WO2017150336A1 - Resin composition including liquid-crystal polymer particles, molded object obtained using same, and production processes therefor - Google Patents

Resin composition including liquid-crystal polymer particles, molded object obtained using same, and production processes therefor Download PDF

Info

Publication number
WO2017150336A1
WO2017150336A1 PCT/JP2017/006862 JP2017006862W WO2017150336A1 WO 2017150336 A1 WO2017150336 A1 WO 2017150336A1 JP 2017006862 W JP2017006862 W JP 2017006862W WO 2017150336 A1 WO2017150336 A1 WO 2017150336A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
crystal polymer
liquid crystal
resin composition
polymer particles
Prior art date
Application number
PCT/JP2017/006862
Other languages
French (fr)
Japanese (ja)
Inventor
吉昭 田口
勝智 高山
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2017534623A priority Critical patent/JP6295013B2/en
Priority to CN201780013885.0A priority patent/CN108884325B/en
Publication of WO2017150336A1 publication Critical patent/WO2017150336A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • Embodiments of the present invention relate to a resin composition containing liquid crystal polymer particles. Furthermore, embodiment of this invention is related with the manufacturing method of the said resin composition, the molded object using the said resin composition, and its manufacturing method.
  • Resin substrates such as an epoxy resin or a polyimide resin are mainly used as printed boards such as rigid boards and flexible boards from the viewpoint of economy including insulation and manufacturability. Electrical equipment related to communication is required to process a large amount of data at high speed, the frequency of radio waves used is shifted to a high frequency band, and printed circuit boards are also required to support high frequencies.
  • Patent Document 1 discloses a polyamic acid containing (a) a polyamic acid having an alicyclic structure in the main chain and (b) a partially cleaved silsesquioxane structure having a silanol group.
  • a polyimide film having a relative dielectric constant of 3 or less obtained by heating the composition is described.
  • a low dielectric constant is achieved by introducing a silanol group as a part of a polymer skeleton, a sufficient effect is obtained for a decrease in dielectric loss tangent. Absent.
  • liquid crystal polymers are excellent in dimensional stability, heat resistance, chemical stability, etc., have a low dielectric constant, and have a low water absorption rate, applications in the electrical and electronic fields such as printed circuit boards are being investigated.
  • Patent Document 2 discloses the production of a film in which a polymer composition containing a thermoplastic liquid crystal polymer having a predetermined melt viscosity and activation energy is extruded from a die whose temperature is designed under predetermined conditions, and then subjected to inflation molding. A method is described.
  • Patent Document 3 a liquid crystal polymer film is pulverized using a cutter mill and then fibrillated to produce a fibrillated liquid crystal polymer powder, and a printed circuit board is manufactured by heating and pressurizing the fibrillated liquid crystal polymer powder. A method is described.
  • JP 2012-107121 A Japanese Patent Laid-Open No. 2005-1376 International Publication WO2014 / 188830
  • the liquid crystal polymer sheet produced by the method described in Patent Document 3 does not contain a resin component that can serve as a binder, is composed only of liquid crystal polymer powder, and has a problem of being expensive.
  • One embodiment of the present invention relates to a resin composition containing at least one resin selected from the group consisting of a thermosetting resin and a thermoplastic resin, and liquid crystal polymer particles.
  • a further embodiment of the present invention relates to the above resin composition, wherein the melting point of the liquid crystal polymer particles is 270 ° C. or higher.
  • a further embodiment of the present invention relates to the above resin composition, wherein the liquid crystal polymer particles have an average particle size of 0.1 to 200 ⁇ m.
  • a further embodiment of the present invention relates to the resin composition, wherein the liquid crystal polymer particles have a bulk density of 0.08 to 1.2 g / mL.
  • a further embodiment of the present invention relates to the above resin composition containing 5 to 80% by mass of liquid crystal polymer particles based on the total mass of the resin composition.
  • the resin is an epoxy resin, phenol resin, polyimide resin, bismaleimide triazine resin, polyphenylene ether resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, and poly It is related with the said resin composition containing 1 or more types of resin chosen from the group which consists of butylene naphthalate resin.
  • Another embodiment of the present invention is a method for producing the above resin composition, Production of a resin composition comprising a step of mixing at least one resin selected from the group consisting of the thermosetting resin and a thermoplastic resin and the liquid crystal polymer particles at a temperature lower than the melting point of the liquid crystal polymer particles. Regarding the method.
  • Another embodiment of the present invention relates to a molded body using the resin composition.
  • Another embodiment of the present invention relates to a molded body obtained by curing the above resin composition.
  • Another embodiment of the present invention includes a step of preparing a liquid composition containing at least the resin composition, Solidifying the liquid composition; The manufacturing method of a molded object containing this.
  • Another embodiment of the present invention comprises impregnating a substrate with a liquid composition containing at least a resin composition and an organic solvent, Drying the substrate impregnated with the liquid composition; The manufacturing method of a molded object containing this.
  • Another embodiment of the present invention further relates to a method for producing the molded body, further comprising the step of heating the dried base material.
  • the organic solvent is a group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, toluene, xylene, N, N-dimethylformamide, dioxane, and tetrahydrofuran. It is related with the manufacturing method of the said molded object containing the 1 or more types of organic solvent chosen from more.
  • Another embodiment of the present invention relates to an electronic circuit board comprising the resin composition or including the molded body.
  • Further embodiment of the present invention relates to the electronic circuit board, which is a flexible circuit board.
  • the embodiment of the present invention it is possible to provide a resin composition capable of achieving both excellent electrical characteristics and economy, and a method for producing the same. Moreover, according to the embodiment of the present invention, it is possible to provide a molded article having excellent electrical characteristics and economy, and a manufacturing method thereof.
  • the resin composition contains a thermosetting resin and / or a thermoplastic resin, and liquid crystal polymer particles.
  • a liquid crystal polymer (also referred to as “liquid crystal polymer” or “liquid crystal resin”) refers to a polymer that exhibits melt processability and has the property of forming an optically anisotropic melt phase.
  • the property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a polarizing microscope manufactured by Olympus Corporation and observing a molten sample placed on a hot stage manufactured by Linkam Corporation at a magnification of 40 times under a nitrogen atmosphere. .
  • the liquid crystal polymer normally transmits polarized light and exhibits optical anisotropy when inspected between crossed polarizers, even in the molten resting state.
  • the type of liquid crystal polymer is not particularly limited, and is preferably an aromatic polyester and / or an aromatic polyester amide. Moreover, the polyester which partially contains aromatic polyester and / or aromatic polyester amide in the same molecular chain is also within the range.
  • the liquid crystal polymer preferably has a logarithmic viscosity (at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g) when dissolved at a concentration of 0.1% by mass in pentafluorophenol at 60 ° C. Those having I.V.) are preferably used.
  • the aromatic polyester or aromatic polyester amide as the liquid crystal polymer is particularly preferably a repeating unit derived from at least one compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic hydroxyamine, and an aromatic diamine.
  • Aromatic polyester or aromatic polyester amide as a constituent component is particularly preferably a repeating unit derived from at least one compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic hydroxyamine, and an aromatic diamine.
  • a polyesteramide comprising a repeating unit derived from at least one species and (c) a repeating unit derived from one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid, and derivatives thereof; (4) a repeating unit mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof; and (b) one or two of aromatic hydroxyamines, aromatic diamines and derivatives thereof.
  • a repeating unit derived from more than one species (c) a repeating unit derived from one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof, and (d) aromatic diol, alicyclic And polyester amides composed of a repeating unit derived from at least one or more of an aliphatic diol, an aliphatic diol, and derivatives thereof.
  • a molecular weight regulator together with said structural component as needed.
  • an optional component may be included.
  • the ratio of the “repeating unit derived from one or more of the aromatic hydroxycarboxylic acid and its derivative” mainly contained is not particularly limited, but it constitutes the liquid crystal polymer. It is preferable that it is 40 mol% or more in a repeating unit. Further, the total of the repeating units exemplified in the above (1) to (4) is preferably 80 mol% or more, and 90 mol% or more (including 100 mol%) in the repeating units constituting the liquid crystal polymer. ) Is more preferable.
  • preferred examples of the specific monomer compound constituting the liquid crystal polymer include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxynaphthalene, 1 , 4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, compounds represented by the following general formula (I), and aromatic diols such as the following general formula (II); terephthalic acid , Aromatic dicarboxylic acids such as isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III); p-aminophenol, p-phenylenediamine, Aromatic amines such as acetoxyaminophenol can be mentioned.
  • aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naph
  • X is a group selected from alkylene (C 1 -C 4 ), alkylidene, —O—, —SO—, —SO 2 —, —S—, and —CO—.
  • the liquid crystal polymer can be prepared by, for example, a method well known in the art using a direct polymerization method or a transesterification method from the above-described monomer compound (or a mixture of monomer compounds). A combination method or a slurry polymerization method is used.
  • the compounds having ester-forming ability may be used for polymerization as they are, or may be modified from a precursor to a derivative having ester-forming ability in the previous stage of polymerization.
  • various catalysts can be used, and typical examples include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium, silicates, titanium alcoholates, alkali of carboxylic acid.
  • the amount of the catalyst used is generally about 0.001 to 1% by mass, particularly about 0.01 to 0.2% by mass, based on the total mass of the monomer compound. If necessary, the liquid crystal polymer produced by these polymerization methods can be increased in molecular weight by solid-phase polymerization under reduced pressure or in an inert gas.
  • the melt viscosity of the liquid crystal polymer obtained by the above method is not particularly limited. In general, it is preferable to use a polymer having a melt viscosity at a temperature 10 to 30 ° C. higher than the melting point of the liquid crystal polymer and a shear rate of 1000 sec ⁇ 1 to 5 MPa to 600 MPa.
  • the liquid crystal polymer may be a mixture of two or more liquid crystal polymers.
  • the liquid crystal polymer particles include the liquid crystal polymer as a main component.
  • the inclusion as the main component means that 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more (including 100% by mass) of the mass of the liquid crystal polymer particles is the liquid crystal polymer.
  • the liquid crystal polymer particles preferably have a melting point of 270 ° C. or higher.
  • an upper limit is not specifically limited, It is preferable that it is 400 degrees C or less from a viewpoint of productivity.
  • the melting point of the liquid crystal polymer particles is more preferably 300 ° C. or higher, and further preferably 330 ° C. or higher.
  • the “melting point (melting temperature)” of the liquid crystal polymer particles means a temperature measured according to JIS K 7121 using a differential scanning calorimeter. For the measurement, liquid crystal polymer (for example, pellets) or liquid crystal polymer particles can be used.
  • the shape of the liquid crystal polymer particles is not particularly limited, and examples thereof include, but are not limited to, spherical (including substantially spherical), spindle, amorphous particles, fibrils, fibers, and the like.
  • spherical shape is preferable from the viewpoint of isotropic improvement of electrical characteristics
  • fibril shape is preferable from the viewpoint of improvement of mechanical properties.
  • the average particle diameter of the liquid crystal polymer particles is not particularly limited, but in one embodiment, for example, it is 0.1 ⁇ m or more and 250 ⁇ m or less, and preferably 1 ⁇ m or more and 200 ⁇ m or less. When the average particle diameter of the liquid crystal polymer particles is 250 ⁇ m or less, it is easy to maintain the surface roughness of the molded product obtained using the resin composition in an appropriate range. Moreover, it is preferable in the viewpoint of productivity of a liquid crystal polymer particle as it is 0.1 micrometer or more.
  • the average particle size of the liquid crystal polymer particles is more preferably 150 ⁇ m or less, further preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less from the viewpoint of improving dispersibility in the resin composition and surface characteristics. Is particularly preferred.
  • the average particle diameter of the liquid crystal polymer particles is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less, from the viewpoint of obtaining a molded product having uniform characteristics.
  • the “average particle diameter” of the liquid crystal polymer particles means a volume-based arithmetic average particle diameter measured by a laser diffraction / scattering particle size distribution measurement method.
  • the average particle diameter can be measured using, for example, a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by Horiba, Ltd.
  • the peak particle size of the particle size distribution of the liquid crystal polymer particles is preferably in the range of 0.1 to 300 ⁇ m from the viewpoint of homogenizing the dispersibility of the liquid crystal polymer particles and the properties of the molded product. More preferably, it is in the range of ⁇ 250 ⁇ m, more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • peak particle size of particle size distribution of liquid crystal polymer particles means a peak particle size in a volume-based particle size distribution measured using a laser diffraction / scattering distribution measuring device. When two or more peaks are present in the particle size distribution, the peak particle size of the peak having the largest peak height only needs to be within the above particle size range.
  • the peak particle size of the particle size distribution can be measured, for example, using a laser diffraction / scattering particle size distribution measuring apparatus LA-920 manufactured by Horiba, Ltd.
  • the bulk density of the liquid crystal polymer particles is preferably in the range of 0.08 to 1.2 g / mL, more preferably in the range of 0.09 to 1.0 g / mL. More preferably, it is in the range of 0.1 to 0.5 g / mL.
  • the bulk density of the liquid crystal polymer particles is preferably 0.08 g / mL or more from the viewpoint of handling during production, and is preferably 1.2 g / mL or less from the viewpoint of dispersibility of the particles.
  • the bulk density of the liquid crystal polymer particles is defined as follows: the liquid crystal polymer particles are placed in a 50 mL volume graduated cylinder (outer diameter 2.5 cm, outer dimension height 21.5 cm) using a funnel. It can be calculated by measuring the mass of liquid crystal polymer particles filled up to 50 mL of memory by naturally dropping from a height of 15 cm from the outer bottom surface.
  • the method for producing liquid crystal polymer particles is not particularly limited, but a method of producing a sheet comprising a liquid crystalline thermoplastic resin and a non-liquid crystalline thermoplastic resin and then removing the non-liquid crystalline thermoplastic resin by elution with a solvent; Examples thereof include a method of pulverizing an oligomer of a thermoplastic resin and then solid-phase polymerization; a method of pulverizing and fibrillating a sheet-like liquid crystalline resin; a method of pulverizing a pellet-like liquid crystalline resin, and the like.
  • a method of pulverizing the liquid crystal polymer with a stone mill is preferable. According to the method of pulverizing with a stone mill, it is easy to easily produce particles having a small average particle diameter.
  • the content of the liquid crystal polymer particles in the resin composition is not particularly limited, but is preferably 5% by mass or more and 80% by mass or less of the entire composition.
  • the content of the liquid crystal polymer particles is 5% by mass or more, the effect of improving electrical characteristics (lower dielectric constant) can be further increased, and when it is 80% by mass or less, it is more advantageous from the viewpoint of economy.
  • the content of the liquid crystal polymer particles is more preferably 10% by mass or more of the total composition, further preferably 20% by mass or more, more preferably 70% by mass or less, and 60% by mass. More preferably, it is as follows.
  • the resin composition includes a solvent, the above range is obtained based on the mass of the resin composition excluding the solvent.
  • the resin composition according to one embodiment includes at least one resin selected from the group consisting of a thermoplastic resin and a thermosetting resin (hereinafter also referred to as “resin component”).
  • the resin component is a resin other than the liquid crystal polymer.
  • thermoplastic resin and the thermosetting resin are not particularly limited, and can be appropriately selected in consideration of the use of the resin composition according to one embodiment.
  • the resin composition according to an embodiment includes liquid crystal polymer particles, there is an advantage that excellent electrical characteristics (low dielectric constant) can be maintained even when a resin having a relatively high dielectric constant is used. is there.
  • the resin having a relatively high dielectric constant include a resin having a dielectric constant higher than that of the liquid crystal polymer, for example, a resin having a dielectric constant of 3 or more at 5 GHz or 3.2 or more.
  • a resin having a dielectric constant of less than 3 can also be suitably used.
  • the dielectric constant is a value at 5 GHz measured at 23 ° C. by the cavity resonator perturbation method.
  • the resin composition according to an embodiment includes liquid crystal polymer particles, it is not necessary to heat and melt the liquid crystal polymer particles at the time of producing the resin composition, and the resin component and the liquid crystal polymer particles are combined with each other. Even when mixed at a temperature lower than the melting point, it is possible to obtain a resin composition in which liquid crystal polymer particles are dispersed. For this reason, in one embodiment, a resin having a thermal decomposition temperature lower than the melting point of the liquid crystal polymer particles can be suitably used as the resin component. As a matter of course, a resin having a thermal decomposition temperature equal to or higher than the melting temperature of the liquid crystal polymer particles can also be suitably used.
  • fusing point (melting temperature), and thermal decomposition temperature are more than the process temperature at the time of circuit board manufacture.
  • the temperature is preferably 300 ° C. or higher, more preferably 330 ° C. or higher, and further preferably 350 ° C. or higher.
  • the glass transition temperature, melting point and thermal decomposition temperature of the resin component are not less than a specific temperature
  • the lowest temperature among the glass transition temperature, melting point and thermal decomposition temperature of the resin Means above the specific temperature.
  • melting point (melting temperature) means a temperature measured by differential scanning calorimetry (DSC) according to JIS K 7121
  • pyrolysis temperature means in an air stream using a thermogravimetric measuring device. Represents the temperature at which the 10% weight is reduced when the temperature is raised from 25 ° C. to 10 ° C./min (10% weight reduction temperature).
  • Glass transition temperature is JIS K by differential scanning calorimetry (DSC). It means the temperature measured according to 6240.
  • thermosetting resin preferably used includes, but is not limited to, an epoxy resin, a phenol resin, a polyimide resin, a bismaleimide triazine resin (BT resin), and the like.
  • the epoxy resin is not particularly limited.
  • bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, Bifunctional epoxy resins such as alicyclic epoxy resins, polyether-modified epoxy resins, silicone-modified epoxy resins, and glycidyl ester type epoxy resins can be mentioned.
  • polyfunctional epoxy resins such as phenol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, xylylene type epoxy resin, cresol novolac type epoxy resin, tetrakisphenol ethane type epoxy resin, etc. are used. You can also.
  • An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • phenol resin examples include cresol novolak type phenol resin, phenol novolak resin, alkylphenol novolak resin, bisphenol A type novolak resin, dicyclopentadiene type phenol resin, zyloc type phenol resin, terpene modified phenol resin, polyvinylphenols, naphthol aralkyl.
  • a phenol resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyimide resin As the polyimide resin, various polyimide resins obtained using an acid anhydride and a diamine can be used.
  • the acid anhydride is preferably an aromatic tetracarboxylic acid, and examples thereof include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride.
  • An aromatic diamine is preferred, and examples thereof include, but are not limited to, p-phenylenediamine, 4,4′-diaminodiphenyl ether, and the like.
  • an imidation catalyst such as an amine compound and a dehydrating agent such as a carboxylic acid anhydride can be used in combination.
  • a polyimide resin when using a polyimide resin as a resin component, it is preferable to imidize at the time of shaping
  • a polyimide resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • BT resin bismaleimide triazine resin
  • various bismaleimide triazine resins obtained by crosslinking bismaleimide and aromatic cyanate ester can be used.
  • a bismaleimide triazine resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermoplastic resin can also be preferably used as the resin component.
  • resin component examples include polyphenylene ether, polyamide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and the like, but are not limited thereto.
  • polyphenylene ether can be preferably used in the substrate application described below from the viewpoint of electrical characteristics such as dielectric constant.
  • the polyphenylene ether means a polymer having a phenylene ether unit structure (—C 6 H 4 —O—) as a main component.
  • the phenylene ether unit structure may have a substituent.
  • one or more hydrogen atoms of the phenylene ether unit structure are each independently substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, or the like. May be.
  • polyphenylene ether examples include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), and poly (2,6-dichloro-). 1,4-phenylene ether), modified polyphenylene ether (m-PPE), and the like, but are not limited thereto.
  • thermosetting resin and a thermoplastic resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • content of the resin component in a resin composition is not specifically limited, It is preferable that they are 20 mass% or more and 95 mass% or less of the whole composition. If the content of the resin component is 20% by mass or more, it is more advantageous from the viewpoint of economy, and if it is 95% by mass or less, the effect of improving electrical characteristics (lowering the dielectric constant) can be further enhanced.
  • the content of the resin component is more preferably 30% by mass or more of the total composition, further preferably 40% by mass or more, more preferably 90% by mass or less, and 80% by mass or less. More preferably.
  • the above range is obtained based on the mass of the resin composition excluding the solvent.
  • the resin composition includes a thermosetting resin as a resin component and further includes a curing agent and / or a curing accelerator
  • the range is a range for the total content of the resin component, the curing agent, and the curing accelerator. It is.
  • the resin composition according to an embodiment includes at least the above-described liquid crystal polymer particles and a resin component, but includes those containing components other than the above-mentioned liquid crystal polymer particles and the resin component as necessary, as exemplified below. To do.
  • ⁇ Curing agent and curing accelerator> When the resin composition which concerns on one Embodiment contains a thermosetting resin as a resin component, it is also preferable that a hardening
  • the content of the curing agent is not particularly limited and can be appropriately selected according to the resin component to be used and the curing conditions. For example, it is 10 to 100 parts by mass with respect to 100 parts by mass of the thermosetting resin described above. It is preferably 20 to 90 parts by mass.
  • a curing accelerator can be used in place of the above-mentioned curing agent or in combination with a curing agent.
  • the curing accelerator is not particularly limited, and examples thereof include diazabicycloundecene, derivatives thereof, and salts thereof; organic phosphine compounds, salts thereof, derivatives thereof, and the like.
  • the content of the curing accelerator is not particularly limited, but is preferably 50 to 150 parts by mass, and more preferably 80 to 120 parts by mass with respect to 100 parts by mass of the thermosetting resin described above.
  • the resin composition which concerns on one Embodiment can contain a filler as needed.
  • the filler here does not include liquid crystal polymer particles.
  • Filling materials include glass fiber, milled glass fiber, glass bead, glass balloon, ceramic balloon, glass flake, silica, alumina fiber, zirconia fiber, potassium titanate fiber, carbon fiber, graphite; calcium silicate, aluminum silicate, kaolin, Silicates such as talc and clay; metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony oxide and alumina; carbonates or sulfates of metals such as calcium, magnesium and zinc; and further silicon carbide, silicon nitride,
  • the organic filler include, but are not limited to, high melting point fibers such as aromatic polyester fibers, aromatic polyamide fibers, fluororesin fibers, and polyimide fibers.
  • the filler When the filler is included, it is preferably 80% by mass or less, more preferably 10 to 60% by mass, and more preferably 30 to 50% by mass in the total mass of the resin composition according to one embodiment. Further preferred.
  • the resin composition includes a solvent, the above range is obtained based on the mass of the resin composition excluding the solvent.
  • the resin composition according to one embodiment can further contain an organic solvent, if necessary.
  • the organic solvent is preferably a compound that functions to improve fluidity during molding of the resin composition according to one embodiment and can be removed by drying and / or heating under the process conditions during molding. .
  • the organic solvent is more preferably a compound that can be removed by drying and / or heating at a temperature below the melting point of the liquid crystal polymer particles.
  • the boiling point (standard boiling point) of the organic solvent is preferably 40 to 210 ° C., and preferably 50 to 190 ° C., from the viewpoint of suppressing deterioration of the resin component and the like when the organic solvent is removed. More preferred.
  • organic solvents examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, toluene, xylene, N, N-dimethylformamide, dioxane, tetrahydrofuran, and Although these derivatives etc. are mentioned, it is not limited to these.
  • An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the organic solvent can be appropriately determined in consideration of molding processability and the like.
  • the content of the organic solvent can be 90% by mass or less based on the total mass of the resin composition.
  • the total mass of the resin composition is the total mass including the organic solvent.
  • the resin composition contains an organic solvent
  • the resin component and liquid crystal polymer particles of the resin composition are dissolved and / or dispersed in the organic solvent, and at least a part of the resin component is in the organic solvent. It is preferable that it is dissolved.
  • the liquid crystal polymer particle-containing resin composition of one embodiment may optionally contain other components other than the above-mentioned components as long as the effect is not impaired.
  • Other components include various stabilizers (antioxidants, ultraviolet absorbers, near infrared absorbers, heat stabilizers, etc.), flame retardants, flame retardant aids, plasticizers, mold release agents, dyes and pigments, etc. Agents, fluorescent brighteners and the like. One or more of these can be added as needed.
  • the resin composition which concerns on one Embodiment can be manufactured using the installation and method generally used as a conventional resin composition preparation method.
  • a suitable method for example, a method of kneading (mixing) each component using a kneading apparatus such as a single-screw or twin-screw extruder may be mentioned.
  • the resin composition mixes at least one resin component selected from the group consisting of a thermosetting resin and a thermoplastic resin, and liquid crystal polymer particles at a temperature lower than the melting point of the liquid crystal polymer particles. It is preferable to manufacture by this.
  • the resin composition of one embodiment is a resin composition containing a resin component and liquid crystal polymer particles, and it is not necessary to heat and melt the liquid crystal polymer particles during the production of the resin composition.
  • a resin composition in which liquid crystal polymer particles are dispersed in the resin component can be obtained. Therefore, a resin that decomposes when heated and melted at a temperature equal to or higher than the melting point of the liquid crystal polymer particles can be used as the resin component.
  • components other than the resin component and the liquid crystal polymer particles may be added in the step of mixing the resin component and the liquid crystal polymer particles, or may be added at the time of molding. .
  • the shape of the molded body (molded product) of the resin composition according to one embodiment is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, and a three-dimensional molded product.
  • a film shape, a sheet shape, or a plate shape the remarkable effect by the resin composition which concerns on one Embodiment is acquired.
  • the molded body can be produced by various methods known as molding methods for resin compositions such as extrusion molding, injection molding, press molding, and casting.
  • the molded product of one embodiment includes a step of preparing a liquid composition containing the resin composition according to one embodiment; And a step of solidifying the liquid composition.
  • the liquid composition containing the resin composition may be the resin composition according to one embodiment (for example, when a liquid resin is used as the resin component and / or the resin composition according to the embodiment is an organic solvent). Etc.). If necessary, the liquid composition may be prepared by heating and melting the resin composition at a temperature lower than the melting point of the liquid crystal polymer particles.
  • the solidification step for solidifying the liquid composition is not particularly limited, and a method known in the technical field can be employed.
  • the solidification step include a cooling step for cooling the liquid composition, a drying step for drying the liquid composition, a heating step for heating the liquid composition, or a combination thereof.
  • the drying step is preferably performed in the temperature range from room temperature to less than the melting point of the liquid crystal polymer particles, for example, preferably in the range of 100 ° C to 250 ° C.
  • the heating step can be appropriately set in consideration of the curing conditions of the resin component to be used, but is preferably performed in a temperature range below the melting point of the liquid crystal polymer particles, for example, in the range of 120 ° C. to 220 ° C. preferable.
  • the drying process may also serve as the heating process, or the heating process may also serve as the drying process.
  • a molded body can be produced by a method including:
  • a molded object contains a base material, for example, 1. Preparing a liquid composition; 2. Impregnating a substrate with the liquid composition; 3. A molded body can be produced by a method including a step of drying a substrate impregnated with the liquid composition.
  • the resin composition preferably comprises a thermoplastic resin.
  • the resin composition preferably comprises a thermosetting resin. The molded body obtained by the drying step may be referred to as a prepreg.
  • a molded object can be manufactured by the method of including the process (curing process) of heating the dried said base material.
  • the resin composition preferably comprises a thermosetting resin.
  • the molded body obtained by the semi-curing process may be referred to as a prepreg.
  • the material for the base material is not particularly limited, and examples thereof include materials that can be used as a reinforcing material for the insulating layer of the circuit board.
  • inorganic fibers such as glass fiber, quartz glass fiber, carbon fiber, alumina fiber, silicon carbide fiber, albest, rock wool, slag wool, gypsum whisker, or organic such as wholly aromatic polyamide fiber, polyimide fiber, polyester fiber Fiber.
  • the substrate may be a film, a nonwoven fabric or a woven fabric.
  • circuit board In a film-like, sheet-like, or plate-like molded body formed using the resin composition according to one embodiment, liquid crystal polymer particles are dispersed in the resin component. For this reason, a molded object is excellent in an electrical property (low dielectric constant), and it is easy to obtain the outstanding surface characteristic (surface smoothness), and can be used suitably for electronic circuit boards, such as a flexible circuit board.
  • the method for producing the electronic circuit board is not particularly limited, and the film-like, sheet-like, or plate-like molded body (semi-cured body or cured body) and a metal foil such as a copper foil are bonded to each other and heated and pressed. The method of forming a metal laminated body by this is mentioned.
  • the conditions for the heating press are not particularly limited. For example, the heating temperature may be 60 to 220 ° C., the pressure may be 0.1 to 10 MPa, and the time may be 1 minute to 3 hours.
  • the stirring torque reached a predetermined value
  • nitrogen was introduced and the pressure was changed from a reduced pressure state to a normal pressure
  • the strand was discharged from the lower part of the polymerization vessel, and the strand was pelletized to obtain a pellet.
  • the obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the target polymer.
  • the obtained polymer had a melting point of 334 ° C. and a melt viscosity of 14.0 Pa ⁇ s.
  • fusing point of the said polymer was measured according to JISK7121 using the differential scanning calorimeter (TA Instruments company make, DSC Q1000).
  • the melt viscosity of the above polymer was obtained by changing the apparent melt viscosity under the conditions of a cylinder temperature of 350 ° C. and a shear rate of 1000 sec ⁇ 1 to ISO 11443 using a capillary rheometer (manufactured by Toyo Seiki Seisakusho, Capillograph 1D: piston diameter 10 mm) Measured in conformity. For the measurement, an orifice having an inner diameter of 1 mm and a length of 20 mm was used.
  • liquid crystal polymer particles were placed in a 50 mL measuring cylinder (manufactured by Shibata Kagaku Co., Ltd., measuring cylinder custom A 026500-501A, outer dimension diameter 2.5 cm, outer dimension height 21.5 cm) using a funnel. It was filled up to 50 mL of memory by naturally dropping from a height of 15 cm from the outer bottom surface, and the bulk density of the liquid crystal polymer particles was calculated by measuring the weight.
  • Raw material Liquid crystal polymer pellets (average particle size: 3 mm)
  • LCP particles 2 Average particle size: 195 ⁇ m, peak particle size: 242 ⁇ m Bulk density: 0.12 g / mL
  • the produced liquid crystal polymer pellets were freeze pulverized under the following conditions using a ball mill type freeze pulverizer (manufactured by Japan Analytical Industrial Co., Ltd., JFC-1500) to obtain substantially spherical liquid crystal polymer particles.
  • the average particle size, peak particle size, and bulk density of the obtained liquid crystal polymer particles were measured in the same manner as the LCP particles 1.
  • Raw material Liquid crystal polymer pellets (average particle size: 3 mm)
  • LCP particles 4 Average particle size: 5.3 ⁇ m, peak particle size: 6.9 ⁇ m Bulk density: 0.47 g / mL LCP particles 1 were classified with a semi-free vortex classifier (Nisshin Engineering Co., Ltd.) to obtain fine substantially spherical liquid crystal polymer particles. The average particle size, peak particle size, and bulk density of the obtained liquid crystal polymer particles were measured in the same manner as the LCP particles 1.
  • the surface of the obtained test piece is visually observed, and ⁇ indicates that there is no crack, ⁇ indicates that there is a crack in a part (less than 30% of the surface area), and about half (about 30 to 70% of the surface area).
  • the dispersibility was evaluated by substituting ⁇ for those having cracks) and x for those having cracks in the whole (more than 70% of the surface area).
  • the fractured surface was visually observed, ⁇ that there was no aggregate of liquid crystal polymer particles, ⁇ that there were less than 5 aggregates, and 5 or more aggregates
  • the surface property was evaluated as ⁇ when the number was less than 10 and x when the aggregate was 10 or more. For both dispersibility and surface property, ⁇ to ⁇ are in a range suitable for practical use. The results are shown in Table 1.
  • Examples 1 to 3 using a resin composition containing a resin component and liquid crystal polymer particles a molded article excellent in economic efficiency was obtained by a simple production method. Further, as shown in Table 1, in the molded articles of Examples 1 to 3 using the resin composition containing liquid crystal polymer particles, excellent electrical characteristics (dielectric constant and dielectric constant and while maintaining surface properties suitable for practical use). Dielectric loss tangent) was obtained. In particular, in the molded articles of Example 1 and Example 2 in which the average particle diameter of LCP particles was 200 ⁇ m or less, the dispersibility of LCP particles was good, and excellent surface properties and excellent electrical characteristics were obtained.
  • the obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 ⁇ m) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
  • the mass ratio shown in Table 2 is the mass ratio of the solid content excluding the solvent.
  • Comparative Example 2 A prepreg was obtained in the same manner as in Examples 4 and 5 except that the liquid crystal polymer particles were not used.
  • Examples 6 and 7 Liquid crystal polymer particles produced, dicyclopentadiene type epoxy resin (EPICLON HP-7200H-75M, DIC Corporation, 75% methyl ethyl ketone solution, epoxy equivalent: 279 g / eq), novolak type phenol resin (made by DIC Corporation) TD-2090-60M, 60% methyl ethyl ketone solution, hydroxyl group equivalent: 105 g / eq) was added to a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether at a mass ratio shown in Table 2 and stirred to obtain a uniform resin varnish.
  • dicyclopentadiene type epoxy resin EPICLON HP-7200H-75M, DIC Corporation, 75% methyl ethyl ketone solution, epoxy equivalent: 279 g / eq
  • novolak type phenol resin made by DIC Corporation
  • TD-2090-60M 60% methyl ethyl ketone solution,
  • the obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 ⁇ m) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
  • a prepreg was obtained in the same manner as in Examples 6 and 7 except that liquid crystal polymer particles were not used.
  • Examples 8 and 9 Liquid crystal polymer particles produced, phenol novolac type epoxy resin (EPICLON N-740-80M, manufactured by DIC Corporation, 80% methyl ethyl ketone solution, epoxy equivalent: 182 g / eq), novolac type phenol resin (TD manufactured by DIC Corporation) as a curing agent ⁇ 2090-60M, 60% methyl ethyl ketone solution, hydroxyl group equivalent: 105 g / eq) was added to a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether at a mass ratio shown in Table 2 and stirred to obtain a uniform resin varnish.
  • phenol novolac type epoxy resin EPICLON N-740-80M, manufactured by DIC Corporation, 80% methyl ethyl ketone solution, epoxy equivalent: 182 g / eq
  • novolac type phenol resin TD manufactured by DIC Corporation
  • TD novolac type phenol resin
  • the obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 ⁇ m) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
  • a prepreg was obtained in the same manner as in Examples 8 and 9 except that liquid crystal polymer particles were not used.
  • Examples 10 and 11 Liquid crystal polymer particles produced, bisphenol type epoxy resin (EPICOAT 828, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 190 g / eq), novolac type phenol resin as a curing agent (TD-2090-60M, manufactured by DIC Corporation, 60% methyl ethyl ketone solution) , Hydroxyl equivalent: 105 g / eq) was added to a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether at a mass ratio shown in Table 2 and stirred to obtain a uniform resin varnish.
  • bisphenol type epoxy resin EPICOAT 828, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 190 g / eq
  • novolac type phenol resin as a curing agent TD-2090-60M, manufactured by DIC Corporation, 60% methyl ethyl ketone solution
  • Hydroxyl equivalent 105 g / eq
  • the obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 ⁇ m) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
  • a prepreg was obtained in the same manner as in Examples 10 and 11 except that liquid crystal polymer particles were not used.
  • the obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 ⁇ m) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
  • the obtained laminate was punched into a dumbbell-type tensile test piece (JIS K7127 Type 5) to obtain a test piece.
  • a tensile test was performed immediately after punching and after 170 ° C. ⁇ 500 hours, and the ratio of the tensile strength after 170 ° C. ⁇ 500 hours to the tensile strength immediately after punching was defined as the tensile strength retention rate.
  • the fractured surface was observed with a scanning electron microscope, and peeling was observed at the interface between the liquid crystal polymer particles (or polytetrafluoroethylene particles) and the epoxy resin. Interfacial adhesion was evaluated with no indicating o, and x indicating peeling. The results are shown in Table 2.
  • Examples 4 to 11 using a resin composition containing a resin component and liquid crystal polymer particles a prepreg excellent in economic efficiency was obtained by a simple production method. Further, as shown in Table 2, the prepregs of Examples 4 to 11 using the resin composition containing liquid crystal polymer particles had excellent electrical properties while maintaining the tensile strength retention and interfacial adhesion suitable for practical use. Characteristics (dielectric constant and dielectric loss tangent) were obtained.
  • a resin composition containing liquid crystal polymer particles according to an embodiment of the present invention, and a molded product thereof are electronic components having a high-frequency circuit, for example, a built-in antenna for a mobile phone, an antenna for a vehicle-mounted radar, and a high-speed for home use.
  • the present invention can be widely applied to various applications using high frequency such as wireless communication.

Abstract

An aspect of the present invention relates to a resin composition which comprises: at least one resin selected from the group consisting of thermosetting resins and thermoplastic resins; and liquid-crystal polymer particles.

Description

液晶ポリマー粒子を含有する樹脂組成物、それを用いた成形体、及びそれらの製造方法Resin composition containing liquid crystal polymer particles, molded product using the same, and production method thereof
 本発明の実施形態は、液晶ポリマー粒子を含む樹脂組成物に関する。さらに、本発明の実施形態は、当該樹脂組成物の製造方法、当該樹脂組成物を用いた成形体、及びその製造方法に関する。 Embodiments of the present invention relate to a resin composition containing liquid crystal polymer particles. Furthermore, embodiment of this invention is related with the manufacturing method of the said resin composition, the molded object using the said resin composition, and its manufacturing method.
 リジッド基板、フレキシブル基板等のプリント基板は、絶縁性及び製造性を含む経済性の観点でエポキシ樹脂又はポリイミド樹脂などの樹脂製の基板が主流となっている。通信に係る電気機器には大容量のデータを高速で処理することが求められ、使用する電波の周波数は高周波帯へ移行し、プリント基板にも高周波への対応が求められている。 Resin substrates such as an epoxy resin or a polyimide resin are mainly used as printed boards such as rigid boards and flexible boards from the viewpoint of economy including insulation and manufacturability. Electrical equipment related to communication is required to process a large amount of data at high speed, the frequency of radio waves used is shifted to a high frequency band, and printed circuit boards are also required to support high frequencies.
 このような背景から、回路基板に用いる樹脂として、誘電特性に優れた樹脂が検討されている。例えば、特許文献1には、(a)主鎖に脂環式構造を有するポリアミド酸と、(b)シラノール基を有する、籠状のシルセスキオキサンの部分開裂構造体とを含有するポリアミド酸組成物を加熱して得られる、比誘電率が3以下であるポリイミドフィルムが記載されている。特許文献1に記載のポリイミドフィルムでは、シラノール基をポリマー骨格の一部として導入することにより、低誘電率化がなされているものの、誘電正接の低下に対しては、十分な効果が得られていない。 From such a background, resins having excellent dielectric properties are being studied as resins used for circuit boards. For example, Patent Document 1 discloses a polyamic acid containing (a) a polyamic acid having an alicyclic structure in the main chain and (b) a partially cleaved silsesquioxane structure having a silanol group. A polyimide film having a relative dielectric constant of 3 or less obtained by heating the composition is described. In the polyimide film described in Patent Document 1, although a low dielectric constant is achieved by introducing a silanol group as a part of a polymer skeleton, a sufficient effect is obtained for a decrease in dielectric loss tangent. Absent.
 液晶ポリマーは、寸法安定性、耐熱性、化学的安定性等に優れ、低誘電率であり、吸水率も低いことから、プリント基板等の電気及び電子分野における応用が検討されている。 Since liquid crystal polymers are excellent in dimensional stability, heat resistance, chemical stability, etc., have a low dielectric constant, and have a low water absorption rate, applications in the electrical and electronic fields such as printed circuit boards are being investigated.
 例えば、特許文献2には、所定の溶融粘度及び活性化エネルギーを有する熱可塑性液晶ポリマーを含有する重合体組成物を、所定の条件に温度設計されたダイから押出してインフレーション成形する、フィルムの製造方法が記載されている。 For example, Patent Document 2 discloses the production of a film in which a polymer composition containing a thermoplastic liquid crystal polymer having a predetermined melt viscosity and activation energy is extruded from a die whose temperature is designed under predetermined conditions, and then subjected to inflation molding. A method is described.
 また、特許文献3には、液晶ポリマーのフィルムを、カッターミルを用いて粉砕後フィブリル化してフィブリル化液晶ポリマーパウダーを製造し、当該フィブリル化液晶ポリマーパウダーを加熱加圧することによりプリント基板を製造する方法が記載されている。 In Patent Document 3, a liquid crystal polymer film is pulverized using a cutter mill and then fibrillated to produce a fibrillated liquid crystal polymer powder, and a printed circuit board is manufactured by heating and pressurizing the fibrillated liquid crystal polymer powder. A method is described.
特開2012-107121号公報JP 2012-107121 A 特開2005-1376号公報Japanese Patent Laid-Open No. 2005-1376 国際公開WO2014/188830号International Publication WO2014 / 188830
 特許文献2に記載されているように、液晶ポリマーをフィルム化する場合には、通常、液晶ポリマーを加熱溶融した後に成形を行う必要がある。一方、特許文献3に記載の方法により製造される液晶ポリマーシートは、バインダーと成り得る樹脂成分を含まず、液晶ポリマーパウダーのみから構成されており、高価であるという課題を抱えている。 As described in Patent Document 2, when a liquid crystal polymer is formed into a film, it is usually necessary to perform molding after heating and melting the liquid crystal polymer. On the other hand, the liquid crystal polymer sheet produced by the method described in Patent Document 3 does not contain a resin component that can serve as a binder, is composed only of liquid crystal polymer powder, and has a problem of being expensive.
 本発明の実施形態は上述の課題に鑑みなされたものであり、優れた電気的特性と経済性とを両立させることができる樹脂組成物、及びその製造方法を提供することを課題とする。また、本発明の実施形態は、優れた電気的特性と経済性と備えた成形品、及びその製造方法を提供することを課題とする。 Embodiments of the present invention have been made in view of the above-described problems, and an object of the present invention is to provide a resin composition that can achieve both excellent electrical characteristics and economy, and a method for producing the same. Another object of an embodiment of the present invention is to provide a molded article having excellent electrical characteristics and economy, and a method for manufacturing the same.
 本発明の一実施形態は、熱硬化性樹脂及び熱可塑性樹脂からなる群より選ばれる少なくとも1種の樹脂と、液晶ポリマー粒子とを含有する、樹脂組成物に関する。 One embodiment of the present invention relates to a resin composition containing at least one resin selected from the group consisting of a thermosetting resin and a thermoplastic resin, and liquid crystal polymer particles.
 本発明の更なる一実施形態は、液晶ポリマー粒子の融点が270℃以上である、上記樹脂組成物に関する。 A further embodiment of the present invention relates to the above resin composition, wherein the melting point of the liquid crystal polymer particles is 270 ° C. or higher.
 本発明の更なる一実施形態は、液晶ポリマー粒子の平均粒子径が0.1~200μmである、上記樹脂組成物に関する。 A further embodiment of the present invention relates to the above resin composition, wherein the liquid crystal polymer particles have an average particle size of 0.1 to 200 μm.
 本発明の更なる一実施形態は、液晶ポリマー粒子の嵩密度が0.08~1.2g/mLである、上記樹脂組成物に関する。 A further embodiment of the present invention relates to the resin composition, wherein the liquid crystal polymer particles have a bulk density of 0.08 to 1.2 g / mL.
 本発明の更なる一実施形態は、液晶ポリマー粒子を、樹脂組成物の全質量の5~80質量%含有する、上記樹脂組成物に関する。 A further embodiment of the present invention relates to the above resin composition containing 5 to 80% by mass of liquid crystal polymer particles based on the total mass of the resin composition.
 本発明の更なる一実施形態は、樹脂が、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、及びポリブチレンナフタレート樹脂からなる群より選ばれる1種以上の樹脂を含む、上記樹脂組成物に関する。 In a further embodiment of the present invention, the resin is an epoxy resin, phenol resin, polyimide resin, bismaleimide triazine resin, polyphenylene ether resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, and poly It is related with the said resin composition containing 1 or more types of resin chosen from the group which consists of butylene naphthalate resin.
 本発明の別の一実施形態は、上記樹脂組成物の製造方法であって、
 前記熱硬化性樹脂及び熱可塑性樹脂からなる群より選ばれる少なくとも1種の樹脂と、前記液晶ポリマー粒子とを、前記液晶ポリマー粒子の融点未満の温度で混合する工程を含む、樹脂組成物の製造方法に関する。
Another embodiment of the present invention is a method for producing the above resin composition,
Production of a resin composition comprising a step of mixing at least one resin selected from the group consisting of the thermosetting resin and a thermoplastic resin and the liquid crystal polymer particles at a temperature lower than the melting point of the liquid crystal polymer particles. Regarding the method.
 本発明の別の一実施形態は、上記樹脂組成物を用いてなる、成形体に関する。 Another embodiment of the present invention relates to a molded body using the resin composition.
 本発明の別の一実施形態は、上記樹脂組成物を硬化させてなる、成形体に関する。 Another embodiment of the present invention relates to a molded body obtained by curing the above resin composition.
 本発明の更なる一実施形態は、フィルム状、シート状又は板状である、上記成形体に関する。 Further embodiment of the present invention relates to the above-mentioned molded product which is in the form of a film, a sheet or a plate.
 本発明の別の一実施形態は、上記樹脂組成物を少なくとも含む液状組成物を調製する工程と、
 前記液状組成物を固化する工程と、
 を含む、成形体の製造方法に関する。
Another embodiment of the present invention includes a step of preparing a liquid composition containing at least the resin composition,
Solidifying the liquid composition;
The manufacturing method of a molded object containing this.
 本発明の別の一実施形態は、樹脂組成物と、有機溶剤と、を少なくとも含む液状組成物を基材に含浸させる工程と、
 前記液状組成物を含浸させた前記基材を乾燥させる工程と、
 を含む、成形体の製造方法に関する。
Another embodiment of the present invention comprises impregnating a substrate with a liquid composition containing at least a resin composition and an organic solvent,
Drying the substrate impregnated with the liquid composition;
The manufacturing method of a molded object containing this.
 本発明の別の一実施形態は、更に、乾燥させた前記基材を加熱する工程を含む、上記成形体の製造方法に関する。 Another embodiment of the present invention further relates to a method for producing the molded body, further comprising the step of heating the dried base material.
 本発明の更なる一実施形態は、有機溶剤が、アセトン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トルエン、キシレン、N,N-ジメチルホルムアミド、ジオキサン、及びテトラヒドロフランからなる群より選ばれる1種以上の有機溶剤を含む、上記成形体の製造方法に関する。 In a further embodiment of the present invention, the organic solvent is a group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, toluene, xylene, N, N-dimethylformamide, dioxane, and tetrahydrofuran. It is related with the manufacturing method of the said molded object containing the 1 or more types of organic solvent chosen from more.
 本発明の別の一実施形態は、上記樹脂組成物を用いてなる、又は上記成形体を含む、電子回路基板に関する。 Another embodiment of the present invention relates to an electronic circuit board comprising the resin composition or including the molded body.
 本発明の更なる一実施形態は、フレキシブル回路基板である、上記電子回路基板に関する。 Further embodiment of the present invention relates to the electronic circuit board, which is a flexible circuit board.
 本願の開示は、平成28年2月29日に出願された特願2016-037525号に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。 The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2016-037525 filed on February 29, 2016, the disclosure of which is incorporated herein by reference.
 本発明の実施形態によれば、優れた電気的特性と経済性とを両立させることのできる樹脂組成物、及びその製造方法を提供することができる。また、本発明の実施形態によれば、優れた電気的特性と経済性と備えた成形品、及びその製造方法を提供することができる。 According to the embodiment of the present invention, it is possible to provide a resin composition capable of achieving both excellent electrical characteristics and economy, and a method for producing the same. Moreover, according to the embodiment of the present invention, it is possible to provide a molded article having excellent electrical characteristics and economy, and a manufacturing method thereof.
[樹脂組成物]
 一実施形態に係る樹脂組成物は、熱硬化性樹脂及び/又は熱可塑性樹脂と、液晶ポリマー粒子と、を含有する。
[Resin composition]
The resin composition according to one embodiment contains a thermosetting resin and / or a thermoplastic resin, and liquid crystal polymer particles.
<液晶ポリマー粒子>
(液晶ポリマー)
 一実施形態において、液晶ポリマー(「液晶性ポリマー」又は「液晶性樹脂」とも記載する)とは、光学異方性の溶融相を形成し得る性質を有する溶融加工性を示すポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、オリンパス社製偏光顕微鏡を使用し、リンカム社製ホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。一実施形態において、液晶ポリマーは、直交偏光子の間で検査したときに、溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
<Liquid crystal polymer particles>
(Liquid crystal polymer)
In one embodiment, a liquid crystal polymer (also referred to as “liquid crystal polymer” or “liquid crystal resin”) refers to a polymer that exhibits melt processability and has the property of forming an optically anisotropic melt phase. The property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a polarizing microscope manufactured by Olympus Corporation and observing a molten sample placed on a hot stage manufactured by Linkam Corporation at a magnification of 40 times under a nitrogen atmosphere. . In one embodiment, the liquid crystal polymer normally transmits polarized light and exhibits optical anisotropy when inspected between crossed polarizers, even in the molten resting state.
 液晶ポリマーの種類としては特に限定されず、芳香族ポリエステル及び/又は芳香族ポリエステルアミドであることが好ましい。また、芳香族ポリエステル及び/又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。液晶ポリマーとしては、60℃でペンタフルオロフェノールに濃度0.1質量%で溶解したときに、好ましくは少なくとも約2.0dl/g、更に好ましくは2.0~10.0dl/gの対数粘度(I.V.)を有するものが好ましく使用される。 The type of liquid crystal polymer is not particularly limited, and is preferably an aromatic polyester and / or an aromatic polyester amide. Moreover, the polyester which partially contains aromatic polyester and / or aromatic polyester amide in the same molecular chain is also within the range. The liquid crystal polymer preferably has a logarithmic viscosity (at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g) when dissolved at a concentration of 0.1% by mass in pentafluorophenol at 60 ° C. Those having I.V.) are preferably used.
 液晶ポリマーとしての芳香族ポリエステル又は芳香族ポリエステルアミドは、特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、及び芳香族ジアミンからなる群より選ばれる少なくとも1種の化合物に由来する繰り返し単位を構成成分として有する芳香族ポリエステル又は芳香族ポリエステルアミドである。 The aromatic polyester or aromatic polyester amide as the liquid crystal polymer is particularly preferably a repeating unit derived from at least one compound selected from the group consisting of an aromatic hydroxycarboxylic acid, an aromatic hydroxyamine, and an aromatic diamine. Aromatic polyester or aromatic polyester amide as a constituent component.
 より具体的には、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド等が挙げられる。
 更に上記の構成成分に必要に応じ分子量調整剤を併用してもよい。また、他に任意の成分を含んでもよい。
More specifically,
(1) A polyester mainly composed of repeating units derived from one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(2) Mainly (a) a repeating unit derived from one or more of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) one of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof Or a polyester comprising a repeating unit derived from two or more and (c) a repeating unit derived from at least one or more of aromatic diol, alicyclic diol, aliphatic diol, and derivatives thereof;
(3) a repeating unit mainly derived from (a) one or more of an aromatic hydroxycarboxylic acid and a derivative thereof; and (b) one or two of an aromatic hydroxyamine, an aromatic diamine, and a derivative thereof. A polyesteramide comprising a repeating unit derived from at least one species and (c) a repeating unit derived from one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid, and derivatives thereof;
(4) a repeating unit mainly derived from (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof; and (b) one or two of aromatic hydroxyamines, aromatic diamines and derivatives thereof. A repeating unit derived from more than one species, (c) a repeating unit derived from one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof, and (d) aromatic diol, alicyclic And polyester amides composed of a repeating unit derived from at least one or more of an aliphatic diol, an aliphatic diol, and derivatives thereof.
Furthermore, you may use a molecular weight regulator together with said structural component as needed. In addition, an optional component may be included.
 なお、上記(1)~(4)において、主として含まれる「芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位」の比率は特に限定されないが、液晶ポリマーを構成する繰り返し単位中40モル%以上であることが好ましい。また、上記(1)~(4)にそれぞれ例示される繰り返し単位の合計が、液晶ポリマーを構成する繰り返し単位中、80モル%以上であることが好ましく、90モル%以上(100モル%を含む)であることがより好ましい。 In the above (1) to (4), the ratio of the “repeating unit derived from one or more of the aromatic hydroxycarboxylic acid and its derivative” mainly contained is not particularly limited, but it constitutes the liquid crystal polymer. It is preferable that it is 40 mol% or more in a repeating unit. Further, the total of the repeating units exemplified in the above (1) to (4) is preferably 80 mol% or more, and 90 mol% or more (including 100 mol%) in the repeating units constituting the liquid crystal polymer. ) Is more preferable.
 一実施形態において、液晶ポリマーを構成する具体的モノマー化合物の好ましい例としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸;2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)で表される化合物、及び下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、及び下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン、アセトキシアミノフェノール等の芳香族アミン類が挙げられる。 In one embodiment, preferred examples of the specific monomer compound constituting the liquid crystal polymer include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxynaphthalene, 1 , 4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, compounds represented by the following general formula (I), and aromatic diols such as the following general formula (II); terephthalic acid , Aromatic dicarboxylic acids such as isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III); p-aminophenol, p-phenylenediamine, Aromatic amines such as acetoxyaminophenol can be mentioned.
Figure JPOXMLDOC01-appb-C000001
(Xは、アルキレン(C~C)、アルキリデン、-O-、-SO-、-SO-、-S-、及び-CO-より選ばれる基である。)
Figure JPOXMLDOC01-appb-C000001
(X is a group selected from alkylene (C 1 -C 4 ), alkylidene, —O—, —SO—, —SO 2 —, —S—, and —CO—.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Yは、-(CH-(n=1~4)及び-O(CHO-(n=1~4)より選ばれる基である。)
Figure JPOXMLDOC01-appb-C000003
(Y is a group selected from — (CH 2 ) n — (n = 1 to 4) and —O (CH 2 ) n O— (n = 1 to 4).
 液晶ポリマーの調製は、例えば、上記のモノマー化合物(又はモノマー化合物の混合物)から直接重合法又はエステル交換法を用いて当該技術分野においてよく知られている方法で行うことができ、通常は溶融重合法又はスラリー重合法等が用いられる。エステル形成能を有する化合物類はそのままの形で重合に用いてもよく、また、重合の前段階で前駆体からエステル形成能を有する誘導体に変性されたものでもよい。これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、ジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタン、けい酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BFの如きルイス酸塩等が挙げられる。触媒の使用量は一般にはモノマー化合物の全質量に対して約0.001~1質量%、特に約0.01~0.2質量%が好ましい。これらの重合方法により製造された液晶ポリマーは更に必要があれば、減圧又は不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。 The liquid crystal polymer can be prepared by, for example, a method well known in the art using a direct polymerization method or a transesterification method from the above-described monomer compound (or a mixture of monomer compounds). A combination method or a slurry polymerization method is used. The compounds having ester-forming ability may be used for polymerization as they are, or may be modified from a precursor to a derivative having ester-forming ability in the previous stage of polymerization. In the polymerization, various catalysts can be used, and typical examples include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium, silicates, titanium alcoholates, alkali of carboxylic acid. And alkaline earth metal salts, Lewis acid salts such as BF 3 , and the like. The amount of the catalyst used is generally about 0.001 to 1% by mass, particularly about 0.01 to 0.2% by mass, based on the total mass of the monomer compound. If necessary, the liquid crystal polymer produced by these polymerization methods can be increased in molecular weight by solid-phase polymerization under reduced pressure or in an inert gas.
 上記のような方法で得られた液晶ポリマーの溶融粘度は特に限定されない。一般には液晶ポリマーの融点より10~30℃高い温度での溶融粘度が剪断速度1000sec-1で5MPa以上600MPa以下のものを使用することが好ましい。 The melt viscosity of the liquid crystal polymer obtained by the above method is not particularly limited. In general, it is preferable to use a polymer having a melt viscosity at a temperature 10 to 30 ° C. higher than the melting point of the liquid crystal polymer and a shear rate of 1000 sec −1 to 5 MPa to 600 MPa.
 なお、上記液晶ポリマーは2種以上の液晶ポリマーの混合物であってもよい。 The liquid crystal polymer may be a mixture of two or more liquid crystal polymers.
(液晶ポリマー粒子)
 一実施形態によれば、液晶ポリマー粒子は、上記の液晶ポリマーを主成分として含む。主成分として含むとは、液晶ポリマー粒子の質量の80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上(100質量%を含む)が上記液晶ポリマーであることを意味する。
(Liquid crystal polymer particles)
According to one embodiment, the liquid crystal polymer particles include the liquid crystal polymer as a main component. The inclusion as the main component means that 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more (including 100% by mass) of the mass of the liquid crystal polymer particles is the liquid crystal polymer.
 一実施形態では、液晶ポリマー粒子は、融点が270℃以上であることが好ましい。上限は特に限定されないが、生産性の観点から400℃以下であることが好ましい。液晶ポリマー粒子の融点が270℃以上であると、基板実装のリフロー工程における耐熱性の観点で好ましい。液晶ポリマー粒子の融点は300℃以上であることがより好ましく、330℃以上であることが更に好ましい。なお、本明細書において、液晶ポリマー粒子の「融点(融解温度)」とは、示差走査型熱量計を用いてJIS K 7121に準じて測定される温度を意味する。測定には、液晶ポリマー(例えばペレット)又は液晶ポリマー粒子を使用できる。 In one embodiment, the liquid crystal polymer particles preferably have a melting point of 270 ° C. or higher. Although an upper limit is not specifically limited, It is preferable that it is 400 degrees C or less from a viewpoint of productivity. When the melting point of the liquid crystal polymer particles is 270 ° C. or higher, it is preferable from the viewpoint of heat resistance in the reflow process of substrate mounting. The melting point of the liquid crystal polymer particles is more preferably 300 ° C. or higher, and further preferably 330 ° C. or higher. In the present specification, the “melting point (melting temperature)” of the liquid crystal polymer particles means a temperature measured according to JIS K 7121 using a differential scanning calorimeter. For the measurement, liquid crystal polymer (for example, pellets) or liquid crystal polymer particles can be used.
 液晶ポリマー粒子の形状は特に限定されず、球状(略球状を含む)、紡錘状、不定形の粒子状、フィブリル状、繊維状等、及びこれらの混合物が挙げられるがこれらに限定されない。なお、電気的特性の等方的な向上の観点からは球状が好ましく、機械物性の向上の観点からはフィブリル状が好ましい。 The shape of the liquid crystal polymer particles is not particularly limited, and examples thereof include, but are not limited to, spherical (including substantially spherical), spindle, amorphous particles, fibrils, fibers, and the like. In addition, spherical shape is preferable from the viewpoint of isotropic improvement of electrical characteristics, and fibril shape is preferable from the viewpoint of improvement of mechanical properties.
 液晶ポリマー粒子の平均粒子径は特に限定されないが、一実施形態では、例えば0.1μm以上250μm以下であり、1μm以上200μm以下であることが好ましい。液晶ポリマー粒子の平均粒子径が250μm以下であると、樹脂組成物を用いて得られる成形体の表面粗さを適切な範囲に維持し易い。また、0.1μm以上であると、液晶ポリマー粒子の生産性の観点で好ましい。また、液晶ポリマー粒子の平均粒子径は、樹脂組成物中における分散性と表面特性の向上の観点から、150μm以下であることがより好ましく、100μm以下であることが更に好ましく、80μm以下であることが特に好ましい。 The average particle diameter of the liquid crystal polymer particles is not particularly limited, but in one embodiment, for example, it is 0.1 μm or more and 250 μm or less, and preferably 1 μm or more and 200 μm or less. When the average particle diameter of the liquid crystal polymer particles is 250 μm or less, it is easy to maintain the surface roughness of the molded product obtained using the resin composition in an appropriate range. Moreover, it is preferable in the viewpoint of productivity of a liquid crystal polymer particle as it is 0.1 micrometer or more. The average particle size of the liquid crystal polymer particles is more preferably 150 μm or less, further preferably 100 μm or less, and more preferably 80 μm or less from the viewpoint of improving dispersibility in the resin composition and surface characteristics. Is particularly preferred.
 また、一実施形態では、均一な特性を有する成形体を得る観点から、液晶ポリマー粒子の平均粒子径が50μm以下であることが好ましく、30μm以下であることがより好ましい。 In one embodiment, the average particle diameter of the liquid crystal polymer particles is preferably 50 μm or less, and more preferably 30 μm or less, from the viewpoint of obtaining a molded product having uniform characteristics.
 なお、本明細書において、液晶ポリマー粒子の「平均粒子径」は、レーザー回折/散乱式粒度分布測定法による体積基準の算術平均粒子径を意味する。平均粒子径は、例えば、株式会社堀場製作所製レーザー回折/散乱式粒度分布測定装置LA-920を用いて測定することができる。 In the present specification, the “average particle diameter” of the liquid crystal polymer particles means a volume-based arithmetic average particle diameter measured by a laser diffraction / scattering particle size distribution measurement method. The average particle diameter can be measured using, for example, a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by Horiba, Ltd.
 また、一実施形態では、液晶ポリマー粒子の分散性及び成形体の特性の均質化を図る観点から、液晶ポリマー粒子の粒度分布のピーク粒度が0.1~300μmの範囲にあることが好ましく、1~250μmの範囲にあることがより好ましく、150μm以下にあることが更に好ましく、100μm以下にあることが特に好ましい。なお、本明細書において、液晶ポリマー粒子の「粒度分布のピーク粒度」とは、レーザー回折/散乱分布測定装置を用いて測定した体積基準の粒度分布におけるピーク粒径を意味する。粒度分布に2以上のピークが存在する場合は、ピーク高さの最も大きいピークのピーク粒径が上記の粒径範囲内に存在すればよい。粒度分布のピーク粒度は、例えば、株式会社堀場製作所製レーザー回折/散乱式粒度分布測定装置LA-920を用いて測定することができる。 In one embodiment, the peak particle size of the particle size distribution of the liquid crystal polymer particles is preferably in the range of 0.1 to 300 μm from the viewpoint of homogenizing the dispersibility of the liquid crystal polymer particles and the properties of the molded product. More preferably, it is in the range of ˜250 μm, more preferably 150 μm or less, and particularly preferably 100 μm or less. In the present specification, “peak particle size of particle size distribution” of liquid crystal polymer particles means a peak particle size in a volume-based particle size distribution measured using a laser diffraction / scattering distribution measuring device. When two or more peaks are present in the particle size distribution, the peak particle size of the peak having the largest peak height only needs to be within the above particle size range. The peak particle size of the particle size distribution can be measured, for example, using a laser diffraction / scattering particle size distribution measuring apparatus LA-920 manufactured by Horiba, Ltd.
 また、一実施形態では、液晶ポリマー粒子の嵩密度が、0.08~1.2g/mLの範囲であることが好ましく、0.09~1.0g/mLの範囲であることがより好ましく、0.1~0.5g/mLの範囲であることが更に好ましい。液晶ポリマー粒子の嵩密度が0.08g/mL以上であると、製造時のハンドリングの観点から好ましく、1.2g/mL以下であると粒子の分散性の観点から好ましい。なお、本明細書において、液晶ポリマー粒子の嵩密度は、液晶ポリマー粒子を、体積50mLのメスシリンダー(外寸径2.5cm、外寸高さ21.5cm)に、ロートを用いてメスシリンダーの外側底面から15cmの高さから自然落下させることにより、50mLのメモリまで充填し、充填された液晶ポリマー粒子の質量を測定することにより算出することができる。 In one embodiment, the bulk density of the liquid crystal polymer particles is preferably in the range of 0.08 to 1.2 g / mL, more preferably in the range of 0.09 to 1.0 g / mL. More preferably, it is in the range of 0.1 to 0.5 g / mL. The bulk density of the liquid crystal polymer particles is preferably 0.08 g / mL or more from the viewpoint of handling during production, and is preferably 1.2 g / mL or less from the viewpoint of dispersibility of the particles. In the present specification, the bulk density of the liquid crystal polymer particles is defined as follows: the liquid crystal polymer particles are placed in a 50 mL volume graduated cylinder (outer diameter 2.5 cm, outer dimension height 21.5 cm) using a funnel. It can be calculated by measuring the mass of liquid crystal polymer particles filled up to 50 mL of memory by naturally dropping from a height of 15 cm from the outer bottom surface.
 液晶ポリマー粒子の製造方法としては特に限定されないが、液晶性熱可塑性樹脂と非液晶性熱可塑性樹脂からなるシートを製造後、非液晶性熱可塑性樹脂を溶媒により溶出して除去する方法;液晶性熱可塑性樹脂のオリゴマーを粉砕し、次いで固相重合を行う方法;シート状の液晶性樹脂を粉砕及びフィブリル化する方法;ペレット状の液晶性樹脂を粉砕する方法等が挙げられる。 The method for producing liquid crystal polymer particles is not particularly limited, but a method of producing a sheet comprising a liquid crystalline thermoplastic resin and a non-liquid crystalline thermoplastic resin and then removing the non-liquid crystalline thermoplastic resin by elution with a solvent; Examples thereof include a method of pulverizing an oligomer of a thermoplastic resin and then solid-phase polymerization; a method of pulverizing and fibrillating a sheet-like liquid crystalline resin; a method of pulverizing a pellet-like liquid crystalline resin, and the like.
 また、一実施形態では、液晶ポリマーを石臼型摩砕機により粉砕する方法が好ましい。石臼型摩砕機により粉砕する方法によると、平均粒子径の小さい粒子を簡便に製造し易い。 In one embodiment, a method of pulverizing the liquid crystal polymer with a stone mill is preferable. According to the method of pulverizing with a stone mill, it is easy to easily produce particles having a small average particle diameter.
 樹脂組成物中の液晶ポリマー粒子の含有量は特に限定されないが、全組成物の5質量%以上80質量%以下であることが好ましい。液晶ポリマー粒子の含有量が5質量%以上であると電気的特性向上(低誘電率化)の効果をより高めることができ、80質量%以下であると経済性の観点でより有利である。液晶ポリマー粒子の含有量は、全組成物の10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、また、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。樹脂組成物が溶剤を含む場合、前記範囲は、溶剤を除いた樹脂組成物の質量を基準として求める。 The content of the liquid crystal polymer particles in the resin composition is not particularly limited, but is preferably 5% by mass or more and 80% by mass or less of the entire composition. When the content of the liquid crystal polymer particles is 5% by mass or more, the effect of improving electrical characteristics (lower dielectric constant) can be further increased, and when it is 80% by mass or less, it is more advantageous from the viewpoint of economy. The content of the liquid crystal polymer particles is more preferably 10% by mass or more of the total composition, further preferably 20% by mass or more, more preferably 70% by mass or less, and 60% by mass. More preferably, it is as follows. When the resin composition includes a solvent, the above range is obtained based on the mass of the resin composition excluding the solvent.
<樹脂成分>
 一実施形態に係る樹脂組成物は、熱可塑性樹脂及び熱硬化性樹脂からなる群より選ばれる少なくとも1種の樹脂(以下、「樹脂成分」とも記載する)を含む。樹脂成分は、液晶ポリマー以外の樹脂である。
<Resin component>
The resin composition according to one embodiment includes at least one resin selected from the group consisting of a thermoplastic resin and a thermosetting resin (hereinafter also referred to as “resin component”). The resin component is a resin other than the liquid crystal polymer.
 熱可塑性樹脂及び熱硬化性樹脂は特に限定されず、一実施形態に係る樹脂組成物の用途等を考慮して適宜選択することができる。 The thermoplastic resin and the thermosetting resin are not particularly limited, and can be appropriately selected in consideration of the use of the resin composition according to one embodiment.
 例えば、後述のように樹脂組成物を回路基板に用いる場合は、一般に、低誘電率の樹脂成分を用いることが望まれる。しかし、一実施形態に係る樹脂組成物は液晶ポリマー粒子を含むため、誘電率が比較的高い樹脂を用いた場合も、優れた電気的特性(低誘電率)を維持することができるという利点がある。誘電率が比較的高い樹脂としては、具体的には、液晶ポリマーよりも誘電率が高い樹脂、例えば、5GHzにおける誘電率が3以上、又は3.2以上の樹脂が挙げられる。具体的には、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂(BTレジン)等が例示されるがこれらに限定されない。なお、当然のことながら、誘電率が3未満である樹脂も好適に用いることができる。ここで、誘電率は、空洞共振器摂動法により23℃で測定した5GHzにおける値である。 For example, when a resin composition is used for a circuit board as described later, it is generally desirable to use a resin component having a low dielectric constant. However, since the resin composition according to an embodiment includes liquid crystal polymer particles, there is an advantage that excellent electrical characteristics (low dielectric constant) can be maintained even when a resin having a relatively high dielectric constant is used. is there. Specific examples of the resin having a relatively high dielectric constant include a resin having a dielectric constant higher than that of the liquid crystal polymer, for example, a resin having a dielectric constant of 3 or more at 5 GHz or 3.2 or more. Specific examples include, but are not limited to, epoxy resins, phenol resins, polyimide resins, bismaleimide triazine resins (BT resins), and the like. As a matter of course, a resin having a dielectric constant of less than 3 can also be suitably used. Here, the dielectric constant is a value at 5 GHz measured at 23 ° C. by the cavity resonator perturbation method.
 また、一実施形態に係る樹脂組成物は液晶ポリマーの粒子を含むため、当該樹脂組成物の製造時に当該液晶ポリマー粒子を加熱溶融させる必要がなく、樹脂成分と液晶ポリマー粒子とを液晶ポリマー粒子の融点未満の温度で混合した場合も、液晶ポリマー粒子が分散した樹脂組成物を得ることが可能である。このため、一実施形態では、樹脂成分として、熱分解温度が液晶ポリマー粒子の融点未満である樹脂を好適に用いることができる。なお、当然のことながら、熱分解温度が上記液晶ポリマー粒子の溶融温度以上である樹脂も好適に用いることができる。 Further, since the resin composition according to an embodiment includes liquid crystal polymer particles, it is not necessary to heat and melt the liquid crystal polymer particles at the time of producing the resin composition, and the resin component and the liquid crystal polymer particles are combined with each other. Even when mixed at a temperature lower than the melting point, it is possible to obtain a resin composition in which liquid crystal polymer particles are dispersed. For this reason, in one embodiment, a resin having a thermal decomposition temperature lower than the melting point of the liquid crystal polymer particles can be suitably used as the resin component. As a matter of course, a resin having a thermal decomposition temperature equal to or higher than the melting temperature of the liquid crystal polymer particles can also be suitably used.
 また、一実施形態に係る樹脂組成物を後述の回路基板に用いる場合、樹脂成分のガラス転移温度、融点(溶融温度)及び熱分解温度が、回路基板製造時のプロセス温度以上であることが好ましく、具体的には、300℃以上であることが好ましく、330℃以上であることがより好ましく、350℃以上であることが更に好ましい。 Moreover, when using the resin composition which concerns on one Embodiment for the circuit board mentioned later, it is preferable that the glass transition temperature of a resin component, melting | fusing point (melting temperature), and thermal decomposition temperature are more than the process temperature at the time of circuit board manufacture. Specifically, the temperature is preferably 300 ° C. or higher, more preferably 330 ° C. or higher, and further preferably 350 ° C. or higher.
 なお、本明細書において、『樹脂成分のガラス転移温度、融点及び熱分解温度が特定の温度以上である』と記載した場合、当該樹脂のガラス転移温度、融点及び熱分解温度のうち最も低い温度が、当該特定の温度以上であることを意味する。ここで、「融点(溶融温度)」とは示差走査熱量測定(DSC)によりJIS K 7121に準じて測定される温度を表し、「熱分解温度」とは熱重量測定装置を用いて空気気流中で25℃から10℃/分で昇温したときに10%重量が減少したときの温度(10%重量減少温度)を表し、「ガラス転移温度」は、示差走査熱量測定(DSC)によりJIS K 6240に準じて測定される温度を意味する。 In this specification, when it is described that “the glass transition temperature, melting point and thermal decomposition temperature of the resin component are not less than a specific temperature”, the lowest temperature among the glass transition temperature, melting point and thermal decomposition temperature of the resin. Means above the specific temperature. Here, “melting point (melting temperature)” means a temperature measured by differential scanning calorimetry (DSC) according to JIS K 7121, and “pyrolysis temperature” means in an air stream using a thermogravimetric measuring device. Represents the temperature at which the 10% weight is reduced when the temperature is raised from 25 ° C. to 10 ° C./min (10% weight reduction temperature). “Glass transition temperature” is JIS K by differential scanning calorimetry (DSC). It means the temperature measured according to 6240.
 一実施形態において、好ましく用いられる熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂(BTレジン)等が挙げられるがこれらに限定されない。 In one embodiment, the thermosetting resin preferably used includes, but is not limited to, an epoxy resin, a phenol resin, a polyimide resin, a bismaleimide triazine resin (BT resin), and the like.
(エポキシ樹脂)
 エポキシ樹脂としては、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、ポリエーテル変性エポキシ樹脂、シリコーン変性エポキシ樹脂、グリシジルエステル型エポキシ樹脂などの2官能エポキシ樹脂を挙げることができる。また、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、キシリレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラキスフェノールエタン型エポキシ樹脂等の多官能エポキシ樹脂を用いることもできる。エポキシ樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Epoxy resin)
The epoxy resin is not particularly limited. For example, bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, Bifunctional epoxy resins such as alicyclic epoxy resins, polyether-modified epoxy resins, silicone-modified epoxy resins, and glycidyl ester type epoxy resins can be mentioned. Also, polyfunctional epoxy resins such as phenol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, xylylene type epoxy resin, cresol novolac type epoxy resin, tetrakisphenol ethane type epoxy resin, etc. are used. You can also. An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more type.
(フェノール樹脂)
 フェノール樹脂としては、例えば、クレゾールノボラック型フェノール樹脂、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ビスフェノールA型ノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、ザイロック型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類、ナフトールアラルキル型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、ナフタレン型フェノール樹脂、アミノトリアジンノボラック型フェノール樹脂等が挙げられるが、これらに限定されない。フェノール樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Phenolic resin)
Examples of the phenol resin include cresol novolak type phenol resin, phenol novolak resin, alkylphenol novolak resin, bisphenol A type novolak resin, dicyclopentadiene type phenol resin, zyloc type phenol resin, terpene modified phenol resin, polyvinylphenols, naphthol aralkyl. Type phenolic resin, biphenyl aralkyl type phenolic resin, naphthalene type phenolic resin, aminotriazine novolac type phenolic resin and the like, but are not limited thereto. A phenol resin may be used individually by 1 type, and may be used in combination of 2 or more type.
(ポリイミド樹脂)
 ポリイミド樹脂としては、酸無水物とジアミンを用いて得られる種々のポリイミド樹脂を用いることができる。酸無水物は、芳香族テトラカルボン酸であることが好ましく、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物等が例示され、ジアミンは、芳香族ジアミンであることが好ましく、p-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル等が例示されるがこれらに限定されない。また、アミン系化合物等のイミド化触媒、カルボン酸無水物等の脱水剤などを併用することもできる。なお、樹脂成分としてポリイミド樹脂を用いる場合は、酸無水物とジアミンとを重合させて得られるポリアミック酸を用い、成形時又は成形後にイミド化させることが好ましい。ポリイミド樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Polyimide resin)
As the polyimide resin, various polyimide resins obtained using an acid anhydride and a diamine can be used. The acid anhydride is preferably an aromatic tetracarboxylic acid, and examples thereof include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride. An aromatic diamine is preferred, and examples thereof include, but are not limited to, p-phenylenediamine, 4,4′-diaminodiphenyl ether, and the like. Further, an imidation catalyst such as an amine compound and a dehydrating agent such as a carboxylic acid anhydride can be used in combination. In addition, when using a polyimide resin as a resin component, it is preferable to imidize at the time of shaping | molding or after shaping | molding using the polyamic acid obtained by superposing | polymerizing an acid anhydride and diamine. A polyimide resin may be used individually by 1 type, and may be used in combination of 2 or more type.
(ビスマレイミドトリアジン樹脂)
 ビスマレイミドトリアジン樹脂(BTレジン)としては、ビスマレイミドと芳香族シアン酸エステルを架橋して得られる種々のビスマレイミドトリアジン樹脂を用いることができる。ビスマレイミドトリアジン樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Bismaleimide triazine resin)
As the bismaleimide triazine resin (BT resin), various bismaleimide triazine resins obtained by crosslinking bismaleimide and aromatic cyanate ester can be used. A bismaleimide triazine resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 一実施形態において、樹脂成分としては、熱可塑性樹脂も好ましく用いることができる。具体的には、ポリフェニレンエーテル、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が例示されるがこれらに限定されない。 In one embodiment, a thermoplastic resin can also be preferably used as the resin component. Specific examples include polyphenylene ether, polyamide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and the like, but are not limited thereto.
 中でも、ポリフェニレンエーテルは、誘電率等の電気的特性の観点から、後述する基板用途等において好ましく用いることができる。ポリフェニレンエーテルは、フェニレンエーテル単位構造(-C-O-)を主成分とするポリマーを意味する。フェニレンエーテル単位構造は置換基を有していてもよく、例えば、フェニレンエーテル単位構造の一つ以上の水素原子が、それぞれ独立に、ハロゲン原子、炭素数1~5のアルキル基等で置換されていてもよい。ポリフェニレンエーテルの具体例としては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、更に変性ポリフェニレンエーテル(m-PPE)等が挙げられるがこれらに限定されない。 Among these, polyphenylene ether can be preferably used in the substrate application described below from the viewpoint of electrical characteristics such as dielectric constant. The polyphenylene ether means a polymer having a phenylene ether unit structure (—C 6 H 4 —O—) as a main component. The phenylene ether unit structure may have a substituent. For example, one or more hydrogen atoms of the phenylene ether unit structure are each independently substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, or the like. May be. Specific examples of polyphenylene ether include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), and poly (2,6-dichloro-). 1,4-phenylene ether), modified polyphenylene ether (m-PPE), and the like, but are not limited thereto.
 熱硬化性樹脂及び熱可塑性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いても良い。樹脂組成物中の樹脂成分の含有量は特に限定されないが、全組成物の20質量%以上95質量%以下であることが好ましい。樹脂成分の含有量が20質量%以上であると経済性の観点でより有利であり、95質量%以下であると電気的特性向上(低誘電率化)の効果をより高めることができる。樹脂成分の含有量は、全組成物の30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、また、90質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。樹脂組成物が溶剤を含む場合、前記範囲は、溶剤を除いた樹脂組成物の質量を基準として求める。また、樹脂組成物が樹脂成分として熱硬化性樹脂を含み、更に硬化剤及び/又は硬化促進剤を含む場合、前記範囲は、樹脂成分、硬化剤及び硬化促進剤の合計の含有量についての範囲である。 A thermosetting resin and a thermoplastic resin may be used individually by 1 type, and may be used in combination of 2 or more type. Although content of the resin component in a resin composition is not specifically limited, It is preferable that they are 20 mass% or more and 95 mass% or less of the whole composition. If the content of the resin component is 20% by mass or more, it is more advantageous from the viewpoint of economy, and if it is 95% by mass or less, the effect of improving electrical characteristics (lowering the dielectric constant) can be further enhanced. The content of the resin component is more preferably 30% by mass or more of the total composition, further preferably 40% by mass or more, more preferably 90% by mass or less, and 80% by mass or less. More preferably. When the resin composition includes a solvent, the above range is obtained based on the mass of the resin composition excluding the solvent. When the resin composition includes a thermosetting resin as a resin component and further includes a curing agent and / or a curing accelerator, the range is a range for the total content of the resin component, the curing agent, and the curing accelerator. It is.
 一実施形態に係る樹脂組成物は、上述の液晶ポリマー粒子と樹脂成分とを少なくとも含むが、必要により、以下に例示するように、上述の液晶ポリマー粒子と樹脂成分以外の成分を含むものを包含する。 The resin composition according to an embodiment includes at least the above-described liquid crystal polymer particles and a resin component, but includes those containing components other than the above-mentioned liquid crystal polymer particles and the resin component as necessary, as exemplified below. To do.
<硬化剤及び硬化促進剤>
 一実施形態に係る樹脂組成物は、樹脂成分として熱硬化性樹脂を含む場合、更に硬化剤を含むことも好ましい。硬化剤としては特に限定されず当該技術分野で知られている硬化剤を用いることができる。硬化剤としては、ジシアンジアミド、ヒドラジド、イミダゾール化合物、アミン付加物、スルホニウム塩、オニウム塩、ケチミン、酸無水物、三級アミン、ノボラック型フェノール樹脂等が例示されるがこれらに限定されない。
<Curing agent and curing accelerator>
When the resin composition which concerns on one Embodiment contains a thermosetting resin as a resin component, it is also preferable that a hardening | curing agent is further included. It does not specifically limit as a hardening | curing agent, The hardening | curing agent known in the said technical field can be used. Examples of the curing agent include, but are not limited to, dicyandiamide, hydrazide, imidazole compound, amine adduct, sulfonium salt, onium salt, ketimine, acid anhydride, tertiary amine, and novolac type phenol resin.
 硬化剤の含有量は、特に限定されず、用いる樹脂成分及び硬化条件に応じて適宜選択することができるが、例えば、上述の熱硬化性樹脂100質量部に対して、10~100質量部であることが好ましく、20~90質量部であることがより好ましい。 The content of the curing agent is not particularly limited and can be appropriately selected according to the resin component to be used and the curing conditions. For example, it is 10 to 100 parts by mass with respect to 100 parts by mass of the thermosetting resin described above. It is preferably 20 to 90 parts by mass.
 また、上述の硬化剤に代えて、又は硬化剤と組み合わせて、硬化促進剤を用いることもできる。硬化促進剤としては、特に限定されるものではなく、例えば、ジアザビシクロウンデセン、その誘導体、及びその塩;有機ホスフィン化合物、その塩、及びその誘導体等を挙げることができる。硬化促進剤の含有量は、特に限定されないが、上述の熱硬化性樹脂100質量部に対して、50~150質量部であることが好ましく、80~120質量部であることがより好ましい。 Also, a curing accelerator can be used in place of the above-mentioned curing agent or in combination with a curing agent. The curing accelerator is not particularly limited, and examples thereof include diazabicycloundecene, derivatives thereof, and salts thereof; organic phosphine compounds, salts thereof, derivatives thereof, and the like. The content of the curing accelerator is not particularly limited, but is preferably 50 to 150 parts by mass, and more preferably 80 to 120 parts by mass with respect to 100 parts by mass of the thermosetting resin described above.
<充填材>
 また、一実施形態に係る樹脂組成物は、必要により、充填材を含むことができる。ここでの充填材に、液晶ポリマー粒子は含まれない。
<Filler>
Moreover, the resin composition which concerns on one Embodiment can contain a filler as needed. The filler here does not include liquid crystal polymer particles.
 充填材としては、ガラス繊維、ミルドガラスファイバー、ガラスビーズ、ガラスバルーン、セラミックバルーン、ガラスフレーク、シリカ、アルミナ繊維、ジルコニア繊維、チタン酸カリウム繊維、カーボン繊維、黒鉛;珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー等の珪酸塩;酸化鉄、酸化チタン、酸化亜鉛、酸化アンチモン、アルミナ等の金属酸化物;カルシウム、マグネシウム、亜鉛等の金属の炭酸塩又は硫酸塩;更には炭化珪素、窒化珪素、窒化硼素等が例示され、有機充填材としては、芳香族ポリエステル繊維、芳香族ポリアミド繊維、フッ素樹脂繊維、ポリイミド繊維等の高融点の繊維が例示されるがこれらに限定されない。 Filling materials include glass fiber, milled glass fiber, glass bead, glass balloon, ceramic balloon, glass flake, silica, alumina fiber, zirconia fiber, potassium titanate fiber, carbon fiber, graphite; calcium silicate, aluminum silicate, kaolin, Silicates such as talc and clay; metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony oxide and alumina; carbonates or sulfates of metals such as calcium, magnesium and zinc; and further silicon carbide, silicon nitride, Examples of the organic filler include, but are not limited to, high melting point fibers such as aromatic polyester fibers, aromatic polyamide fibers, fluororesin fibers, and polyimide fibers.
 充填材を含む場合、一実施形態に係る樹脂組成物の全質量中、80質量%以下であることが好ましく、10~60質量%であることがより好ましく、30~50質量%であることが更に好ましい。樹脂組成物が溶剤を含む場合、前記範囲は、溶剤を除いた樹脂組成物の質量を基準として求める。 When the filler is included, it is preferably 80% by mass or less, more preferably 10 to 60% by mass, and more preferably 30 to 50% by mass in the total mass of the resin composition according to one embodiment. Further preferred. When the resin composition includes a solvent, the above range is obtained based on the mass of the resin composition excluding the solvent.
<有機溶剤>
 一実施形態に係る樹脂組成物は、必要により、更に、有機溶剤を含むことができる。
<Organic solvent>
The resin composition according to one embodiment can further contain an organic solvent, if necessary.
 有機溶剤は、一実施形態に係る樹脂組成物の成形時の流動性を向上させるように機能し、成形時のプロセス条件下で乾燥及び/又は加熱することにより除去し得る化合物であることが好ましい。 The organic solvent is preferably a compound that functions to improve fluidity during molding of the resin composition according to one embodiment and can be removed by drying and / or heating under the process conditions during molding. .
 有機溶剤は、液晶ポリマー粒子の融点未満の温度で乾燥及び/又は加熱することにより除去し得る化合物であることがより好ましい。 The organic solvent is more preferably a compound that can be removed by drying and / or heating at a temperature below the melting point of the liquid crystal polymer particles.
 一実施形態では、有機溶剤を除去する際の樹脂成分等の劣化を抑制する観点から、有機溶剤の沸点(標準沸点)は40~210℃であることが好ましく、50~190℃であることがより好ましい。 In one embodiment, the boiling point (standard boiling point) of the organic solvent is preferably 40 to 210 ° C., and preferably 50 to 190 ° C., from the viewpoint of suppressing deterioration of the resin component and the like when the organic solvent is removed. More preferred.
 一実施形態において好ましく用いることのできる有機溶剤の例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トルエン、キシレン、N,N-ジメチルホルムアミド、ジオキサン、テトラヒドロフラン、及びこれらの誘導体等が挙げられるがこれらに限定されない。有機溶剤は、1種を単独で用いても良いし、2種以上を組み合わせて用いてもよい。有機溶剤を含む場合、有機溶剤の含有量は成形加工性等を考慮して適宜決定することができる。例えば、有機溶剤の含有量は、樹脂組成物の全質量中90質量%以下とできる。ここでの樹脂組成物の全質量とは、有機溶剤も含む全質量である。 Examples of organic solvents that can be preferably used in one embodiment include acetone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, toluene, xylene, N, N-dimethylformamide, dioxane, tetrahydrofuran, and Although these derivatives etc. are mentioned, it is not limited to these. An organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type. When an organic solvent is included, the content of the organic solvent can be appropriately determined in consideration of molding processability and the like. For example, the content of the organic solvent can be 90% by mass or less based on the total mass of the resin composition. Here, the total mass of the resin composition is the total mass including the organic solvent.
 なお、樹脂組成物が有機溶剤を含有する場合、樹脂組成物の樹脂成分及び液晶ポリマー粒子が有機溶剤中に溶解及び/又は分散していることが好ましく、樹脂成分の少なくとも一部が有機溶剤に溶解していることが好ましい。 When the resin composition contains an organic solvent, it is preferable that the resin component and liquid crystal polymer particles of the resin composition are dissolved and / or dispersed in the organic solvent, and at least a part of the resin component is in the organic solvent. It is preferable that it is dissolved.
<その他の成分>
 一実施形態の液晶ポリマー粒子含有樹脂組成物は、効果を害さない範囲で、上述の成分以外のその他の成分を任意に含んでもよい。その他の成分としては、各種安定剤(酸化防止剤、紫外線吸収剤、近赤外線吸収剤、熱安定剤等)、難燃剤、難燃助剤、可塑剤、離型剤、染料及び顔料等の着色剤、蛍光増白剤などが挙げられる。これらの1種以上を、必要に応じて添加することができる。
<Other ingredients>
The liquid crystal polymer particle-containing resin composition of one embodiment may optionally contain other components other than the above-mentioned components as long as the effect is not impaired. Other components include various stabilizers (antioxidants, ultraviolet absorbers, near infrared absorbers, heat stabilizers, etc.), flame retardants, flame retardant aids, plasticizers, mold release agents, dyes and pigments, etc. Agents, fluorescent brighteners and the like. One or more of these can be added as needed.
<樹脂組成物の製造方法>
 一実施形態に係る樹脂組成物は、従来の樹脂組成物調製法として一般に用いられる設備と方法を用いて製造することができる。好適な方法としては、例えば、1軸又は2軸押出機等の混練装置を用いて、各成分を混練(混合)する方法が挙げられる。
<Method for producing resin composition>
The resin composition which concerns on one Embodiment can be manufactured using the installation and method generally used as a conventional resin composition preparation method. As a suitable method, for example, a method of kneading (mixing) each component using a kneading apparatus such as a single-screw or twin-screw extruder may be mentioned.
 一実施形態では、樹脂組成物は、熱硬化性樹脂及び熱可塑性樹脂からなる群より選ばれる少なくとも1種の樹脂成分と、液晶ポリマー粒子とを、前記液晶ポリマー粒子の融点未満の温度で混合することにより製造することが好ましい。 In one embodiment, the resin composition mixes at least one resin component selected from the group consisting of a thermosetting resin and a thermoplastic resin, and liquid crystal polymer particles at a temperature lower than the melting point of the liquid crystal polymer particles. It is preferable to manufacture by this.
 一実施形態の樹脂組成物は、樹脂成分と液晶ポリマー粒子とを含む樹脂組成物であり、樹脂組成物の製造時に液晶ポリマー粒子を加熱溶融する必要がなく、樹脂成分と液晶ポリマー粒子を液晶ポリマー粒子の融点未満の温度で混合することにより、液晶ポリマー粒子が樹脂成分中に分散した樹脂組成物を得ることができる。そのため、液晶ポリマー粒子の融点以上の温度で加熱溶融すると分解する樹脂を樹脂成分として用いることも可能になる。 The resin composition of one embodiment is a resin composition containing a resin component and liquid crystal polymer particles, and it is not necessary to heat and melt the liquid crystal polymer particles during the production of the resin composition. By mixing at a temperature lower than the melting point of the particles, a resin composition in which liquid crystal polymer particles are dispersed in the resin component can be obtained. Therefore, a resin that decomposes when heated and melted at a temperature equal to or higher than the melting point of the liquid crystal polymer particles can be used as the resin component.
 なお、樹脂成分及び液晶ポリマー粒子以外の成分(硬化剤、充填材、有機溶媒等)は、樹脂成分と液晶ポリマー粒子とを混合する工程において添加してもよいし、成形時に添加してもよい。 In addition, components other than the resin component and the liquid crystal polymer particles (curing agent, filler, organic solvent, etc.) may be added in the step of mixing the resin component and the liquid crystal polymer particles, or may be added at the time of molding. .
[成形品及び成形方法]
 一実施形態に係る樹脂組成物の成形体(成形品)の形状は特に限定されないが、フィルム状、シート状、板状、三次元成形品等が挙げられる。フィルム状、シート状、又は板状である場合、一実施形態に係る樹脂組成物による顕著な効果が得られる。
[Molded product and molding method]
The shape of the molded body (molded product) of the resin composition according to one embodiment is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, and a three-dimensional molded product. When it is a film shape, a sheet shape, or a plate shape, the remarkable effect by the resin composition which concerns on one Embodiment is acquired.
 成形体は、押出成形、射出成形、プレス成形、流延成形等の樹脂組成物の成形方法として知られる種々の方法により製造することができる。 The molded body can be produced by various methods known as molding methods for resin compositions such as extrusion molding, injection molding, press molding, and casting.
 例えば、一実施形態の成形体は
  一実施形態に係る樹脂組成物を含む液状組成物を調製する工程と、
  液状組成物を固化させる工程と
を含む方法により製造することができる。
For example, the molded product of one embodiment includes a step of preparing a liquid composition containing the resin composition according to one embodiment;
And a step of solidifying the liquid composition.
 樹脂組成物を含む液状組成物が、一実施形態に係る樹脂組成物であってもよい(例えば、樹脂成分として液状樹脂を用いる場合、及び/又は、一実施形態に係る樹脂組成物が有機溶剤を含有する場合等)。また、必要により、樹脂組成物を液晶ポリマー粒子の融点未満の温度で加熱溶融することによって液状組成物を調製してもよい。 The liquid composition containing the resin composition may be the resin composition according to one embodiment (for example, when a liquid resin is used as the resin component and / or the resin composition according to the embodiment is an organic solvent). Etc.). If necessary, the liquid composition may be prepared by heating and melting the resin composition at a temperature lower than the melting point of the liquid crystal polymer particles.
 液状組成物を固化させる固化工程は特に限定されず当該技術分野で知られている方法を採用することができる。固化工程としては、液状組成物を冷却する冷却工程、液状組成物を乾燥させる乾燥工程、液状組成物を加熱する加熱工程、又はこれらの組み合わせが例示される。乾燥工程は、室温~液晶ポリマー粒子の融点未満の温度範囲で行うことが好ましく、例えば100℃~250℃の範囲で行うことが好ましい。加熱工程は、用いる樹脂成分の硬化条件等を考慮して適宜設定することができるが、液晶ポリマー粒子の融点未満の温度範囲で行うことが好ましく、例えば120℃~220℃の範囲で行うことが好ましい。乾燥工程が加熱工程を兼ねていても、又は、加熱工程が乾燥工程を兼ねていてもよい。 The solidification step for solidifying the liquid composition is not particularly limited, and a method known in the technical field can be employed. Examples of the solidification step include a cooling step for cooling the liquid composition, a drying step for drying the liquid composition, a heating step for heating the liquid composition, or a combination thereof. The drying step is preferably performed in the temperature range from room temperature to less than the melting point of the liquid crystal polymer particles, for example, preferably in the range of 100 ° C to 250 ° C. The heating step can be appropriately set in consideration of the curing conditions of the resin component to be used, but is preferably performed in a temperature range below the melting point of the liquid crystal polymer particles, for example, in the range of 120 ° C. to 220 ° C. preferable. The drying process may also serve as the heating process, or the heating process may also serve as the drying process.
 一実施形態では、
1.樹脂組成物を型に流し込む工程と、
2.前記樹脂組成物を加熱する工程(硬化工程)と、
を含む方法により、成形体を製造することができる。
In one embodiment,
1. Pouring the resin composition into a mold;
2. A step of heating the resin composition (curing step);
A molded body can be produced by a method including:
 また、一実施形態では、成形体が基材を含むことが好ましく、例えば、
1.液状組成物を調製する工程と、
2.前記液状組成物を基材に含浸させる工程と、
3.前記液状組成物を含浸させた基材を乾燥させる工程と
を含む方法により、成形体を製造することができる。
 一実施形態において、樹脂組成物は好ましくは熱可塑性樹脂を含む。一実施形態において、樹脂組成物は好ましくは熱硬化性樹脂を含む。上記乾燥させる工程により得られる成形体をプリプレグと称することもある。
Moreover, in one embodiment, it is preferable that a molded object contains a base material, for example,
1. Preparing a liquid composition;
2. Impregnating a substrate with the liquid composition;
3. A molded body can be produced by a method including a step of drying a substrate impregnated with the liquid composition.
In one embodiment, the resin composition preferably comprises a thermoplastic resin. In one embodiment, the resin composition preferably comprises a thermosetting resin. The molded body obtained by the drying step may be referred to as a prepreg.
 また、一実施形態では、
1.液状組成物を調製する工程と、
2.前記液状組成物を基材に含浸させる工程と、
3.前記液状組成物を含浸させた基材を乾燥させる工程(半硬化工程)と、
4.乾燥させた前記基材を加熱する工程(硬化工程)と
を含む方法により、成形体を製造することができる。
 一実施形態において、樹脂組成物は好ましくは熱硬化性樹脂を含む。上記半硬化工程により得られる成形体をプリプレグと称することもある。
In one embodiment,
1. Preparing a liquid composition;
2. Impregnating a substrate with the liquid composition;
3. Drying the substrate impregnated with the liquid composition (semi-curing step);
4). A molded object can be manufactured by the method of including the process (curing process) of heating the dried said base material.
In one embodiment, the resin composition preferably comprises a thermosetting resin. The molded body obtained by the semi-curing process may be referred to as a prepreg.
 基材の材料としては、特に限定されないが、例えば、回路基板の絶縁層の補強材として用いることのできる材料が挙げられる。例えば、ガラス繊維、石英ガラス繊維、カーボン繊維、アルミナファイバー、炭化珪素ファイバー、アルベスト、ロックウール、スラグウール、石膏ウィスカ等の無機繊維、又は全芳香族ポリアミド繊維、ポリイミド繊維、ポリエステル繊維等の有機繊維が挙げられる。基材はフィルム状、不織布又は織布であってもよい。 The material for the base material is not particularly limited, and examples thereof include materials that can be used as a reinforcing material for the insulating layer of the circuit board. For example, inorganic fibers such as glass fiber, quartz glass fiber, carbon fiber, alumina fiber, silicon carbide fiber, albest, rock wool, slag wool, gypsum whisker, or organic such as wholly aromatic polyamide fiber, polyimide fiber, polyester fiber Fiber. The substrate may be a film, a nonwoven fabric or a woven fabric.
 また、一実施形態では、樹脂組成物を含む液状組成物を用いて流延成形を行うことにより、成形体を製造することも好ましい。 In one embodiment, it is also preferable to produce a molded body by performing casting using a liquid composition containing a resin composition.
[回路基板]
 一実施形態に係る樹脂組成物を用いて形成されるフィルム状、シート状、又は板状の成形体においては、液晶ポリマー粒子が樹脂成分中に分散している。このため、成形体は電気的特性(低誘電率)に優れ、また、優れた表面特性(表面平滑性)が得られ易く、フレキシブル回路基板等の電子回路基板などに好適に用いることができる。電子回路基板の製造方法は特に限定されないが、上記のフィルム状、シート状、又は板状の成形体(半硬化体又は硬化体)と、銅箔等の金属箔とを貼りあわせて加熱プレスすることにより金属積層体を形成する方法が挙げられる。加熱プレスの条件は特に限定されないが、例えば、加熱温度:60~220℃、圧力:0.1~10MPa、時間:1分~3時間とすることができる。
[Circuit board]
In a film-like, sheet-like, or plate-like molded body formed using the resin composition according to one embodiment, liquid crystal polymer particles are dispersed in the resin component. For this reason, a molded object is excellent in an electrical property (low dielectric constant), and it is easy to obtain the outstanding surface characteristic (surface smoothness), and can be used suitably for electronic circuit boards, such as a flexible circuit board. The method for producing the electronic circuit board is not particularly limited, and the film-like, sheet-like, or plate-like molded body (semi-cured body or cured body) and a metal foil such as a copper foil are bonded to each other and heated and pressed. The method of forming a metal laminated body by this is mentioned. The conditions for the heating press are not particularly limited. For example, the heating temperature may be 60 to 220 ° C., the pressure may be 0.1 to 10 MPa, and the time may be 1 minute to 3 hours.
 実施例により本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
<液晶ポリマー>
・液晶性ポリエステルアミド樹脂
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からストランドを排出し、ストランドをペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、300℃で2時間の熱処理を行って、目的のポリマーを得た。得られたポリマーの融点は334℃、溶融粘度は14.0Pa・sであった。なお、上記ポリマーの融点は、示差走査型熱量計(TAインスツルメント社製、DSC Q1000)を用いてJIS K 7121に準じて測定した。上記ポリマーの溶融粘度は、キャピラリー式レオメーター(株式会社東洋精機製作所製、キャピログラフ1D:ピストン径10mm)により、シリンダー温度350℃、せん断速度1000sec-1の条件での見かけの溶融粘度をISO 11443に準拠して測定した。測定には、内径1mm、長さ20mmのオリフィスを用いた。
 (I)4-ヒドロキシ安息香酸;188.4g(60モル%)
 (II)2-ヒドロキシ-6-ナフトエ酸;21.4g(5モル%)
 (III)テレフタル酸;66.8g(17.7モル%)
 (IV)4,4’-ジヒドロキシビフェニル;52.2g(12.3モル%)
 (V)4-アセトキシアミノフェノール;17.2g(5モル%)
 金属触媒(酢酸カリウム触媒);15mg
 アシル化剤(無水酢酸);226.2g
<Liquid crystal polymer>
-Liquid crystalline polyesteramide resin The following raw materials were charged in a polymerization vessel, and then the temperature of the reaction system was raised to 140 ° C and reacted at 140 ° C for 1 hour. Thereafter, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 15 minutes while acetic acid, excess acetic anhydride, and other low-boiling components are distilled off. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from a reduced pressure state to a normal pressure, the strand was discharged from the lower part of the polymerization vessel, and the strand was pelletized to obtain a pellet. The obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the target polymer. The obtained polymer had a melting point of 334 ° C. and a melt viscosity of 14.0 Pa · s. In addition, melting | fusing point of the said polymer was measured according to JISK7121 using the differential scanning calorimeter (TA Instruments company make, DSC Q1000). The melt viscosity of the above polymer was obtained by changing the apparent melt viscosity under the conditions of a cylinder temperature of 350 ° C. and a shear rate of 1000 sec −1 to ISO 11443 using a capillary rheometer (manufactured by Toyo Seiki Seisakusho, Capillograph 1D: piston diameter 10 mm) Measured in conformity. For the measurement, an orifice having an inner diameter of 1 mm and a length of 20 mm was used.
(I) 4-hydroxybenzoic acid; 188.4 g (60 mol%)
(II) 2-hydroxy-6-naphthoic acid; 21.4 g (5 mol%)
(III) terephthalic acid; 66.8 g (17.7 mol%)
(IV) 4,4′-dihydroxybiphenyl; 52.2 g (12.3 mol%)
(V) 4-acetoxyaminophenol; 17.2 g (5 mol%)
Metal catalyst (potassium acetate catalyst); 15 mg
Acylating agent (acetic anhydride); 226.2 g
<1.液晶ポリマー粒子の製造>
(LCP粒子1)
 平均粒子径:15μm、ピーク粒度:21μm
 嵩密度:0.10g/mL
 製造した液晶ポリマーのペレットを、マスコロイダー(増幸産業株式会社製、MKZA10-15JP)を用いて以下の条件で粉砕し、略球状の液晶ポリマー粒子を得た。得られた液晶ポリマー粒子の平均粒子径及びピーク粒度をレーザー式粒度計(株式会社堀場製作所製、レーザー回折/散乱式粒度分布測定装置LA-920)で測定した。平均粒子径は、演算結果データとして示される算術平均径である。また、50mLのメスシリンダー(柴田科学株式会社製、メスシリンダー カスタムA 026500-501A、外寸径2.5cm、外寸高さ21.5cm)に、液晶ポリマー粒子を、ロートを用いてメスシリンダーの外側底面から15cmの高さから自然落下させることにより50mLのメモリまで充填し、その重量を測定することにより液晶ポリマー粒子の嵩密度を算出した。
   原料:液晶ポリマーのペレット(平均粒子径:3mm)
   原料投入量:400g
   粉砕速度:60g/hr
   水流し込み(30L/min)
   クリアランス:50μm
   回転数:1400rpm
<1. Production of liquid crystal polymer particles>
(LCP particles 1)
Average particle size: 15 μm, peak particle size: 21 μm
Bulk density: 0.10 g / mL
The produced liquid crystal polymer pellets were pulverized under the following conditions using a mascolloyer (manufactured by Masuko Sangyo Co., Ltd., MKZA10-15JP) to obtain substantially spherical liquid crystal polymer particles. The average particle diameter and peak particle size of the obtained liquid crystal polymer particles were measured with a laser particle size meter (Horiba, Ltd., laser diffraction / scattering particle size distribution analyzer LA-920). An average particle diameter is an arithmetic average diameter shown as calculation result data. In addition, liquid crystal polymer particles were placed in a 50 mL measuring cylinder (manufactured by Shibata Kagaku Co., Ltd., measuring cylinder custom A 026500-501A, outer dimension diameter 2.5 cm, outer dimension height 21.5 cm) using a funnel. It was filled up to 50 mL of memory by naturally dropping from a height of 15 cm from the outer bottom surface, and the bulk density of the liquid crystal polymer particles was calculated by measuring the weight.
Raw material: Liquid crystal polymer pellets (average particle size: 3 mm)
Raw material input: 400g
Grinding speed: 60 g / hr
Water flow (30L / min)
Clearance: 50μm
Rotation speed: 1400rpm
(LCP粒子2)
 平均粒子径:195μm、ピーク粒度:242μm
 嵩密度:0.12g/mL
 製造した液晶ポリマーのペレットを、ボールミル型凍結粉砕機(日本分析工業株式会社製、JFC-1500)を用いて以下の条件で凍結粉砕し、略球状の液晶ポリマー粒子を得た。得られた液晶ポリマー粒子の平均粒子径、ピーク粒度及び嵩密度を、LCP粒子1と同様にして測定した。
   原料:液晶ポリマーのペレット(平均粒子径:3mm)
   原料投入量:5g
   予備凍結時間:30min
   凍結粉砕時間:20min
(LCP particles 2)
Average particle size: 195 μm, peak particle size: 242 μm
Bulk density: 0.12 g / mL
The produced liquid crystal polymer pellets were freeze pulverized under the following conditions using a ball mill type freeze pulverizer (manufactured by Japan Analytical Industrial Co., Ltd., JFC-1500) to obtain substantially spherical liquid crystal polymer particles. The average particle size, peak particle size, and bulk density of the obtained liquid crystal polymer particles were measured in the same manner as the LCP particles 1.
Raw material: Liquid crystal polymer pellets (average particle size: 3 mm)
Raw material input: 5g
Pre-freezing time: 30 min
Freezing and grinding time: 20 min
(LCP粒子3)
 平均粒子径:211μm、ピーク粒度:281μm
 嵩密度:0.06g/mL
 製造した液晶ポリマーのペレットを、メッシュミル型粉砕機(株式会社ホーライ製、HA-2542)を用いて以下の条件で粉砕し、フィブリル状の液晶ポリマー粒子を得た。得られた液晶ポリマー粒子の平均粒子径、ピーク粒度及び嵩密度を、LCP粒子1と同様にして測定した。
   原料:液晶ポリマーのペレット(平均粒子径:3mm)
   原料投入量:10kg
   粉砕速度:10kg/hr
(LCP particle 3)
Average particle size: 211 μm, peak particle size: 281 μm
Bulk density: 0.06 g / mL
The manufactured liquid crystal polymer pellets were pulverized under the following conditions using a mesh mill type pulverizer (HA-2542, manufactured by Horai Co., Ltd.) to obtain fibril-like liquid crystal polymer particles. The average particle size, peak particle size, and bulk density of the obtained liquid crystal polymer particles were measured in the same manner as the LCP particles 1.
Raw material: Liquid crystal polymer pellets (average particle size: 3 mm)
Raw material input: 10kg
Grinding speed: 10kg / hr
(LCP粒子4)
 平均粒子径:5.3μm、ピーク粒度:6.9μm
 嵩密度:0.47g/mL
 LCP粒子1を半自由渦式分級機(日清エンジニアリング株式会社)で分級し、微細な略球状の液晶ポリマー粒子を得た。得られた液晶ポリマー粒子の平均粒子径、ピーク粒度及び嵩密度を、LCP粒子1と同様にして測定した。
(LCP particles 4)
Average particle size: 5.3 μm, peak particle size: 6.9 μm
Bulk density: 0.47 g / mL
LCP particles 1 were classified with a semi-free vortex classifier (Nisshin Engineering Co., Ltd.) to obtain fine substantially spherical liquid crystal polymer particles. The average particle size, peak particle size, and bulk density of the obtained liquid crystal polymer particles were measured in the same manner as the LCP particles 1.
<2.液晶ポリマー粒子含有樹脂組成物の製造>
<実施例1~3>
 製造した液晶ポリマー粒子、液状エポキシ樹脂((株)ナガセケムテックス製XNR5002G)、硬化剤としてのテトラヒドロメチル無水フタル酸((株)ナガセケムテックス製XNH5002G)を、表1に示す質量比率で室温(23℃)で混練し、均一な混合組成物を得た。
<2. Production of Resin Composition Containing Liquid Crystalline Polymer Particles>
<Examples 1 to 3>
The produced liquid crystal polymer particles, liquid epoxy resin (XNR5002G manufactured by Nagase ChemteX Corporation), and tetrahydromethylphthalic anhydride (XNH5002G manufactured by Nagase ChemteX Corporation) as a curing agent at room temperature (mass ratio shown in Table 1). 23 ° C.) to obtain a uniform mixed composition.
<比較例1>
 液晶ポリマー粒子を用いないこと以外は実施例1~3と同様にして、混合組成物を得た。
<Comparative Example 1>
A mixed composition was obtained in the same manner as in Examples 1 to 3, except that the liquid crystal polymer particles were not used.
<3.成形体の製造及び評価>
<実施例1~3、比較例1>
 前記混合組成物を8cm×3cm×2mmのポリエチレン製の型に流し込み、100℃で1時間加熱後、更に150℃で3時間加熱して、試験片を得た。
 得られた試験片をφ1.5mm×8cmの円柱状に切削し、5GHzでの誘電率及び誘電正接を摂動法空洞共振器・誘電率測定装置(株式会社関東電子応用開発製Cavity Resornator)を用い、23℃で測定した。
 また、得られた試験片の表面を目視にて観察し、割れがないものを◎、一部(表面積の30%未満)に割れがあるものを○、半分程度(表面積の30~70%程度)に割れのあるものを△、全体(表面積の70%超)に割れがあるものを×として、分散性を評価した。
 さらに、得られた試験片を破断後、破断面を目視にて観察し、液晶ポリマー粒子の凝集物がないものを◎、凝集物が5個未満であるものを○、凝集物が5個以上10個未満であるものを△、凝集物が10個以上であるものを×として、表面性を評価した。
 分散性及び表面性ともに、◎~△が実用に適した範囲である。結果を表1に示す。
<3. Manufacturing and Evaluation of Molded Body>
<Examples 1 to 3, Comparative Example 1>
The mixed composition was poured into a polyethylene mold of 8 cm × 3 cm × 2 mm, heated at 100 ° C. for 1 hour, and further heated at 150 ° C. for 3 hours to obtain a test piece.
The obtained test piece was cut into a cylindrical shape of φ1.5 mm × 8 cm, and the dielectric constant and dielectric loss tangent at 5 GHz were measured using a perturbation method cavity resonator / dielectric constant measuring apparatus (Cavity Resonator manufactured by Kanto Electronics Application Development Co., Ltd.). , Measured at 23 ° C.
In addition, the surface of the obtained test piece is visually observed, and ◎ indicates that there is no crack, ○ indicates that there is a crack in a part (less than 30% of the surface area), and about half (about 30 to 70% of the surface area). The dispersibility was evaluated by substituting Δ for those having cracks) and x for those having cracks in the whole (more than 70% of the surface area).
Furthermore, after rupturing the obtained test piece, the fractured surface was visually observed, ◎ that there was no aggregate of liquid crystal polymer particles, ○ that there were less than 5 aggregates, and 5 or more aggregates The surface property was evaluated as Δ when the number was less than 10 and x when the aggregate was 10 or more.
For both dispersibility and surface property, ◎ to Δ are in a range suitable for practical use. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 樹脂成分と液晶ポリマー粒子とを含有する樹脂組成物を用いた実施例1~3では、簡便な製造方法によって、経済性に優れた成形体が得られた。
 また、表1に示すとおり、液晶ポリマー粒子を含有する樹脂組成物を用いた実施例1~3の成形体では、実用に適した表面性を維持しながら、優れた電気的特性(誘電率及び誘電正接)が得られた。特に、LCP粒子の平均粒子径が200μm以下である実施例1及び実施例2の成形体では、LCP粒子の分散性が良好であり、優れた表面性と優れた電気的特性が得られた。
In Examples 1 to 3 using a resin composition containing a resin component and liquid crystal polymer particles, a molded article excellent in economic efficiency was obtained by a simple production method.
Further, as shown in Table 1, in the molded articles of Examples 1 to 3 using the resin composition containing liquid crystal polymer particles, excellent electrical characteristics (dielectric constant and dielectric constant and while maintaining surface properties suitable for practical use). Dielectric loss tangent) was obtained. In particular, in the molded articles of Example 1 and Example 2 in which the average particle diameter of LCP particles was 200 μm or less, the dispersibility of LCP particles was good, and excellent surface properties and excellent electrical characteristics were obtained.
<4.プリプレグの製造及び評価>
<実施例4及び5、比較例2>
(実施例4及び5)
 製造した液晶ポリマー粒子、クレゾールノボラック型エポキシ樹脂(DIC株式会社製EPICLON N-690-75M、75%メチルエチルケトン溶液、エポキシ当量:217g/eq)、硬化剤としてのノボラック型フェノール樹脂(DIC株式会社製TD-2090-60M、60%メチルエチルケトン溶液、水酸基当量:105g/eq)を、表2に示す質量比率でメチルエチルケトンとエチレングリコールモノメチルエーテルの混合溶剤に加えて撹拌し、均一な樹脂ワニスを得た。得られた樹脂ワニスをガラスクロス(日東紡績株式会社製#2116、厚み100μm)に含浸させ、150℃の熱風乾燥器で10分間処理してプリプレグを得た。
 表2に示す質量比率は、溶剤を除いた固形分の質量比率である。
(比較例2)
 液晶ポリマー粒子を用いないこと以外は実施例4及び5と同様にして、プリプレグを得た。
<4. Production and evaluation of prepreg>
<Examples 4 and 5, Comparative Example 2>
(Examples 4 and 5)
Manufactured liquid crystal polymer particles, cresol novolac type epoxy resin (EPICLON N-690-75M manufactured by DIC Corporation, 75% methyl ethyl ketone solution, epoxy equivalent: 217 g / eq), novolak type phenol resin (TD manufactured by DIC Corporation) −2090-60M, 60% methyl ethyl ketone solution, hydroxyl group equivalent: 105 g / eq) was added to a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether at a mass ratio shown in Table 2 and stirred to obtain a uniform resin varnish. The obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 μm) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
The mass ratio shown in Table 2 is the mass ratio of the solid content excluding the solvent.
(Comparative Example 2)
A prepreg was obtained in the same manner as in Examples 4 and 5 except that the liquid crystal polymer particles were not used.
<実施例6及び7、比較例3>
(実施例6及び7)
 製造した液晶ポリマー粒子、ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製EPICLON HP-7200H-75M、75%メチルエチルケトン溶液、エポキシ当量:279g/eq)、硬化剤としてのノボラック型フェノール樹脂(DIC株式会社製TD-2090-60M、60%メチルエチルケトン溶液、水酸基当量:105g/eq)を、表2に示す質量比率でメチルエチルケトンとエチレングリコールモノメチルエーテルの混合溶剤に加えて撹拌し、均一な樹脂ワニスを得た。得られた樹脂ワニスをガラスクロス(日東紡績株式会社製#2116、厚み100μm)に含浸させ、150℃の熱風乾燥器で10分間処理してプリプレグを得た。
(比較例3)
 液晶ポリマー粒子を用いないこと以外は実施例6及び7と同様にして、プリプレグを得た。
<Examples 6 and 7, Comparative Example 3>
(Examples 6 and 7)
Liquid crystal polymer particles produced, dicyclopentadiene type epoxy resin (EPICLON HP-7200H-75M, DIC Corporation, 75% methyl ethyl ketone solution, epoxy equivalent: 279 g / eq), novolak type phenol resin (made by DIC Corporation) TD-2090-60M, 60% methyl ethyl ketone solution, hydroxyl group equivalent: 105 g / eq) was added to a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether at a mass ratio shown in Table 2 and stirred to obtain a uniform resin varnish. The obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 μm) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
(Comparative Example 3)
A prepreg was obtained in the same manner as in Examples 6 and 7 except that liquid crystal polymer particles were not used.
<実施例8及び9、比較例4>
(実施例8及び9)
 製造した液晶ポリマー粒子、フェノールノボラック型エポキシ樹脂(DIC株式会社製EPICLON N-740-80M、80%メチルエチルケトン溶液、エポキシ当量:182g/eq)、硬化剤としてのノボラック型フェノール樹脂(DIC株式会社製TD-2090-60M、60%メチルエチルケトン溶液、水酸基当量:105g/eq)を、表2に示す質量比率でメチルエチルケトンとエチレングリコールモノメチルエーテルの混合溶剤に加えて撹拌し、均一な樹脂ワニスを得た。得られた樹脂ワニスをガラスクロス(日東紡績株式会社製#2116、厚み100μm)に含浸させ、150℃の熱風乾燥器で10分間処理してプリプレグを得た。
(比較例4)
 液晶ポリマー粒子を用いないこと以外は実施例8及び9と同様にして、プリプレグを得た。
<Examples 8 and 9, Comparative Example 4>
(Examples 8 and 9)
Liquid crystal polymer particles produced, phenol novolac type epoxy resin (EPICLON N-740-80M, manufactured by DIC Corporation, 80% methyl ethyl ketone solution, epoxy equivalent: 182 g / eq), novolac type phenol resin (TD manufactured by DIC Corporation) as a curing agent −2090-60M, 60% methyl ethyl ketone solution, hydroxyl group equivalent: 105 g / eq) was added to a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether at a mass ratio shown in Table 2 and stirred to obtain a uniform resin varnish. The obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 μm) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
(Comparative Example 4)
A prepreg was obtained in the same manner as in Examples 8 and 9 except that liquid crystal polymer particles were not used.
<実施例10及び11、比較例5>
(実施例10及び11)
 製造した液晶ポリマー粒子、ビスフェノール型エポキシ樹脂(三菱化学株式会社製EPICOAT 828、エポキシ当量:190g/eq)、硬化剤としてのノボラック型フェノール樹脂(DIC株式会社製TD-2090-60M、60%メチルエチルケトン溶液、水酸基当量:105g/eq)を、表2に示す質量比率でメチルエチルケトンとエチレングリコールモノメチルエーテルの混合溶剤に加えて撹拌し、均一な樹脂ワニスを得た。得られた樹脂ワニスをガラスクロス(日東紡績株式会社製#2116、厚み100μm)に含浸させ、150℃の熱風乾燥器で10分間処理してプリプレグを得た。
(比較例5)
 液晶ポリマー粒子を用いないこと以外は実施例10及び11と同様にして、プリプレグを得た。
<Examples 10 and 11, Comparative Example 5>
(Examples 10 and 11)
Liquid crystal polymer particles produced, bisphenol type epoxy resin (EPICOAT 828, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 190 g / eq), novolac type phenol resin as a curing agent (TD-2090-60M, manufactured by DIC Corporation, 60% methyl ethyl ketone solution) , Hydroxyl equivalent: 105 g / eq) was added to a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether at a mass ratio shown in Table 2 and stirred to obtain a uniform resin varnish. The obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 μm) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
(Comparative Example 5)
A prepreg was obtained in the same manner as in Examples 10 and 11 except that liquid crystal polymer particles were not used.
<比較例6>
 ポリテトラフルオロエチレン粒子(PTFE粒子、ダイキン工業株式会社製ルブロンL-2、平均粒子径:10μm)、クレゾールノボラック型エポキシ樹脂(DIC株式会社製EPICLON N-690-75M、75%メチルエチルケトン溶液、エポキシ当量:217g/eq)、硬化剤としてのノボラック型フェノール樹脂(DIC株式会社製TD-2090-60M、60%メチルエチルケトン溶液、水酸基当量:105g/eq)を、表2に示す質量比率でメチルエチルケトンとエチレングリコールモノメチルエーテルの混合溶剤に加えて撹拌し、均一な樹脂ワニスを得た。得られた樹脂ワニスをガラスクロス(日東紡績株式会社製#2116、厚み100μm)に含浸させ、150℃の熱風乾燥器で10分間処理してプリプレグを得た。
<Comparative Example 6>
Polytetrafluoroethylene particles (PTFE particles, Daikin Industries, Ltd. Lubron L-2, average particle size: 10 μm), cresol novolac type epoxy resin (DIC Corporation EPICLON N-690-75M, 75% methyl ethyl ketone solution, epoxy equivalent) : 217 g / eq), novolak-type phenolic resin (TD-2090-60M manufactured by DIC Corporation, 60% methyl ethyl ketone solution, hydroxyl group equivalent: 105 g / eq) as a curing agent, methyl ethyl ketone and ethylene glycol in the mass ratio shown in Table 2 In addition to the mixed solvent of monomethyl ether, the mixture was stirred to obtain a uniform resin varnish. The obtained resin varnish was impregnated into a glass cloth (# 2116 manufactured by Nitto Boseki Co., Ltd., thickness: 100 μm) and treated with a hot air dryer at 150 ° C. for 10 minutes to obtain a prepreg.
<5.積層体の製造及び評価>
<実施例4~11、比較例2~6>
 前記プリプレグ6枚を5MPaの荷重下、200℃×60分間加熱して厚さ約1mmの積層体を得た。得られた積層体を1.5mm×1.0mm×70mmの四角柱状に切削し、5GHzでの誘電率及び誘電正接を摂動法空洞共振器・誘電率測定装置(株式会社関東電子応用開発製Cavity Resornator)で23℃で測定した。
 また、得られた積層体をダンベル型引張試験片(JIS K7127 Type5)の形状に打ち抜き、試験片を得た。得られた試験片を用いて、打ち抜き直後及び170℃×500時間後に引張試験を行い、打ち抜き直後の引張強度に対する170℃×500時間後の引張強度の比を引張強度保持率とした。
 さらに、得られた試験片を液体窒素で冷却して破断後、破断面を走査型電子顕微鏡で観察し、液晶ポリマー粒子(又はポリテトラフルオロエチレン粒子)とエポキシ樹脂との界面に剥離が見られないものを○、剥離が見られるものを×として、界面密着性を評価した。
 結果を表2に示す。
<5. Manufacture and evaluation of laminates>
<Examples 4 to 11 and Comparative Examples 2 to 6>
The six prepregs were heated under a load of 5 MPa at 200 ° C. for 60 minutes to obtain a laminate having a thickness of about 1 mm. The obtained laminate was cut into a 1.5 mm × 1.0 mm × 70 mm square column shape, and the dielectric constant and dielectric loss tangent at 5 GHz were determined by a perturbation method cavity resonator / dielectric constant measuring device (Cavity manufactured by Kanto Electronics Application Development Co., Ltd.). Resonator) at 23 ° C.
Further, the obtained laminate was punched into a dumbbell-type tensile test piece (JIS K7127 Type 5) to obtain a test piece. Using the obtained test piece, a tensile test was performed immediately after punching and after 170 ° C. × 500 hours, and the ratio of the tensile strength after 170 ° C. × 500 hours to the tensile strength immediately after punching was defined as the tensile strength retention rate.
Furthermore, after the obtained specimen was cooled with liquid nitrogen and fractured, the fractured surface was observed with a scanning electron microscope, and peeling was observed at the interface between the liquid crystal polymer particles (or polytetrafluoroethylene particles) and the epoxy resin. Interfacial adhesion was evaluated with no indicating o, and x indicating peeling.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 樹脂成分と液晶ポリマー粒子とを含有する樹脂組成物を用いた実施例4~11では、簡便な製造方法によって、経済性に優れたプリプレグが得られた。
 また、表2に示すとおり、液晶ポリマー粒子を含有する樹脂組成物を用いた実施例4~11のプリプレグでは、実用に適した引張強度保持率及び界面密着性を維持しながら、優れた電気的特性(誘電率及び誘電正接)が得られた。
In Examples 4 to 11 using a resin composition containing a resin component and liquid crystal polymer particles, a prepreg excellent in economic efficiency was obtained by a simple production method.
Further, as shown in Table 2, the prepregs of Examples 4 to 11 using the resin composition containing liquid crystal polymer particles had excellent electrical properties while maintaining the tensile strength retention and interfacial adhesion suitable for practical use. Characteristics (dielectric constant and dielectric loss tangent) were obtained.
 本発明の一実施形態に係る液晶ポリマー粒子を含有する樹脂組成物、及びその成形体は、高周波回路を有する電子部品、例えば、携帯電話機の内臓アンテナ、自動車の車載レーダのアンテナ、家庭用の高速無線通信等の高周波を用いた種々のアプリケーションに幅広く適用することができる。 A resin composition containing liquid crystal polymer particles according to an embodiment of the present invention, and a molded product thereof are electronic components having a high-frequency circuit, for example, a built-in antenna for a mobile phone, an antenna for a vehicle-mounted radar, and a high-speed for home use. The present invention can be widely applied to various applications using high frequency such as wireless communication.

Claims (16)

  1.  熱硬化性樹脂及び熱可塑性樹脂からなる群より選ばれる少なくとも1種の樹脂と、液晶ポリマー粒子とを含有する、樹脂組成物。 A resin composition comprising at least one resin selected from the group consisting of a thermosetting resin and a thermoplastic resin, and liquid crystal polymer particles.
  2.  前記液晶ポリマー粒子の融点が270℃以上である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the liquid crystal polymer particles have a melting point of 270 ° C. or higher.
  3.  前記液晶ポリマー粒子の平均粒子径が0.1~200μmである、請求項1又は2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the liquid crystal polymer particles have an average particle size of 0.1 to 200 μm.
  4.  前記液晶ポリマー粒子の嵩密度が0.08~1.2g/mLである、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the liquid crystal polymer particles have a bulk density of 0.08 to 1.2 g / mL.
  5.  前記液晶ポリマー粒子を、樹脂組成物の全質量の5~80質量%含有する、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the liquid crystal polymer particles are contained in an amount of 5 to 80% by mass based on the total mass of the resin composition.
  6.  前記樹脂が、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂、ポリフェニレンエーテル樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、及びポリブチレンナフタレート樹脂からなる群より選ばれる1種以上の樹脂を含む、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin is selected from the group consisting of epoxy resin, phenol resin, polyimide resin, bismaleimide triazine resin, polyphenylene ether resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, and polybutylene naphthalate resin. The resin composition according to any one of claims 1 to 5, which comprises one or more kinds of resins.
  7.  請求項1~6のいずれか1項に記載の樹脂組成物の製造方法であって、
     前記熱硬化性樹脂及び熱可塑性樹脂からなる群より選ばれる少なくとも1種の樹脂と、前記液晶ポリマー粒子とを、前記液晶ポリマー粒子の融点未満の温度で混合する工程を含む、樹脂組成物の製造方法。
    A method for producing the resin composition according to any one of claims 1 to 6,
    Production of a resin composition comprising a step of mixing at least one resin selected from the group consisting of the thermosetting resin and a thermoplastic resin and the liquid crystal polymer particles at a temperature lower than the melting point of the liquid crystal polymer particles. Method.
  8.  請求項1~6のいずれか1項に記載の樹脂組成物を用いてなる、成形体。 A molded body comprising the resin composition according to any one of claims 1 to 6.
  9.  請求項1~6のいずれか1項に記載の樹脂組成物を硬化させてなる、成形体。 A molded product obtained by curing the resin composition according to any one of claims 1 to 6.
  10.  フィルム状、シート状又は板状である、請求項8又は9に記載の成形体。 The molded article according to claim 8 or 9, which is in the form of a film, a sheet or a plate.
  11.  請求項1~6のいずれか1項に記載の樹脂組成物を少なくとも含む液状組成物を調製する工程と、
     前記液状組成物を固化する工程と、
     を含む、成形体の製造方法。
    Preparing a liquid composition comprising at least the resin composition according to any one of claims 1 to 6;
    Solidifying the liquid composition;
    The manufacturing method of a molded object containing this.
  12.  請求項1~6のいずれか1項に記載の樹脂組成物と、有機溶剤と、を少なくとも含む液状組成物を基材に含浸させる工程と、
     前記液状組成物を含浸させた前記基材を乾燥させる工程と、
     を含む、成形体の製造方法。
    A step of impregnating a substrate with a liquid composition comprising at least the resin composition according to any one of claims 1 to 6 and an organic solvent;
    Drying the substrate impregnated with the liquid composition;
    The manufacturing method of a molded object containing this.
  13.  更に、乾燥させた前記基材を加熱する工程を含む、請求項12に記載の成形体の製造方法。 Furthermore, the manufacturing method of the molded object of Claim 12 including the process of heating the dried said base material.
  14.  前記有機溶剤が、アセトン、メチルエチルケトン、メチルイソブチルケトン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、トルエン、キシレン、N,N-ジメチルホルムアミド、ジオキサン、及びテトラヒドロフランからなる群より選ばれる1種以上の有機溶剤を含む、請求項12又は13に記載の成形体の製造方法。 The organic solvent is at least one organic solvent selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, toluene, xylene, N, N-dimethylformamide, dioxane, and tetrahydrofuran. The manufacturing method of the molded object of Claim 12 or 13 containing these.
  15.  請求項1~6のいずれか1項に記載の樹脂組成物を用いてなる、又は請求項8~10のいずれか1項に記載の成形体を含む、電子回路基板。 An electronic circuit board comprising the resin composition according to any one of claims 1 to 6, or comprising the molded article according to any one of claims 8 to 10.
  16.  フレキシブル回路基板である、請求項15に記載の電子回路基板。 The electronic circuit board according to claim 15, which is a flexible circuit board.
PCT/JP2017/006862 2016-02-29 2017-02-23 Resin composition including liquid-crystal polymer particles, molded object obtained using same, and production processes therefor WO2017150336A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017534623A JP6295013B2 (en) 2016-02-29 2017-02-23 Resin composition containing liquid crystal polymer particles, molded product using the same, and production method thereof
CN201780013885.0A CN108884325B (en) 2016-02-29 2017-02-23 Resin composition containing liquid crystal polymer particles, molded article using the same, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016037525 2016-02-29
JP2016-037525 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150336A1 true WO2017150336A1 (en) 2017-09-08

Family

ID=59742837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006862 WO2017150336A1 (en) 2016-02-29 2017-02-23 Resin composition including liquid-crystal polymer particles, molded object obtained using same, and production processes therefor

Country Status (4)

Country Link
JP (1) JP6295013B2 (en)
CN (1) CN108884325B (en)
TW (1) TWI712642B (en)
WO (1) WO2017150336A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151827A (en) * 2018-03-05 2019-09-12 ポリプラスチックス株式会社 Liquid crystalline resin powder for thermoplastic prepreg and thermoplastic prepreg
WO2020116605A1 (en) * 2018-12-06 2020-06-11 ポリプラスチックス株式会社 Powdery liquid-crystal resin for press-molded article, press-molded article, and production method therefor
WO2021033578A1 (en) 2019-08-22 2021-02-25 Eneos株式会社 Liquid-crystal polymer particles, thermally curable resin composition, and molded object
WO2021060255A1 (en) * 2019-09-25 2021-04-01 株式会社村田製作所 Liquid crystal polymer powder and method for producing same
WO2021085329A1 (en) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 Resin composition, resin film, layered body, coverlay film, copper foil with resin, metal-clad layered board and circuit board
JP2021105147A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP2021105146A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP2021105149A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Method for manufacturing resin film, and method for manufacturing metal-clad laminated plate
KR20220068575A (en) * 2020-11-19 2022-05-26 피아이첨단소재 주식회사 Low dielectric polyamic acid comprising liquid crystal powders, polyimide film and manufacturing method thereof
WO2022113942A1 (en) * 2020-11-24 2022-06-02 Eneos株式会社 Liquid crystal polymer particles, thermosetting resin composition, and molded body
WO2022138666A1 (en) * 2020-12-21 2022-06-30 富士フイルム株式会社 Layered body and polymer film
KR20220117276A (en) 2020-02-21 2022-08-23 에네오스 가부시키가이샤 Composites, slurry compositions, films and metal clad laminates
WO2022264915A1 (en) * 2021-06-14 2022-12-22 Eneos株式会社 Method for manufacturing fibrillar liquid crystal polymer particles
WO2023027076A1 (en) * 2021-08-23 2023-03-02 Eneos株式会社 Copper-clad laminate plate and electronic circuit board
WO2023100796A1 (en) * 2021-12-03 2023-06-08 住友化学株式会社 Liquid-crystal polyester composition and molded object thereof
WO2023127890A1 (en) * 2021-12-28 2023-07-06 東亞合成株式会社 Adhesive composition and laminate with adhesive layer
WO2024034463A1 (en) * 2022-08-08 2024-02-15 三井金属鉱業株式会社 Resin composition, copper foil with resin, and printed wiring board

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
CN110591063B (en) * 2019-09-24 2022-06-07 沈阳建筑大学 Modified polyethylene naphthalate containing imide structure and preparation method thereof
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
JP2023515976A (en) 2020-02-26 2023-04-17 ティコナ・エルエルシー circuit structure
JP2021161185A (en) * 2020-03-31 2021-10-11 日鉄ケミカル&マテリアル株式会社 Resin composition, method for producing the same, resin film and metal-clad laminate
CN114426666A (en) * 2020-10-29 2022-05-03 臻鼎科技股份有限公司 Polyimide film and method for producing same
TWI748769B (en) * 2020-11-27 2021-12-01 臻鼎科技股份有限公司 Polymer dispersion, method for manufacturing the polymer dispersion, and polymer composite film and its application
US11728559B2 (en) 2021-02-18 2023-08-15 Ticona Llc Polymer composition for use in an antenna system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205161A (en) * 1986-03-03 1987-09-09 Nippon Zeon Co Ltd Production of molded article
JP2002338815A (en) * 2001-05-14 2002-11-27 Toyo Ink Mfg Co Ltd Photoluminescent resin composition and molded item comprising this photoluminescent resin composition
JP2007146123A (en) * 2005-10-31 2007-06-14 Toray Ind Inc Thermoplastic resin composition and method for producing the same
JP2010084026A (en) * 2008-09-30 2010-04-15 Nippon Zeon Co Ltd Curable resin composition
US20150166743A1 (en) * 2013-12-13 2015-06-18 Cytec Industries Inc. Composite materials with electrically conductive and delamination resistant properties

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758079B2 (en) * 2004-07-14 2011-08-24 上野製薬株式会社 Liquid crystal polyester resin and method for producing the same
JP4704046B2 (en) * 2004-10-29 2011-06-15 ポリプラスチックス株式会社 Extrusion molding resin composition and extrusion molding
US7592413B2 (en) * 2005-09-22 2009-09-22 E. I. Du Pont De Nemours And Company Manufacture of aromatic polyester
JP5017060B2 (en) * 2007-10-30 2012-09-05 上野製薬株式会社 Totally aromatic liquid crystal polyester
JP5638921B2 (en) * 2010-11-17 2014-12-10 三井化学株式会社 Resin / metal laminate and circuit board with excellent dielectric properties
TWI667283B (en) * 2014-06-30 2019-08-01 日商日鐵化學材料股份有限公司 Method for producing aromatic polyester, aromatic polyester, curable resin composition and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205161A (en) * 1986-03-03 1987-09-09 Nippon Zeon Co Ltd Production of molded article
JP2002338815A (en) * 2001-05-14 2002-11-27 Toyo Ink Mfg Co Ltd Photoluminescent resin composition and molded item comprising this photoluminescent resin composition
JP2007146123A (en) * 2005-10-31 2007-06-14 Toray Ind Inc Thermoplastic resin composition and method for producing the same
JP2010084026A (en) * 2008-09-30 2010-04-15 Nippon Zeon Co Ltd Curable resin composition
US20150166743A1 (en) * 2013-12-13 2015-06-18 Cytec Industries Inc. Composite materials with electrically conductive and delamination resistant properties

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274303B2 (en) 2018-03-05 2023-05-16 ポリプラスチックス株式会社 Liquid crystalline resin powder for thermoplastic prepreg and thermoplastic prepreg
JP2019151827A (en) * 2018-03-05 2019-09-12 ポリプラスチックス株式会社 Liquid crystalline resin powder for thermoplastic prepreg and thermoplastic prepreg
WO2020116605A1 (en) * 2018-12-06 2020-06-11 ポリプラスチックス株式会社 Powdery liquid-crystal resin for press-molded article, press-molded article, and production method therefor
JPWO2020116605A1 (en) * 2018-12-06 2021-02-15 ポリプラスチックス株式会社 Powdered liquid crystal resin for press-molded products, press-molded products and their manufacturing methods
CN113166433B (en) * 2018-12-06 2023-04-04 宝理塑料株式会社 Powdery liquid crystalline resin for press-molded article, and method for producing same
CN113166433A (en) * 2018-12-06 2021-07-23 宝理塑料株式会社 Powdery liquid crystalline resin for press-molded article, and method for producing same
US11426903B2 (en) 2018-12-06 2022-08-30 Polyplastics Co., Ltd. Powdery liquid-crystal resin for press-molded article, press-molded article, and production method therefor
WO2021033578A1 (en) 2019-08-22 2021-02-25 Eneos株式会社 Liquid-crystal polymer particles, thermally curable resin composition, and molded object
EP4019569A4 (en) * 2019-08-22 2023-09-13 ENEOS Corporation Liquid-crystal polymer particles, thermally curable resin composition, and molded object
JP7441844B2 (en) 2019-08-22 2024-03-01 Eneos株式会社 Liquid crystal polymer particles, thermosetting resin compositions, and molded bodies
US11939507B2 (en) 2019-09-25 2024-03-26 Murata Manufacturing Co., Ltd. Liquid crystal polymer powder and method of producing the liquid crystal polymer powder
JP7405146B2 (en) 2019-09-25 2023-12-26 株式会社村田製作所 Liquid crystal polymer powder and its manufacturing method
EP4036156A4 (en) * 2019-09-25 2023-10-18 Murata Manufacturing Co., Ltd. Liquid crystal polymer powder and method for producing same
WO2021060255A1 (en) * 2019-09-25 2021-04-01 株式会社村田製作所 Liquid crystal polymer powder and method for producing same
WO2021085329A1 (en) * 2019-10-29 2021-05-06 日鉄ケミカル&マテリアル株式会社 Resin composition, resin film, layered body, coverlay film, copper foil with resin, metal-clad layered board and circuit board
JP2021105149A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Method for manufacturing resin film, and method for manufacturing metal-clad laminated plate
JP7410716B2 (en) 2019-12-27 2024-01-10 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP2021105146A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP2021105147A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
JP7398277B2 (en) 2019-12-27 2023-12-14 日鉄ケミカル&マテリアル株式会社 Resin composition and resin film
KR20220117276A (en) 2020-02-21 2022-08-23 에네오스 가부시키가이샤 Composites, slurry compositions, films and metal clad laminates
KR102475605B1 (en) * 2020-11-19 2022-12-09 피아이첨단소재 주식회사 Low dielectric polyamic acid comprising liquid crystal powders, polyimide film and manufacturing method thereof
WO2022108296A1 (en) * 2020-11-19 2022-05-27 피아이첨단소재 주식회사 Low-dielectric polyamic acid comprising liquid crystal powder, polyimide film, and method for producing same
KR20220068575A (en) * 2020-11-19 2022-05-26 피아이첨단소재 주식회사 Low dielectric polyamic acid comprising liquid crystal powders, polyimide film and manufacturing method thereof
WO2022113942A1 (en) * 2020-11-24 2022-06-02 Eneos株式会社 Liquid crystal polymer particles, thermosetting resin composition, and molded body
WO2022138666A1 (en) * 2020-12-21 2022-06-30 富士フイルム株式会社 Layered body and polymer film
WO2022264915A1 (en) * 2021-06-14 2022-12-22 Eneos株式会社 Method for manufacturing fibrillar liquid crystal polymer particles
WO2023027076A1 (en) * 2021-08-23 2023-03-02 Eneos株式会社 Copper-clad laminate plate and electronic circuit board
WO2023100796A1 (en) * 2021-12-03 2023-06-08 住友化学株式会社 Liquid-crystal polyester composition and molded object thereof
WO2023127890A1 (en) * 2021-12-28 2023-07-06 東亞合成株式会社 Adhesive composition and laminate with adhesive layer
WO2024034463A1 (en) * 2022-08-08 2024-02-15 三井金属鉱業株式会社 Resin composition, copper foil with resin, and printed wiring board

Also Published As

Publication number Publication date
JPWO2017150336A1 (en) 2018-03-15
CN108884325A (en) 2018-11-23
TW201803938A (en) 2018-02-01
TWI712642B (en) 2020-12-11
CN108884325B (en) 2020-08-04
JP6295013B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6295013B2 (en) Resin composition containing liquid crystal polymer particles, molded product using the same, and production method thereof
JP4169322B2 (en) Totally aromatic liquid crystal polyester resin molding
WO2017179474A1 (en) Liquid-crystalline resin composition
EP3395894B1 (en) Resin composition and adhesive sheet
JP2006063315A (en) Prepreg, method for producing the same, laminated sheet and printed circuit board
JP6844755B1 (en) Liquid crystal polyester resin composition, laminate, liquid crystal polyester resin film and its manufacturing method
US20150118498A1 (en) Resin composition, resin sheet, cured resin product and substrate
CN114555518B (en) Method for producing hexagonal boron nitride powder, and resin composition
JP2021161185A (en) Resin composition, method for producing the same, resin film and metal-clad laminate
JP6727635B2 (en) Separation stability excellent filler-filled high thermal conductivity dispersion composition, a method for producing the dispersion composition, a filler-filled high thermal conductivity material using the dispersion composition, a method for producing the material, and the material Molded product obtained by using
TW202112889A (en) Liquid-crystal polymer particles, thermally curable resin composition, and molded object
JP6705538B2 (en) Liquid crystal polyester resin composition, laminate and liquid crystal polyester resin film
JPH09302070A (en) Thermosetting epoxy resin composition, its use, and its curative
KR20220128466A (en) Liquid crystalline polyester resin, liquid crystalline polyester resin composition, molded article, laminate and liquid crystalline polyester resin film and manufacturing method thereof
JP3954130B2 (en) Low dielectric constant glass powder, printed wiring board using the same, and resin mixed material
Bakir et al. Merging versatile polymer chemistry with multifunctional nanoparticles: an overview of crosslinkable aromatic polyester matrix nanocomposites
TW202206493A (en) Liquid crystal polyester resin, molded article, and electric and electronic components
TW202206491A (en) Liquid crystal polyester resin, molded article, and electric and electronic components
JP2019151827A (en) Liquid crystalline resin powder for thermoplastic prepreg and thermoplastic prepreg
JP2003027035A (en) Adhesive composition and adherent sheet
WO2022168855A1 (en) Liquid crystal polyester powder, method for producing powder, composition, method for producing composition, method for producing film, and method for producing layered body
WO2022168853A1 (en) Liquid crystal polyester powder, composition, method for producing composition, method for producing film, and method for producing layered body
JP2022162681A (en) Resin composition containing thermosetting resin and liquid crystal polyester resin, molded article and laminate using the same, and method for producing them
WO2023012328A1 (en) Composite films for mobile electronic device components
EP4349774A1 (en) Hexagonal boron nitride powder

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017534623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759802

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759802

Country of ref document: EP

Kind code of ref document: A1