WO2017150196A1 - Method for manufacturing three-dimensional molded object, three-dimensional molded object, and molding device - Google Patents

Method for manufacturing three-dimensional molded object, three-dimensional molded object, and molding device Download PDF

Info

Publication number
WO2017150196A1
WO2017150196A1 PCT/JP2017/005652 JP2017005652W WO2017150196A1 WO 2017150196 A1 WO2017150196 A1 WO 2017150196A1 JP 2017005652 W JP2017005652 W JP 2017005652W WO 2017150196 A1 WO2017150196 A1 WO 2017150196A1
Authority
WO
WIPO (PCT)
Prior art keywords
modeling
dimensional structure
support member
reinforcing material
surrounding
Prior art date
Application number
PCT/JP2017/005652
Other languages
French (fr)
Japanese (ja)
Inventor
和浩 越智
邦夫 八角
浩文 原
金井 信夫
大西 勝
Original Assignee
株式会社ミマキエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016180720A external-priority patent/JP6839509B2/en
Application filed by 株式会社ミマキエンジニアリング filed Critical 株式会社ミマキエンジニアリング
Priority to US16/080,674 priority Critical patent/US11718016B2/en
Publication of WO2017150196A1 publication Critical patent/WO2017150196A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a three-dimensional structure manufacturing method, a three-dimensional structure, and a modeling apparatus that manufacture a three-dimensional structure by discharging a liquid modeling material and then solidifying the discharged modeling material.
  • Patent Document 1 a method of manufacturing a three-dimensional structure by discharging a liquid modeling material and then solidifying the discharged modeling material is known (see Patent Document 1).
  • the thin part of the three-dimensional structure supports a part of the three-dimensional structure.
  • the weight of the part supported by the thin part of the three-dimensional structure, or the thin part of the three-dimensional structure by an external force applied by a human hand to the part supported by the thin part of the three-dimensional structure Since stress is concentrated on the three-dimensional structure, there is a problem that breakage may occur in a thin portion of the three-dimensional structure.
  • a modeling material that is solid and highly flexible is used to prevent breakage, the weight of the part supported by the thin part of the three-dimensional structure and the thin part of the three-dimensional structure are supported.
  • the thin part of the three-dimensional structure is bent by the external force applied by the hand of the person to the part that is applied, and the thin part of the three-dimensional structure appropriately supports a part of the three-dimensional structure.
  • Such thin parts include human feet, animal feet, insect feet, dragonfly wings, plant leaves and branches.
  • the three-dimensional structure manufacturing method of the present invention is a three-dimensional structure manufacturing method for manufacturing a three-dimensional structure by discharging a liquid modeling material and then solidifying the discharged modeling material.
  • the modeling material that forms the internal part by a process has a higher rigidity in a solid state than the modeling material that forms the peripheral part by the perimeter forming process.
  • the three-dimensional structure manufactured by the three-dimensional structure manufacturing method of the present invention has a solid state rigidity in which the modeling material forming the inner part forms a surrounding part. Since it is large, the rigidity in a thin part can be improved by the modeling material which forms an internal part. Therefore, the three-dimensional structure manufacturing method of the present invention can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending in a thin portion. Moreover, since the internal part is formed by putting the liquid modeling material into a groove
  • the internal forming step and the surrounding forming step may be a step of discharging the liquid forming material by an ink jet method.
  • the three-dimensional structure manufacturing method of the present invention forms both the inner part and the surrounding part by the ink jet method, so that the three-dimensional structure can be easily manufactured.
  • the three-dimensional structure manufacturing method of the present invention is a three-dimensional structure manufacturing method for manufacturing a three-dimensional structure by discharging a liquid modeling material and then solidifying the discharged modeling material.
  • the reinforcing material has a higher rigidity than the solid modeling material.
  • the three-dimensional structure manufactured by the method of manufacturing a three-dimensional structure of the present invention has higher rigidity than a solid-state modeling material in which a reinforcing material that forms an internal portion forms a surrounding portion. Therefore, the rigidity in the thin part can be improved by the reinforcing material. Therefore, the three-dimensional structure manufacturing method of the present invention can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending in a thin portion.
  • the reinforcing material may include a connecting portion for connecting to another member.
  • the three-dimensional structure manufactured by the three-dimensional structure manufacturing method of the present invention can improve convenience because the reinforcing material is used for connection to other members in addition to reinforcement. .
  • the internal forming step includes the step of forming the reinforcing material in the inner portion before the peripheral portion of the three-dimensional structure is formed by the peripheral forming step. It may be a process to be arranged.
  • the three-dimensional structure manufacturing method of the present invention has a three-dimensional structure compared to a method in which a reinforcing material is inserted into the peripheral portion after all the peripheral portions of the three-dimensional structure are formed. It is possible to easily fix the reinforcing material in the interior.
  • the surrounding forming step is a step of discharging the liquid forming material by a forming apparatus based on modeling data, and the surrounding forming step is performed by the internal forming step. After the reinforcing material is disposed in the portion, the position of the reinforcing material relative to the surrounding portion may be detected, and the modeling data may be corrected based on the detected position.
  • the three-dimensional structure manufacturing method according to the present invention corrects the modeling data based on the position of the reinforcing material with respect to the surrounding portion, and therefore can facilitate the work of arranging the reinforcing material on the surrounding portion. . Therefore, the three-dimensional structure manufacturing method of the present invention can facilitate the manufacture of the three-dimensional structure.
  • the reinforcing material is inserted into the internal portion after all the peripheral portions of the three-dimensional structure are formed by the peripheral formation step. It may be a process.
  • the three-dimensional structure manufacturing method of the present invention is more effective than the method in which the reinforcing material is disposed in the surrounding portion before the surrounding portion of the part of the three-dimensional structure is formed.
  • the manufacture of the part can be facilitated.
  • the surrounding formation step is a step in which a direction orthogonal to the extending direction of the layer is a vertical direction, and the three-dimensional structure is a vertical direction in the periphery forming step.
  • a space is formed in a part of the lower portion of the reinforcing material in the space, and the surrounding portion supports the reinforcing material on the lower side of the reinforcing material in the vertical direction in the surrounding forming step.
  • the surface of the support portion may be an inclined surface that does not overhang in the periphery forming step.
  • the three-dimensional structure manufacturing method according to the present invention is configured so that the space in which the modeling material does not exist is formed in a part of the portion that becomes the lower side of the reinforcing material in the vertical direction in the periphery forming process. Since the amount of the material is greatly reduced, it is possible to reduce the weight of the three-dimensional structure and the material cost. Further, in the three-dimensional structure manufacturing method of the present invention, since the surface of the support portion among the surfaces forming the space is an inclined surface that does not overhang in the surrounding formation step, the shape of each layer collapses in the space portion. As a result, the three-dimensional structure can be formed with high accuracy.
  • the support portion includes an end support portion that supports the reinforcing material at an end portion of the reinforcing material in the extending direction of the layer, and a portion other than the end portion. You may provide the non-end part support part which supports a reinforcing material.
  • the three-dimensional structure manufacturing method of the present invention causes the reinforcing material to bend by providing the non-end support portion with the forming material at a portion of the reinforcing material having a long length in the extending direction of the layer. Therefore, it is possible to form a three-dimensional structure with high accuracy.
  • the reinforcing member may have a hole formed in at least a part of a portion where the space is formed on both sides in a direction orthogonal to the extending direction of the layer. .
  • the three-dimensional structure manufacturing method of the present invention significantly reduces the amount of necessary reinforcing material by forming holes in the reinforcing material. Can be reduced.
  • the three-dimensional structure of the present invention includes an internal portion and a portion around the internal portion, and the peripheral portion is formed of a solid modeling material, and the internal portion is the modeling material.
  • the reinforcing material is characterized in that it has higher rigidity than the solid modeling material.
  • the three-dimensional structure of the present invention has a rigidity higher than that of a solid-state modeling material in which the reinforcing material forming the inner part forms a surrounding part. Can be improved. Therefore, the three-dimensional structure of the present invention can suppress the occurrence of breakage and bending at a thin portion.
  • the reinforcing material may include a connection portion for connecting to another member.
  • the three-dimensional structure of the present invention can improve convenience because the reinforcing material is used for connection to other members in addition to reinforcement.
  • the three-dimensional structure of the present invention includes a plurality of porous sheets each having a plurality of holes formed therein and laminated, and a modeling material that bonds the porous sheets by entering the holes. To do.
  • the three-dimensional structure of the present invention improves the mechanical strength by adhering the porous sheets to each other with a modeling material, so that the three-dimensional structure can suppress the occurrence of breakage and bending in a thin portion.
  • the modeling material may be an ultraviolet curable ink that is cured by being irradiated with ultraviolet rays.
  • the three-dimensional structure of the present invention can be manufactured at high speed and with high accuracy because the modeling material is cured at high speed with high accuracy.
  • the modeling apparatus includes a support member on which a plurality of perforated sheets each having a large number of holes are stacked, and a modeling material that adheres the perforated sheets to each other by entering the holes. And a modeling material head for discharging toward the plurality of porous sheets.
  • the modeling apparatus of the present invention improves the mechanical strength by adhering the porous sheets to each other with a modeling material, so that a three-dimensional structure with high mechanical strength can be manufactured. Therefore, the modeling apparatus of the present invention is suitable for manufacturing a three-dimensional modeled object that can suppress the occurrence of breakage and bending at a thin portion.
  • the modeling apparatus of the present invention is a laser that cuts out a three-dimensional structure including a plurality of the porous sheets stacked in a state where the porous sheets are bonded to each other from the plurality of stacked porous sheets.
  • a cutter is provided.
  • the modeling apparatus of the present invention improves the mechanical strength by adhering the porous sheets to each other with a modeling material, and at the same time, using a laser cutter, the three-dimensional structure is accurately obtained from a plurality of laminated porous sheets. Since it cuts out, a highly accurate three-dimensional structure with high mechanical strength can be manufactured.
  • the modeling apparatus of the present invention includes a moving unit that moves the porous sheet relative to the support member. After part of the porous sheet is cut out from the porous sheet by the laser cutter, the porous sheet is moved by the moving unit. By moving the porous sheet relative to the support member, the porous sheet is cut away by the laser cutter from the porous sheet and supported by the support member. Sheets may be laminated.
  • the modeling apparatus of the present invention facilitates the stacking of a plurality of porous sheets on the support member, and thus can facilitate the manufacture of a three-dimensional modeled object.
  • the support member is rotatably supported, and the modeling apparatus includes a rotation unit that rotates the support member, and the rotation unit rotates the support member to rotate the support member.
  • the porous sheet may be laminated by winding the porous sheet around a support member.
  • the modeling apparatus of the present invention facilitates the stacking of a plurality of porous sheets on the support member, and thus can facilitate the manufacture of a three-dimensional modeled object.
  • the support member may include a plurality of surfaces on which the three-dimensional model is formed in the rotation direction.
  • the modeling apparatus of the present invention can manufacture a three-dimensional modeled object on each of the plurality of surfaces of the support member, so that a plurality of three-dimensional modeled objects can be manufactured at high speed.
  • the modeling material head may cause the modeling materials discharged in a state in which the rotation angles of the support members by the rotating means are different from each other to contact each other.
  • the modeling apparatus of the present invention can manufacture a three-dimensional structure having a shape corresponding to the rotation of the support member by the rotating means, such as a tube-shaped three-dimensional structure.
  • the three-dimensional structure manufacturing method, the three-dimensional structure, and the modeling apparatus of the present invention can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending at a narrow portion.
  • FIG. (A) It is a top view of an example of the three-dimensional structure manufactured with the modeling apparatus shown in FIG. (B) It is the II sectional view taken on the line shown to Fig.3 (a). It is sectional drawing of the three-dimensional structure in the middle stage in which the three-dimensional structure shown in FIG. 3 is manufactured. It is an example of the three-dimensional structure manufactured with the modeling apparatus shown in FIG. 1, Comprising: It is a top view of the example different from the example shown in FIG.
  • FIG. 1 It is sectional drawing of the three-dimensional structure in the middle stage in which the three-dimensional structure manufactured by the modeling apparatus shown in FIG. 1 is manufactured. It is a schematic front view of the modeling apparatus used for the three-dimensional structure manufacturing method which concerns on the 2nd Embodiment of this invention. It is a block diagram of the modeling apparatus shown in FIG. (A) It is a top view of an example of the three-dimensional structure manufactured with the modeling apparatus shown in FIG. (B) It is the II-II arrow directional cross-sectional view shown to Fig.9 (a). It is sectional drawing of the three-dimensional structure in the middle stage in which the three-dimensional structure shown in FIG. 9 is manufactured. It is an example of the three-dimensional structure manufactured by the modeling apparatus shown in FIG.
  • FIG. 7 is a plan view of an example different from the example shown in FIG. It is an example of the three-dimensional structure manufactured by the modeling apparatus shown in FIG. 7, and is a plan view of an example different from the examples shown in FIGS. (A) It is a figure which shows the modification of the part of the reinforcing material which has come out of the three-dimensional structure in FIG. (B) It is a III-III arrow directional cross-sectional view shown to Fig.13 (a).
  • FIG. 13 is an external perspective view of an example different from the examples illustrated in FIGS. 9, 11, and 12, which is a three-dimensional structure manufactured by the modeling apparatus illustrated in FIG. 7.
  • A It is a side view of the three-dimensional structure shown in FIG.
  • FIG. 14 It is a bottom view of the three-dimensional structure shown in FIG. 14 in the middle of manufacture by a modeling apparatus.
  • FIG. 15 is a side cross-sectional view of an example different from the examples illustrated in FIGS. 9, 11, 12, and 14, which is a three-dimensional structure being manufactured by the modeling apparatus illustrated in FIG. 7. It is side surface sectional drawing of the three-dimensional structure shown in FIG. 16 in the state in which the hole is formed in the reinforcing material.
  • FIG. 17 is a side cross-sectional view of an example different from the examples illustrated in FIGS. 9, 11, 12, 14, and 16, which is a three-dimensional structure being manufactured by the modeling apparatus illustrated in FIG. 7.
  • FIG. 21 It is IV-IV arrow sectional drawing shown in FIG. (B) It is a figure which shows the modification of the three-dimensional structure shown to Fig.19 (a). It is side surface sectional drawing of the three-dimensional structure shown in FIG. 18 in the state in which the hole is formed in the reinforcing material. It is a schematic front view of the modeling apparatus which concerns on the 3rd Embodiment of this invention.
  • A It is a schematic front view of a part of the modeling apparatus shown in FIG. 21 when laser light is irradiated in the vertical direction.
  • FIG. 21 It is a schematic front view of a part of the modeling apparatus shown in FIG. 21 when the laser beam is irradiated in a direction different from the vertical direction.
  • FIG. 22 is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 21 in a state in which a modeling material part and a support material part are formed on one porous sheet.
  • FIG. 22 is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 21 in which a part of the three-dimensional structure in one porous sheet and a part other than the three-dimensional structure are separable. It is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 21 in a state where a three-dimensional structure is manufactured. It is an external appearance perspective view of the three-dimensional structure shown in FIG.
  • FIG. 21 It is a schematic sectional drawing of the perforated sheet shown in FIG. 21 cut by the laser cutter.
  • B It is a schematic cross-sectional view of a perforated sheet that has been subjected to subsequent steps in the state shown in FIG.
  • C It is a schematic cross-sectional view of a perforated sheet that has been subjected to subsequent steps in the state shown in FIG. 28 (b).
  • D It is a schematic sectional drawing of the porous sheet in which the subsequent process was performed in the state shown in FIG. It is a schematic front view which shows an example of the modeling apparatus shown in FIG. It is a block diagram of the modeling apparatus shown in FIG.
  • FIG. 30 is a schematic plan view of a part of the modeling apparatus shown in FIG. 29.
  • FIG. 30 is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 29. It is an example of the modeling apparatus shown in FIG. 21, Comprising: It is a schematic front view which shows the example different from the example shown in FIG. It is a block diagram of the modeling apparatus shown in FIG.
  • FIG. 34 is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 33.
  • FIG. 34 is a schematic front view illustrating an example of the modeling apparatus illustrated in FIG. 21, which is an example different from the examples illustrated in FIGS. 29 and 33. It is a schematic front view which shows an example different from the example shown in FIG. 29, FIG. 33, and FIG. It is a schematic side view of the modeling apparatus shown in FIG.
  • FIG. 1 is a schematic front view of a modeling apparatus 10 used in the three-dimensional structure manufacturing method according to the present embodiment.
  • the modeling apparatus 10 includes a modeling table 11 that serves as a table for a three-dimensional model when a three-dimensional model is manufactured, and an inkjet that discharges a liquid modeling material 12 a toward the modeling table 11.
  • a modeling head 12 of a system and a modeling head 13 of a FDM (Fused Deposition Modeling / Heat Melting Laminating Method) system that discharges a liquid modeling material 13 a toward the modeling table 11.
  • the FDM method is a method of arranging or laminating thermoplastic resins in a molten state.
  • the layers in the FDM method are welded and integrated.
  • UV curable ink that is made solid by being irradiated with UV (UltraViolet) may be used.
  • thermoplastic resin that becomes liquid when heated and becomes solid when cooled is used.
  • thermoplastic resin used as the modeling material 13a PVC (Polyvinyl Chloride) or ABS (Acrylonitrile Butadiene Styrene) resin may be used.
  • thermoplastic resin used as the modeling material 13a engineering plastics such as polycarbonate and PET (PolyEthylene Terephthalate) may be used.
  • the modeling material 13a a material having higher rigidity in a solid state than that of the modeling material 12a is used. In addition, it is preferable that the modeling material 13a has a higher bending strength in a solid state than the modeling material 12a.
  • FIG. 2 is a block diagram of the modeling apparatus 10.
  • the modeling apparatus 10 includes a modeling table 11, a modeling head 12, and a modeling head in the Y direction orthogonal to the Z direction as the ejection direction of the modeling material by the modeling head 12 and the modeling head 13. 13 is provided with a main scanning direction driving device 14 for driving the other relative to the other.
  • the Z direction is the vertical direction.
  • the modeling apparatus 10 performs sub-scanning in which the modeling table 11, the modeling head 12, and the modeling head 13 are driven relatively to the other in the X direction (not shown) orthogonal to both the Y direction and the Z direction.
  • a direction driving device 15 is provided.
  • the modeling apparatus 10 includes a height direction driving device 16 that relatively drives one of the modeling table 11, the modeling head 12, and the modeling head 13 in the Z direction.
  • the modeling apparatus 10 includes a communication unit 17 that is a communication device that communicates with an external apparatus via a network (not shown), and a control unit 18 that controls the entire modeling apparatus 10.
  • the control unit 18 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores programs and various data in advance, and a RAM (Random Access Memory) used as a work area of the CPU. .
  • the CPU executes a program stored in the ROM.
  • the control unit 18 of the modeling apparatus 10 drives the modeling head 12, the modeling head 13, the main scanning direction driving device 14, and the sub-scanning direction driving based on the input modeling data.
  • a three-dimensional structure is manufactured by controlling the device 15 and the height direction driving device 16.
  • the control unit 18 discharges the liquid modeling material 12a by the modeling head 12 based on the modeling data, and then solidifies the discharged modeling material 12a, thereby performing three-dimensional modeling. Form the part around the inner part of the object.
  • the internal part is hereinafter referred to as “internal part”.
  • the surrounding part is hereinafter referred to as “peripheral part”.
  • control unit 18 discharges the liquid modeling material 13a by the modeling head 13 based on the modeling data, and then solidifies the ejected modeling material 13a, whereby the inside of the three-dimensional modeled object is formed. Forming part.
  • FIG. 3A is a plan view of an example of the three-dimensional structure 20 manufactured by the modeling apparatus 10.
  • FIG. 3B is a cross-sectional view taken along the line II of FIG.
  • the three-dimensional structure 20 shown in FIG. 3 is a doll.
  • the front-rear direction indicated by the arrow 20 a in FIG. 3 the left-right direction indicated by the arrow 20 b, and the upper-lower direction indicated by the arrow 20 c are respectively the X direction and Y direction when manufactured by the modeling apparatus 10. Corresponds to the Z direction.
  • the three-dimensional structure 20 includes an internal part 21 and a peripheral part 22. Of the surrounding portion 22, at least a portion on the surface side of the three-dimensional structure 20 may be a decorative portion that is decorated with a pattern or color. Further, the inner portion 21 may be configured in white. The inner portion 21 is configured to be white, thereby favorably reflecting light entering from the surface side of the three-dimensional structure 20 and constituting a light reflecting portion that realizes coloring by subtractive color mixing.
  • the inner part 21 is formed by stacking a plurality of layers of the modeling material 13a in the Z direction by the FDM method.
  • the surrounding portion 22 is formed by stacking a plurality of layers of the modeling material 12a in the Z direction by an inkjet method.
  • the thickness of each layer by the ink jet method is very thin such as 40 ⁇ m.
  • the thickness of each layer by the FDM method is thicker than the thickness of each layer by the ink jet method. Therefore, when the three-dimensional structure 20 is manufactured, as shown in FIG. 4, the depth 22c in the Z direction of the groove 22b formed by stacking the plurality of layers 22a by the ink jet method is set to the FDM method. It is preferable that the control unit 18 controls the height 21c in the Z direction of the portion 21b formed by the layer 21a.
  • the control unit 18 may flatten the surface of the layer 22a with a roller (not shown) after discharging the modeling material 12a forming the layer 22a in order to make the thicknesses of the plurality of layers 22a uniform.
  • a roller not shown
  • the control unit 18 flattens the surface of the layer 22a in order to increase the adhesion between the two adjacent layers 22a, and then discharges the modeling material 12a to the surface of the layer 22a by the modeling head 12. A large number of minute protrusions may be formed.
  • the control unit 18 may detect the formation state of the three-dimensional structure 20 using a detection device such as a CCD (Charge-Coupled Device) during the formation of the three-dimensional structure 20. And the control part 18 judges whether the condition of formation of the three-dimensional structure 20 is progressing according to modeling data. When the control unit 18 determines that the state of formation of the three-dimensional structure 20 does not proceed according to the modeling data, the control unit 18 corrects the modeling data so that the outer shape of the three-dimensional structure 20 is the same as the original modeling data. Thereby, the accuracy of the external shape of the completed three-dimensional structure 20 is improved.
  • the inner part 21 and the surrounding part 22 are formed in different ways by different materials and are overlapped with each other. The advantage that modeling data is corrected is great.
  • the internal portion 21 is arranged in almost the entire area of the three-dimensional structure 20, but only a portion that needs to be reinforced in the three-dimensional structure 20 as shown in FIG. 5. May be arranged.
  • the internal part 21 is formed by putting the liquid modeling material 13a in the groove 22b, and therefore the manufacturing of the internal part 21 can be facilitated.
  • the internal portion 21 is formed by the FDM method.
  • the internal portion 21 may be formed by the modeling material 13a by a method other than the FDM method.
  • the internal part 21 may be formed with the modeling material 13a by an inkjet system.
  • the groove 22b is formed by the peripheral portion 22, the modeling material 13a forming the inner portion 21 may be simply poured into the groove 22b. Therefore, the internal part 21 may be formed by a method in which the liquid modeling material 13a is discharged from the dispenser or the like toward the groove 22b, and then the discharged modeling material 13a is solidified.
  • two dispensers filled with resin on one side and filled with a curing agent on the other side are prepared, and the dispenser on one side is prepared.
  • the resin discharged from the liquid and the curing agent discharged from the other dispenser may be mixed in the groove 22b.
  • both the inner portion 21 and the surrounding portion 22 are formed by the ink jet method, the structure of the modeling apparatus can be simplified, and therefore the manufacturing of the three-dimensional structure 20 can be facilitated.
  • the modeling material 13a forming the inner portion 21 may be a curable liquid such as a two-component curable material when the inner portion 21 is formed by pouring the modeling material 13a into the groove 22b.
  • the modeling material 13a that forms the internal portion 21 may be an FRP (Fiber Reinforced Plastics) -based material or may be blended with CNT (Carbon NanoTube).
  • the protrusion part 22d may be formed in the groove
  • the peripheral portion 22 is formed by an ink jet method.
  • the surrounding portion 22 may be formed of the modeling material 12a by a method other than the inkjet method.
  • the surrounding part 22 may be formed with the modeling material 12a by a FDM system.
  • the three-dimensional structure 20 manufactured by the three-dimensional structure manufacturing method according to this embodiment includes the modeling material 13a that forms the internal portion 21 and the modeling material 12a that forms the surrounding portion 22.
  • the rigidity in the solid state is large, so the modeling material 13a forming the internal part 21 can improve the rigidity in the thin part. Therefore, the three-dimensional structure manufacturing method according to the present embodiment can manufacture the three-dimensional structure 20 that can suppress the occurrence of breakage and bending at a thin portion.
  • the internal formation step of forming the internal portion 21 with the modeling material 13a before the partial peripheral portion 22 of the three-dimensional structure 20 is formed by the surrounding formation step of forming the peripheral portion 22 with the modeling material 12a.
  • the internal forming process may be executed after all the surrounding portions 22 of the three-dimensional structure 20 are formed by the surrounding forming process.
  • the step of forming the molding material 13a for the internal portion 21 into the inside of the peripheral portion 22 through the hole by forming a hole communicating with the inside from the outside of the peripheral portion 22 in the peripheral forming step is the peripheral forming step. May be executed after all the surrounding portions 22 of the three-dimensional structure 20 are formed.
  • FIG. 7 is a schematic front view of the modeling apparatus 110 used in the three-dimensional structure manufacturing method according to the present embodiment.
  • the modeling apparatus 110 includes a modeling table 111 serving as a table for a three-dimensional model when a three-dimensional model is manufactured, and an inkjet that discharges a liquid modeling material 112 a toward the modeling table 111. And a modeling head 112 of the type.
  • UV curable ink that is made solid by being irradiated with UV may be used.
  • FIG. 8 is a block diagram of the modeling apparatus 110.
  • the modeling apparatus 110 is configured with respect to one of the modeling table 111 and the modeling head 112 in the Y direction orthogonal to the Z direction as the ejection direction of the modeling material 112 a by the modeling head 112.
  • a main scanning direction driving device 113 that relatively drives the other is provided.
  • the Z direction is the vertical direction.
  • the modeling apparatus 110 is a sub-scanning direction driving apparatus 114 that drives the other of the modeling table 111 and the modeling head 112 in the X direction (not shown) orthogonal to both the Y direction and the Z direction. It has.
  • the modeling apparatus 110 includes a height direction driving device 115 that relatively drives one of the modeling table 111 and the modeling head 112 in the Z direction.
  • the modeling apparatus 110 includes a communication unit 116 that is a communication device that communicates with an external apparatus via a network (not shown), and a control unit 117 that controls the entire modeling apparatus 110.
  • the control unit 117 includes a CPU, a ROM that stores programs and various data in advance, and a RAM that is used as a work area of the CPU.
  • the CPU executes a program stored in the ROM.
  • the control unit 117 of the modeling apparatus 110 receives the modeling head 112, the main scanning direction driving device 113, the sub-scanning direction driving device 114, and the high level based on the input modeling data.
  • a three-dimensional structure is manufactured by controlling the vertical drive device 115. Specifically, in the surrounding formation step, the control unit 117 discharges the liquid modeling material 112a by the modeling head 112 based on the modeling data, and then solidifies the discharged modeling material 112a, thereby performing the three-dimensional modeling. Form the peripheral part of the inner part of the object.
  • FIG. 9A is a plan view of an example of the three-dimensional structure 120 manufactured by the modeling apparatus 110.
  • FIG. 9B is a cross-sectional view taken along arrow II-II shown in FIG.
  • the three-dimensional structure 120 shown in FIG. 9 is a doll.
  • the front-rear direction indicated by an arrow 120a the left-right direction indicated by an arrow 120b
  • the upper-lower direction indicated by an arrow 120c in FIG. Corresponds to the Z direction.
  • the three-dimensional structure 120 includes an internal part 121 and a peripheral part 122.
  • the inner part 121 is formed by a reinforcing material 121a other than the modeling material 112a discharged by the modeling head 112.
  • a reinforcing material 121a metal, resin, wood, or the like may be used.
  • a metal is used as the reinforcing material 121a
  • a piano wire is preferable when it is thin and needs strength
  • stainless steel is preferable when rust is a problem.
  • a resin is used as the reinforcing material 121a
  • an epoxy resin is preferable when adhesion to the modeling material 112a is required
  • an FRP such as a resin containing glass fiber or a resin containing carbon fiber is preferable when rigidity is required. .
  • the reinforcing material 121a has higher rigidity than the solid modeling material 112a. Further, it is preferable that the reinforcing material 121a has a higher bending strength than the solid modeling material 112a. Further, it is preferable that the reinforcing material 121a has a high impact value in addition to the bending strength as compared with the solid modeling material 112a.
  • the surrounding portions 122 at least a portion on the surface side of the three-dimensional structure 120 may be a decorated portion decorated with a pattern or a color.
  • the surrounding portion 122 is formed by stacking a plurality of layers 122a of the modeling material 112a in the Z direction by an inkjet method.
  • control unit 117 may flatten the surface of the layer 122a with a roller (not shown) after discharging the modeling material 112a forming the layer 122a in order to make the thickness of the plurality of layers 122a uniform.
  • the control unit 117 may flatten the surface of the layer 122a with a roller (not shown) after discharging the modeling material 112a forming the layer 122a in order to make the thickness of the plurality of layers 122a uniform.
  • the three-dimensional structure 120 has a lower adhesion between the layers 122a. Therefore, when the external force is applied or the layer 122a expands or contracts due to the influence of temperature, the three-dimensional structure 120 is adjacent. Separation may occur between the two layers 122a.
  • control unit 117 flattens the surface of the layer 122a in order to increase the adhesion between the two adjacent layers 122a, and then discharges the modeling material 112a to the surface of the layer 122a by the modeling head 112. A large number of minute protrusions may be formed.
  • the control unit 117 may detect the state of formation of the three-dimensional structure 120 using a detection device such as a CCD during the formation of the three-dimensional structure 120. And the control part 117 judges whether the condition of formation of the three-dimensional structure 120 is progressing according to modeling data. When the control unit 117 determines that the state of formation of the three-dimensional structure 120 does not proceed according to the modeling data, the control unit 117 corrects the modeling data so that the outer shape of the three-dimensional structure 120 is the same as the original modeling data. Thereby, the accuracy of the external shape of the completed three-dimensional structure 120 is improved.
  • a detection device such as a CCD
  • the position of the reinforcing material 121a with respect to the peripheral portion 122 is detected and detected.
  • the modeling data may be corrected based on the position.
  • the peripheral portion 122 is superimposed on the internal portion 121 in the vertical direction, that is, the Z direction, there is a great advantage that the modeling data is corrected according to the situation. .
  • the internal portion 121 is arranged in almost the entire area of the three-dimensional structure 120, but only the portions that need to be reinforced in the three-dimensional structure 120 as shown in FIG. 11. May be arranged.
  • a part of the reinforcing material 121a constituting the internal part 121 may be outside the three-dimensional structure 120 as shown in FIG.
  • the part 121b can be used for various purposes.
  • the portion 121b of the reinforcing material 121a may be used as a connection portion for connecting to another member.
  • the portion 121b may be simply inserted into and fixed to another member.
  • the portion 121b can be coupled to the screw of the other member.
  • the part 121b can be connected to another member in a state in which the angle can be changed with respect to the other member by forming a part such as a hinge that is a hinge.
  • FIG. 13 is a diagram illustrating an example in which a hinge 121c is formed on the portion 121b. In FIG.
  • the part 121b is provided with a hinge 121c and a connecting part 121d connected to a foot 123 as another member.
  • the hinge 121c is formed integrally with the inner portion 121, and includes a portion 121f in which a hole 121e is formed at the center, a shaft 121g inserted into the hole 121e, and a hole (not shown) into which the shaft 121g is inserted. 121h.
  • the connecting part 121d is formed integrally with the part 121h.
  • the ankle joint of the doll is formed by the hinge 121c, but joints of other parts such as a knee joint and a hip joint may be formed by the same configuration. Further, in FIG.
  • the hinge 121 c can realize rotation about the axis 121 g orthogonal to the extending direction of the internal portion 121, but centering on the axis extending in the extending direction of the internal portion 121. It may be possible to realize rotation in a direction other than the rotation shown in FIG.
  • the portion 121b of the reinforcing material 121a may be used for energization.
  • the portion 121b itself of the reinforcing material 121a may be used as an electrode.
  • electric power is supplied from the outside of the three-dimensional structure 120 by inserting an electric wire inside the reinforcing material 121a. Can be done.
  • the electric power supplied from the outside of the three-dimensional structure 120 is supplied to an electronic component attached to the three-dimensional structure 120.
  • an LED Light Emitting Diode
  • the three-dimensional structure 120 can be energized inside or can be realized by using the reinforcing material 121a.
  • the modeling material 112a in a place where energization is necessary includes a particle of a conductive substance. By using the material 112a, internal energization can be realized.
  • FIG. 14 is an external perspective view of the three-dimensional structure 220 manufactured by the modeling apparatus 110.
  • FIG. 15A is a side view of the three-dimensional structure 220 in a state before the support material portion 223 formed by the support material 112b is removed.
  • FIG. 15B is a bottom view of the three-dimensional structure 220 that is being manufactured by the modeling apparatus 110.
  • the three-dimensional structure 220 shown in FIGS. 14 and 15 is a small bird model that stands on a disk-shaped table.
  • the vertical direction indicated by the arrow 220a in FIGS. 14 and 15, the front-rear direction indicated by the arrow 220b, and the left-right direction indicated by the arrow 220c are respectively the X direction when manufactured by the modeling apparatus 110, It corresponds to the Y direction and the Z direction.
  • the three-dimensional structure 220 includes an internal part 221 and a peripheral part 222.
  • the internal portion 221 is formed by a reinforcing material 221a other than the modeling material 112a discharged by the modeling head 112.
  • a reinforcing material 221a metal, resin, wood, or the like may be used.
  • the reinforcing material 221a has higher rigidity than the solid modeling material 112a. Further, it is preferable that the reinforcing material 221a has a higher bending strength than the solid modeling material 112a. Furthermore, it is preferable that the reinforcing material 221a has a high impact value in addition to the high bending strength as compared with the solid modeling material 112a.
  • At least a portion on the surface side of the three-dimensional structure 220 may be a decorated portion decorated with a pattern or a color.
  • the surrounding portion 222 is formed by a plurality of layers of the modeling material 112a when a plurality of layers including at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
  • the support material portion 223 is provided to support the peripheral portion 222 from the lower side in the vertical direction, that is, the Z direction, or from the horizontal direction when the peripheral portion 222 is formed.
  • the support material portion 223 is formed by the liquid support material 112b being ejected by a head (not shown) similar to the modeling head 112, and then the ejected support material 112b being solid, like the surrounding portion 222. Is done.
  • the support material portion 223 is formed by a plurality of layers of the support material 112b when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
  • the support material 112b can be easily dissolved and removed by water or the like.
  • the reinforcing material 221a is preferably a wire having a diameter smaller than the thickness of the three-dimensional structure 220. In the middle of the lamination, the reinforcing material 221a extending in the extending direction of the layers is disposed. Since the bent portion 221b extending in the direction perpendicular to the laminated surface, that is, the direction indicated by the arrow 220c is present at the end of the reinforcing material 221a, the three-dimensional structure 220 is compared with the case where the bent portion 221b is not present. Thus, the strength against twisting in the three-dimensional direction is increasing.
  • the reinforcing material 221a is disposed in the peripheral portion 222 so as not to protrude to the outside of the three-dimensional structure 220. It is preferable that the reinforcing material 221a is not visible at least from the outside of the three-dimensional structure 220.
  • the reinforcing material 221 a It is preferable to arrange
  • the thin tail feather portion 231 is easily bent over time due to the weight of the tail feather itself. Further, when the three-dimensional structure 220 does not include the reinforcing material 221a, the thin leg portion 232 is easily broken by the weight of the portion above the leg. However, since the three-dimensional structure 220 includes the reinforcing material 221a, the occurrence of breakage and bending can be suppressed.
  • FIG. 16 is a side cross-sectional view of a three-dimensional structure 320 that is being manufactured by the modeling apparatus 110.
  • a three-dimensional structure 320 shown in FIG. 16 is a large bird model standing on a disk-shaped table.
  • the three-dimensional structure 320 has a left-right direction (not shown), a front-rear direction indicated by an arrow 320b in FIG. 16, and an up-down direction indicated by an arrow 320c, respectively. Corresponds to the Z direction.
  • the three-dimensional structure 320 includes an internal part 321 and a peripheral part 322.
  • the internal portion 321 is formed by a reinforcing material 321a other than the modeling material 112a discharged by the modeling head 112.
  • a reinforcing material 321a metal, resin, wood, or the like may be used.
  • the reinforcing material 321a has higher rigidity than the solid modeling material 112a.
  • the reinforcing material 321a has a higher bending strength than the solid modeling material 112a.
  • the reinforcing material 321a has a high impact value in addition to the high bending strength as compared with the solid modeling material 112a.
  • the peripheral portion 322 is formed by a plurality of layers of the modeling material 112a when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
  • the support material portion 323 formed by the support material 112b is provided to support the peripheral portion 322 from the lower side in the vertical direction, that is, the Z direction, or from the horizontal direction when the peripheral portion 322 is formed.
  • the support material portion 323 is formed by the liquid support material 112b being discharged by a head (not shown) similar to the modeling head 112, and then the discharged support material 112b being solid, like the surrounding portion 322. Is done.
  • the support material portion 323 is formed by a plurality of layers of the support material 112b when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
  • the support material 112b can be easily dissolved and removed by water or the like.
  • the reinforcing material 321a has a surface shape.
  • a surface-shaped reinforcing material 321a extending in the extending direction of the layer is disposed in the middle of the lamination.
  • a plurality of reinforcing members 321a are arranged in the direction indicated by the arrow 320c. Since the space 320d in which the modeling material 112a does not exist is formed in a part of the three-dimensional structure 320 in the vertical direction, that is, the lower side of the reinforcing material 321a in the Z direction in the surrounding formation process, the necessary modeling material is formed. By significantly reducing the amount of 112a, weight and material costs can be reduced. In addition, since the weight of the three-dimensional structure 320 is reduced, it is possible to suppress the breakage or bending of the thin leg portion 331 due to the weight of the portion above the leg.
  • the peripheral portion 322 includes a support portion 322a that supports the reinforcing material 321a in the vertical direction, that is, the lower side of the reinforcing material 321a in the Z direction, and forms a part of the boundary of the space 320d.
  • the surface 322b of the support portion 322a is an inclined surface that does not overhang in the surrounding formation step, so the layer of the upper modeling material 112a in the vertical direction, that is, the Z direction is the lower modeling. It is reliably formed on the layer of material 112a. Therefore, the three-dimensional structure 320 can suppress the collapse of the shape of each layer in the space 320d, and as a result, can be formed with high accuracy.
  • the reinforcing member 321a has a large number of holes 321b in at least a part of a portion where spaces 320d are formed on both sides in the direction orthogonal to the extending direction of the layers, that is, the direction indicated by the arrow 320c. It may be formed.
  • the hole 321b is formed in the reinforcing material 321a, the amount of the necessary reinforcing material 321a can be significantly reduced, so that the weight and the material cost can be reduced. is there.
  • FIG. 18 is a side cross-sectional view of a three-dimensional structure 420 that is being manufactured by the modeling apparatus 110.
  • FIG. 19A is a cross-sectional view taken along the line IV-IV shown in FIG.
  • a three-dimensional structure 420 shown in FIGS. 18 and 19A is a truncated cone having a diameter of the upper base larger than that of the lower base.
  • the three-dimensional structure 420 has a left-right direction indicated by an arrow 420a in FIG. 19A, a front-rear direction indicated by an arrow 420b in FIGS. 18 and 19A, and a vertical direction indicated by an arrow 420c in FIG. This corresponds to the X direction, the Y direction, and the Z direction at the time of manufacture by the apparatus 110.
  • the three-dimensional structure 420 includes an inner part 421 and a surrounding part 422.
  • the internal portion 421 is formed by a reinforcing material 421a other than the modeling material 112a discharged by the modeling head 112.
  • a reinforcing material 421a metal, resin, wood, or the like may be used.
  • the reinforcing material 421a has higher rigidity than the solid modeling material 112a. Further, it is preferable that the reinforcing material 421a has a higher bending strength than the solid modeling material 112a. Furthermore, it is preferable that the reinforcing material 421a has a high impact value in addition to the bending strength as compared with the solid modeling material 112a.
  • the peripheral portion 422 is formed by a plurality of layers of the modeling material 112a when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
  • the support material portion 423 formed by the support material 112b is provided to support the peripheral portion 422 from the lower side in the vertical direction, that is, the Z direction, or from the horizontal direction when the peripheral portion 422 is formed.
  • the support material portion 423 is formed by the liquid support material 112b being discharged by a head (not shown) similar to the modeling head 112, and then the discharged support material 112b being solid, like the surrounding portion 422. Is done.
  • the support material portion 423 is formed by a plurality of layers of the support material 112b when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
  • the support material 112b can be easily dissolved and removed by water or the like.
  • the reinforcing material 421a has a surface shape.
  • a surface-shaped reinforcing material 421a extending in the extending direction of the layers is arranged in the middle of the lamination.
  • a plurality of reinforcing members 421a are arranged in the direction indicated by the arrow 420c. Since the space 420d in which the modeling material 112a does not exist is formed in the part of the three-dimensional structure 420 in the vertical direction, that is, the lower side of the reinforcing material 421a in the Z direction in the surrounding formation process, the necessary modeling material is formed. By significantly reducing the amount of 112a, weight and material costs can be reduced.
  • the surrounding portion 422 includes a support portion 422a that supports the reinforcing material 421a on the lower side in the vertical direction, that is, the Z direction in the surrounding forming step, and constitutes a part of the boundary of the space 420d.
  • the surface 422b of the support portion 422a is an inclined surface that does not overhang in the periphery forming step, and therefore, the layer of the upper modeling material 112a in the vertical direction, that is, the Z direction is the lower modeling. It is reliably formed on the layer of material 112a. Therefore, the three-dimensional structure 420 can suppress the collapse of the shape of each layer in the space 420d, and as a result, can be formed with high accuracy.
  • the support portion 422a includes an end portion support portion 422c that supports the reinforcing material 421a at an end portion of the reinforcing material 421a in the extending direction of the layer, and a reinforcing material 421a in a portion other than the end portion of the reinforcing material 421a in the extending direction of the layer. And a non-end support portion 422d for supporting the.
  • the non-end support part 422d may be a wall that partitions the space 420d as shown in FIG. 19A, or may be a pillar that does not partition the space 420d as shown in FIG. 19B.
  • the reinforcing material 421a Since the three-dimensional structure 420 is provided with the non-end support part 422d by the modeling material 112a at a portion of the reinforcing material 421a that is long in the extending direction of the layer, the reinforcing material 421a is warped. As a result, it can be formed with high accuracy.
  • the reinforcing member 421a has a large number of holes 421b in at least a part of a portion where spaces 420d are formed on both sides in the direction perpendicular to the extending direction of the layers, that is, the direction indicated by the arrow 420c. It may be formed.
  • the hole 421b is formed in the reinforcing material 421a, the three-dimensional structure 420 can reduce the amount of the necessary reinforcing material 421a, thereby reducing the weight and the material cost. is there.
  • the peripheral portion is formed by an ink jet method.
  • the surrounding portion may be formed by the modeling material 112a by a method other than the ink jet method.
  • the surrounding portion may be formed of the modeling material 112a by the FDM method.
  • the three-dimensional structure manufactured by the three-dimensional structure manufacturing method according to the present embodiment is compared with the solid state forming material in which the reinforcing material forming the inner portion forms the surrounding portion. Since the rigidity is large, the rigidity in the thin portion can be improved by the reinforcing material. Therefore, the three-dimensional structure manufacturing method according to the present embodiment can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending at a thin portion.
  • the reinforcing material is disposed inside the three-dimensional structure, it is possible to suppress the appearance from being deteriorated by the reinforcing material, unlike the configuration in which the reinforcing material is disposed outside. Moreover, since the reinforcing material is arrange
  • the three-dimensional structure can improve convenience when the reinforcing material is used for connection to other members in addition to reinforcement.
  • the internal forming process in which the reinforcing material is arranged in the peripheral portion is executed before the partial peripheral portion of the three-dimensional structure is formed by the peripheral forming step of forming the peripheral portion with the modeling material. Therefore, it is possible to easily fix the reinforcing material inside the three-dimensional structure as compared with the method of inserting the reinforcing material into the peripheral part after all the peripheral parts of the three-dimensional structure are formed by the peripheral forming process. it can.
  • the internal formation process which inserts a reinforcing material in a three-dimensional structure after all the surrounding parts of a three-dimensional structure are formed by the periphery formation process may be performed.
  • the step of inserting the reinforcing material into the inside of the surrounding portion through this hole It may be performed after the surrounding portion of the is formed.
  • the internal formation process which inserts a reinforcing material in a three-dimensional structure is performed after all the peripheral parts of the three-dimensional structure are formed by the peripheral formation process, a part of the three-dimensional structure is performed by the peripheral formation process. Compared to a case where an internal forming process in which a reinforcing material is disposed on the peripheral portion before the peripheral portion is formed, manufacturing of the peripheral portion can be facilitated.
  • FIG. 21 is a schematic front view of the modeling apparatus 510 according to the present embodiment.
  • 21 is a basic structure of the modeling apparatus according to the present embodiment.
  • the modeling apparatus 510 includes a support member 511 that supports the three-dimensional structure when the three-dimensional structure is manufactured.
  • the modeling apparatus 510 includes an inkjet-type modeling material head 512 that ejects a liquid modeling material 512 a toward the support member 511 and an inkjet-type support material head that ejects a liquid support material 513 a toward the support member 511. 513 and a carriage 515 on which a modeling material 512a discharged by the modeling material head 512 and an ultraviolet irradiation device 514 for irradiating the support material 513a discharged by the support material head 513 with ultraviolet rays 514a are mounted. I have.
  • the modeling material 512a is a UV curable ink that is solidified by being irradiated with UV.
  • the modeling material 512a is modeling ink that becomes a material of a three-dimensional modeled object.
  • CMYK Cyan, Magenta, Yellow, Black
  • the modeling apparatus 510 may include a modeling material head 512 for each type of the modeling material 512a.
  • the support material 513a is a UV curable ink that is solidified by being irradiated with UV.
  • the support material 513a becomes a material of the support material portion that supports the three-dimensional structure in order to form a three-dimensional structure having an arbitrary shape with the modeling ink.
  • the support material 513a may be CMYK color ink.
  • the support material 513a is ink that can be easily removed by a specific liquid such as water.
  • the support material portion is formed on the lower side in the vertical direction or in the horizontal direction with respect to the three-dimensional modeled object.
  • the support material portion is formed on the lower side in the vertical direction with respect to the overhang portion and supports the overhang portion.
  • the modeling apparatus 510 may include a support material head 513 for each type of support material 513a.
  • the modeling apparatus 510 includes a carriage 517 on which a laser cutter 516 that performs cutting with a laser beam 516a is mounted.
  • the laser beam 516a may be a pulse laser or a CW (Continuous Wave) laser.
  • the modeling material 512a or the porous sheet reacts with the surrounding gas due to heat generated when the modeling material 512a or a porous sheet described later is irradiated with laser light 516a, and the modeling material 512a or the porous sheet is burnt or oxidized. In order to suppress this, it is preferable that the cutting process by the laser cutter 516 is performed in an inert gas.
  • FIG. 22 (a) is a schematic front view of a part of the modeling apparatus 510 when the laser beam 516a is irradiated in the vertical direction.
  • FIG. 22B is a schematic front view of a part of the modeling apparatus 510 when the laser beam 516a is irradiated in a direction different from the vertical direction.
  • the laser cutter 516 is mounted on the carriage 517 so that the direction can be changed, and by changing the direction, the laser beam 516 a is irradiated in an arbitrary direction in which the vertical component is downward. Is possible. Since the irradiation direction of the laser beam 516a by the laser cutter 516, that is, the cutting direction by the laser beam 516a can be changed, the surface of the three-dimensional structure cut out by the laser beam 516a can be smoothed.
  • a porous sheet 531 in which a large number of holes are formed is supported on a support member 511 via a release sheet 532.
  • the perforated sheet 531 is a sheet in which a large number of holes are formed so that the modeling material 512a and the support material 513a can pass through or permeate through the holes.
  • a sheet having a mesh hole such as a film having a mesh knitted with plastic fiber or metal wire, or a cloth can be used.
  • a sheet in which holes not depending on the mesh are formed such as an etching film in which a large number of holes are formed by etching, may be employed.
  • the release sheet 532 is a member that can easily peel the porous sheet 531 on which the modeling material 512a is adhered from the release sheet 532 itself. Further, the release sheet 532 is a member that can be easily separated from the support member 511 as well.
  • the porous sheet 531 may be directly supported by the support member 511 without using the release sheet 532.
  • FIG. 23 is a block diagram of the modeling apparatus 510.
  • the modeling apparatus 510 includes a Y direction orthogonal to the Z direction as the ejection direction of the modeling material 512 a by the modeling material head 512 and the ejection direction of the support material 513 a by the support material head 513. Further, a modeling main scanning direction driving device 521 for driving the other of the support member 511 and the carriage 515 relative to the other is provided.
  • the Z direction is the vertical direction.
  • the modeling apparatus 510 is a modeling sub-scanning direction driving apparatus that relatively drives one of the support member 511 and the carriage 515 in the X direction (not shown) orthogonal to both the Y direction and the Z direction. 522.
  • the modeling apparatus 510 includes a modeling height direction driving apparatus 523 that relatively drives one of the support member 511 and the carriage 515 in the Z direction.
  • the modeling apparatus 510 includes a cutting main scanning direction driving device 524 that relatively drives one of the support member 511 and the carriage 517 in the Y direction.
  • the modeling apparatus 510 includes a cutting sub-scanning direction driving device 525 that relatively drives one of the support member 511 and the carriage 517 in the X direction.
  • the modeling apparatus 510 includes a cutting height direction driving device 526 that relatively drives one of the support member 511 and the carriage 517 in the Z direction.
  • the modeling apparatus 510 changes the direction of the laser cutter 516 relative to the carriage 517 in order to change the irradiation direction of the laser beam 516a by the laser cutter 516 to an arbitrary direction in which the vertical component is downward. It has.
  • the modeling apparatus 510 includes a communication unit 528 that is a communication device that communicates with an external apparatus via a network (not shown), and a control unit 529 that controls the entire modeling apparatus 510.
  • the control unit 529 includes a CPU, a ROM that stores programs and various data in advance, and a RAM that is used as a work area of the CPU.
  • the CPU executes a program stored in the ROM.
  • the control unit 529 of the modeling apparatus 510 receives the modeling material head 512, the support material head 513, the ultraviolet irradiation device 514, and the laser cutter based on the input modeling data.
  • a three-dimensional structure is manufactured by controlling the vertical direction driving device 526 and the cutting direction changing device 527.
  • the control unit 529 discharges the liquid modeling material 512a toward the porous sheet 531 by the modeling material head 512, and then applies ultraviolet rays to the modeling material 512a attached to the porous sheet 531 by the ultraviolet irradiation device 514. By irradiating, the modeling material 512a is cured to be solid.
  • the control unit 529 discharges the liquid support material 513a toward the porous sheet 531 by the support material head 513 and then attaches the support to the porous sheet 531. By irradiating the material 513a with ultraviolet rays by an ultraviolet irradiation device 514, the support material 513a is cured to be solid.
  • the control unit 529 controls the modeling main scanning direction driving device 521 and the modeling sub-scanning direction driving device 522 based on the modeling data, and the modeling material 512a and the support material 513a attached to the porous sheet 531 as described above.
  • the solid material is formed into a single porous sheet 531 with the modeling material portion formed of the modeling material 512a and the support material portion formed of the support material 513a.
  • FIG. 24 is a schematic front sectional view of a part of the modeling apparatus 510 in a state in which the modeling material portion 541 and the support material portion 542 are formed on one porous sheet 531.
  • control unit 529 controls the modeling material head 512, the support material head 513, the ultraviolet irradiation device 514, the modeling main scanning direction driving device 521, and the modeling sub-scanning direction driving device 522 based on the modeling data.
  • a modeling material portion 541 and a support material portion 542 are formed on one porous sheet 531.
  • the control unit 529 forms the modeling material portion 541 and the support material portion 542 on one perforated sheet 531, and then based on the modeling data, the cutting main scanning direction driving device 524, the cutting sub-scanning direction driving device 525, and the cutting While controlling the direction changing device 527, the laser cutter 516 irradiates the porous sheet 531 with laser light 516a, thereby cutting the porous sheet 531 and part of the three-dimensional structure in the porous sheet 531. A part other than the modeled object is made separable.
  • FIG. 25 is a schematic front cross-sectional view of a part of the modeling apparatus 510 in which a part 543 of the three-dimensional structure in one porous sheet 531 and a part other than the three-dimensional structure can be separated. .
  • control unit 529 controls the laser cutter 516, the cutting main scanning direction driving device 524, the cutting sub-scanning direction driving device 525, and the cutting direction changing device 527, as shown in FIG.
  • a part 543 of the three-dimensional structure in one porous sheet 531 and a part other than the three-dimensional structure are made separable.
  • the width 543a of the part 543 of the three-dimensional structure is defined by printing by the modeling material head 512.
  • the modeling material portion 541 has a three-dimensional structure in which the width 541a of the modeling material portion 541 is cut by the laser cutter 516 as shown in FIG. It is preferable that the portion 543 is wider than the width 543a so as to include the portion 543 of the three-dimensional structure.
  • the width 541a may be the same as the width 543a.
  • the controller 529 makes a part 543 of the three-dimensional structure in the single porous sheet 531 separable from a part other than the three-dimensional structure, and then drives the height direction for modeling based on the modeling data.
  • the distance between the supporting member 511 and the carriage 515 and the carriage 517 in the vertical direction is increased by the distance corresponding to the thickness of the single porous sheet 531.
  • a new porous sheet 531 is stacked on the upper side in the vertical direction of the porous sheet 531 in which a part 543 of the three-dimensional structure and a portion other than the three-dimensional structure are separable.
  • the modeling height direction driving device 523 and the cutting height direction driving are performed.
  • the device 526 may be the same device.
  • FIG. 26 is a schematic front sectional view of a part of the modeling apparatus 510 in a state in which the three-dimensional structure 550 is manufactured.
  • FIG. 27 is an external perspective view of the three-dimensional structure 550 shown in FIG.
  • the control unit 529 manufactures a three-dimensional structure 550 as shown in FIG. 26 by repeating the above operation.
  • the three-dimensional structure 550 is configured such that a layer is formed for each thickness of the porous sheet 531 and a plurality of layers are stacked.
  • the three-dimensional structure 550 is in a state in which a part 543 of the three-dimensional structure and a part other than the three-dimensional structure can be separated in each porous sheet 531. Therefore, the operator can take out the three-dimensional structure 550 as shown in FIG.
  • a three-dimensional structure 550 shown in FIG. 27 is a hemispherical three-dimensional object in which a hemispherical groove 550a is formed.
  • the amount of the modeling material 512a attached to the porous sheet 531 may be an amount by which the porous sheet 531 and the porous sheet 531 immediately below the porous sheet 531 are adhered by the modeling material 512a.
  • the amount of the modeling material portion 541 may not be soaked uniformly.
  • the porous sheet 531 is cut by the laser cutter 516, another porous sheet 531 is overlaid on the porous sheet 531, and the lower porous sheet 531 is cut in the horizontal position.
  • the modeling material 512a is attached to the upper porous sheet 531 at a position corresponding to the position, the modeling material 512a attached to the upper porous sheet 531 may enter the cut of the lower porous sheet 531. . If the modeling material 512a that has entered the cut is cured by ultraviolet rays, the three-dimensional modeled object 550 may not be taken out.
  • the control unit 529 cuts the porous sheet 531 with the laser cutter 516
  • the control unit 529 fills the cut with the support material 513a, and then positions the upper porous sheet 531 on the porous sheet 531 in the horizontal direction.
  • the modeling material 512a may be prevented from entering the cut from the upper porous sheet 531 and the three-dimensional model 550 may not be taken out. Can be reduced.
  • FIG. 28A is a schematic cross-sectional view of a porous sheet 531 in which a cut 531 a is cut by a laser cutter 516.
  • FIG. 28B is a schematic cross-sectional view of the porous sheet 531 that has been subjected to subsequent steps in the state shown in FIG.
  • FIG. 28C is a schematic cross-sectional view of the porous sheet 531 that has been subjected to subsequent steps in the state shown in FIG.
  • FIG. 28D is a schematic cross-sectional view of the porous sheet 531 that has been subjected to the subsequent process in the state shown in FIG.
  • FIG. 28A when the control unit 529 cuts 531 a into the porous sheet 531 with the laser cutter 516, another porous sheet 531 is overlaid on the porous sheet 531 to further form the modeling material 512 a.
  • the notch 531a of the porous sheet 531 with the notch 531a is filled with the support material 513a as shown in FIG. 28B, and the support material 513a is cured by the ultraviolet ray 514a.
  • the control unit 529 attaches the modeling material 512a as shown in FIG. 28C by superimposing another porous sheet 531 on the porous sheet 531 in which the notch 531a is filled with the support material 513a, and the modeling material portion 541 is attached.
  • control unit 529 makes a cut 531a in the porous sheet 531 on which the modeling material portion 541 is formed, as shown in FIG. Note that the support material 513a that is hardened by filling the cuts 531a can be easily removed with water or the like.
  • FIG. 29 is a schematic front view showing a modeling apparatus 610 which is an example of the modeling apparatus 510.
  • 21 can be realized as the modeling apparatus 610 shown in FIG.
  • the modeling apparatus 610 includes a feeding roller 611 around which the porous sheet 531 is wound in order to feed out the porous sheet 531, and a winding roller 612 around which the porous sheet 531 is wound in order to wind up the porous sheet 531. And a plurality of rollers 613 for extending the perforated sheet 531 that is fed by the feeding roller 611 and wound by the winding roller 612 in a direction orthogonal to the Z direction.
  • the central axes of the feeding roller 611, the take-up roller 612, and the roller 613 extend in the X direction.
  • the feeding roller 611, the take-up roller 612, and the roller 613 are supported so as to be rotatable around their respective central axes.
  • FIG. 30 is a block diagram of the modeling apparatus 610.
  • the configuration of the control system of the modeling apparatus 610 is the same as that shown in FIG. 23 except that it includes a roller rotating device 621 that controls the rotation of the feeding roller 611 and the take-up roller 612. It is.
  • the roller rotating device 621 moves the perforated sheet 531 relative to the support member 511, and constitutes the moving means of the present invention.
  • the modeling main scanning direction driving device 521 drives only the carriage 515 in the Y direction among the support member 511 and the carriage 515.
  • the modeling sub-scanning direction driving device 522 drives only the carriage 515 of the support member 511 and the carriage 515 in the X direction.
  • the cutting main scanning direction driving device 524 drives only the carriage 517 in the Y direction among the support member 511 and the carriage 517.
  • the cutting sub-scanning direction driving device 525 drives only the carriage 517 out of the support member 511 and the carriage 517 in the X direction.
  • the modeling height direction driving device 523 and the cutting height direction driving device 526 are the same device, and only the support member 511 among the support member 511, the carriage 515, and the carriage 517 is driven in the Z direction.
  • FIG. 31 is a schematic plan view of a part of the modeling apparatus 610.
  • control unit 529 of the modeling apparatus 610 forms the modeling material portion 541 and the support material portion 542 on the porous sheet 531, and then the part 543 of the three-dimensional modeling object in the porous sheet 531 and the three-dimensional modeling object.
  • the part 531b of a specific range is cut out from the porous sheet 531 as shown in FIG.
  • control unit 529 supports the cutting height direction driving device 526, which is the modeling height direction driving device 523, based on the modeling data, thereby supporting only the distance corresponding to the thickness of one porous sheet 531.
  • the member 511 is moved downward in the vertical direction.
  • control unit 529 operates the roller rotating device 621 so as to wind up the porous sheet 531 by the winding roller 612 by a distance longer than the length of the portion 531b in the Y direction.
  • the perforated sheet 531 is fed from the feed roller 611 by the amount wound by the take-up roller 612.
  • the control unit 529 urges the feeding roller 611 by the roller rotating device 621 in the direction opposite to the rotation direction when the porous sheet 531 is fed, and the winding roller 612 is made porous.
  • the porous sheet 531 that is fed by the feeding roller 611 and wound by the winding roller 612 is horizontal with respect to the support member 511.
  • a tension in the Y direction is applied to the perforated sheet 531 that overlaps the positions in FIG.
  • FIG. 32 is a schematic front sectional view of a part of the modeling apparatus 610.
  • the control unit 529 manufactures a three-dimensional structure 550 as shown in FIG. 32 by repeating the above operation.
  • a three-dimensional structure 550 shown in FIG. 32 has a layer formed for each thickness of the porous sheet 531 and is formed by stacking a plurality of layers.
  • the porous sheet 531 has been transported in the Y direction as described above, but may be transported in the X direction. That is, in the modeling apparatus 610, the central axes of the feeding roller 611, the take-up roller 612, and the roller 613 may extend in the Y direction.
  • the modeling apparatus 610 cuts a part of the porous sheet 531, that is, the part 531 b by the laser cutter 516, and then moves the porous sheet 531 relative to the support member 511 by the roller rotating device 621.
  • a perforated sheet 531 is laminated on the side opposite to the support member 511 side with respect to the portion 531b cut out by the laser cutter 516 and supported by the support member 511.
  • FIG. 33 is a schematic front view showing a modeling apparatus 710 that is an example of the modeling apparatus 510.
  • 21 can be realized as a modeling apparatus 710 shown in FIG.
  • the modeling apparatus 710 includes a feeding roller 711 around which the porous sheet 531 is wound in order to feed out the porous sheet 531.
  • the central axis of the feeding roller 711 extends in the X direction.
  • the feeding roller 711 is supported so as to be rotatable around the central axis.
  • the support member 511 of the modeling apparatus 710 includes a sheet fixing portion 511a to which the porous sheet 531 is fixed.
  • a central axis 511b of the support member 511 of the modeling apparatus 710 extends in the X direction. And the supporting member 511 of the modeling apparatus 710 is supported so that rotation around the central axis 511b is possible.
  • FIG. 34 is a block diagram of the modeling apparatus 710.
  • the configuration of the control system of the modeling apparatus 710 includes a support member rotation device 721 that controls the rotation of the support member 511 and a roller rotation device 722 that controls the rotation of the feed roller 711.
  • the configuration is the same as that shown in FIG.
  • the support member rotating device 721 rotates the support member 511 and constitutes the rotating means of the present invention.
  • the modeling main scanning direction driving device 521 drives only the carriage 515 in the Y direction among the support member 511 and the carriage 515.
  • the modeling sub-scanning direction driving device 522 drives only the carriage 515 of the support member 511 and the carriage 515 in the X direction.
  • the modeling height direction driving device 523 drives only the carriage 515 in the Z direction among the support member 511 and the carriage 515.
  • the cutting main scanning direction driving device 524 drives only the carriage 517 in the Y direction among the support member 511 and the carriage 517.
  • the cutting sub-scanning direction driving device 525 drives only the carriage 517 out of the support member 511 and the carriage 517 in the X direction.
  • the cutting height direction driving device 526 drives only the carriage 517 in the Z direction among the support member 511 and the carriage 517.
  • control unit 529 of the modeling apparatus 710 forms the modeling material portion 541 and the support material portion 542 on the porous sheet 531, and the part 543 of the three-dimensional modeling object in the porous sheet 531 and the three-dimensional modeling object. After making it a state which can be separated from other parts, by controlling the height direction driving device for modeling 523 and the height direction driving device for cutting 526 for cutting based on the modeling data, the thickness of one perforated sheet 531 The carriage 515 and the carriage 517 are moved upward in the vertical direction by the distance of.
  • the control unit 529 contacts the carriage 515 and the carriage 517 with the perforated sheet 531 wound around the support member 511 or the support member 511.
  • the carriage 515 is driven by at least one of the modeling main scanning direction driving device 521 and the modeling sub-scanning direction driving device 522 at a position where the cutting is not performed, and the cutting main scanning direction driving device 524 and the cutting sub-scanning direction driving device 525 are driven.
  • the carriage 517 is driven by at least one of them.
  • the control unit 529 operates the support member rotating device 721 so that the support member 511 rotates 180 degrees around the central axis 511b in a specific direction.
  • the perforated sheet 531 is fed from the feed roller 711 by the amount wound by the support member 511.
  • the control unit 529 is fed by the feed roller 711 by biasing the feed roller 711 by the roller rotating device 722 in a direction opposite to the rotation direction when the perforated sheet 531 is fed.
  • the tension in the Y direction is applied to the perforated sheet 531 whose position in the horizontal direction overlaps the support member 511 and whose position in the vertical direction is the uppermost side.
  • FIG. 35 is a schematic front sectional view of a part of the modeling apparatus 710.
  • the control unit 529 manufactures a three-dimensional structure 550 as shown in FIG. 35 by repeating the above operation.
  • a three-dimensional structure 550 shown in FIG. 35 has a layer for each thickness of the porous sheet 531 and is configured by stacking a plurality of layers.
  • the modeling apparatus 710 can manufacture a three-dimensional structure 550 on each of the two surfaces of the support member 511. Since the hardened modeling material 512a and the support material 513a are attached to the surface of the support member 511 with a certain degree of adhesive force, the three-dimensional structure 550 is positioned below the support member 511 in the vertical direction. Even if a certain amount of force is present, the three-dimensional structure 550 does not fall from the support member 511 unless a certain amount of force is applied.
  • the porous sheet 531 has been conveyed in the Y direction in the above, but may be conveyed in the X direction. That is, in the modeling apparatus 710, the central axis of the feeding roller 711 and the central axis 511b of the support member 511 may extend in the Y direction.
  • the support member rotating device 721 rotates the support member 511 to wind the porous sheet 531 around the support member 511 and stack the porous sheet 531.
  • the modeling apparatus 710 facilitates the stacking of the plurality of porous sheets 531 on the support member 511, and thus can facilitate the manufacture of the three-dimensional modeled object 550.
  • the modeling apparatus 610 shown in FIG. 29 maintains the position of the porous sheet 531 with respect to the carriage 515 and the carriage 517 by the balance of the pulling force of the porous sheet 531 by the feeding roller 611 and the take-up roller 612.
  • the modeling apparatus 710 shown in FIG. 33 maintains the position of the porous sheet 531 with respect to the carriage 515 and the carriage 517 by the pulling force of the porous sheet 531 only by the feeding roller 711. Therefore, the modeling apparatus 710 can maintain the position of the porous sheet 531 with respect to the carriage 515 and the carriage 517 with higher accuracy than the modeling apparatus 610.
  • the modeling device 710 includes two surfaces on which the three-dimensional structure 550 is formed in the support member 511 in the rotation direction, and can manufacture the three-dimensional structure 550 on each of the two surfaces of the support member 511. Since it is possible, compared with the modeling apparatus 610, it is possible to manufacture the some three-dimensional molded item 550 at high speed.
  • FIG. 36 is a schematic front view showing a modeling apparatus 810 that is an example of the modeling apparatus 510.
  • the modeling apparatus 510 shown in FIG. 21 can be realized as the modeling apparatus 810 shown in FIG.
  • control unit 529 is configured so that the shape of the support member 511 and the support member 511 rotate around the central axis 511b in 90 degrees instead of 180 degrees in a specific direction. Except for operating the support member rotating device 721, it is the same as the modeling apparatus 710 shown in FIG.
  • the modeling apparatus 810 has the porous sheet 531 conveyed in the Y direction, but may be conveyed in the X direction. That is, in the modeling apparatus 810, the central axis of the feeding roller 811 and the central axis 511b of the support member 511 may extend in the Y direction.
  • the modeling apparatus 810 rotates the support member 511 to wind the porous sheet 531 around the support member 511 and stack the porous sheet 531 in the same manner as the modeling apparatus 710 shown in FIG. With this configuration, the modeling apparatus 810 facilitates the stacking of the plurality of porous sheets 531 on the support member 511, and thus can facilitate the manufacture of the three-dimensional modeled object 550.
  • the modeling apparatus 810 includes four surfaces on which the three-dimensional structure 550 is formed in the rotation direction of the support member 511, and can manufacture the three-dimensional structure 550 on each of the four surfaces of the support member 511. Therefore, a plurality of three-dimensional structures 550 can be manufactured at a higher speed than the modeling apparatus 710.
  • FIG. 37 is a schematic front view showing a modeling apparatus 910 that is an example of the modeling apparatus 510.
  • FIG. 38 is a schematic side view of the modeling apparatus 910.
  • the modeling apparatus 510 shown in FIG. 21 can be realized as the modeling apparatus 910 shown in FIGS.
  • the modeling apparatus 910 includes a feeding roller 911 around which the perforated sheet 531 is wound in order to feed out the perforated sheet 531.
  • the central axis of the feeding roller 911 extends in the Y direction.
  • the feeding roller 911 is supported so as to be rotatable around the central axis.
  • the support member 511 of the modeling apparatus 910 includes a sheet fixing portion 511a to which the porous sheet 531 is fixed.
  • the support member 511 of the modeling apparatus 910 has a cylindrical shape.
  • the central axis of the support member 511 of the modeling apparatus 910 extends in the Y direction.
  • the support member 511 of the modeling apparatus 910 is supported so as to be rotatable around the central axis.
  • the configuration of the control system of the modeling apparatus 910 is the same as the configuration shown in FIG.
  • the modeling main scanning direction driving device 521 drives only the carriage 515 in the Y direction among the support member 511 and the carriage 515.
  • the modeling height direction driving device 523 drives only the carriage 515 in the Z direction among the support member 511 and the carriage 515.
  • the cutting main scanning direction driving device 524 drives only the carriage 517 in the Y direction among the support member 511 and the carriage 517.
  • the cutting height direction driving device 526 drives only the carriage 517 in the Z direction among the support member 511 and the carriage 517.
  • the modeling sub-scanning direction driving device 522 and the cutting sub-scanning direction driving device 525 are the same device.
  • the support member 511 Of the support member 511, the carriage 515, and the carriage 517, only the support member 511 is the central axis of the support member 511.
  • the roller rotating device 621 rotates the feeding roller 911.
  • the roller rotating device 621 controls the rotation of the feeding roller 911.
  • the control unit 529 discharges the liquid modeling material 512a toward the porous sheet 531 by the modeling material head 512, and then applies ultraviolet rays to the modeling material 512a attached to the porous sheet 531 by the ultraviolet irradiation device 514. By irradiating, the modeling material 512a is cured to be solid.
  • the control unit 529 is formed of the modeling material 512a by solidifying the modeling material 512a attached to the porous sheet 531 as described above while controlling the modeling main scanning direction driving device 521 based on the modeling data.
  • the formed modeling material portion 541 is formed on the porous sheet 531.
  • the control unit 529 controls the cutting main scanning direction driving device 524 and the cutting direction changing device 527 based on the modeling data, and the laser cutter 516 emits the laser beam 516a. By irradiating the porous sheet 531, the porous sheet 531 is cut.
  • the control unit 529 controls the modeling sub-scanning direction driving device 522 based on the modeling data, solidifies the modeling material 512a attached to the porous sheet 531 as described above, and uses the laser cutter 516 to form the porous sheet 531. Is formed on the porous sheet 531, and a part of the three-dimensional structure in the porous sheet 531 can be separated from a part other than the three-dimensional structure.
  • the control unit 529 urges the feeding roller 911 by the roller rotating device 621 in the direction opposite to the rotation direction when the perforated sheet 531 is fed, thereby supporting the porous sheet 531 fed by the feeding roller 911.
  • a tension in the X direction is applied to the porous sheet 531 whose position in the horizontal direction overlaps the member 511 and whose position in the vertical direction is the uppermost side.
  • the control unit 529 rotates the support member 511 by the modeling sub-scanning direction driving device 522 so that the distance between the carriage 515 and the carriage 517 and the porous sheet 531 at the position facing the carriage 515 is within a specific distance range.
  • the shaping height direction driving device 523 and the cutting height direction driving device 526 are controlled according to the above.
  • the control unit 529 can manufacture the tube-shaped three-dimensional structure 550 surrounding the support member 511 by repeating the above operation.
  • the modeling sub-scanning direction driving device 522 and the cutting sub-scanning direction driving device 525 as the rotating means of the present invention rotate the support member 511 to wind the porous sheet 531 around the support member 511 and stack the porous sheets 531.
  • the modeling apparatus 910 facilitates the stacking of the plurality of porous sheets 531 on the support member 511, and thus can facilitate the manufacture of the three-dimensional modeled object 550.
  • the modeling material head 512 of the modeling apparatus 910 causes the modeling materials 512a ejected in a state in which the rotation angles of the support members 511 by the modeling sub-scanning direction driving device 522 and the cutting sub-scanning direction driving device 525 are different from each other.
  • the modeling apparatus 910 has a shape corresponding to the rotation of the support member 511 by the modeling sub-scanning direction driving device 522 and the cutting sub-scanning direction driving device 525, such as the tube-shaped three-dimensional modeling object 550.
  • Article 550 can be manufactured.
  • the three-dimensional structure 550 improves the mechanical strength by adhering the porous sheets 531 to each other with the modeling material 512a, so that it is possible to suppress the occurrence of breakage and bending in a thin portion. Suitable as an original model.
  • the modeling material 512a is ultraviolet curable ink
  • the modeling material 512a is cured at high speed with high accuracy. Therefore, the three-dimensional structure 550 can be manufactured at high speed and with high accuracy.
  • modeling material 512a may be ink other than ultraviolet curable ink, or the porous sheets 531 may be bonded to each other by a method other than the ink jet method.
  • the modeling material 512a may be attached to the porous sheet 531 with a dispenser.
  • the modeling apparatuses 510, 610, 710, 810, and 910 improve the mechanical strength by bonding the porous sheets 531 to each other with the modeling material 512 a, and the high accuracy of the three-dimensional structure 550 from the porous sheet 531 by the laser cutter 516. Therefore, it is possible to manufacture a highly accurate three-dimensional structure 550 having high mechanical strength. Therefore, the modeling apparatuses 510, 610, 710, 810, and 910 are suitable for manufacturing the three-dimensional modeled object 550 that can suppress the occurrence of breakage and bending in a thin portion.
  • the modeling material 512a used in the inkjet method needs to be discharged by the modeling material head 512, it is a low-viscosity liquid.
  • the diameter of the nozzle of the modeling material head 512 used in the inkjet method is usually about 20 ⁇ m to 30 ⁇ m. Therefore, the modeling material 512a cannot be mixed with a reinforcing material having a large particle size or a filament-shaped reinforcing material in order to prevent clogging of the nozzle of the modeling material head 512. Therefore, the three-dimensional structure 550 cannot be used for applications that require strength and durability when the porous sheet 531 is not used and is formed only with the modeling material 512a.
  • the three-dimensional model 550 When the three-dimensional model 550 is a large model, the three-dimensional model 550 may be broken by its own weight when the porous sheet 531 is not used and is formed only by the modeling material 512a. However, since the three-dimensional structure 550 in the present embodiment can provide strength by being reinforced by the porous sheet 531, it can be used for applications that require strength and durability.
  • the three-dimensional structure 550 can improve the accuracy in the Z direction by reducing the thickness of the porous sheet 531.
  • the three-dimensional structure 550 can exhibit performance according to the performance of the porous sheet 531.
  • the porous sheet 531 is a high-strength member, the strength of the three-dimensional structure 550 is improved.
  • the three-dimensional structure 550 can be provided with fire resistance.

Abstract

Provided are a method for manufacturing a three-dimensional molded object, whereby it is possible to manufacture a three-dimensional molded object in which bending or breakage at narrow portions can be suppressed, a three-dimensional molded object, and a molding device. A method for manufacturing a three-dimensional molded object comprising manufacturing a three-dimensional molded object by discharging a liquid molding material and then solidifying the discharged molding material, the method characterized by being provided with an inside forming step for forming an inside portion of a three-dimensional molded object through use of the molding material, and a periphery forming step for forming a peripheral portion on the periphery of the inside portion by accumulating a plurality of layers through use of the molding material, the molding material for forming the inside portion by the inside forming step having greater rigidity in a solid state in comparison with the molding material for forming the peripheral portion by the periphery forming step, the periphery forming step being a step for forming grooves 22b constituting part of the peripheral portion, and the inside forming step being a step for forming the inside portion by placing the liquid molding material in the grooves 22b prior to formation of a portion of the peripheral portion of the three-dimensional molded object by the periphery forming step.

Description

三次元造形物製造方法、三次元造形物および造形装置Three-dimensional structure manufacturing method, three-dimensional structure and modeling apparatus
 本発明は、液体の造形材を吐出した後、吐出した造形材を固体にすることによって三次元造形物を製造する三次元造形物製造方法、三次元造形物および造形装置に関する。 The present invention relates to a three-dimensional structure manufacturing method, a three-dimensional structure, and a modeling apparatus that manufacture a three-dimensional structure by discharging a liquid modeling material and then solidifying the discharged modeling material.
 従来、三次元造形物製造方法として、液体の造形材を吐出した後、吐出した造形材を固体にすることによって三次元造形物を製造するものが知られている(特許文献1参照。)。 Conventionally, as a method for manufacturing a three-dimensional structure, a method of manufacturing a three-dimensional structure by discharging a liquid modeling material and then solidifying the discharged modeling material is known (see Patent Document 1).
特許第4545748号公報Japanese Patent No. 4545748
 しかしながら、従来の三次元造形物製造方法においては、一部に細い部分を備える三次元造形物を製造した場合に、三次元造形物の細い部分が三次元造形物の一部の部分を支持するとき、三次元造形物の細い部分によって支持されている部分の重さや、三次元造形物の細い部分によって支持されている部分に人の手などで加えられた外力によって三次元造形物の細い部分に応力が集中するので、三次元造形物の細い部分で折損が発生する可能性があるという問題がある。また、折損の発生を抑えるために固体状態で柔軟性が高い造形材が使用されると、三次元造形物の細い部分によって支持されている部分の重さや、三次元造形物の細い部分によって支持されている部分に人の手などで加えられた外力によって三次元造形物の細い部分で曲がってしまい、三次元造形物の細い部分が三次元造形物の一部の部分を適切に支持することができないという問題がある。なお、このような細い部分の例としては、人間の足、動物の足、昆虫の足、トンボの羽、植物の葉や枝などがある。 However, in the conventional three-dimensional structure manufacturing method, when a three-dimensional structure including a thin part is manufactured, the thin part of the three-dimensional structure supports a part of the three-dimensional structure. When the weight of the part supported by the thin part of the three-dimensional structure, or the thin part of the three-dimensional structure by an external force applied by a human hand to the part supported by the thin part of the three-dimensional structure Since stress is concentrated on the three-dimensional structure, there is a problem that breakage may occur in a thin portion of the three-dimensional structure. In addition, when a modeling material that is solid and highly flexible is used to prevent breakage, the weight of the part supported by the thin part of the three-dimensional structure and the thin part of the three-dimensional structure are supported. The thin part of the three-dimensional structure is bent by the external force applied by the hand of the person to the part that is applied, and the thin part of the three-dimensional structure appropriately supports a part of the three-dimensional structure. There is a problem that can not be. Examples of such thin parts include human feet, animal feet, insect feet, dragonfly wings, plant leaves and branches.
 本発明は、細い部分での折損や曲がりの発生を抑えることができる三次元造形物を製造することができる三次元造形物製造方法、三次元造形物および造形装置を提供することを目的とする。 It is an object of the present invention to provide a three-dimensional structure manufacturing method, a three-dimensional structure, and a modeling apparatus that can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending in a thin portion. .
 本発明の三次元造形物製造方法は、液体の造形材を吐出した後、吐出した前記造形材を固体にすることによって三次元造形物を製造する三次元造形物製造方法であって、前記三次元造形物の内部の部分を前記造形材によって形成する内部形成工程と、前記内部の部分の周囲の部分を前記造形材によって複数の層を積み重ねて形成する周囲形成工程とを備え、前記内部形成工程によって前記内部の部分を形成する前記造形材は、前記周囲形成工程によって前記周囲の部分を形成する前記造形材と比較して、固体状態での剛性が大きく、前記周囲形成工程は、前記周囲の部分の少なくとも一部を構成する溝を形成する工程であり、前記内部形成工程は、前記周囲形成工程によって前記三次元造形物の一部の前記周囲の部分が形成される前と、前記周囲形成工程によって前記三次元造形物の全ての前記周囲の部分が形成された後との何れかにおいて液体の前記造形材を前記溝に入れることによって前記内部の部分を形成する工程であることを特徴とする。 The three-dimensional structure manufacturing method of the present invention is a three-dimensional structure manufacturing method for manufacturing a three-dimensional structure by discharging a liquid modeling material and then solidifying the discharged modeling material. An internal forming step of forming an internal part of the original shaped article with the modeling material, and a peripheral forming step of stacking a plurality of layers with the modeling material to form a peripheral portion of the internal part, the internal formation The modeling material that forms the internal part by a process has a higher rigidity in a solid state than the modeling material that forms the peripheral part by the perimeter forming process. Forming a groove constituting at least a part of the portion of the three-dimensional structure before and after forming the peripheral portion of the three-dimensional structure by the surrounding forming step. It is a step of forming the internal portion by putting the liquid modeling material into the groove either after the surrounding portion of the three-dimensional structure is formed by the surrounding forming step. Features.
 この構成により、本発明の三次元造形物製造方法によって製造される三次元造形物は、内部の部分を形成する造形材が周囲の部分を形成する造形材と比較して固体状態での剛性が大きいので、内部の部分を形成する造形材によって細い部分での剛性を向上することができる。したがって、本発明の三次元造形物製造方法は、細い部分での折損や曲がりの発生を抑えることができる三次元造形物を製造することができる。また、本発明の三次元造形物製造方法は、溝に液体の造形材を入れることによって内部の部分を形成するので、内部の部分の製造を容易化することができる。 With this configuration, the three-dimensional structure manufactured by the three-dimensional structure manufacturing method of the present invention has a solid state rigidity in which the modeling material forming the inner part forms a surrounding part. Since it is large, the rigidity in a thin part can be improved by the modeling material which forms an internal part. Therefore, the three-dimensional structure manufacturing method of the present invention can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending in a thin portion. Moreover, since the internal part is formed by putting the liquid modeling material into a groove | channel, the three-dimensional structure manufacturing method of this invention can facilitate manufacture of an internal part.
 本発明の三次元造形物製造方法において、前記内部形成工程および前記周囲形成工程は、インクジェット方式によって液体の前記造形材を吐出する工程であっても良い。 In the three-dimensional structure manufacturing method of the present invention, the internal forming step and the surrounding forming step may be a step of discharging the liquid forming material by an ink jet method.
 この構成により、本発明の三次元造形物製造方法は、内部の部分および周囲の部分の両方をインクジェット方式によって形成するので、三次元造形物の製造を容易化することができる。 With this configuration, the three-dimensional structure manufacturing method of the present invention forms both the inner part and the surrounding part by the ink jet method, so that the three-dimensional structure can be easily manufactured.
 本発明の三次元造形物製造方法は、液体の造形材を吐出した後、吐出した前記造形材を固体にすることによって三次元造形物を製造する三次元造形物製造方法であって、前記三次元造形物の内部の部分を前記造形材以外の補強材によって形成する内部形成工程と、前記内部の部分の周囲の部分を前記造形材によって複数の層を積み重ねて形成する周囲形成工程とを備え、前記補強材は、固体状態の前記造形材と比較して、剛性が大きいことを特徴とする。 The three-dimensional structure manufacturing method of the present invention is a three-dimensional structure manufacturing method for manufacturing a three-dimensional structure by discharging a liquid modeling material and then solidifying the discharged modeling material. An internal forming step of forming an internal portion of the original shaped article with a reinforcing material other than the modeling material, and a peripheral forming step of stacking a plurality of layers by forming the peripheral portion of the internal portion with the modeling material The reinforcing material has a higher rigidity than the solid modeling material.
 この構成により、本発明の三次元造形物製造方法によって製造される三次元造形物は、内部の部分を形成する補強材が周囲の部分を形成する固体状態の造形材と比較して剛性が大きいので、補強材によって細い部分での剛性を向上することができる。したがって、本発明の三次元造形物製造方法は、細い部分での折損や曲がりの発生を抑えることができる三次元造形物を製造することができる。 With this configuration, the three-dimensional structure manufactured by the method of manufacturing a three-dimensional structure of the present invention has higher rigidity than a solid-state modeling material in which a reinforcing material that forms an internal portion forms a surrounding portion. Therefore, the rigidity in the thin part can be improved by the reinforcing material. Therefore, the three-dimensional structure manufacturing method of the present invention can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending in a thin portion.
 本発明の三次元造形物製造方法において、前記補強材は、他の部材と接続するための接続部を備えても良い。 In the three-dimensional structure manufacturing method of the present invention, the reinforcing material may include a connecting portion for connecting to another member.
 この構成により、本発明の三次元造形物製造方法によって製造される三次元造形物は、補強材が補強以外に他の部材との接続にも利用されるので、利便性を向上することができる。 With this configuration, the three-dimensional structure manufactured by the three-dimensional structure manufacturing method of the present invention can improve convenience because the reinforcing material is used for connection to other members in addition to reinforcement. .
 本発明の三次元造形物製造方法において、前記内部形成工程は、前記周囲形成工程によって前記三次元造形物の一部の前記周囲の部分が形成される前に前記内部の部分に前記補強材が配置される工程であっても良い。 In the three-dimensional structure manufacturing method of the present invention, the internal forming step includes the step of forming the reinforcing material in the inner portion before the peripheral portion of the three-dimensional structure is formed by the peripheral forming step. It may be a process to be arranged.
 この構成により、本発明の三次元造形物製造方法は、三次元造形物の全ての周囲の部分が形成された後に周囲の部分に補強材が挿入される方法と比較して、三次元造形物の内部に補強材を容易に固定することができる。 With this configuration, the three-dimensional structure manufacturing method of the present invention has a three-dimensional structure compared to a method in which a reinforcing material is inserted into the peripheral portion after all the peripheral portions of the three-dimensional structure are formed. It is possible to easily fix the reinforcing material in the interior.
 本発明の三次元造形物製造方法において、前記周囲形成工程は、液体の前記造形材を造形データに基づいて造形装置によって吐出する工程であり、前記周囲形成工程は、前記内部形成工程によって前記内部の部分に前記補強材が配置された後、前記周囲の部分に対する前記補強材の位置を検出し、検出した位置に基づいて前記造形データを修正する工程であっても良い。 In the three-dimensional structure manufacturing method of the present invention, the surrounding forming step is a step of discharging the liquid forming material by a forming apparatus based on modeling data, and the surrounding forming step is performed by the internal forming step. After the reinforcing material is disposed in the portion, the position of the reinforcing material relative to the surrounding portion may be detected, and the modeling data may be corrected based on the detected position.
 この構成により、本発明の三次元造形物製造方法は、周囲の部分に対する補強材の位置に基づいて造形データを修正するので、周囲の部分への補強材の配置作業を容易化することができる。したがって、本発明の三次元造形物製造方法は、三次元造形物の製造を容易化することができる。 With this configuration, the three-dimensional structure manufacturing method according to the present invention corrects the modeling data based on the position of the reinforcing material with respect to the surrounding portion, and therefore can facilitate the work of arranging the reinforcing material on the surrounding portion. . Therefore, the three-dimensional structure manufacturing method of the present invention can facilitate the manufacture of the three-dimensional structure.
 本発明の三次元造形物製造方法において、前記内部形成工程は、前記周囲形成工程によって前記三次元造形物の全ての前記周囲の部分が形成された後に前記内部の部分に前記補強材が挿入される工程であっても良い。 In the three-dimensional structure manufacturing method of the present invention, in the internal formation step, the reinforcing material is inserted into the internal portion after all the peripheral portions of the three-dimensional structure are formed by the peripheral formation step. It may be a process.
 この構成により、本発明の三次元造形物製造方法は、三次元造形物の一部の周囲の部分が形成される前に周囲の部分に補強材が配置される方法と比較して、周囲の部分の製造を容易化することができる。 With this configuration, the three-dimensional structure manufacturing method of the present invention is more effective than the method in which the reinforcing material is disposed in the surrounding portion before the surrounding portion of the part of the three-dimensional structure is formed. The manufacture of the part can be facilitated.
 本発明の三次元造形物製造方法において、前記周囲形成工程は、前記層の延在方向に直交する方向が鉛直方向である工程であり、前記三次元造形物は、前記周囲形成工程において鉛直方向における前記補強材の下側になる箇所の一部に空間が形成され、前記周囲の部分は、前記周囲形成工程において鉛直方向における前記補強材の下側で前記補強材を支持して前記空間の境界の一部を構成する支持部を備え、前記空間を形成している面のうち前記支持部の面は、前記周囲形成工程においてオーバーハングしない斜面であっても良い。 In the three-dimensional structure manufacturing method of the present invention, the surrounding formation step is a step in which a direction orthogonal to the extending direction of the layer is a vertical direction, and the three-dimensional structure is a vertical direction in the periphery forming step. A space is formed in a part of the lower portion of the reinforcing material in the space, and the surrounding portion supports the reinforcing material on the lower side of the reinforcing material in the vertical direction in the surrounding forming step. Of the surfaces that include a support portion that forms part of the boundary and form the space, the surface of the support portion may be an inclined surface that does not overhang in the periphery forming step.
 この構成により、本発明の三次元造形物製造方法は、周囲形成工程において鉛直方向における補強材の下側になる箇所の一部に造形材が存在しない空間が形成されることによって、必要な造形材の量が大幅に低減されるので、三次元造形物の重量と、材料費とを低減することが可能である。また、本発明の三次元造形物製造方法は、空間を形成している面のうち支持部の面が周囲形成工程においてオーバーハングしない斜面であるので、空間の部分で各層の形状が崩れることを抑えることができ、その結果、三次元造形物を精度良く形成することができる。 With this configuration, the three-dimensional structure manufacturing method according to the present invention is configured so that the space in which the modeling material does not exist is formed in a part of the portion that becomes the lower side of the reinforcing material in the vertical direction in the periphery forming process. Since the amount of the material is greatly reduced, it is possible to reduce the weight of the three-dimensional structure and the material cost. Further, in the three-dimensional structure manufacturing method of the present invention, since the surface of the support portion among the surfaces forming the space is an inclined surface that does not overhang in the surrounding formation step, the shape of each layer collapses in the space portion. As a result, the three-dimensional structure can be formed with high accuracy.
 本発明の三次元造形物製造方法において、前記支持部は、前記層の延在方向における前記補強材の端部において前記補強材を支持する端部支持部と、前記端部以外の部分において前記補強材を支持する非端部支持部とを備えても良い。 In the three-dimensional structure manufacturing method of the present invention, the support portion includes an end support portion that supports the reinforcing material at an end portion of the reinforcing material in the extending direction of the layer, and a portion other than the end portion. You may provide the non-end part support part which supports a reinforcing material.
 この構成により、本発明の三次元造形物製造方法は、補強材のうち層の延在方向における長さが長い箇所に非端部支持部を造形材によって設けることによって、補強材に撓みが発生することを抑えることができるので、三次元造形物を精度良く形成することができる。 With this configuration, the three-dimensional structure manufacturing method of the present invention causes the reinforcing material to bend by providing the non-end support portion with the forming material at a portion of the reinforcing material having a long length in the extending direction of the layer. Therefore, it is possible to form a three-dimensional structure with high accuracy.
 本発明の三次元造形物製造方法において、前記補強材は、前記層の延在方向に直交する方向における両側に前記空間が形成されている箇所の少なくとも一部に穴が形成されていても良い。 In the three-dimensional structure manufacturing method of the present invention, the reinforcing member may have a hole formed in at least a part of a portion where the space is formed on both sides in a direction orthogonal to the extending direction of the layer. .
 この構成により、本発明の三次元造形物製造方法は、補強材に穴が形成されることによって、必要な補強材の量が大幅に低減されるので、三次元造形物の重量と、材料費とを低減することが可能である。 With this configuration, the three-dimensional structure manufacturing method of the present invention significantly reduces the amount of necessary reinforcing material by forming holes in the reinforcing material. Can be reduced.
 本発明の三次元造形物は、内部の部分と、前記内部の部分の周囲の部分とを備え、前記周囲の部分は、固体状態の造形材によって形成され、前記内部の部分は、前記造形材以外の補強材によって形成され、前記補強材は、固体状態の前記造形材と比較して、剛性が大きいことを特徴とする。 The three-dimensional structure of the present invention includes an internal portion and a portion around the internal portion, and the peripheral portion is formed of a solid modeling material, and the internal portion is the modeling material. The reinforcing material is characterized in that it has higher rigidity than the solid modeling material.
 この構成により、本発明の三次元造形物は、内部の部分を形成する補強材が周囲の部分を形成する固体状態の造形材と比較して剛性が大きいので、補強材によって細い部分での剛性を向上することができる。したがって、本発明の三次元造形物は、細い部分での折損や曲がりの発生を抑えることができる。 With this configuration, the three-dimensional structure of the present invention has a rigidity higher than that of a solid-state modeling material in which the reinforcing material forming the inner part forms a surrounding part. Can be improved. Therefore, the three-dimensional structure of the present invention can suppress the occurrence of breakage and bending at a thin portion.
 本発明の三次元造形物において、前記補強材は、他の部材と接続するための接続部を備えても良い。 In the three-dimensional structure of the present invention, the reinforcing material may include a connection portion for connecting to another member.
 この構成により、本発明の三次元造形物は、補強材が補強以外に他の部材との接続にも利用されるので、利便性を向上することができる。 With this configuration, the three-dimensional structure of the present invention can improve convenience because the reinforcing material is used for connection to other members in addition to reinforcement.
 本発明の三次元造形物は、それぞれ多数の孔が形成されていて積層されている複数の多孔シートと、前記孔に入り込むことによって前記多孔シート同士を接着する造形材とを備えることを特徴とする。 The three-dimensional structure of the present invention includes a plurality of porous sheets each having a plurality of holes formed therein and laminated, and a modeling material that bonds the porous sheets by entering the holes. To do.
 この構成により、本発明の三次元造形物は、多孔シート同士を造形材によって接着して機械的な強度を向上するので、細い部分での折損や曲がりの発生を抑えることができる三次元造形物として適している。 With this configuration, the three-dimensional structure of the present invention improves the mechanical strength by adhering the porous sheets to each other with a modeling material, so that the three-dimensional structure can suppress the occurrence of breakage and bending in a thin portion. Suitable as
 本発明の三次元造形物において、前記造形材は、紫外線が照射されることで硬化する紫外線硬化型インクであっても良い。 In the three-dimensional structure of the present invention, the modeling material may be an ultraviolet curable ink that is cured by being irradiated with ultraviolet rays.
 この構成により、本発明の三次元造形物は、造形材が高速で高精度に硬化するので、高速で高精度に製造されることができる。 With this configuration, the three-dimensional structure of the present invention can be manufactured at high speed and with high accuracy because the modeling material is cured at high speed with high accuracy.
 本発明の造形装置は、それぞれ多数の孔が形成されている複数の多孔シートが積層される支持部材と、前記孔に入り込むことによって前記多孔シート同士を接着する造形材を、前記支持部材に積層されている複数の前記多孔シートに向けて吐出する造形材用ヘッドとを備えることを特徴とする。 The modeling apparatus according to the present invention includes a support member on which a plurality of perforated sheets each having a large number of holes are stacked, and a modeling material that adheres the perforated sheets to each other by entering the holes. And a modeling material head for discharging toward the plurality of porous sheets.
 この構成により、本発明の造形装置は、多孔シート同士を造形材によって接着して機械的な強度を向上するので、機械的な強度が高い三次元造形物を製造することができる。したがって、本発明の造形装置は、細い部分での折損や曲がりの発生を抑えることができる三次元造形物の製造に適している。 With this configuration, the modeling apparatus of the present invention improves the mechanical strength by adhering the porous sheets to each other with a modeling material, so that a three-dimensional structure with high mechanical strength can be manufactured. Therefore, the modeling apparatus of the present invention is suitable for manufacturing a three-dimensional modeled object that can suppress the occurrence of breakage and bending at a thin portion.
 本発明の造形装置は、前記造形材によって前記多孔シート同士が接着された状態で積層されている複数の前記多孔シートを備える三次元造形物を、積層されている複数の前記多孔シートから切り出すレーザーカッターを備えることを特徴とする。 The modeling apparatus of the present invention is a laser that cuts out a three-dimensional structure including a plurality of the porous sheets stacked in a state where the porous sheets are bonded to each other from the plurality of stacked porous sheets. A cutter is provided.
 この構成により、本発明の造形装置は、多孔シート同士を造形材によって接着して機械的な強度を向上するとともに、積層されている複数の多孔シートから三次元造形物をレーザーカッターによって高精度に切り出すので、機械的な強度が高い高精度な三次元造形物を製造することができる。 With this configuration, the modeling apparatus of the present invention improves the mechanical strength by adhering the porous sheets to each other with a modeling material, and at the same time, using a laser cutter, the three-dimensional structure is accurately obtained from a plurality of laminated porous sheets. Since it cuts out, a highly accurate three-dimensional structure with high mechanical strength can be manufactured.
 本発明の造形装置は、前記多孔シートを前記支持部材に対して相対的に移動させる移動手段を備え、前記多孔シートから一部を前記レーザーカッターによって切り出した後、前記多孔シートを前記移動手段によって前記支持部材に対して相対的に移動させることによって、前記多孔シートのうち前記レーザーカッターによって切り出されて前記支持部材に支持されている部分に対して、前記支持部材側とは反対側に前記多孔シートを積層させても良い。 The modeling apparatus of the present invention includes a moving unit that moves the porous sheet relative to the support member. After part of the porous sheet is cut out from the porous sheet by the laser cutter, the porous sheet is moved by the moving unit. By moving the porous sheet relative to the support member, the porous sheet is cut away by the laser cutter from the porous sheet and supported by the support member. Sheets may be laminated.
 この構成により、本発明の造形装置は、支持部材への複数の多孔シートの積層を容易化するので、三次元造形物の製造を容易化することができる。 With this configuration, the modeling apparatus of the present invention facilitates the stacking of a plurality of porous sheets on the support member, and thus can facilitate the manufacture of a three-dimensional modeled object.
 本発明の造形装置において、前記支持部材は、回転可能に支持されており、前記造形装置は、前記支持部材を回転させる回転手段を備え、前記回転手段は、前記支持部材を回転させることによって前記支持部材に前記多孔シートを巻き付けて前記多孔シートを積層させても良い。 In the modeling apparatus of the present invention, the support member is rotatably supported, and the modeling apparatus includes a rotation unit that rotates the support member, and the rotation unit rotates the support member to rotate the support member. The porous sheet may be laminated by winding the porous sheet around a support member.
 この構成により、本発明の造形装置は、支持部材への複数の多孔シートの積層を容易化するので、三次元造形物の製造を容易化することができる。 With this configuration, the modeling apparatus of the present invention facilitates the stacking of a plurality of porous sheets on the support member, and thus can facilitate the manufacture of a three-dimensional modeled object.
 本発明の造形装置において、前記支持部材は、前記三次元造形物が形成される面を回転方向において複数備えても良い。 In the modeling apparatus of the present invention, the support member may include a plurality of surfaces on which the three-dimensional model is formed in the rotation direction.
 この構成により、本発明の造形装置は、支持部材の複数の面のそれぞれで三次元造形物を製造することができるので、複数の三次元造形物を高速に製造することが可能である。 With this configuration, the modeling apparatus of the present invention can manufacture a three-dimensional modeled object on each of the plurality of surfaces of the support member, so that a plurality of three-dimensional modeled objects can be manufactured at high speed.
 本発明の造形装置において、前記造形材用ヘッドは、前記回転手段による前記支持部材の回転角度が互いに異なる状態で吐出した前記造形材同士を互いに接触させても良い。 In the modeling apparatus of the present invention, the modeling material head may cause the modeling materials discharged in a state in which the rotation angles of the support members by the rotating means are different from each other to contact each other.
 この構成により、本発明の造形装置は、チューブ状の三次元造形物など、回転手段による支持部材の回転に応じた形状の三次元造形物を製造することができる。 With this configuration, the modeling apparatus of the present invention can manufacture a three-dimensional structure having a shape corresponding to the rotation of the support member by the rotating means, such as a tube-shaped three-dimensional structure.
 本発明の三次元造形物製造方法、三次元造形物および造形装置は、細い部分での折損や曲がりの発生を抑えることができる三次元造形物を製造することができる。 The three-dimensional structure manufacturing method, the three-dimensional structure, and the modeling apparatus of the present invention can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending at a narrow portion.
本発明の第1の実施の形態に係る三次元造形物製造方法に使用される造形装置の概略正面図である。It is a schematic front view of the modeling apparatus used for the three-dimensional structure manufacturing method which concerns on the 1st Embodiment of this invention. 図1に示す造形装置のブロック図である。It is a block diagram of the modeling apparatus shown in FIG. (a)図1に示す造形装置によって製造された三次元造形物の一例の平面図である。 (b)図3(a)に示すI-I矢視断面図である。(A) It is a top view of an example of the three-dimensional structure manufactured with the modeling apparatus shown in FIG. (B) It is the II sectional view taken on the line shown to Fig.3 (a). 図3に示す三次元造形物が製造されている途中段階での三次元造形物の断面図である。It is sectional drawing of the three-dimensional structure in the middle stage in which the three-dimensional structure shown in FIG. 3 is manufactured. 図1に示す造形装置によって製造された三次元造形物の一例であって、図3に示す例とは異なる例の平面図である。It is an example of the three-dimensional structure manufactured with the modeling apparatus shown in FIG. 1, Comprising: It is a top view of the example different from the example shown in FIG. 図1に示す造形装置によって製造された三次元造形物が製造されている途中段階での三次元造形物の断面図である。It is sectional drawing of the three-dimensional structure in the middle stage in which the three-dimensional structure manufactured by the modeling apparatus shown in FIG. 1 is manufactured. 本発明の第2の実施の形態に係る三次元造形物製造方法に使用される造形装置の概略正面図である。It is a schematic front view of the modeling apparatus used for the three-dimensional structure manufacturing method which concerns on the 2nd Embodiment of this invention. 図7に示す造形装置のブロック図である。It is a block diagram of the modeling apparatus shown in FIG. (a)図7に示す造形装置によって製造された三次元造形物の一例の平面図である。 (b)図9(a)に示すII-II矢視断面図である。(A) It is a top view of an example of the three-dimensional structure manufactured with the modeling apparatus shown in FIG. (B) It is the II-II arrow directional cross-sectional view shown to Fig.9 (a). 図9に示す三次元造形物が製造されている途中段階での三次元造形物の断面図である。It is sectional drawing of the three-dimensional structure in the middle stage in which the three-dimensional structure shown in FIG. 9 is manufactured. 図7に示す造形装置によって製造された三次元造形物の一例であって、図9に示す例とは異なる例の平面図である。It is an example of the three-dimensional structure manufactured by the modeling apparatus shown in FIG. 7, and is a plan view of an example different from the example shown in FIG. 図7に示す造形装置によって製造された三次元造形物の一例であって、図9および図11に示す例とは異なる例の平面図である。It is an example of the three-dimensional structure manufactured by the modeling apparatus shown in FIG. 7, and is a plan view of an example different from the examples shown in FIGS. (a)図12において三次元造形物の外部に出ている補強材の部分の変形例を示す図である。 (b)図13(a)に示すIII-III矢視断面図である。(A) It is a figure which shows the modification of the part of the reinforcing material which has come out of the three-dimensional structure in FIG. (B) It is a III-III arrow directional cross-sectional view shown to Fig.13 (a). 図7に示す造形装置によって製造された三次元造形物であって、図9、図11および図12に示す例とは異なる例の外観斜視図である。FIG. 13 is an external perspective view of an example different from the examples illustrated in FIGS. 9, 11, and 12, which is a three-dimensional structure manufactured by the modeling apparatus illustrated in FIG. 7. (a)サポート材によって形成されたサポート材部分が取り除かれる前の状態での図14に示す三次元造形物の側面図である。 (b)造形装置による製造途中の図14に示す三次元造形物の底面図である。(A) It is a side view of the three-dimensional structure shown in FIG. 14 in the state before the support material part formed of the support material is removed. (B) It is a bottom view of the three-dimensional structure shown in FIG. 14 in the middle of manufacture by a modeling apparatus. 図7に示す造形装置による製造途中の三次元造形物であって、図9、図11、図12および図14に示す例とは異なる例の側面断面図である。FIG. 15 is a side cross-sectional view of an example different from the examples illustrated in FIGS. 9, 11, 12, and 14, which is a three-dimensional structure being manufactured by the modeling apparatus illustrated in FIG. 7. 補強材に穴が形成されている状態の図16に示す三次元造形物の側面断面図である。It is side surface sectional drawing of the three-dimensional structure shown in FIG. 16 in the state in which the hole is formed in the reinforcing material. 図7に示す造形装置による製造途中の三次元造形物であって、図9、図11、図12、図14および図16に示す例とは異なる例の側面断面図である。FIG. 17 is a side cross-sectional view of an example different from the examples illustrated in FIGS. 9, 11, 12, 14, and 16, which is a three-dimensional structure being manufactured by the modeling apparatus illustrated in FIG. 7. (a)図18に示すIV-IV矢視断面図である。 (b)図19(a)に示す三次元造形物の変形例を示す図である。(A) It is IV-IV arrow sectional drawing shown in FIG. (B) It is a figure which shows the modification of the three-dimensional structure shown to Fig.19 (a). 補強材に穴が形成されている状態の図18に示す三次元造形物の側面断面図である。It is side surface sectional drawing of the three-dimensional structure shown in FIG. 18 in the state in which the hole is formed in the reinforcing material. 本発明の第3の実施の形態に係る造形装置の概略正面図である。It is a schematic front view of the modeling apparatus which concerns on the 3rd Embodiment of this invention. (a)レーザー光が鉛直方向に照射される場合の図21に示す造形装置の一部の概略正面図である。 (b)レーザー光が鉛直方向とは異なる方向に照射される場合の図21に示す造形装置の一部の概略正面図である。(A) It is a schematic front view of a part of the modeling apparatus shown in FIG. 21 when laser light is irradiated in the vertical direction. (B) It is a schematic front view of a part of the modeling apparatus shown in FIG. 21 when the laser beam is irradiated in a direction different from the vertical direction. 図21に示す造形装置のブロック図である。It is a block diagram of the modeling apparatus shown in FIG. 1枚の多孔シートに造形材部分やサポート材部分が形成された状態の図21に示す造形装置の一部の概略正面断面図である。FIG. 22 is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 21 in a state in which a modeling material part and a support material part are formed on one porous sheet. 1枚の多孔シートにおける三次元造形物の一部と、三次元造形物以外の部分とが分離可能な状態にされた図21に示す造形装置の一部の概略正面断面図である。FIG. 22 is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 21 in which a part of the three-dimensional structure in one porous sheet and a part other than the three-dimensional structure are separable. 三次元造形物が製造された状態の図21に示す造形装置の一部の概略正面断面図である。It is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 21 in a state where a three-dimensional structure is manufactured. 図26に示す三次元造形物の外観斜視図である。It is an external appearance perspective view of the three-dimensional structure shown in FIG. (a)レーザーカッターによって切り込みが入れられた図21に示す多孔シートの概略断面図である。 (b)図28(a)に示す状態において後続の工程が施された多孔シートの概略断面図である。 (c)図28(b)に示す状態において後続の工程が施された多孔シートの概略断面図である。 (d)図28(c)に示す状態において後続の工程が施された多孔シートの概略断面図である。(A) It is a schematic sectional drawing of the perforated sheet shown in FIG. 21 cut by the laser cutter. (B) It is a schematic cross-sectional view of a perforated sheet that has been subjected to subsequent steps in the state shown in FIG. (C) It is a schematic cross-sectional view of a perforated sheet that has been subjected to subsequent steps in the state shown in FIG. 28 (b). (D) It is a schematic sectional drawing of the porous sheet in which the subsequent process was performed in the state shown in FIG. 図21に示す造形装置の一例を示す概略正面図である。It is a schematic front view which shows an example of the modeling apparatus shown in FIG. 図29に示す造形装置のブロック図である。It is a block diagram of the modeling apparatus shown in FIG. 図29に示す造形装置の一部の概略平面図である。FIG. 30 is a schematic plan view of a part of the modeling apparatus shown in FIG. 29. 図29に示す造形装置の一部の概略正面断面図である。FIG. 30 is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 29. 図21に示す造形装置の一例であって、図29に示す例とは異なる例を示す概略正面図である。It is an example of the modeling apparatus shown in FIG. 21, Comprising: It is a schematic front view which shows the example different from the example shown in FIG. 図33に示す造形装置のブロック図である。It is a block diagram of the modeling apparatus shown in FIG. 図33に示す造形装置の一部の概略正面断面図である。FIG. 34 is a schematic front sectional view of a part of the modeling apparatus shown in FIG. 33. 図21に示す造形装置の一例であって、図29および図33に示す例とは異なる例を示す概略正面図である。FIG. 34 is a schematic front view illustrating an example of the modeling apparatus illustrated in FIG. 21, which is an example different from the examples illustrated in FIGS. 29 and 33. 図21に示す造形装置の一例であって、図29、図33および図36に示す例とは異なる例を示す概略正面図である。It is a schematic front view which shows an example different from the example shown in FIG. 29, FIG. 33, and FIG. 図37に示す造形装置の概略側面図である。It is a schematic side view of the modeling apparatus shown in FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施の形態)
 まず、本発明の第1の実施の形態に係る三次元造形物製造方法に使用される造形装置の構成について説明する。
(First embodiment)
First, the structure of the modeling apparatus used for the three-dimensional structure manufacturing method which concerns on the 1st Embodiment of this invention is demonstrated.
 図1は、本実施の形態に係る三次元造形物製造方法に使用される造形装置10の概略正面図である。 FIG. 1 is a schematic front view of a modeling apparatus 10 used in the three-dimensional structure manufacturing method according to the present embodiment.
 図1に示すように、造形装置10は、三次元造形物が製造される場合に三次元造形物の台となる造形台11と、造形台11に向けて液体の造形材12aを吐出するインクジェット方式の造形ヘッド12と、造形台11に向けて液体の造形材13aを吐出するFDM(Fused Deposition Modeling/熱溶解積層法)方式の造形ヘッド13とを備えている。 As illustrated in FIG. 1, the modeling apparatus 10 includes a modeling table 11 that serves as a table for a three-dimensional model when a three-dimensional model is manufactured, and an inkjet that discharges a liquid modeling material 12 a toward the modeling table 11. There is provided a modeling head 12 of a system and a modeling head 13 of a FDM (Fused Deposition Modeling / Heat Melting Laminating Method) system that discharges a liquid modeling material 13 a toward the modeling table 11.
 なお、FDM方式は、熱可塑性樹脂を溶融させた状態で配列若しくは積層する方式である。FDM方式における層間は、溶着して一体化する。 The FDM method is a method of arranging or laminating thermoplastic resins in a molten state. The layers in the FDM method are welded and integrated.
 造形材12aとしては、UV(UltraViolet)が照射されることによって固体にされるUV硬化型のインクが使用されても良い。 As the modeling material 12a, UV curable ink that is made solid by being irradiated with UV (UltraViolet) may be used.
 造形材13aとしては、加熱されることによって液体になり、冷却されることによって固体になる熱可塑性樹脂が使用される。造形材13aとして使用される熱可塑性樹脂としては、PVC(PolyVinyl Chloride)、ABS(Acrylonitrile Butadiene Styrene)樹脂が使用されても良い。また、造形材13aとして使用される熱可塑性樹脂としては、ポリカーボネート、PET(PolyEthylene Terephthalate)などのエンジニアリングプラスチックが使用されても良い。 As the modeling material 13a, a thermoplastic resin that becomes liquid when heated and becomes solid when cooled is used. As the thermoplastic resin used as the modeling material 13a, PVC (Polyvinyl Chloride) or ABS (Acrylonitrile Butadiene Styrene) resin may be used. In addition, as the thermoplastic resin used as the modeling material 13a, engineering plastics such as polycarbonate and PET (PolyEthylene Terephthalate) may be used.
 造形材13aは、造形材12aと比較して、固体状態での剛性が大きいものが使用される。また、造形材13aは、造形材12aと比較して、固体状態での曲げ強さが高いものが使用されることが好ましい。 As the modeling material 13a, a material having higher rigidity in a solid state than that of the modeling material 12a is used. In addition, it is preferable that the modeling material 13a has a higher bending strength in a solid state than the modeling material 12a.
 図2は、造形装置10のブロック図である。 FIG. 2 is a block diagram of the modeling apparatus 10.
 図1および図2に示すように、造形装置10は、造形ヘッド12および造形ヘッド13による造形材の吐出方向としてのZ方向に直交するY方向に、造形台11と、造形ヘッド12および造形ヘッド13との一方に対して他方を相対的に駆動する主走査方向駆動装置14を備えている。Z方向は、鉛直方向である。 As shown in FIGS. 1 and 2, the modeling apparatus 10 includes a modeling table 11, a modeling head 12, and a modeling head in the Y direction orthogonal to the Z direction as the ejection direction of the modeling material by the modeling head 12 and the modeling head 13. 13 is provided with a main scanning direction driving device 14 for driving the other relative to the other. The Z direction is the vertical direction.
 造形装置10は、Y方向およびZ方向の両方に直交する図示していないX方向に、造形台11と、造形ヘッド12および造形ヘッド13との一方に対して他方を相対的に駆動する副走査方向駆動装置15を備えている。 The modeling apparatus 10 performs sub-scanning in which the modeling table 11, the modeling head 12, and the modeling head 13 are driven relatively to the other in the X direction (not shown) orthogonal to both the Y direction and the Z direction. A direction driving device 15 is provided.
 造形装置10は、造形台11と、造形ヘッド12および造形ヘッド13との一方に対して他方をZ方向に相対的に駆動する高さ方向駆動装置16を備えている。 The modeling apparatus 10 includes a height direction driving device 16 that relatively drives one of the modeling table 11, the modeling head 12, and the modeling head 13 in the Z direction.
 造形装置10は、図示していないネットワーク経由で外部の装置と通信を行う通信デバイスである通信部17と、造形装置10全体を制御する制御部18とを備えている。 The modeling apparatus 10 includes a communication unit 17 that is a communication device that communicates with an external apparatus via a network (not shown), and a control unit 18 that controls the entire modeling apparatus 10.
 制御部18は、CPU(Central Processing Unit)と、プログラムおよび各種のデータを予め記憶しているROM(Read Only Memory)と、CPUの作業領域として用いられるRAM(Random Access Memory)とを備えている。CPUは、ROMに記憶されているプログラムを実行するようになっている。 The control unit 18 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) that stores programs and various data in advance, and a RAM (Random Access Memory) used as a work area of the CPU. . The CPU executes a program stored in the ROM.
 次に、本実施の形態に係る三次元造形物製造方法について説明する。 Next, the three-dimensional structure manufacturing method according to the present embodiment will be described.
 造形装置10の制御部18は、造形データが通信部17を介して入力されると、入力された造形データに基づいて造形ヘッド12、造形ヘッド13、主走査方向駆動装置14、副走査方向駆動装置15および高さ方向駆動装置16を制御することによって、三次元造形物を製造する。具体的には、周囲形成工程において、制御部18は、造形データに基づいて、液体の造形材12aを造形ヘッド12によって吐出した後、吐出した造形材12aを固体にすることによって、三次元造形物の内部の部分の周囲の部分を形成する。なお、内部の部分は、以下「内部部分」と言う。また、周囲の部分は、以下「周囲部分」と言う。また、内部形成工程において、制御部18は、造形データに基づいて、液体の造形材13aを造形ヘッド13によって吐出した後、吐出した造形材13aを固体にすることによって、三次元造形物の内部部分を形成する。 When the modeling data is input via the communication unit 17, the control unit 18 of the modeling apparatus 10 drives the modeling head 12, the modeling head 13, the main scanning direction driving device 14, and the sub-scanning direction driving based on the input modeling data. A three-dimensional structure is manufactured by controlling the device 15 and the height direction driving device 16. Specifically, in the surrounding formation step, the control unit 18 discharges the liquid modeling material 12a by the modeling head 12 based on the modeling data, and then solidifies the discharged modeling material 12a, thereby performing three-dimensional modeling. Form the part around the inner part of the object. The internal part is hereinafter referred to as “internal part”. Further, the surrounding part is hereinafter referred to as “peripheral part”. Further, in the internal formation process, the control unit 18 discharges the liquid modeling material 13a by the modeling head 13 based on the modeling data, and then solidifies the ejected modeling material 13a, whereby the inside of the three-dimensional modeled object is formed. Forming part.
 図3(a)は、造形装置10によって製造された三次元造形物20の一例の平面図である。図3(b)は、図3(a)に示すI-I矢視断面図である。 FIG. 3A is a plan view of an example of the three-dimensional structure 20 manufactured by the modeling apparatus 10. FIG. 3B is a cross-sectional view taken along the line II of FIG.
 図3に示す三次元造形物20は、人形である。三次元造形物20は、図3に矢印20aで示す前後方向、矢印20bで示す左右方向、矢印20cで示す上下方向が、それぞれ、造形装置10によって製造された時点でのX方向、Y方向、Z方向に相当する。 The three-dimensional structure 20 shown in FIG. 3 is a doll. In the three-dimensional structure 20, the front-rear direction indicated by the arrow 20 a in FIG. 3, the left-right direction indicated by the arrow 20 b, and the upper-lower direction indicated by the arrow 20 c are respectively the X direction and Y direction when manufactured by the modeling apparatus 10. Corresponds to the Z direction.
 三次元造形物20は、内部部分21と、周囲部分22とを備えている。周囲部分22のうち少なくとも三次元造形物20の表面側の部分は、模様や色彩によって加飾されている加飾部であっても良い。また、内部部分21は、白色で構成されても良い。内部部分21は、白色で構成されることによって、三次元造形物20の表面側から入った光を良好に反射し、減法混色による着色を実現する光反射部を構成する。 The three-dimensional structure 20 includes an internal part 21 and a peripheral part 22. Of the surrounding portion 22, at least a portion on the surface side of the three-dimensional structure 20 may be a decorative portion that is decorated with a pattern or color. Further, the inner portion 21 may be configured in white. The inner portion 21 is configured to be white, thereby favorably reflecting light entering from the surface side of the three-dimensional structure 20 and constituting a light reflecting portion that realizes coloring by subtractive color mixing.
 内部部分21は、FDM方式で造形材13aの層がZ方向に複数積み重ねられて形成される。同様に、周囲部分22は、インクジェット方式で造形材12aの層がZ方向に複数積み重ねられて形成される。 The inner part 21 is formed by stacking a plurality of layers of the modeling material 13a in the Z direction by the FDM method. Similarly, the surrounding portion 22 is formed by stacking a plurality of layers of the modeling material 12a in the Z direction by an inkjet method.
 ここで、インクジェット方式による各層の厚みは、40μmというように非常に薄い。これに対して、FDM方式による各層の厚みは、インクジェット方式による各層の厚みより厚い。したがって、三次元造形物20が製造される場合には、図4に示すように、インクジェット方式によって複数の層22aが積み重ねられることによって形成された溝22bのZ方向における深さ22cを、FDM方式による層21aによって形成された部分21bのZ方向における高さ21cが上回らないように、制御部18が制御することが好ましい。 Here, the thickness of each layer by the ink jet method is very thin such as 40 μm. In contrast, the thickness of each layer by the FDM method is thicker than the thickness of each layer by the ink jet method. Therefore, when the three-dimensional structure 20 is manufactured, as shown in FIG. 4, the depth 22c in the Z direction of the groove 22b formed by stacking the plurality of layers 22a by the ink jet method is set to the FDM method. It is preferable that the control unit 18 controls the height 21c in the Z direction of the portion 21b formed by the layer 21a.
 なお、制御部18は、複数の層22aの厚みをそれぞれ均一にするために、層22aを形成する造形材12aの吐出後に図示していないローラーで層22aの表面を平坦化しても良い。しかしながら、三次元造形物20は、層22aの表面が平坦化され過ぎると層22a同士の密着性が下がるので、外力が加わったり、温度の影響で膨張または収縮したりする場合に、隣接する2つの層22aの間で剥離が生じる可能性がある。そこで、制御部18は、隣接する2つの層22aの間の密着性を上げるために、層22aの表面を平坦化した後、層22aの表面に造形ヘッド12で造形材12aを吐出することによって多数の微小な突起部を形成しても良い。 The control unit 18 may flatten the surface of the layer 22a with a roller (not shown) after discharging the modeling material 12a forming the layer 22a in order to make the thicknesses of the plurality of layers 22a uniform. However, since the adhesion between the layers 22a is lowered when the surface of the layer 22a is excessively flattened, the three-dimensional structure 20 is adjacent to each other when an external force is applied or the layer 22a expands or contracts due to the influence of temperature. Separation may occur between the two layers 22a. Therefore, the control unit 18 flattens the surface of the layer 22a in order to increase the adhesion between the two adjacent layers 22a, and then discharges the modeling material 12a to the surface of the layer 22a by the modeling head 12. A large number of minute protrusions may be formed.
 制御部18は、三次元造形物20の形成の途中で、三次元造形物20の形成の状況をCCD(Charge-Coupled Device)などの検出装置を用いて検出しても良い。そして、制御部18は、三次元造形物20の形成の状況が造形データ通りに進んでいるか否かを判断する。制御部18は、三次元造形物20の形成の状況が造形データ通りに進んでいないと判断すると、三次元造形物20の外形が当初の造形データ通りになるように、造形データを修正する。これによって、完成される三次元造形物20の外形の精度が向上する。特に、本実施の形態に係る三次元造形物製造方法は、内部部分21と、周囲部分22とが互いに異なる材質の造形材によって互いに異なる方式で形成されて互いに重ね合わされるので、状況に応じて造形データが修正される利点が大きい。 The control unit 18 may detect the formation state of the three-dimensional structure 20 using a detection device such as a CCD (Charge-Coupled Device) during the formation of the three-dimensional structure 20. And the control part 18 judges whether the condition of formation of the three-dimensional structure 20 is progressing according to modeling data. When the control unit 18 determines that the state of formation of the three-dimensional structure 20 does not proceed according to the modeling data, the control unit 18 corrects the modeling data so that the outer shape of the three-dimensional structure 20 is the same as the original modeling data. Thereby, the accuracy of the external shape of the completed three-dimensional structure 20 is improved. In particular, in the three-dimensional structure manufacturing method according to the present embodiment, the inner part 21 and the surrounding part 22 are formed in different ways by different materials and are overlapped with each other. The advantage that modeling data is corrected is great.
 内部部分21は、図3(a)に示す例では三次元造形物20のほぼ全域に配置されているが、図5に示すように三次元造形物20において補強されることが必要な箇所のみに配置されていても良い。 In the example shown in FIG. 3A, the internal portion 21 is arranged in almost the entire area of the three-dimensional structure 20, but only a portion that needs to be reinforced in the three-dimensional structure 20 as shown in FIG. 5. May be arranged.
 本実施の形態に係る三次元造形物製造方法は、溝22bに液体の造形材13aを入れることによって内部部分21を形成するので、内部部分21の製造を容易化することができる。 In the three-dimensional structure manufacturing method according to the present embodiment, the internal part 21 is formed by putting the liquid modeling material 13a in the groove 22b, and therefore the manufacturing of the internal part 21 can be facilitated.
 本実施の形態においては、内部部分21がFDM方式によって形成されている。しかしながら、内部部分21は、FDM方式以外の方式で造形材13aによって形成されても良い。また、内部部分21は、インクジェット方式で造形材13aによって形成されても良い。また、周囲部分22によって溝22bが形成されるので、内部部分21を形成する造形材13aは、溝22bに流し込まれるだけでも良い。そのため、内部部分21は、液体の造形材13aをディスペンサーなどから溝22bに向けて吐出した後、吐出した造形材13aを固体にする方法で形成されても良い。内部部分21を形成する造形材13aとしてエポキシ樹脂を用いる場合には、一方側に樹脂が充填されるとともに、他方側に硬化剤が充填された2つのディスペンサーを用意しておき、一方側のディスペンサーから吐出された樹脂と、他方側のディスペンサーから吐出された硬化剤とを溝22b内で混合させるようにしても良い。 In the present embodiment, the internal portion 21 is formed by the FDM method. However, the internal portion 21 may be formed by the modeling material 13a by a method other than the FDM method. Moreover, the internal part 21 may be formed with the modeling material 13a by an inkjet system. Further, since the groove 22b is formed by the peripheral portion 22, the modeling material 13a forming the inner portion 21 may be simply poured into the groove 22b. Therefore, the internal part 21 may be formed by a method in which the liquid modeling material 13a is discharged from the dispenser or the like toward the groove 22b, and then the discharged modeling material 13a is solidified. In the case of using an epoxy resin as the modeling material 13a forming the internal portion 21, two dispensers filled with resin on one side and filled with a curing agent on the other side are prepared, and the dispenser on one side is prepared. The resin discharged from the liquid and the curing agent discharged from the other dispenser may be mixed in the groove 22b.
 内部部分21および周囲部分22の両方をインクジェット方式によって形成する場合、造形装置の構造を単純化することができるので、三次元造形物20の製造を容易化することができる。 When both the inner portion 21 and the surrounding portion 22 are formed by the ink jet method, the structure of the modeling apparatus can be simplified, and therefore the manufacturing of the three-dimensional structure 20 can be facilitated.
 内部部分21を形成する造形材13aは、内部部分21が溝22bに造形材13aが流し込まれて形成される場合、2液硬化型の材料など、硬化可能な液体であれば良い。内部部分21を形成する造形材13aは、FRP(Fiber Reinforced Plastics)系の材料であっても良く、CNT(Carbon NanoTube)が配合されていても良い。 The modeling material 13a forming the inner portion 21 may be a curable liquid such as a two-component curable material when the inner portion 21 is formed by pouring the modeling material 13a into the groove 22b. The modeling material 13a that forms the internal portion 21 may be an FRP (Fiber Reinforced Plastics) -based material or may be blended with CNT (Carbon NanoTube).
 なお、図6に示すように、溝22b内に突出部22dが形成されても良い。突出部22dの存在によって、溝22b内の容積が低減するので、内部部分21を形成する造形材13aの量が低減し、その結果、内部部分21を形成する造形材13aが固体になるまでの時間が短くて済む。したがって、三次元造形物20は、早期に形成されることができる。 In addition, as shown in FIG. 6, the protrusion part 22d may be formed in the groove | channel 22b. Since the volume in the groove 22b is reduced due to the presence of the protrusion 22d, the amount of the modeling material 13a that forms the internal portion 21 is reduced, and as a result, the modeling material 13a that forms the internal portion 21 is solid. Time is short. Therefore, the three-dimensional structure 20 can be formed early.
 本実施の形態においては、周囲部分22がインクジェット方式によって形成されている。しかしながら、周囲部分22は、インクジェット方式以外の方式で造形材12aによって形成されても良い。また、周囲部分22は、FDM方式で造形材12aによって形成されても良い。 In the present embodiment, the peripheral portion 22 is formed by an ink jet method. However, the surrounding portion 22 may be formed of the modeling material 12a by a method other than the inkjet method. Moreover, the surrounding part 22 may be formed with the modeling material 12a by a FDM system.
 以上に説明したように、本実施の形態に係る三次元造形物製造方法によって製造される三次元造形物20は、内部部分21を形成する造形材13aが周囲部分22を形成する造形材12aと比較して固体状態での剛性が大きいので、内部部分21を形成する造形材13aによって細い部分での剛性を向上することができる。したがって、本実施の形態に係る三次元造形物製造方法は、細い部分での折損や曲がりの発生を抑えることができる三次元造形物20を製造することができる。 As described above, the three-dimensional structure 20 manufactured by the three-dimensional structure manufacturing method according to this embodiment includes the modeling material 13a that forms the internal portion 21 and the modeling material 12a that forms the surrounding portion 22. In comparison, the rigidity in the solid state is large, so the modeling material 13a forming the internal part 21 can improve the rigidity in the thin part. Therefore, the three-dimensional structure manufacturing method according to the present embodiment can manufacture the three-dimensional structure 20 that can suppress the occurrence of breakage and bending at a thin portion.
 以上においては、周囲部分22を造形材12aによって形成する周囲形成工程によって三次元造形物20の一部の周囲部分22が形成される前に、内部部分21を造形材13aによって形成する内部形成工程が実行される。しかしながら、周囲形成工程によって三次元造形物20の全ての周囲部分22が形成された後に内部形成工程が実行されても良い。周囲形成工程において周囲部分22の外部から内部に連通する穴が形成されることによって、この穴を介して周囲部分22の内部に内部部分21用の造形材13aが流し込まれる工程が、周囲形成工程によって三次元造形物20の全ての周囲部分22が形成された後に実行されても良い。 In the above, the internal formation step of forming the internal portion 21 with the modeling material 13a before the partial peripheral portion 22 of the three-dimensional structure 20 is formed by the surrounding formation step of forming the peripheral portion 22 with the modeling material 12a. Is executed. However, the internal forming process may be executed after all the surrounding portions 22 of the three-dimensional structure 20 are formed by the surrounding forming process. The step of forming the molding material 13a for the internal portion 21 into the inside of the peripheral portion 22 through the hole by forming a hole communicating with the inside from the outside of the peripheral portion 22 in the peripheral forming step is the peripheral forming step. May be executed after all the surrounding portions 22 of the three-dimensional structure 20 are formed.
(第2の実施の形態)
 まず、本発明の第2の実施の形態に係る三次元造形物製造方法に使用される造形装置の構成について説明する。
(Second Embodiment)
First, the structure of the modeling apparatus used for the three-dimensional structure manufacturing method which concerns on the 2nd Embodiment of this invention is demonstrated.
 図7は、本実施の形態に係る三次元造形物製造方法に使用される造形装置110の概略正面図である。 FIG. 7 is a schematic front view of the modeling apparatus 110 used in the three-dimensional structure manufacturing method according to the present embodiment.
 図7に示すように、造形装置110は、三次元造形物が製造される場合に三次元造形物の台となる造形台111と、造形台111に向けて液体の造形材112aを吐出するインクジェット方式の造形ヘッド112とを備えている。 As illustrated in FIG. 7, the modeling apparatus 110 includes a modeling table 111 serving as a table for a three-dimensional model when a three-dimensional model is manufactured, and an inkjet that discharges a liquid modeling material 112 a toward the modeling table 111. And a modeling head 112 of the type.
 造形材112aとしては、UVが照射されることによって固体にされるUV硬化型のインクが使用されても良い。 As the modeling material 112a, UV curable ink that is made solid by being irradiated with UV may be used.
 図8は、造形装置110のブロック図である。 FIG. 8 is a block diagram of the modeling apparatus 110.
 図7および図8に示すように、造形装置110は、造形ヘッド112による造形材112aの吐出方向としてのZ方向に直交するY方向に、造形台111と、造形ヘッド112との一方に対して他方を相対的に駆動する主走査方向駆動装置113を備えている。Z方向は、鉛直方向である。 As shown in FIG. 7 and FIG. 8, the modeling apparatus 110 is configured with respect to one of the modeling table 111 and the modeling head 112 in the Y direction orthogonal to the Z direction as the ejection direction of the modeling material 112 a by the modeling head 112. A main scanning direction driving device 113 that relatively drives the other is provided. The Z direction is the vertical direction.
 造形装置110は、Y方向およびZ方向の両方に直交する図示していないX方向に、造形台111と、造形ヘッド112との一方に対して他方を相対的に駆動する副走査方向駆動装置114を備えている。 The modeling apparatus 110 is a sub-scanning direction driving apparatus 114 that drives the other of the modeling table 111 and the modeling head 112 in the X direction (not shown) orthogonal to both the Y direction and the Z direction. It has.
 造形装置110は、造形台111と、造形ヘッド112との一方に対して他方をZ方向に相対的に駆動する高さ方向駆動装置115を備えている。 The modeling apparatus 110 includes a height direction driving device 115 that relatively drives one of the modeling table 111 and the modeling head 112 in the Z direction.
 造形装置110は、図示していないネットワーク経由で外部の装置と通信を行う通信デバイスである通信部116と、造形装置110全体を制御する制御部117とを備えている。 The modeling apparatus 110 includes a communication unit 116 that is a communication device that communicates with an external apparatus via a network (not shown), and a control unit 117 that controls the entire modeling apparatus 110.
 制御部117は、CPUと、プログラムおよび各種のデータを予め記憶しているROMと、CPUの作業領域として用いられるRAMとを備えている。CPUは、ROMに記憶されているプログラムを実行するようになっている。 The control unit 117 includes a CPU, a ROM that stores programs and various data in advance, and a RAM that is used as a work area of the CPU. The CPU executes a program stored in the ROM.
 次に、本実施の形態に係る三次元造形物製造方法について説明する。 Next, the three-dimensional structure manufacturing method according to the present embodiment will be described.
 造形装置110の制御部117は、造形データが通信部116を介して入力されると、入力された造形データに基づいて造形ヘッド112、主走査方向駆動装置113、副走査方向駆動装置114および高さ方向駆動装置115を制御することによって、三次元造形物を製造する。具体的には、周囲形成工程において、制御部117は、造形データに基づいて、液体の造形材112aを造形ヘッド112によって吐出した後、吐出した造形材112aを固体にすることによって、三次元造形物の内部部分の周囲部分を形成する。 When the modeling data is input via the communication unit 116, the control unit 117 of the modeling apparatus 110 receives the modeling head 112, the main scanning direction driving device 113, the sub-scanning direction driving device 114, and the high level based on the input modeling data. A three-dimensional structure is manufactured by controlling the vertical drive device 115. Specifically, in the surrounding formation step, the control unit 117 discharges the liquid modeling material 112a by the modeling head 112 based on the modeling data, and then solidifies the discharged modeling material 112a, thereby performing the three-dimensional modeling. Form the peripheral part of the inner part of the object.
 図9(a)は、造形装置110によって製造された三次元造形物120の一例の平面図である。図9(b)は、図9(a)に示すII-II矢視断面図である。 FIG. 9A is a plan view of an example of the three-dimensional structure 120 manufactured by the modeling apparatus 110. FIG. 9B is a cross-sectional view taken along arrow II-II shown in FIG.
 図9に示す三次元造形物120は、人形である。三次元造形物120は、図9に矢印120aで示す前後方向、矢印120bで示す左右方向、矢印120cで示す上下方向が、それぞれ、造形装置110によって製造された時点でのX方向、Y方向、Z方向に相当する。 The three-dimensional structure 120 shown in FIG. 9 is a doll. In the three-dimensional structure 120, the front-rear direction indicated by an arrow 120a, the left-right direction indicated by an arrow 120b, and the upper-lower direction indicated by an arrow 120c in FIG. Corresponds to the Z direction.
 三次元造形物120は、内部部分121と、周囲部分122とを備えている。 The three-dimensional structure 120 includes an internal part 121 and a peripheral part 122.
 内部部分121は、造形ヘッド112によって吐出される造形材112a以外の補強材121aによって形成される。補強材121aとしては、金属、樹脂、木材などが使用されても良い。補強材121aとして金属が使用される場合、細くて強度が必要な場合にはピアノ線が好ましく、錆が問題になる場合にはステンレスが好ましい。補強材121aとして樹脂が使用される場合、造形材112aとの接着性が必要な場合にはエポキシ樹脂が好ましく、剛性が必要な場合にはガラス繊維入り樹脂やカーボン繊維入り樹脂などのFRPが好ましい。補強材121aは、固体状態の造形材112aと比較して、剛性が大きい。また、補強材121aは、固体状態の造形材112aと比較して、曲げ強さが高いものが使用されることが好ましい。更に、補強材121aは、固体状態の造形材112aと比較して、曲げ強さの高さに加えて、衝撃値が高いものが使用されることが好ましい。 The inner part 121 is formed by a reinforcing material 121a other than the modeling material 112a discharged by the modeling head 112. As the reinforcing material 121a, metal, resin, wood, or the like may be used. When a metal is used as the reinforcing material 121a, a piano wire is preferable when it is thin and needs strength, and stainless steel is preferable when rust is a problem. When a resin is used as the reinforcing material 121a, an epoxy resin is preferable when adhesion to the modeling material 112a is required, and an FRP such as a resin containing glass fiber or a resin containing carbon fiber is preferable when rigidity is required. . The reinforcing material 121a has higher rigidity than the solid modeling material 112a. Further, it is preferable that the reinforcing material 121a has a higher bending strength than the solid modeling material 112a. Further, it is preferable that the reinforcing material 121a has a high impact value in addition to the bending strength as compared with the solid modeling material 112a.
 周囲部分122のうち少なくとも三次元造形物120の表面側の部分は、模様や色彩によって加飾されている加飾部であっても良い。周囲部分122は、図10に示すように、インクジェット方式で造形材112aの層122aがZ方向に複数積み重ねられて形成される。 Among the surrounding portions 122, at least a portion on the surface side of the three-dimensional structure 120 may be a decorated portion decorated with a pattern or a color. As shown in FIG. 10, the surrounding portion 122 is formed by stacking a plurality of layers 122a of the modeling material 112a in the Z direction by an inkjet method.
 なお、制御部117は、複数の層122aの厚みをそれぞれ均一にするために、層122aを形成する造形材112aの吐出後に図示していないローラーで層122aの表面を平坦化しても良い。しかしながら、三次元造形物120は、層122aの表面が平坦化され過ぎると層122a同士の密着性が下がるので、外力が加わったり、温度の影響で膨張または収縮したりする場合に、隣接する2つの層122aの間で剥離が生じる可能性がある。そこで、制御部117は、隣接する2つの層122aの間の密着性を上げるために、層122aの表面を平坦化した後、層122aの表面に造形ヘッド112で造形材112aを吐出することによって多数の微小な突起部を形成しても良い。 Note that the control unit 117 may flatten the surface of the layer 122a with a roller (not shown) after discharging the modeling material 112a forming the layer 122a in order to make the thickness of the plurality of layers 122a uniform. However, if the surface of the layer 122a is excessively flattened, the three-dimensional structure 120 has a lower adhesion between the layers 122a. Therefore, when the external force is applied or the layer 122a expands or contracts due to the influence of temperature, the three-dimensional structure 120 is adjacent. Separation may occur between the two layers 122a. Therefore, the control unit 117 flattens the surface of the layer 122a in order to increase the adhesion between the two adjacent layers 122a, and then discharges the modeling material 112a to the surface of the layer 122a by the modeling head 112. A large number of minute protrusions may be formed.
 制御部117は、三次元造形物120の形成の途中で、三次元造形物120の形成の状況をCCDなどの検出装置を用いて検出しても良い。そして、制御部117は、三次元造形物120の形成の状況が造形データ通りに進んでいるか否かを判断する。制御部117は、三次元造形物120の形成の状況が造形データ通りに進んでいないと判断すると、三次元造形物120の外形が当初の造形データ通りになるように、造形データを修正する。これによって、完成される三次元造形物120の外形の精度が向上する。周囲形成工程によって三次元造形物120の一部の周囲部分122が形成される前に周囲部分122に補強材121aが配置された後、周囲部分122に対する補強材121aの位置を検出し、検出した位置に基づいて造形データを修正しても良い。本実施の形態に係る三次元造形物製造方法は、鉛直方向、すなわち、Z方向における内部部分121の上に周囲部分122が重ね合わされるので、状況に応じて造形データが修正される利点が大きい。 The control unit 117 may detect the state of formation of the three-dimensional structure 120 using a detection device such as a CCD during the formation of the three-dimensional structure 120. And the control part 117 judges whether the condition of formation of the three-dimensional structure 120 is progressing according to modeling data. When the control unit 117 determines that the state of formation of the three-dimensional structure 120 does not proceed according to the modeling data, the control unit 117 corrects the modeling data so that the outer shape of the three-dimensional structure 120 is the same as the original modeling data. Thereby, the accuracy of the external shape of the completed three-dimensional structure 120 is improved. After the reinforcing material 121a is arranged on the peripheral portion 122 before the partial peripheral portion 122 of the three-dimensional structure 120 is formed by the peripheral forming step, the position of the reinforcing material 121a with respect to the peripheral portion 122 is detected and detected. The modeling data may be corrected based on the position. In the three-dimensional structure manufacturing method according to the present embodiment, since the peripheral portion 122 is superimposed on the internal portion 121 in the vertical direction, that is, the Z direction, there is a great advantage that the modeling data is corrected according to the situation. .
 内部部分121は、図9(a)に示す例では三次元造形物120のほぼ全域に配置されているが、図11に示すように三次元造形物120において補強されることが必要な箇所のみに配置されていても良い。 In the example shown in FIG. 9A, the internal portion 121 is arranged in almost the entire area of the three-dimensional structure 120, but only the portions that need to be reinforced in the three-dimensional structure 120 as shown in FIG. 11. May be arranged.
 また、内部部分121を構成する補強材121aは、図12に示すように一部の部分121bが三次元造形物120の外部に出ていても良い。補強材121aの一部の部分121bが三次元造形物120の外部に出ている場合、部分121bが様々な用途で活用されることが可能である。 Further, as shown in FIG. 12, a part of the reinforcing material 121a constituting the internal part 121 may be outside the three-dimensional structure 120 as shown in FIG. When a part 121b of the reinforcing material 121a is outside the three-dimensional structure 120, the part 121b can be used for various purposes.
 補強材121aの部分121bは、他の部材と接続するための接続部として利用されても良い。部分121bは、接続部として利用される場合、他の部材に単に挿入されて固定されるだけでも良いが、ネジが形成されていれば他の部材のネジと結合することが可能である。また、部分121bは、ヒンジである蝶番のような部位が形成されることによって、他の部材に対して角度を変化させることができる状態で他の部材と接続されることが可能である。図13は、部分121bに蝶番121cが形成された例を示す図である。図13において、部分121bは、蝶番121cと、他の部材としての足123に接続する接続部121dとを備えている。蝶番121cは、内部部分121と一体に形成されていて中央に穴121eが形成されている部分121fと、穴121eに挿入される軸121gと、軸121gが挿入される図示していない穴が形成されている部分121hとを備えている。接続部121dは、部分121hと一体に形成されている。なお、図13においては、蝶番121cによって人形の足関節を形成しているが、同様の構成によって膝関節や股関節など、他の部分の関節が形成されても良い。また、図13において、蝶番121cは、内部部分121の延在方向に直交する軸121gを中心とした回転を実現することができるが、内部部分121の延在方向に延在する軸を中心とした回転など、図13に示す方向の回転以外の方向の回転を実現することができても良い。 The portion 121b of the reinforcing material 121a may be used as a connection portion for connecting to another member. When the portion 121b is used as a connection portion, the portion 121b may be simply inserted into and fixed to another member. However, if a screw is formed, the portion 121b can be coupled to the screw of the other member. Moreover, the part 121b can be connected to another member in a state in which the angle can be changed with respect to the other member by forming a part such as a hinge that is a hinge. FIG. 13 is a diagram illustrating an example in which a hinge 121c is formed on the portion 121b. In FIG. 13, the part 121b is provided with a hinge 121c and a connecting part 121d connected to a foot 123 as another member. The hinge 121c is formed integrally with the inner portion 121, and includes a portion 121f in which a hole 121e is formed at the center, a shaft 121g inserted into the hole 121e, and a hole (not shown) into which the shaft 121g is inserted. 121h. The connecting part 121d is formed integrally with the part 121h. In FIG. 13, the ankle joint of the doll is formed by the hinge 121c, but joints of other parts such as a knee joint and a hip joint may be formed by the same configuration. Further, in FIG. 13, the hinge 121 c can realize rotation about the axis 121 g orthogonal to the extending direction of the internal portion 121, but centering on the axis extending in the extending direction of the internal portion 121. It may be possible to realize rotation in a direction other than the rotation shown in FIG.
 また、補強材121aの部分121bは、通電のために利用されても良い。補強材121a自体に導電性がある場合、補強材121aの部分121b自体が電極として利用されても良い。補強材121a自体に導電性がない場合であっても、補強材121aがパイプ状であれば、補強材121aの内部に電線が挿入されることによって、三次元造形物120の外部から電力が供給されることが可能である。三次元造形物120の外部から供給された電力は、三次元造形物120に取り付けられた電子部品に供給される。三次元造形物120に取り付けられた電子部品としては、LED(Light Emitting Diode)などが使用されることが可能である。 Further, the portion 121b of the reinforcing material 121a may be used for energization. When the reinforcing material 121a itself is conductive, the portion 121b itself of the reinforcing material 121a may be used as an electrode. Even if the reinforcing material 121a itself is not conductive, if the reinforcing material 121a is a pipe, electric power is supplied from the outside of the three-dimensional structure 120 by inserting an electric wire inside the reinforcing material 121a. Can be done. The electric power supplied from the outside of the three-dimensional structure 120 is supplied to an electronic component attached to the three-dimensional structure 120. As an electronic component attached to the three-dimensional structure 120, an LED (Light Emitting Diode) or the like can be used.
 なお、三次元造形物120は、内部における通電も補強材121aを利用して実現されることもできるが、通電が必要な箇所の造形材112aが、導電性がある物質の粒子が含まれる造形材112aにされることによって、内部における通電が実現されることもできる。 The three-dimensional structure 120 can be energized inside or can be realized by using the reinforcing material 121a. However, the modeling material 112a in a place where energization is necessary includes a particle of a conductive substance. By using the material 112a, internal energization can be realized.
 図14は、造形装置110によって製造された三次元造形物220の外観斜視図である。図15(a)は、サポート材112bによって形成されたサポート材部分223が取り除かれる前の状態での三次元造形物220の側面図である。図15(b)は、造形装置110による製造途中の三次元造形物220の底面図である。 FIG. 14 is an external perspective view of the three-dimensional structure 220 manufactured by the modeling apparatus 110. FIG. 15A is a side view of the three-dimensional structure 220 in a state before the support material portion 223 formed by the support material 112b is removed. FIG. 15B is a bottom view of the three-dimensional structure 220 that is being manufactured by the modeling apparatus 110.
 図14および図15に示す三次元造形物220は、円盤状の台の上に立たせられた小鳥の模型である。三次元造形物220は、図14および図15に矢印220aで示す上下方向、矢印220bで示す前後方向、矢印220cで示す左右方向が、それぞれ、造形装置110によって製造された時点でのX方向、Y方向、Z方向に相当する。 The three-dimensional structure 220 shown in FIGS. 14 and 15 is a small bird model that stands on a disk-shaped table. In the three-dimensional structure 220, the vertical direction indicated by the arrow 220a in FIGS. 14 and 15, the front-rear direction indicated by the arrow 220b, and the left-right direction indicated by the arrow 220c are respectively the X direction when manufactured by the modeling apparatus 110, It corresponds to the Y direction and the Z direction.
 三次元造形物220は、内部部分221と、周囲部分222とを備えている。 The three-dimensional structure 220 includes an internal part 221 and a peripheral part 222.
 内部部分221は、造形ヘッド112によって吐出される造形材112a以外の補強材221aによって形成される。補強材221aとしては、金属、樹脂、木材などが使用されても良い。補強材221aは、固体状態の造形材112aと比較して、剛性が大きい。また、補強材221aは、固体状態の造形材112aと比較して、曲げ強さが高いものが使用されることが好ましい。更に、補強材221aは、固体状態の造形材112aと比較して、曲げ強さの高さに加えて、衝撃値が高いものが使用されることが好ましい。 The internal portion 221 is formed by a reinforcing material 221a other than the modeling material 112a discharged by the modeling head 112. As the reinforcing material 221a, metal, resin, wood, or the like may be used. The reinforcing material 221a has higher rigidity than the solid modeling material 112a. Further, it is preferable that the reinforcing material 221a has a higher bending strength than the solid modeling material 112a. Furthermore, it is preferable that the reinforcing material 221a has a high impact value in addition to the high bending strength as compared with the solid modeling material 112a.
 周囲部分222のうち少なくとも三次元造形物220の表面側の部分は、模様や色彩によって加飾されている加飾部であっても良い。周囲部分222は、造形材112aおよびサポート材112bの少なくとも一方からなる層がZ方向に複数積み重ねられて形成された場合に、複数の層の造形材112aによって形成される。 Among the surrounding portions 222, at least a portion on the surface side of the three-dimensional structure 220 may be a decorated portion decorated with a pattern or a color. The surrounding portion 222 is formed by a plurality of layers of the modeling material 112a when a plurality of layers including at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
 サポート材部分223は、周囲部分222が形成される場合に、鉛直方向、すなわち、Z方向における下側から、または、水平方向から周囲部分222を支えるために設けられる。サポート材部分223は、周囲部分222と同様に、造形ヘッド112と同様な図示していないヘッドによって液体のサポート材112bが吐出された後、吐出されたサポート材112bが固体にされることによって形成される。サポート材部分223は、造形材112aおよびサポート材112bの少なくとも一方からなる層がZ方向に複数積み重ねられて形成された場合に、複数の層のサポート材112bによって形成される。サポート材112bは、水などによって容易に溶解し除去されることが可能である。 The support material portion 223 is provided to support the peripheral portion 222 from the lower side in the vertical direction, that is, the Z direction, or from the horizontal direction when the peripheral portion 222 is formed. The support material portion 223 is formed by the liquid support material 112b being ejected by a head (not shown) similar to the modeling head 112, and then the ejected support material 112b being solid, like the surrounding portion 222. Is done. The support material portion 223 is formed by a plurality of layers of the support material 112b when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction. The support material 112b can be easily dissolved and removed by water or the like.
 補強材221aは、三次元造形物220の肉厚よりも径の小さな線材が好ましい。積層の途中で、層の延在方向に延在した補強材221aを配置する。補強材221aの端部に、積層面に垂直な方向、すなわち、矢印220cで示す方向に延在する曲げ部分221bが存在するので、三次元造形物220は、曲げ部分221bが存在しない場合と比較して、三次元方向の捻りに対する強度が増している。鉛直方向、すなわち、Z方向における補強材221aより下の層が形成される際に、曲げ部分221bに対応する穴が形成されることによって、この穴に曲げ部分221bが収納される。補強材221aは、三次元造形物220の外側に突出しないように、周囲部分222の中に配置される。補強材221aは、少なくとも三次元造形物220の外側から、その存在が見えないようにすることが好ましい。周囲部分222が外側から厚さ20μm~100μmである透明層、20μm~300μmであるカラー層、50μm~500μmである白色層、造形層によって形成されている場合、補強材221aは、白色層の内側に配置されることが好ましい。 The reinforcing material 221a is preferably a wire having a diameter smaller than the thickness of the three-dimensional structure 220. In the middle of the lamination, the reinforcing material 221a extending in the extending direction of the layers is disposed. Since the bent portion 221b extending in the direction perpendicular to the laminated surface, that is, the direction indicated by the arrow 220c is present at the end of the reinforcing material 221a, the three-dimensional structure 220 is compared with the case where the bent portion 221b is not present. Thus, the strength against twisting in the three-dimensional direction is increasing. When a layer below the reinforcing material 221a in the vertical direction, that is, in the Z direction is formed, a hole corresponding to the bent portion 221b is formed, whereby the bent portion 221b is accommodated in this hole. The reinforcing material 221a is disposed in the peripheral portion 222 so as not to protrude to the outside of the three-dimensional structure 220. It is preferable that the reinforcing material 221a is not visible at least from the outside of the three-dimensional structure 220. In the case where the peripheral portion 222 is formed from the outside by a transparent layer having a thickness of 20 μm to 100 μm, a color layer having a thickness of 20 μm to 300 μm, a white layer having a thickness of 50 μm to 500 μm, and a modeling layer, the reinforcing material 221 a It is preferable to arrange | position.
 三次元造形物220は、補強材221aを備えていない場合に、薄い尾羽の部分231が尾羽自身の重みによって経時で曲がり易い。また、三次元造形物220は、補強材221aを備えていない場合に、細い脚の部分232が脚より上の部分の重みによって折損し易い。しかしながら、三次元造形物220は、補強材221aを備えているので、これらの折損や曲がりの発生を抑えることができる。 When the three-dimensional structure 220 does not include the reinforcing material 221a, the thin tail feather portion 231 is easily bent over time due to the weight of the tail feather itself. Further, when the three-dimensional structure 220 does not include the reinforcing material 221a, the thin leg portion 232 is easily broken by the weight of the portion above the leg. However, since the three-dimensional structure 220 includes the reinforcing material 221a, the occurrence of breakage and bending can be suppressed.
 図16は、造形装置110による製造途中の三次元造形物320の側面断面図である。 FIG. 16 is a side cross-sectional view of a three-dimensional structure 320 that is being manufactured by the modeling apparatus 110.
 図16に示す三次元造形物320は、円盤状の台の上に立たせられた大型の鳥の模型である。三次元造形物320は、図示していない左右方向、図16に矢印320bで示す前後方向、矢印320cで示す上下方向が、それぞれ、造形装置110によって製造された時点でのX方向、Y方向、Z方向に相当する。 A three-dimensional structure 320 shown in FIG. 16 is a large bird model standing on a disk-shaped table. The three-dimensional structure 320 has a left-right direction (not shown), a front-rear direction indicated by an arrow 320b in FIG. 16, and an up-down direction indicated by an arrow 320c, respectively. Corresponds to the Z direction.
 三次元造形物320は、内部部分321と、周囲部分322とを備えている。 The three-dimensional structure 320 includes an internal part 321 and a peripheral part 322.
 内部部分321は、造形ヘッド112によって吐出される造形材112a以外の補強材321aによって形成される。補強材321aとしては、金属、樹脂、木材などが使用されても良い。補強材321aは、固体状態の造形材112aと比較して、剛性が大きい。また、補強材321aは、固体状態の造形材112aと比較して、曲げ強さが高いものが使用されることが好ましい。更に、補強材321aは、固体状態の造形材112aと比較して、曲げ強さの高さに加えて、衝撃値が高いものが使用されることが好ましい。 The internal portion 321 is formed by a reinforcing material 321a other than the modeling material 112a discharged by the modeling head 112. As the reinforcing material 321a, metal, resin, wood, or the like may be used. The reinforcing material 321a has higher rigidity than the solid modeling material 112a. In addition, it is preferable that the reinforcing material 321a has a higher bending strength than the solid modeling material 112a. Further, it is preferable that the reinforcing material 321a has a high impact value in addition to the high bending strength as compared with the solid modeling material 112a.
 周囲部分322は、造形材112aおよびサポート材112bの少なくとも一方からなる層がZ方向に複数積み重ねられて形成された場合に、複数の層の造形材112aによって形成される。 The peripheral portion 322 is formed by a plurality of layers of the modeling material 112a when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
 サポート材112bによって形成されたサポート材部分323は、周囲部分322が形成される場合に、鉛直方向、すなわち、Z方向における下側から、または、水平方向から周囲部分322を支えるために設けられる。サポート材部分323は、周囲部分322と同様に、造形ヘッド112と同様な図示していないヘッドによって液体のサポート材112bが吐出された後、吐出されたサポート材112bが固体にされることによって形成される。サポート材部分323は、造形材112aおよびサポート材112bの少なくとも一方からなる層がZ方向に複数積み重ねられて形成された場合に、複数の層のサポート材112bによって形成される。サポート材112bは、水などによって容易に溶解し除去されることが可能である。 The support material portion 323 formed by the support material 112b is provided to support the peripheral portion 322 from the lower side in the vertical direction, that is, the Z direction, or from the horizontal direction when the peripheral portion 322 is formed. The support material portion 323 is formed by the liquid support material 112b being discharged by a head (not shown) similar to the modeling head 112, and then the discharged support material 112b being solid, like the surrounding portion 322. Is done. The support material portion 323 is formed by a plurality of layers of the support material 112b when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction. The support material 112b can be easily dissolved and removed by water or the like.
 補強材321aは、面形状である。三次元造形物320は、積層の途中で、層の延在方向に延在した面形状の補強材321aが配置される。補強材321aは、矢印320cで示す方向に複数配置されている。三次元造形物320は、周囲形成工程において鉛直方向、すなわち、Z方向における補強材321aの下側になる箇所の一部に造形材112aが存在しない空間320dが形成されるので、必要な造形材112aの量が大幅に低減されることによって、重量と、材料費とが低減されることが可能である。また、三次元造形物320は、重量が低減されるので、脚より上の部分の重みによって細い脚の部分331に折損や曲がりが発生することを抑えることができる。 The reinforcing material 321a has a surface shape. In the three-dimensional structure 320, a surface-shaped reinforcing material 321a extending in the extending direction of the layer is disposed in the middle of the lamination. A plurality of reinforcing members 321a are arranged in the direction indicated by the arrow 320c. Since the space 320d in which the modeling material 112a does not exist is formed in a part of the three-dimensional structure 320 in the vertical direction, that is, the lower side of the reinforcing material 321a in the Z direction in the surrounding formation process, the necessary modeling material is formed. By significantly reducing the amount of 112a, weight and material costs can be reduced. In addition, since the weight of the three-dimensional structure 320 is reduced, it is possible to suppress the breakage or bending of the thin leg portion 331 due to the weight of the portion above the leg.
 周囲部分322は、周囲形成工程において鉛直方向、すなわち、Z方向における補強材321aの下側で補強材321aを支持して空間320dの境界の一部を構成する支持部322aを備えている。空間320dを形成している面のうち支持部322aの面322bは、周囲形成工程においてオーバーハングしない斜面であるので、鉛直方向、すなわち、Z方向における上側の造形材112aの層が下側の造形材112aの層の上に確実に形成される。したがって、三次元造形物320は、空間320dの部分で各層の形状が崩れることを抑えることができ、その結果、精度良く形成されることができる。 The peripheral portion 322 includes a support portion 322a that supports the reinforcing material 321a in the vertical direction, that is, the lower side of the reinforcing material 321a in the Z direction, and forms a part of the boundary of the space 320d. Of the surfaces forming the space 320d, the surface 322b of the support portion 322a is an inclined surface that does not overhang in the surrounding formation step, so the layer of the upper modeling material 112a in the vertical direction, that is, the Z direction is the lower modeling. It is reliably formed on the layer of material 112a. Therefore, the three-dimensional structure 320 can suppress the collapse of the shape of each layer in the space 320d, and as a result, can be formed with high accuracy.
 補強材321aは、図17に示すように、層の延在方向に直交する方向、すなわち、矢印320cで示す方向における両側に空間320dが形成されている箇所の少なくとも一部に多数の穴321bが形成されていても良い。三次元造形物320は、補強材321aに穴321bが形成されている場合、必要な補強材321aの量が大幅に低減されることによって、重量と、材料費とが低減されることが可能である。 As shown in FIG. 17, the reinforcing member 321a has a large number of holes 321b in at least a part of a portion where spaces 320d are formed on both sides in the direction orthogonal to the extending direction of the layers, that is, the direction indicated by the arrow 320c. It may be formed. In the three-dimensional structure 320, when the hole 321b is formed in the reinforcing material 321a, the amount of the necessary reinforcing material 321a can be significantly reduced, so that the weight and the material cost can be reduced. is there.
 図18は、造形装置110による製造途中の三次元造形物420の側面断面図である。図19(a)は、図18に示すIV-IV矢視断面図である。 FIG. 18 is a side cross-sectional view of a three-dimensional structure 420 that is being manufactured by the modeling apparatus 110. FIG. 19A is a cross-sectional view taken along the line IV-IV shown in FIG.
 図18および図19(a)に示す三次元造形物420は、上底の径が下底の径より大きい円錐台である。三次元造形物420は、図19(a)に矢印420aで示す左右方向、図18および図19(a)に矢印420bで示す前後方向、図18に矢印420cで示す上下方向が、それぞれ、造形装置110によって製造された時点でのX方向、Y方向、Z方向に相当する。 A three-dimensional structure 420 shown in FIGS. 18 and 19A is a truncated cone having a diameter of the upper base larger than that of the lower base. The three-dimensional structure 420 has a left-right direction indicated by an arrow 420a in FIG. 19A, a front-rear direction indicated by an arrow 420b in FIGS. 18 and 19A, and a vertical direction indicated by an arrow 420c in FIG. This corresponds to the X direction, the Y direction, and the Z direction at the time of manufacture by the apparatus 110.
 三次元造形物420は、内部部分421と、周囲部分422とを備えている。 The three-dimensional structure 420 includes an inner part 421 and a surrounding part 422.
 内部部分421は、造形ヘッド112によって吐出される造形材112a以外の補強材421aによって形成される。補強材421aとしては、金属、樹脂、木材などが使用されても良い。補強材421aは、固体状態の造形材112aと比較して、剛性が大きい。また、補強材421aは、固体状態の造形材112aと比較して、曲げ強さが高いものが使用されることが好ましい。更に、補強材421aは、固体状態の造形材112aと比較して、曲げ強さの高さに加えて、衝撃値が高いものが使用されることが好ましい。 The internal portion 421 is formed by a reinforcing material 421a other than the modeling material 112a discharged by the modeling head 112. As the reinforcing material 421a, metal, resin, wood, or the like may be used. The reinforcing material 421a has higher rigidity than the solid modeling material 112a. Further, it is preferable that the reinforcing material 421a has a higher bending strength than the solid modeling material 112a. Furthermore, it is preferable that the reinforcing material 421a has a high impact value in addition to the bending strength as compared with the solid modeling material 112a.
 周囲部分422は、造形材112aおよびサポート材112bの少なくとも一方からなる層がZ方向に複数積み重ねられて形成された場合に、複数の層の造形材112aによって形成される。 The peripheral portion 422 is formed by a plurality of layers of the modeling material 112a when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction.
 サポート材112bによって形成されたサポート材部分423は、周囲部分422が形成される場合に、鉛直方向、すなわち、Z方向における下側から、または、水平方向から周囲部分422を支えるために設けられる。サポート材部分423は、周囲部分422と同様に、造形ヘッド112と同様な図示していないヘッドによって液体のサポート材112bが吐出された後、吐出されたサポート材112bが固体にされることによって形成される。サポート材部分423は、造形材112aおよびサポート材112bの少なくとも一方からなる層がZ方向に複数積み重ねられて形成された場合に、複数の層のサポート材112bによって形成される。サポート材112bは、水などによって容易に溶解し除去されることが可能である。 The support material portion 423 formed by the support material 112b is provided to support the peripheral portion 422 from the lower side in the vertical direction, that is, the Z direction, or from the horizontal direction when the peripheral portion 422 is formed. The support material portion 423 is formed by the liquid support material 112b being discharged by a head (not shown) similar to the modeling head 112, and then the discharged support material 112b being solid, like the surrounding portion 422. Is done. The support material portion 423 is formed by a plurality of layers of the support material 112b when a plurality of layers made of at least one of the modeling material 112a and the support material 112b are stacked in the Z direction. The support material 112b can be easily dissolved and removed by water or the like.
 補強材421aは、面形状である。三次元造形物420は、積層の途中で、層の延在方向に延在した面形状の補強材421aが配置される。補強材421aは、矢印420cで示す方向に複数配置されている。三次元造形物420は、周囲形成工程において鉛直方向、すなわち、Z方向における補強材421aの下側になる箇所の一部に造形材112aが存在しない空間420dが形成されるので、必要な造形材112aの量が大幅に低減されることによって、重量と、材料費とが低減されることが可能である。 The reinforcing material 421a has a surface shape. In the three-dimensional structure 420, a surface-shaped reinforcing material 421a extending in the extending direction of the layers is arranged in the middle of the lamination. A plurality of reinforcing members 421a are arranged in the direction indicated by the arrow 420c. Since the space 420d in which the modeling material 112a does not exist is formed in the part of the three-dimensional structure 420 in the vertical direction, that is, the lower side of the reinforcing material 421a in the Z direction in the surrounding formation process, the necessary modeling material is formed. By significantly reducing the amount of 112a, weight and material costs can be reduced.
 周囲部分422は、周囲形成工程において鉛直方向、すなわち、Z方向における補強材421aの下側で補強材421aを支持して空間420dの境界の一部を構成する支持部422aを備えている。空間420dを形成している面のうち支持部422aの面422bは、周囲形成工程においてオーバーハングしない斜面であるので、鉛直方向、すなわち、Z方向における上側の造形材112aの層が下側の造形材112aの層の上に確実に形成される。したがって、三次元造形物420は、空間420dの部分で各層の形状が崩れることを抑えることができ、その結果、精度良く形成されることができる。 The surrounding portion 422 includes a support portion 422a that supports the reinforcing material 421a on the lower side in the vertical direction, that is, the Z direction in the surrounding forming step, and constitutes a part of the boundary of the space 420d. Of the surfaces forming the space 420d, the surface 422b of the support portion 422a is an inclined surface that does not overhang in the periphery forming step, and therefore, the layer of the upper modeling material 112a in the vertical direction, that is, the Z direction is the lower modeling. It is reliably formed on the layer of material 112a. Therefore, the three-dimensional structure 420 can suppress the collapse of the shape of each layer in the space 420d, and as a result, can be formed with high accuracy.
 支持部422aは、層の延在方向における補強材421aの端部において補強材421aを支持する端部支持部422cと、層の延在方向における補強材421aの端部以外の部分において補強材421aを支持する非端部支持部422dとを備えている。非端部支持部422dは、図19(a)に示すように空間420dを区切る壁であっても良いし、図19(b)に示すように空間420dを区切らない柱であっても良い。三次元造形物420は、補強材421aのうち層の延在方向における長さが長い箇所に非端部支持部422dを造形材112aによって設けているので、補強材421aに撓みが発生することを抑えることができ、その結果、精度良く形成されることができる。 The support portion 422a includes an end portion support portion 422c that supports the reinforcing material 421a at an end portion of the reinforcing material 421a in the extending direction of the layer, and a reinforcing material 421a in a portion other than the end portion of the reinforcing material 421a in the extending direction of the layer. And a non-end support portion 422d for supporting the. The non-end support part 422d may be a wall that partitions the space 420d as shown in FIG. 19A, or may be a pillar that does not partition the space 420d as shown in FIG. 19B. Since the three-dimensional structure 420 is provided with the non-end support part 422d by the modeling material 112a at a portion of the reinforcing material 421a that is long in the extending direction of the layer, the reinforcing material 421a is warped. As a result, it can be formed with high accuracy.
 補強材421aは、図20に示すように、層の延在方向に直交する方向、すなわち、矢印420cで示す方向における両側に空間420dが形成されている箇所の少なくとも一部に多数の穴421bが形成されていても良い。三次元造形物420は、補強材421aに穴421bが形成されている場合、必要な補強材421aの量が大幅に低減されることによって、重量と、材料費とが低減されることが可能である。 As shown in FIG. 20, the reinforcing member 421a has a large number of holes 421b in at least a part of a portion where spaces 420d are formed on both sides in the direction perpendicular to the extending direction of the layers, that is, the direction indicated by the arrow 420c. It may be formed. When the hole 421b is formed in the reinforcing material 421a, the three-dimensional structure 420 can reduce the amount of the necessary reinforcing material 421a, thereby reducing the weight and the material cost. is there.
 本実施の形態においては、周囲部分がインクジェット方式によって形成されている。しかしながら、周囲部分は、インクジェット方式以外の方式で造形材112aによって形成されても良い。周囲部分は、FDM方式で造形材112aによって形成されても良い。 In the present embodiment, the peripheral portion is formed by an ink jet method. However, the surrounding portion may be formed by the modeling material 112a by a method other than the ink jet method. The surrounding portion may be formed of the modeling material 112a by the FDM method.
 以上に説明したように、本実施の形態に係る三次元造形物製造方法によって製造される三次元造形物は、内部部分を形成する補強材が周囲部分を形成する固体状態の造形材と比較して剛性が大きいので、補強材によって細い部分での剛性を向上することができる。したがって、本実施の形態に係る三次元造形物製造方法は、細い部分での折損や曲がりの発生を抑えることができる三次元造形物を製造することができる。 As described above, the three-dimensional structure manufactured by the three-dimensional structure manufacturing method according to the present embodiment is compared with the solid state forming material in which the reinforcing material forming the inner portion forms the surrounding portion. Since the rigidity is large, the rigidity in the thin portion can be improved by the reinforcing material. Therefore, the three-dimensional structure manufacturing method according to the present embodiment can manufacture a three-dimensional structure that can suppress the occurrence of breakage and bending at a thin portion.
 三次元造形物は、内部に補強材が配置されているので、外部に補強材が配置される構成と異なり、補強材によって外観が悪化させられることを抑えることができる。また、三次元造形物は、内部に補強材が配置されているので、外部に補強材が配置される構成と異なり、補強材が固定させられるための固定構造が不要である。 Since the reinforcing material is disposed inside the three-dimensional structure, it is possible to suppress the appearance from being deteriorated by the reinforcing material, unlike the configuration in which the reinforcing material is disposed outside. Moreover, since the reinforcing material is arrange | positioned inside the three-dimensional structure, unlike the structure where a reinforcing material is arrange | positioned outside, the fixing structure for fixing a reinforcing material is unnecessary.
 三次元造形物は、補強材が補強以外に他の部材との接続にも利用される場合、利便性を向上することができる。 The three-dimensional structure can improve convenience when the reinforcing material is used for connection to other members in addition to reinforcement.
 周囲部分に対する補強材の位置に基づいて造形データを修正する場合、周囲部分への補強材の配置作業を容易化することができる。したがって、三次元造形物の製造を容易化することができる。 When correcting the modeling data based on the position of the reinforcing material with respect to the surrounding portion, the placement work of the reinforcing material on the surrounding portion can be facilitated. Therefore, manufacture of a three-dimensional structure can be facilitated.
 以上においては、周囲部分を造形材によって形成する周囲形成工程によって三次元造形物の一部の周囲部分が形成される前に周囲部分に補強材が配置される内部形成工程が実行される。したがって、周囲形成工程によって三次元造形物の全ての周囲部分が形成された後に補強材を周囲部分に挿入する方法と比較して、三次元造形物の内部に補強材を容易に固定することができる。しかしながら、周囲形成工程によって三次元造形物の全ての周囲部分が形成された後に補強材を三次元造形物に挿入する内部形成工程が実行されても良い。周囲形成工程において周囲部分の外部から内部に連通する穴が形成されることによって、この穴を介して周囲部分の内部に補強材が挿入される工程が、周囲形成工程によって三次元造形物の全ての周囲部分が形成された後に実行されても良い。なお、周囲形成工程によって三次元造形物の全ての周囲部分が形成された後に補強材を三次元造形物に挿入する内部形成工程が実行される場合、周囲形成工程によって三次元造形物の一部の周囲部分が形成される前に周囲部分に補強材が配置される内部形成工程が実行される場合と比較して、周囲部分の製造を容易化することができる。 In the above, the internal forming process in which the reinforcing material is arranged in the peripheral portion is executed before the partial peripheral portion of the three-dimensional structure is formed by the peripheral forming step of forming the peripheral portion with the modeling material. Therefore, it is possible to easily fix the reinforcing material inside the three-dimensional structure as compared with the method of inserting the reinforcing material into the peripheral part after all the peripheral parts of the three-dimensional structure are formed by the peripheral forming process. it can. However, the internal formation process which inserts a reinforcing material in a three-dimensional structure after all the surrounding parts of a three-dimensional structure are formed by the periphery formation process may be performed. By forming a hole that communicates from the outside to the inside of the surrounding portion in the surrounding formation step, the step of inserting the reinforcing material into the inside of the surrounding portion through this hole It may be performed after the surrounding portion of the is formed. In addition, when the internal formation process which inserts a reinforcing material in a three-dimensional structure is performed after all the peripheral parts of the three-dimensional structure are formed by the peripheral formation process, a part of the three-dimensional structure is performed by the peripheral formation process. Compared to a case where an internal forming process in which a reinforcing material is disposed on the peripheral portion before the peripheral portion is formed, manufacturing of the peripheral portion can be facilitated.
(第3の実施の形態)
 まず、本発明の第3の実施の形態に係る三次元造形物製造方法に使用される造形装置の構成について説明する。
(Third embodiment)
First, the structure of the modeling apparatus used for the three-dimensional structure manufacturing method which concerns on the 3rd Embodiment of this invention is demonstrated.
 図21は、本実施の形態に係る造形装置510の概略正面図である。 FIG. 21 is a schematic front view of the modeling apparatus 510 according to the present embodiment.
 図21に示す構造は、本実施の形態に係る造形装置の基本構造である。 21 is a basic structure of the modeling apparatus according to the present embodiment.
 図21に示すように、造形装置510は、三次元造形物が製造される場合に三次元造形物を支持する支持部材511を備えている。 21, the modeling apparatus 510 includes a support member 511 that supports the three-dimensional structure when the three-dimensional structure is manufactured.
 造形装置510は、支持部材511に向けて液体の造形材512aを吐出するインクジェット方式の造形材用ヘッド512と、支持部材511に向けて液体のサポート材513aを吐出するインクジェット方式のサポート材用ヘッド513と、造形材用ヘッド512によって吐出された造形材512aや、サポート材用ヘッド513によって吐出されたサポート材513aに紫外線514aを照射するための紫外線照射装置514とを搭載しているキャリッジ515を備えている。 The modeling apparatus 510 includes an inkjet-type modeling material head 512 that ejects a liquid modeling material 512 a toward the support member 511 and an inkjet-type support material head that ejects a liquid support material 513 a toward the support member 511. 513 and a carriage 515 on which a modeling material 512a discharged by the modeling material head 512 and an ultraviolet irradiation device 514 for irradiating the support material 513a discharged by the support material head 513 with ultraviolet rays 514a are mounted. I have.
 造形材512aは、UVが照射されることによって固体にされるUV硬化型のインクである。造形材512aは、三次元造形物の材料になる造形インクである。造形インクとしては、三次元造形物の表面部分を形成するCMYK(シアン(Cyan)、マゼンタ(Magenta)、イエロー(Yellow)、ブラック(Black))のカラーインクと、カラーインクによる発色のために三次元造形物の内部を形成する白インクとが存在しても良い。また、造形インクとしては、透明なクリアーインクが存在しても良い。 The modeling material 512a is a UV curable ink that is solidified by being irradiated with UV. The modeling material 512a is modeling ink that becomes a material of a three-dimensional modeled object. As modeling inks, CMYK (Cyan, Magenta, Yellow, Black) color inks that form the surface part of a three-dimensional structure, and tertiary for coloring with color inks are used. There may be white ink that forms the interior of the original model. Further, as the modeling ink, a transparent clear ink may exist.
 なお、図21においては、造形材用ヘッド512が1つしか描かれていない。しかしながら、実際には、造形装置510は、造形材512aの種類毎に造形材用ヘッド512を備えていても良い。 In FIG. 21, only one modeling material head 512 is drawn. However, actually, the modeling apparatus 510 may include a modeling material head 512 for each type of the modeling material 512a.
 サポート材513aは、UVが照射されることによって固体にされるUV硬化型のインクである。サポート材513aは、造形インクによって任意の形状の三次元造形物を形成するために三次元造形物を支持するサポート材部分の材料になる。サポート材513aは、CMYKのカラーインクでも良い。サポート材513aは、水などの特定の液体によって容易に除去されることが可能なインクである。造形装置510において、サポート材部分は、三次元造形物に対して鉛直方向における下側や水平方向に形成される。サポート材部分は、三次元造形物がオーバーハング部を備える場合に、オーバーハング部に対して鉛直方向における下側に形成されてオーバーハング部を支持する。 The support material 513a is a UV curable ink that is solidified by being irradiated with UV. The support material 513a becomes a material of the support material portion that supports the three-dimensional structure in order to form a three-dimensional structure having an arbitrary shape with the modeling ink. The support material 513a may be CMYK color ink. The support material 513a is ink that can be easily removed by a specific liquid such as water. In the modeling apparatus 510, the support material portion is formed on the lower side in the vertical direction or in the horizontal direction with respect to the three-dimensional modeled object. When the three-dimensional structure includes the overhang portion, the support material portion is formed on the lower side in the vertical direction with respect to the overhang portion and supports the overhang portion.
 なお、図21においては、サポート材用ヘッド513が1つしか描かれていない。しかしながら、実際には、造形装置510は、サポート材513aの種類毎にサポート材用ヘッド513を備えていても良い。 In FIG. 21, only one support material head 513 is depicted. However, in practice, the modeling apparatus 510 may include a support material head 513 for each type of support material 513a.
 造形装置510は、レーザー光516aによる切断を実行するレーザーカッター516を搭載しているキャリッジ517を備えている。レーザー光516aは、パルスレーザーであっても良いし、CW(Continuous Wave)レーザーであっても良い。造形材512aや後述の多孔シートにレーザー光516aが照射された場合に発生する熱によって造形材512aや多孔シートが周囲の気体と反応して造形材512aや多孔シートに焦げや酸化が発生することを抑えるために、レーザーカッター516による切断加工は、不活性ガス中で実行されることが好ましい。 The modeling apparatus 510 includes a carriage 517 on which a laser cutter 516 that performs cutting with a laser beam 516a is mounted. The laser beam 516a may be a pulse laser or a CW (Continuous Wave) laser. The modeling material 512a or the porous sheet reacts with the surrounding gas due to heat generated when the modeling material 512a or a porous sheet described later is irradiated with laser light 516a, and the modeling material 512a or the porous sheet is burnt or oxidized. In order to suppress this, it is preferable that the cutting process by the laser cutter 516 is performed in an inert gas.
 図22(a)は、レーザー光516aが鉛直方向に照射される場合の造形装置510の一部の概略正面図である。図22(b)は、レーザー光516aが鉛直方向とは異なる方向に照射される場合の造形装置510の一部の概略正面図である。 FIG. 22 (a) is a schematic front view of a part of the modeling apparatus 510 when the laser beam 516a is irradiated in the vertical direction. FIG. 22B is a schematic front view of a part of the modeling apparatus 510 when the laser beam 516a is irradiated in a direction different from the vertical direction.
 図22に示すように、レーザーカッター516は、向きを変更可能にキャリッジ517に搭載されており、向きが変更されることによって、鉛直方向の成分が下向きである任意の方向にレーザー光516aを照射可能である。レーザーカッター516によるレーザー光516aの照射方向、すなわち、レーザー光516aによる切断方向が変更可能であるので、レーザー光516aによって切り出される三次元造形物の表面を滑らかにすることができる。 As shown in FIG. 22, the laser cutter 516 is mounted on the carriage 517 so that the direction can be changed, and by changing the direction, the laser beam 516 a is irradiated in an arbitrary direction in which the vertical component is downward. Is possible. Since the irradiation direction of the laser beam 516a by the laser cutter 516, that is, the cutting direction by the laser beam 516a can be changed, the surface of the three-dimensional structure cut out by the laser beam 516a can be smoothed.
 図21においては、多数の孔が形成されている多孔シート531が離型シート532を介して支持部材511上に支持されている。 In FIG. 21, a porous sheet 531 in which a large number of holes are formed is supported on a support member 511 via a release sheet 532.
 多孔シート531は、多数の孔が形成されていることによって、この孔を介して造形材512aやサポート材513aが透過可能または浸透可能なシートである。多孔シート531としては、プラスチックファイバーや金属線で編まれた網目を有するフィルムや、布地など、網目による孔が形成されているシートが採用されることが可能である。また、多孔シート531としては、エッチングで多数の孔が形成されたエッチングフィルムなど、網目によらない孔が形成されているシートが採用されることも可能である。 The perforated sheet 531 is a sheet in which a large number of holes are formed so that the modeling material 512a and the support material 513a can pass through or permeate through the holes. As the perforated sheet 531, a sheet having a mesh hole such as a film having a mesh knitted with plastic fiber or metal wire, or a cloth can be used. Further, as the porous sheet 531, a sheet in which holes not depending on the mesh are formed, such as an etching film in which a large number of holes are formed by etching, may be employed.
 離型シート532は、造形材512aが付着させられた多孔シート531を離型シート532自身から容易に剥離させることが可能な部材である。また、離型シート532は、離型シート532自身も支持部材511から容易に剥離させることが可能な部材である。 The release sheet 532 is a member that can easily peel the porous sheet 531 on which the modeling material 512a is adhered from the release sheet 532 itself. Further, the release sheet 532 is a member that can be easily separated from the support member 511 as well.
 なお、本実施の形態に係る三次元造形物製造方法においては、離型シート532が使用されずに、多孔シート531が支持部材511に直接支持されても良い。 In the three-dimensional structure manufacturing method according to the present embodiment, the porous sheet 531 may be directly supported by the support member 511 without using the release sheet 532.
 図23は、造形装置510のブロック図である。 FIG. 23 is a block diagram of the modeling apparatus 510.
 図21および図23に示すように、造形装置510は、造形材用ヘッド512による造形材512aの吐出方向や、サポート材用ヘッド513によるサポート材513aの吐出方向としてのZ方向に直交するY方向に、支持部材511と、キャリッジ515との一方に対して他方を相対的に駆動する造形用主走査方向駆動装置521を備えている。Z方向は、鉛直方向である。 As shown in FIGS. 21 and 23, the modeling apparatus 510 includes a Y direction orthogonal to the Z direction as the ejection direction of the modeling material 512 a by the modeling material head 512 and the ejection direction of the support material 513 a by the support material head 513. Further, a modeling main scanning direction driving device 521 for driving the other of the support member 511 and the carriage 515 relative to the other is provided. The Z direction is the vertical direction.
 造形装置510は、Y方向およびZ方向の両方に直交する図示していないX方向に、支持部材511と、キャリッジ515との一方に対して他方を相対的に駆動する造形用副走査方向駆動装置522を備えている。 The modeling apparatus 510 is a modeling sub-scanning direction driving apparatus that relatively drives one of the support member 511 and the carriage 515 in the X direction (not shown) orthogonal to both the Y direction and the Z direction. 522.
 造形装置510は、支持部材511と、キャリッジ515との一方に対して他方をZ方向に相対的に駆動する造形用高さ方向駆動装置523を備えている。 The modeling apparatus 510 includes a modeling height direction driving apparatus 523 that relatively drives one of the support member 511 and the carriage 515 in the Z direction.
 造形装置510は、支持部材511と、キャリッジ517との一方に対して他方をY方向に相対的に駆動する切断用主走査方向駆動装置524を備えている。 The modeling apparatus 510 includes a cutting main scanning direction driving device 524 that relatively drives one of the support member 511 and the carriage 517 in the Y direction.
 造形装置510は、支持部材511と、キャリッジ517との一方に対して他方をX方向に相対的に駆動する切断用副走査方向駆動装置525を備えている。 The modeling apparatus 510 includes a cutting sub-scanning direction driving device 525 that relatively drives one of the support member 511 and the carriage 517 in the X direction.
 造形装置510は、支持部材511と、キャリッジ517との一方に対して他方をZ方向に相対的に駆動する切断用高さ方向駆動装置526を備えている。 The modeling apparatus 510 includes a cutting height direction driving device 526 that relatively drives one of the support member 511 and the carriage 517 in the Z direction.
 造形装置510は、レーザーカッター516によるレーザー光516aの照射方向を、鉛直方向の成分が下向きである任意の方向に変更するために、キャリッジ517に対するレーザーカッター516の向きを変更する切断方向変更装置527を備えている。 The modeling apparatus 510 changes the direction of the laser cutter 516 relative to the carriage 517 in order to change the irradiation direction of the laser beam 516a by the laser cutter 516 to an arbitrary direction in which the vertical component is downward. It has.
 造形装置510は、図示していないネットワーク経由で外部の装置と通信を行う通信デバイスである通信部528と、造形装置510全体を制御する制御部529とを備えている。 The modeling apparatus 510 includes a communication unit 528 that is a communication device that communicates with an external apparatus via a network (not shown), and a control unit 529 that controls the entire modeling apparatus 510.
 制御部529は、CPUと、プログラムおよび各種のデータを予め記憶しているROMと、CPUの作業領域として用いられるRAMとを備えている。CPUは、ROMに記憶されているプログラムを実行するようになっている。 The control unit 529 includes a CPU, a ROM that stores programs and various data in advance, and a RAM that is used as a work area of the CPU. The CPU executes a program stored in the ROM.
 次に、造形装置510を使用した三次元造形物製造方法について説明する。 Next, a method for manufacturing a three-dimensional structure using the modeling apparatus 510 will be described.
 造形装置510の制御部529は、造形データが通信部528を介して入力されると、入力された造形データに基づいて造形材用ヘッド512、サポート材用ヘッド513、紫外線照射装置514、レーザーカッター516、造形用主走査方向駆動装置521、造形用副走査方向駆動装置522、造形用高さ方向駆動装置523、切断用主走査方向駆動装置524、切断用副走査方向駆動装置525、切断用高さ方向駆動装置526および切断方向変更装置527を制御することによって、三次元造形物を製造する。 When the modeling data is input via the communication unit 528, the control unit 529 of the modeling apparatus 510 receives the modeling material head 512, the support material head 513, the ultraviolet irradiation device 514, and the laser cutter based on the input modeling data. 516, modeling main scanning direction driving device 521, modeling sub-scanning direction driving device 522, modeling height direction driving device 523, cutting main scanning direction driving device 524, cutting sub-scanning direction driving device 525, cutting height A three-dimensional structure is manufactured by controlling the vertical direction driving device 526 and the cutting direction changing device 527.
 以下、具体的に説明する。 The details will be described below.
 制御部529は、造形データに基づいて、液体の造形材512aを造形材用ヘッド512によって多孔シート531に向けて吐出した後、多孔シート531に付着した造形材512aに紫外線照射装置514によって紫外線を照射することによって造形材512aを硬化させて固体にする。同様に、制御部529は、造形データに基づいてサポート材部分を形成する場合、液体のサポート材513aをサポート材用ヘッド513によって多孔シート531に向けて吐出した後、多孔シート531に付着したサポート材513aに紫外線照射装置514によって紫外線を照射することによってサポート材513aを硬化させて固体にする。制御部529は、造形データに基づいて造形用主走査方向駆動装置521および造形用副走査方向駆動装置522を制御しながら、上述したように多孔シート531に付着させた造形材512aやサポート材513aを固体にすることによって、造形材512aで形成された造形材部分や、サポート材513aで形成されたサポート材部分を1枚の多孔シート531に形成する。 Based on the modeling data, the control unit 529 discharges the liquid modeling material 512a toward the porous sheet 531 by the modeling material head 512, and then applies ultraviolet rays to the modeling material 512a attached to the porous sheet 531 by the ultraviolet irradiation device 514. By irradiating, the modeling material 512a is cured to be solid. Similarly, when forming the support material portion based on the modeling data, the control unit 529 discharges the liquid support material 513a toward the porous sheet 531 by the support material head 513 and then attaches the support to the porous sheet 531. By irradiating the material 513a with ultraviolet rays by an ultraviolet irradiation device 514, the support material 513a is cured to be solid. The control unit 529 controls the modeling main scanning direction driving device 521 and the modeling sub-scanning direction driving device 522 based on the modeling data, and the modeling material 512a and the support material 513a attached to the porous sheet 531 as described above. The solid material is formed into a single porous sheet 531 with the modeling material portion formed of the modeling material 512a and the support material portion formed of the support material 513a.
 図24は、1枚の多孔シート531に造形材部分541やサポート材部分542が形成された状態の造形装置510の一部の概略正面断面図である。 FIG. 24 is a schematic front sectional view of a part of the modeling apparatus 510 in a state in which the modeling material portion 541 and the support material portion 542 are formed on one porous sheet 531.
 上述したように、制御部529は、造形データに基づいて造形材用ヘッド512、サポート材用ヘッド513、紫外線照射装置514、造形用主走査方向駆動装置521および造形用副走査方向駆動装置522を制御することによって、図24に示すように、1枚の多孔シート531に造形材部分541やサポート材部分542を形成する。 As described above, the control unit 529 controls the modeling material head 512, the support material head 513, the ultraviolet irradiation device 514, the modeling main scanning direction driving device 521, and the modeling sub-scanning direction driving device 522 based on the modeling data. By controlling, as shown in FIG. 24, a modeling material portion 541 and a support material portion 542 are formed on one porous sheet 531.
 制御部529は、1枚の多孔シート531に造形材部分541やサポート材部分542を形成した後、造形データに基づいて切断用主走査方向駆動装置524、切断用副走査方向駆動装置525および切断方向変更装置527を制御しながら、レーザーカッター516によってレーザー光516aを多孔シート531に向けて照射することによって、多孔シート531を切断して多孔シート531における三次元造形物の一部と、三次元造形物以外の部分とを分離可能な状態にする。 The control unit 529 forms the modeling material portion 541 and the support material portion 542 on one perforated sheet 531, and then based on the modeling data, the cutting main scanning direction driving device 524, the cutting sub-scanning direction driving device 525, and the cutting While controlling the direction changing device 527, the laser cutter 516 irradiates the porous sheet 531 with laser light 516a, thereby cutting the porous sheet 531 and part of the three-dimensional structure in the porous sheet 531. A part other than the modeled object is made separable.
 図25は、1枚の多孔シート531における三次元造形物の一部543と、三次元造形物以外の部分とが分離可能な状態にされた造形装置510の一部の概略正面断面図である。 FIG. 25 is a schematic front cross-sectional view of a part of the modeling apparatus 510 in which a part 543 of the three-dimensional structure in one porous sheet 531 and a part other than the three-dimensional structure can be separated. .
 上述したように、制御部529は、レーザーカッター516、切断用主走査方向駆動装置524、切断用副走査方向駆動装置525および切断方向変更装置527を制御することによって、図25に示すように、1枚の多孔シート531における三次元造形物の一部543と、三次元造形物以外の部分とを分離可能な状態にする。 As described above, the control unit 529 controls the laser cutter 516, the cutting main scanning direction driving device 524, the cutting sub-scanning direction driving device 525, and the cutting direction changing device 527, as shown in FIG. A part 543 of the three-dimensional structure in one porous sheet 531 and a part other than the three-dimensional structure are made separable.
 なお、レーザーカッター516による切断の位置精度の方が造形材用ヘッド512による印刷の位置精度より良いので、三次元造形物の一部543の幅543aを、造形材用ヘッド512による印刷によって規定することなく、レーザーカッター516による切断によって確実に規定するために、図25に示すように、造形材部分541は、造形材部分541の幅541aが、レーザーカッター516によって切断される、三次元造形物の一部543の幅543aより広く、三次元造形物の一部543を包含するように形成されることが好ましい。ただし、幅541aは、幅543aと同一であっても良い。 Since the positional accuracy of cutting by the laser cutter 516 is better than the positional accuracy of printing by the modeling material head 512, the width 543a of the part 543 of the three-dimensional structure is defined by printing by the modeling material head 512. In order to reliably define by cutting with the laser cutter 516, the modeling material portion 541 has a three-dimensional structure in which the width 541a of the modeling material portion 541 is cut by the laser cutter 516 as shown in FIG. It is preferable that the portion 543 is wider than the width 543a so as to include the portion 543 of the three-dimensional structure. However, the width 541a may be the same as the width 543a.
 制御部529は、1枚の多孔シート531における三次元造形物の一部543と、三次元造形物以外の部分とを分離可能な状態にした後、造形データに基づいて造形用高さ方向駆動装置523および切断用高さ方向駆動装置526を制御することによって、支持部材511と、キャリッジ515およびキャリッジ517との鉛直方向における距離を、1枚の多孔シート531の厚み分の距離だけ増加させる。その後、三次元造形物の一部543と、三次元造形物以外の部分とが分離可能な状態にされた多孔シート531の鉛直方向における上側に、新たな多孔シート531が重ねられる。 The controller 529 makes a part 543 of the three-dimensional structure in the single porous sheet 531 separable from a part other than the three-dimensional structure, and then drives the height direction for modeling based on the modeling data. By controlling the device 523 and the cutting height direction driving device 526, the distance between the supporting member 511 and the carriage 515 and the carriage 517 in the vertical direction is increased by the distance corresponding to the thickness of the single porous sheet 531. Thereafter, a new porous sheet 531 is stacked on the upper side in the vertical direction of the porous sheet 531 in which a part 543 of the three-dimensional structure and a portion other than the three-dimensional structure are separable.
 なお、支持部材511を鉛直方向に移動させることによって、支持部材511と、キャリッジ515およびキャリッジ517との鉛直方向における距離を変更する場合、造形用高さ方向駆動装置523および切断用高さ方向駆動装置526は、同一の装置であっても良い。 When the vertical distance between the support member 511, the carriage 515, and the carriage 517 is changed by moving the support member 511 in the vertical direction, the modeling height direction driving device 523 and the cutting height direction driving are performed. The device 526 may be the same device.
 図26は、三次元造形物550が製造された状態の造形装置510の一部の概略正面断面図である。図27は、図26に示す三次元造形物550の外観斜視図である。 FIG. 26 is a schematic front sectional view of a part of the modeling apparatus 510 in a state in which the three-dimensional structure 550 is manufactured. FIG. 27 is an external perspective view of the three-dimensional structure 550 shown in FIG.
 制御部529は、以上の動作を繰り返すことによって、図26に示すように、三次元造形物550を製造する。すなわち、三次元造形物550は、多孔シート531の1枚分の厚み毎に層が形成されていて、複数の層が重ねられて構成されている。ここで、三次元造形物550は、各多孔シート531において三次元造形物の一部543と、三次元造形物以外の部分とが分離可能な状態にされている。したがって、作業者は、図27に示すような三次元造形物550を取り出すことができる。図27に示す三次元造形物550は、半球状の溝550aが形成された半球状の立体物である。 The control unit 529 manufactures a three-dimensional structure 550 as shown in FIG. 26 by repeating the above operation. In other words, the three-dimensional structure 550 is configured such that a layer is formed for each thickness of the porous sheet 531 and a plurality of layers are stacked. Here, the three-dimensional structure 550 is in a state in which a part 543 of the three-dimensional structure and a part other than the three-dimensional structure can be separated in each porous sheet 531. Therefore, the operator can take out the three-dimensional structure 550 as shown in FIG. A three-dimensional structure 550 shown in FIG. 27 is a hemispherical three-dimensional object in which a hemispherical groove 550a is formed.
 なお、多孔シート531に付着させられる造形材512aの量は、この多孔シート531と、この多孔シート531の直下の多孔シート531とが造形材512aによって接着される量であれば良く、多孔シート531の造形材部分541の全域に均一に浸み込む量でなくても良い。 The amount of the modeling material 512a attached to the porous sheet 531 may be an amount by which the porous sheet 531 and the porous sheet 531 immediately below the porous sheet 531 are adhered by the modeling material 512a. The amount of the modeling material portion 541 may not be soaked uniformly.
 また、多孔シート531にレーザーカッター516によって切り込みが入れられた場合に、この多孔シート531の上に他の多孔シート531が重ねられて、水平方向における位置のうち、下層の多孔シート531の切り込みの位置に対応する位置に、上層の多孔シート531に造形材512aが付着させられるとき、上層の多孔シート531に付着させられた造形材512aが下層の多孔シート531の切り込みに進入する可能性がある。この切り込みに進入した造形材512aが紫外線によって硬化させられると、三次元造形物550が取り出せなくなる可能性がある。したがって、制御部529は、多孔シート531にレーザーカッター516によって切り込みを入れた場合に、この切り込みをサポート材513aによって埋めた後で、この多孔シート531の上層の多孔シート531に、水平方向における位置のうち、この切り込みの位置に対応する位置に造形材512aを付着させることによって、この切り込みに上層の多孔シート531から造形材512aが侵入することを防ぎ、三次元造形物550が取り出せなくなる可能性を低減することができる。 Further, when the porous sheet 531 is cut by the laser cutter 516, another porous sheet 531 is overlaid on the porous sheet 531, and the lower porous sheet 531 is cut in the horizontal position. When the modeling material 512a is attached to the upper porous sheet 531 at a position corresponding to the position, the modeling material 512a attached to the upper porous sheet 531 may enter the cut of the lower porous sheet 531. . If the modeling material 512a that has entered the cut is cured by ultraviolet rays, the three-dimensional modeled object 550 may not be taken out. Therefore, when the control unit 529 cuts the porous sheet 531 with the laser cutter 516, the control unit 529 fills the cut with the support material 513a, and then positions the upper porous sheet 531 on the porous sheet 531 in the horizontal direction. Among these, by attaching the modeling material 512a to a position corresponding to the position of the cut, the modeling material 512a may be prevented from entering the cut from the upper porous sheet 531 and the three-dimensional model 550 may not be taken out. Can be reduced.
 図28(a)は、レーザーカッター516によって切り込み531aが入れられた多孔シート531の概略断面図である。図28(b)は、図28(a)に示す状態において後続の工程が施された多孔シート531の概略断面図である。図28(c)は、図28(b)に示す状態において後続の工程が施された多孔シート531の概略断面図である。図28(d)は、図28(c)に示す状態において後続の工程が施された多孔シート531の概略断面図である。 FIG. 28A is a schematic cross-sectional view of a porous sheet 531 in which a cut 531 a is cut by a laser cutter 516. FIG. 28B is a schematic cross-sectional view of the porous sheet 531 that has been subjected to subsequent steps in the state shown in FIG. FIG. 28C is a schematic cross-sectional view of the porous sheet 531 that has been subjected to subsequent steps in the state shown in FIG. FIG. 28D is a schematic cross-sectional view of the porous sheet 531 that has been subjected to the subsequent process in the state shown in FIG.
 制御部529は、図28(a)に示すように多孔シート531にレーザーカッター516によって切り込み531aを入れた場合に、この多孔シート531の上に他の多孔シート531を重ねて更に造形材512aを付着させるとき、切り込み531aを入れた多孔シート531の切り込み531aを図28(b)に示すようにサポート材513aによって埋めて、このサポート材513aを紫外線514aによって硬化させる。次いで、制御部529は、切り込み531aをサポート材513aによって埋めた多孔シート531の上に他の多孔シート531を重ねて図28(c)に示すように造形材512aを付着させて造形材部分541とする。次いで、制御部529は、造形材部分541を形成した多孔シート531にレーザーカッター516によって図28(d)に示すように切り込み531aを入れる。なお、切り込み531aを埋めて硬化させられたサポート材513aは、水などによって容易に除去されることが可能である。 As shown in FIG. 28A, when the control unit 529 cuts 531 a into the porous sheet 531 with the laser cutter 516, another porous sheet 531 is overlaid on the porous sheet 531 to further form the modeling material 512 a. When adhering, the notch 531a of the porous sheet 531 with the notch 531a is filled with the support material 513a as shown in FIG. 28B, and the support material 513a is cured by the ultraviolet ray 514a. Next, the control unit 529 attaches the modeling material 512a as shown in FIG. 28C by superimposing another porous sheet 531 on the porous sheet 531 in which the notch 531a is filled with the support material 513a, and the modeling material portion 541 is attached. And Next, the control unit 529 makes a cut 531a in the porous sheet 531 on which the modeling material portion 541 is formed, as shown in FIG. Note that the support material 513a that is hardened by filling the cuts 531a can be easily removed with water or the like.
 図29は、造形装置510の一例である造形装置610を示す概略正面図である。 FIG. 29 is a schematic front view showing a modeling apparatus 610 which is an example of the modeling apparatus 510.
 図21に示す造形装置510は、図29に示す造形装置610として実現されることができる。 21 can be realized as the modeling apparatus 610 shown in FIG.
 図29に示すように、造形装置610は、多孔シート531を繰り出すために多孔シート531が巻き付けられた繰り出しローラー611と、多孔シート531を巻き取るために多孔シート531が巻き付けられる巻き取りローラー612と、繰り出しローラー611によって繰り出されて巻き取りローラー612によって巻き取られる多孔シート531をZ方向に直交する方向に延在させるための複数のローラー613とを備えている。 As shown in FIG. 29, the modeling apparatus 610 includes a feeding roller 611 around which the porous sheet 531 is wound in order to feed out the porous sheet 531, and a winding roller 612 around which the porous sheet 531 is wound in order to wind up the porous sheet 531. And a plurality of rollers 613 for extending the perforated sheet 531 that is fed by the feeding roller 611 and wound by the winding roller 612 in a direction orthogonal to the Z direction.
 繰り出しローラー611、巻き取りローラー612およびローラー613の中心軸は、X方向に延在している。そして、繰り出しローラー611、巻き取りローラー612およびローラー613は、それぞれの中心軸の周りを回転可能に支持されている。 The central axes of the feeding roller 611, the take-up roller 612, and the roller 613 extend in the X direction. The feeding roller 611, the take-up roller 612, and the roller 613 are supported so as to be rotatable around their respective central axes.
 図30は、造形装置610のブロック図である。 FIG. 30 is a block diagram of the modeling apparatus 610.
 図30に示すように、造形装置610の制御系の構成は、繰り出しローラー611および巻き取りローラー612の回転を制御するローラー回転装置621を備えている点を除いて、図23に示す構成と同様である。ローラー回転装置621は、多孔シート531を支持部材511に対して相対的に移動させるものであり、本発明の移動手段を構成している。 As shown in FIG. 30, the configuration of the control system of the modeling apparatus 610 is the same as that shown in FIG. 23 except that it includes a roller rotating device 621 that controls the rotation of the feeding roller 611 and the take-up roller 612. It is. The roller rotating device 621 moves the perforated sheet 531 relative to the support member 511, and constitutes the moving means of the present invention.
 ただし、造形装置610において、造形用主走査方向駆動装置521は、支持部材511と、キャリッジ515とのうち、キャリッジ515のみをY方向に駆動する。造形用副走査方向駆動装置522は、支持部材511と、キャリッジ515とのうち、キャリッジ515のみをX方向に駆動する。切断用主走査方向駆動装置524は、支持部材511と、キャリッジ517とのうち、キャリッジ517のみをY方向に駆動する。切断用副走査方向駆動装置525は、支持部材511と、キャリッジ517とのうち、キャリッジ517のみをX方向に駆動する。造形用高さ方向駆動装置523および切断用高さ方向駆動装置526は、同一の装置であり、支持部材511と、キャリッジ515およびキャリッジ517とのうち、支持部材511のみをZ方向に駆動する。 However, in the modeling apparatus 610, the modeling main scanning direction driving device 521 drives only the carriage 515 in the Y direction among the support member 511 and the carriage 515. The modeling sub-scanning direction driving device 522 drives only the carriage 515 of the support member 511 and the carriage 515 in the X direction. The cutting main scanning direction driving device 524 drives only the carriage 517 in the Y direction among the support member 511 and the carriage 517. The cutting sub-scanning direction driving device 525 drives only the carriage 517 out of the support member 511 and the carriage 517 in the X direction. The modeling height direction driving device 523 and the cutting height direction driving device 526 are the same device, and only the support member 511 among the support member 511, the carriage 515, and the carriage 517 is driven in the Z direction.
 次に、造形装置610を使用した三次元造形物製造方法について説明する。 Next, a method for manufacturing a three-dimensional structure using the modeling apparatus 610 will be described.
 図31は、造形装置610の一部の概略平面図である。 FIG. 31 is a schematic plan view of a part of the modeling apparatus 610.
 造形装置610の制御部529は、上述したように、多孔シート531に造形材部分541やサポート材部分542を形成した後、多孔シート531における三次元造形物の一部543と、三次元造形物以外の部分とを分離可能な状態にする場合、図31に示すように、多孔シート531から特定の範囲の部分531bを切り出す。 As described above, the control unit 529 of the modeling apparatus 610 forms the modeling material portion 541 and the support material portion 542 on the porous sheet 531, and then the part 543 of the three-dimensional modeling object in the porous sheet 531 and the three-dimensional modeling object. When making it a state which can isolate | separate other parts, the part 531b of a specific range is cut out from the porous sheet 531 as shown in FIG.
 次いで、制御部529は、造形データに基づいて造形用高さ方向駆動装置523である切断用高さ方向駆動装置526を制御することによって、1枚の多孔シート531の厚み分の距離だけ、支持部材511を鉛直方向における下側に移動させる。 Next, the control unit 529 supports the cutting height direction driving device 526, which is the modeling height direction driving device 523, based on the modeling data, thereby supporting only the distance corresponding to the thickness of one porous sheet 531. The member 511 is moved downward in the vertical direction.
 次いで、制御部529は、Y方向における部分531bの長さより長い距離分だけ、巻き取りローラー612によって多孔シート531を巻き取るようにローラー回転装置621を動作させる。なお、多孔シート531は、巻き取りローラー612によって巻き取られた分だけ、繰り出しローラー611から繰り出される。制御部529は、巻き取りローラー612による巻き取りが終了すると、繰り出しローラー611を多孔シート531の繰り出し時の回転方向とは反対方向にローラー回転装置621によって付勢させるとともに、巻き取りローラー612を多孔シート531の巻き取り時の回転方向にローラー回転装置621によって付勢させることによって、繰り出しローラー611によって繰り出されて巻き取りローラー612によって巻き取られる多孔シート531のうち、支持部材511に対して水平方向における位置が重なっていて鉛直方向における位置が最も上側である多孔シート531にY方向におけるテンションをかける。 Next, the control unit 529 operates the roller rotating device 621 so as to wind up the porous sheet 531 by the winding roller 612 by a distance longer than the length of the portion 531b in the Y direction. The perforated sheet 531 is fed from the feed roller 611 by the amount wound by the take-up roller 612. When the winding by the winding roller 612 is completed, the control unit 529 urges the feeding roller 611 by the roller rotating device 621 in the direction opposite to the rotation direction when the porous sheet 531 is fed, and the winding roller 612 is made porous. By urging the sheet 531 by the roller rotating device 621 in the rotation direction when winding the sheet 531, the porous sheet 531 that is fed by the feeding roller 611 and wound by the winding roller 612 is horizontal with respect to the support member 511. A tension in the Y direction is applied to the perforated sheet 531 that overlaps the positions in FIG.
 図32は、造形装置610の一部の概略正面断面図である。 FIG. 32 is a schematic front sectional view of a part of the modeling apparatus 610.
 制御部529は、以上の動作を繰り返すことによって、図32に示すように、三次元造形物550を製造する。図32に示す三次元造形物550は、多孔シート531の1枚分の厚み毎に層が形成されていて、複数の層が重ねられて構成されている。 The control unit 529 manufactures a three-dimensional structure 550 as shown in FIG. 32 by repeating the above operation. A three-dimensional structure 550 shown in FIG. 32 has a layer formed for each thickness of the porous sheet 531 and is formed by stacking a plurality of layers.
 造形装置610は、以上において、多孔シート531がY方向に搬送されていたが、X方向に搬送されても良い。すなわち、造形装置610は、繰り出しローラー611、巻き取りローラー612およびローラー613の中心軸がY方向に延在していても良い。 In the modeling apparatus 610, the porous sheet 531 has been transported in the Y direction as described above, but may be transported in the X direction. That is, in the modeling apparatus 610, the central axes of the feeding roller 611, the take-up roller 612, and the roller 613 may extend in the Y direction.
 造形装置610は、多孔シート531から一部、すなわち、部分531bをレーザーカッター516によって切り出した後、多孔シート531をローラー回転装置621によって支持部材511に対して相対的に移動させることによって、多孔シート531のうちレーザーカッター516によって切り出されて支持部材511に支持されている部分531bに対して、支持部材511側とは反対側に多孔シート531を積層させる。この構成により、造形装置610は、支持部材511への複数の多孔シート531の積層を容易化するので、三次元造形物550の製造を容易化することができる。 The modeling apparatus 610 cuts a part of the porous sheet 531, that is, the part 531 b by the laser cutter 516, and then moves the porous sheet 531 relative to the support member 511 by the roller rotating device 621. A perforated sheet 531 is laminated on the side opposite to the support member 511 side with respect to the portion 531b cut out by the laser cutter 516 and supported by the support member 511. With this configuration, the modeling apparatus 610 facilitates the stacking of the plurality of porous sheets 531 on the support member 511, and thus can facilitate the manufacture of the three-dimensional modeled object 550.
 図33は、造形装置510の一例である造形装置710を示す概略正面図である。 FIG. 33 is a schematic front view showing a modeling apparatus 710 that is an example of the modeling apparatus 510.
 図21に示す造形装置510は、図33に示す造形装置710として実現されることができる。 21 can be realized as a modeling apparatus 710 shown in FIG.
 図33に示すように、造形装置710は、多孔シート531を繰り出すために多孔シート531が巻き付けられた繰り出しローラー711を備えている。繰り出しローラー711の中心軸は、X方向に延在している。そして、繰り出しローラー711は、中心軸の周りを回転可能に支持されている。 33, the modeling apparatus 710 includes a feeding roller 711 around which the porous sheet 531 is wound in order to feed out the porous sheet 531. The central axis of the feeding roller 711 extends in the X direction. The feeding roller 711 is supported so as to be rotatable around the central axis.
 造形装置710の支持部材511は、多孔シート531が固定されるシート固定部511aを備えている。造形装置710の支持部材511の中心軸511bは、X方向に延在している。そして、造形装置710の支持部材511は、中心軸511bの周りを回転可能に支持されている。 The support member 511 of the modeling apparatus 710 includes a sheet fixing portion 511a to which the porous sheet 531 is fixed. A central axis 511b of the support member 511 of the modeling apparatus 710 extends in the X direction. And the supporting member 511 of the modeling apparatus 710 is supported so that rotation around the central axis 511b is possible.
 図34は、造形装置710のブロック図である。 FIG. 34 is a block diagram of the modeling apparatus 710.
 図34に示すように、造形装置710の制御系の構成は、支持部材511の回転を制御する支持部材回転装置721と、繰り出しローラー711の回転を制御するローラー回転装置722とを備えている点を除いて、図23に示す構成と同様である。ここで、支持部材回転装置721は、支持部材511を回転させるものであり、本発明の回転手段を構成している。 As shown in FIG. 34, the configuration of the control system of the modeling apparatus 710 includes a support member rotation device 721 that controls the rotation of the support member 511 and a roller rotation device 722 that controls the rotation of the feed roller 711. The configuration is the same as that shown in FIG. Here, the support member rotating device 721 rotates the support member 511 and constitutes the rotating means of the present invention.
 ただし、造形装置710において、造形用主走査方向駆動装置521は、支持部材511と、キャリッジ515とのうち、キャリッジ515のみをY方向に駆動する。造形用副走査方向駆動装置522は、支持部材511と、キャリッジ515とのうち、キャリッジ515のみをX方向に駆動する。造形用高さ方向駆動装置523は、支持部材511と、キャリッジ515とのうち、キャリッジ515のみをZ方向に駆動する。切断用主走査方向駆動装置524は、支持部材511と、キャリッジ517とのうち、キャリッジ517のみをY方向に駆動する。切断用副走査方向駆動装置525は、支持部材511と、キャリッジ517とのうち、キャリッジ517のみをX方向に駆動する。切断用高さ方向駆動装置526は、支持部材511と、キャリッジ517とのうち、キャリッジ517のみをZ方向に駆動する。 However, in the modeling apparatus 710, the modeling main scanning direction driving device 521 drives only the carriage 515 in the Y direction among the support member 511 and the carriage 515. The modeling sub-scanning direction driving device 522 drives only the carriage 515 of the support member 511 and the carriage 515 in the X direction. The modeling height direction driving device 523 drives only the carriage 515 in the Z direction among the support member 511 and the carriage 515. The cutting main scanning direction driving device 524 drives only the carriage 517 in the Y direction among the support member 511 and the carriage 517. The cutting sub-scanning direction driving device 525 drives only the carriage 517 out of the support member 511 and the carriage 517 in the X direction. The cutting height direction driving device 526 drives only the carriage 517 in the Z direction among the support member 511 and the carriage 517.
 次に、造形装置710を使用した三次元造形物製造方法について説明する。 Next, a method for manufacturing a three-dimensional structure using the modeling apparatus 710 will be described.
 造形装置710の制御部529は、上述したように、多孔シート531に造形材部分541やサポート材部分542を形成して、多孔シート531における三次元造形物の一部543と、三次元造形物以外の部分とを分離可能な状態にした後、造形データに基づいて造形用高さ方向駆動装置523および切断用高さ方向駆動装置526を制御することによって、1枚の多孔シート531の厚み分の距離だけ、キャリッジ515およびキャリッジ517を鉛直方向における上側に移動させる。 As described above, the control unit 529 of the modeling apparatus 710 forms the modeling material portion 541 and the support material portion 542 on the porous sheet 531, and the part 543 of the three-dimensional modeling object in the porous sheet 531 and the three-dimensional modeling object. After making it a state which can be separated from other parts, by controlling the height direction driving device for modeling 523 and the height direction driving device for cutting 526 for cutting based on the modeling data, the thickness of one perforated sheet 531 The carriage 515 and the carriage 517 are moved upward in the vertical direction by the distance of.
 次いで、制御部529は、支持部材511が中心軸511bの周りを特定の方向に180°回転した場合に、キャリッジ515およびキャリッジ517が支持部材511や支持部材511に巻き付けられた多孔シート531に接触しない位置に、造形用主走査方向駆動装置521および造形用副走査方向駆動装置522の少なくとも一方によってキャリッジ515を駆動するとともに、切断用主走査方向駆動装置524および切断用副走査方向駆動装置525の少なくとも一方によってキャリッジ517を駆動する。 Next, when the support member 511 rotates 180 ° around the central axis 511b in a specific direction, the control unit 529 contacts the carriage 515 and the carriage 517 with the perforated sheet 531 wound around the support member 511 or the support member 511. The carriage 515 is driven by at least one of the modeling main scanning direction driving device 521 and the modeling sub-scanning direction driving device 522 at a position where the cutting is not performed, and the cutting main scanning direction driving device 524 and the cutting sub-scanning direction driving device 525 are driven. The carriage 517 is driven by at least one of them.
 次いで、制御部529は、支持部材511が中心軸511bの周りを特定の方向に180°回転するように支持部材回転装置721を動作させる。なお、多孔シート531は、支持部材511によって巻き取られた分だけ、繰り出しローラー711から繰り出される。制御部529は、支持部材511の回転が終了すると、繰り出しローラー711を多孔シート531の繰り出し時の回転方向とは反対方向にローラー回転装置722によって付勢させることによって、繰り出しローラー711によって繰り出された多孔シート531のうち、支持部材511に対して水平方向における位置が重なっていて鉛直方向における位置が最も上側である多孔シート531にY方向におけるテンションをかける。 Next, the control unit 529 operates the support member rotating device 721 so that the support member 511 rotates 180 degrees around the central axis 511b in a specific direction. The perforated sheet 531 is fed from the feed roller 711 by the amount wound by the support member 511. When the rotation of the support member 511 is completed, the control unit 529 is fed by the feed roller 711 by biasing the feed roller 711 by the roller rotating device 722 in a direction opposite to the rotation direction when the perforated sheet 531 is fed. Of the perforated sheet 531, the tension in the Y direction is applied to the perforated sheet 531 whose position in the horizontal direction overlaps the support member 511 and whose position in the vertical direction is the uppermost side.
 図35は、造形装置710の一部の概略正面断面図である。 FIG. 35 is a schematic front sectional view of a part of the modeling apparatus 710.
 制御部529は、以上の動作を繰り返すことによって、図35に示すように、三次元造形物550を製造する。図35に示す三次元造形物550は、多孔シート531の1枚分の厚み毎に層が形成されていて、複数の層が重ねられて構成されている。造形装置710は、図35に示すように、支持部材511の2面のそれぞれに三次元造形物550を製造することが可能である。なお、支持部材511の表面には、硬化させられた造形材512aやサポート材513aがある程度の接着力で貼り付いているので、支持部材511に対して鉛直方向における下側に三次元造形物550が存在する場合でも、ある程度の力が加えられなければ支持部材511から三次元造形物550が落下することは無い。 The control unit 529 manufactures a three-dimensional structure 550 as shown in FIG. 35 by repeating the above operation. A three-dimensional structure 550 shown in FIG. 35 has a layer for each thickness of the porous sheet 531 and is configured by stacking a plurality of layers. As illustrated in FIG. 35, the modeling apparatus 710 can manufacture a three-dimensional structure 550 on each of the two surfaces of the support member 511. Since the hardened modeling material 512a and the support material 513a are attached to the surface of the support member 511 with a certain degree of adhesive force, the three-dimensional structure 550 is positioned below the support member 511 in the vertical direction. Even if a certain amount of force is present, the three-dimensional structure 550 does not fall from the support member 511 unless a certain amount of force is applied.
 造形装置710は、以上において、多孔シート531がY方向に搬送されていたが、X方向に搬送されても良い。すなわち、造形装置710は、繰り出しローラー711の中心軸と、支持部材511の中心軸511bとがY方向に延在していても良い。 In the modeling apparatus 710, the porous sheet 531 has been conveyed in the Y direction in the above, but may be conveyed in the X direction. That is, in the modeling apparatus 710, the central axis of the feeding roller 711 and the central axis 511b of the support member 511 may extend in the Y direction.
 支持部材回転装置721は、支持部材511を回転させることによって支持部材511に多孔シート531を巻き付けて多孔シート531を積層させる。この構成により、造形装置710は、支持部材511への複数の多孔シート531の積層を容易化するので、三次元造形物550の製造を容易化することができる。 The support member rotating device 721 rotates the support member 511 to wind the porous sheet 531 around the support member 511 and stack the porous sheet 531. With this configuration, the modeling apparatus 710 facilitates the stacking of the plurality of porous sheets 531 on the support member 511, and thus can facilitate the manufacture of the three-dimensional modeled object 550.
 図29に示す造形装置610は、繰り出しローラー611および巻き取りローラー612による多孔シート531の引っ張り力のバランスによってキャリッジ515およびキャリッジ517に対する多孔シート531の位置を維持している。一方、図33に示す造形装置710は、繰り出しローラー711のみによる多孔シート531の引っ張り力によってキャリッジ515およびキャリッジ517に対する多孔シート531の位置を維持している。したがって、造形装置710は、造形装置610と比較して、キャリッジ515およびキャリッジ517に対する多孔シート531の位置を高精度に維持することができる。 The modeling apparatus 610 shown in FIG. 29 maintains the position of the porous sheet 531 with respect to the carriage 515 and the carriage 517 by the balance of the pulling force of the porous sheet 531 by the feeding roller 611 and the take-up roller 612. On the other hand, the modeling apparatus 710 shown in FIG. 33 maintains the position of the porous sheet 531 with respect to the carriage 515 and the carriage 517 by the pulling force of the porous sheet 531 only by the feeding roller 711. Therefore, the modeling apparatus 710 can maintain the position of the porous sheet 531 with respect to the carriage 515 and the carriage 517 with higher accuracy than the modeling apparatus 610.
 また、造形装置710は、三次元造形物550が形成される面を支持部材511が回転方向において2つ備えており、支持部材511の2面のそれぞれに三次元造形物550を製造することが可能であるので、造形装置610と比較して複数の三次元造形物550を高速に製造することが可能である。 In addition, the modeling device 710 includes two surfaces on which the three-dimensional structure 550 is formed in the support member 511 in the rotation direction, and can manufacture the three-dimensional structure 550 on each of the two surfaces of the support member 511. Since it is possible, compared with the modeling apparatus 610, it is possible to manufacture the some three-dimensional molded item 550 at high speed.
 図36は、造形装置510の一例である造形装置810を示す概略正面図である。 FIG. 36 is a schematic front view showing a modeling apparatus 810 that is an example of the modeling apparatus 510.
 図21に示す造形装置510は、図36に示す造形装置810として実現されることができる。 The modeling apparatus 510 shown in FIG. 21 can be realized as the modeling apparatus 810 shown in FIG.
 図36に示すように、造形装置810は、支持部材511の形状と、支持部材511が中心軸511bの周りを特定の方向に180°ずつではなく、90°ずつ回転するように制御部529が支持部材回転装置721を動作させる点とを除いて、図33に示す造形装置710と同様である。 As shown in FIG. 36, in the modeling apparatus 810, the control unit 529 is configured so that the shape of the support member 511 and the support member 511 rotate around the central axis 511b in 90 degrees instead of 180 degrees in a specific direction. Except for operating the support member rotating device 721, it is the same as the modeling apparatus 710 shown in FIG.
 造形装置810は、図36において、多孔シート531がY方向に搬送されていたが、X方向に搬送されても良い。すなわち、造形装置810は、繰り出しローラー811の中心軸と、支持部材511の中心軸511bとがY方向に延在していても良い。 In FIG. 36, the modeling apparatus 810 has the porous sheet 531 conveyed in the Y direction, but may be conveyed in the X direction. That is, in the modeling apparatus 810, the central axis of the feeding roller 811 and the central axis 511b of the support member 511 may extend in the Y direction.
 造形装置810は、図35に示す造形装置710と同様に、支持部材511を回転させることによって支持部材511に多孔シート531を巻き付けて多孔シート531を積層させる。この構成により、造形装置810は、支持部材511への複数の多孔シート531の積層を容易化するので、三次元造形物550の製造を容易化することができる。 The modeling apparatus 810 rotates the support member 511 to wind the porous sheet 531 around the support member 511 and stack the porous sheet 531 in the same manner as the modeling apparatus 710 shown in FIG. With this configuration, the modeling apparatus 810 facilitates the stacking of the plurality of porous sheets 531 on the support member 511, and thus can facilitate the manufacture of the three-dimensional modeled object 550.
 造形装置810は、三次元造形物550が形成される面を支持部材511が回転方向において4つ備えており、支持部材511の4面のそれぞれに三次元造形物550を製造することが可能であるので、造形装置710と比較して複数の三次元造形物550を高速に製造することが可能である。 The modeling apparatus 810 includes four surfaces on which the three-dimensional structure 550 is formed in the rotation direction of the support member 511, and can manufacture the three-dimensional structure 550 on each of the four surfaces of the support member 511. Therefore, a plurality of three-dimensional structures 550 can be manufactured at a higher speed than the modeling apparatus 710.
 図37は、造形装置510の一例である造形装置910を示す概略正面図である。図38は、造形装置910の概略側面図である。 FIG. 37 is a schematic front view showing a modeling apparatus 910 that is an example of the modeling apparatus 510. FIG. 38 is a schematic side view of the modeling apparatus 910.
 図21に示す造形装置510は、図37および図38に示す造形装置910として実現されることができる。 The modeling apparatus 510 shown in FIG. 21 can be realized as the modeling apparatus 910 shown in FIGS.
 図37および図38に示すように、造形装置910は、多孔シート531を繰り出すために多孔シート531が巻き付けられた繰り出しローラー911を備えている。繰り出しローラー911の中心軸は、Y方向に延在している。そして、繰り出しローラー911は、中心軸の周りを回転可能に支持されている。 37 and 38, the modeling apparatus 910 includes a feeding roller 911 around which the perforated sheet 531 is wound in order to feed out the perforated sheet 531. The central axis of the feeding roller 911 extends in the Y direction. The feeding roller 911 is supported so as to be rotatable around the central axis.
 造形装置910の支持部材511は、多孔シート531が固定されるシート固定部511aを備えている。造形装置910の支持部材511は、円柱形である。造形装置910の支持部材511の中心軸は、Y方向に延在している。そして、造形装置910の支持部材511は、中心軸の周りを回転可能に支持されている。 The support member 511 of the modeling apparatus 910 includes a sheet fixing portion 511a to which the porous sheet 531 is fixed. The support member 511 of the modeling apparatus 910 has a cylindrical shape. The central axis of the support member 511 of the modeling apparatus 910 extends in the Y direction. The support member 511 of the modeling apparatus 910 is supported so as to be rotatable around the central axis.
 造形装置910の制御系の構成は、図30に示す構成と同様である。 The configuration of the control system of the modeling apparatus 910 is the same as the configuration shown in FIG.
 ただし、造形装置910において、造形用主走査方向駆動装置521は、支持部材511と、キャリッジ515とのうち、キャリッジ515のみをY方向に駆動する。造形用高さ方向駆動装置523は、支持部材511と、キャリッジ515とのうち、キャリッジ515のみをZ方向に駆動する。切断用主走査方向駆動装置524は、支持部材511と、キャリッジ517とのうち、キャリッジ517のみをY方向に駆動する。切断用高さ方向駆動装置526は、支持部材511と、キャリッジ517とのうち、キャリッジ517のみをZ方向に駆動する。造形用副走査方向駆動装置522および切断用副走査方向駆動装置525は、同一の装置であり、支持部材511と、キャリッジ515およびキャリッジ517とのうち、支持部材511のみを支持部材511の中心軸周りに回転させることによって、支持部材511と、キャリッジ515およびキャリッジ517との一方に対して他方をX方向に相対的に移動させる。ローラー回転装置621は、繰り出しローラー911を回転させる。ローラー回転装置621は、繰り出しローラー911の回転を制御する。 However, in the modeling apparatus 910, the modeling main scanning direction driving device 521 drives only the carriage 515 in the Y direction among the support member 511 and the carriage 515. The modeling height direction driving device 523 drives only the carriage 515 in the Z direction among the support member 511 and the carriage 515. The cutting main scanning direction driving device 524 drives only the carriage 517 in the Y direction among the support member 511 and the carriage 517. The cutting height direction driving device 526 drives only the carriage 517 in the Z direction among the support member 511 and the carriage 517. The modeling sub-scanning direction driving device 522 and the cutting sub-scanning direction driving device 525 are the same device. Of the support member 511, the carriage 515, and the carriage 517, only the support member 511 is the central axis of the support member 511. By rotating around, the other of the support member 511, the carriage 515, and the carriage 517 is moved relative to the X direction. The roller rotating device 621 rotates the feeding roller 911. The roller rotating device 621 controls the rotation of the feeding roller 911.
 次に、造形装置910を使用した三次元造形物製造方法について説明する。 Next, a method for manufacturing a three-dimensional structure using the modeling apparatus 910 will be described.
 制御部529は、造形データに基づいて、液体の造形材512aを造形材用ヘッド512によって多孔シート531に向けて吐出した後、多孔シート531に付着した造形材512aに紫外線照射装置514によって紫外線を照射することによって造形材512aを硬化させて固体にする。制御部529は、造形データに基づいて造形用主走査方向駆動装置521を制御しながら、上述したように多孔シート531に付着させた造形材512aを固体にすることによって、造形材512aで形成された造形材部分541を多孔シート531に形成する。 Based on the modeling data, the control unit 529 discharges the liquid modeling material 512a toward the porous sheet 531 by the modeling material head 512, and then applies ultraviolet rays to the modeling material 512a attached to the porous sheet 531 by the ultraviolet irradiation device 514. By irradiating, the modeling material 512a is cured to be solid. The control unit 529 is formed of the modeling material 512a by solidifying the modeling material 512a attached to the porous sheet 531 as described above while controlling the modeling main scanning direction driving device 521 based on the modeling data. The formed modeling material portion 541 is formed on the porous sheet 531.
 制御部529は、多孔シート531に造形材部分541を形成した後、造形データに基づいて切断用主走査方向駆動装置524および切断方向変更装置527を制御しながら、レーザーカッター516によってレーザー光516aを多孔シート531に向けて照射することによって、多孔シート531を切断する。 After forming the modeling material portion 541 on the porous sheet 531, the control unit 529 controls the cutting main scanning direction driving device 524 and the cutting direction changing device 527 based on the modeling data, and the laser cutter 516 emits the laser beam 516a. By irradiating the porous sheet 531, the porous sheet 531 is cut.
 制御部529は、造形データに基づいて造形用副走査方向駆動装置522を制御しながら、上述したように多孔シート531に付着させた造形材512aを固体にするとともに、レーザーカッター516によって多孔シート531を切断することによって、造形材512aで形成された造形材部分541を多孔シート531に形成するとともに、多孔シート531における三次元造形物の一部と、三次元造形物以外の部分とを分離可能な状態にする。なお、制御部529は、繰り出しローラー911を多孔シート531の繰り出し時の回転方向とは反対方向にローラー回転装置621によって付勢させることによって、繰り出しローラー911によって繰り出された多孔シート531のうち、支持部材511に対して水平方向における位置が重なっていて鉛直方向における位置が最も上側である多孔シート531にX方向におけるテンションをかける。 The control unit 529 controls the modeling sub-scanning direction driving device 522 based on the modeling data, solidifies the modeling material 512a attached to the porous sheet 531 as described above, and uses the laser cutter 516 to form the porous sheet 531. Is formed on the porous sheet 531, and a part of the three-dimensional structure in the porous sheet 531 can be separated from a part other than the three-dimensional structure. To make sure In addition, the control unit 529 urges the feeding roller 911 by the roller rotating device 621 in the direction opposite to the rotation direction when the perforated sheet 531 is fed, thereby supporting the porous sheet 531 fed by the feeding roller 911. A tension in the X direction is applied to the porous sheet 531 whose position in the horizontal direction overlaps the member 511 and whose position in the vertical direction is the uppermost side.
 制御部529は、キャリッジ515およびキャリッジ517と、これらに対向する位置の多孔シート531との距離が特定の距離の範囲内に収まるように、造形用副走査方向駆動装置522による支持部材511の回転に合わせて造形用高さ方向駆動装置523および切断用高さ方向駆動装置526を制御する。 The control unit 529 rotates the support member 511 by the modeling sub-scanning direction driving device 522 so that the distance between the carriage 515 and the carriage 517 and the porous sheet 531 at the position facing the carriage 515 is within a specific distance range. The shaping height direction driving device 523 and the cutting height direction driving device 526 are controlled according to the above.
 制御部529は、以上の動作を繰り返すことによって、支持部材511を取り囲むチューブ状の三次元造形物550を製造することができる。 The control unit 529 can manufacture the tube-shaped three-dimensional structure 550 surrounding the support member 511 by repeating the above operation.
 本発明の回転手段としての造形用副走査方向駆動装置522および切断用副走査方向駆動装置525は、支持部材511を回転させることによって支持部材511に多孔シート531を巻き付けて多孔シート531を積層させる。この構成により、造形装置910は、支持部材511への複数の多孔シート531の積層を容易化するので、三次元造形物550の製造を容易化することができる。 The modeling sub-scanning direction driving device 522 and the cutting sub-scanning direction driving device 525 as the rotating means of the present invention rotate the support member 511 to wind the porous sheet 531 around the support member 511 and stack the porous sheets 531. . With this configuration, the modeling apparatus 910 facilitates the stacking of the plurality of porous sheets 531 on the support member 511, and thus can facilitate the manufacture of the three-dimensional modeled object 550.
 造形装置910の造形材用ヘッド512は、造形用副走査方向駆動装置522および切断用副走査方向駆動装置525による支持部材511の回転角度が互いに異なる状態で吐出した造形材512a同士を互いに接触させる。この構成により、造形装置910は、チューブ状の三次元造形物550など、造形用副走査方向駆動装置522および切断用副走査方向駆動装置525による支持部材511の回転に応じた形状の三次元造形物550を製造することができる。 The modeling material head 512 of the modeling apparatus 910 causes the modeling materials 512a ejected in a state in which the rotation angles of the support members 511 by the modeling sub-scanning direction driving device 522 and the cutting sub-scanning direction driving device 525 are different from each other. . With this configuration, the modeling apparatus 910 has a shape corresponding to the rotation of the support member 511 by the modeling sub-scanning direction driving device 522 and the cutting sub-scanning direction driving device 525, such as the tube-shaped three-dimensional modeling object 550. Article 550 can be manufactured.
 以上に説明したように、三次元造形物550は、多孔シート531同士を造形材512aによって接着して機械的な強度を向上するので、細い部分での折損や曲がりの発生を抑えることができる三次元造形物として適している。 As described above, the three-dimensional structure 550 improves the mechanical strength by adhering the porous sheets 531 to each other with the modeling material 512a, so that it is possible to suppress the occurrence of breakage and bending in a thin portion. Suitable as an original model.
 三次元造形物550は、造形材512aが紫外線硬化型インクであるので、造形材512aが高速で高精度に硬化する。したがって、三次元造形物550は、高速で高精度に製造されることができる。 In the three-dimensional structure 550, since the modeling material 512a is ultraviolet curable ink, the modeling material 512a is cured at high speed with high accuracy. Therefore, the three-dimensional structure 550 can be manufactured at high speed and with high accuracy.
 なお、造形材512aは、紫外線硬化型インク以外のインクであっても良いし、インクジェット方式以外の方式で多孔シート531同士を接着しても良い。造形材512aは、ディスペンサーで多孔シート531に付着させられても良い。 Note that the modeling material 512a may be ink other than ultraviolet curable ink, or the porous sheets 531 may be bonded to each other by a method other than the ink jet method. The modeling material 512a may be attached to the porous sheet 531 with a dispenser.
 造形装置510、610、710、810および910は、多孔シート531同士を造形材512aによって接着して機械的な強度を向上するとともに、三次元造形物550をレーザーカッター516によって多孔シート531から高精度に切り出すので、機械的な強度が高い高精度な三次元造形物550を製造することができる。したがって、造形装置510、610、710、810および910は、細い部分での折損や曲がりの発生を抑えることができる三次元造形物550の製造に適している。 The modeling apparatuses 510, 610, 710, 810, and 910 improve the mechanical strength by bonding the porous sheets 531 to each other with the modeling material 512 a, and the high accuracy of the three-dimensional structure 550 from the porous sheet 531 by the laser cutter 516. Therefore, it is possible to manufacture a highly accurate three-dimensional structure 550 having high mechanical strength. Therefore, the modeling apparatuses 510, 610, 710, 810, and 910 are suitable for manufacturing the three-dimensional modeled object 550 that can suppress the occurrence of breakage and bending in a thin portion.
 インクジェット方式で使用される造形材512aは、造形材用ヘッド512で吐出される必要があるため、低粘度の液体である。ここで、インクジェット方式で使用される造形材用ヘッド512のノズルの直径は、通常、20μm~30μm程度である。そのため、造形材512aは、造形材用ヘッド512のノズルの詰まりを防止するために、粒径の大きな補強材やフィラメント状の補強材が混入されることができない。そのため、三次元造形物550は、多孔シート531が使用されずに造形材512aのみで形成される場合、強度や耐久性を必要とする用途には使用されることができない。三次元造形物550は、大きな造形物である場合、多孔シート531が使用されずに造形材512aのみで形成されたときに、自重で壊れる可能性がある。しかしながら、本実施の形態における三次元造形物550は、多孔シート531によって補強されることによって強度を出すことができるので、強度や耐久性を必要とする用途に使用されることができる。 Since the modeling material 512a used in the inkjet method needs to be discharged by the modeling material head 512, it is a low-viscosity liquid. Here, the diameter of the nozzle of the modeling material head 512 used in the inkjet method is usually about 20 μm to 30 μm. Therefore, the modeling material 512a cannot be mixed with a reinforcing material having a large particle size or a filament-shaped reinforcing material in order to prevent clogging of the nozzle of the modeling material head 512. Therefore, the three-dimensional structure 550 cannot be used for applications that require strength and durability when the porous sheet 531 is not used and is formed only with the modeling material 512a. When the three-dimensional model 550 is a large model, the three-dimensional model 550 may be broken by its own weight when the porous sheet 531 is not used and is formed only by the modeling material 512a. However, since the three-dimensional structure 550 in the present embodiment can provide strength by being reinforced by the porous sheet 531, it can be used for applications that require strength and durability.
 なお、三次元造形物550は、多孔シート531の厚みを薄くすることによって、Z方向における精度を向上することができる。 Note that the three-dimensional structure 550 can improve the accuracy in the Z direction by reducing the thickness of the porous sheet 531.
 また、三次元造形物550は、多孔シート531の性能に応じた性能を発揮することができる。多孔シート531が高強度の部材である場合、三次元造形物550は、強度が向上する。また、多孔シート531に耐火性が存在する場合、三次元造形物550は、耐火性を備えることができる。
 

 
Further, the three-dimensional structure 550 can exhibit performance according to the performance of the porous sheet 531. When the porous sheet 531 is a high-strength member, the strength of the three-dimensional structure 550 is improved. Moreover, when fire resistance exists in the porous sheet 531, the three-dimensional structure 550 can be provided with fire resistance.


Claims (20)

  1.  液体の造形材を吐出した後、吐出した前記造形材を固体にすることによって三次元造形物を製造する三次元造形物製造方法であって、
     前記三次元造形物の内部の部分を前記造形材によって形成する内部形成工程と、
     前記内部の部分の周囲の部分を前記造形材によって複数の層を積み重ねて形成する周囲形成工程とを備え、
     前記内部形成工程によって前記内部の部分を形成する前記造形材は、前記周囲形成工程によって前記周囲の部分を形成する前記造形材と比較して、固体状態での剛性が大きく、
     前記周囲形成工程は、前記周囲の部分の少なくとも一部を構成する溝を形成する工程であり、
     前記内部形成工程は、前記周囲形成工程によって前記三次元造形物の一部の前記周囲の部分が形成される前と、前記周囲形成工程によって前記三次元造形物の全ての前記周囲の部分が形成された後との何れかにおいて液体の前記造形材を前記溝に入れることによって前記内部の部分を形成する工程であることを特徴とする三次元造形物製造方法。
    After the liquid modeling material is discharged, the three-dimensional structure manufacturing method for manufacturing the three-dimensional structure by making the discharged modeling material solid,
    An internal forming step of forming an internal portion of the three-dimensional structure with the modeling material;
    A surrounding formation step of forming a plurality of layers by stacking a plurality of layers with the modeling material around the inner portion;
    The modeling material that forms the internal part by the internal formation step has a greater rigidity in a solid state than the modeling material that forms the peripheral portion by the peripheral formation step.
    The surrounding formation step is a step of forming a groove constituting at least a part of the surrounding portion,
    In the internal forming step, before the surrounding portion of the three-dimensional structure is formed by the surrounding forming step, and all the surrounding portions of the three-dimensional structure are formed by the surrounding forming step. A method for producing a three-dimensional structure, which is a step of forming the internal portion by putting the liquid modeling material into the groove either after or after.
  2.  前記内部形成工程および前記周囲形成工程は、インクジェット方式によって液体の前記造形材を吐出する工程であることを特徴とする請求項1に記載の三次元造形物製造方法。 The method for manufacturing a three-dimensional structure according to claim 1, wherein the internal forming step and the surrounding forming step are steps of discharging the liquid forming material by an ink jet method.
  3.  液体の造形材を吐出した後、吐出した前記造形材を固体にすることによって三次元造形物を製造する三次元造形物製造方法であって、
     前記三次元造形物の内部の部分を前記造形材以外の補強材によって形成する内部形成工程と、
     前記内部の部分の周囲の部分を前記造形材によって複数の層を積み重ねて形成する周囲形成工程とを備え、
     前記補強材は、固体状態の前記造形材と比較して、剛性が大きいことを特徴とする三次元造形物製造方法。
    After the liquid modeling material is discharged, the three-dimensional structure manufacturing method for manufacturing the three-dimensional structure by making the discharged modeling material solid,
    An internal forming step of forming a portion inside the three-dimensional structure with a reinforcing material other than the modeling material;
    A surrounding formation step of forming a plurality of layers by stacking a plurality of layers with the modeling material around the inner portion;
    The reinforcing material has a rigidity higher than that of the solid modeling material.
  4.  前記補強材は、他の部材と接続するための接続部を備えることを特徴とする請求項3に記載の三次元造形物製造方法。 The method for manufacturing a three-dimensional structure according to claim 3, wherein the reinforcing member includes a connection portion for connecting to another member.
  5.  前記内部形成工程は、前記周囲形成工程によって前記三次元造形物の一部の前記周囲の部分が形成される前に前記内部の部分に前記補強材が配置される工程であることを特徴とする請求項3または請求項4に記載の三次元造形物製造方法。 The internal forming step is a step in which the reinforcing material is disposed in the internal portion before the peripheral portion of the part of the three-dimensional structure is formed in the peripheral forming step. The three-dimensional structure manufacturing method of Claim 3 or Claim 4.
  6.  前記周囲形成工程は、液体の前記造形材を造形データに基づいて造形装置によって吐出する工程であり、
     前記周囲形成工程は、前記内部形成工程によって前記内部の部分に前記補強材が配置された後、前記周囲の部分に対する前記補強材の位置を検出し、検出した位置に基づいて前記造形データを修正する工程であることを特徴とする請求項5に記載の三次元造形物製造方法。
    The surrounding forming step is a step of discharging the liquid modeling material by a modeling apparatus based on modeling data,
    The surrounding forming step detects the position of the reinforcing material with respect to the surrounding portion after the reinforcing material is arranged in the internal portion by the internal forming step, and corrects the modeling data based on the detected position. The three-dimensional structure manufacturing method according to claim 5, wherein the three-dimensional structure manufacturing method is a step of performing the step.
  7.  前記内部形成工程は、前記周囲形成工程によって前記三次元造形物の全ての前記周囲の部分が形成された後に前記内部の部分に前記補強材が挿入される工程であることを特徴とする請求項3または請求項4に記載の三次元造形物製造方法。 The internal forming step is a step in which the reinforcing material is inserted into the internal portion after all the peripheral portions of the three-dimensional structure are formed in the peripheral forming step. The three-dimensional structure manufacturing method of Claim 3 or Claim 4.
  8.  前記周囲形成工程は、前記層の延在方向に直交する方向が鉛直方向である工程であり、
     前記三次元造形物は、前記周囲形成工程において鉛直方向における前記補強材の下側になる箇所の一部に空間が形成され、
     前記周囲の部分は、前記周囲形成工程において鉛直方向における前記補強材の下側で前記補強材を支持して前記空間の境界の一部を構成する支持部を備え、
     前記空間を形成している面のうち前記支持部の面は、前記周囲形成工程においてオーバーハングしない斜面であることを特徴とする請求項3または請求項4に記載の三次元造形物製造方法。
    The surrounding formation step is a step in which a direction perpendicular to the extending direction of the layer is a vertical direction,
    In the three-dimensional structure, a space is formed in a part of the portion that is below the reinforcing material in the vertical direction in the surrounding formation step.
    The surrounding portion includes a support portion that supports the reinforcing material on the lower side of the reinforcing material in the vertical direction in the surrounding forming step and constitutes a part of the boundary of the space,
    5. The three-dimensional structure manufacturing method according to claim 3, wherein the surface of the support portion among the surfaces forming the space is an inclined surface that does not overhang in the periphery forming step.
  9.  前記支持部は、
     前記層の延在方向における前記補強材の端部において前記補強材を支持する端部支持部と、
     前記端部以外の部分において前記補強材を支持する非端部支持部とを備えることを特徴とする請求項8に記載の三次元造形物製造方法。
    The support part is
    An end support portion for supporting the reinforcing material at the end of the reinforcing material in the extending direction of the layer;
    The three-dimensional structure manufacturing method according to claim 8, further comprising a non-end support portion that supports the reinforcing material in a portion other than the end portion.
  10.  前記補強材は、前記層の延在方向に直交する方向における両側に前記空間が形成されている箇所の少なくとも一部に穴が形成されていることを特徴とする請求項8に記載の三次元造形物製造方法。 The three-dimensional structure according to claim 8, wherein the reinforcing material has holes formed in at least a part of a portion where the space is formed on both sides in a direction orthogonal to the extending direction of the layer. Molded object manufacturing method.
  11.  内部の部分と、
     前記内部の部分の周囲の部分とを備え、
     前記周囲の部分は、固体状態の造形材によって形成され、
     前記内部の部分は、前記造形材以外の補強材によって形成され、
     前記補強材は、固体状態の前記造形材と比較して、剛性が大きいことを特徴とする三次元造形物。
    Internal parts,
    A portion around the inner portion;
    The surrounding portion is formed by a solid modeling material,
    The internal part is formed by a reinforcing material other than the modeling material,
    The three-dimensional structure according to claim 1, wherein the reinforcing material has higher rigidity than the solid modeling material.
  12.  前記補強材は、他の部材と接続するための接続部を備えることを特徴とする請求項11に記載の三次元造形物。 The three-dimensional structure according to claim 11, wherein the reinforcing member includes a connecting portion for connecting to another member.
  13.  それぞれ多数の孔が形成されていて積層されている複数の多孔シートと、
     前記孔に入り込むことによって前記多孔シート同士を接着する造形材と
     を備えることを特徴とする三次元造形物。
    A plurality of perforated sheets each having a plurality of holes formed and laminated;
    A three-dimensional structure comprising: a modeling material that bonds the porous sheets by entering the hole.
  14.  前記造形材は、紫外線が照射されることで硬化する紫外線硬化型インクであることを特徴とする請求項13に示す三次元造形物。 The three-dimensional structure according to claim 13, wherein the modeling material is an ultraviolet curable ink that is cured by being irradiated with ultraviolet rays.
  15.  それぞれ多数の孔が形成されている複数の多孔シートが積層される支持部材と、
     前記孔に入り込むことによって前記多孔シート同士を接着する造形材を、前記支持部材に積層されている複数の前記多孔シートに向けて吐出する造形材用ヘッドと
     を備えることを特徴とする造形装置。
    A support member on which a plurality of perforated sheets each having a large number of holes are laminated;
    A modeling apparatus comprising: a modeling material head that ejects a modeling material that bonds the porous sheets together by entering the hole toward the plurality of the porous sheets stacked on the support member.
  16.  前記造形材によって前記多孔シート同士が接着された状態で積層されている複数の前記多孔シートを備える三次元造形物を、積層されている複数の前記多孔シートから切り出すレーザーカッターを備えることを特徴とする請求項15に記載の造形装置。 It comprises a laser cutter that cuts out a three-dimensional structure including a plurality of the porous sheets laminated in a state where the porous sheets are adhered to each other by the modeling material from the plurality of laminated porous sheets. The modeling apparatus according to claim 15.
  17.  前記多孔シートを前記支持部材に対して相対的に移動させる移動手段を備え、
     前記多孔シートから一部を前記レーザーカッターによって切り出した後、前記多孔シートを前記移動手段によって前記支持部材に対して相対的に移動させることによって、前記多孔シートのうち前記レーザーカッターによって切り出されて前記支持部材に支持されている部分に対して、前記支持部材側とは反対側に前記多孔シートを積層させることを特徴とする請求項16に記載の造形装置。
    A moving means for moving the porous sheet relative to the support member;
    After a part of the porous sheet is cut out by the laser cutter, the porous sheet is moved relative to the support member by the moving means, so that the porous sheet is cut out by the laser cutter. The modeling apparatus according to claim 16, wherein the porous sheet is laminated on a side opposite to the support member side with respect to a portion supported by the support member.
  18.  前記支持部材は、回転可能に支持されており、
     前記造形装置は、前記支持部材を回転させる回転手段を備え、
     前記回転手段は、前記支持部材を回転させることによって前記支持部材に前記多孔シートを巻き付けて前記多孔シートを積層させることを特徴とする請求項15または請求項16に記載の造形装置。
    The support member is rotatably supported,
    The modeling apparatus includes a rotating means for rotating the support member,
    17. The modeling apparatus according to claim 15, wherein the rotating unit winds the porous sheet around the support member by rotating the support member to stack the porous sheet.
  19.  前記支持部材は、前記三次元造形物が形成される面を回転方向において複数備えることを特徴とする請求項18に記載の造形装置。 The modeling apparatus according to claim 18, wherein the support member includes a plurality of surfaces on which the three-dimensional structure is formed in a rotation direction.
  20.  前記造形材用ヘッドは、前記回転手段による前記支持部材の回転角度が互いに異なる状態で吐出した前記造形材同士を互いに接触させることを特徴とする請求項18に記載の造形装置。

     
    The modeling apparatus according to claim 18, wherein the modeling material head causes the modeling materials discharged in a state where rotation angles of the support member by the rotating unit are different from each other to contact each other.

PCT/JP2017/005652 2016-02-29 2017-02-16 Method for manufacturing three-dimensional molded object, three-dimensional molded object, and molding device WO2017150196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/080,674 US11718016B2 (en) 2016-02-29 2017-02-16 Three-dimensional object manufacturing method, three-dimensional object, and shaping device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-036898 2016-02-29
JP2016036898 2016-02-29
JP2016-180720 2016-09-15
JP2016180720A JP6839509B2 (en) 2016-02-29 2016-09-15 Three-dimensional model manufacturing method and modeling equipment

Publications (1)

Publication Number Publication Date
WO2017150196A1 true WO2017150196A1 (en) 2017-09-08

Family

ID=59742844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005652 WO2017150196A1 (en) 2016-02-29 2017-02-16 Method for manufacturing three-dimensional molded object, three-dimensional molded object, and molding device

Country Status (1)

Country Link
WO (1) WO2017150196A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131326A1 (en) * 2017-12-26 2019-07-04 株式会社びーふる Three-dimensional formed object and method for manufacturing same
US11390018B2 (en) * 2018-02-09 2022-07-19 Toray Engineering Co., Ltd. Three-dimensional modeling method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366617A (en) * 1991-06-13 1992-12-18 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JPH0811218A (en) * 1994-07-05 1996-01-16 Kashio Polymertech Kk Heterogeneous composite molded body and its molding method in optical carving
JPH09201878A (en) * 1996-01-30 1997-08-05 Hitachi Ltd Optically shaped product and manufacture thereof
JPH09216291A (en) * 1996-02-09 1997-08-19 Ricoh Co Ltd Three-dimensional matter and method and apparatus for forming the same
JP2000211032A (en) * 1998-12-09 2000-08-02 Japan Steel Works Ltd:The Method and apparatus for fabricating three-dimensional body
JP2002036374A (en) * 2000-07-28 2002-02-05 Ntt Data Corp Method for manufacturing colored molding made of curable resin, colored molding made of curable resin and apparatus for molding
WO2005037529A1 (en) * 2003-10-20 2005-04-28 National Institute Of Advanced Industrial Science And Technology Method for manufacturing three-dimensional shaped article and three-dimensional shaped article
JP2006130864A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp The molding method of solid molded object by liquid discharge method
JP2007531641A (en) * 2003-07-15 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method and system for creating an object using solid freeform manufacturing
JP2009281518A (en) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp Embedded body for insert molding and insert molding
WO2014153535A2 (en) * 2013-03-22 2014-09-25 Gregory Thomas Mark Three dimensional printing
JP2015512816A (en) * 2012-04-10 2015-04-30 ア レイモン エ シーA. Raymond Et Cie Molding encapsulation method
JP2016027957A (en) * 2007-11-29 2016-02-25 エムコア テクノロジーズ リミテッド Layered object manufacturing system
JP2017026818A (en) * 2015-07-22 2017-02-02 株式会社リコー Solid shaped object and manufacturing method for the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366617A (en) * 1991-06-13 1992-12-18 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JPH0811218A (en) * 1994-07-05 1996-01-16 Kashio Polymertech Kk Heterogeneous composite molded body and its molding method in optical carving
JPH09201878A (en) * 1996-01-30 1997-08-05 Hitachi Ltd Optically shaped product and manufacture thereof
JPH09216291A (en) * 1996-02-09 1997-08-19 Ricoh Co Ltd Three-dimensional matter and method and apparatus for forming the same
JP2000211032A (en) * 1998-12-09 2000-08-02 Japan Steel Works Ltd:The Method and apparatus for fabricating three-dimensional body
JP2002036374A (en) * 2000-07-28 2002-02-05 Ntt Data Corp Method for manufacturing colored molding made of curable resin, colored molding made of curable resin and apparatus for molding
JP2007531641A (en) * 2003-07-15 2007-11-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method and system for creating an object using solid freeform manufacturing
WO2005037529A1 (en) * 2003-10-20 2005-04-28 National Institute Of Advanced Industrial Science And Technology Method for manufacturing three-dimensional shaped article and three-dimensional shaped article
JP2006130864A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp The molding method of solid molded object by liquid discharge method
JP2016027957A (en) * 2007-11-29 2016-02-25 エムコア テクノロジーズ リミテッド Layered object manufacturing system
JP2009281518A (en) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp Embedded body for insert molding and insert molding
JP2015512816A (en) * 2012-04-10 2015-04-30 ア レイモン エ シーA. Raymond Et Cie Molding encapsulation method
WO2014153535A2 (en) * 2013-03-22 2014-09-25 Gregory Thomas Mark Three dimensional printing
JP2017026818A (en) * 2015-07-22 2017-02-02 株式会社リコー Solid shaped object and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131326A1 (en) * 2017-12-26 2019-07-04 株式会社びーふる Three-dimensional formed object and method for manufacturing same
US11390018B2 (en) * 2018-02-09 2022-07-19 Toray Engineering Co., Ltd. Three-dimensional modeling method

Similar Documents

Publication Publication Date Title
JP6839509B2 (en) Three-dimensional model manufacturing method and modeling equipment
US11135762B2 (en) Shaped article, and manufacturing method for the shaped article
US10011074B2 (en) Color three-dimensional printing apparatus and color three-dimensional printing method
US20170136706A1 (en) Three-dimensional object fabrication device, three-dimensional object fabrication method, and three-dimensional object
KR101662894B1 (en) Printing bed for 3d printer, 3d printer having thereof and printing method
KR101963436B1 (en) 3d printing device for multiple material and 3d printing method
JP2020505249A (en) Additional manufacturing system
WO2017150196A1 (en) Method for manufacturing three-dimensional molded object, three-dimensional molded object, and molding device
JP2019104192A (en) Three-dimensional fabrication apparatus, three-dimensional fabrication method, and three-dimensional object
CN104379324A (en) Printed encapsulation
KR20170124961A (en) System and method for forming integrated interfaces within a three-dimensionally printed object with different build materials
KR101610897B1 (en) Various colors are implemented three-dimensional printer
JP6727782B2 (en) Method and apparatus for manufacturing three-dimensional object
WO2019155897A1 (en) Three-dimensional forming method
JP2015202683A (en) Three-dimensional printer, and method of manufacturing three-dimensionally shaped object
US20220362989A1 (en) Method of producing patterns, molds, and related products
JP2010012736A (en) Three-dimensional shaping method and three-dimensional shaping apparatus
KR101628164B1 (en) 3d printing system using block type structure combined with fdm technology and this hybrid data generation method for 3d printing
CN106313566A (en) Multifunctional composite printing device
KR102139726B1 (en) 3d printer having adhesive coating function and operating method thereof
JP7227784B2 (en) Three-dimensional object modeling method
JP2017217889A (en) Method for molding three-dimensional object
JP5418325B2 (en) Modeling method
ES1230889U (en) Portable electromechanical device for additive manufacturing of three-dimensional objects applicable in footwear or clothing. (Machine-translation by Google Translate, not legally binding)
JP7054665B2 (en) 3D model manufacturing equipment, 3D model manufacturing method and 3D model

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759667

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759667

Country of ref document: EP

Kind code of ref document: A1