WO2017154502A1 - 電動駆動装置及び電動パワーステアリング装置 - Google Patents

電動駆動装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2017154502A1
WO2017154502A1 PCT/JP2017/005641 JP2017005641W WO2017154502A1 WO 2017154502 A1 WO2017154502 A1 WO 2017154502A1 JP 2017005641 W JP2017005641 W JP 2017005641W WO 2017154502 A1 WO2017154502 A1 WO 2017154502A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
electronic control
control means
power conversion
conversion circuit
Prior art date
Application number
PCT/JP2017/005641
Other languages
English (en)
French (fr)
Inventor
政男 藤本
啓二 濱田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201780004087.1A priority Critical patent/CN108290603B/zh
Priority to KR1020187013438A priority patent/KR102069458B1/ko
Priority to US16/068,688 priority patent/US11040738B2/en
Priority to CN202010670240.8A priority patent/CN111845920B/zh
Priority to DE112017001197.3T priority patent/DE112017001197T5/de
Publication of WO2017154502A1 publication Critical patent/WO2017154502A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb

Definitions

  • the present invention relates to an electric drive device and an electric power steering device, and more particularly to an electric drive device and an electric power steering device incorporating an electronic control device.
  • a mechanical control element is driven by an electric motor.
  • an electronic control unit including a semiconductor element or the like for controlling the rotational speed or rotational torque of the electric motor is electrically driven.
  • a so-called electromechanical integrated electric drive device that is integrated into a motor is beginning to be adopted.
  • an electromechanical integrated electric drive device for example, in an electric power steering device of an automobile, a rotation direction and a rotation torque of a steering shaft that is rotated by a driver operating a steering wheel are detected.
  • the electric motor is driven to rotate in the same direction as the rotation direction of the steering shaft based on the detected value, and the steering assist torque is generated.
  • an electronic control unit (ECU: Electronic Control Unit) is provided in the power steering apparatus.
  • Patent Literature 1 describes an electric power steering device that includes an electric motor unit and an electronic control unit.
  • the electric motor of the electric motor unit is housed in a motor housing having a cylindrical part made of aluminum alloy or the like, and the board on which the electronic components of the electronic control unit are mounted is the output shaft in the axial direction of the motor housing. It is housed in an ECU housing arranged on the opposite side.
  • a substrate housed in the ECU housing includes a power conversion circuit unit having a power switching element such as a power supply circuit unit, a MOSFET for driving and controlling an electric motor, or an IGBT, and a control circuit unit for controlling the power switching element.
  • the output terminal of the power switching element and the input terminal of the electric motor are electrically connected via a bus bar.
  • the electronic control unit housed in the ECU housing is supplied with electric power from a power source via a connector terminal assembly made of synthetic resin, and is supplied with detection signals such as operating states from detection sensors. .
  • the connector terminal assembly functions as a lid, is connected to the electronic control unit so as to close an opening formed in the ECU housing, and is fixed to the outer surface of the ECU housing by a fixing bolt.
  • an electric drive device in which an electronic control unit and an electric motor unit are integrated, an electric brake, an electric hydraulic controller for various hydraulic controls, and the like are known.
  • the power supply circuit unit, the power conversion circuit unit, and the control circuit unit are mounted on two substrates installed along the radial direction. . For this reason, since the number of parts of electric parts necessary for controlling the electric motor is roughly determined, when the electric parts of these parts are mounted on two boards, the ECU that houses the electronic control unit The housing naturally grows radially.
  • the axial length is relatively limited in the longitudinal direction, and the enlargement in the radial direction tends to be limited. Therefore, the current situation is that the electric drive device is required to be downsized in the radial direction.
  • the electrical components constituting the power supply circuit section and the power conversion circuit section generate a large amount of heat, and when downsizing, it is necessary to efficiently dissipate this heat to the outside.
  • the board of the electronic control unit is fixed to the heat radiating base.
  • a mounting flange is formed on the outer periphery of the heat radiating base, and the mounting flange and the outer periphery of the motor housing are fixed with fixing bolts.
  • the fixing bolts are fixed on the outer peripheral side in this way, the size tends to increase in the radial direction by this amount.
  • An object of the present invention is to suppress an increase in the radial direction of an electric drive unit including an electric motor unit integrated with an electronic control unit including a redundant system, and to reduce the number of components as much as possible and to simplify the configuration. It is an object of the present invention to provide a novel electric drive device and electric power steering device having a heat dissipation structure.
  • a feature of the present invention is that a motor housing that houses an electric motor that drives a mechanical control element, an end surface of the motor housing opposite to the output portion of the rotating shaft of the electric motor, and a rotation opposite to the output portion.
  • a pair of support shafts extending in the axial direction and facing each other, a heat dissipating base disposed between the support shafts and extending in the same direction as the support shaft, and screwed inwardly from the outside in the radial direction from the support shaft.
  • the substrate of the electronic control unit that also extends along the rotation axis direction is fixed to the heat dissipation base that extends along the rotation axis direction of the electric motor so as to be able to conduct heat, whereby the radial direction of the electric drive device Can be reduced in size.
  • heat from each substrate is radiated to the housing of the electric motor unit through the heat dissipation base, heat from the substrate can be efficiently radiated to the outside even when the size is reduced.
  • the fixing bolt since the fixing bolt is screwed into the heat radiating base through the support shaft from the outside in the radial direction to the inside, the fixing bolt is not fixed on the outer peripheral side. This makes it possible to reduce the diameter of the electronic control unit. It becomes.
  • FIG. 1 is an overall perspective view of a steering apparatus as an example to which the present invention is applied. It is a whole perspective view of the conventional electric power steering device. 1 is an exploded perspective view of an electric power steering apparatus according to an embodiment of the present invention. It is a perspective view which shows the state which mounted the rotational position detection circuit board in the electric motor part. It is a perspective view of the thermal radiation base attached to an electric motor part. It is a perspective view which shows the state which mounted the thermal radiation base
  • FIG. 9 is a cross-sectional view illustrating a modification of the AA vertical section of FIG. 8.
  • FIG. 1 Prior to the description of the embodiments of the present invention, a configuration of a steering apparatus as an example to which the present invention is applied will be briefly described with reference to FIG. 1, and a conventional electric power steering will be described in order to facilitate understanding of the present invention.
  • a schematic configuration of the apparatus will also be briefly described with reference to FIG.
  • the steering device 1 is configured as shown in FIG.
  • a pinion (not shown) is provided at the lower end of the steering shaft 2 connected to a steering wheel (not shown), and this pinion meshes with a rack (not shown) that is long in the left-right direction of the vehicle body.
  • Tie rods 3 for steering the front wheels in the left-right direction are connected to both ends of the rack, and the rack is covered with a rack housing 4.
  • a rubber boot 5 is provided between the rack housing 4 and the tie rod 3.
  • An electric power steering device 6 is provided to assist the torque when the steering wheel is turned.
  • a torque sensor 7 that detects the turning direction and turning torque of the steering shaft 2 is provided, and an electric motor unit 8 that applies a steering assist force to the rack via the gear 10 based on the detection value of the torque sensor 7.
  • an electronic control unit (ECU) 9 for controlling the electric motor disposed in the electric motor unit 8 is provided.
  • the electric motor unit 8 of the electric power steering device 6 is connected to the gear 10 through bolts (not shown) at the outer peripheral portion on the output shaft side, and the electronic control unit 9 on the side opposite to the output shaft of the electric motor unit 8. Is provided.
  • the electric motor portion 8 is composed of a motor housing 11A having a cylindrical portion made of aluminum alloy or the like and an electric motor (not shown) housed in the motor housing 11A.
  • the control unit 9 includes an ECU housing 11B made of aluminum alloy or the like and an electronic control assembly (not shown) housed in the ECU housing 11B, which is disposed on the opposite side to the output shaft in the axial direction of the motor housing 11A. .
  • the motor housing 11A and the ECU housing 11B are integrally fixed by fixing bolts at opposite end surfaces thereof.
  • the electronic control assembly housed inside the ECU housing 11B is a power conversion unit having a power switching element made up of a power supply circuit unit that generates a necessary power source, a MOSFET, an IGBT, and the like that drives and controls the electric motor of the electric motor unit 8.
  • the circuit includes a control circuit unit that controls the power switching element, and the output terminal of the power switching element and the input terminal of the electric motor are electrically connected via a bus bar.
  • the lid 12 is provided with a connector terminal forming part 12A for supplying power, a connector terminal forming part 12B for detection sensor, and a connector terminal forming part 12C for sending a control state for sending a control state to an external device.
  • the electronic control assembly housed in the ECU housing 11B is supplied with electric power from the power source via the connector terminal forming portion 12A for supplying power to the lid 12 made of synthetic resin, and is operated from the detection sensors.
  • a detection signal such as a state is supplied via the connector terminal forming part 12B for the detection sensor, and a control state signal of the current electric power steering apparatus is sent via the connector terminal forming part 12C for sending the control state.
  • the lid 12 is shaped so as to cover the entire opening of the ECU housing 11B, but each connector terminal is formed in a small size and inserted through an insertion hole formed in the ECU housing 11B. It may be configured to be connected to the control assembly.
  • the torque sensor 7 determines the rotational direction and the rotational torque of the steering shaft 2. Based on the detected value, the control circuit unit calculates the drive operation amount of the electric motor.
  • the electric motor is driven by the power switching element of the power conversion circuit unit based on the calculated drive operation amount, and the output shaft of the electric motor is rotated so as to drive the steering shaft 2 in the same direction as the operation direction.
  • the rotation of the output shaft is transmitted from a pinion (not shown) to a rack (not shown) via the gear 10 to steer the automobile. Since these structures and operations are already well known, further explanation is omitted.
  • the power supply circuit unit, the power conversion circuit unit, and the control circuit unit are mounted on the two boards and installed in the radial direction so as to be orthogonal to the axis of the ECU housing. ing. For this reason, since the number of parts of electric parts necessary for controlling the electric motor is roughly determined, when the electric parts of these parts are mounted on two boards, the ECU that houses the electronic control unit The housing naturally grows radially.
  • the axial length is relatively limited in the longitudinal direction, and the enlargement in the radial direction tends to be limited. Therefore, the current situation is that the electric drive device is required to be downsized in the radial direction.
  • the electrical components constituting the power supply circuit section and the power conversion circuit section generate a large amount of heat, and when downsizing, it is necessary to efficiently dissipate this heat to the outside.
  • the board of the electronic control unit is fixed to the heat radiating base.
  • a mounting flange is formed on the outer periphery of the heat radiating base, and the mounting flange and the outer periphery of the motor housing are fixed with fixing bolts.
  • the fixing bolts are fixed on the outer peripheral side in this way, the size tends to increase in the radial direction by this amount.
  • this embodiment proposes an electric power steering apparatus having the following configuration.
  • the motor housing in which the electric motor is housed the end surface of the motor housing opposite to the output portion of the rotating shaft of the electric motor, and the direction of the rotating shaft opposite to the output portion are mutually extended.
  • One of the redundant electronic control means including a substrate disposed along the extending direction of the heat dissipating base and fixed to the heat dissipating base so as to conduct heat, and disposed along the direction of extending the heat dissipating base,
  • a redundant electronic control unit including a conductively fixed substrate is provided.
  • FIGS. 3 to 9 is an exploded view of the overall components of the electric power steering apparatus according to this embodiment, and FIGS. 4 to 9 show the components according to the assembly order of the components. It is drawing which shows the state which assembled
  • FIG. 3 shows an exploded perspective view of the electric power steering apparatus 6.
  • An annular iron side yoke (not shown) is fitted inside the motor housing 20, and an electric motor (not shown) is accommodated in the side yoke.
  • the output portion 21 of the electric motor applies a steering assist force to the rack via a gear. Since the specific structure of the electric motor is well known, the description thereof is omitted here.
  • the motor housing 20 is made of an aluminum alloy, and functions as a heat sink that releases heat generated by the electric motor and heat generated by electronic components mounted on an electronic control board, which will be described later, to the outside atmosphere.
  • the electric motor and the motor housing 20 constitute an electric motor unit EM.
  • the electronic control unit EC is attached to the end surface of the motor housing 20 opposite to the output unit 21 of the electric motor unit EM.
  • the electronic control unit EC includes a rotational position detection circuit board 22, a heat dissipation base 23, a first power conversion circuit board 24, a first control circuit board 25, a second power conversion circuit board 26, a second control circuit board 27, and a power connector 28. It is composed of
  • the first power conversion circuit board 24, the first control circuit board 25, the second power conversion circuit board 26, and the second control circuit board 27 constitute a redundant system
  • the first power conversion circuit board 24 constitutes the main electronic control means
  • the second power conversion circuit board 26 and the second control circuit board 27 constitute the sub electronic control means.
  • the electric motor is controlled and driven by the main electronic control means, but if an abnormality or failure occurs in the first power conversion circuit board 24 or the first control circuit board 25 of the main electronic control means, the sub electronic control is performed.
  • the electric motor is controlled and driven by the second power conversion circuit board 26 and the second control circuit board 27 of the sub-electronic control means.
  • heat from the main electronic control means is normally transmitted to the heat radiating base 23, and when an abnormality or failure occurs in the main electronic control means, the main electronic control means stops and the sub electronic control means operates. In addition, heat from the sub-electron control means is transmitted to the heat radiating base 23.
  • the main electronic control means and the sub electronic control means are combined to function as regular electronic control means, and if one electronic control means malfunctions or fails, the other electronic control means It is also possible to control and drive the electric motor with half the capability. In this case, the capacity of the electric motor is halved, but a so-called “limp home function” is ensured. Therefore, in the normal case, the heat of the main electron control means and the sub electron control means is transmitted to the heat dissipation base 23.
  • the electronic control unit EC is not accommodated in the conventional ECU housing as shown in FIG. 2, and therefore the heat of the electronic control unit EC is not radiated from the ECU housing.
  • the electronic control unit EC is fixed and supported on the motor housing 20, and the heat of the electronic control unit EC is mainly radiated from the motor housing 20. Then, when the assembly of the electronic control unit EC and the electric motor unit EM is completed, the electronic control unit EC is covered with the cover 29, and the end surface of the motor housing 20 and the cover 29 are butted together to couple them.
  • the cover 29 can be made of synthetic resin or metal, and is integrated with the motor housing 20 by means of adhesion, welding, fixing methods such as bolts, and fixing means. As described above, in the present embodiment, when viewed as an electric power steering apparatus, since the part to be sealed is only the coupling part between the motor housing 20 and the cover 29, an additional structure of the seal part and parts necessary for sealing are provided. Can be reduced.
  • the cover 29 does not need to support the electronic control unit EC, the thickness can be reduced, which contributes to reduction in the radial length and weight reduction of the electronic control unit EC. Further, when the cover 29 is formed of metal (aluminum alloy, iron, etc.), it has a heat dissipation function, so that heat from the motor housing 20 is transmitted to the cover 29 and the heat dissipation function can be further enhanced.
  • the rotational position detection circuit board 22 is fixed to the end face of the motor housing 20, and the first power conversion circuit board 24, the first control circuit board 25, the second power conversion circuit board 26, and the second control.
  • the circuit boards 27 are fixed to the heat radiating base 23 while facing each other, and the heat radiating base 23 is fixed so as to cover the rotational position detection circuit board 22 at the end face of the motor housing 20.
  • the cover 29 is configured to be liquid-tightly coupled to the end surface of the motor housing 20. This configuration is one of the major features of this embodiment.
  • an ECU housing made of aluminum alloy or the like disposed on the opposite side to the output shaft in the axial direction of the motor housing is required like the conventional electric power steering device shown in FIG. It is something that does not.
  • a rotor portion (not shown) of the electric motor is disposed in the center portion of the motor housing 20, and a stator winding is wound around the rotor portion.
  • the stator windings are star-connected, and the input terminal 30 of each phase winding and the neutral terminal 31 of each phase protrude from an opening 32 provided in the motor housing 20.
  • the input terminal 30 of each phase winding and the neutral terminal 31 of each phase are provided in the opening 32 provided in the motor housing 20 for the other system. Sticks out.
  • the redundant input terminal 30 and the neutral terminal 31 protrude from the opening 32 at an interval of 180 °.
  • the input terminal 30 of each phase winding is connected to the output terminal of each phase of the first power conversion circuit board 24 constituting the main electronic control means. Further, the neutral terminal 31 of each phase is connected by a wiring pattern on the substrate of the rotational position detection circuit substrate 22 to form a neutral point. Similarly, the input terminal 30 of each phase winding of the other system is connected to the output terminal of each phase of the second power conversion circuit board 26 constituting the sub-electronic control means. Further, the neutral terminal 31 of each phase of the other system is also connected by a wiring pattern on the substrate of the rotational position detection circuit board 22 to form a neutral point. Since it is basically a redundant system, it has almost the same configuration.
  • This configuration is also one of the major features of this embodiment.
  • the neutral terminals 31 of each phase of the main electronic control means and the sub-electronic control means are connected by the wiring pattern on the substrate of the rotational position detection circuit board 22, so that the neutral terminals 31 of each phase are connected.
  • There is no need for routing and the configuration is extremely simple.
  • a space for this routing is not necessary, and the diameter of the electronic control unit EC can be further reduced. This will be described with reference to FIG.
  • a bearing for supporting the rotating shaft constituting the rotor portion is provided, and a sealing plate 33 is provided so as to cover the bearing portion from the outside. It is provided on the end face side of the motor housing 20.
  • the sealing plate 33 shields the rotor portion from the outside, and is provided to prevent the filler filled in the cover 29 from entering the rotor portion after the cover 29 is attached. Although the filler flows to the winding side through the opening 32, there is no influence because the winding side does not rotate.
  • the rotational position detection circuit board 22 is fixed to the end face of the motor housing 20 with bolts 34, and the neutral terminals 31 of the respective phases on the rotational position detection circuit board 22. Connected to form a neutral point. Further, the input terminal 30 of each phase winding extends between the opening 32 and the rotational position detection circuit board 22 along the axial direction. As will be described later, the input terminal 30 is connected to an output terminal of each phase of the power conversion circuit boards 24 and 26.
  • a GMR (giant magnetoresistive effect) element (not shown) is provided on the surface of the rotational position detection circuit board 22 on the sealing plate 33 side, and is a permanent magnet for position detection fixed to the rotational shaft opposite to the output unit 21.
  • the magnetic pole position information of the rotor part is obtained in cooperation with the above.
  • a magnetic shield plate 35 is provided on the surface of the rotational position detection circuit board 22 opposite to the surface on which the GMR element is provided.
  • the magnetic shield plate 35 has magnetism caused by the operation of electronic components mounted on the first power conversion circuit board 24, the first control circuit board 25, the second power conversion circuit board 26, and the second control circuit board 27. A function of suppressing the influence on the GMR element is provided.
  • a support shaft 36 that is planted in the axial direction toward the opposite side of the output portion 21 is formed integrally with the motor housing 20 on the end surface of the motor housing 20. Therefore, the support shaft 36 is made of an aluminum alloy and has high thermal conductivity.
  • the support shafts 36 are provided to face each other at an interval of about 180 ° with the rotational position detection circuit board 22 interposed therebetween. As will be described later, the support shaft 36 has a function of fixing and supporting the heat dissipation base 23 and transmitting heat from the heat dissipation base 23 to the motor housing 20.
  • the support shaft 36 is formed in a shape that is in thermal contact with the heat dissipating base 23 with respect to the heat dissipating base 23 on the three sides of the front and the side surfaces formed on both sides of the front.
  • the side surface is formed as an inclined surface toward the tip in the axial direction in order to increase the heat conduction area. Thereby, the length of the side surface becomes long, and a large heat conduction area can be secured.
  • insertion holes 37 through which the fixing bolts are inserted are formed on the front and back surfaces of the support shaft 36.
  • the heat dissipating base 23 is made of an aluminum alloy having good thermal conductivity, and is formed in a substantially rectangular parallelepiped shape.
  • the heat dissipating base 23 is basically disposed near the center of the end surface of the motor housing 20, in other words, passing through a region on the extension line of the rotating shaft of the rotor portion, and facing toward the side opposite to the output portion 21. It arrange
  • a support shaft attachment portion 38 to which the support shaft 36 is attached is formed below the both side surfaces 23S of the heat radiating base 23, and a connector attachment portion 39 is formed on the upper side.
  • the support shaft mounting portion 38 is formed in a recessed shape having a surface facing the front surface of the support shaft 36 and a surface facing the side surface, and the support shaft 36 is accommodated and disposed in the recessed portion.
  • a bolt hole 40 into which a fixing bolt is screwed is formed on a surface facing the front surface of the support shaft 36.
  • the surface of the support shaft mounting portion 38 that faces the side surface of the support shaft 36 is formed as an inclined surface that narrows upward in accordance with the side surface of the support shaft 36. Accordingly, it is possible to secure a large heat conduction area for heat from the heat radiating base 23 toward the support shaft 36 and to perform guidance when the heat radiating base 23 is inserted into the support shaft 36.
  • the connector mounting portion 39 formed on the upper side of the heat radiating base 23 is also formed in a shape with which the power connector is engaged. This will be described with reference to FIG.
  • FIG. 6 shows the attachment state of the heat dissipation base 23 as viewed from the side surface opposite to the side surface 23S of the heat dissipation base 23 in the state shown in FIG.
  • the support shaft mounting portion 38 of the heat radiating base 23 is moved downward along the support shaft 36 formed on the motor housing 20, and is supported by the fixing bolt 41 when reaching a predetermined position.
  • the shaft 36 and the heat dissipation base 23 are firmly fixed.
  • the heat dissipation base 23 is fixed at a position passing through the vicinity of the center of the end face of the motor housing 20.
  • the length of the mounting surface of the heat radiating base 23 on the end face of the motor housing 20 is adjusted to the size of the control circuit boards 25 and 27 described later, so that the heat radiating base 23 is the end face of the motor housing 20. It is attached in a form that crosses the vicinity of the center.
  • heat from an electronic control board (to be described later) can be transmitted to the heat radiating base 23, and further heat of the heat radiating base 23 can be transmitted to the support shaft 36. Therefore, since the heat from the electronic control board can be radiated from the motor housing 20 without using the ECU housing as in the prior art, the physique of the electric power steering device itself can be reduced in size, and further the parts Since the number of points can be reduced, the number of assembling steps can also be reduced.
  • the contact portion between the support shaft 36 and the heat radiating base 23 is provided with a heat radiating functional material such as an adhesive, a heat radiating sheet, and heat radiating grease having a good thermal conductivity in order to increase the thermal contact (to reduce the interface thermal resistance). You can also
  • a fixing surface for fixing the first power conversion circuit board 24 and the first control circuit board 25 is formed on the board mounting surface 23 ⁇ / b> F corresponding to the front side of the heat dissipation base 23.
  • the first power conversion circuit board 24 is fixed to the front side of the heat dissipation base 23, and the first control circuit board 25 is further fixed thereon. .
  • a fixing surface for fixing the second power conversion circuit board 26 and the second control circuit board 27 is formed on the board mounting surface 23F corresponding to the back side of the heat dissipation base 23.
  • the second power conversion circuit board 26 is fixed to the back side of the heat radiating base 23, and the second control circuit board 27 is further fixed thereon.
  • the first power conversion circuit board 24 and the second power conversion circuit board 26 are a power switching element composed of a plurality of MOSFETs constituting a power conversion circuit on a metal substrate made of a metal having good thermal conductivity such as aluminum, and the like. An output connector is provided for output. Furthermore, the first power conversion circuit board 24 and the second power conversion circuit board 26 are provided with a coil constituting a power supply circuit, switching elements made of MOSFETs, and various connector terminals. The first power conversion circuit board 24 and the second power conversion circuit board 26 are mounted with a large number of switching elements for switching a large current, and therefore generate a large amount of heat. The first power conversion circuit board 24 and the second power conversion circuit The substrate 26 is a main heat source. Of course, heat is also generated from the first control circuit board 25 and the second control circuit board 27, and this is also configured to radiate heat to the heat dissipation base 23. This will be described later.
  • the metal substrates of the first power conversion circuit board 24 and the second power conversion circuit board 26 are fixed to the storage recesses 42 formed on the front surface and the back surface of the heat radiating base 23 with fixing bolts. ing.
  • a power switching element is disposed between the metal substrate and the housing recess 42. Between the power switching element and the housing recess 42, an adhesive, a heat radiating sheet, and a heat sink having good thermal conductivity are provided in order to improve heat conduction performance.
  • a heat-dissipating material such as grease is interposed.
  • the power switching element may be disposed on the opposite side of the housing recess 42 to contact the metal substrate and the housing recess 42.
  • the power switching element and the housing recess 42 are brought into contact with each other.
  • first power conversion circuit board 24 and the second power conversion circuit board 24 and the second power conversion circuit board 24 and the second power conversion circuit board 24 and the second power conversion circuit board 26 and the second power conversion circuit board 26 are accommodated in the housing recesses 42 formed in the heat dissipation base 23.
  • the circuit board 26 is accommodated in the heat radiating base 23 so as to prevent the electronic control unit EC from being enlarged in the radial direction.
  • the first control circuit board 25 and the second control circuit board 27 cover the first power conversion circuit board 24 and the second power conversion circuit board 26 so that the heat dissipation base 23 is covered. It is fixed to the board mounting surface 23F by fixing bolts 47. That is, the first control circuit board 25 and the second control circuit board 27 are fixed by the fixing bolts 47 to the mounting plane portion 44 surrounding the housing recess 42 formed on the mounting surface 23F of the heat radiating base 23.
  • a microcomputer 48 for controlling a switching element of a power conversion circuit and the peripheral circuit 49 are mounted on a resin board made of synthetic resin or the like.
  • the electrolytic capacitor 43 constituting the power supply circuit is mounted on the first control circuit board 25 and the second control circuit board 27.
  • the electrolytic capacitor 43 Since the electrolytic capacitor 43 has a large physique, it is difficult to dispose the electrolytic capacitor 43 in the storage recess 42 described above. Therefore, the electrolytic capacitor 43 is mounted on the first control circuit board 25 and the second control circuit board 27. As shown in FIG. 1, since the space with the cover 29 is sufficient, there is no problem even if the electrolytic capacitor 43 is arranged.
  • a passage space 45 is formed which becomes a passage when the first control circuit board 25 and the second control circuit board 27 are fixed.
  • This passage space is formed in order to cool the storage recess 42 with air. For this reason, the heat from the first control circuit board 25 and the second control circuit board 27 flows into the air in the passage space 45, and also flows into the heat radiating base 23 through the mounting plane portion 44.
  • a connector housing recess 46 is formed on the upper end surface of the heat dissipating base 23 opposite to the fixed side as shown in FIG.
  • This connector housing recess 46 houses the inner end of a power connector, which will be described later, and also has a positioning function.
  • FIG. 7 is a cross-sectional view showing a mounting state of the support shaft 36 and the heat dissipation base 23.
  • An end of the motor housing 20 opposite to the output portion 21 of the rotary shaft 50 is located on the end surface, and a magnet holding member 51 is fixed to this end, and the inside of the magnet holding member 51 Further, a position detecting permanent magnet 52 constituting a position detecting sensor is housed.
  • the position detecting permanent magnet 52 is magnetized so that a plurality of unit magnets are formed in an annular shape.
  • a sealing plate 33 is disposed between the position detecting permanent magnet 52 and the rotational position detection circuit board 22.
  • the sealing plate 33 is fixed to the end surface of the motor housing 20 and a space in which the rotating shaft 50 is disposed.
  • the space on the rotational position detection circuit board 22 side is shielded. As a result, the space in which the rotation shaft 50 is disposed and the space on the rotational position detection circuit board 22 side can be shielded in a liquid-tight or air-tight manner.
  • moisture entering through the rotating shaft 50 can be blocked from moving to the space where the electronic control board is disposed, and the electronic components mounted on the electronic control board can be adversely affected by moisture. Can be suppressed. Of course, it is also possible to suppress the entry of fine dust generated by the rotation of the electric motor. This also has the effect of avoiding electronic component failures.
  • a sensor for detecting the intrusion of moisture on the rotational position detection circuit board 22 to detect that the moisture has entered.
  • the coupling portion is formed only at the abutting surface of the motor housing 20 and the cover 29, water intrusion at this portion is assumed. Therefore, since the rotational position detection circuit board 22 is fixed near the end face of the motor housing 20, if a sensor for detecting moisture is arranged on the rotational position detection circuit board 22, moisture can be detected earliest.
  • the GMR element 53 is mounted on the surface of the rotational position detection circuit board 22 on the position detection permanent magnet 52 side, and is disposed at a position facing the position detection permanent magnet 52. Therefore, the GMR element 53 is integrally assembled with the motor housing 20. That is, the rotating shaft 50 to which the position detecting permanent magnet 52 is fixed is supported by the end face of the motor housing 20, and the rotating position detecting circuit board 22 on which the GMR element 53 is mounted is also fixed to the end face of the motor housing 20. Has been. For this reason, since the positions of the position detecting permanent magnet 52 and the rotational position detecting circuit board 22 are determined by the end face of the motor housing 20, the assembly accuracy of the GMR element 53 is improved, and an accurate detection signal can be obtained. .
  • the fixing bolt 41 passes through the support shaft 36 from the radially outer side to the inner side and passes through the heat radiating base 23.
  • the support shaft 36 and the heat dissipation base 23 are firmly fixed.
  • the fixing direction of the fixing bolt 41 is also a major feature of this embodiment.
  • the fixing bolt 41 is screwed into the heat radiating base 23 through the support shaft 36 from the radially outer side to the inner side. This makes it possible to reduce the diameter of the electronic control unit EC.
  • this type of fixing method it is generally well known that a mounting flange is formed on the outer periphery of the heat radiating base 23 and the mounting flange and the outer periphery of the motor housing 20 are fixed with fixing bolts.
  • the outer peripheral side there is a tendency to increase the size in the radial direction by this amount.
  • the support shaft 36 is fixed with some bending. become. As a result, a load in the axial direction always acts on the thread of the fixing bolt 41, so that loosening of the fixing bolt 41 can be suppressed.
  • the metal substrates of the first power conversion circuit board 24 and the second power conversion circuit board 26 are fixed to the storage recesses 42 formed on the front surface and the back surface of the heat dissipation base 23 by fixing bolts.
  • the first control circuit board 25 and the second control circuit board 27 are assembled, they are not displayed.
  • the first power conversion circuit board 24 and the second power conversion circuit board 26 are housed in the housing recesses 42 formed in the heat dissipation base 23 so that the first power conversion circuit board 24 and the second power conversion circuit board 26 are accommodated.
  • the electronic control unit EC can be prevented from being enlarged in the radial direction.
  • first control circuit board 25 and the second control circuit board 27 are attached to the board mounting surface 23F of the heat dissipation base 23 by fixing bolts 47 so as to cover the first power conversion circuit board 24 and the second power conversion circuit board 26. It is fixed.
  • an electrolytic capacitor 43 used for a power supply circuit, a microcomputer 48 for controlling a switching element of a power conversion circuit, and its peripheral circuit 49 are mounted on the first control circuit board 25 and the second control circuit board 27.
  • a power connector 28 is attached to the upper end surface of the heat dissipating base 23 and is fixed by a fixing bolt 56 at a connector attaching portion 39 shown in FIG.
  • the power connector 28 is connected to the in-vehicle battery by a cable (not shown). Accordingly, the power supplied from the power connector 28 is supplied to the first power conversion circuit board 24, the first control circuit board 25, the second power conversion circuit board 26, and the second control circuit board 27, and further supplied to the electric motor. Thus, the electric motor is driven. Further, thereafter, the cover 29 is fixed to the end surface of the motor housing 20 so as to seal the electronic control unit EC.
  • the first power conversion circuit board 24 and the first control circuit board 25 are provided on the front surface of the heat dissipation base 23, and the second power conversion circuit board 26 and the second control circuit board 27 are provided on the rear face of the heat dissipation base 23.
  • the heat generated in the state in which the first power conversion circuit board 24 and the first control circuit board 25 are operating is transferred to the second power conversion circuit board 26 and the first power through the heat dissipation base 23. 2 Since the heat is accumulated in the control circuit board 27, the heat of the first power conversion circuit board 24 and the first control circuit board 25 can be efficiently released. Needless to say, much heat other than this is radiated from the motor housing 20 via the heat radiating base 23.
  • the output terminals 54 of the respective phases of the first power conversion circuit board 24 and the second power conversion circuit board 26 protrude radially outward from the upper surface of the rotational position detection circuit board 22, and the output terminals 54 of the respective phases. Are connected to the input terminal 30 of the winding of each phase. In this way, the input terminal 30 of the winding protruding from the opening 32 is directly connected to the output terminal 54 of each phase in the vicinity of the opening 32 without being routed, so that no extra space is required for routing. Is. As a result, the diameter of the electronic control unit EC can be reduced.
  • the neutral terminal 31 of each phase is connected by a wiring pattern on the substrate of the rotational position detection circuit board 22 to form a neutral point.
  • the neutral terminal 31 of each phase of the other system is also connected by the wiring pattern 55 on the substrate of the rotational position detection circuit substrate 22 to form a neutral point. Since the neutral terminals 31 of each phase of the main electronic control means and the sub electronic control means are connected by the wiring pattern 55 on the substrate of the rotational position detection circuit board 22, the neutral terminals 31 of each phase can be routed.
  • the configuration is extremely simple.
  • the electronic control unit EC assembled in this way, a part of the heat generated particularly in the first power conversion circuit board 24 (or the second power conversion circuit board 26) passes through the heat dissipation base 23. Most of the heat stored in the second power conversion circuit board 26 (or the first power conversion circuit board 24) and transferred to the heat dissipation base 23 moves to the motor housing 20 through the support shaft 36 and is dissipated.
  • a fixing surface for fixing the first power conversion circuit board 24 and the first control circuit board 25 is formed on the board mounting surface 23 ⁇ / b> F corresponding to the front side of the heat dissipation base 23.
  • a fixing surface for fixing the second power conversion circuit board 26 and the second control circuit board 27 is formed on the board mounting surface 23 ⁇ / b> F corresponding to the rear side of the board.
  • substrate attachment surface 23F corresponding to the back side of the thermal radiation base 23 are formed in the mutually substantially parallel state. Therefore, the first power conversion circuit board 24, the first control circuit board 25, the second power conversion circuit board 26, and the second control circuit board 27 are also arranged substantially in parallel.
  • the heat capacity of the substrate that quickly accumulates the heat generated from the electronic component is large.
  • the capacity of the other electronic control means for example, the sub-electron control means
  • the contact area with the heat dissipation base 23 is large.
  • first, the first control circuit board 25 and the second control circuit board 27 are attached to the heat radiating base 23 so as to increase the board area of the first control circuit board 25 and the second control circuit board 27. The capacity to store heat is increased. Further, the first power conversion circuit board 24 and the second power conversion circuit board 26 are attached to the heat radiating base 23 so as to increase the contact product between the first power conversion circuit board 24 and the second power conversion circuit board 26. Heat is quickly released to the heat dissipation base 23.
  • the first control circuit board 25 and the second control circuit board 27 are attached to the heat dissipating base 23 so as to be inclined toward each other downward.
  • the first control circuit board 25 and the second control circuit board 27 are tilted in this way, as shown in FIG. 3, the first control circuit board 25 and the second control circuit board 27 are arranged substantially in parallel.
  • the substrate area can be increased. Therefore, extra heat can be accumulated by the increased amount, so that the heat generated in the electronic component on the substrate can be quickly released to the substrate, and the heat resistance of the electronic component can be improved.
  • a first power conversion circuit board 24 and a first control circuit board 25 are provided on the front surface of the heat dissipation base 23, and a second power conversion circuit board 26 and a second control circuit board 27 are provided on the back face of the heat dissipation base 23. Therefore, normally, a part of the heat generated in the state in which the first power conversion circuit board 24 and the first control circuit board 25 are operating is transferred to the second power conversion circuit board 26 and the second power through the heat dissipation base 23. Since the heat is accumulated in the control circuit board 27, the heat of the first power conversion circuit board 24 and the first control circuit board 25 can be released quickly and efficiently.
  • the distance between the first control circuit board 25 and the second control circuit board 27 and the inner peripheral surface of the cover 29 is shortened. Heat from the control circuit board 25 and the second control circuit board 27 can be easily transferred to the cover 29, and the amount of heat dissipated from the cover 29 can be increased.
  • the shape of the heat dissipation base 23 is inclined so as to spread toward the lower side.
  • the first power conversion circuit board 24 and the second power conversion circuit board 26 can be attached to the inclined portion of the heat dissipation base 23 in an inclined manner.
  • the first power conversion circuit board 24 and the second power conversion circuit board 26 are substantially parallel to each other as shown in FIG.
  • a contact area with the thermal radiation base 23 can be enlarged. Therefore, heat can be quickly released to the heat radiating base 23 by the increased amount, so that the heat resistance of the electronic component can be improved.
  • the electric drive device is fixed to the heat dissipating base body extending along the rotation axis direction of the electric motor so that the substrate of the electronic control means also extending along the axial direction can be conducted.
  • the size in the radial direction can be reduced. Further, since heat from each substrate is radiated to the housing of the electric motor unit through the heat dissipation base, heat from the substrate can be efficiently radiated to the outside even when the size is reduced.
  • the present invention relates to a motor housing in which an electric motor is housed, and an end surface of the motor housing opposite to the output portion of the rotating shaft of the electric motor, and extends in the direction of the rotating shaft opposite to the output portion.
  • a pair of support shafts arranged opposite to each other, a heat dissipating base disposed between the support shafts and extending in the same direction as the support shaft, and a screw that is screwed inwardly from the outside in the radial direction to couple the support shaft and the heat dissipating base.
  • One of the redundant electronic control means including a bolt and a substrate disposed along the direction in which the heat dissipating base extends and fixed to the heat dissipating base so as to conduct heat, and the heat dissipating base disposed along the direction in which the heat dissipating base extends
  • the other electronic control means of the redundant system including a substrate fixed to be thermally conductive is provided.
  • the radial direction of the electric drive device can be reduced.
  • the size can be reduced and the size can be reduced.
  • heat from each substrate is radiated to the housing of the electric motor unit through the heat dissipation base, heat from the substrate can be efficiently radiated to the outside even when the size is reduced.
  • the fixing bolt is screwed into the heat dissipation base through the support shaft from the outside in the radial direction to the inside, so that the fixing bolt is not fixed on the outer peripheral side. This makes it possible to reduce the diameter of the electronic control unit. It becomes.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • a motor housing that houses an electric motor that drives a mechanical control element, and an end surface of the motor housing opposite to the output portion of the rotating shaft of the electric motor.
  • the support shaft is formed integrally with an end surface of the motor housing, and the motor housing and the heat dissipation base are made of the same metal.
  • the heat dissipating base is fixed to the end face of the motor housing near a region where the rotation shaft is disposed, and the one electronic control means And the other electronic control means are arranged at positions facing each other with the heat dissipation base interposed therebetween.
  • the heat dissipating base includes a mounting surface of the substrate of the one electronic control unit and a mounting surface of the substrate of the other electronic control unit.
  • a storage recess and a mounting flat portion surrounding the storage recess are formed on both the mounting surfaces, and a power conversion circuit board constituting both the electronic control means is mounted on the storage recess.
  • a control circuit board constituting both the electronic control means is attached to the attachment plane portion so as to cover the power conversion circuit board.
  • the power conversion circuit board constituting the both electronic control means is mounted with a power supply circuit excluding a power conversion circuit and an electrolytic capacitor
  • the control circuit board constituting the both electronic control means is mounted with a microcomputer for controlling the power conversion circuit and its peripheral circuits, and the electrolytic capacitor of the power supply circuit.
  • the electric power steering device is an electric motor that applies a steering assist force to the steering shaft based on an output from a torque sensor that detects a rotation direction and a rotation torque of the steering shaft.
  • a motor, a motor housing in which the electric motor is housed, and an end surface of the motor housing opposite to the output portion of the rotating shaft of the electric motor face each other and extend in the direction of the rotating shaft opposite to the output portion.
  • a pair of support shafts disposed between the support shafts and extending in the same direction as the support shafts; and the support shafts screwed inwardly from the radially outer side to the support shafts;
  • a fixing bolt that couples the heat dissipating base, and a base that is disposed along the direction in which the heat dissipating base extends and is attached to the heat dissipating base so as to conduct heat
  • One electronic control means of a redundant system comprising: and another electronic control means of the redundant system comprising a substrate that is disposed along the direction in which the heat dissipating base extends and is attached to the heat dissipating base so as to be capable of conducting heat.
  • the support shaft is formed integrally with an end surface of the motor housing, and the motor housing and the heat dissipation base are made of the same metal.
  • the heat dissipating base is fixed to the end face of the motor housing near a region where the rotation shaft is disposed, and the one electronic control The means and the other electronic control means are arranged at positions facing each other with the heat dissipation base interposed therebetween.
  • the heat dissipating base is attached to the mounting surface of the board of the one electronic control means and the board of the other electronic control means.
  • a storage recess and a mounting flat part surrounding the storage recess are formed on both the mounting surfaces, and a power conversion circuit board constituting the electronic control means is mounted on the storage recess.
  • a control circuit board constituting both the electronic control means is attached to the attachment plane portion so as to cover the power conversion circuit board.
  • the power conversion circuit board constituting the both electronic control means is mounted with a power supply circuit excluding a power conversion circuit and an electrolytic capacitor.
  • the control circuit board constituting both the electronic control means is mounted with a microcomputer for controlling the power conversion circuit and its peripheral circuit, and the electrolytic capacitor of the power supply circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Steering Mechanism (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

電動モータが収納されたモータハウジング20と、電動モータの回転軸の出力部とは反対側の前記モータハウジング20の端面に、出力部とは反対側の回転軸方向に延びる互いに向き合って配置された一対の支持軸36と、支持軸36の間に配置され支持軸36と同じ方向に延びる放熱基体23と、支持軸36から径方向内側にねじ込まれ、支持軸36と放熱基体23を結合する固定ボルト41と、放熱基体23が延びる方向に沿って配置され、放熱基体23に熱伝導可能に固定された基板を備える冗長系の一方の電子制御手段24と、放熱基体23が延びる方向に沿って配置され、放熱基体23に熱伝導可能に固定された基板を備える冗長系の他方の電子制御手段26を設けた。

Description

電動駆動装置及び電動パワーステアリング装置
 本発明は電動駆動装置及び電動パワーステアリング装置に係り、特に電子制御装置を内蔵した電動駆動装置及び電動パワーステアリング装置に関するものである。
 一般的な産業機械分野においては、電動モータによって機械系制御要素を駆動することが行われているが、最近では電動モータの回転速度や回転トルクを制御する半導体素子等からなる電子制御部を電動モータに一体的に組み込む、いわゆる機電一体型の電動駆動装置が採用され始めている。
 機電一体型の電動駆動装置の例として、例えば自動車の電動パワーステアリング装置においては、運転者がステアリングホィールを操作することにより回動するステアリングシャフトの回動方向と回動トルクとを検出し、この検出値に基づいてステアリングシャフトの回動方向と同じ方向へ回動するように電動モータを駆動し、操舵アシストトルクを発生させるように構成されている。この電動モータを制御するため、電子制御部(ECU:Electronic Control Unit)がパワーステアリング装置に設けられている。
 従来の電動パワーステアリング装置としては、例えば、特開2013-60119号公報(特許文献1)に記載のものが知られている。特許文献1には、電動モータ部と電子制御部とにより構成された電動パワーステアリング装置が記載されている。そして、電動モータ部の電動モータは、アルミ合金等から作られた筒部を有するモータハウジングに収納され、電子制御部の電子部品が実装された基板は、モータハウジングの軸方向の出力軸とは反対側に配置されたECUハウジングに収納されている。ECUハウジングの内部に収納される基板は、電源回路部、電動モータを駆動制御するMOSFET、或いはIGBT等のようなパワースイッチング素子を有する電力変換回路部と、パワースイッチング素子を制御する制御回路部とを備え、パワースイッチング素子の出力端子と電動モータの入力端子とはバスバーを介して電気的に接続されている。
 そして、ECUハウジングに収納された電子制御部には、合成樹脂から作られたコネクタ端子組立体を介して電源から電力が供給され、また検出センサ類から運転状態等の検出信号が供給されている。コネクタ端子組立体は蓋体として機能しており、ECUハウジングに形成された開口部を塞ぐようにして電子制御部と接続され、また固定ボルトによってECUハウジングの外表面に固定されている。
 尚、この他に電子制御部と電動モータ部を一体化した電動駆動装置としては、電動ブレーキや各種油圧制御用の電動油圧制御器等が知られている。
特開2013-60119号公報
 ところで、特許文献1に記載されている電動パワーステアリング装置は自動車のエンジンルーム内に配置されることから、小型に構成されることが必要である。特に最近では自動車のエンジンルーム内は、排気ガス対策機器や安全対策機器等の補機類が多く設置される傾向にあり、電動パワーステアリング装置を含めて各種補機類はできるだけ小型化することや部品点数を低減することが求められている。
 そして、特許文献1にあるような構成の電動パワーステアリング装置においては、電源回路部、電力変換回路部、及び制御回路部が、半径方向に沿って設置された2枚の基板に実装されている。このため、電動モータを制御するための必要な電気部品の部品点数は大まかに決まっているので、2枚の基板にこれらの部品点数の電気部品を実装すると、電子制御部を収納しているECUハウジングが自ずと半径方向に大きくなる。
 更に、電動パワーステアリング装置においては、自動車の操舵を行うため安全性が特に要求されており、二重系のような冗長系を備えた電子制御部とする必要がある。このため、冗長系の構成として同じ電子制御部が2系統必要になり、この点からもECUハウジングが更に大きくなる傾向にある。
 そして、電動パワーステアリング装置はその構造上から長手方向には軸長の制限は比較的少なく、半径方向の大型化が制限される傾向にある。したがって、電動駆動装置を半径方向へ小型化することが要請されているのが現状である。また、これに加えて、電源回路部や電力変換回路部を構成する電気部品は発熱量が大きく、小型化する場合はこの熱を効率よく外部に放熱してやる必要がある。
 更に、電子制御部の基板は放熱基体に固定されるが、この種の固定方法は、放熱基体の外周に取り付けフランジを形成し、この取付フランジとモータハウジングの外周を固定ボルトで固定するのが一般的によく知られている。しかしながら、このように外周側で固定ボルトによって固定すると、この分だけ余計に径方向に大型化する傾向にある。
 本発明の目的は、冗長系を備える電子制御部と一体化された電動モータ部よりなる電動駆動装置が半径方向に大型化するのを抑制すると共に、できるだけ部品点数を少なくして構成が簡単な放熱構造を備える新規な電動駆動装置及び電動パワーステアリング装置を提供することにある。
 本発明の特徴は、機械系制御要素を駆動する電動モータが収納されたモータハウジングと、電動モータの回転軸の出力部とは反対側のモータハウジングの端面に、出力部とは反対側の回転軸方向に延びる互いに向き合って配置された一対の支持軸と、支持軸の間に配置され支持軸と同じ方向に延びる放熱基体と、支持軸から径方向外側から内側にねじ込まれ、支持軸と放熱基体を結合する固定ボルトと、放熱基体が延びる方向に沿って配置され、放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の一方の電子制御手段と、放熱基体が延びる方向に沿って配置され、放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の他方の電子制御手段を備えた電動駆動装置、にある。
 本発明によれば、電動モータの回転軸方向に沿って延びる放熱基体に、これも回転軸方向に沿って延びる電子制御部の基板を熱伝導可能に固定することで、電動駆動装置の半径方向の大きさを縮小して小型化することができる。また、夫々の基板からの熱が放熱基体を介して電動モータ部のハウジングに放熱されるので、小型化した場合であっても基板からの熱を効率よく外部に放熱することができる。更に、固定ボルトは、径方向外側から内側に向けて、支持軸を通って放熱基体にねじ込まれるので、外周側で固定されないものとなる、これによって、電子制御部の小径化を図ることが可能となる。
本発明が適用される一例としての操舵装置の全体斜視図である。 従来の電動パワーステアリング装置の全体斜視図である。 本発明の一実施形態になる電動パワーステアリング装置の分解斜視図である。 電動モータ部に回転位置検出回路基板を実装した状態を示す斜視図である。 電動モータ部に取り付けられる放熱基体の斜視図である。 電動モータ部に放熱基体を実装した状態を示す斜視図である。 電動モータ部と放熱基体の固定方法を説明する断面図である。 放熱基体に冗長系の電子制御手段を固定した状態を示す斜視図である。 図8のA-A縦断面を示し、その変形例を説明する断面図である。
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 本発明の実施形態を説明する前に本発明が適用される一例としての操舵装置の構成について図1を用いて簡単に説明し、また、本発明の理解を助けるために、従来の電動パワーステアリング装置の概略の構成についても図2を用いて簡単に説明する。
 まず、自動車の前輪を操舵するための操舵装置について説明する。操舵装置1は図1に示すように構成されている。図示しないステアリングホイールに連結されたステアリングシャフト2の下端には図示しないピニオンが設けられ、このピニオンは車体左右方向へ長い図示しないラックと噛み合っている。このラックの両端には前輪を左右方向へ操舵するためのタイロッド3が連結されており、ラックはラックハウジング4に覆われている。そして、ラックハウジング4とタイロッド3との間にはゴムブーツ5が設けられている。
 ステアリングホイールを回動操作する際のトルクを補助するため、電動パワーステアリング装置6が設けられている。即ち、ステアリングシャフト2の回動方向と回動トルクとを検出するトルクセンサ7が設けられ、トルクセンサ7の検出値に基づいてラックにギヤ10を介して操舵補助力を付与する電動モータ部8と、電動モータ部8に配置された電動モータを制御する電子制御部(ECU)9とが設けられている。電動パワーステアリング装置6の電動モータ部8は、出力軸側の外周部の3箇所が図示しないボルトを介してギヤ10に接続され、電動モータ部8の出力軸とは反対側に電子制御部9が設けられている。
 従来の電動パワーステアリング装置は、図2に示すように、電動モータ部8はアルミ合金等から作られた筒部を有するモータハウジング11A及びこれに収納された図示しない電動モータとから構成され、電子制御部9は、モータハウジング11Aの軸方向の出力軸とは反対側に配置された、アルミ合金等で作られたECUハウジング11B及びこれに収納された図示しない電子制御組立体から構成されている。
 モータハウジング11AとECUハウジング11Bはその対向端面で固定ボルトによって一体的に固定されている。ECUハウジング11Bの内部に収納された電子制御組立体は、必要な電源を生成する電源回路部や、電動モータ部8の電動モータを駆動制御するMOSFETやIGBT等からなるパワースイッチング素子を有する電力変換回路や、このパワースイッチング素子を制御する制御回路部からなり、パワースイッチング素子の出力端子と電動モータの入力端子とはバスバーを介して電気的に接続されている。
 ECUハウジング11Bの端面にはコネクタ端子組立体を兼用する合成樹脂製の蓋体12が固定ボルトによって固定されている。蓋体12には電力供給用のコネクタ端子形成部12A、検出センサ用のコネクタ端子形成部12B、制御状態を外部機器に送出する制御状態送出用のコネクタ端子形成部12Cを備えている。そして、ECUハウジング11Bに収納された電子制御組立体は、合成樹脂から作られた蓋体12の電力供給用のコネクタ端子形成部12Aを介して電源から電力が供給され、また検出センサ類から運転状態等の検出信号が検出センサ用のコネクタ端子形成部12Bを介して供給され、現在の電動パワーステアリング装置の制御状態信号が制御状態送出用のコネクタ端子形成部12Cを介して送出されている。
 ここで、蓋体12はECUハウジング11Bの開口部の全体を覆うような形状になっているが、各コネクタ端子を小型に形成して、ECUハウジング11Bに形成された挿入孔を挿通して電子制御装組立体と接続する構成にしても良いものである。
 電動パワーステアリング装置6においては、ステアリングホイールが操作されることによりステアリングシャフト2がいずれかの方向へ回動操作されると、このステアリングシャフト2の回動方向と回動トルクとをトルクセンサ7が検出し、この検出値に基づいて制御回路部が電動モータの駆動操作量を演算する。この演算した駆動操作量に基づいて電力変換回路部のパワースイッチング素子により電動モータが駆動され、電動モータの出力軸はステアリングシャフト2を操作方向と同じ方向へ駆動するように回動される。出力軸の回動は、図示しないピニオンからギヤ10を介して図示しないラックへ伝達され、自動車が操舵されるものである。これらの構成、作用は既によく知られているので、これ以上の説明は省略する。
 このような電動パワーステアリング装置において、上述した通り自動車のエンジンルーム内は、排気ガス対策機器や安全対策機器等の補機類が多く設置される傾向にあり、電動パワーステアリング装置を含めて各種補機類はできるだけ小型化することが求められている。
 そして、このような構成の電動パワーステアリング装置においては、電源回路部、電力変換回路部、及び制御回路部が2枚の基板に実装され、ECUハウジングの軸に直交するように半径方向に設置されている。このため、電動モータを制御するための必要な電気部品の部品点数は大まかに決まっているので、2枚の基板にこれらの部品点数の電気部品を実装すると、電子制御部を収納しているECUハウジングが自ずと半径方向に大きくなる。
 更に、電動パワーステアリング装置においては、自動車の操舵を行うため安全性が特に要求されており、二重系のような冗長系を備えた電子制御部とする必要がある。このため、冗長系の構成として同じ電子制御部が2系統必要になり、電子部品の数が2倍になるので、この点からもECUハウジングが更に大きくなる。
 そして、電動パワーステアリング装置はその構造上から長手方向には軸長の制限は比較的少なく、半径方向の大型化が制限される傾向にある。したがって、電動駆動装置を半径方向へ小型化することが要請されているのが現状である。また、これに加えて、電源回路部や電力変換回路部を構成する電気部品は発熱量が大きく、小型化する場合はこの熱を効率よく外部に放熱してやる必要がある。
 更に、電子制御部の基板は放熱基体に固定されるが、この種の固定方法は、放熱基体の外周に取り付けフランジを形成し、この取付フランジとモータハウジングの外周を固定ボルトで固定するのが一般的によく知られている。しかしながら、このように外周側で固定ボルトによって固定すると、この分だけ余計に径方向に大型化する傾向にある。
 このような背景から、本実施形態では次のような構成の電動パワーステアリング装置を提案するものである。
 つまり、本実施形態においては、電動モータが収納されたモータハウジングと、電動モータの回転軸の出力部とは反対側のモータハウジングの端面に、出力部とは反対側の回転軸方向に延びる互いに向き合って配置された一対の支持軸と、支持軸の間に配置され支持軸と同じ方向に延びる放熱基体と、支持軸から径方向内側にねじ込まれ、支持軸と放熱基体を結合する固定ボルトと、放熱基体が延びる方向に沿って配置され、放熱基体に熱伝導可能に固定された基板を備える冗長系の一方の電子制御手段と、放熱基体が延びる方向に沿って配置され、放熱基体に熱伝導可能に固定された基板を備える冗長系の他方の電子制御手段を備えた、構成とした。
 以下、本発明の一実施形態になる電動パワーステアリング装置の構成について、図3乃至図9を用いて詳細に説明する。尚、図3は本実施形態になる電動パワーステアリング装置の全体的な構成部品を分解して斜め方向から見た図であり、図4から図9は各構成部品の組み立て順序にしたがって各構成部品を組み付けていった状態を示す図面である。したがって、以下の説明では、各図面を適宜引用しながら説明を行うものとする。
 図3に電動パワーステアリング装置6の分解斜視図を示している。モータハウジング20には内部に円環状の鉄製のサイドヨーク(図示せず)が嵌合されており、このサイドヨーク内に電動モータ(図示せず)が収納されているものである。電動モータの出力部21はギヤを介してラックに操舵補助力を付与している。尚、電動モータの具体的な構造は良く知られているので、ここでは説明を省略する。
 モータハウジング20はアルミ合金から作られており、電動モータで発生した熱や、後述する電子制御基板に実装された電子部品で発生した熱を外部大気に放出するヒートシンクとして機能している。電動モータとモータハウジング20で電動モータ部EMを構成している。
 電動モータ部EMの出力部21の反対側のモータハウジング20の端面には電子制御部ECが取り付けられている。電子制御部ECは、回転位置検出回路基板22、放熱基体23、第1電力変換回路基板24、第1制御回路基板25、第2電力変換回路基板26、第2制御回路基板27、電源コネクタ28から構成されている。
 ここで、第1電力変換回路基板24、第1制御回路基板25、第2電力変換回路基板26、第2制御回路基板27は冗長系を構成するものであり、第1電力変換回路基板24、第1制御回路基板25によって主電子制御手段を構成し、第2電力変換回路基板26、第2制御回路基板27によって副電子制御手段を構成している。
 そして、通常は主電子制御手段によって電動モータが制御、駆動されているが、主電子制御手段の第1電力変換回路基板24や第1制御回路基板25に異常や故障が生じると、副電子制御手段に切り換えられ、副電子制御手段の第2電力変換回路基板26、第2制御回路基板27によって電動モータが制御、駆動されるようになるものである。
 したがって、後述するが、放熱基体23には通常は主電子制御手段からの熱が伝えられ、主電子制御手段に異常や故障が生じると主電子制御手段が停止して副電子制御手段が作動し、放熱基体23には副電子制御手段からの熱が伝えられるものである。
 ただ、本実施形態では採用していないが、主電子制御手段と副電子制御手段を合せて正規の電子制御手段として機能させ、一方の電子制御手段に異常、故障が生じると、他方の電子制御手段で半分の能力によって電動モータを制御、駆動することも可能である。この場合、電動モータの能力は半分となるが、いわゆる「リンプホーム機能」は確保されるようになっている。したがって、通常の場合は、主電子制御手段と副電子制御手段の熱が放熱基体23に伝えられるものである。
 電子制御部ECは、従来の図2に示すようなECUハウジングに収納されておらず、このため電子制御部ECの熱はECUハウジングから放熱されるものではない。本実施形態では、電子制御部ECはモータハウジング20に固定、支持される構成になっており、電子制御部ECの熱は、モータハウジング20から主に放熱されるものである。そして、電子制御部ECと電動モータ部EMの組み付けが終了すると、カバー29で電子制御部ECを覆い、モータハウジング20の端面とカバー29を突き合わせで両者を結合している。
 カバー29は合成樹脂や金属で作ることができ、接着、溶着、ボルト等の固定方法、固定手段でモータハウジング20と一体化されている。このように、本実施形態では、電動パワーステアリング装置としてみると、シールする部分はモータハウジング20とカバー29との結合部だけであるので、シール部分の付加的な構造や、シールに必要な部品を少なくできるものである。
 また、カバー29は電子制御部ECを支持する必要が無いので、厚さを薄くすることでき、電子制御部ECの半径方向の長さの縮小と軽量化に寄与している。また、カバー29を金属(アルミ合金や鉄等)で形成すると、放熱機能を備えることになるので、モータハウジング20からの熱がカバー29に伝わり、放熱作用を更に高めることができる。
 このように本実施形態では、回転位置検出回路基板22はモータハウジング20の端面に固定され、第1電力変換回路基板24、第1制御回路基板25、第2電力変換回路基板26、第2制御回路基板27は互いに向き合いながら放熱基体23に固定され、更に、放熱基体23は、モータハウジング20の端面で回転位置検出回路基板22を覆うようにして固定されている。また、カバー29がモータハウジング20の端面に液密的に結合される構成となっている。この構成が本実施形態の大きな特徴の一つである。
 つまり、本実施形態では、図2に示す従来の電動パワーステアリング装置のような、モータハウジングの軸方向の出力軸とは反対側に配置された、アルミ合金等で作られたECUハウジングを必要としないものである。
 このため、従来のようにECUハウジング、ECUハウジング内の液密性を確保するシール、モータハウジングとECUハウジングを固定するボルト等を必要とせず、電動パワーステアリング装置自体の体格を小型にすることが可能となり、更には部品点数も少なくすることができるので、組み付け工数も併せて低減することができる。これによって、最終的な製品単価を抑えることができ、製品競争力を高めることが可能となる。
 図3に戻って、モータハウジング20の中央部には電動モータのロータ部(図示せず)が配置されており、このロータ部の周囲に固定子巻線が巻回されている。固定子巻線はスター結線されており、各相の巻線の入力端子30と各相の中性端子31が、モータハウジング20に設けた開口32から突き出している。尚、本実施形態では二重系に構成されているので、もう一方の系のために各相の巻線の入力端子30と各相の中性端子31が、モータハウジング20に設けた開口32から突き出している。これらの冗長系の入力端子30と中性端子31は、互いに180°の間隔を置いて開口32から突き出している。
 この各相の巻線の入力端子30は、主電子制御手段を構成する第1電力変換回路基板24の各相の出力端子に接続されている。また、各相の中性端子31は回転位置検出回路基板22の基板上で配線パターンによって接続されて中性点を形成している。同様にもう一方の系の各相の巻線の入力端子30は、副電子制御手段を構成する第2電力変換回路基板26の各相の出力端子に接続されている。また、もう一方の系の各相の中性端子31も回転位置検出回路基板22の基板上で配線パターンによって接続されて中性点を形成している。基本的には冗長系であるのでほぼ同じ構成とされている。
 この構成も本実施形態の大きな特徴の一つである。このように、主電子制御手段及び副電子制御手段の各相の中性端子31を、回転位置検出回路基板22の基板上で配線パターンによって接続しているので、各相の中性端子31を引き回す必要がなく構成が極めて簡単となる。更に加えて、各相の入力端子30を夫々の電力変換回路基板24、26まで引き回す必要がないので、この引き回すための空間も必要がなくなり電子制御部ECの小径化が更に図れるものとなる。これについては、図8を用いて説明する。
 尚、モータハウジング20の2つの開口32の間には図示していないが、ロータ部を構成する回転軸を支持する軸受が設けられており、この軸受部分を外部から覆うように密閉板33がモータハウジング20の端面側に設けられている。この密閉板33はロータ部と外部とを遮蔽するものであり、カバー29が取り付けられた後に、カバー29内に充填される充填剤がロータ部に侵入しないようにするために設けられている。尚、開口32を通って充填剤が巻線側に流れてくるが、巻線側は回転しないので何ら影響はないものである。
 図3、図4にも示す通り、モータハウジング20の端面には回転位置検出回路基板22がボルト34によって固定されており、この回転位置検出回路基板22の基板上で各相の中性端子31接続されて中性点を形成している。また、開口32と回転位置検出回路基板22の間から各相の巻線の入力端子30が軸方向に沿って延びている。この入力端子30は後述するように、電力変換回路基板24,26の各相の出力端子に接続されるものである。
 回転位置検出回路基板22の密閉板33側の面には、図示しないGMR(巨大磁気抵抗効果)素子が設けられており、出力部21とは反対側の回転軸に固定した位置検出用永久磁石と協働してロータ部の磁極位置情報を得るようにしている。また、回転位置検出回路基板22のGMR素子が設けられた面の反対側の面には磁気シールド板35が設けられている。
 この磁気シールド板35は、第1電力変換回路基板24、第1制御回路基板25、第2電力変換回路基板26、第2制御回路基板27に搭載されている電子部品の動作に起因する磁気がGMR素子に影響を与えるのを抑制する機能を備えている。
 モータハウジング20の端面には、出力部21とは反対側に向けて軸方向に植立する支持軸36がモータハウジング20と一体的に形成されている。したがって、支持軸36はアルミ合金で作られており、熱伝導性が高いものである。この支持軸36は、回転位置検出回路基板22を挟んで約180°間隔で、対向するように設けられている。この支持軸36は、後述するように放熱基体23を固定、支持する共に、放熱基体23からの熱をモータハウジング20に伝える機能を備えている。
 この支持軸36は放熱基体23に対して、正面とこの正面の両側に形成される側面の3面で放熱基体23と熱的に接触する形状に形成されている。そして、側面は熱伝導面積をより多くするために、軸方向先端に向かって傾斜面に形成されている。これによって、側面の長さが長くなり熱伝導面積を多く確保できる。また、支持軸36の正面と背面には固定ボルトが挿通する挿通孔37が形成されている。
 図3、図5、図6において、放熱基体23は熱伝導性の良いアルミ合金から作られており、ほぼ直方体の形状に形成されている。この放熱基体23は、基本的にはモータハウジング20の端面のほぼ中央付近、言い換えれば、ロータ部の回転軸の延長線上の領域を通るように配置され、出力部21とは反対側に向けて軸方向に延在するように配置されている。この放熱基体23を中心にして、後述する冗長系の電子制御基板が軸方向に配置されるものである。この構成も本実施形態の大きな特徴の1つとなっている。
 そして、放熱基体23の両側面23Sの下側には支持軸36が取り付けられる支持軸取付部38が形成されており、上側にはコネクタ取付部39が形成されている。支持軸取付部38は、支持軸36の正面と対向する面と側面に対向する面を備える凹部形状に形成されており、この凹部形状の部分に支持軸36が収納、配置されるものである。尚、支持軸36の正面と対向する面には固定ボルトがねじ込まれるボルト孔40が形成されている。
 支持軸36の側面に対向する支持軸取付部38の面は、支持軸36の側面に合わせて上側に向けて狭まるような傾斜面に形成されている。これによって、放熱基体23から支持軸36に向かう熱の熱伝導面積を大きく確保すると共に、放熱基体23を支持軸36に差し込む時の案内を行うことができる。
 しかも、支持軸36の側面と、これに対向する支持軸取付部38の面とが傾斜面になっているので、両者の夫々の面の密着が良くなり、支持軸36と放熱基体23の間の振れを抑制することができる。これによって、放熱基体23が無用な振動を行うことが抑制できるようになる。
 また、放熱基体23の上側に形成したコネクタ取付部39も、電源コネクタが係合する形状に形成されている。これについては図8で説明する。
 図6は、図5に示している状態の放熱基体23の側面23Sの反対側の側面から見た放熱基体23の取り付け状態を示している。
 図6に示すように、放熱基体23の支持軸取付部38を、モータハウジング20に形成した支持軸36に沿って下側に移動させていき、所定の位置に達すると固定ボルト41によって、支持軸36と放熱基体23を強固に固定している。この状態で、放熱基体23は、モータハウジング20の端面の中央付近を通る位置で固定されるようになる。尚、本実施形態では放熱基体23のモータハウジング20の端面への取付面の長さを、後述する制御回路基板25、27の大きさに合わせているので、放熱基体23はモータハウジング20の端面の中央付近を横切るような形態で取り付けられている。
 そして、これによって、後述する電子制御基板からの熱を放熱基体23に伝え、更に放熱基体23の熱を支持軸36に伝えることができる。したがって、従来のようなECUハウジングを用いることなく、電子制御基板からの熱をモータハウジング20から放熱することができるので、電動パワーステアリング装置自体の体格を小型にすることが可能となり、更には部品点数も少なくすることができるので、組み付け工数も併せて低減することができる。尚、支持軸36と放熱基体23の接触部分は、熱的な接触を高めるため(界面熱抵抗を小さくする)熱伝導性の良い接着剤、放熱シート、放熱グリース等の放熱機能材を介装することもできる。
 図5に戻って、放熱基体23の正面側に対応する基板取付面23Fには、第1電力変換回路基板24、第1制御回路基板25を固定する固定面が形成されている。図1、図8に示しているように、放熱基体23の正面側には第1電力変換回路基板24が固定され、更にその上から第1制御回路基板25が固定されるようになっている。
 同様に、放熱基体23の背面側に対応する基板取付面23Fには、第2電力変換回路基板26、第2制御回路基板27を固定する固定面が形成されている。これも図1に示しているように、放熱基体23の背面側には第2電力変換回路基板26が固定され、更にその上から第2制御回路基板27が固定されるようになっている。
 第1電力変換回路基板24、第2電力変換回路基板26は、アルミニウム等の熱伝導性の良い金属からなる金属基板上に、電力変換回路を構成する複数のMOSFETからなるパワースイッチング素子、及びこれの出力用の出力コネクタが設けられている。更に、第1電力変換回路基板24、第2電力変換回路基板26には、電源回路を構成するコイル、MOSFETよりなるスイッチング素子、各種コネクタ端子が設けられている。この第1電力変換回路基板24、第2電力変換回路基板26には大きな電流をスイッチングするスイッチング素子が多く実装されているので発熱量が多く、第1電力変換回路基板24、第2電力変換回路基板26が主たる発熱源となっている。もちろん、第1制御回路基板25、第2制御回路基板27からも熱が発生するが、これも放熱基体23に放熱される構成となっている。これについては後述する。
 この第1電力変換回路基板24、第2電力変換回路基板26の金属基板は、図5、図6に示すように、放熱基体23の正面及び背面に形成した収納凹部42に固定ボルトによって固定されている。金属基板と収納凹部42の間には、パワースイッチング素子が配置されており、パワースイッチング素子と収納凹部42の間には熱伝導性能を高めるために熱伝導性の良い接着剤、放熱シート、放熱グリース等の放熱機能材が介装されている。
 尚、パワースイッチング素子を収納凹部42とは反対側に配置して、金属基板と収納凹部42を接触させる構成としても良いことはいうまでもない。ただ本実施形態では、より効率よくパワースイッチング素子の熱を放熱基体23に伝えるため、パワースイッチング素子と収納凹部42とを接触させる形態としている。
 このように、第1電力変換回路基板24、第2電力変換回路基板26を放熱基体23に形成した収納凹部42に収納する構成とすることによって、第1電力変換回路基板24、第2電力変換回路基板26が放熱基体23内に収納される形態となって、電子制御部ECが径方向に大型化するのを抑制するようにしている。
 更に、図8に示しているように、第1電力変換回路基板24、第2電力変換回路基板26を覆うようにして、第1制御回路基板25、第2制御回路基板27が放熱基体23の基板取付面23Fに固定ボルト47によって固定されている。つまり、第1制御回路基板25、第2制御回路基板27は、放熱基体23の取付面23Fに形成した収納凹部42を取り囲む取付平面部44に固定ボルト47によって固定されるものである。
 第1制御回路基板25、第2制御回路基板27は、合成樹脂等からなる樹脂基板上に、電力変換回路のスイッチング素子等を制御するマイクロコンピュータ48やその周辺回路49が実装されている。尚、本実施形態では第1制御回路基板25、第2制御回路基板27に電源回路を構成する電解コンデンサ43を搭載している。
 電解コンデンサ43は体格的に形状が大きいので、上述した収納凹部42に配置することが困難なため、第1制御回路基板25、第2制御回路基板27に実装するようにしている。図1に示すようにカバー29との空間が充分であるため、電解コンデンサ43を配置しても何ら問題ないものである。
 ここで、収納凹部42と取付平面部44を結ぶ間には、第1制御回路基板25、第2制御回路基板27を固定した場合に通路となる通路空間45が形成されている。この通路空間は収納凹部42を空気によって冷却するために形成されている。このため、第1制御回路基板25、第2制御回路基板27からの熱は、通路空間45の空気に流れ、また、取付平面部44を通って放熱基体23に流れるようになっている。
 放熱基体23の固定側とは反対側の上端面には、図5に示す通りコネクタ収納凹部46が形成されている。このコネクタ収納凹部46は後述する電源コネクタの内側端が収納されるものであり、位置決めの機能も有している。
 図7は支持軸36と放熱基体23の取付状態を示す断面である。モータハウジング20の端面には回転軸50の出力部21とは反対側の端部が位置しており、この端部には、磁石保持部材51が固定されており、この磁石保持部材51の内部に、位置検出センサを構成する位置検出用永久磁石52が収納されている。この位置検出用永久磁石52は、複数の単位磁石が環状に形成されるように着磁されている。
 位置検出用永久磁石52と回転位置検出回路基板22の間には密閉板33が配置されており、この密閉板33はモータハウジング20の端面に固定されて、回転軸50が配置されている空間と回転位置検出回路基板22側の空間を遮蔽している。これによって、回転軸50が配置されている空間と回転位置検出回路基板22側の空間を液密的、或いは気密的に遮蔽することが可能となる。
 したがって、回転軸50を伝わって侵入してくる水分が、電子制御基板が配置されている空間に移動するのを遮断することができ、電子制御基板に実装されている電子部品等に水分による悪影響が及ぶのを抑制することができる。もちろん、電動モータの回転によって生じる微細塵が侵入するのを抑制することも可能である。これによって電子部品の故障を避けるという効果を奏することもできる。
 尚、回転位置検出回路基板22に水分の侵入を検出するセンサを配置して、水分が侵入したことを検出することも可能である。本実施形態では、モータハウジング20とカバー29の突き合せ面でしか結合部が形成されないので、この部分での水の侵入が想定される。したがって、回転位置検出回路基板22がモータハウジング20の端面付近に固定されるので、この回転位置検出回路基板22に水分を検出するセンサを配置すれば、最も早く水分の検出が可能となる。
 また、GMR素子53は、回転位置検出回路基板22の位置検出用永久磁石52側の面に実装されており、位置検出用永久磁石52と対向する位置に配置されている。したがって、GMR素子53はモータハウジング20に一体的に組み付けられることになる。つまり、位置検出用永久磁石52が固定された回転軸50は、モータハウジング20の端面によって支持されており、また、GMR素子53を実装した回転位置検出回路基板22もモータハウジング20の端面に固定されている。このため、モータハウジング20の端面で位置検出用永久磁石52と回転位置検出回路基板22の位置が決められるので、GMR素子53の組み付け精度が向上し、正確な検出信号を得ることが可能となる。
 また、図7において、放熱基体23の支持軸取付部38が支持軸36に挿入、配置された状態で、固定ボルト41は径方向外側から内側に向けて、支持軸36を通って放熱基体23にねじ込まれ、支持軸36と放熱基体23が強固に固定されている。
 ここで、この固定ボルト41の固定方向も本実施形態の大きな特徴である。本実施形態では、固定ボルト41は径方向外側から内側に向けて、支持軸36を通って放熱基体23にねじ込まれている。これによって、電子制御部ECの小径化を図ることが可能となっている。この種の固定方法は、放熱基体23の外周に取り付けフランジを形成し、この取付フランジとモータハウジング20の外周を固定ボルトで固定するのが一般的によく知られている。しかしながら、このように外周側で固定すると、この分だけ余計に径方向に大型化する傾向にある。
 これに対して、本実施形態では放熱基体23とカバー29によって形成される空間を利用し、この空間に固定ボルト41が位置するようにしたものである。したがって、固定ボルト41は、径方向外側から内側に向けて、支持軸36を通って放熱基体23にねじ込まれるので、外周側で固定されないものとなる、これによって、電子制御部ECの小径化を図ることが可能となっている。
 また、2つの支持軸36はモータハウジング20で片持ち梁となっているので、放熱基体23と支持軸36を固定ボルト41で固定したときに、支持軸36は若干の撓みをもって固定されることになる。これによって固定ボルト41のネジ山に常に軸方向の荷重が作用するので、固定ボルト41の緩みを抑制することができる。
 モータハウジング20に放熱基体23が固定されると、次に冗長系の電子制御基板が取り付けられる。
 図8において、第1電力変換回路基板24、第2電力変換回路基板26の金属基板は、放熱基体23の正面及び背面に形成した収納凹部42に固定ボルトによって固定されている。尚、この図8では、第1制御回路基板25、第2制御回路基板27が組み付けられているため、表示されていない。第1電力変換回路基板24、第2電力変換回路基板26が、放熱基体23に形成した収納凹部42に収納される構成とすることによって、第1電力変換回路基板24、第2電力変換回路基板26が放熱基体23内に収納される形態となって、電子制御部ECが径方向に大型化するのを抑制できるものである。
 更に、第1電力変換回路基板24、第2電力変換回路基板26を覆うようにして、第1制御回路基板25、第2制御回路基板27が放熱基体23の基板取付面23Fに固定ボルト47によって固定されている。第1制御回路基板25、第2制御回路基板27には、電源回路に使用される電解コンデンサ43、電力変換回路のスイッチング素子等を制御するマイクロコンピュータ48、その周辺回路49が実装されている。
 放熱基体23の上端面には、電源コネクタ28が取り付けられ、図5に示すコネクタ取付部39で固定ボルト56によって固定されている。電源コネクタ28は図示しないケーブルによって車載バッテリに接続されている。したがって、電源コネクタ28から供給された電力は、第1電力変換回路基板24、第1制御回路基板25、第2電力変換回路基板26、第2制御回路基板27に与えられ、更に電動モータに与えられて電動モータが駆動されるものである。更に、この後にカバー29が電子制御部ECを密閉するように、モータハウジング20の端面に固定される。
 このように、放熱基体23の正面に第1電力変換回路基板24、第1制御回路基板25を設け、放熱基体23の背面に、第2電力変換回路基板26、第2制御回路基板27を設けることによって、通常では、第1電力変換回路基板24、第1制御回路基板25が動作している状態で発生した熱の一部は、放熱基体23を介して第2電力変換回路基板26、第2制御回路基板27に溜められるので、第1電力変換回路基板24、第1制御回路基板25の熱を効率よく逃がすことができる。もちろん、これ以外に多くの熱は放熱基体23を介してモータハウジング20から放熱されることはいうまでもない。
 また、第1電力変換回路基板24、第2電力変換回路基板26の各相の出力端子54が回転位置検出回路基板22の上面から径方向外側に突出されており、この各相の出力端子54が各相の巻線の入力端子30に接続されている。このように、開口32から突出した巻線の入力端子30は引き回すことなく、直接的に各相の出力端子54と開口32付近で接続されるので、余分な引き回しのための空間を必要としないものである。これによって、電子制御部ECの小径化が図れるものである。
 また、各相の中性端子31は回転位置検出回路基板22の基板上で配線パターンによって接続されて中性点を形成している。同様に、もう一方の系の各相の中性端子31も回転位置検出回路基板22の基板上で配線パターン55によって接続されて中性点を形成している。主電子制御手段及び副電子制御手段の各相の中性端子31を、回転位置検出回路基板22の基板上で配線パターン55によって接続しているので、各相の中性端子31を引き回すことがなく構成が極めて簡単となる。更に加えて、各相の入力端子30を夫々の電力変換回路基板24,26まで引き回す必要がないので、この引き回すための空間も必要が無いので、電子制御部ECの小径化が更に図れるものとなる。
 そして、このようにして組み付けられた電子制御部ECにおいては、特に第1電力変換回路基板24(或いは、第2電力変換回路基板26)で発生した熱の一部は、放熱基体23を介して第2電力変換回路基板26(或いは、第1電力変換回路基板24)に溜められ、また、放熱基体23に伝達された熱の多くは支持軸36を通ってモータハウジング20に移動して放熱される。
 以上で説明した構成においては、放熱基体23の正面側に対応する基板取付面23Fには、第1電力変換回路基板24、第1制御回路基板25を固定する固定面が形成され、放熱基体23の背面側に対応する基板取付面23Fには、第2電力変換回路基板26、第2制御回路基板27を固定する固定面が形成されている。そして、放熱基体23の正面側に対応する基板取付面23Fと放熱基体23の背面側に対応する基板取付面23Fは、互いにほぼ平行な状態に形成されている。したがって、第1電力変換回路基板24、第1制御回路基板25と第2電力変換回路基板26、第2制御回路基板27もほぼ平行に配置されている。
 しかしながら、電子制御手段の電子部品で発生した熱を効率よく逃がすためには、電子部品から発生した熱を素早く溜める基板の熱容量が大きいことが有利である。更に、一方の電子制御手段(例えば、主電子制御手段)で発生した熱を効率よく逃がすためには、他方の電子制御手段(例えば、副電子制御手段)の熱を溜める容量が大きいことが有利である。同様の理由で、電子制御手段で発生した熱を効率よく逃がすためには、放熱基体23との接触面積が大きいことが有利である。このような理由から、本実施形態として次のような構成を採用しており、この構成も本実施形態の大きな特徴である。
 本実施形態では、先ず第1制御回路基板25と第2制御回路基板27を、放熱基体23に傾斜して取り付け、第1制御回路基板25と第2制御回路基板27の基板面積を大きくして熱を溜める容量を大きくしている。更に、第1電力変換回路基板24、第2電力変換回路基板26を、放熱基体23に傾斜して取り付け、第1電力変換回路基板24、第2電力変換回路基板26の接触積を大きくして熱を素早く放熱基体23に逃がすようにしている。
 図9において、第1制御回路基板25と第2制御回路基板27は、放熱基体23に対して下側に向けて互いに広がるような傾斜を有して取り付けられている。このように第1制御回路基板25と第2制御回路基板27を傾斜させると、図3に示すように、第1制御回路基板25と第2制御回路基板27を略平行に配置させた場合に比べて、基板面積を大きくできる。したがって、この大きくなった分だけ余分に熱を溜めることができるので、基板上の電子部品で発生した熱は、素早く基板に逃がすことができ、電子部品の耐熱性を向上することができる。
 また、放熱基体23の正面に第1電力変換回路基板24、第1制御回路基板25を設け、放熱基体23の背面に、第2電力変換回路基板26、第2制御回路基板27を設けているので、通常では、第1電力変換回路基板24、第1制御回路基板25が動作している状態で発生した熱の一部は、放熱基体23を介して第2電力変換回路基板26、第2制御回路基板27に溜められるので、第1電力変換回路基板24、第1制御回路基板25の熱を素早く効率よく逃がすことができる。
 また、第1制御回路基板25と第2制御回路基板27を傾斜させることによって、第1制御回路基板25と第2制御回路基板27はカバー29の内周面との距離が短くなり、第1制御回路基板25と第2制御回路基板27からの熱がカバー29に伝わり易くなって、カバー29からの熱の放散量を増やすことができる。
 次に、図9では示していないが、第1制御回路基板25と第2制御回路基板27の傾斜に合わせて、放熱基体23の形状が下側に向けて互いに広がるような傾斜を有するようにし、第1電力変換回路基板24、第2電力変換回路基板26を、放熱基体23の傾斜部分に傾斜して取り付けることもできる。このように、第1電力変換回路基板24、第2電力変換回路基板26を傾斜させると、図3にあるように、第1電力変換回路基板24、第2電力変換回路基板26を略平行に配置させた場合に比べて、放熱基体23との接触面積を大きくできる。したがって、この大きくなった分だけ熱を素早く放熱基体23に逃がすことができるので、電子部品の耐熱性を向上することができる。
 このように、本実施形態においては、電動モータの回転軸方向に沿って延びる放熱基体に、これも軸方向に沿って延びる電子制御手段の基板を熱伝導可能に固定することで、電動駆動装置の半径方向の大きさを縮小する小型化することができる。また、夫々の基板からの熱が放熱基体を介して電動モータ部のハウジングに放熱されるので、小型化した場合であっても基板からの熱を効率よく外部に放熱することができる。
 また、放熱基体とカバーによって形成される空間を利用し、この空間に固定ボルトが位置するようにしている。このため、固定ボルトは、径方向外側から内側に向けて、支持軸を通って放熱基体にねじ込まれるので、外周側で固定されないものとなる、これによって、電子制御部ECの小径化を図ることが可能となっている。
 以上述べた通り、本発明は電動モータが収納されたモータハウジングと、電動モータの回転軸の出力部とは反対側のモータハウジングの端面に、出力部とは反対側の回転軸方向に延びる互いに向き合って配置された一対の支持軸と、支持軸の間に配置され支持軸と同じ方向に延びる放熱基体と、支持軸から径方向外側から内側にねじ込まれ、支持軸と放熱基体を結合する固定ボルトと、放熱基体が延びる方向に沿って配置され、放熱基体に熱伝導可能に固定された基板を備える冗長系の一方の電子制御手段と、放熱基体が延びる方向に沿って配置され、放熱基体に熱伝導可能に固定された基板を備える冗長系の他方の電子制御手段を備えた構成とした。
 これによれば、電動モータの回転軸方向に沿って延びる放熱基体に、これも回転軸方向に沿って延びる電子制御部の基板を熱伝導可能に固定することで、電動駆動装置の半径方向の大きさを縮小して小型化することができる。また、夫々の基板からの熱が放熱基体を介して電動モータ部のハウジングに放熱されるので、小型化した場合であっても基板からの熱を効率よく外部に放熱することができる。また、固定ボルトは、径方向外側から内側に向けて、支持軸を通って放熱基体にねじ込まれるので、外周側で固定されないものとなる、これによって、電子制御部の小径化を図ることが可能となる。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 以上説明した実施形態に基づく電動駆動装置及び電動パワーステアリング装置としては、例えば以下に述べる態様のものが考えられる。
 すなわち、前記電動駆動装置は、その1つの態様において、機械系制御要素を駆動する電動モータが収納されたモータハウジングと、前記電動モータの回転軸の出力部とは反対側の前記モータハウジングの端面に、前記出力部とは反対側の回転軸方向に延びる互いに向き合って配置された一対の支持軸と、前記支持軸の間に配置され、前記支持軸と同じ方向に延びる放熱基体と、前記支持軸から径方向外側から内側に向かってねじ込まれ、前記支持軸と前記放熱基体を結合する固定ボルトと、前記放熱基体が延びる方向に沿って配置され、前記放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の一方の電子制御手段と、前記放熱基体が延びる方向に沿って配置され、前記放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の他方の電子制御手段とを備えている。
 前記電動駆動装置の好ましい態様において、前記支持軸は前記モータハウジングの端面と一体的に形成されており、前記モータハウジングと前記放熱基体は同一金属である。
 別の好ましい態様では、前記電動駆動装置の態様のいずれかにおいて、前記放熱基体は前記回転軸が配置されている領域付近の前記モータハウジングの前記端面に固定されており、前記一方の電子制御手段と前記他方の電子制御手段は、前記放熱基体を挟んで対向する位置に配置されている。
 さらに別の好ましい態様では、前記電動駆動装置の態様のいずれかにおいて、前記放熱基体には、前記一方の電子制御手段の前記基板の取付面と、前記他方の電子制御手段の前記基板の取付面とが形成されており、更に前記両取付面には収納凹部と、これを囲む取付平面部が形成されており、前記収納凹部には前記両電子制御手段を構成する電力変換回路基板が取り付けられ、前記取付平面部には前記電力変換回路基板を覆うように、前記両電子制御手段を構成する制御回路基板が取り付けられている。
 さらに別の好ましい態様では、前記電動駆動装置の態様のいずれかにおいて、前記両電子制御手段を構成する前記電力変換回路基板は、電力変換回路と電解コンデンサを除いた電源回路が実装されており、前記両電子制御手段を構成する前記制御回路基板は、前記電力変換回路を制御するマイクロコンピュータ及びその周辺回路と、前記電源回路の前記電解コンデンサが実装されている。
 また、別の観点から、電動パワーステアリング装置は、その1つの態様において、ステアリングシャフトの回動方向と回動トルクとを検出するトルクセンサからの出力に基づきステアリングシャフトに操舵補助力を付与する電動モータと、前記電動モータが収納されたモータハウジングと、前記電動モータの回転軸の出力部とは反対側の前記モータハウジングの端面に、前記出力部とは反対側の回転軸方向に延びる互いに向き合って配置された一対の支持軸と、前記支持軸の間に配置され、前記支持軸と同じ方向に延びる放熱基体と、前記支持軸から径方向外側から内側に向かってねじ込まれ、前記支持軸と前記放熱基体を結合する固定ボルトと、前記放熱基体が延びる方向に沿って配置され、前記放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の一方の電子制御手段と、前記放熱基体が延びる方向に沿って配置され、前記放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の他方の電子制御手段とを備えている。
 前記電動パワーステアリング装置の好ましい態様において、前記支持軸は前記モータハウジングの端面と一体的に形成されており、前記モータハウジングと前記放熱基体は同一金属である。
 別の好ましい態様では、前記電動パワーステアリング装置の態様のいずれかにおいて、前記放熱基体は前記回転軸が配置されている領域付近の前記モータハウジングの前記端面に固定されており、前記一方の電子制御手段と前記他方の電子制御手段は、前記放熱基体を挟んで対向する位置に配置されている。
 さらに別の好ましい態様では、前記電動パワーステアリング装置の態様のいずれかにおいて、前記放熱基体には、前記一方の電子制御手段の前記基板の取付面と、前記他方の電子制御手段の前記基板の取付面とが形成されており、更に前記両取付面には収納凹部と、これを囲む取付平面部が形成されており、前記収納凹部には前記両電子制御手段を構成する電力変換回路基板が取り付けられ、前記取付平面部には前記電力変換回路基板を覆うように、前記両電子制御手段を構成する制御回路基板が取り付けられている。
 さらに別の好ましい態様では、前記電動パワーステアリング装置の態様のいずれかにおいて、前記両電子制御手段を構成する前記電力変換回路基板は、電力変換回路と電解コンデンサを除いた電源回路が実装されており、前記両電子制御手段を構成する前記制御回路基板は、前記電力変換回路を制御するマイクロコンピュータ及びその周辺回路と、前記電源回路の前記電解コンデンサが実装されている。

Claims (10)

  1.  機械系制御要素を駆動する電動モータが収納されたモータハウジングと、
     前記電動モータの回転軸の出力部とは反対側の前記モータハウジングの端面に、前記出力部とは反対側の回転軸方向に延びる互いに向き合って配置された一対の支持軸と、
     前記支持軸の間に配置され、前記支持軸と同じ方向に延びる放熱基体と、
     前記支持軸から径方向外側から内側に向かってねじ込まれ、前記支持軸と前記放熱基体を結合する固定ボルトと、
     前記放熱基体が延びる方向に沿って配置され、前記放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の一方の電子制御手段と、
     前記放熱基体が延びる方向に沿って配置され、前記放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の他方の電子制御手段と
    を備えたことを特徴とする電動駆動装置。
  2.  請求項1に記載の電動駆動装置において、
     前記支持軸は前記モータハウジングの端面と一体的に形成されており、前記モータハウジングと前記放熱基体は同一金属であることを特徴とする電動駆動装置。
  3.  請求項2に記載の電動駆動装置において、
     前記放熱基体は前記回転軸が配置されている領域付近の前記モータハウジングの前記端面に固定されており、
     前記一方の電子制御手段と前記他方の電子制御手段は、前記放熱基体を挟んで対向する位置に配置されていることを特徴とする電動駆動装置。
  4.  請求項3に記載の電動駆動装置において、
     前記放熱基体には、前記一方の電子制御手段の前記基板の取付面と、前記他方の電子制御手段の前記基板の取付面とが形成されており、更に前記両取付面には収納凹部と、これを囲む取付平面部が形成されており、前記収納凹部には前記両電子制御手段を構成する電力変換回路基板が取り付けられ、前記取付平面部には前記電力変換回路基板を覆うように、前記両電子制御手段を構成する制御回路基板が取り付けられていることを特徴とする電動駆動装置。
  5.  請求項4に記載の電動駆動装置において、
     前記両電子制御手段を構成する前記電力変換回路基板は、電力変換回路と電解コンデンサを除いた電源回路が実装されており、前記両電子制御手段を構成する前記制御回路基板は、前記電力変換回路を制御するマイクロコンピュータ及びその周辺回路と、前記電源回路の前記電解コンデンサが実装されていることを特徴とする電動駆動装置。
  6.  ステアリングシャフトの回動方向と回動トルクとを検出するトルクセンサからの出力に基づきステアリングシャフトに操舵補助力を付与する電動モータと、
     前記電動モータが収納されたモータハウジングと、
     前記電動モータの回転軸の出力部とは反対側の前記モータハウジングの端面に、前記出力部とは反対側の回転軸方向に延びる互いに向き合って配置された一対の支持軸と、
     前記支持軸の間に配置され、前記支持軸と同じ方向に延びる放熱基体と、
     前記支持軸から径方向外側から内側に向かってねじ込まれ、前記支持軸と前記放熱基体を結合する固定ボルトと、
     前記放熱基体が延びる方向に沿って配置され、前記放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の一方の電子制御手段と、
     前記放熱基体が延びる方向に沿って配置され、前記放熱基体に熱伝導可能に取り付けられた基板を備える冗長系の他方の電子制御手段と
    を備えたことを特徴とする電動パワーステアリング装置。
  7.  請求項6に記載の電動パワーステアリング装置において、
     前記支持軸は前記モータハウジングの端面と一体的に形成されており、前記モータハウジングと前記放熱基体は同一金属であることを特徴とする電動パワーステアリング装置。
  8.  請求項7に記載の電動パワーステアリング装置において、
     前記放熱基体は前記回転軸が配置されている領域付近の前記モータハウジングの前記端面に固定されており、
     前記一方の電子制御手段と前記他方の電子制御手段は、前記放熱基体を挟んで対向する位置に配置されていることを特徴とする電動パワーステアリング装置。
  9.  請求項8に記載の電動パワーステアリング装置において、
     前記放熱基体には、前記一方の電子制御手段の前記基板の取付面と、前記他方の電子制御手段の前記基板の取付面とが形成されており、更に前記両取付面には収納凹部と、これを囲む取付平面部が形成されており、前記収納凹部には前記両電子制御手段を構成する電力変換回路基板が取り付けられ、前記取付平面部には前記電力変換回路基板を覆うように、前記両電子制御手段を構成する制御回路基板が取り付けられていることを特徴とする電動パワーステアリング装置。
  10.  請求項9に記載の電動パワーステアリング装置において、
     前記両電子制御手段を構成する前記電力変換回路基板は、電力変換回路と電解コンデンサを除いた電源回路が実装されており、前記両電子制御手段を構成する前記制御回路基板は、前記電力変換回路を制御するマイクロコンピュータ及びその周辺回路と、前記電源回路の前記電解コンデンサが実装されていることを特徴とする電動パワーステアリング装置。
PCT/JP2017/005641 2016-03-09 2017-02-16 電動駆動装置及び電動パワーステアリング装置 WO2017154502A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780004087.1A CN108290603B (zh) 2016-03-09 2017-02-16 电动驱动装置及电动动力转向装置
KR1020187013438A KR102069458B1 (ko) 2016-03-09 2017-02-16 전동 구동 장치 및 전동 파워 스티어링 장치
US16/068,688 US11040738B2 (en) 2016-03-09 2017-02-16 Electric drive device and electric power steering device
CN202010670240.8A CN111845920B (zh) 2016-03-09 2017-02-16 电动驱动装置及电动动力转向装置
DE112017001197.3T DE112017001197T5 (de) 2016-03-09 2017-02-16 Elektrische Antriebsvorrichtung und elektrische Servolenkung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016045433A JP6514136B2 (ja) 2016-03-09 2016-03-09 電動駆動装置及び電動パワーステアリング装置
JP2016-045433 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017154502A1 true WO2017154502A1 (ja) 2017-09-14

Family

ID=59790363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005641 WO2017154502A1 (ja) 2016-03-09 2017-02-16 電動駆動装置及び電動パワーステアリング装置

Country Status (6)

Country Link
US (1) US11040738B2 (ja)
JP (1) JP6514136B2 (ja)
KR (1) KR102069458B1 (ja)
CN (2) CN111845920B (ja)
DE (1) DE112017001197T5 (ja)
WO (1) WO2017154502A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019088107A (ja) * 2017-11-07 2019-06-06 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
CN111052571A (zh) * 2017-09-29 2020-04-21 日本电产伺服有限公司 马达

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514135B2 (ja) * 2016-03-09 2019-05-15 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
DE102017214717B3 (de) * 2017-08-23 2018-12-20 Volkswagen Aktiengesellschaft Antriebsbauteil
JP7041541B2 (ja) * 2018-02-14 2022-03-24 日立Astemo株式会社 電動駆動装置及び電動パワーステアリング装置
JP2020141499A (ja) * 2019-02-28 2020-09-03 日本電産モビリティ株式会社 モータ制御ユニットおよびモータ
JP2020145856A (ja) * 2019-03-06 2020-09-10 日本電産モビリティ株式会社 モータ制御ユニットおよびモータ
KR20200140751A (ko) * 2019-06-07 2020-12-16 주식회사 만도 브레이크 시스템의 제어장치 구조
CN211139447U (zh) * 2019-08-30 2020-07-31 博世华域转向***有限公司 一种改进的电动助力转向驱动模块
JP7384709B2 (ja) * 2020-03-05 2023-11-21 ニデックモビリティ株式会社 電動パワーステアリング装置および製造方法
DE102020211081A1 (de) 2020-09-02 2022-03-03 Robert Bosch Gesellschaft mit beschränkter Haftung Steuervorrichtung, insbesondere Lenkungssteuervorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323908A (ja) * 2000-05-12 2001-11-22 Atsumi Electric Co Ltd 分割ケースの固定構造
JP2011041355A (ja) * 2009-08-07 2011-02-24 Denso Corp 駆動回路内蔵型モータ
JP2012152091A (ja) * 2010-12-28 2012-08-09 Denso Corp 駆動装置
JP2013090472A (ja) * 2011-10-19 2013-05-13 Denso Corp 駆動装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3593102B2 (ja) * 2002-01-08 2004-11-24 三菱電機株式会社 電動パワーステアリング装置
JP2008024223A (ja) * 2006-07-24 2008-02-07 Nsk Ltd モータ取り付け構造
JP5293991B2 (ja) * 2007-11-01 2013-09-18 日本精工株式会社 コントロールユニット
JP2009176935A (ja) * 2008-01-24 2009-08-06 Nsk Ltd コントロールユニットおよび電動パワーステアリング装置
JP5338804B2 (ja) * 2010-12-28 2013-11-13 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
JP5170711B2 (ja) * 2010-12-28 2013-03-27 株式会社デンソー コントローラ
US20130062137A1 (en) 2011-09-14 2013-03-14 Hitachi Automotive Systems, Ltd. Electric Power Steering System
JP5461493B2 (ja) 2011-09-14 2014-04-02 日立オートモティブシステムズ株式会社 電動パワーステアリング装置
JP2013090532A (ja) * 2011-10-21 2013-05-13 Mitsuba Corp ブラシレスモータ
JP2013193615A (ja) * 2012-03-21 2013-09-30 Hitachi Automotive Systems Ltd 電動パワーステアリング装置
JP5569626B1 (ja) * 2013-06-17 2014-08-13 日本精工株式会社 モータ制御装置、これを使用した電動パワーステアリング装置及び車両
ES2555121T3 (es) * 2013-07-08 2015-12-29 Fagor, S. Coop. Dispositivo de accionamiento eléctrico
JP6457256B2 (ja) * 2013-12-19 2019-01-23 日本電産エレシス株式会社 電動パワーステアリング用のモータ駆動装置
JP2015193371A (ja) * 2014-03-27 2015-11-05 日本電産エレシス株式会社 電動パワーステアリング用電子制御装置
JP6293621B2 (ja) * 2014-09-03 2018-03-14 日立オートモティブシステムズ株式会社 コネクタ端子組立体及びこれを使用した電子制御装置及びこれを使用した電動パワーステアリング装置
JP6522536B2 (ja) 2016-03-09 2019-05-29 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP6514135B2 (ja) 2016-03-09 2019-05-15 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323908A (ja) * 2000-05-12 2001-11-22 Atsumi Electric Co Ltd 分割ケースの固定構造
JP2011041355A (ja) * 2009-08-07 2011-02-24 Denso Corp 駆動回路内蔵型モータ
JP2012152091A (ja) * 2010-12-28 2012-08-09 Denso Corp 駆動装置
JP2013090472A (ja) * 2011-10-19 2013-05-13 Denso Corp 駆動装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052571A (zh) * 2017-09-29 2020-04-21 日本电产伺服有限公司 马达
CN111052571B (zh) * 2017-09-29 2022-06-28 日本电产伺服有限公司 马达
JP2019088107A (ja) * 2017-11-07 2019-06-06 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP7058107B2 (ja) 2017-11-07 2022-04-21 日立Astemo株式会社 電動駆動装置及び電動パワーステアリング装置

Also Published As

Publication number Publication date
KR102069458B1 (ko) 2020-01-22
CN111845920B (zh) 2022-10-11
JP2017159772A (ja) 2017-09-14
US11040738B2 (en) 2021-06-22
DE112017001197T5 (de) 2018-11-22
CN108290603A (zh) 2018-07-17
JP6514136B2 (ja) 2019-05-15
CN108290603B (zh) 2020-08-07
KR20180064521A (ko) 2018-06-14
CN111845920A (zh) 2020-10-30
US20190016374A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2017154498A1 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2017154500A1 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2017154501A1 (ja) 電動駆動装置及び電動パワーステアリング装置
JP6499988B2 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2017154502A1 (ja) 電動駆動装置及び電動パワーステアリング装置
JP6524023B2 (ja) 電動駆動装置及び電動パワーステアリング装置
JP6770863B2 (ja) 電動駆動装置及び電動パワーステアリング装置
JP2018082514A (ja) 電動駆動装置及び電動パワーステアリング装置
JP6838254B2 (ja) 電動駆動装置
JP6737917B2 (ja) 電動駆動装置
JP6864029B2 (ja) 電動駆動装置
JP6800261B2 (ja) 電動駆動装置
JP6909689B2 (ja) 電動駆動装置及び電動パワーステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187013438

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762845

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762845

Country of ref document: EP

Kind code of ref document: A1