WO2005037529A1 - Method for manufacturing three-dimensional shaped article and three-dimensional shaped article - Google Patents

Method for manufacturing three-dimensional shaped article and three-dimensional shaped article Download PDF

Info

Publication number
WO2005037529A1
WO2005037529A1 PCT/JP2004/015359 JP2004015359W WO2005037529A1 WO 2005037529 A1 WO2005037529 A1 WO 2005037529A1 JP 2004015359 W JP2004015359 W JP 2004015359W WO 2005037529 A1 WO2005037529 A1 WO 2005037529A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional structure
holding sheet
modeling
layer
producing
Prior art date
Application number
PCT/JP2004/015359
Other languages
French (fr)
Japanese (ja)
Inventor
Juli Yamashita
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2005514815A priority Critical patent/JP4193944B2/en
Publication of WO2005037529A1 publication Critical patent/WO2005037529A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/221Machines other than electrographic copiers, e.g. electrophotographic cameras, electrostatic typewriters
    • G03G15/224Machines for forming tactile or three dimensional images by electrographic means, e.g. braille, 3d printing

Definitions

  • the present invention relates to a method for producing a three-dimensional object, which is capable of producing a three-dimensional object having a complex structure in which the hardness varies from part to part, of a multicolor 'multimaterial, and a three-dimensional object produced by the method. It relates to a model.
  • RP rapid prototyping
  • Stereolithography "Photocurable resin” that is cured by light such as ultraviolet light or laser is used. A thin layer is made in the resin pool, and the part corresponding to the inside of the shape of the layer is cured by irradiating light. The surface of the hardened layer is smoothed out, and a thin layer of resin solution is introduced over it, followed by curing with light, and the shape is formed. In this case, if there is an overhang portion, it is necessary to simultaneously form a support (called “support”) that is not necessary for the original shape to be formed, and then remove the support after the formation.
  • support a support
  • FDM Melt deposition method
  • Powder fixing method A powdery or particulate material is spread thinly, and a head force paste (called a “binder”) is jetted like an ink jet printer, or light such as a laser is emitted. By irradiating, the powders adhere to each other according to the shape of one cross-section, and are further adhered to each other with a thermosetting photo-curing material. Then, spread the next layer of material thinly and fix it in the same way. Since the overhang is supported by unfixed powder material, no additional support is required. If the unfixed powder material is blown off after molding, the removal of the support is completed. For this reason, no labor is required. By using a mechanism similar to that of an ink jet printer and ejecting colored nozzles, a full-color molded product can be manufactured.
  • a head force paste called a “binder”
  • Patent Document 115 is known.
  • the invention of “a data processing device and method and a three-dimensional printing device and method” described in Patent Document 1 relates to a method of generating a three-dimensional printing object that faithfully reproduces a tactile sensation of an object.
  • the data generation device adds one or both of the touch (texture) information on the surface of the object and the softness information when the object is touched by the surface force to the surface data of each triangle constituting the STL format data described above. Create data with information.
  • the surface roughness is formed into a concavo-convex shape on the surface of the molded object, or the molding is performed by using materials having different resin particle diameters. Also, in this case, the softness of the shape
  • Patent Literature 2 describes an invention of a "laminar molding method and a laminar molding apparatus", which is a laminating molding method of molding a three-dimensional object by laminating thin layers of powder formed into a sheet. It is an invention relating to the device. Each thin layer is formed and laminated using electrophotography.
  • the invention of “three-dimensional molding apparatus and three-dimensional molding method” described in Patent Document 3 similarly forms a three-dimensional cross-sectional shape as a thin layer using an electrophotographic method, and laminates the thin layers. By doing so, a three-dimensional object is formed.
  • These devices use an electronic photo system, such as a copier or a laser printer, to form a single-layer cross-sectional shape from a chargeable powder material on a photosensitive drum and solidify it with heat to form a thin film.
  • a three-dimensional object is formed. If the material is selected properly, the inside of the shape can be made full-color, and it can handle multiple materials such as metals and ceramics.
  • the invention of “Inorganic pigment ink and its use method and the additive manufacturing method using the inorganic pigment ink” described in Patent Document 4 is applicable to an ink jet printer, and provides vivid coloration.
  • the present invention relates to an additive manufacturing method using an inorganic pigment ink to be used. Since the inorganic pigment ink penetrates the powdery resin layer and the inorganic pigment is dispersed due to its fluidity in the molten state, a substantially uniform colored region is formed even in the thickness direction. ! / Puru. Also mention the reproduction of the color distribution inside the shape.
  • the invention of the "molding apparatus and method" described in the cited document 5 is based on the fact that cube beads made of various materials are three-dimensionally stacked and fixed to each other or filled in a transparent case. It is to construct a solid. V, is what constitutes a so-called three-dimensional printer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-067174
  • Patent Document 2 JP-A-10-207194
  • Patent Document 3 JP 2002-347129 A
  • Patent Document 4 JP 2001-354877 A
  • Patent Document 5 JP-A-10-029245
  • Patent Document 2 Patent Document 3, Patent Document 4, and the like do not describe a data structure or the like for mentioning the possibility of multicoloring.
  • Patent Document 1 proposes a three-dimensional modeling method in which tactile data is added to each triangle of STL format data to realize three kinds of softness.
  • tactile data is added to each triangle of STL format data to realize three kinds of softness.
  • these are all attached to the data indicating the surface in the STL format, only the tactile sensation when the three-dimensional object is touched by the surface force is reproduced, and the tactile sensation inside the modeled object is reproduced. Is not taken into account. Therefore, it cannot be used to create the required shape and structure for internal structures such as biological models for surgical training.
  • the details and internal structure for example, it is necessary to use a data structure having an attribute of softness, but this is not supported.
  • Patent Documents 2 and 3 disclose that the inside of the shape can be made full-color and can be applied to a plurality of materials such as metal ceramics. However, in the lamination method, an object having an overhang is produced. For this purpose, it is necessary to create a support as in the past.
  • the support needs to be physically cut off after molding or removed by dissolving with a solvent.
  • a complex structure such as a living body
  • it is often difficult to remove the support after the formation.
  • the solvent does not enter because the internal cavity is not in communication with the outside, or the structure is fragile and the molded object is destroyed by the impact of breaking off the support. Therefore, it is necessary for support to be unnecessary or to be able to easily remove support.
  • a skeletal structure called a “scaffold” that serves as a scaffold for cells to grow is required.
  • This is made of a material (polylactic acid or collagen) that can be absorbed into the body after the cells have proliferated.
  • a material polylactic acid or collagen
  • it in order to have a three-dimensional structure that is the same as that of a living tissue, and to be a scaffold that allows many cells to proliferate, It must be finely porous.
  • a sheet-like collagen foam (foam) or the like has conventionally been used as a carrier for a hold. With this force, the three-dimensional shape of a fibrous tissue cannot be reproduced. Therefore, in recent years, RP has been applied to any method, but only the method of creating a single-material scan hold.
  • the present invention has been made to solve these problems, and an object of the present invention is to form, for example, a three-dimensional object having a complex structure of multi-color 'multi-material with different hardness depending on parts. It is an object of the present invention to provide a method for producing a three-dimensional modeled object that can be manufactured. Another object of the present invention is to provide a three-dimensional structure that is three-dimensional and porous and can be used as a scaffold (scan hold) having a function of a drug, which can be used for regenerative medicine (tissue engineering). Means for solving the problem
  • the method for producing a three-dimensional structure according to the present invention is a method for manufacturing a three-dimensional structure, in which a holding sheet capable of holding a forming material in a net structure includes a plurality of layers of a plurality of types of forming materials.
  • the next layer holding sheet is placed on the fixed one layer of the molding material, and the next layer holding sheet is loaded with a plurality of types of the next layer of the molding material. It is held in place and fixed, and the fixing of the modeling material is repeated sequentially for the upper layer, and after the respective layers are laminated, the holding sheet is dissolved and removed.
  • the three-dimensional structure after the porous holding sheet material has been dissolved and removed is a porous structure, which is three-dimensional and porous, and can be used as a scan holder having a function by a drug.
  • the holding sheet is a porous sheet or a network structure sheet
  • the fixing of the forming material is performed by powder sintering, powder coagulation, melt deposition, light curing. , Thin film lamination, or ink jetting.
  • the holding sheet is removed by dissolving and removing the heated sheet with a solvent.
  • the holding sheet for holding the modeling material at the modeling position is It is formed by a melt deposition method or a thin film lamination method.
  • the modeling material to be held on one holding sheet is a plurality of different types of modeling materials or a plurality of types of colored modeling materials.
  • a thin porous sheet or a net-like sheet is used as a holding sheet for holding a forming material, and each part of the structure is provided on the holding sheet.
  • the molding material of each material in each color is attached (impregnated) to the holding sheet net structure and held and fixed to form a layer of the shaped object, By stacking these layers, a three-dimensional object is produced. As a result, it is possible to accurately form a three-dimensional object having a complex structure of multiple colors and materials and different hardness portions.
  • the net structure of the holding sheet removed as a cavity remains in the manufactured three-dimensional structure! / It is in a state of falling.
  • the size of this cavity can be changed by changing the thickness and size of the net of the net structure. By this.
  • the rigidity of the manufactured three-dimensional structure can be adjusted to the desired material texture.
  • a molding material is attached to a holding sheet (porous sheet or net-like sheet) that holds the molding material, even if it is a jelly-like material, it does not flow! / Available as a molding material.
  • the shaping material can be used as long as it has a small amount of softness due to a porous (net-like) sheet, and even if the material has good fixability and a fine shape can be accurately formed.
  • the porous sheet or mesh sheet of the holding sheet holding the modeling material is dissolved by heat or a solvent. Remove.
  • unnecessary portions may be removed by cutting off unnecessary portions with a cutter or a laser.
  • the holding sheet portion remains as a hole in the modeling material. Since the solvent can also penetrate into the interior, the holding sheet of the porous sheet or mesh sheet can be removed even if the three-dimensional shape data of the modeled object is a complete lumen.
  • the features of the three-dimensional structure manufactured here are left after the porous holding sheet is removed (removed by temperature, pressure, solvent (water, water + decomposing enzyme, organic solvent, etc.), light, etc.).
  • the modeling object is Holes are formed where the sheet material comes off, making it porous.
  • the size of the porous hole and the density of the space in this modeled object can be adjusted by the density of the original porous sheet. Therefore, it can be suitably used for forming a scaffold as a scaffold for cells. This satisfies the requirement that a large number of cells must be porous in order to grow sterically, and furthermore, the use of multiple modeling materials can induce different cell differentiation.
  • a plurality of drugs can be arranged three-dimensionally.
  • the method for producing a three-dimensional structure of the present invention provides a method for producing a three-dimensional structure that can be suitably used when a three-dimensional object made of a material such as a biological model of a human body or an animal is different at each part.
  • FIG. 1 is a diagram illustrating a forming step of a first layer in the method for producing a three-dimensional structure according to the present invention
  • FIG. 2 is a diagram illustrating a forming step of a second layer subsequent to the step of the first layer. It is.
  • FIG. 3 is a diagram illustrating a post-process excluding the holding sheet after the respective layers are stacked.
  • a molding operation is performed by the following steps (a) to (d) using an existing molding apparatus of, for example, an ink jet system. That is,
  • a tomographic image such as a CT image is used as the three-dimensional data of the object.
  • each pixel of the tomographic image is used for 3D printing.
  • Create 3D data that describes the substance information (building material) to be used. For example, when modeling the human nasal cavity-the skull base, each part such as air 'bone' mucous membranes, blood vessels, nerves, muscles, fat, skin, and tumors is also identified by the CT value and positional force of the CT image data. Then, a code (material data) representing a different material is assigned to each.
  • codes are, for example, kneaded binder in kneaded silicone rubber for blood vessels and fats, jelly-like or grease-like materials for tumors, and calcium carbonate for bones. It is a code that is defined correspondingly to indicate the modeling material such as bone material. From the tomographic image of the three-dimensional data to which the code data is added, a cross-sectional image (for example, X sheets) is cut out corresponding to the thickness of each layer to be formed.
  • a cross-sectional image for example, X sheets
  • the three-dimensional data force for producing a modeled object is a closed polygon (such as STL format data, which is a shape data with a seamless inside and outside that is clearly separated, which is called water tight. ), A code indicating the material is assigned to each closed polyhedron, and it is divided by the thickness of each layer (a holding sheet that holds the modeling material). Create a cross-sectional image.
  • STL format data which is a shape data with a seamless inside and outside that is clearly separated, which is called water tight.
  • a code indicating the material is assigned to each closed polyhedron, and it is divided by the thickness of each layer (a holding sheet that holds the modeling material). Create a cross-sectional image.
  • a porous sheet capable of holding the modeling material in a net structure is used.
  • a material of the porous sheet for example, water-soluble agar or water-soluble dalcomannan is used. If freeze-dried, it can be easily molded as a porous sheet.
  • a shaping material for forming hard bones calcium carbonate powder such as crushed shells is used as a binder (fixing material, water-insoluble resin-based adhesive or thermosetting resin). Use the kneaded material.
  • a material for modeling the mucous membrane and blood vessel 'nerve' fat 'skin' tumor part of the soft part for example, colored silicone rubber of different softness is used to represent the material for each part. .
  • a thermosetting type or a type cured with a curing agent can be used.
  • a water-soluble substance such as -force can be used as a support material.
  • a starch paste or a sponge containing protein as a main component can be used as a material of the porous sheet having a net structure.
  • a biocompatible material material that decomposes in a living body
  • tissue engineering regenerative medicine
  • a water-soluble biocompatible material is used as a material for the porous sheet.
  • the "scan hold" is used as a scaffold for culturing cells.
  • the scaffold is preferably a porous structure to accommodate a large number of cells.
  • stem cells can be implanted into a bone-shaped scan holder at the defect and transplanted into the patient's body.
  • RP is effective as a method of manufacturing this skid holder.
  • FDM Frevisiontec GmBH, Germany
  • methods of forming molds by combining RP and lost wax method Sacholos, E. et al., University of Oxford, UK, 2003
  • gelation of cells themselves There is a proposal to laminate while solidifying with "glue”.
  • a mesh sheet made of a water-soluble material is used, and calcium phosphate 'hydroxyapatite, which is a main component of bone, is used as a material for a hard bone part.
  • a biocompatible material kneaded with a substance having a function of promoting cell differentiation into each tissue is used as a material of a portion where a tissue such as a blood vessel is to be formed.
  • Step 1 Lay one sheet (one layer) of the holding sheet (porous sheet) holding the modeling material on the pedestal.
  • Step 2 A cross-sectional image corresponding to the layer is printed on the holding sheet. That is, printing is performed using the respective modeling materials prepared corresponding to the material data of each part.
  • a cross-sectional image is printed by ejecting a liquid material to the printer head as in an ink jet printer.
  • a thin nozzle force may be used to extrude the material to print a cross-sectional image as in a melt deposition method. Since the holding sheet for holding the modeling material here is sufficiently thin, the material immediately below and the current layer adhere to each other. To completely prevent adjacent parts from fusing with a small gap (for example, the thickness of one sheet), insert a support material between them. Keep it.
  • Step 3 One layer of the molding material held on the holding sheet is fixed. It is solidified by drying, by heating, or by the passage of time.
  • Step 4 Next, if necessary, the surface of the sheet is shaved with a cutter or smoothed by pressing with a material such as iron. Lay the holding sheet of the next layer on the smoothed layer, and perform the processing from step 2 for each layer.
  • Step 5 Repeat the above (Step 1) and one (Step 4) by the required number (X sheets), and laminate each layer in which each modeling material is fixed to the holding sheet by printing a cross-sectional image.
  • Step 5 A post-process of removing the holding sheet after completion of the forming operation and the laminating operation of each layer.
  • Step 5 a three-dimensional structure is produced in a state where the layers including the holding sheet are stacked. Then, the holding sheet is removed. If a water-soluble material is used as the holding sheet, the formed object is immersed in, for example, lukewarm water to form a laminate of the holding sheet (containing the object inside). After the sheet is dissolved, remove the 3D object. The removed three-dimensional object is left in the three-dimensional object in a state in which the net structure of the removed holding sheet remains as a cavity.
  • a shaped article made of the biocompatible material is obtained after the mesh of the sheet is dissolved.
  • the objects that remain on the traces of the dissolved mesh also have a porous sponge-like structure, which satisfies the requirements for a carrier (cell scaffold).
  • a biocompatible material material that can be degraded in vivo
  • tissue engineering regeneration medicine
  • a water-soluble material is used as a porous sheet material.
  • a biocompatible material for example, as a material for a hard bone part, a material obtained by kneading calcium phosphate 'hydroxyapatite, which is a main component of bone, into a biocompatible material is used, and tissues such as blood vessels are used.
  • a material of a portion to be formed for example, a biocompatible material into which a substance having a function of promoting cell division into each tissue is used. Such a material is held in a predetermined position according to the material by a porous holding sheet having a net structure, and the respective fixed layers are laminated to produce a three-dimensional structure. Then, when the porous sheet, which is a holding sheet for the molding material, is dissolved and removed, a molded article made of a biocompatible material is obtained.
  • the shaped object that remains on the trace where the mesh is dissolved also has a porous sponge-like structure, which can satisfy the requirements as a scan holder (cell scaffold), and the created 3D object can be used for regenerative medicine .
  • the thin porous sheet is impregnated with the molding material, fixed and held, and then laminated to form a multicolored sheet.
  • the method of fixing the modeling material to the porous (net-like) sheet is not limited to powder sintering, powder coagulation, melt deposition, photocuring, thin film lamination, ink jetting, and the like. Even in the case of fragile liquid materials that would normally flow, the amount attached to the porous sheet can be used as a modeling material, greatly expanding the range of material choices.
  • the porous sheet itself serves as a support, it is not necessary to form the support. Since the porous (net-like) sheet is made of a material that can be dissolved by heat or a solvent, it can be easily removed after molding. Further, the holding sheet may be cut off at an unnecessary portion by using a cutter or a laser similarly to the conventional thin plate lamination method. After the porous sheet is dissolved and removed, a hole remains in the modeling material, and the solvent can also penetrate into the modeling object. The (net-like) sheet can be removed. If necessary, the support may be formed of a material that can be dissolved by heat or a solvent, similarly to the porous sheet.
  • the modeling material is entangled with the porous sheet and fixed, even if the surface of the layer is smoothed with a cutter or the like before laminating the next layer, the fine portion of the modeling object It will not be stripped.
  • the flexible material before being solidified as a molding material is a liquid, and if placed close to each other, there is a possibility that the flexible material will fuse together and stick together. Therefore, if a wall is formed between the flexible materials, undesired fusion of materials can be prevented.
  • This separator should be made of the same solvent, water or material that can be melted at a given temperature as the support.
  • FIG. 4 shows a longitudinal sectional view of a liver model manufactured by the method for manufacturing a three-dimensional structure according to the present invention.
  • the liver model of the three-dimensional model shown in FIG. 4 has a portion of the liver body 201 formed of a soft modeling material, a blood vessel portion 202 formed of a modeling material that is more durable than the liver body, and a blood vessel portion 202. It is composed of a tumor part 203 molded with a hard molding material. In this way, a three-dimensional structure having a plurality of types of parts each having a different material strength is produced by a laminated structure.
  • the method for producing a three-dimensional structure according to the present invention can be applied to powder sintering, powder solidification, melt deposition, stereolithography, thin film lamination, and the like, which are targets of the RP (rabbit'prototyping) technology.
  • RP rabbit'prototyping
  • a precise biological model can be formed, and the manufactured biological model can be used as a biological model for medical education, surgery simulation, surgical instrument development, and informant consent.
  • the molded article remaining after the porous sheet is removed becomes porous since the portion where the sheet comes off becomes a hole.
  • the size of the porous holes and the density of the space in the modeled object can be adjusted by the density of the original porous sheet. Therefore, the present invention can be suitably used to form a scaffold as a scaffold for cells.
  • a modeling in which different drugs are three-dimensionally arranged is provided. It is possible to create things. As a result, the drug contained gradually is released in the process of decomposing the modeling material in the living body, and it can be used to guide blood vessels to a desired place and to promote tissue separation.
  • FIG. 1 is a view for explaining a step of forming a first layer in a method of manufacturing a three-dimensional structure according to the present invention. is there.
  • FIG. 2 is a view for explaining a forming step of a second layer following a step of the first layer.
  • FIG. 3 is a view for explaining a post-process excluding a holding sheet after laminating each layer.
  • FIG. 4 is a longitudinal sectional view of a liver model manufactured by the method for manufacturing a three-dimensional structure according to the present invention.

Abstract

A method for manufacturing a three-dimensional shaped article, which comprises holding and fixing plural types of shaping materials for a layer at respective shaping positions on a holding sheet capable of holding the shaping materials in a network structure, placing a holding sheet for the next layer on the above fixed shaping materials for the above layer, holding and fixing plural types of shaping materials for the next layer at respective shaping positions, repeating the fixation of the shaping materials for upper layers sequentially, and removing the holding sheets by dissolution (FIG. 1). The above method allows the shaping of a three-dimensional and complex structure which has multi-colors, is made from plural materials and is composed of portions having different harnesses.

Description

明 細 書  Specification
3次元造形物の作製方法および 3次元造形物  Manufacturing method of 3D object and 3D object
技術分野  Technical field
[0001] 本発明は、多色'多材料で、堅さが部分により異なる複雑な構造の立体物を造形す ることのできる 3次元造形物の作製方法およびその作製方法により製造された 3次元 造形物に関するものである。特に、人体 ·動物の生体模型などの材質の硬さ '色-質 感などが各部位で異なる立体物を造形する場合に好適な 3次元造形物の作製方法 およびその作製方法により製造された 3次元造形物に関するものである。  [0001] The present invention relates to a method for producing a three-dimensional object, which is capable of producing a three-dimensional object having a complex structure in which the hardness varies from part to part, of a multicolor 'multimaterial, and a three-dimensional object produced by the method. It relates to a model. In particular, a method of manufacturing a three-dimensional object suitable for forming a three-dimensional object having different hardness in each part in terms of hardness of a material such as a living body model of a human body or an animal and a color-texture and the like. It relates to a three-dimensional structure.
背景技術  Background art
[0002] 3次元造形を行う技術に、ラビッド 'プロトタイピイング (RP : Rapid Prototyping)と呼 ばれる技術がある。この技術は、ひとつの 3次元形状の表面を 3角形の集まりとして記 述したデータ (光造形分野の業界標準形式: STLフォーマット)により、積層方向につ いて薄く切った断面形状を計算し、その形状を榭脂などで固めて形成'積層して、形 状を造形していく技術である。 日本 RP産業協会の分類に従えば、(1)光造形法、 (2 )薄板積層法、(3)溶融物堆積法、(4)粉末固着法の 4通りの方法がある。各方法に ついて概要を説明する。  [0002] As a technique for performing three-dimensional printing, there is a technique called "rapid prototyping (RP)". This technology calculates the cross-sectional shape of a thin slice in the stacking direction using data describing the surface of one three-dimensional shape as a set of triangles (industry standard in the stereolithography field: STL format). This is a technology that forms the shape by solidifying the shape with a resin or the like and laminating it. According to the classification of the Japan RP Industry Association, there are four methods: (1) stereolithography, (2) sheet lamination, (3) melt deposition, and (4) powder fixation. The outline of each method is explained.
[0003] (1)光造形法:紫外線やレーザなどの光で硬化する「光硬化性榭脂」を用いる。榭脂 のプールに薄い一層分の部分を作り、その層の形状内部に相当する部分に光を当 てて硬化させる。硬化層の表面のでこぼこを削ってならし、その上にまた薄い榭脂液 体の層を導入して、光で硬化させることを繰り返し、形状を造形する。その場合、ォー バーハング部分がある場合は、本来の造形する形状には必要のない支え(「サポート 」と呼ばれる)を同時に造形し、造形後に、その支えを除去する必要がある。 [0003] (1) Stereolithography: "Photocurable resin" that is cured by light such as ultraviolet light or laser is used. A thin layer is made in the resin pool, and the part corresponding to the inside of the shape of the layer is cured by irradiating light. The surface of the hardened layer is smoothed out, and a thin layer of resin solution is introduced over it, followed by curing with light, and the shape is formed. In this case, if there is an overhang portion, it is necessary to simultaneously form a support (called "support") that is not necessary for the original shape to be formed, and then remove the support after the formation.
[0004] (2)薄板積層法:紙、プラスチックなどのシート、金属の薄板などを切り出したもの、あ るいは塗料などを薄板上に固めたものを積み重ねていき、形状を造形する。シートを 積層する場合は、断面形状をカッターやレーザで一層ごとに切断し、最後に余分な 部分を取り除く。この場合、オーバーハング部分は下のシートで支えられるので、「サ ポート」の付カ卩は必要でない。断面形状に切り出した薄板を重ねる場合は、サポート の付加と造形後の除去が必要となる。 [0004] (2) Thin plate lamination method: A sheet of paper, plastic, or the like, a cut out of a thin metal plate or the like, or a material obtained by solidifying paint or the like on a thin plate is stacked to form a shape. When laminating sheets, the cross-sectional shape is cut one layer at a time with a cutter or laser, and finally the excess is removed. In this case, the overhang is supported by the lower seat, so no support is required. Support when laminating thin sheets cut into cross-sectional shapes Need to be added and removed after molding.
[0005] (3)溶融物堆積法 (FDM):榭脂などの造形材料を熱で溶カゝして、一層部分の形状 断面の形にのばして固める。細いノズルから糸状の造形材料を出す方法、インクジヱ ットプリンタのようにヘッドから噴出させる方式などがある。表面のでこぼこを削った後 、その上に次の層を同様にのばして固めていく。サポートが必要な点は、光造形と同 じである力 サポート部分の材料を造形する形状部分とは異なるものにしておき、造 形後にサポート材料のみを溶解するなどの工夫がなされている。  [0005] (3) Melt deposition method (FDM): A molding material such as resin is melted by heat and stretched into a single-part shape and cross-sectional shape to be solidified. There are a method of ejecting a thread-like molding material from a thin nozzle, and a method of ejecting from a head as in an ink jet printer. After shaving off the surface, the next layer is stretched and solidified in the same manner. The point that requires support is the same as that of stereolithography. The material of the force support part is made different from the shape part to be molded, and measures such as dissolving only the support material after molding are devised.
[0006] (4)粉末固着法:粉状'粒子状の材料を薄く拡げ、インクジェットプリンタのようにへッ ド力 糊(「バインダー」と呼ばれる)を噴射することで、あるいはレーザなどの光を照 射することで、粉末同士を一断面の形状に対応して、ノインダー '熱 ·光硬化性物質 により一層分を固着する。その上に、次の一層分の材料を薄く広げ、同様に固着する 。オーバーハング部分は未固着の粉材料により支えられるので、サポートの付加は 不要である。また、造形後、未固着の粉材料を吹き飛ばせば、サポートの除去は完 了する。このため、手間がかからない。インクジェットプリンタと同様な機構を用いて、 色付きのノインダーを噴射することで、フルカラーの造形品が作製できる。  [0006] (4) Powder fixing method: A powdery or particulate material is spread thinly, and a head force paste (called a “binder”) is jetted like an ink jet printer, or light such as a laser is emitted. By irradiating, the powders adhere to each other according to the shape of one cross-section, and are further adhered to each other with a thermosetting photo-curing material. Then, spread the next layer of material thinly and fix it in the same way. Since the overhang is supported by unfixed powder material, no additional support is required. If the unfixed powder material is blown off after molding, the removal of the support is completed. For this reason, no labor is required. By using a mechanism similar to that of an ink jet printer and ejecting colored nozzles, a full-color molded product can be manufactured.
[0007] 従来において、 3次元造形技術に関係する公知文献として、特許文献 1一 5が挙げ られる。特許文献 1に記載されている「データ処理装置および方法、並びに三次元造 形装置および方法」の発明は、対象物の触感を忠実に再現した 3次元造形物の生成 方法に関するものである。データ生成装置により、前述した STLフォーマットのデータ を構成する各三角形の面データに、対象物表面の手触り(テクスチャ)情報および対 象物を表面力も触ったときのやわらかさ情報のいずれかあるいは両方の情報を付カロ したデータを作成する。それに基づいて、表面粗さを造形物の表面の凹凸形状とし て、あるいは榭脂粒子径の異なる材料を使い分けて造形する。また、この場合に、形 状のやわらかさは  [0007] Conventionally, as known documents related to the three-dimensional printing technology, Patent Document 115 is known. The invention of “a data processing device and method and a three-dimensional printing device and method” described in Patent Document 1 relates to a method of generating a three-dimensional printing object that faithfully reproduces a tactile sensation of an object. The data generation device adds one or both of the touch (texture) information on the surface of the object and the softness information when the object is touched by the surface force to the surface data of each triangle constituting the STL format data described above. Create data with information. On the basis of this, the surface roughness is formed into a concavo-convex shape on the surface of the molded object, or the molding is performed by using materials having different resin particle diameters. Also, in this case, the softness of the shape
(A)形状内部にやわらかさに応じた微少穴構造を形成すること、  (A) Forming a micro-hole structure according to the softness inside the shape,
(B)溶融物堆積法'粉末固着法においては 2種類以上の硬さの異なる榭脂を混合 すること、ある!/、は、  (B) In the melt deposition method and the powder fixing method, two or more resins with different hardnesses may be mixed! /,
(C)粉末固着造形でバインダーの種類を変えること で実現している。 (C) Changing the type of binder in powder solidification molding Is realized.
[0008] 特許文献 2に記載されて ヽる「積層造形方法及び積層造形装置」の発明は、粉体 をシート状に形成した薄層を積層することにより 3次元物体を造形する積層造形方法 及び装置に関する発明である。電子写真方式を用いてそれぞれの薄層を形成して 積層していくものである。  [0008] Patent Literature 2 describes an invention of a "laminar molding method and a laminar molding apparatus", which is a laminating molding method of molding a three-dimensional object by laminating thin layers of powder formed into a sheet. It is an invention relating to the device. Each thin layer is formed and laminated using electrophotography.
[0009] 特許文献 3に記載の「立体造形装置および立体造形方法」の発明は、同様に、電 子写真方式を用いて、立体の断面形状を薄層として形成し、この薄層を積層すること で立体を造形するものである。これらは、コピー機やレーザプリンタのように、電子写 真方式を用いて、感光ドラム上に一層分の断面形状を帯電性粉末材料で作製し、熱 で固めて薄膜としたものを積層し、 3次元物体を造形するものである。材料をうまく選 ベば、形状内部についても、フルカラー化することができ、金属やセラミックスなどの 複数材料にも対応可能である。  The invention of “three-dimensional molding apparatus and three-dimensional molding method” described in Patent Document 3 similarly forms a three-dimensional cross-sectional shape as a thin layer using an electrophotographic method, and laminates the thin layers. By doing so, a three-dimensional object is formed. These devices use an electronic photo system, such as a copier or a laser printer, to form a single-layer cross-sectional shape from a chargeable powder material on a photosensitive drum and solidify it with heat to form a thin film. A three-dimensional object is formed. If the material is selected properly, the inside of the shape can be made full-color, and it can handle multiple materials such as metals and ceramics.
[0010] 特許文献 4に記載の「無機顔料インキおよびその使用方法、ならびに無機顔料イン キを使用した積層造形方法」の発明は、インキジェット式プリンタに適用可能で、鮮ゃ 力な発色が得られる無機顔料インキを用いた積層造形方法に関する発明である。無 機顔料インキを粉末榭脂層に浸透させ、また、溶融状態において、無機顔料がその 流動性により分散されることから、厚み方向にも略均一に着色された着色領域が形 成されるとして!/ヽる。形状内部の色分布再現にも言及して 、る。  The invention of “Inorganic pigment ink and its use method and the additive manufacturing method using the inorganic pigment ink” described in Patent Document 4 is applicable to an ink jet printer, and provides vivid coloration. The present invention relates to an additive manufacturing method using an inorganic pigment ink to be used. Since the inorganic pigment ink penetrates the powdery resin layer and the inorganic pigment is dispersed due to its fluidity in the molten state, a substantially uniform colored region is formed even in the thickness direction. ! / Puru. Also mention the reproduction of the color distribution inside the shape.
[0011] また、引用文献 5に記載の「造形装置および方法」の発明は、種々の素材からなる 立方体のビーズを 3次元的に積み上げ、互いに固着あるいは透明なケース内に充填 することで 3次元立体を構築するものである。 V、わゆる三次元プリンタを構成して 、る ものである。  [0011] Further, the invention of the "molding apparatus and method" described in the cited document 5 is based on the fact that cube beads made of various materials are three-dimensionally stacked and fixed to each other or filled in a transparent case. It is to construct a solid. V, is what constitutes a so-called three-dimensional printer.
特許文献 1:特開 2002-067174号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-067174
特許文献 2 :特開平 10- 207194号公報  Patent Document 2: JP-A-10-207194
特許文献 3 :特開 2002-347129号公報  Patent Document 3: JP 2002-347129 A
特許文献 4:特開 2001— 354877号公報  Patent Document 4: JP 2001-354877 A
特許文献 5:特開平 10-029245号公報  Patent Document 5: JP-A-10-029245
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems the invention is trying to solve
[0012] ところで、従来における 3次元造形方法においては、人体'動物の生体模型などの 材質が各部位で異なる立体物を造形する場合に、多色'多材料で、堅さが部分によ り異なる複雑な構造の立体物を造形することができな 、。生体模型を 3次元造形する 場合には、解決されるべき課題として、次のような課題が挙げられる。すなわち、 (ィ)造形物全体 (表面および内部)の色情報の再現性、  [0012] By the way, in the conventional three-dimensional modeling method, when a three-dimensional object of which the material is different at each part, such as a human body or an animal biological model, is formed, a multi-colored and multi-material, and the rigidity depends on the part. 3D objects with different complicated structures cannot be formed. In the case of three-dimensional modeling of a biological model, the following issues are to be solved. That is, (a) the reproducibility of the color information of the entire model (surface and interior),
(口)造形物全体 (表面および内部)のやわらかさ'硬さの再現性、  (Mouth) Reproducibility of softness and hardness of the entire model (surface and inside)
(ハ)造形可能形状の自由度の確保とサポート除去の手間の削減、  (C) Securing the degree of freedom of the moldable shape and reducing the trouble of removing the support,
(二)造形精度の向上、  (2) Improve modeling accuracy,
(ホ)造形時間の短縮、  (E) Shortening of molding time,
について検討し解決する必要がある。これらの課題について詳細に説明する。  Need to be considered and resolved. These problems will be described in detail.
[0013] 人体'動物などの生体模型については、手術の練習用のために精密模型が必要と される力 これまでの模型では、丈夫すぎて手術操作で破壊するのが困難であった。 また、造形の精度が荒すぎて生体とはかけ離れた形状となっているものであった。こ のため、細部の形状について個人対応も困難であった。個々の患者の医用断層画 像 (CT, MRIなど)のデータから、生体内部の硬さや色情報を再現した生体模型を 造形できる造形方法であれば、手術前の術式検討、リハーサル、医学教育などに大 いに貢献できる。 [0013] For a biological model such as a human body or an animal, a force that requires a precision model for practicing surgery has been difficult with conventional models because it is too strong to be destroyed by a surgical operation. In addition, the precision of the molding is too rough and the shape is far from the living body. For this reason, it was also difficult for individuals to deal with the details in detail. If it is a modeling method that can create a biological model that reproduces the hardness and color information inside the living body from the data of medical tomographic images (CT, MRI, etc.) of individual patients, surgical methods examination before surgery, rehearsal, medical education It can greatly contribute to such things.
[0014] (ィ)造形物全体 (表面および内部)の色情報の再現性にっ 、ての課題。  [0014] (a) The problem of reproducibility of color information of the entire model (surface and inside).
表面を多色に着色したものを造形したものは、既に存在するが、その造形物を切断 すると、その内部は単色 (無色、材料の色)であり、色情報が欠落しているものが多い 。したがって、断面についても色情報が正しく表現されるように、造形物の内部の多 色化が求められる。このため、造形装置そのものに多色刷りの機能を持たせること、 造形物内部の色情報を表現するデータ構造、およびそれに基づき造形装置を駆動 するためのソフトウェアの開発が必要である。特許文献 2、特許文献 3、特許文献 4な どにおいては、多色化の可能性に言及している力 そのためのデータ構造などにつ いての説明はない。  There are already molded objects with multicolored surfaces, but when the molded object is cut, the interior is a single color (colorless, material color), and color information is often missing . Therefore, it is required to increase the number of colors inside the modeled object so that the color information is correctly expressed also for the cross section. For this reason, it is necessary to provide a multi-color printing function to the modeling device itself, to develop a data structure that expresses color information inside the modeling object, and to develop software for driving the modeling device based on the data structure. Patent Document 2, Patent Document 3, Patent Document 4, and the like do not describe a data structure or the like for mentioning the possibility of multicoloring.
[0015] (口)造形物全体 (表面および内部)のやわらかさ'硬さの再現性につ!ヽての課題。 現在の市販品 (造形装置)では、その造形物は単一材料で形成される。造形装置 によっては複数の材料を同時に使えるものがある力 サポート材料と造形物の材料が 別れて!/、るだけであって、複数の材料からなる造形物を生成できる造形装置は存在 しない。したがって、このような造形装置により、形成された造形物のやわらかさにつ いては、造形物の形状により細い'薄いところがやわらかいということはあっても、基本 的には均質である。 [0015] (Mouth) Reproducibility of softness and hardness of the entire model (surface and interior)! In current commercial products (printing equipment), the print is formed from a single material. Some molding equipment can use multiple materials at the same time. Force support materials and molded object materials are separated! / There is no molding equipment that can produce a molded object composed of multiple materials. Therefore, the softness of the formed object formed by such a shaping apparatus is basically uniform, although the thinner and thinner portions may be softer depending on the shape of the formed object.
[0016] 特許文献 1においては、 STLフォーマットのデータの三角形ごとに触感データを付 加し、三通りのやわらかさを実現する 3次元造形方法が提案されている。しかし、これ らはすべて STLフォーマットの表面を指示するデータに付随するものであるため、再 現されるのは 3次元造形物を表面力 触った際の触感のみで、造形物体内部での触 感の再現性は考慮されていない。したがって、手術の訓練のための生体模型など内 部構造につ ヽて必要とされる形状および構造を造形する場合には利用できな ヽ。細 力 、内部構造に関しても、例えば、柔らかさの属性を有するデータ構造とすることが 必要であるが、そのようには対応されていない。  [0016] Patent Document 1 proposes a three-dimensional modeling method in which tactile data is added to each triangle of STL format data to realize three kinds of softness. However, since these are all attached to the data indicating the surface in the STL format, only the tactile sensation when the three-dimensional object is touched by the surface force is reproduced, and the tactile sensation inside the modeled object is reproduced. Is not taken into account. Therefore, it cannot be used to create the required shape and structure for internal structures such as biological models for surgical training. Regarding the details and internal structure, for example, it is necessary to use a data structure having an attribute of softness, but this is not supported.
[0017] (ハ)造形可能形状の自由度の確保とサポート除去の手間の削減についての課題。  [0017] (c) The problem of securing the degree of freedom of the moldable shape and reducing the trouble of removing the support.
また、特許文献 2、特許文献 3では、形状内部についても、フルカラー化および金 属ゃセラミックスなどの複数材料への対応が可能として 、るが、その積層方法では、 オーバーハングのある物体を作製するためには、従来と同様にサポートの作製が必 要である。  Further, Patent Documents 2 and 3 disclose that the inside of the shape can be made full-color and can be applied to a plurality of materials such as metal ceramics. However, in the lamination method, an object having an overhang is produced. For this purpose, it is necessary to create a support as in the past.
[0018] 一般にサポートは、造形後に、物理的に折り取るか、溶剤で溶解除去する必要があ る。生体など複雑な構造を造形した場合は、造形後にサポートの除去が困難となる 場合が多い。つまり、この場合に、内部の空洞が外と連絡していないため溶剤が入ら ない、あるいは構造がもろくサポートを折り取る衝撃で造形物が破壊されてしまう、な どの問題がある。このため、サポートについては、サポート不要あるいはサポートを容 易に除去できることが必要である。  [0018] In general, the support needs to be physically cut off after molding or removed by dissolving with a solvent. When a complex structure such as a living body is formed, it is often difficult to remove the support after the formation. In other words, in this case, there is a problem that the solvent does not enter because the internal cavity is not in communication with the outside, or the structure is fragile and the molded object is destroyed by the impact of breaking off the support. Therefore, it is necessary for support to be unnecessary or to be able to easily remove support.
[0019] (二)造形精度の向上についての課題。  [0019] (2) Issues regarding improvement in modeling accuracy.
溶融物堆積法および光造形法のように、あらたな層を積層する前にひとつ下の積 層表面のでこぼこをカッター等で削って平らにする工程が含まれている場合、造形物 の細かい部分がむしれてしまい、造形できないという欠点がある。すなわち、あまり細 力いものや細いものは造形できない。生体など複雑な構造を造形する場合は、薄い 血管壁や 0. 1mm程度の骨の壁等の造形も必要である。 When the process of shaving the unevenness on the surface of the next lower layer with a cutter or the like is included before laminating a new layer, such as the melt deposition method and stereolithography, There is a drawback that the fine part of the film cannot be formed and cannot be formed. In other words, it is not possible to mold very thin or thin objects. When modeling a complex structure such as a living body, it is necessary to model a thin blood vessel wall or a bone wall of about 0.1 mm.
[0020] 特に、柔らか ヽ材料の場合、少な 、材料を造形物の側に的確に保持することが困 難である。例えば、細いノズルカゝら材料を吐出する溶融物堆積法の場合には、吐出 量が少ない場合には、ノズル先端力も材料が離れにくぐ造形物の側に定着しない。 更に、一旦、造形物の側に定着した場合でも、近隣の柔らかい材料と融合して大きな ボール状になってしま 、、細か 、形状が造形できな!/ヽと 、う問題点がある。  [0020] In particular, in the case of a soft material, it is difficult to accurately hold the material on the side of the modeled object. For example, in the case of a melt deposition method in which a thin nozzle cap material is discharged, when the discharge amount is small, the force at the tip of the nozzle does not settle on the side of the object where the material is separated. In addition, even if it is once settled on the side of the molded object, there is a problem in that it becomes a large ball shape by fusing with a neighboring soft material, and the shape cannot be formed finely or finely!
[0021] (ホ)造形時間の短縮についての課題。  [0021] (e) Issues regarding shortening of molding time.
従来における造形装置では、単一材料でしか造形ができないため、異なる材質か ら構成されるものを作製するには、材質毎に造形した部品を組み立てる方法を用 、 るしかな 、と!/、う問題がある。  With conventional modeling equipment, modeling can only be done with a single material, so in order to manufacture products composed of different materials, a method of assembling parts molded for each material is used. Problem.
[0022] RPを再生医療 (ティッシュエンジニアリング)に利用する場合の課題。  [0022] Issues when using RP for regenerative medicine (tissue engineering).
再生医療においては、細胞を培養して組織を形成するために、細胞が増殖する足 場となる「スキヤホールド」と呼ばれる骨格構造を必要とする。これは、細胞が増殖した 後は生体に吸収される素材 (ポリ乳酸やコラーゲン)で作られるが、生体の組織と同じ 立体構造を持ち、しかも、細胞が多数増殖できる足場となるためには、細かい多孔質 でなければならない。再生医療に利用する場合については、従来、スキヤホールドと してシート状のコラーゲンフォーム (発泡体)などが用いられてきた力 これでは、糸且織 の立体形状を再現できない。そこで、近年、 RPが応用されつつある力 いずれも単 一素材によるスキヤホールドの作成方法に留まる。  In regenerative medicine, in order to form cells by culturing cells, a skeletal structure called a “scaffold” that serves as a scaffold for cells to grow is required. This is made of a material (polylactic acid or collagen) that can be absorbed into the body after the cells have proliferated.However, in order to have a three-dimensional structure that is the same as that of a living tissue, and to be a scaffold that allows many cells to proliferate, It must be finely porous. For use in regenerative medicine, a sheet-like collagen foam (foam) or the like has conventionally been used as a carrier for a hold. With this force, the three-dimensional shape of a fibrous tissue cannot be reproduced. Therefore, in recent years, RP has been applied to any method, but only the method of creating a single-material scan hold.
[0023] すなわち、現在、 FDMの手法を用いる例(ドイツ Envisiontec GmBH、  [0023] That is, at present, examples using the FDM method (Germany Envisiontec GmBH,
http://www.envisiontec.de/)や、骨の素材となるヒドロキシアパタイトとガラスをシート 状にした材料を積層して任意形状の移植用骨片を造形する方法 (Steidle, C. et al. (University of Dayton, U.S. A.;: Automated Fabrication of Custome Bone Implants Using Rapid Prototyping, Proc.of 44th International SAMPE Symposium and Exhibition, 1999. http://www.udri.udayton.edu/rpdl/Bone.htm )、 RPでス ャホ ~~ ルドの铸型を作る方法(Sachlos, E. et al. (University of Oxford, UK): Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication, Biomaterials, Vol. 24, No.8, pp. 1487—1497, Elsevier, 2003 )、細胞その ものをゲル状の「糊」で固めながら積層し臓器をまるごと「立体印刷」するアイディア (Mironov, V. et al. (Medical University of South Carolina, U.S.A.):Organ printing: computer-aided jet-based 3D tissue engineering, TRENDS in Biotechnology, Elsevier, 2003)などが提案されている。しかし、上記の例は、最後の例を除き、いず れも単一素材によるスキヤホールドの作成方法に留まる。 http://www.envisiontec.de/) and a method of forming bone grafts of any shape by laminating sheets of hydroxyapatite and glass as bone materials (Steidle, C. et al.) (University of Dayton, USA ;: Automated Fabrication of Custome Bone Implants Using Rapid Prototyping, Proc. Of 44th International SAMPE Symposium and Exhibition, 1999.http: //www.udri.udayton.edu/rpdl/Bone.htm), How to make a 铸 type of smartphone with RP (Sachlos, E. et al. (University of Oxford, UK): Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication, Biomaterials, Vol. 24, No. 8, pp. 1487-1497, Elsevier, 2003) (Mironov, V. et al. (Medical University of South Carolina, USA): Organ printing: computer-aided jet-based 3D tissue engineering, TRENDS in Biotechnology, Elsevier, 2003) ing. However, all of the above examples, except for the last one, are limited to the creation of a single-material scan holder.
[0024] 本発明は、これらの問題点を解決するためになされものであり、本発明の目的は、 例えば、多色'多材料で、堅さが部分により異なる複雑な構造の立体物を造形するこ とのできる 3次元造形物の作製方法を提供することにある。また、再生医療 (ティッシ ュエンジニアリング)にも利用できる立体的かつ多孔質であり、薬剤による機能を持た せた足場 (スキヤホールド)として利用できる 3次元造形物を提供することにある。 課題を解決するための手段 [0024] The present invention has been made to solve these problems, and an object of the present invention is to form, for example, a three-dimensional object having a complex structure of multi-color 'multi-material with different hardness depending on parts. It is an object of the present invention to provide a method for producing a three-dimensional modeled object that can be manufactured. Another object of the present invention is to provide a three-dimensional structure that is three-dimensional and porous and can be used as a scaffold (scan hold) having a function of a drug, which can be used for regenerative medicine (tissue engineering). Means for solving the problem
[0025] 上記のような目的を達成するため、本発明による 3次元造形物の作製方法は、網構 造の中に造形材料を保持できる保持シートに一層の複数種類の造形材料をそれぞ れの造形位置に保持して固定し、固定された一層の造形材料の上に次層の保持シ 一トを載置し、次層の保持シートに次層の複数種類の造形材料をそれぞれの造形位 置に保持して固定し、造形材料の固定を順次に上の層について繰り返し行い、各層 を積層した後に保持シートの溶解除去を行う。これにより、単数または複数の造形材 料が多孔質の保持シート素材に保持された状態での造形された 3次元造形物が得ら れる。多孔質の保持シート素材が溶解除去された後の 3次元造形物は、多孔質の造 形物となっており、立体的かつ多孔質であり、薬剤による機能を持たせるスキヤホー ルドとして利用できる。 [0025] In order to achieve the above object, the method for producing a three-dimensional structure according to the present invention is a method for manufacturing a three-dimensional structure, in which a holding sheet capable of holding a forming material in a net structure includes a plurality of layers of a plurality of types of forming materials. The next layer holding sheet is placed on the fixed one layer of the molding material, and the next layer holding sheet is loaded with a plurality of types of the next layer of the molding material. It is held in place and fixed, and the fixing of the modeling material is repeated sequentially for the upper layer, and after the respective layers are laminated, the holding sheet is dissolved and removed. As a result, a three-dimensional modeled object in which one or more modeling materials are held by the porous holding sheet material is obtained. The three-dimensional structure after the porous holding sheet material has been dissolved and removed is a porous structure, which is three-dimensional and porous, and can be used as a scan holder having a function by a drug.
[0026] ここでの 3次元造形物の作製方法において、保持シートは、多孔質シートまたは網 構造シートであり、また、造形材料の固定は、粉末焼結、粉末凝固、溶融物堆積、光 硬化、薄膜積層、インク噴射のいずれかの方法により行う。  [0026] In the method of manufacturing a three-dimensional structure, the holding sheet is a porous sheet or a network structure sheet, and the fixing of the forming material is performed by powder sintering, powder coagulation, melt deposition, light curing. , Thin film lamination, or ink jetting.
[0027] また、ここでの 3次元造形物の作製方法にぉ 、て、保持シートの除去は、熱ある ヽ は溶媒によって、溶解除去する。前記造形材料を造形位置に保持する保持シートは 、溶融物堆積法、あるいは薄膜積層法により形成する。一層の保持シートに保持する 造形材料は、複数種類の材質の異なる造形材料または複数種類の着色された造形 材料である。 [0027] Further, according to the method of producing a three-dimensional structure, the holding sheet is removed by dissolving and removing the heated sheet with a solvent. The holding sheet for holding the modeling material at the modeling position is It is formed by a melt deposition method or a thin film lamination method. The modeling material to be held on one holding sheet is a plurality of different types of modeling materials or a plurality of types of colored modeling materials.
[0028] このように、本発明による 3次元造形物の作製方法においては、造形材料を保持す る保持シートとして薄い多孔質シートまたは網状シートを用い、この保持シートに、造 形物の各部位の材質に応じて、それぞれの色での、それぞれの材質での造形材料 を保持シートの網構造の中に付着させて (含浸させて)保持し固定することで造形物 の一層を形成し、この各層を積層することで 3次元造形物を作製する。これにより、多 色,多材料で、硬さが部分により異なる複雑な構造の立体物を精度良く造形すること ができる。  [0028] As described above, in the method for producing a three-dimensional structure according to the present invention, a thin porous sheet or a net-like sheet is used as a holding sheet for holding a forming material, and each part of the structure is provided on the holding sheet. Depending on the material of the material, the molding material of each material in each color is attached (impregnated) to the holding sheet net structure and held and fixed to form a layer of the shaped object, By stacking these layers, a three-dimensional object is produced. As a result, it is possible to accurately form a three-dimensional object having a complex structure of multiple colors and materials and different hardness portions.
[0029] 本発明による 3次元造形物の作製方法により製造された 3次元造形物は、製造され た 3次元造形物の中にお 、て除去された保持シートの網構造が空洞として残って!/ヽ る状態となっている。この空洞の大きさは、網構造の網の太さ、大きさなどを変えるこ とで変更できる。これによつて。製造された 3次元造形物は、その堅さなどを材質の質 感を希望するものとすることができる。  [0029] In the three-dimensional structure manufactured by the method of manufacturing a three-dimensional structure according to the present invention, the net structure of the holding sheet removed as a cavity remains in the manufactured three-dimensional structure! / It is in a state of falling. The size of this cavity can be changed by changing the thickness and size of the net of the net structure. By this. The rigidity of the manufactured three-dimensional structure can be adjusted to the desired material texture.
[0030] また、造形材料を保持する保持シート (多孔質シートまたは網状シート)の中に造形 材料を付着させる場合は、ゼリー状の材料であっても流れてしまわな!/、材料であれ ば、造形材料として利用できる。造形材料は、多孔質 (網状)シートにより少量の柔ら カ^、材料であっても定着性が良ぐ細か 、形状が正確に造形できるものであれば利 用できる。造形物の一層を形成し、形成した各層を積層することで 3次元造形物を作 製した後、造形材料を保持した保持シートの多孔質シートまたは網状シートは、熱あ るいは溶媒によって、溶解除去する。部分的には、従来の薄板積層方式と同様に、 カッターあるいはレーザなどによって不要部分を切除することで除去してもよい。多孔 質シートが溶解除去された後は、保持シート部分は造形材料に穴となって残る。そこ 力も溶剤が内部まで入り込むことができるため、造形物の 3次元形状データ上は完全 な内腔であっても、多孔質シートまたは網状シートの保持シートは除去できる。  [0030] In addition, when a molding material is attached to a holding sheet (porous sheet or net-like sheet) that holds the molding material, even if it is a jelly-like material, it does not flow! / Available as a molding material. The shaping material can be used as long as it has a small amount of softness due to a porous (net-like) sheet, and even if the material has good fixability and a fine shape can be accurately formed. After forming a layer of the modeled object and stacking the formed layers to create a three-dimensional modeled object, the porous sheet or mesh sheet of the holding sheet holding the modeling material is dissolved by heat or a solvent. Remove. Partially, as in the conventional thin plate lamination method, unnecessary portions may be removed by cutting off unnecessary portions with a cutter or a laser. After the porous sheet is dissolved and removed, the holding sheet portion remains as a hole in the modeling material. Since the solvent can also penetrate into the interior, the holding sheet of the porous sheet or mesh sheet can be removed even if the three-dimensional shape data of the modeled object is a complete lumen.
[0031] ここで作製された 3次元造形物の特徴は、多孔質の保持シートを除去 (温度、圧力 、溶剤 (水、水 +分解酵素、有機溶剤等)、光などにより除去)した後に残る造形物は、 シート素材の抜けたところが穴になるため、また多孔質になる。この造形物における 多孔質の穴の大きさ、空間の密度は、もとになる多孔質シートの密度で調整可能で ある。従って、細胞の足場であるスキヤホールドを造形するのに好適に利用できる。こ れは、細胞が多数、立体的に増殖するためには多孔質でなければならないという要 件を満たすものとなっており、更にまた、複数の造形材料を使えるため、異なる細胞 分化を誘導する複数の薬剤を立体的に配置することが可能となる。 [0031] The features of the three-dimensional structure manufactured here are left after the porous holding sheet is removed (removed by temperature, pressure, solvent (water, water + decomposing enzyme, organic solvent, etc.), light, etc.). The modeling object is Holes are formed where the sheet material comes off, making it porous. The size of the porous hole and the density of the space in this modeled object can be adjusted by the density of the original porous sheet. Therefore, it can be suitably used for forming a scaffold as a scaffold for cells. This satisfies the requirement that a large number of cells must be porous in order to grow sterically, and furthermore, the use of multiple modeling materials can induce different cell differentiation. A plurality of drugs can be arranged three-dimensionally.
発明の効果  The invention's effect
[0032] 本発明の 3次元造形物の作製方法によれば、多色'多材料で、堅さが部分により異 なる複雑な構造の立体物を造形することができる。特に、人体'動物の生体模型など の材質が各部位で異なる立体物を造形する場合に好適に利用できる 3次元造形物 の作製方法が提供される。  [0032] According to the method for producing a three-dimensional structure of the present invention, a three-dimensional object having a complex structure of multiple colors and multiple materials having different hardnesses can be formed. In particular, the present invention provides a method for producing a three-dimensional structure that can be suitably used when a three-dimensional object made of a material such as a biological model of a human body or an animal is different at each part.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 次に、本発明を実施するための一形態について、図面を参照して具体的に説明す る。図 1は、本発明の 3次元造形物の作製方法における第 1層の造形工程を説明す る図であり、図 2は、第 1層の工程に続く第 2層の造形工程を説明する図である。また 、図 3は、それぞれの層を積層した後の保持シートを除く後工程を説明する図である  Next, an embodiment for carrying out the present invention will be specifically described with reference to the drawings. FIG. 1 is a diagram illustrating a forming step of a first layer in the method for producing a three-dimensional structure according to the present invention, and FIG. 2 is a diagram illustrating a forming step of a second layer subsequent to the step of the first layer. It is. FIG. 3 is a diagram illustrating a post-process excluding the holding sheet after the respective layers are stacked.
[0034] 本発明の 3次元造形物の作製方法は、既存の例えばインクジェット方式の造形装 置を用いて、次のような各工程 (a)—(d)により造形作業を行う。すなわち、 [0034] In the method for producing a three-dimensional structure according to the present invention, a molding operation is performed by the following steps (a) to (d) using an existing molding apparatus of, for example, an ink jet system. That is,
(a)造形する造形物構造における色および材質データを含む 3次元データの準備、 (a) preparation of three-dimensional data including color and material data in the structure of the object to be modeled;
(b) 3次元データにそれぞれ対応する造形材料の準備、 (b) Preparation of modeling materials corresponding to 3D data,
(c)各層ごとの造形物の造形および積層工程、  (c) modeling and laminating process of the shaped object for each layer,
(d)造形作業および積層作業の終了後に保持シートを除去する後工程、 の各工程の作業の順にそれぞれの工程の作業が行われて、 3次元造形物が作製さ れる。  (d) After the modeling operation and the stacking operation are completed, the operations of the respective steps are performed in the order of the following steps of removing the holding sheet, and a three-dimensional molded object is manufactured.
[0035] (a)造形物の 3次元データの準備、  [0035] (a) Preparation of three-dimensional data of the modeled object,
人体模型を作製する場合には、造形物の 3次元データとしては、 CT画像のような 断層画像を用いる。この場合には、断層画像の 1画素ごとに、 3次元造形において利 用する物質情報 (造形材料)を記述した 3次元データを作成する。例えば、ヒトの鼻腔 -頭蓋底部分を造形する場合には、空気 '骨'粘膜 ·血管 ·神経 ·筋肉 ·脂肪 ·皮膚 ·腫 瘍などの各部分を、 CT画像データの CT値や位置力も判別して、各々に異なる材質 を表す符号 (材質データ)を付与する。これらの符号は、例えば、血管および脂肪な どの部位についてはそれぞれに着色したシリコンゴム、腫瘍部についてはゼリー状ま たはグリース状の材料、骨部分につ 、ては炭酸カルシウムにバインダーを練り込んだ 骨部材料などの造形材料を指示するために、それぞれに対応して定められている符 号である。符号のデータが付与された 3次元データの断層画像から、造形する各層 の厚みに対応して、切り分けた断面画像 (例えば X枚)を作製する。 When producing a human phantom, a tomographic image such as a CT image is used as the three-dimensional data of the object. In this case, each pixel of the tomographic image is used for 3D printing. Create 3D data that describes the substance information (building material) to be used. For example, when modeling the human nasal cavity-the skull base, each part such as air 'bone' mucous membranes, blood vessels, nerves, muscles, fat, skin, and tumors is also identified by the CT value and positional force of the CT image data. Then, a code (material data) representing a different material is assigned to each. These codes are, for example, kneaded binder in kneaded silicone rubber for blood vessels and fats, jelly-like or grease-like materials for tumors, and calcium carbonate for bones. It is a code that is defined correspondingly to indicate the modeling material such as bone material. From the tomographic image of the three-dimensional data to which the code data is added, a cross-sectional image (for example, X sheets) is cut out corresponding to the thickness of each layer to be formed.
[0036] また、造形物を作製するための 3次元データ力 閉鎖された多角形 (STLフォーマ ットのデータ等、継ぎ目がなく内外がはっきり分かれている形状データであり、これを water tightであると言う)で構成される物体のデータ(閉鎖多面体データ)である場合 には、各閉鎖多面体について材質を表す符号を付与し、それを各層 (造形材料を保 持する保持シート)の厚みにより切り分けた断面画像を作製する。  [0036] In addition, the three-dimensional data force for producing a modeled object is a closed polygon (such as STL format data, which is a shape data with a seamless inside and outside that is clearly separated, which is called water tight. ), A code indicating the material is assigned to each closed polyhedron, and it is divided by the thickness of each layer (a holding sheet that holds the modeling material). Create a cross-sectional image.
[0037] (b) 3次元データのそれぞれ対応する造形材料の準備工程、  (B) a step of preparing a modeling material corresponding to each of the three-dimensional data,
ここでの造形材料を保持する保持シートとしては、網構造の中に造形材料を保持で きる多孔質シートを用いる。多孔質シートの材料としては、例えば、水溶性の寒天や 水溶性ダルコマンナンを用いる。凍結乾燥すれば、多孔質シートとして容易に成型 可能である。硬い骨部分を造形する造形材料としては、貝殻を細かく砕いたものなど 、炭酸カルシウムの粉をバインダー(固着用の材料、水に溶けない榭脂系の接着剤 あるいは熱硬化性榭脂など)に練り込んだものを用いる。また、柔らかい部位の粘膜 · 血管 '神経'脂肪 '皮膚'腫瘍部分を造形する材料としては、例えば、各部分用にそ れぞれの材質を表すために着色した柔らかさの異なるシリコンゴムを用いる。シリコン ゴムとしては、熱硬化型あるいは硬化剤で硬化させるものを用いることができる。更に 、必要であれば、サポート材料として-力ヮなど水溶性の物質を用いることができる。  As the holding sheet for holding the modeling material, a porous sheet capable of holding the modeling material in a net structure is used. As a material of the porous sheet, for example, water-soluble agar or water-soluble dalcomannan is used. If freeze-dried, it can be easily molded as a porous sheet. As a shaping material for forming hard bones, calcium carbonate powder such as crushed shells is used as a binder (fixing material, water-insoluble resin-based adhesive or thermosetting resin). Use the kneaded material. In addition, as a material for modeling the mucous membrane and blood vessel 'nerve' fat 'skin' tumor part of the soft part, for example, colored silicone rubber of different softness is used to represent the material for each part. . As the silicone rubber, a thermosetting type or a type cured with a curing agent can be used. In addition, if necessary, a water-soluble substance such as -force can be used as a support material.
[0038] また、その他に、網構造の多孔質シートの材料として、でんぷん糊、たんぱく質を主 成分とするスポンジ (スポンジケーキや麩など)を用いることができ、また、  [0038] In addition, as a material of the porous sheet having a net structure, a starch paste or a sponge containing protein as a main component (such as a sponge cake or fu) can be used.
ンジニアリング (再生医療)において応用できる材料を用いることができる。 [0039] この場合には、造形材料を固定するためのバインダーとしては、ポリ乳酸ゃコラー ゲンなど、ティッシュエンジニアリング (再生医療)で利用される生体適合性材料 (生 体内で分解する素材)を用い、多孔質シートの材料としては水溶性の生体適合性材 料を用いる。 Materials that can be applied in engineering (regenerative medicine) can be used. In this case, as a binder for fixing the modeling material, a biocompatible material (material that decomposes in a living body) used in tissue engineering (regenerative medicine), such as polylactic acid collagen, is used. As a material for the porous sheet, a water-soluble biocompatible material is used.
[0040] ティッシュエンジニアリングでは、細胞を培養するための足場となる「スキヤホールド  [0040] In tissue engineering, the "scan hold" is used as a scaffold for culturing cells.
(scaffold)」が必要であり、スキヤホールドは多数の細胞を収容するために多孔質構 造であることが望ましい。例えば、腫瘍等で切除した部分の骨を再生するためには、 欠損部の骨の形をしたスキヤホールドに幹細胞を植えつけ、患者の体内に移植する ことで対応できる。  A “scaffold” is required, and the scaffold is preferably a porous structure to accommodate a large number of cells. For example, in order to regenerate the bone at the portion resected by a tumor or the like, stem cells can be implanted into a bone-shaped scan holder at the defect and transplanted into the patient's body.
[0041] このスキヤホールドの作製方法として、 RPが有効である。現在、 FDMの手法を用 いる例(ドイツ Envisiontec GmBH)や、 RPとロストワックス法を組み合わせて型を作る 方法(Sacholos, E. et al., University of Oxford, UK, 2003)、細胞そのものをゲル状 の「糊」で固めながら積層する提案がある。  RP is effective as a method of manufacturing this skid holder. At present, there are examples of using the FDM method (Envisiontec GmBH, Germany), methods of forming molds by combining RP and lost wax method (Sacholos, E. et al., University of Oxford, UK, 2003), gelation of cells themselves. There is a proposal to laminate while solidifying with "glue".
[0042] 本発明による 3次元造形物の作製方法を適用する場合には、水溶性材料からなる メッシュシートを用い、硬い骨部分の材料として骨の主成分であるリン酸カルシウム' ヒドロキシアパタイトなどを生体適合性材料に練り込んだものを用い、血管などの組織 を形成すべき部分の材料として、例えば、それぞれの組織への細胞分化を促す作用 のある物質を練り込んだ生体適合性材料を用いる。  When the method for producing a three-dimensional structure according to the present invention is applied, a mesh sheet made of a water-soluble material is used, and calcium phosphate 'hydroxyapatite, which is a main component of bone, is used as a material for a hard bone part. For example, a biocompatible material kneaded with a substance having a function of promoting cell differentiation into each tissue is used as a material of a portion where a tissue such as a blood vessel is to be formed.
[0043] (c)各層ごとの造形物の造形および積層の作業工程 (図 1一図 3参照)、 (C) The working process of forming and laminating a formed object for each layer (see FIGS. 1 to 3),
(工程 1)造形材料を保持する保持シート (多孔質シート)を台座の上に 1枚 (1層分) 敷く。  (Step 1) Lay one sheet (one layer) of the holding sheet (porous sheet) holding the modeling material on the pedestal.
(工程 2)保持シートの上にその層に相当する断面画像を印刷する。すなわち、各部 の材質データに対応して準備したそれぞれの造形材料で印刷する。この場合、イン クジェットプリンタのようにプリンタヘッド力 液状の材料を吐出して断面画像を印刷 する。また、溶融物堆積法のように細いノズル力も材料を押し出して断面画像を印刷 するようにしてもよい。ここでの造形材料を保持する保持シートは十分薄いので、直 下の層と現在の層とは材料が接着する。わずかな隙間 (例えばシート 1枚分の厚み) を隔てて隣接する部分が融合するのを完全に防ぐためには、間にサポート材料を入 れておく。 (Step 2) A cross-sectional image corresponding to the layer is printed on the holding sheet. That is, printing is performed using the respective modeling materials prepared corresponding to the material data of each part. In this case, a cross-sectional image is printed by ejecting a liquid material to the printer head as in an ink jet printer. Also, a thin nozzle force may be used to extrude the material to print a cross-sectional image as in a melt deposition method. Since the holding sheet for holding the modeling material here is sufficiently thin, the material immediately below and the current layer adhere to each other. To completely prevent adjacent parts from fusing with a small gap (for example, the thickness of one sheet), insert a support material between them. Keep it.
(工程 3)保持シートに保持されている 1層分の造形材料を固定させる。これは、乾燥 することにより、熱をカ卩えることにより、または時間の経過により固化させる。  (Step 3) One layer of the molding material held on the holding sheet is fixed. It is solidified by drying, by heating, or by the passage of time.
(工程 4)次に、必要であれば、シート表面をカッターにより削り平滑ィ匕する、またはァ ィロンのようなもので押しつけて平滑ィ匕する。平滑化した層の上に次層の保持シート を敷いて、工程 2からの処理を各層に対応して作業する。  (Step 4) Next, if necessary, the surface of the sheet is shaved with a cutter or smoothed by pressing with a material such as iron. Lay the holding sheet of the next layer on the smoothed layer, and perform the processing from step 2 for each layer.
(工程 5)前記した(工程 1)一(工程 4)を、必要な枚数 (X枚)繰り返して、断面画像の 印刷によって保持シートに各造形材料を固定した各層を積層する。  (Step 5) Repeat the above (Step 1) and one (Step 4) by the required number (X sheets), and laminate each layer in which each modeling material is fixed to the holding sheet by printing a cross-sectional image.
[0044] (d)各層の造形作業および積層作業の終了後に保持シートを除去する後工程、 前記の(工程 5)によって、保持シートを含む各層が積層された状態で、 3次元造形 物が作製されたので、保持シートを除去する。保持シートとして水溶性の素材を利用 している場合には、この作製された造形物を例えばぬるま湯に保持シートの積層物( 内部に造形物が入っている)を漬けて、保持シート(多孔質シート)が溶解した後に、 3次元造形物を取り出す。取り出された 3次元造形物は、その 3次元造形物の中にお V、て前記除去された保持シートの網構造が空洞として残って 、る状態となって 、る。  (D) A post-process of removing the holding sheet after completion of the forming operation and the laminating operation of each layer. In the above-mentioned (Step 5), a three-dimensional structure is produced in a state where the layers including the holding sheet are stacked. Then, the holding sheet is removed. If a water-soluble material is used as the holding sheet, the formed object is immersed in, for example, lukewarm water to form a laminate of the holding sheet (containing the object inside). After the sheet is dissolved, remove the 3D object. The removed three-dimensional object is left in the three-dimensional object in a state in which the net structure of the removed holding sheet remains as a cavity.
[0045] 前述した多孔質シートとして水溶性の生体適合性材料を用いた場合、シートのメッ シュが溶解した後に、生体適合性材料でできた造形物が得られる。メッシュが溶解し た跡に残る造形物もまた多孔質スポンジ状の構造となり、スキヤホールド (細胞の足 場)としての要件を満たすことになる。  [0045] When a water-soluble biocompatible material is used as the porous sheet, a shaped article made of the biocompatible material is obtained after the mesh of the sheet is dissolved. The objects that remain on the traces of the dissolved mesh also have a porous sponge-like structure, which satisfies the requirements for a carrier (cell scaffold).
[0046] 例えば、バインダーとしてポリ乳酸やコラーゲンなど、ティッシュエンジニアリング(再 生医療)で利用される生体適合性材料 (生体内で分解される素材)を用い、多孔質シ ートの材料として水溶性の生体適合性材料を用いる。人体の各部位の模型を作製す る場合、例えば、硬い骨部分の材料として骨の主成分であるリン酸カルシウム'ヒドロ キシアパタイトなどを生体適合性材料に練り込んだものを用い、血管などの組織を形 成すべき部分の材料として、例えばそれぞれの組織への細胞分ィ匕を促す作用のある 物質を練り込んだ生体適合性材料を用いる。このような材料を網構造の多孔質保持 シートにより材料に応じてそれぞれの所定位置に保持して固定した各層を積層して 3 次元造形物を作製する。 [0047] そして、造形材料の保持シートである多孔質シートを溶解除去すると、生体適合性 材料でできた造形物が得られる。メッシュが溶解した跡に残る造形物もまた多孔質ス ポンジ状の構造となり、スキヤホールド (細胞の足場)としての要件を満たすことができ 、作製された 3次元造形物は、再生医療に利用できる。造形材料である生体適合性 材料に練り込まれた諸物質は、生体適合性材料が生体内で吸収される際に徐々に 放出されるため、血管生成を促す物質などを練り込んでおけば、血管走行の誘導も 可能となる。 [0046] For example, a biocompatible material (material that can be degraded in vivo) used in tissue engineering (regeneration medicine), such as polylactic acid or collagen, is used as a binder, and a water-soluble material is used as a porous sheet material. Using a biocompatible material. When making a model of each part of the human body, for example, as a material for a hard bone part, a material obtained by kneading calcium phosphate 'hydroxyapatite, which is a main component of bone, into a biocompatible material is used, and tissues such as blood vessels are used. As a material of a portion to be formed, for example, a biocompatible material into which a substance having a function of promoting cell division into each tissue is used. Such a material is held in a predetermined position according to the material by a porous holding sheet having a net structure, and the respective fixed layers are laminated to produce a three-dimensional structure. Then, when the porous sheet, which is a holding sheet for the molding material, is dissolved and removed, a molded article made of a biocompatible material is obtained. The shaped object that remains on the trace where the mesh is dissolved also has a porous sponge-like structure, which can satisfy the requirements as a scan holder (cell scaffold), and the created 3D object can be used for regenerative medicine . Since various substances kneaded into the biocompatible material, which is a modeling material, are gradually released when the biocompatible material is absorbed in the living body, if a substance that promotes angiogenesis is kneaded, Induction of blood vessel running is also possible.
[0048] このように、網構造の中に造形材料を含浸させて保持する保持シートとして、薄い 多孔質シートに造形材料を含浸させ固着させて保持し、これを積層することで、多色 •多材料で、色 ·質感 '硬さが部分により異なる立体物を造形することができる。造形 材料の多孔質 (網状)シートへの固着方法は、粉末焼結、粉末凝固、溶融物堆積、光 硬化、薄膜積層、インク噴射など、これを問わない。通常なら流れてしまうようなやわ らかい液体状の材料でも、多孔質シートに付着する分量は造形材料として利用でき るため、材料の選択の幅が格段に広がる。  [0048] As described above, as a holding sheet for impregnating the molding material in the net structure and holding it, the thin porous sheet is impregnated with the molding material, fixed and held, and then laminated to form a multicolored sheet. With many materials, it is possible to model a three-dimensional object with different colors and textures. The method of fixing the modeling material to the porous (net-like) sheet is not limited to powder sintering, powder coagulation, melt deposition, photocuring, thin film lamination, ink jetting, and the like. Even in the case of fragile liquid materials that would normally flow, the amount attached to the porous sheet can be used as a modeling material, greatly expanding the range of material choices.
[0049] 多孔質シートそのものが、サポートの役割を果すため、わざわざサポートを造形する 必要はない。多孔質 (網状)シートは、熱あるいは溶媒によって溶解する材質で作製 しておくので、造形後に容易に除去することができる。また、保持シートは、従来の薄 板積層方式と同様に、カッターあるいはレーザなどによって不要部分を切除してもよ い。多孔質シートが溶解除去された後は、造形材料に穴となって残り、そこ力も溶剤 が造形物の内部まで入り込むことができるため、データ上は完全な内腔であっても、 多孔質 (網状)シートは除去が可能である。もしどうしても必要であれば、多孔質シー トと同様、熱あるいは溶媒によって溶解する材質でサポートを造形しておけばよい。  [0049] Since the porous sheet itself serves as a support, it is not necessary to form the support. Since the porous (net-like) sheet is made of a material that can be dissolved by heat or a solvent, it can be easily removed after molding. Further, the holding sheet may be cut off at an unnecessary portion by using a cutter or a laser similarly to the conventional thin plate lamination method. After the porous sheet is dissolved and removed, a hole remains in the modeling material, and the solvent can also penetrate into the modeling object. The (net-like) sheet can be removed. If necessary, the support may be formed of a material that can be dissolved by heat or a solvent, similarly to the porous sheet.
[0050] また、造形材料は多孔質シートに絡まって定着されるため、次の層を積層する前に カッター等で層の表面を削って平滑にする場合であっても、造形物の細かい部分が むしれてしまうことはない。また、少量の材料や液状材料でも、多孔質シートに絡めて 定着させるため、定着し損ない、大きなボール状に融合してしまうことを防ぎ、より精 密な形状を再現することができる。多様な素材で構成される複雑な内部構造を持つ たものを、一度に短時間で造形することができる。 [0051] 造形材料として固化する前の柔軟材料は液状であり、近接して配置すると、互いに 融合してくっついてしまう可能性がある場合には、これを防止するために、あらかじめ 「セパレータ」材料により、柔軟材料の間に壁を作っておけば、望まない材料の融合 が防げる。このセパレータは、サポートと同じ、溶媒あるいは水あるいは所定の温度で 解ける材料で作製すればょ ヽ。 [0050] Also, since the modeling material is entangled with the porous sheet and fixed, even if the surface of the layer is smoothed with a cutter or the like before laminating the next layer, the fine portion of the modeling object It will not be stripped. In addition, since even a small amount of material or liquid material is entangled with the porous sheet and fixed, it is possible to prevent fixing failure and fusing into a large ball shape, and to reproduce a more precise shape. Objects with a complicated internal structure composed of various materials can be molded in a short time at once. [0051] The flexible material before being solidified as a molding material is a liquid, and if placed close to each other, there is a possibility that the flexible material will fuse together and stick together. Therefore, if a wall is formed between the flexible materials, undesired fusion of materials can be prevented. This separator should be made of the same solvent, water or material that can be melted at a given temperature as the support.
[0052] 図 4に、本発明の 3次元造形物の作製方法により作製された肝臓模型の縦断面図 を示している。図 4に示す 3次元造形物の肝臓模型は、柔らかい造形材料で造形さ れる肝臓本体 201の部位と、肝臓本体より丈夫な造形材料で造形された血管部分 2 02と、血管部分 202よりは更に硬い造形材料で造形された腫瘍部分 203から構成さ れたものとなって 、る。このように複数種類のそれぞれに材質の異なった部位力 構 成される 3次元造形物が、積層構造により作製される。  FIG. 4 shows a longitudinal sectional view of a liver model manufactured by the method for manufacturing a three-dimensional structure according to the present invention. The liver model of the three-dimensional model shown in FIG. 4 has a portion of the liver body 201 formed of a soft modeling material, a blood vessel portion 202 formed of a modeling material that is more durable than the liver body, and a blood vessel portion 202. It is composed of a tumor part 203 molded with a hard molding material. In this way, a three-dimensional structure having a plurality of types of parts each having a different material strength is produced by a laminated structure.
産業上の利用可能性  Industrial applicability
[0053] 本発明による 3次元造形物の作製方法は、 RP (ラビッド 'プロトタイピイング)技術が 対象とする粉末焼結、粉末凝固、溶融物堆積、光造形、薄膜積層などに適用できる 。また、この 3次元造形物の作製方法によると、精密な生体模型が造形できるので、 作製された生体模型は、医療教育、手術シミュレーション、手術器具開発、インフォ ームドコンセント用の生体模型として利用できる。  [0053] The method for producing a three-dimensional structure according to the present invention can be applied to powder sintering, powder solidification, melt deposition, stereolithography, thin film lamination, and the like, which are targets of the RP (rabbit'prototyping) technology. In addition, according to the method of manufacturing the three-dimensional structure, a precise biological model can be formed, and the manufactured biological model can be used as a biological model for medical education, surgery simulation, surgical instrument development, and informant consent.
[0054] 多孔質シートを除去した後に残る造形物は、シートの抜けたところが穴になるため、 また多孔質になる。造形物の多孔質の穴の大きさ、空間の密度は、もとになる多孔質 シートの密度で調整可能である。従って、細胞の足場であるスキヤホールドを造形す るために、本発明は好適に利用できる。  [0054] The molded article remaining after the porous sheet is removed becomes porous since the portion where the sheet comes off becomes a hole. The size of the porous holes and the density of the space in the modeled object can be adjusted by the density of the original porous sheet. Therefore, the present invention can be suitably used to form a scaffold as a scaffold for cells.
[0055] さらに、複数の造形材料を使用できるため、例えば、異なる細胞分化を誘導するた めの種々の薬剤などをそれぞれ造形材料に混合しておけば、異なる薬剤が立体的 に配置された造形物を作成することが可能である。これにより、造形材料が生体内で 分解される課程で徐々に含まれている薬剤が放出され、望む場所に血管を誘導し、 組織の分ィ匕を促進するために利用できる。  [0055] Furthermore, since a plurality of modeling materials can be used, for example, if various agents for inducing different cell differentiation are mixed with the modeling materials, respectively, a modeling in which different drugs are three-dimensionally arranged is provided. It is possible to create things. As a result, the drug contained gradually is released in the process of decomposing the modeling material in the living body, and it can be used to guide blood vessels to a desired place and to promote tissue separation.
図面の簡単な説明  Brief Description of Drawings
[0056] [図 1]本発明の 3次元造形物の作製方法における第 1層の造形工程を説明する図で ある。 FIG. 1 is a view for explaining a step of forming a first layer in a method of manufacturing a three-dimensional structure according to the present invention. is there.
[図 2]第 1層の工程に続く第 2層の造形工程を説明する図である。  FIG. 2 is a view for explaining a forming step of a second layer following a step of the first layer.
[図 3]それぞれの層を積層した後の保持シートを除く後工程を説明する図である。  FIG. 3 is a view for explaining a post-process excluding a holding sheet after laminating each layer.
[図 4]本発明の 3次元造形物の作製方法により作製された肝臓模型の縦断面図であ る。  FIG. 4 is a longitudinal sectional view of a liver model manufactured by the method for manufacturing a three-dimensional structure according to the present invention.

Claims

請求の範囲 The scope of the claims
[1] 網構造の中に造形材料を保持できる保持シートに一層の複数種類の造形材料を それぞれの造形位置に保持して固定し、  [1] Multiple layers of modeling material are held and fixed at each modeling position on a holding sheet that can hold the modeling material in the net structure,
前記固定された一層の造形材料の上に次層の保持シートを載置し、  Place the holding sheet of the next layer on the fixed one layer of modeling material,
前記次層の保持シートに次層の複数種類の造形材料をそれぞれの造形位置に保 持して固定し、  A plurality of types of molding materials of the next layer are held and fixed at the respective molding positions on the holding sheet of the next layer,
前記造形材料の固定を順次に上の層につ ヽて繰り返し行 ヽ、  The fixing of the molding material is repeatedly performed sequentially on the upper layer.
各層を積層した後に保持シートの除去を行う  Remove the holding sheet after stacking each layer
ことを特徴とする 3次元造形物の作製方法。  A method for producing a three-dimensional structure, characterized in that:
[2] 請求項 1に記載の 3次元造形物の作製方法にぉ 、て、 [2] The method for producing a three-dimensional structure according to claim 1, wherein
前記保持シートは、多孔質シートまたは網構造シートである  The holding sheet is a porous sheet or a net structure sheet.
ことを特徴とする 3次元造形物の作製方法。  A method for producing a three-dimensional structure, characterized in that:
[3] 請求項 1に記載の 3次元造形物の作製方法にぉ 、て、 [3] The method for producing a three-dimensional structure according to claim 1, wherein
造形材料の固定は、粉末焼結、粉末凝固、溶融物堆積、光硬化、薄膜積層、インク 噴射の 、ずれかの方法により行う  The fixing of the molding material is performed by any of the following methods: powder sintering, powder coagulation, melt deposition, light curing, thin film lamination, ink jetting
ことを特徴とする 3次元造形物の作製方法。  A method for producing a three-dimensional structure, characterized in that:
[4] 請求項 1に記載の 3次元造形物の作製方法にぉ 、て、 [4] The method for producing a three-dimensional structure according to claim 1,
前記保持シートの除去は、熱あるいは溶媒によって、溶解除去する  The removal of the holding sheet is performed by dissolving and removing by heat or a solvent.
ことを特徴とする 3次元造形物の作製方法。  A method for producing a three-dimensional structure, characterized in that:
[5] 請求項 1に記載の 3次元造形物の作製方法にぉ 、て、 [5] The method for producing a three-dimensional structure according to claim 1, wherein
前記造形材料を保持する保持シートは、溶融物堆積法、あるいは薄膜積層法によ り積層する  The holding sheet holding the modeling material is laminated by a melt deposition method or a thin film lamination method.
ことを特徴とする 3次元造形物の作製方法。  A method for producing a three-dimensional structure, characterized in that:
[6] 請求項 1に記載の 3次元造形物の作製方法にぉ 、て、 [6] The method for producing a three-dimensional structure according to claim 1, wherein
前記一層の保持シートに保持する造形材料は、複数種類の材質の異なる造形材 料または複数種類の着色された造形材料である。  The modeling material held by the one-layer holding sheet is a plurality of types of different modeling materials or a plurality of types of colored modeling materials.
ことを特徴とする 3次元造形物の作製方法。  A method for producing a three-dimensional structure, characterized in that:
[7] 請求項 1に記載の 3次元造形物の作製方法により製造された 3次元造形物であつ て、 [7] A three-dimensional structure manufactured by the method for manufacturing a three-dimensional structure according to claim 1. hand,
製造された 3次元造形物の中にお 、て前記除去された保持シートの網構造が空洞 として残っている  In the manufactured three-dimensional structure, the net structure of the holding sheet removed as above remains as a cavity.
ことを特徴とする 3次元造形物。  A three-dimensional structure characterized by the following:
[8] 積層構造の 3次元造形物であって、 [8] A three-dimensional structure having a laminated structure,
3次元造形物を構成する積層構造の各層における複数種類の造形材料が網構造 の保持シートの中でそれぞれの造形位置に保持された状態で固定されており、 前記積層構造の各層における前記保持シートが除去された状態で当該保持シート の網構造が空洞となって 、る  A plurality of types of modeling materials in each layer of the laminated structure constituting the three-dimensional structure are fixed in a state where they are held at respective modeling positions in a holding sheet having a net structure, and the holding sheet in each layer of the laminated structure is fixed. The net structure of the holding sheet becomes hollow when
ことを特徴とする 3次元造形物。  A three-dimensional structure characterized by the following:
PCT/JP2004/015359 2003-10-20 2004-10-18 Method for manufacturing three-dimensional shaped article and three-dimensional shaped article WO2005037529A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514815A JP4193944B2 (en) 2003-10-20 2004-10-18 Method for producing three-dimensional structure and three-dimensional structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-358918 2003-10-20
JP2003358918 2003-10-20

Publications (1)

Publication Number Publication Date
WO2005037529A1 true WO2005037529A1 (en) 2005-04-28

Family

ID=34463321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015359 WO2005037529A1 (en) 2003-10-20 2004-10-18 Method for manufacturing three-dimensional shaped article and three-dimensional shaped article

Country Status (2)

Country Link
JP (1) JP4193944B2 (en)
WO (1) WO2005037529A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196668A (en) * 2005-12-28 2007-08-09 Canon Inc Manufacturing method of material in three dimensions, material in three dimensions, recording media for manufacturing material in three dimensions and manufacturing apparatus for material in three dimensions
JP2008194968A (en) * 2007-02-14 2008-08-28 Imoto Seisakusho:Kk Direct molding method and direct molding device of polymer material
JP2009101565A (en) * 2007-10-23 2009-05-14 Seiko Epson Corp Method of manufacturing three-dimensional structure and manufacturing device for the method
WO2012132463A1 (en) 2011-03-31 2012-10-04 国立大学法人神戸大学 Method for manufacturing three-dimensional molded model and support tool for medical treatment, medical training, research, and education
WO2013157236A1 (en) * 2012-04-18 2013-10-24 富士フイルム株式会社 3d model data generation device, method and program
WO2015046217A1 (en) * 2013-09-24 2015-04-02 株式会社アルテコ Fabrication method for 3d shaped article, 3d shaped article, and coating agent for hot-melt resin laminating 3d printer
WO2015111366A1 (en) 2014-01-23 2015-07-30 Ricoh Company, Ltd. Three-dimensional object and method for forming same
WO2015151834A1 (en) * 2014-03-31 2015-10-08 独立行政法人産業技術総合研究所 Three-dimensional fabrication apparatus
WO2015159936A1 (en) * 2014-04-16 2015-10-22 株式会社ミマキエンジニアリング Three-dimensional shaped article production method and three-dimensional shaped article
JP5909309B1 (en) * 2015-01-15 2016-04-26 武藤工業株式会社 Three-dimensional modeling apparatus and modeled object
WO2016113955A1 (en) * 2015-01-15 2016-07-21 武藤工業株式会社 Three-dimensional shaping apparatus, method for controlling same, and object shaped by same
WO2017130515A1 (en) * 2016-01-25 2017-08-03 武藤工業株式会社 Three-dimensional molding device, method for controlling same, and article molded by same
JP2017154486A (en) * 2016-02-29 2017-09-07 株式会社ミマキエンジニアリング Method for manufacturing three-dimensional molded object, three-dimensional object and molding apparatus
WO2017150196A1 (en) * 2016-02-29 2017-09-08 株式会社ミマキエンジニアリング Method for manufacturing three-dimensional molded object, three-dimensional molded object, and molding device
WO2019063105A1 (en) * 2017-09-29 2019-04-04 Wacker Chemie Ag Anatomical silicone models and additive manufacturing thereof
US20210041853A1 (en) * 2019-08-06 2021-02-11 Emory University Systems, Devices, and Methods for Generating a Model of a Vascular Network, and for Analyzing and/or Treatment Planning Related to Thereof
JP2021509373A (en) * 2017-12-31 2021-03-25 ストラタシス リミテッド 3D printing to obtain pre-specified surface quality
WO2022158867A1 (en) * 2021-01-20 2022-07-28 한양대학교 산학협력단 Method for manufacturing composite, and composite manufactured thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6807224B2 (en) * 2016-01-05 2021-01-06 カシオ計算機株式会社 Model manufacturing method and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246804A (en) * 1999-03-01 2000-09-12 Minolta Co Ltd Method and device for producing three-dimensionally molded article, and the three-dimensionally molde article
JP2002036374A (en) * 2000-07-28 2002-02-05 Ntt Data Corp Method for manufacturing colored molding made of curable resin, colored molding made of curable resin and apparatus for molding
JP2002307562A (en) * 2001-02-07 2002-10-23 Minolta Co Ltd Three-dimensional shaping device and three-dimensional shaping method
JP2003011237A (en) * 2001-07-03 2003-01-15 Kuraray Co Ltd Method for producing three-dimensional shaped article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246801A (en) * 1999-02-26 2000-09-12 Takiron Co Ltd Thermal welding device for plastic plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246804A (en) * 1999-03-01 2000-09-12 Minolta Co Ltd Method and device for producing three-dimensionally molded article, and the three-dimensionally molde article
JP2002036374A (en) * 2000-07-28 2002-02-05 Ntt Data Corp Method for manufacturing colored molding made of curable resin, colored molding made of curable resin and apparatus for molding
JP2002307562A (en) * 2001-02-07 2002-10-23 Minolta Co Ltd Three-dimensional shaping device and three-dimensional shaping method
JP2003011237A (en) * 2001-07-03 2003-01-15 Kuraray Co Ltd Method for producing three-dimensional shaped article

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196668A (en) * 2005-12-28 2007-08-09 Canon Inc Manufacturing method of material in three dimensions, material in three dimensions, recording media for manufacturing material in three dimensions and manufacturing apparatus for material in three dimensions
US7924458B2 (en) 2005-12-28 2011-04-12 Canon Kabushiki Kaisha Method for manufacturing three-dimensional object, three-dimensional object, and print medium
JP2008194968A (en) * 2007-02-14 2008-08-28 Imoto Seisakusho:Kk Direct molding method and direct molding device of polymer material
JP2009101565A (en) * 2007-10-23 2009-05-14 Seiko Epson Corp Method of manufacturing three-dimensional structure and manufacturing device for the method
US7964047B2 (en) 2007-10-23 2011-06-21 Seiko Epson Corporation Manufacturing method of three-dimensional structure and manufacturing device therefor
US9183764B2 (en) 2011-03-31 2015-11-10 National University Corporation Kobe University Method for manufacturing three-dimensional molded model and support tool for medical treatment, medical training, research, and education
WO2012132463A1 (en) 2011-03-31 2012-10-04 国立大学法人神戸大学 Method for manufacturing three-dimensional molded model and support tool for medical treatment, medical training, research, and education
WO2013157236A1 (en) * 2012-04-18 2013-10-24 富士フイルム株式会社 3d model data generation device, method and program
JP2013222361A (en) * 2012-04-18 2013-10-28 Fujifilm Corp Three-dimensional model data generation apparatus, method, and program
US9697639B2 (en) 2012-04-18 2017-07-04 Fujifilm Corporation Three-dimensional model data generation device, method and program
WO2015046217A1 (en) * 2013-09-24 2015-04-02 株式会社アルテコ Fabrication method for 3d shaped article, 3d shaped article, and coating agent for hot-melt resin laminating 3d printer
JPWO2015046217A1 (en) * 2013-09-24 2017-03-09 株式会社アルテコ Method for creating 3D object and coating method for 3D object
JP6027256B2 (en) * 2013-09-24 2016-11-16 株式会社アルテコ Method for creating 3D object and coating method for 3D object
WO2015111366A1 (en) 2014-01-23 2015-07-30 Ricoh Company, Ltd. Three-dimensional object and method for forming same
EP3096936A4 (en) * 2014-01-23 2017-05-17 Ricoh Company, Ltd. Three-dimensional object and method for forming same
WO2015151834A1 (en) * 2014-03-31 2015-10-08 独立行政法人産業技術総合研究所 Three-dimensional fabrication apparatus
JPWO2015151834A1 (en) * 2014-03-31 2017-04-13 国立研究開発法人産業技術総合研究所 3D modeling equipment
WO2015159936A1 (en) * 2014-04-16 2015-10-22 株式会社ミマキエンジニアリング Three-dimensional shaped article production method and three-dimensional shaped article
CN105992687A (en) * 2015-01-15 2016-10-05 武藤工业株式会社 Three-dimensional shaping apparatus, method for controlling same, and object shaped by same
JP2016135607A (en) * 2015-01-15 2016-07-28 武藤工業株式会社 Three-dimensional molding apparatus and control method of the same, and molded object
WO2016113955A1 (en) * 2015-01-15 2016-07-21 武藤工業株式会社 Three-dimensional shaping apparatus, method for controlling same, and object shaped by same
JP5909309B1 (en) * 2015-01-15 2016-04-26 武藤工業株式会社 Three-dimensional modeling apparatus and modeled object
JPWO2017130515A1 (en) * 2016-01-25 2018-08-16 武藤工業株式会社 Three-dimensional modeling apparatus, control method thereof, and modeled object
WO2017130515A1 (en) * 2016-01-25 2017-08-03 武藤工業株式会社 Three-dimensional molding device, method for controlling same, and article molded by same
JP2017154486A (en) * 2016-02-29 2017-09-07 株式会社ミマキエンジニアリング Method for manufacturing three-dimensional molded object, three-dimensional object and molding apparatus
WO2017150196A1 (en) * 2016-02-29 2017-09-08 株式会社ミマキエンジニアリング Method for manufacturing three-dimensional molded object, three-dimensional molded object, and molding device
US11718016B2 (en) 2016-02-29 2023-08-08 Mimaki Engineering Co., Ltd. Three-dimensional object manufacturing method, three-dimensional object, and shaping device
WO2019063105A1 (en) * 2017-09-29 2019-04-04 Wacker Chemie Ag Anatomical silicone models and additive manufacturing thereof
JP2021509373A (en) * 2017-12-31 2021-03-25 ストラタシス リミテッド 3D printing to obtain pre-specified surface quality
JP7289304B2 (en) 2017-12-31 2023-06-09 ストラタシス リミテッド 3D printing for pre-defined surface quality
US20210041853A1 (en) * 2019-08-06 2021-02-11 Emory University Systems, Devices, and Methods for Generating a Model of a Vascular Network, and for Analyzing and/or Treatment Planning Related to Thereof
WO2022158867A1 (en) * 2021-01-20 2022-07-28 한양대학교 산학협력단 Method for manufacturing composite, and composite manufactured thereby

Also Published As

Publication number Publication date
JP4193944B2 (en) 2008-12-10
JPWO2005037529A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4193944B2 (en) Method for producing three-dimensional structure and three-dimensional structure
Jin et al. 3D printing of physical organ models: recent developments and challenges
Gardan Additive manufacturing technologies: state of the art and trends
Su et al. History of 3D printing
Sears et al. A review of three-dimensional printing in tissue engineering
Shafiee et al. Printing technologies for medical applications
US6932610B2 (en) Process for producing an artificial bone model and an artificial bone model produced by the process
Chia et al. Recent advances in 3D printing of biomaterials
Sharma et al. 3D printing and its future in medical world
Ventola Medical applications for 3D printing: current and projected uses
JP2014113695A (en) Method for producing molding, and molding
Srivastava A reviev on advances in rapid prototype 3D printing of multi-functional applications
Tukuru et al. Rapid prototype technique in medical field
Dhavalikar et al. Biomedical applications of additive manufacturing
Devi et al. A review of three-dimensional printing for biomedical and tissue engineering applications
Barua et al. Importance of 3D printing technology in medical fields
Vinogradov 3D printing in medicine: Current challenges and potential applications
Wu et al. 3D bioprinting in tissue and organ regeneration
Chowdhury et al. 3D printed bioscaffolds for developing tissue-engineered constructs
Gardan Additive manufacturing technologies
Thomas 3D printing techniques in medicine and surgery
WO2018012960A1 (en) Method of manufacturing a bio-model comprising a synthetic skin layer and bio-model comprising a synthetic skin layer
Rajkumari et al. Three-Dimensional Printing-A Revolutionary Technology.
Akilbekova et al. Patient-specific 3D bioprinting for in situ tissue engineering and regenerative medicine
Lopes et al. Rapid prototyping technology in medical applications: A critical review

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514815

Country of ref document: JP

122 Ep: pct application non-entry in european phase