WO2017155993A1 - Textile treatment for sublimation ink transfers - Google Patents

Textile treatment for sublimation ink transfers Download PDF

Info

Publication number
WO2017155993A1
WO2017155993A1 PCT/US2017/021154 US2017021154W WO2017155993A1 WO 2017155993 A1 WO2017155993 A1 WO 2017155993A1 US 2017021154 W US2017021154 W US 2017021154W WO 2017155993 A1 WO2017155993 A1 WO 2017155993A1
Authority
WO
WIPO (PCT)
Prior art keywords
textile material
composition
weight
image
polymer resins
Prior art date
Application number
PCT/US2017/021154
Other languages
French (fr)
Inventor
Donald D. Sloan
Scott Frank
Original Assignee
Donald D. Sloan, Trustee Of The Donald D. Sloan Trust, And His Successor And Successors, Under The Fourteenth Amendment To And Complete Restatement Of The Donald D. Sloan Trust Dated December 17, 2013
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/065,323 external-priority patent/US20170260690A1/en
Priority claimed from US15/082,386 external-priority patent/US20170275815A1/en
Application filed by Donald D. Sloan, Trustee Of The Donald D. Sloan Trust, And His Successor And Successors, Under The Fourteenth Amendment To And Complete Restatement Of The Donald D. Sloan Trust Dated December 17, 2013 filed Critical Donald D. Sloan, Trustee Of The Donald D. Sloan Trust, And His Successor And Successors, Under The Fourteenth Amendment To And Complete Restatement Of The Donald D. Sloan Trust Dated December 17, 2013
Publication of WO2017155993A1 publication Critical patent/WO2017155993A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/54Substances with reactive groups together with crosslinking agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/58Material containing hydroxyl groups
    • D06P3/60Natural or regenerated cellulose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/003Transfer printing
    • D06P5/004Transfer printing using subliming dyes
    • D06P5/005Transfer printing using subliming dyes on resin-treated fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2044Textile treatments at a pression higher than 1 atm
    • D06P5/205Textile treatments at a pression higher than 1 atm before dyeing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5264Macromolecular compounds obtained otherwise than by reactions involving only unsaturated carbon-to-carbon bonds
    • D06P1/5271Polyesters; Polycarbonates; Alkyd resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5264Macromolecular compounds obtained otherwise than by reactions involving only unsaturated carbon-to-carbon bonds
    • D06P1/5285Polyurethanes; Polyurea; Polyguanides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/56Condensation products or precondensation products prepared with aldehydes

Definitions

  • the present invention is generally directed toward a pretreatment composition for use in connection with the application of sublimation ink transfer to a cotton-containing textile material, such as a T-shirt.
  • Ink or image transfer systems are useful in applying graphics to a wide variety of items.
  • ink transfers have advantages over other types of image application systems, including direct printing systems.
  • the substrate or item intended to receive the image is not amenable to direct printing operations.
  • the volume of images to be printed makes direct printing operations, such as screen printing, economically unfeasible.
  • the use of ink transfers also allows printing operations to be performed at a site remote from the products to which the images will be applied.
  • the textile and clothing industry has used ink transfers as a way of applying an image to, for example, an article of clothing.
  • U.S. Patent No. 8,815,040 is directed toward an ink transfer system for transferring ink images to synthetic textile materials.
  • Dye sublimation transfers have also been shown to provide certain benefits as compared to direct-to-substrate printing and other types of image transfer systems, particularly in regard to fabrics.
  • Dye sublimation transfers are created by laying down reversed imagery onto transfer paper using dye-containing inks, as opposed to pigmented inks that are used in a number of direct printing systems.
  • the fabric and transfer paper are pressed together under high heat, often 400°F, and the dyes contained within the inks flash sublimate.
  • the vapor dyes then migrate into the fabric's fibers thereby transferring the image from the transfer to the fabric.
  • Dye sublimation has the ability to provide vibrant colors and transfer of highly detailed images that are limited only by the texture of the fabric and the resolution of the printer used in the manufacture of the transfer.
  • dye sublimation has not been demonstrated to work well in all fabric applications.
  • dye sublimation can be used on cotton-containing fabrics to initially transfer an image to the fabric, the dyes generally do not adhere well to the cotton fibers.
  • the image is durable and degrades very quickly, even upon a single wash cycle. Therefore, there is a need in the art for a system that permits use of sublimation dye transfers with cotton-containing textile materials that are colorfast and hold up even under repeated washing cycles.
  • a method of transferring an ink image onto a cotton-containing textile material An aqueous pretreatment composition is applied to at least a portion of the textile material that is to receive the ink image.
  • the pretreatment composition comprises one or more polymer resins, one or more crosslinking compounds, and one or more plasticizers.
  • the textile material containing the pretreatment composition is heated so as to remove moisture from the pretreatment composition and react the one or more polymer resins with the one or more crosslinking compounds thereby forming an image-receiving area on the textile material.
  • the ink image is transferred to the textile material by positioning a sublimation transfer system in contact with at least a portion of the image-receiving area and heating the sublimation transfer system to a temperature sufficient to cause the gassing of at least a portion of one or more dyes contained within the ink image and the transfer of at least a portion of the gasified dyes to the image-receiving area.
  • an aqueous composition for use with sublimation transfer systems on cotton-containing textile materials.
  • the composition comprises from about 5% to about 30% by weight of one or more water-dispersible polymer resins, from about 0.25% to about 10% by weight of one or more melamine crosslinking agents, from about 0.5% to about 12% by weight of one or more plasticizers, and from about 50% to about 90% by weight of water.
  • a cotton- containing textile material having a quantity of the pretreatment composition described herein applied to at least an image-receiving area thereof.
  • the textile material may further have an image applied to the image-receiving area using a dye sublimation transfer.
  • Certain embodiments of the present pertain to an aqueous composition that can be applied to a textile material, especially a textile material comprising cotton fibers, and that provides a platform for transferring an image to the textile material from a dye sublimation transfer.
  • the aqueous composition when cured upon the textile material, bonds with the textile's fibers and provides a stable base for adhesion of the gasified dyes from the transfer.
  • the water-based composition comprises a combination of one or more water-dispersible polymer resins, one or more crosslinking agents, and glass particles, each of which is described in further detail below.
  • the one or more polymer resins comprise at least one member selected from the group consisting of polyesters, urethanes, epoxies, acrylics and latexes.
  • the one or more polymer resins comprise at least one polyester resin.
  • the polyester resin comprises a polyester-polyurethane resin.
  • Exemplary polymer resins that may be used with the present invention include Alberdingk Boley U 199 (60% solids, pH between 7.5-9.5, Brookfield viscosity 200-1000 mPas), Alberdink Boley U 475 (40% solids, pH between 7.5-8.5, Brookfield viscosity 50-300 mPas), and Dispercoll U 53 (40% solids, viscosity at 23°C, spindle L 21 30 rpm 50-600 mPas).
  • the composition comprises from about 5% to about 30% by weight, from about 10% to about 20% by weight, or from about 12% to about 18% by weight of the one or more water-dispersible polymer resins. It is noted that, often, the one or more polymer resins are formulated as water-based dispersion. Therefore, the foregoing amounts are considered to be on a percent solids basis.
  • the one or more crosslinking agents comprise at least one crosslinking agent selected from the group consisting of melamine crosslinking agents and aziridine crosslinking agents.
  • the melamine crosslinking agent comprises an alkylated melamine-formaldehyde resin.
  • Exemplary crosslinking agents that may be used with the present invention include Cymel 327 (a methylated high imino melamine crosslinker, 90% solids) and CX-100 by DSM (a polyfunctional aziridine crosslinker, 100%) solids).
  • the one or more crosslinking agents, and particular the melamine crosslinking agents are formulated with isobutanol.
  • the composition comprises from about 0.25% to about 10% by weight, from about 0.5% to about 5% by weight, or from about 1% to about 4% by weight of the one or more crosslinking agents.
  • the glass particles which comprise the composition, are believed to improve the crosslinking density of the composition upon curing thereof. In addition, the glass particles are believed to promote the adhesion of the composition to the fibers of the textile material.
  • the glass particles may also function as a high-grade filler material for the composition.
  • the glass particles comprise glass microspheres that have an average particle size of from about 7 to about 10 ⁇ .
  • One exemplary type of glass microspheres that may be used with the present invention is Spheriglass ® 5000 Solid Glass Spheres by Potter Industries.
  • the composition comprises from about 0.25%) to about 10%> by weight, from about 0.5% to about 5% by weight, or from about 1%) to about 3% of the glass particles.
  • the glass particles aid in allowing the sublimation dye transfer to achieve very fine detail upon sublimation and absorption into the textile material.
  • the glass particles help to eliminate "halos" surrounding the image that can be formed during the sublimation process, which are the result of bleeding of the image beyond its original margins.
  • wash resistance and abrasion resistance is improved.
  • the glass particles reduce and/or eliminate image shrinkage and provide improved stress distribution.
  • Certain embodiments of the present invention further comprise a silica material.
  • silica materials for use with the present invention include Evonik TS-100 (untreated thermal silica) and Evonik Aerosil 200 (hydrophilic fumed silica).
  • the silica material assists with suspending the glass particles within the composition thereby permitting the composition to be sprayed or otherwise applied to a textile material without particle settling issues.
  • the composition comprises from about 0.25% to about 10% by weight, from about 0.5% to about 5%, or from about 1% to about 3% by weight of the silica material.
  • the present invention further comprise at least one plasticizer.
  • the plasticizer comprises a benzoic acid ester, such as dipropylene glycol dibenzoate, diethylene glycol dibenzoate, or a mixture thereof.
  • An exemplary plasticizer that may be used with the present invention is Benzoflex 50 by Eastman Chemical.
  • the plasticizer may impart improved hand- feel to the textile material bearing the composition, and may improve the washability of image-bearing textile material by enhancing color retention.
  • the composition comprises from about 0.5% to about 12% by weight, from about 1% to about 10%) by weight, or from about 2.5% to about 7.5% by weight of the at least one plasticizer.
  • compositions according to the present invention are water- based.
  • the compositions comprise from about 50% to about 90% by weight, from about 60% to about 80% by weight, or from about 65% to about 75% by weight of water.
  • these ranges refer to the total weight of water including the water contained in these dispersions as well as water (e.g., deionized water) that is separately added.
  • compositions disclosed herein are useful in methods of transferring an ink image onto a cotton-containing textile material.
  • the compositions are used as a textile pretreatment formulation.
  • the pretreatment composition is applied to a portion of the textile material that is designed to ultimately receive the image transfer.
  • the pretreatment composition can be applied to substantially all of the textile material.
  • the pretreatment composition is applied to the textile material in an amount of from about 0.05 to about 1 g/in 2 , from about 0.1 to about 0.8 g/in 2 , or from about 0.2 to about 0.5 g/in 2 .
  • the pretreatment composition can be applied to the textile material by nearly any means known in the art. However, in certain embodiments, it is preferable to apply the pretreatment composition by spraying or inkjetting the pretreatment composition onto the textile material.
  • the textile material comprising the wet pretreatment composition is then heated so as to remove moisture from the pretreatment composition and react the one or more polymer resins with the one or more crosslinking compounds thereby forming an image- receiving area on the textile material.
  • this heating step may comprise passing the pretreated textile material through a drying oven or other similar apparatus and heating the textile material to a temperature of at least 275°F.
  • the textile material is heated to a temperature of between about 275°F to about 400°F, from about 300°F to about 375°F, or from about 325°F to about 350°F.
  • the heating, or drying, time over which the textile material is exposed to the elevated temperature conditions depends at least in part on the drying temperature.
  • the drying time is at least 30 seconds, or can range from about 30 seconds to about 5 minutes, from about 45 seconds to about 2 minutes, or from about 60 to about 90 seconds.
  • this heating step may be accomplished through the use of a heated press. Not only does the press provide the heat required to remove moisture from and crosslink the pretreatment composition, oxygen is also kept away from the reaction. This helps eliminate oxygen inhibition of the reaction between the polymer resin and crosslinking agent, which otherwise might retard the crosslinking cycle.
  • the image can now be applied to the image-receiving area.
  • a sublimation transfer system is placed in contact with at least a portion of the image- receiving area.
  • Heat is then applied to the sublimation transfer system, and consequently the textile material, so as to raise the temperature of the sublimation transfer system to a level sufficient to cause the gassing of at least a portion of the one or more dyes contained within the ink image.
  • the heat is supplied by a heated press, which can be in the form of a heated plate or pair of opposed rollers through which the textile material and transfer system are directed.
  • this step of transferring the ink image to the textile material comprises heating the sublimation transfer system to a temperature of at least 300°F, and alternatively to a temperature of from about 300°F to about 425°F, from about 325°F to about 400°F, or from about 350°F to about 375°F.
  • the heating time is dependent, at least in part, upon the heating temperature.
  • the heating time for this transfer step is at least 15 seconds, and alternatively from about 15 seconds to about 2 minutes, from about 30 seconds to about 90 seconds, or from about 45 seconds to about 60 seconds.
  • the dye does not penetrate deeply into the fibers making up the textile material.
  • the dyes tend to remain on top of the fibers thereby leading to transferred images that are very crisp and vibrant.
  • the finished textile product comprises an image formed within the image-receiving area comprising the dye of one or more sublimation inks.
  • the textile material comprises cotton fibers.
  • the textile material may be a blend of cotton and one or more synthetic fibers, such as polyester, nylon, or rayon.
  • the textile material may comprise at least 50% cotton, at least 75% cotton, or at least 90% cotton, on the basis of total fiber content.
  • the textile material may be substantially 100%) cotton.
  • the textile material is provided in the form of an article of clothing, such as a T-shirt.
  • the textile material can also have been dyed or colored prior to the pretreatment process.
  • the textile material can be provided as a continuous web of material, such as in the form of a roll, or in the form of a banner or other type of signage-quality material.
  • the finished textile product exhibits excellent washability characteristics, capable of withstanding a minimum of six washing cycles (e.g., using a household washing machine and detergent) without any observable fading of the transferred image.
  • the finished product is capable of withstanding at least ten, at least 15, or at least 25 washing cycles while still exhibiting only minor amounts of fading of the transferred image.
  • the image remaining after the washing cycles is considered industrially acceptable and retains at least 50%, at least 70%, at least 75% or at least 80% of the original color density as measured by a spectrodensitometer, even after 10, 15, or 25 washing cycles.
  • the pretreatment composition avoids discernable yellowing of the textile material upon heating and curing of the composition. Use of the pretreatment composition also avoids the need to overcoat the transferred image with any kind of protective coating.
  • Formulation 1 was applied to a cotton swatch at a rate 0.3g/in 2 and dried to form an image-receiving area.
  • a sublimation dye transfer was placed in contact with the image-receiving area and pressed under heat so as to transfer the ink image onto the cotton swatch.
  • the image contained several colors, the strength was measured using an XRite 528 spectrodensitometer.
  • the cotton swatch was washed 25 times in a conventional household washing machine with a conventional laundry detergent. The color strength of each color was measured again and the percent loss of color strength calculated. The results are provided in the table below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Coloring (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

Compositions and methods for treating textile materials so as to facilitate transfer of an image thereto using a dye sublimation transfer system are provided. The compositions are applied to the textile in the form of an aqueous pretreatment composition, which comprises a polymer resin and a crosslinking agent. The resin and crosslinking agent are cured upon the textile material to form an image-receiving area. The sublimation transfer system is then applied to the image-receiving area to form a finished, image- bearing textile product.

Description

TEXTILE TREATMENT FOR SUBLIMATION INK TRANSFERS
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention is generally directed toward a pretreatment composition for use in connection with the application of sublimation ink transfer to a cotton-containing textile material, such as a T-shirt.
Description of the Prior Art
Ink or image transfer systems are useful in applying graphics to a wide variety of items. In certain applications, ink transfers have advantages over other types of image application systems, including direct printing systems. In some situations, the substrate or item intended to receive the image is not amenable to direct printing operations. In other situations, the volume of images to be printed makes direct printing operations, such as screen printing, economically unfeasible. The use of ink transfers also allows printing operations to be performed at a site remote from the products to which the images will be applied. The textile and clothing industry has used ink transfers as a way of applying an image to, for example, an article of clothing. U.S. Patent No. 8,815,040 is directed toward an ink transfer system for transferring ink images to synthetic textile materials.
Dye sublimation transfers have also been shown to provide certain benefits as compared to direct-to-substrate printing and other types of image transfer systems, particularly in regard to fabrics. Dye sublimation transfers are created by laying down reversed imagery onto transfer paper using dye-containing inks, as opposed to pigmented inks that are used in a number of direct printing systems. The fabric and transfer paper are pressed together under high heat, often 400°F, and the dyes contained within the inks flash sublimate. The vapor dyes then migrate into the fabric's fibers thereby transferring the image from the transfer to the fabric. Dye sublimation has the ability to provide vibrant colors and transfer of highly detailed images that are limited only by the texture of the fabric and the resolution of the printer used in the manufacture of the transfer.
However, dye sublimation has not been demonstrated to work well in all fabric applications. For example, while dye sublimation can be used on cotton-containing fabrics to initially transfer an image to the fabric, the dyes generally do not adhere well to the cotton fibers. As a result, the image is durable and degrades very quickly, even upon a single wash cycle. Therefore, there is a need in the art for a system that permits use of sublimation dye transfers with cotton-containing textile materials that are colorfast and hold up even under repeated washing cycles.
SUMMARY OF THE INVENTION
In certain embodiments of the present invention there is provided a method of transferring an ink image onto a cotton-containing textile material. An aqueous pretreatment composition is applied to at least a portion of the textile material that is to receive the ink image. The pretreatment composition comprises one or more polymer resins, one or more crosslinking compounds, and one or more plasticizers. The textile material containing the pretreatment composition is heated so as to remove moisture from the pretreatment composition and react the one or more polymer resins with the one or more crosslinking compounds thereby forming an image-receiving area on the textile material. The ink image is transferred to the textile material by positioning a sublimation transfer system in contact with at least a portion of the image-receiving area and heating the sublimation transfer system to a temperature sufficient to cause the gassing of at least a portion of one or more dyes contained within the ink image and the transfer of at least a portion of the gasified dyes to the image-receiving area.
In other embodiments of the present invention there is provided an aqueous composition for use with sublimation transfer systems on cotton-containing textile materials. The composition comprises from about 5% to about 30% by weight of one or more water-dispersible polymer resins, from about 0.25% to about 10% by weight of one or more melamine crosslinking agents, from about 0.5% to about 12% by weight of one or more plasticizers, and from about 50% to about 90% by weight of water.
In still other embodiments of the present invention there is provided a cotton- containing textile material having a quantity of the pretreatment composition described herein applied to at least an image-receiving area thereof. The textile material may further have an image applied to the image-receiving area using a dye sublimation transfer. DETAILED DESCRIPTION OF THE PREFERRED EMB ODEVIENT
Certain embodiments of the present pertain to an aqueous composition that can be applied to a textile material, especially a textile material comprising cotton fibers, and that provides a platform for transferring an image to the textile material from a dye sublimation transfer. The aqueous composition, when cured upon the textile material, bonds with the textile's fibers and provides a stable base for adhesion of the gasified dyes from the transfer.
In particular embodiments, the water-based composition comprises a combination of one or more water-dispersible polymer resins, one or more crosslinking agents, and glass particles, each of which is described in further detail below. Generally, the one or more polymer resins comprise at least one member selected from the group consisting of polyesters, urethanes, epoxies, acrylics and latexes. However, in preferred embodiments, the one or more polymer resins comprise at least one polyester resin. Even more preferably, the polyester resin comprises a polyester-polyurethane resin. Exemplary polymer resins that may be used with the present invention include Alberdingk Boley U 199 (60% solids, pH between 7.5-9.5, Brookfield viscosity 200-1000 mPas), Alberdink Boley U 475 (40% solids, pH between 7.5-8.5, Brookfield viscosity 50-300 mPas), and Dispercoll U 53 (40% solids, viscosity at 23°C, spindle L 21 30 rpm 50-600 mPas). In certain embodiments, the composition comprises from about 5% to about 30% by weight, from about 10% to about 20% by weight, or from about 12% to about 18% by weight of the one or more water-dispersible polymer resins. It is noted that, often, the one or more polymer resins are formulated as water-based dispersion. Therefore, the foregoing amounts are considered to be on a percent solids basis.
In certain embodiments, the one or more crosslinking agents comprise at least one crosslinking agent selected from the group consisting of melamine crosslinking agents and aziridine crosslinking agents. In preferred embodiments, the melamine crosslinking agent comprises an alkylated melamine-formaldehyde resin. Exemplary crosslinking agents that may be used with the present invention include Cymel 327 (a methylated high imino melamine crosslinker, 90% solids) and CX-100 by DSM (a polyfunctional aziridine crosslinker, 100%) solids). In certain embodiments, the one or more crosslinking agents, and particular the melamine crosslinking agents, are formulated with isobutanol. In certain embodiments, the composition comprises from about 0.25% to about 10% by weight, from about 0.5% to about 5% by weight, or from about 1% to about 4% by weight of the one or more crosslinking agents.
The glass particles, which comprise the composition, are believed to improve the crosslinking density of the composition upon curing thereof. In addition, the glass particles are believed to promote the adhesion of the composition to the fibers of the textile material. The glass particles may also function as a high-grade filler material for the composition. In particular embodiments, the glass particles comprise glass microspheres that have an average particle size of from about 7 to about 10 μπι. One exemplary type of glass microspheres that may be used with the present invention is Spheriglass® 5000 Solid Glass Spheres by Potter Industries. In certain embodiments, the composition comprises from about 0.25%) to about 10%> by weight, from about 0.5% to about 5% by weight, or from about 1%) to about 3% of the glass particles.
The glass particles aid in allowing the sublimation dye transfer to achieve very fine detail upon sublimation and absorption into the textile material. The glass particles help to eliminate "halos" surrounding the image that can be formed during the sublimation process, which are the result of bleeding of the image beyond its original margins. In addition, because at least a portion of the gassed dye penetrates or is absorbed by the glass particles, wash resistance and abrasion resistance is improved. Moreover, the glass particles reduce and/or eliminate image shrinkage and provide improved stress distribution.
Certain embodiments of the present invention further comprise a silica material. Exemplary silica materials for use with the present invention include Evonik TS-100 (untreated thermal silica) and Evonik Aerosil 200 (hydrophilic fumed silica). In particular embodiments, the silica material assists with suspending the glass particles within the composition thereby permitting the composition to be sprayed or otherwise applied to a textile material without particle settling issues. In certain embodiments, the composition comprises from about 0.25% to about 10% by weight, from about 0.5% to about 5%, or from about 1% to about 3% by weight of the silica material.
Certain embodiments of the present invention further comprise at least one plasticizer. In particular embodiments, the plasticizer comprises a benzoic acid ester, such as dipropylene glycol dibenzoate, diethylene glycol dibenzoate, or a mixture thereof. An exemplary plasticizer that may be used with the present invention is Benzoflex 50 by Eastman Chemical. In certain embodiments, the plasticizer may impart improved hand- feel to the textile material bearing the composition, and may improve the washability of image-bearing textile material by enhancing color retention. In certain embodiments, the composition comprises from about 0.5% to about 12% by weight, from about 1% to about 10%) by weight, or from about 2.5% to about 7.5% by weight of the at least one plasticizer.
As discussed above, the compositions according to the present invention are water- based. In certain embodiments, the compositions comprise from about 50% to about 90% by weight, from about 60% to about 80% by weight, or from about 65% to about 75% by weight of water. As certain components, such as the polymer resins, may be supplied as aqueous dispersions, these ranges refer to the total weight of water including the water contained in these dispersions as well as water (e.g., deionized water) that is separately added.
The compositions disclosed herein are useful in methods of transferring an ink image onto a cotton-containing textile material. In these embodiments, the compositions are used as a textile pretreatment formulation. The pretreatment composition is applied to a portion of the textile material that is designed to ultimately receive the image transfer. Alternatively, and particularly if the dimensions of the sublimation transfer are not known, the pretreatment composition can be applied to substantially all of the textile material. In certain embodiments, the pretreatment composition is applied to the textile material in an amount of from about 0.05 to about 1 g/in2, from about 0.1 to about 0.8 g/in2, or from about 0.2 to about 0.5 g/in2. The pretreatment composition can be applied to the textile material by nearly any means known in the art. However, in certain embodiments, it is preferable to apply the pretreatment composition by spraying or inkjetting the pretreatment composition onto the textile material.
The textile material comprising the wet pretreatment composition is then heated so as to remove moisture from the pretreatment composition and react the one or more polymer resins with the one or more crosslinking compounds thereby forming an image- receiving area on the textile material. In certain embodiments, this heating step may comprise passing the pretreated textile material through a drying oven or other similar apparatus and heating the textile material to a temperature of at least 275°F. In particular embodiments, the textile material is heated to a temperature of between about 275°F to about 400°F, from about 300°F to about 375°F, or from about 325°F to about 350°F. The heating, or drying, time over which the textile material is exposed to the elevated temperature conditions depends at least in part on the drying temperature. However, in certain embodiments, the drying time is at least 30 seconds, or can range from about 30 seconds to about 5 minutes, from about 45 seconds to about 2 minutes, or from about 60 to about 90 seconds. In certain embodiments, this heating step may be accomplished through the use of a heated press. Not only does the press provide the heat required to remove moisture from and crosslink the pretreatment composition, oxygen is also kept away from the reaction. This helps eliminate oxygen inhibition of the reaction between the polymer resin and crosslinking agent, which otherwise might retard the crosslinking cycle.
Once the pretreatment composition has been adequately dried and/or reacted on the textile material, the image can now be applied to the image-receiving area. In this process, a sublimation transfer system is placed in contact with at least a portion of the image- receiving area. Heat is then applied to the sublimation transfer system, and consequently the textile material, so as to raise the temperature of the sublimation transfer system to a level sufficient to cause the gassing of at least a portion of the one or more dyes contained within the ink image. In certain embodiments, the heat is supplied by a heated press, which can be in the form of a heated plate or pair of opposed rollers through which the textile material and transfer system are directed. The application of pressure to the transfer system and textile material allows the gasified dyes to migrate into the image-receiving area of the textile material thereby transferring the image from the transfer system to the textile material. In certain embodiments, this step of transferring the ink image to the textile material comprises heating the sublimation transfer system to a temperature of at least 300°F, and alternatively to a temperature of from about 300°F to about 425°F, from about 325°F to about 400°F, or from about 350°F to about 375°F. Again, the heating time is dependent, at least in part, upon the heating temperature. However, in certain embodiments, the heating time for this transfer step is at least 15 seconds, and alternatively from about 15 seconds to about 2 minutes, from about 30 seconds to about 90 seconds, or from about 45 seconds to about 60 seconds.
In certain embodiments, it is important to note that because of the pretreatment composition, the dye does not penetrate deeply into the fibers making up the textile material. The dyes tend to remain on top of the fibers thereby leading to transferred images that are very crisp and vibrant.
The finished textile product comprises an image formed within the image-receiving area comprising the dye of one or more sublimation inks. As noted above, in certain embodiments of the present invention, the textile material comprises cotton fibers. In particular embodiments, the textile material may be a blend of cotton and one or more synthetic fibers, such as polyester, nylon, or rayon. In these embodiments, the textile material may comprise at least 50% cotton, at least 75% cotton, or at least 90% cotton, on the basis of total fiber content. Alternatively, the textile material may be substantially 100%) cotton. In certain embodiments, the textile material is provided in the form of an article of clothing, such as a T-shirt. The textile material can also have been dyed or colored prior to the pretreatment process. Alternatively, the textile material can be provided as a continuous web of material, such as in the form of a roll, or in the form of a banner or other type of signage-quality material.
In certain embodiments, the finished textile product exhibits excellent washability characteristics, capable of withstanding a minimum of six washing cycles (e.g., using a household washing machine and detergent) without any observable fading of the transferred image. In other embodiments, the finished product is capable of withstanding at least ten, at least 15, or at least 25 washing cycles while still exhibiting only minor amounts of fading of the transferred image. The image remaining after the washing cycles is considered industrially acceptable and retains at least 50%, at least 70%, at least 75% or at least 80% of the original color density as measured by a spectrodensitometer, even after 10, 15, or 25 washing cycles. In addition, the pretreatment composition avoids discernable yellowing of the textile material upon heating and curing of the composition. Use of the pretreatment composition also avoids the need to overcoat the transferred image with any kind of protective coating.
EXAMPLES
The following table contains exemplary pretreatment compositions made in accordance with the present invention. These formulations are provided by way of illustration and should not be taken as limiting the scope of the present invention.
Figure imgf000009_0001
Deionized water 64.50 62.7 70.5
In order to test the washability of an image transferred to 100% cotton fabric using a pretreatment composition according to the present invention, Formulation 1 was applied to a cotton swatch at a rate 0.3g/in2 and dried to form an image-receiving area. Next, a sublimation dye transfer was placed in contact with the image-receiving area and pressed under heat so as to transfer the ink image onto the cotton swatch. The image contained several colors, the strength was measured using an XRite 528 spectrodensitometer. The cotton swatch was washed 25 times in a conventional household washing machine with a conventional laundry detergent. The color strength of each color was measured again and the percent loss of color strength calculated. The results are provided in the table below.
Figure imgf000009_0002
Figure imgf000010_0001

Claims

We claim:
1. A method of transferring an ink image onto a cotton-containing textile material comprising:
applying an aqueous pretreatment composition to at least a portion of the textile material that is to receive the ink image, the pretreatment composition comprising one or more polymer resins and one or more crosslinking compounds;
heating the textile material containing the pretreatment composition so as to remove moisture from the pretreatment composition and react the one or more polymer resins with the one or more crosslinking compounds thereby forming an image-receiving area on the textile material; and
transferring the ink image to the textile material by positioning a sublimation transfer system in contact with at least a portion of the image-receiving area and heating the sublimation transfer system to a temperature sufficient to cause the gassing of at least a portion of one or more dyes contained within the ink image and the transfer of at least a portion of the gasified dyes to the image-receiving area.
2. The method according to claim 1, wherein the applying step comprises spraying or inkjetting the pretreatment composition onto the textile material.
3. The method according to claim 1, wherein the pretreatment composition comprises from about 5% to about 30% by weight of the one or more polymer resins, and from about 0.25% to about 10% by weight of the one or more crosslinking compounds.
4. The method according to claim 3, wherein the one or more polymer resins comprises a polyester resin.
5. The method according to claim 4, wherein the polyester resin comprises a polyester-polyurethane resin.
6. The method according to claim 1, wherein the pretreatment composition further comprises from about 0.25% to about 10% by weight of glass particles.
7. The method according to claim 1, wherein the step of heating the textile material so as to form the image-receiving area comprises heating the textile material to a temperature of at least 275°F for at least 30 seconds.
8. The method according to claim 1, wherein the step of transferring the ink image comprises heating the sublimation transfer system to a temperature of at least 300°F for at least 15 seconds.
9. The method according to claim 1, wherein the textile material comprises at least 50% cotton.
10. The method according to claim 9, wherein the textile material comprises 100% by weight cotton.
11. The method according to claim 1, wherein the pretreatment composition comprises one or more plasticizers.
12. The method according to claim 11, wherein the pretreatment composition comprises from about 0.5% to about 12% by weight of the one or more plasticizers.
13. The method according to claim 11, wherein the one or more plasticizers comprises a benzoic acid ester.
14. An aqueous composition for use with sublimation transfer systems on cotton-containing textile materials, said composition comprising:
(a) from about 5% to about 30% by weight of one or more water-dispersible polymer resins; (b) from about 0.25% to about 10% by weight of one or more melamine crosslinking agents;
(c) from about 50% to about 90% by weight of water; and
(d) at least one of-
(i) from about 0.25% to about 10% by weight of glass particles, and
(ii) from about 0.5% to about 12% by weight of one or more plasticizers.
15. The composition according to claim 14, wherein the composition further comprises from about 0.25% to about 10% by weight of a silica material.
16. The composition according to claim 14, wherein the composition comprises from about 10% to about 20% by weight of the one or more water-dispersible polymer resins.
17. The composition according to claim 14, wherein the one or more water-dispersible polymer resins comprises a polyester-polyurethane resin.
18. The composition according to claim 14, wherein the one or more water-dispersible polymer resins are formulated as a water-based dispersion.
19. The composition according to claim 14, wherein the composition comprises from about 0.5% to about 5% by weight of the one or more melamine crosslinking agents.
20. The composition according to claim 14, wherein the one or more melamine crosslinking agents comprises an alkylated melamine-formaldehyde resin.
21. The composition according to claim 14, wherein the one or more melamine crosslinking agents are formulated with isobutanol.
22. The composition according to claim 14, wherein the composition comprises from about 0.5% to about 5% by weight of the glass particles.
23. The composition according to claim 14, wherein the glass particles have an average particle size of from about 7 to about 10 μιη.
24. The composition according to claim 14, wherein the one or more plasticizers comprises a benzoic acid.
25. A cotton-containing textile material having a quantity of the composition of claim 14 applied to at least an image-receiving area thereof.
26. The textile material according to claim 25, wherein the composition is applied to the textile material in an amount of from about 0.05 to about 1 g/in2.
27. The textile material according to claim 25, wherein at least a portion of the water in the composition is removed after application to the textile material.
28. The textile material according to claim 25, wherein the one or more water-dispersible polymer resins and the one or more melamine crosslinking agents are reacted on the textile material to form a crosslinked-polymer coating.
29. The textile material according to claim 28, wherein the textile material further comprises an image formed within the image-receiving area comprising the dye of one or more sublimation inks.
30. The textile material according to claim 25, wherein the textile material comprises 100% cotton.
31. The textile material according to claim 30, wherein the textile material is a T-shirt.
PCT/US2017/021154 2016-03-09 2017-03-07 Textile treatment for sublimation ink transfers WO2017155993A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/065,323 2016-03-09
US15/065,323 US20170260690A1 (en) 2016-03-09 2016-03-09 Textile treatment for sublimation ink transfers
US15/082,386 2016-03-28
US15/082,386 US20170275815A1 (en) 2016-03-28 2016-03-28 Textile treatment for sublimation ink transfers

Publications (1)

Publication Number Publication Date
WO2017155993A1 true WO2017155993A1 (en) 2017-09-14

Family

ID=59789781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/021154 WO2017155993A1 (en) 2016-03-09 2017-03-07 Textile treatment for sublimation ink transfers

Country Status (1)

Country Link
WO (1) WO2017155993A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142284A (en) * 2022-06-09 2022-10-04 广州迅捷数码科技有限责任公司 Heat transfer printing method for blended fabric
CN115726204A (en) * 2021-08-31 2023-03-03 精工爱普生株式会社 Treatment liquid composition for dye printing, composition set, printing method, and ink jet printing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119398A (en) * 1976-08-31 1978-10-10 Terry Brook Purser Composition for pre-treating fabric for transfer printing and a transfer printing process
US4304565A (en) * 1978-06-07 1981-12-08 The United States Of America As Represented By The Secretary Of Agriculture Process for producing transfer printed cotton and cotton blends
US5539022A (en) * 1993-04-05 1996-07-23 Hoechst Aktiengesellschaft Aqueous dispersions of acrylate copolymers
US20040157735A1 (en) * 2001-07-13 2004-08-12 Hare Donald S Sublimination dye thermal transfer paper and transfer method
WO2004106082A1 (en) * 2003-05-29 2004-12-09 Michele Giannini Thermal image transfer by sublimation or fusion
US20050118360A1 (en) * 2003-03-13 2005-06-02 Huynh Dieu D. Thermal transfer image receiving sheet and method
US20080293872A1 (en) * 2005-11-10 2008-11-27 Helmut Loth Adhesives, sealants and coatings containing glass particles as a filler
US20110169901A1 (en) * 2010-01-08 2011-07-14 Advanced Chemical Solutions, Llc Sublimation Printing Processes and Fabric Pretreatment Compositions for Ink Jet Printing onto Arbitrary Fabrics
US8236385B2 (en) * 2005-04-29 2012-08-07 Kimberly Clark Corporation Treatment of substrates for improving ink adhesion to the substrates

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119398A (en) * 1976-08-31 1978-10-10 Terry Brook Purser Composition for pre-treating fabric for transfer printing and a transfer printing process
US4304565A (en) * 1978-06-07 1981-12-08 The United States Of America As Represented By The Secretary Of Agriculture Process for producing transfer printed cotton and cotton blends
US5539022A (en) * 1993-04-05 1996-07-23 Hoechst Aktiengesellschaft Aqueous dispersions of acrylate copolymers
US20040157735A1 (en) * 2001-07-13 2004-08-12 Hare Donald S Sublimination dye thermal transfer paper and transfer method
US20050118360A1 (en) * 2003-03-13 2005-06-02 Huynh Dieu D. Thermal transfer image receiving sheet and method
WO2004106082A1 (en) * 2003-05-29 2004-12-09 Michele Giannini Thermal image transfer by sublimation or fusion
US8236385B2 (en) * 2005-04-29 2012-08-07 Kimberly Clark Corporation Treatment of substrates for improving ink adhesion to the substrates
US20080293872A1 (en) * 2005-11-10 2008-11-27 Helmut Loth Adhesives, sealants and coatings containing glass particles as a filler
US20110169901A1 (en) * 2010-01-08 2011-07-14 Advanced Chemical Solutions, Llc Sublimation Printing Processes and Fabric Pretreatment Compositions for Ink Jet Printing onto Arbitrary Fabrics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115726204A (en) * 2021-08-31 2023-03-03 精工爱普生株式会社 Treatment liquid composition for dye printing, composition set, printing method, and ink jet printing method
CN115142284A (en) * 2022-06-09 2022-10-04 广州迅捷数码科技有限责任公司 Heat transfer printing method for blended fabric
CN115142284B (en) * 2022-06-09 2023-11-14 广州迅捷数码科技有限责任公司 Thermal transfer printing method for blended fabric

Similar Documents

Publication Publication Date Title
EP3184692B1 (en) Textile printing method
US9453301B2 (en) In-line digital printing system for textile materials
CN103184706A (en) Preparation method and use method for paper for textile fabric printing
JP4880008B2 (en) Dry transfer paper for natural leather and transfer printing method
EP3642409B1 (en) Fabric treatment compositions and methods
WO2017155993A1 (en) Textile treatment for sublimation ink transfers
GB1590437A (en) Acrylic resin-based composition for pretreating fabric for transfer printing and a transfer printing process
WO2021238969A1 (en) Coating composition for pet film, pet transfer film, and preparation method therefor and use thereof
US20170260690A1 (en) Textile treatment for sublimation ink transfers
JP2018505970A (en) Natural fiber sublimation transfer printing binder composition
US20210040684A1 (en) Pretreating natural fiber fabrics for dye sublimation ink printing
US20180209092A1 (en) Textile treatment for sublimation ink transfers
CN108239888A (en) With no paper method for transfer printing
CA1100256A (en) Process for printing on solid molded articles made from urea formaldehyde resin or melamine formaldehyde resin
KR102102084B1 (en) Method of heat transfer printing on nylon fabrics using high washing fastness yellow dyes composition
US4236890A (en) Process for producing transfer printed cotton and cotton blends
JP6810416B2 (en) Transfer printing method of polyester fiber
TW200301330A (en) Method for textile printing, pre-treating fluid for textile printing and fiber sheet for textile printing
JP2005501977A (en) Fabric printing substrate
JP7222486B2 (en) Transfer printing method for polyester fiber material and method for producing transfer-printed polyester fiber product
US20210032810A1 (en) Methods of preconditioning fabric prior to inkjet printing
EP0304378A2 (en) Transfer printing of natural and natural/synthetic fibres
KR101510947B1 (en) Method for sublimation-transcription dying cotton fabric using antiflaming composition and pre-treatment composition for sublimation transcription of cotton fabric
KR810001224B1 (en) Transfer printing of cellulosic fabrics and transfer for use therein
EP4015227A1 (en) Transfer paper and stamping method combining screen printing and digital printing

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763898

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763898

Country of ref document: EP

Kind code of ref document: A1