令建路时候使用的通道可以是带外通道,也可以是FlexE技术提供的管理通道。
如图8所示,本实施例还提供一种灵活以太网路径建立的装置,设置于目的节点,包括:
第一接收模块,设置为接收源节点发送的建立路径消息;
第一路径建立模块,设置为根据所述灵活以太网路径建立消息中的信息进行本地资源预留并建立通信路径;
反馈模块,设置为向所述源节点发送预留状态Resv消息;
本实施例中,所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目;其中:所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;所述物理层编号用于标识灵活以太网组的物理层路径;所述客户端指示符用于标识灵活以太网组中的客户端;所述不可用时隙数目用于标识不可用时隙的数目。
本实施例中,所述灵活以太网路径建立消息包括通用标签建立请求对象,所述通用标签建立请求对象包括交换类型、标签交换路径LSP编码类型、G-PID负载类型、带宽需求、源节点和目标节点的信息,其中,所述G-PID 负载类型设置为以太网MAC;
所述第一路径建立模块还设置为:根据所述灵活以太网路径建立消息封装资源预留协议跳跃RSVP_HOP对象,根据负载类型G-PID中携带的负载类型,虚拟以太网接口;其中,所述RSVP_HOP对象包括对应物理链路的物理端口信息,所述物理层编号标识的物理端口与所述RSVP_HOP对象包括的物理端口的数目及顺序一致。
本实施例中,所述标签建立请求对象中的LSP编码类型为部分速率灵活以太网LSP,所述灵活以太网路径建立消息还包括标签交换路径属性LSP_ATTRIBUTES对象,通过所述LSP_ATTRIBUTES对象扩展的的属性类型-长度-值TLV携带源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目;所述第一路径建立模块根据所述灵活以太网路径建立消息中的信息进行本地资源预留,包括:根据扩展的所述LSP属性对象的属性TLV的值,获取源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目,根据所述可用的时隙数目进行本地资源预留。
如图9所示,本实施例还提供一种灵活以太网路径建立的装置,设置于源节点,包括:
请求模块,设置为向目的节点发送灵活以太网路径建立消息;
第二接收模块,设置为接收所述目的节点发送的预留状态Resv消息;
第二路径建立模块,设置为根据所述Resv消息进行出接口时隙资源预留并建立通信路径;
所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目;其中:所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;所述物理层编号用于标识灵活以太网组的物理层路径;所述客户端指示符用于标识灵活以太网组中的客户端;所述不可用时隙数目用于标识不可用时隙的数目。
本实施例中,所述请求模块发送的所述灵活以太网路径建立消息包括通用标签建立请求对象,所述通用标签建立请求对象包括交换类型、标签交换路径LSP编码类型、G-PID负载类型、带宽需求、源节点和目标节点的信息。
可选地,所述G-PID负载类型设置为以太网MAC;所述灵活以太网路径建立消息还包括以下一种或多种对象:
显示路由对象ERO,包括用于部分速率标识符,所述部分速率标识符用于指定进行部分速率封装映射和/或解封装映射的节点;
标签交换路径属性LSP_ATTRIBUTES对象,包括所述LSP_ATTRIBUTES对象扩展的的属性类型-长度-值TLV,所述属性TLV携带源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目。
可选地,所述请求模块发送的所述灵活以太网路径建立消息中所述LSP_ATTRIBUTES对象扩展的的属性TLV用于标识源节点与目的节点之间的灵活以太网组成员路径每段链路上可用的时隙数目。
本实施例中,所述的装置还包括物理层路径建立模块,设置为:在所述请求模块向目的节点发送灵活以太网路径建立消息之前,建立通过光传送网OTN节点的与所述目的节点之间的以太网物理层路径,以承载所述灵活以太网路径的信号流量;或者建立所述源节点与第一ONT节点之间的以太网物理层路径、第一OTN节点和第二OTN节点之间的OTN光通道数据单元灵活ODUFlex路径,及第二OTN节点与所述目的节点之间的以太网物理层路径,以承载所述灵活以太网路径的信号流量。
上述方案利用信令的扩展来支持FlexE传送平面路径的建立,能够填补FlexE控制平面信令建路的空白,用于在FlexE场景中建立端到端的路径,完成端到端路径上各个节点上的端口、时隙等资源的预留,提供控制平面端到端FlexE LSP路径建立的功能。
实施例一:
图2所示的网络场景,重新将图做标识之后,如图11所示:其中A和F 节点是以太网节点,B和E节点是支持FlexE技术的节点如FlexE Shim节点,能够支持全速率的客户层信号映射与解映射,C和D是OTN节点,且C和D节点不感知FlexE应用,A和B以及E和F之间业务带宽是150G,B和C以及D和E之间是由三条100G的PHY物理线路来承载客户信号,物理编号分别为11和12、13,C和D之间是OTN连接,可以是两条ODU4的信号连接,其中时隙的颗粒度为1.25G,这种场景下通常不会使用到不可用时隙。
用户希望建立一条从A到F节点的150G的以太网业务,使用RSVP-TE的信令流程建立端到端的路径,假设经过的路径序列已经计算好了,为A-B-C-D-E-F。整个路径建立的流程如下:
节点A发出信令Path消息,消息中包括通用标签建立请求对象,其中交换类型设置为PSC-1包交换,LSP编码类型(Encoding Type)为Ethernet,要建立的带宽为150G,源点和目的节点为A和F等信息,Path消息发送到下一跳B节点。
B节点在接收到A节点发送过来的Path消息后,根据信令中的交换类型等字段,判断出来要建立的路径和A节点发起的路径建立属于不同的交换层次,于是B节点首先阻塞A节点发送过来的Path消息,然后封装一条新的FlexE路径建立Path消息(是FlexE层B节点和E节点之间的基于流量工程扩展的资源预留协议RSVP-TE消息),消息中包括通用标签建立请求对象,其中交换类型设置为TDM时隙交换,LSP Encoding Type为FlexE LSP,G-PID负载类型为Ethernet MAC,要建立的带宽为150G,源点和目的节点为B和E。考虑到B和E之间当前没有Ethernet PHY连接,B首先封装两条新的Ethernet PHY路径建立Path消息,用来建立B节点和E节点之间的两条PHY路径,要建立的带宽为100G,源点和目的节点为B和E,然后将Path消息发送到下一跳C节点(其中LSP Encoding Type中FlexE LSP为新定义的编码类型)。
C节点在接收到B节点发送过来的Path消息后,根据信令中的交换类型等字段,判断出来要建立路径和B节点发起的路径建立属于不同的交换层次,于是C节点首先阻塞B节点发送过来的Path消息,然后依次封装两条新的 OTN路径建立Path消息,消息中包括通用标签建立请求对象,其中交换类型设置为OTN-TDM时隙交换,LSP Encoding Type为G.709ODUk(Digital Path),G-PID负载类型为FlexE Ethernet PHY,要建立的带宽为均是100G,源点和目的节点为C和D;然后将Path消息发送到下一跳D节点,依据相关技术完成C和D之间两条ODU4路径建立,这时C和D之间的ODU对于两端节点B和E来说,就是两条PHY物理连接。在完成C和D节点之间的连接的建立之后,C节点会通知到阻塞在C上的Ethernet PHY信令流程继续发送。阻塞在C上的信令流程发送到D,D节点在接收到C节点发送过来的Path消息后做类似的操作,然后发送到E。
E节点在接收到D节点发送过来的Path消息之后,因为E节点为目的节点,则E节点首先完成本地的资源预留,依据相关技术完成Ethernet PHY层面的路径建立,发送信令Resv消息给D节点,然后到C节点,再到B节点。
B节点在确认PHY层面的路径建立之后,继续发送FlexE路径建立Path消息直接到尾节点E,E节点根据客户的150G带宽需求,确定需要30个时隙来承载客户信号,假设占用的时隙为1的1~15时隙以及2的1~15时隙,1的16~20时隙以及2的16~20时隙为unused slots,也需要完成资源的预留,其中1,2是PHY路径的编号即PHY Number,PHY路径对应于实际的PHY链路;其次E节点封装RSVP_HOP对象,用来指明所要使用的链路是哪两条,这里假设使用12和13,其中12和13是PHY链路的编号。除了资源预留之外,E节点根据G-PID中携带的负载类型,虚拟出Ethernet接口,接口的剩余带宽为50G,也即对下游节点F来说,仍有50G的以太网可用带宽可使用,这样也能保证E节点能够将以太网信号从FlexE路径中解映射来。E节点在完成这些步骤之后,发送Resv消息给B节点,其中的Resv消息携带本发明中给出的信令标签格式,标签中各字段的赋值为:
FlexE Group Number:用于唯一标识一个要用到的FlexE Group,只存在于两个FlexE Shim节点之间,这时候E根据自身节点FlexE Group Number的使用情况,分配一个可用的数字,用于唯一标识一个B和E之间的FlexE Group。
Flags,标识位字段,因为是初次建立FlexE连接,所以需要在节点上配 置资源预留。另外一个比特位,信令可以配置这里使用了Calendar A类型的时隙,确保路径两端节点使用相同的Calendar配置类型即可。
PHY Number:总共用到两条PHY路径,所以这里需要给两个PHY Number分配一个值,一个为1,另外一个为2。PHY Number标识的具体物理端口的顺序应和Resv消息中携带的RSVP_HOP对象中成员链路标识的顺序一致。PHY Number是应用到端到端的路径中,无论经过几跳,PHY Number不会改变。
Client Indicator(16比特位):用来唯一标识一个FlexE group中的一个客户端,信令流程协商之后的Client Indicator会携带在FlexE头部开销字段中的时隙承载的客户标识字段(Client carried Calendar“A”or“B”slot number),这里假设分配一个值500用来标识此客户,本实施例中使用了两条PHY路径中的各自前15个时隙,所以需要将FlexE头部开销中的时隙承载的客户标识字段设置为500。
Slots Assignment Information,此字段出现次数和PHY Number出现次数是相同的,此字段中设置为“1”的比特位标识分配给客户的时隙的资源预留,设置为“0”的比特位标识未分配给客户的时隙的资源预留。假设FlexE Client使用了这两条PHY路径中前15个时隙,那么将这两条PHY中前15个时隙置为1,后五个时隙置为0。
Unavailable slots Number(8比特位):本实施例中此字段设置为0。
B节点在接收到E节点发送过来的Resv消息之后,根据信令中携带的标签,完成出接口上时隙资源的预留,也即完成了B到E节点之间FlexE路径的建立。除了资源预留之外,B节点根据G-PID中携带的负载类型,虚拟出Ethernet接口,接口的剩余带宽为50G,也即对上游节点A来说,仍有50G的以太网可用带宽可使用,这样也能保证B节点能够将以太网信号映射到FlexE路径中来。完成这些步骤之后,B节点会通知到阻塞在B节点上的信令流程继续发送,阻塞在B节点上的信令流程(A节点发送过来的path消息)发送到E节点(因为中间的B-C-D-E节点对外表现为一跳链路,也即B-E的以太网链路),然后由E节点发送到F节点。
F节点在接收到上游发送过来的path消息后,因为F节点是目的节点, F节点封装Resv消息,根据相关技术中描述的以太网路径建立的流程,发送Resv消息给E节点,然后再到B节点,然后再到A节点,完成整个路径的建立。
如果在路径建立过程中出现建路失败的情形,按照相关的流程,发送Error消息给对应层次的首节点,首节点在接收到Error消息之后,依次递归完成各层Error消息的发送。
实施例二:
仍然使用图11的网络场景,不同的是:C和D节点支持部分速率(partial-rate)的FlexE应用,此时假设C和D节点之间的可用带宽为180G,B和C之间有4条不可用状态的时隙,D和E之间有5条不可用的时隙,这种场景下会使用到不可用时隙的信息。
此时,假设用户依旧要建立一条从A到F节点的150G的以太网业务,使用RSVP-TE的信令流程建立端到端的路径,假设经过的路径序列已经计算好了,为A-B-C-D-E-F。整个路径建立的流程如下:
节点A发出信令Path消息,消息中包括通用标签建立请求对象,其中交换类型设置为PSC-1包交换,LSP Encoding Type为Ethernet,要建立的带宽为150G,源点和目的节点为A和F,Path消息发送到下一跳B节点。
B节点在接收到A节点发送过来的Path消息后,根据信令中的交换类型等字段,判断出来要建立路径和A节点发起的路径建立属于不同的交换层次,于是B节点首先进行路径计算,确认可以通过建立partial-rate FlexE LSP来建立端到端路径,然后节点B阻塞A节点发送过来的Path消息,然后封装一条新的FlexE路径建立Path消息,消息中包括通用标签建立请求对象,其中交换类型设置为TDM时隙交换,LSP Encoding Type为Partial-rate FlexE LSP,G-PID负载类型为Ethernet MAC,要建立的带宽为150G,源点和目的节点为B和E,B节点需要根据路由中洪泛出来的能力信息,按照本实施例中新的ERO属性TLV的扩展,显式的指定在C节点做partial-rate的映射,在D节点做partial-rate的解映射;同时,B节点会在信令Path消息中加入本实施例中扩展的LSP_ATTRIBUTES对象的属性TLV(上文也称为LSP端到 端可用时隙TLV),携带B和C之间每条PHY路径在FlexE层可用的时隙数目,这里分别为18、18。
B节点在完成上述的操作后,因为支持FlexE时隙交换的下一跳地址为C。考虑到B和C之间当前没有Ethernet PHY连接,B首先封装两条新的Ethernet PHY路径建立Path消息,用来建立B节点和C节点之间的两条PHY路径,要建立的带宽为100G,源点和目的节点为B和C。然后根据相关技术完成B和C之间PHY路径的建立,C节点在接收到B节点发送过来的路径建立path消息之后,检查path消息中的G-PID字段为Partial-rate FlexE LSP,以及检查本身是否支持partial-rate的映射,确认没问题之后,返回Resv消息给节点B完成PHY路径的建立。
B节点在确认B和C之间的PHY路径建立完成之后,发送FlexE路径建立Path消息到C节点,C节点在接收到B节点发送过来的FlexE路径建立消息后,根据信令中的交换类型等字段,判断出要建立路径和B节点发起的路径建立属于不同的交换层次,本实施例这种场景下,FlexE路径可以承载在OTN ODUFlex路径直接做时隙层面多路径交换,这里就不需要建立Ethernet PHY路径。于是C节点首先阻塞B节点发送过来的Path消息,然后封装一条新的OTN ODUFlex Path消息,其中交换类型设置为OTN-TDM时隙交换,LSP Encoding Type为G.709ODUk(Digital Path),G-PID负载类型为Partial-rate FlexE LSP,同时也考虑到C和D节点中最大可用带宽为180G,且此带宽能够满足FlexE客户的150G的带宽需求,然后依据相关技术继续OTN ODUFlex层面的路径建立,设置带宽为180G,发送OTN ODUFlex。
C和D节点依据相关流程完成OTN ODUFlex路径建立之后,因为需要为客户层FlexE提供服务,所以需要为FlexE建立虚拟接口,因为FlexE和OTN均是时隙交换,FlexE的时隙粒度是5G,这里OTN的时隙粒度为1.25G,所以一个FlexE时隙由4个OTN的时隙来承载传输,D节点资源预留将FlexE时隙和OTN时隙之间的映射绑定,D节点虚拟出两个FlexE PHY接口,假设虚拟出来的这两个接口的标识为41和42,对下游FlexE Shim节点来说,这两个FlexE PHY接口支持FlexE时隙;C节点也虚拟出来两个FlexE PHY接口,假设虚拟出来的这两个接口的标识为51和52,对上游FlexE Shim B 节点来说,这两个FlexE PHY接口支持FlexE时隙。此时C和D节点之间的链路,对于B和E节点来说,就是一条支持FlexE功能的链路。
C节点在确认C和D节点之间的路径建立成功之后,考虑到C和D之间两条路径分别可用的时隙数目为18、18,决定设置信令中带宽为180G,源点和目的节点为C和D,然后将Path消息发送到下一跳D节点。D节点重复上述流程,完成Ethernet PHY层路径的建立,然后继续FlexE层路径建立,因D节点和E节点之间两条PHY最大可用FlexE时隙数目为18、17,所以LSP_ATTRIBUTES对象的属性TLV字段的赋值修改为相对应的时隙,继续发送FlexE路径建立消息到E节点。
E节点在接收到D节点发送过来的Path消息之后,因为E节点为目的节点,则E节点首先完成本地的资源预留。根据LSP_ATTRIBUTES对象的属性TLV字段的值,获取端到端路径最大可用时隙的数目为18、17时隙,节点E根据这个信息,确定PHY 1的1~18时隙可用,PHY 2的1~17时隙可用;另外,根据客户的150G带宽需求,确定需要30个时隙来承载客户信号,假设占用的时隙为1的1~15时隙以及2的1~15时隙,1的16~18时隙以及2的16~17时隙为unused slots,也需要完成资源的预留,其次E节点封装RSVP_HOP对象,用来指明所要使用的物理链路是哪两条,这里假设使用12和13。除了资源预留之外,E节点根据G-PID中携带的负载类型,虚拟出Ethernet接口,接口的剩余带宽为25G,也即对下游节点F来说,仍有25G的以太网可用带宽可使用,这样也能保证E节点能够将以太网信号从FlexE路径中解映射来。E节点在完成这些步骤之后,发送Resv消息给D节点,其中的Resv消息携带本发明中给出的信令标签格式,标签中各字段的赋值为:
FlexE Group Number:用于唯一标识一个要用到的FlexE Group,只存在两个FlexE Shim节点之间,这时候E根据自身节点FlexE Group Number的使用情况,分配一个可用的数字,用于唯一标识一个B和E之间的FlexE Group。
Flags,标识位字段,因为是初次建立FlexE连接,所以需要在节点上配置资源预留。另外一个比特位,信令可以配置这里使用了Calendar A类型的 时隙,确保路径两端节点使用相同的Calendar配置类型即可。
PHY Number:总共用到两条PHY,所以这里需要给两个PHY Number分配一个值,一个为1,另外一个为2。PHY Number标识的具体物理端口的顺序应和Resv消息的RSVP_HOP对象中成员链路标识的顺序一致。PHY Number是应用到端到端的路径中,无论经过几跳,PHY Number不会改变。
Client Indicator(16比特位):用来唯一标识一个FlexE group中的一个客户,信令流程协商之后的Client Indicator会携带在FlexE头部开销字段中的时隙承载的客户标识字段(Client carried Calendar“A”or“B”slot number),这里假设分配一个值500用来标识此客户,本实施例中使用了两条PHY中的各自前15个时隙,所以需要将FlexE头部开销中的时隙承载的客户标识字段设置为500。
Slots Assignment Information,此字段出现次数和PHY Number出现次数是相同的,此字段中设置为“1”的比特位标识分配给客户的时隙的资源预留,设置为“0”的比特位标识未分配给客户的时隙的资源预留。假设FlexE Client使用了这两条PHY中各自的前15个时隙,那么将这两条PHY中前15个时隙置为1。不可用时隙的话,因为FlexE使用了两条路径来承载,所以根据协商的结果,第一条路径的不可用时隙数目为3,第二条路径的不可用时隙数目为2。第一条路径中的16~18时隙设置为0说明未分配给客户的时隙的资源预留,第二条路径中的16~17时隙设置为0说明未分配给客户的时隙的资源预留。
Unavailable slots Number(8比特位):不可用时隙会排列在每个子Calendar最后几个连续的时隙中,此字段用来说明不可用时隙的数目。对于两条路径来说,第一条路径的不可用时隙数目设置为2,第二条路径的不可用时隙数目设置为3。
D节点在接收到E节点发送的Resv消息之后,首先确定自己和上游C节点之间client需要使用到的时隙,假设这里对于两条PHY使用的时隙均为2~16,那么D节点完成时隙资源配置的过程,也即将入端口上承载客户业务的2~16时隙配置到出端口上承载客户业务的1~15时隙,同时将未使用的时隙1以及17~20时隙交换到16~20时隙上,这里时隙的顺序是不可以改变的, D节点根据接收到Resv消息中RSVP_HOP对象携带的子成员链路信息,标识前面的一条为PHY 1(实际端口号为41),后面一条为PHY 2(实际端口号为42);除了Client客户层面时隙需要做交换之外,在这种partial-rate的场景下,需要明确说明PHY层面用到的时隙有哪些,也即通过对Slots used by a PHY字段设置,假设依旧使用PHY 1的1~18时隙和PHY 2的1~17时隙,则将这些字段设置为1,其他设置为0;另外,D节点根据之前收到的path消息中的partial-rate解映射标识符,恢复出来所有的时隙,对于unavailable时隙的编码遵循现有的FlexE标准。在完成这些时隙交换的配置之后,D节点发送Resv消息封装用到的2~16时隙信息给上游C节点,同样也要封装RSVP_HOP对象指明要使用的成员链路,C节点根据之前Path消息中的partial-rate映射标识符,配置传送面抽取出来可用的时隙(时隙状态非unavailable),映射到传送网络中传输。然后C节点重复类似的过程一直将信令Resv消息发送到B节点。
B节点在接收到C节点发送过来的Resv消息之后,根据信令中携带的标签,完成出接口上时隙资源的预留,也即完成了B到E节点之间FlexE路径的建立。除了资源预留之外,B节点根据G-PID中携带的负载类型,虚拟出Ethernet接口,考虑到建立的FlexE路径中unused slot的数目,确定接口的剩余带宽为25G,也即对上游节点A来说,仍有25G的以太网可用带宽可使用。完成这些步骤之后,B节点会通知到阻塞在B节点上的信令流程继续发送,阻塞在B节点上的信令流程发送到E节点(因为中间的B-C-D-E节点对外表现为一跳链路,也即B-E的以太网链路),然后由E节点发送到F节点。
F节点在接收到上游发送过来的path消息后,因为F节点是目的节点,F节点封装Resv消息,根据现有技术中描述的以太网路径建立的流程,发送Resv消息给E节点,然后再到B节点,然后再到A节点,完成整个路径的建立。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如***、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
通过本发明实施例的方案,利用信令的扩展来支持FlexE传送平面路径的建立,基于本发明中的方案,能够填补FlexE控制平面信令建路的空白,用于在FlexE场景中建立端到端的路径,完成端到端路径上各个节点上的端口、时隙等资源的预留,提供控制平面端到端FlexE LSP路径建立的功能。

Claims (22)

  1. 一种灵活以太网路径建立的方法,应用于目的节点,包括:
    接收源节点发送的灵活以太网路径建立消息;
    根据所述灵活以太网路径建立消息中的信息进行本地资源预留以建立灵活以太网通信路径;
    向所述源节点发送预留状态Resv消息;
    所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目。
  2. 如权利要求1所述的方法,其中:所述灵活以太网路径建立消息包括通用标签建立请求对象,所述通用标签建立请求对象包括交换类型、标签交换路径LSP编码类型、G-PID负载类型、带宽需求、源节点和目标节点的信息,其中,所述G-PID负载类型设置为以太网MAC。
  3. 如权利要求2所述的方法,其中:向所述源节点发送预留状态Resv消息之前还包括:
    根据所述灵活以太网路径建立消息封装RSVP_HOP对象;
    根据负载类型G-PID中携带的负载类型,虚拟以太网接口。
  4. 如权利要求3所述的方法,其中:所述Resv消息还包括资源预留协议跳跃RSVP_HOP对象,所述RSVP_HOP对象包括对应物理链路的物理端口信息,所述物理层编号标识的物理端口与所述RSVP_HOP对象包括的物理端口的数目及顺序一致。
  5. 如权利要求2所述的方法,其中:
    所述标签建立请求对象中的LSP编码类型为部分速率灵活以太网LSP,所述灵活以太网路径建立消息还包括标签交换路径属性LSP_ATTRIBUTES对象,通过所述LSP_ATTRIBUTES对象扩展的的属性类型-长度-值TLV携带源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目;
    所述目的节点根据所述灵活以太网路径建立消息中的信息进行本地资源 预留,包括:根据所述LSP_ATTRIBUTES对象扩展的的属性TLV的值,获取源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目,根据所述可用的时隙数目进行本地资源预留。
  6. 如权利要求1所述的方法,其中:
    所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;
    所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;
    所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;
    所述物理层编号用于标识灵活以太网组的物理层路径;
    所述客户端指示符用于标识灵活以太网组中的客户端;
    所述不可用时隙数目用于标识不可用时隙的数目。
  7. 一种灵活以太网路径建立的方法,应用于源节点,包括:
    向目的节点发送灵活以太网路径建立消息;
    接收所述目的节点发送的预留状态Resv消息;
    根据所述Resv消息进行出接口时隙资源预留并建立通信路径;
    所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目。
  8. 如权利要求7所述的方法,其中:
    所述灵活以太网路径建立消息包括通用标签建立请求对象,所述通用标签建立请求对象包括交换类型、标签交换路径LSP编码类型、G-PID负载类型、带宽需求、源节点和目标节点的信息。
  9. 如权利要求8所述的方法,其中:
    所述LSP编码类型设置为部分速率灵活以太网LSP;所述灵活以太网路径建立消息还包括以下一种或多种对象:
    显示路由对象ERO,所述ERO包括用于部分速率标识符,所述部分速率标识符用于指定进行部分速率封装映射和/或解封装映射的节点;
    标签交换路径属性LSP_ATTRIBUTES对象,包括所述LSP_ATTRIBUTES对象扩展的的属性类型-长度-值TLV,所述属性TLV携带源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目。
  10. 如权利要求7所述的方法,其中,向目的节点发送灵活以太网路径建立消息之前,还包括:
    通过光传送网OTN节点与目的节点建立以太网物理层路径,通过所述物理层路径承载所述灵活以太网路径的信号流量。
  11. 如权利要求7所述的方法,其中,所述源节点向目的节点发送灵活以太网路径建立消息之前,还包括:
    所述源节点与第一OTN节点建立以太网物理层路径承载所述灵活以太网路径的信号流量,所述第一OTN节点与第二OTN节点之间建立OTN光通道数据单元灵活ODUFlex路径承载所述灵活以太网路径的信号流量,所述第二OTN节点与目的节点之间建立以太网物理层路径承载所述灵活以太网路径的信号流量。
  12. 如权利要求11所述的方法,其中,所述源节点将所述灵活以太网路径建立消息发送给第一OTN节点时,通过所述灵活以太网路径建立消息中LSP_ATTRIBUTES对象的LSP端到端可用时隙TLV携带所述源节点与第一OTN节点之间的各成员链路可用时隙数目;所述第一OTN节点将所述灵活以太网路径建立消息传输到第二OTN节点时,通过所述灵活以太网路径建立消息中LSP_ATTRIBUTES对象的LSP端到端可用时隙TLV携带所述第一OTN节点与第二OTN节点之间的各成员链路可用时隙数目;所述第二OTN节点将所述灵活以太网路径建立消息传输到目的节点时,通过所述灵活以太网路径建立消息中LSP_ATTRIBUTES对象的LSP端到端可用时隙TLV携带第二OTN节点与目的节点之间的各成员链路可用时隙数目。
  13. 如权利要求7所述的方法,其中:
    所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;
    所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;
    所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;
    所述物理层编号用于标识灵活以太网组的物理层路径;
    所述客户端指示符用于标识灵活以太网组中的客户端;
    所述不可用时隙数目用于标识不可用时隙的数目。
  14. 如权利要求8所述的方法,其中,所述部分速率标识符用于标识在目的节点处进行部分速率的封装映射或者解封装映射;
    所述LSP_ATTRIBUTES对象扩展的的属性TLV用于标识源节点与目的节点之间的灵活以太网组成员路径每段链路上可用的时隙数目。
  15. 一种灵活以太网路径建立的装置,其中,设置于目的节点,包括:
    第一接收模块,设置为接收源节点发送的灵活以太网路径建立消息;
    第一路径建立模块,设置为根据所述灵活以太网路径建立消息中的信息进行本地资源预留以建立灵活以太网通信路径;
    反馈模块,设置为向所述源节点发送预留状态Resv消息;
    所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目;其中:所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;所述物理层编号用于标识灵活以太网组的物理层路径;所述客户端指示符用于标识灵活以太网组中的客户端;所述不可用时隙数目用于标识不可用时隙的数目。
  16. 如权利要求15所述的装置,其中:
    所述灵活以太网路径建立消息包括通用标签建立请求对象,所述通用标 签建立请求对象包括交换类型、标签交换路径LSP编码类型、G-PID负载类型、带宽需求、源节点和目标节点的信息,其中,所述G-PID负载类型设置为以太网MAC;
    所述第一路径建立模块还设置为:根据所述灵活以太网路径建立消息封装资源预留协议跳跃RSVP_HOP对象;根据负载类型G-PID中携带的负载类型,虚拟以太网接口;其中,所述RSVP_HOP对象包括对应物理链路的物理端口信息,所述物理层编号标识的物理端口与所述RSVP_HOP对象包括的物理端口的数目及顺序一致。
  17. 如权利要求16所述的装置,其中:
    所述标签建立请求对象中的LSP编码类型为部分速率灵活以太网LSP,所述灵活以太网路径建立消息还包括标签交换路径属性LSP_ATTRIBUTES对象,通过所述LSP_ATTRIBUTES对象扩展的的属性类型-长度-值TLV携带源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目;
    所述第一路径建立模块根据所述灵活以太网路径建立消息中的信息进行本地资源预留,包括:根据扩展的所述LSP属性对象的属性TLV的值,获取源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目,根据所述可用的时隙数目进行本地资源预留。
  18. 一种灵活以太网路径建立的装置,其中,设置于源节点,包括:
    请求模块,设置为向目的节点发送灵活以太网路径建立消息;
    第二接收模块,设置为接收所述目的节点发送的预留状态Resv消息;
    第二路径建立模块,设置为根据所述Resv消息进行出接口时隙资源预留并建立通信路径;
    所述Resv消息包括以下的一项或者多项:灵活以太网组编号、标志位、时隙分配信息、物理层编号、客户端指示符、不可用时隙数目;其中:所述灵活以太网组编号用于标识源节点与目的节点之间的灵活以太网组;所述标志位用于标识客户端使用的日历配置类型和是否进行时隙资源配置;所述时隙分配信息用于标识物理层路径中的时隙通道分配信息;所述物理层编号用于标识灵活以太网组的物理层路径;所述客户端指示符用于标识灵活以太网 组中的客户端;所述不可用时隙数目用于标识不可用时隙的数目。
  19. 如权利要求18所述的装置,其中:
    所述请求模块发送的所述灵活以太网路径建立消息包括通用标签建立请求对象,所述通用标签建立请求对象包括交换类型、标签交换路径LSP编码类型、G-PID负载类型、带宽需求、源节点和目标节点的信息。
  20. 如权利要求19所述的装置,其中:
    所述G-PID负载类型设置为以太网MAC;所述灵活以太网路径建立消息还包括以下一种或多种对象:
    显示路由对象ERO,包括用于部分速率标识符,所述部分速率标识符用于指定进行部分速率封装映射和/或解封装映射的节点;
    标签交换路径属性LSP_ATTRIBUTES对象,包括所述LSP_ATTRIBUTES对象扩展的的属性类型-长度-值TLV,所述属性TLV携带源节点到目的节点之间每条物理层路径在灵活以太网层可用的时隙数目。
  21. 如权利要求18所述的装置,其中,
    所述装置还包括物理层路径建立模块,设置为:在所述请求模块向目的节点发送灵活以太网路径建立消息之前,建立通过光传送网OTN节点的与所述目的节点之间的以太网物理层路径,以承载所述灵活以太网路径的信号流量;或者建立所述源节点与第一ONT节点之间的以太网物理层路径、第一OTN节点和第二OTN节点之间的OTN光通道数据单元灵活ODUFlex路径,及第二OTN节点与所述目的节点之间的以太网物理层路径,以承载所述灵活以太网路径的信号流量。
  22. 如权利要求20所述的装置,其中,
    所述请求模块发送的所述灵活以太网路径建立消息中所述LSP_ATTRIBUTES对象扩展的的属性TLV用于标识源节点与目的节点之间的灵活以太网组成员路径每段链路上可用的时隙数目。
PCT/CN2016/097204 2016-03-18 2016-08-29 一种灵活以太网路径建立的方法和装置 WO2017156987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610161268.2A CN107204941A (zh) 2016-03-18 2016-03-18 一种灵活以太网路径建立的方法和装置
CN201610161268.2 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017156987A1 true WO2017156987A1 (zh) 2017-09-21

Family

ID=59850245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097204 WO2017156987A1 (zh) 2016-03-18 2016-08-29 一种灵活以太网路径建立的方法和装置

Country Status (2)

Country Link
CN (1) CN107204941A (zh)
WO (1) WO2017156987A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281145A1 (en) * 2016-10-24 2019-09-12 Huawei Technologies Co., Ltd. Data Transmission Method in Flexible Ethernet and Device
CN111107641A (zh) * 2019-12-11 2020-05-05 Ut斯达康通讯有限公司 FlexE业务处理方法、装置及电子设备
CN111835546A (zh) * 2019-04-23 2020-10-27 中兴通讯股份有限公司 一种资源分配方法及装置
EP3694153A4 (en) * 2017-10-31 2020-10-28 Huawei Technologies Co., Ltd. METHOD, APPROPRIATE DEVICE AND SYSTEM FOR TARGET TRANSMISSION PATH ACQUISITION
CN113746675A (zh) * 2021-08-31 2021-12-03 烽火通信科技股份有限公司 一种用HQoS实现灵活以太网业务场景的方法及***
CN113839870A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 路径创建方法、装置及***
US11228526B2 (en) * 2017-08-04 2022-01-18 Huawei Technologies Co., Ltd. Flexible ethernet path establishment method and network device
US11271668B2 (en) * 2017-05-19 2022-03-08 Huawei Technologies Co., Ltd. Data transmission methods, apparatuses, devices, and system

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225638B2 (en) 2013-05-09 2015-12-29 Vmware, Inc. Method and system for service switching using service tags
US11496606B2 (en) 2014-09-30 2022-11-08 Nicira, Inc. Sticky service sessions in a datacenter
US11722367B2 (en) 2014-09-30 2023-08-08 Nicira, Inc. Method and apparatus for providing a service with a plurality of service nodes
US10609091B2 (en) 2015-04-03 2020-03-31 Nicira, Inc. Method, apparatus, and system for implementing a content switch
CN109586864B (zh) 2017-09-28 2021-01-15 华为技术有限公司 数据传输方法、装置及***
US10805181B2 (en) 2017-10-29 2020-10-13 Nicira, Inc. Service operation chaining
CN109729025B (zh) * 2017-10-31 2021-04-20 华为技术有限公司 一种处理灵活以太网的数据的方法及相关设备
CN111727589B (zh) * 2017-12-22 2022-05-27 瑞典爱立信有限公司 用于配置Flex以太网节点的方法和设备
WO2019147316A1 (en) * 2018-01-26 2019-08-01 Nicira, Inc. Specifying and utilizing paths through a network
US10797910B2 (en) 2018-01-26 2020-10-06 Nicira, Inc. Specifying and utilizing paths through a network
CN110224949B (zh) * 2018-03-01 2022-05-20 中兴通讯股份有限公司 一种灵活以太网设备端口绑定的方法及装置、路径建立方法及装置
CN110247787B (zh) * 2018-03-08 2022-02-18 中兴通讯股份有限公司 一种灵活以太网路径建立的方法、网元和控制设备
US10805192B2 (en) 2018-03-27 2020-10-13 Nicira, Inc. Detecting failure of layer 2 service using broadcast messages
CN110601999B (zh) * 2018-06-12 2022-03-04 华为技术有限公司 资源预留的方法与装置
CN110677918B (zh) * 2018-07-03 2021-07-23 中国电信股份有限公司 链路状态信息转发方法、***及装置
US11595250B2 (en) 2018-09-02 2023-02-28 Vmware, Inc. Service insertion at logical network gateway
CN109379214B (zh) * 2018-09-25 2021-07-13 中国联合网络通信集团有限公司 一种FlexE链路的配置方法和装置
CN111278059B (zh) * 2018-12-04 2023-09-01 中兴通讯股份有限公司 一种报文转发方法和装置
CN111342983B (zh) * 2018-12-18 2022-07-12 深圳市中兴微电子技术有限公司 成员动态处理方法、***、接收端、管理实体及存储介质
CN109450544B (zh) * 2018-12-27 2020-10-16 ***通信集团江苏有限公司 光线路终端olt设备、无源光网络pon数据传送方法
CN111510311B (zh) * 2019-01-30 2022-10-28 中兴通讯股份有限公司 配置策略的确定方法及装置、存储介质
US11360796B2 (en) 2019-02-22 2022-06-14 Vmware, Inc. Distributed forwarding for performing service chain operations
CN109995588B (zh) * 2019-03-29 2020-07-07 烽火通信科技股份有限公司 一种灵活以太网链路管理方法及***
US11785053B2 (en) * 2019-04-04 2023-10-10 Cisco Technology, Inc. Systems and methods for determining secure network paths
CN112532522B (zh) * 2019-09-19 2023-09-05 中兴通讯股份有限公司 一种业务路径的建立方法、装置、电子设备
US11140218B2 (en) 2019-10-30 2021-10-05 Vmware, Inc. Distributed service chain across multiple clouds
US11283717B2 (en) 2019-10-30 2022-03-22 Vmware, Inc. Distributed fault tolerant service chain
US11659061B2 (en) 2020-01-20 2023-05-23 Vmware, Inc. Method of adjusting service function chains to improve network performance
CN113452623B (zh) * 2020-03-26 2023-11-14 华为技术有限公司 基于FlexE传输业务流的方法及设备
US11277331B2 (en) 2020-04-06 2022-03-15 Vmware, Inc. Updating connection-tracking records at a network edge using flow programming
CN113890787A (zh) * 2020-07-03 2022-01-04 中兴通讯股份有限公司 灵活以太网环网保护方法、装置、计算机设备和介质
CN112787924B (zh) * 2020-09-28 2022-02-18 中兴通讯股份有限公司 时隙交叉路径配置方法、计算机设备和可读介质
CN114337952B (zh) * 2020-09-30 2023-06-09 烽火通信科技股份有限公司 一种通信链路协商的方法和***
CN112511382B (zh) * 2020-11-24 2022-03-29 中盈优创资讯科技有限公司 灵活以太网FlexE通道的创建方法及装置
US11611625B2 (en) 2020-12-15 2023-03-21 Vmware, Inc. Providing stateful services in a scalable manner for machines executing on host computers
US11734043B2 (en) 2020-12-15 2023-08-22 Vmware, Inc. Providing stateful services in a scalable manner for machines executing on host computers
CN112738733B (zh) * 2020-12-17 2021-12-31 湖南智领通信科技有限公司 一种基于物理层协议的无线网格网络组网方法和装置
WO2024119450A1 (zh) * 2022-12-08 2024-06-13 新华三技术有限公司 资源预留方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201699727U (zh) * 2010-07-02 2011-01-05 中国人民解放军国防科学技术大学 一种部分可重构的以太网交换机
CN102891813A (zh) * 2012-09-05 2013-01-23 盛科网络(苏州)有限公司 支持多传输模式的以太网端口架构
WO2015180545A1 (zh) * 2014-05-30 2015-12-03 华为技术有限公司 加扰装置及加扰配置方法
WO2016000146A1 (zh) * 2014-06-30 2016-01-07 华为技术有限公司 一种数据处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201699727U (zh) * 2010-07-02 2011-01-05 中国人民解放军国防科学技术大学 一种部分可重构的以太网交换机
CN102891813A (zh) * 2012-09-05 2013-01-23 盛科网络(苏州)有限公司 支持多传输模式的以太网端口架构
WO2015180545A1 (zh) * 2014-05-30 2015-12-03 华为技术有限公司 加扰装置及加扰配置方法
WO2016000146A1 (zh) * 2014-06-30 2016-01-07 华为技术有限公司 一种数据处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, Q.: "RSVP-TE Signaling Extensions in Support of Flexible Ethernet Networks", IETF INTERNET -DRAFT, 7 March 2016 (2016-03-07), XP055424531 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11799992B2 (en) 2016-10-24 2023-10-24 Huawei Technologies Co., Ltd. Data transmission method in flexible ethernet and device
US20190281145A1 (en) * 2016-10-24 2019-09-12 Huawei Technologies Co., Ltd. Data Transmission Method in Flexible Ethernet and Device
US11146669B2 (en) * 2016-10-24 2021-10-12 Huawei Technologies Co., Ltd. Data transmission method in flexible ethernet and device
US11271668B2 (en) * 2017-05-19 2022-03-08 Huawei Technologies Co., Ltd. Data transmission methods, apparatuses, devices, and system
US11228526B2 (en) * 2017-08-04 2022-01-18 Huawei Technologies Co., Ltd. Flexible ethernet path establishment method and network device
EP3694153A4 (en) * 2017-10-31 2020-10-28 Huawei Technologies Co., Ltd. METHOD, APPROPRIATE DEVICE AND SYSTEM FOR TARGET TRANSMISSION PATH ACQUISITION
US11171860B2 (en) 2017-10-31 2021-11-09 Huawei Technologies Co., Ltd. Method for obtaining target transmission route, related device, and system
CN111835546A (zh) * 2019-04-23 2020-10-27 中兴通讯股份有限公司 一种资源分配方法及装置
CN111107641A (zh) * 2019-12-11 2020-05-05 Ut斯达康通讯有限公司 FlexE业务处理方法、装置及电子设备
CN111107641B (zh) * 2019-12-11 2023-11-07 Ut斯达康通讯有限公司 FlexE业务处理方法、装置及电子设备
CN113839870A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 路径创建方法、装置及***
CN113746675A (zh) * 2021-08-31 2021-12-03 烽火通信科技股份有限公司 一种用HQoS实现灵活以太网业务场景的方法及***
CN113746675B (zh) * 2021-08-31 2023-05-26 烽火通信科技股份有限公司 一种用HQoS实现灵活以太网业务场景的方法及***

Also Published As

Publication number Publication date
CN107204941A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2017156987A1 (zh) 一种灵活以太网路径建立的方法和装置
CN106803814B (zh) 一种灵活以太网路径的建立方法、装置及***
CN107612825B (zh) 建立灵活以太网路径的方法和网络设备
WO2017201953A1 (zh) 一种客户业务处理的方法和设备
EP2451186B1 (en) Method for assigning and processing label in optical network, optical communication device and optical communication system
US9473387B2 (en) Enhanced path selection scheme for equal cost paths in communication networks
CN113557696B (zh) 在网络中路由FlexE数据
WO2017088495A1 (zh) 一种路由信息的获取方法及装置
WO2018210169A1 (zh) 数据传输方法、装置、设备及***
US20090103533A1 (en) Method, system and node apparatus for establishing identifier mapping relationship
EP3468097B1 (en) Generating a forwarding table in a forwarding device
US20230254245A1 (en) Data Frame Sending Method and Network Device
CN102630384A (zh) 一种在光传送网中实现业务传送的方法及实现该方法的设备和***
WO2021238195A1 (zh) 业务资源预配置方法、设备和***
WO2021027434A1 (zh) 一种业务传输的方法、装置和***
WO2013063751A1 (zh) 转发邻居-标签交换路径的连接建立方法及装置
CN102571546B (zh) ODUflex无损调整能力路由洪泛方法、装置及节点
JP5027776B2 (ja) 通信ノード装置及び通信システム及び通信路制御プログラム
WO2022199276A1 (zh) 业务保护方法及网络节点
WO2024001370A1 (zh) 细粒度能力的洪泛方法、细粒度的配置方法,节点及介质
CN110365439B (zh) 信号映射方法、装置、服务器及计算机可读存储介质
KR20150113495A (ko) 가상 te 링크 생성 방법 및 장치
US7355984B1 (en) Method and system for finding network neighbor information
Belotti et al. Evaluation of Existing GMPLS Encoding against G. 709v3 Optical Transport Networks (OTNs)
Grandi et al. RFC 7096: Evaluation of Existing GMPLS Encoding against G. 709v3 Optical Transport Networks (OTNs)

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894146

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894146

Country of ref document: EP

Kind code of ref document: A1