WO2017146245A1 - Fatigue testing device - Google Patents

Fatigue testing device Download PDF

Info

Publication number
WO2017146245A1
WO2017146245A1 PCT/JP2017/007238 JP2017007238W WO2017146245A1 WO 2017146245 A1 WO2017146245 A1 WO 2017146245A1 JP 2017007238 W JP2017007238 W JP 2017007238W WO 2017146245 A1 WO2017146245 A1 WO 2017146245A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
temperature
end side
test
hole
Prior art date
Application number
PCT/JP2017/007238
Other languages
French (fr)
Japanese (ja)
Inventor
憲吾 山本
山本 泰三
真二 河合
雅史 荒木
本寧 廉
Original Assignee
株式会社山本金属製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山本金属製作所 filed Critical 株式会社山本金属製作所
Priority to JP2018501819A priority Critical patent/JP6853464B2/en
Publication of WO2017146245A1 publication Critical patent/WO2017146245A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows

Definitions

  • the present invention relates to a fatigue testing machine capable of considering real-time temperature conditions when rotating a material piece assuming a rotating tool or the like while applying a bending load and evaluating the fatigue strength of the material.
  • a machine tool such as a machining center is used to machine difficult-to-cut materials or complex shapes, and a rotating tool that rotates the tool itself is used in this machine tool.
  • a rotating tool that rotates the tool itself is used in this machine tool.
  • Patent Document 1 the applicant has been able to precisely monitor the tool temperature during machining by developing a device that directly measures the temperature during rotation in a machine tool using a rotary tool.
  • Patent Document 1 the relationship between the repetitive stress generated by the lateral load on the tool from the workpiece being rotated and the tool temperature cannot always be precisely verified.
  • the present invention has been created in view of the above circumstances, and the present invention evaluates the fatigue strength of a material by rotating a cantilevered metal material assuming a rotating tool or the like while applying a bending load. It is an object of the present invention to provide a fatigue test apparatus that can take into account real-time temperature conditions.
  • the temperature of the test piece is monitored during the rotating load in the rotating bending fatigue test to appropriately verify the test conditions according to each test piece and obtain a high-precision and quick fatigue test result.
  • a high temperature or low temperature environment is obtained by monitoring a temperature gradient in a test piece that occurs in a rotating load in a rotating bending fatigue test in a high temperature or low temperature environment.
  • a test piece made of a substantially cylindrical metal material is fixed to the mounting portion on the fixed end side and axially rotated, and a load is applied vertically downward on the free end side to increase the rotational bending fatigue strength of the test piece.
  • a fatigue testing device for measuring The mounting portion includes the test piece and a temperature measuring means that rotates in cooperation with the mounting portion, and the temperature measuring means includes a thermocouple whose tip is positioned inside the test piece, and the thermocouple The temperature information inside the test piece detected in (1) is transmitted from the transmission means to the outside of the test piece.
  • thermocouple can be directly installed inside the test and the temperature can be measured. Therefore, the influence on the fatigue test evaluation is appropriately determined according to the test piece regardless of the regulation value for the shaft rotation speed. Therefore, the test can be performed by setting a desired shaft rotation number for each material and shape of the test piece. Therefore, the test time can be greatly shortened.
  • the transmitting means transmits temperature information detected by the thermocouple to the outside during a fatigue test.
  • the temperature information of the test piece during the rotating bending fatigue test or the temperature gradient described later can be detected in real time by transmitting the temperature information wirelessly, and precise fracture prediction and cooling control are performed. Is possible.
  • the mounting portion as the spindle and the temperature measuring means are connected to the fixed end side of the test piece,
  • the test piece is formed with an axial hollow hole from the fixed end side to at least a predetermined region in the vicinity where fracture is expected,
  • a temperature measurement portion at the tip of a thermocouple protruding from the temperature means to the test piece side is positioned in the predetermined region of the hollow hole of the test piece through the through hole of the mounting portion.
  • the temperature measurement unit is connected to the spindle and rotates, the thermocouple connected to the temperature measurement unit is passed through the spindle, and the front test piece is also hollow.
  • the front test piece is also hollow.
  • it is hollowed out (formed with a channel) and positioned near the breaking position.
  • the test piece is formed with a plurality of axial hollow holes from the fixed end side to at least a predetermined region in the vicinity where fracture is expected,
  • the plurality of hollow holes are at least You may have the center hole of the position on a substantially central axis, and the outer hole of the position of radial direction outer side from this center hole.
  • a plurality of channels can be provided in the radial direction.
  • the outer hole is An outer peripheral hole in the vicinity of the outer peripheral surface of the test piece, and an intermediate hole formed in the radial direction from the center of the axis to the outer peripheral surface and at a position opposite to the outer peripheral hole in the radial direction with respect to the central hole. be able to.
  • the temperature measurement channel in the test piece may be separately provided in addition to the rotation axis center and the vicinity of the outer surface, and more accurate temperature gradient measurement can be performed.
  • thermocouple is positioned in a predetermined region in the vicinity of the test piece that is expected to break during the test and on a substantially central axis of the test piece.
  • the position for positioning the measurement part of the thermocouple is at least: It may have a center position on a substantially central axis and an outer position radially outward from the center position,
  • the outer position is An outer peripheral position in the vicinity of the outer peripheral surface of the test piece may be included, and a position hole in the radial direction from the center of the axis to the outer peripheral surface and opposite to the outer peripheral position with respect to the central position.
  • thermocouple is disposed inside the test piece at three or more temperature measurement positions each having a different axial depth.
  • the temperature gradient (distribution) of the test piece can be evaluated, and temperature control at the test section in a test under a high / low temperature environment Can be measured. Furthermore, as will be described later, by using the extrapolation method, it is also possible to estimate the temperature of a part that is not actually measured.
  • the temperature measurement position includes at least a first predetermined position in a predetermined region in the vicinity where the test piece is expected to be broken, a second predetermined position on the fixed side of the test piece with respect to the first predetermined position, and And a third predetermined position on the free end side of the test piece with respect to the first predetermined position.
  • the temperature measurement position includes at least a first predetermined position in a predetermined region in the vicinity where the test piece is expected to break, and one of a fixed side and a free end side of the test piece with respect to the first predetermined position.
  • a second predetermined position and a third predetermined position are predetermined positions.
  • the temperature measurement position is at least a first predetermined position and a second predetermined position on either the fixed side or the free end side of the test piece with respect to a predetermined region in the vicinity where the test piece is expected to break, And a third predetermined position on the free end side or the fixed end side of the test piece with respect to the first predetermined position and the second predetermined position.
  • the temperature measurement position is at least a first predetermined position, a second predetermined position, and a third predetermined position on either the fixed side or the free end side of the test piece with respect to a predetermined region in the vicinity where the test piece is expected to break. A predetermined position.
  • the axial direction rear end on the fixed end side or the free end side bearing direction front end of the test piece of the fatigue test apparatus of the present invention is provided with temperature measuring means, It is preferably supported by a bearing unit that slides the shaft rotation.
  • a plurality of the temperature measurement positions are arranged in a predetermined region in the vicinity where the test piece is expected to break.
  • the influence of the temperature gradient in the radial direction of the test piece can be reduced, and the influence of the change in thermal resistance due to the shape change can be reduced by increasing the number of temperature measurement points in the test section.
  • the temperature of the test piece under a rotational load can be directly monitored in the rotating bending fatigue test, it is possible to perform a fatigue test evaluation at a desired shaft rotational speed corresponding to each test piece without being bound by JIS standards. Fatigue test results can be obtained with high accuracy and speed.
  • the present invention by monitoring a temperature gradient in a test piece generated in a rotating load in a rotating bending fatigue test in a high temperature or low temperature environment, even when a device that provides a high temperature or low temperature environment is added, It is possible to verify whether the device is correctly acting on the test piece, and to provide a more accurate fatigue test result.
  • the temperature gradient (distribution) of the test piece can be evaluated by providing three or more temperature measurement points in the axial direction inside the test piece. Therefore, it is possible to measure the temperature control deviation in the test part (notch part) in the test under the high temperature / low temperature environment, and it is possible to estimate the temperature even when the temperature cannot be measured at the position of the test part.
  • FIG. 4 is a schematic cross-sectional view of the YY position of the test piece of FIG. 3.
  • thermocouple position in four types of temperature environments. It is the modification of the test piece shown in FIG. 3, and is the schematic which has arrange
  • FIG. 1 which is a schematic diagram illustrating a configuration of a main part of a rotating bending fatigue test apparatus 1 according to the present invention, and a configuration of a main part of a load adding unit in the rotating bending fatigue test apparatus 1 according to an embodiment of the present invention.
  • FIG. 2 which is a schematic diagram
  • FIG. 3 which is a schematic diagram illustrating a test piece 12 used in the rotating bending fatigue test apparatus 1 and the rotating bending fatigue test 1 according to an embodiment of the present invention. This will be described in detail.
  • the rotary bending fatigue test apparatus 1 includes at least a spindle (rotation drive means) 10 for rotating a test piece 12 and a rotation spindle 10a on one side of the rotation spindle 10a.
  • the temperature measuring unit 14 is fixed concentrically with the rotary main shaft 10a so as to rotate in cooperation with the rear end, and the bearing unit 16 slide-bears the shaft at the rear end of the temperature measuring unit 14. .
  • the rotation drive means 10 of the rotating bending fatigue test apparatus 1 of FIG. 1 is comprised by the rotation main shaft 10a and the through-hole 10b in the inside, and the temperature measurement part 14 has the connection part 14a of the front end of the rotation main shaft 10a. At the rear end, it is inserted into the through hole 10b and joined.
  • One end of the thermocouple 20 is inserted into the connecting portion 14a and connected to the detecting portion in the main body portion 14b. The thermocouple 20 protrudes from the connecting portion 14a, passes through the through hole 10b, and the tip reaches the predetermined position of the test piece 12 (positioning in the test piece 12 will be described later).
  • a rear end portion 14c that rotates in cooperation with the main body portion 14b is connected to the rear end of the temperature measurement unit 14. Therefore, when the rotation main shaft 10a rotates, the rear end portion 14c also rotates, and the rotation is supported while absorbing the vibration of the rotating bending fatigue test apparatus 1.
  • FIG. 2 which is a schematic diagram of a main part of the configuration of the load applying portion 22 at the front end of the rotary bending fatigue test apparatus 1 shown in FIG. 1 will be described.
  • a load is applied to the test piece 12 that can be rotated by the rotation driving means 10.
  • the front end (front end) of the rotating spindle 10 a of the mounting portion 10 is held by the chuck portion 18 at the fixed end (rear end) of the test piece 12, and the other end as the free end of the test piece 12.
  • the load load part 22 is arrange
  • the load adding unit 22 includes an adapter 22a for rotatably connecting the end of the test piece 40 as the free end of the test piece 12 rotated by the rotation driving means 10, and a vertically downward direction to the test piece 12. It is comprised by the weight part 22c as a weight which makes self weight act, and the suspension part 22b for connecting the adapter 22a and the weight part 22c.
  • the weighting unit 22c performs additional setting of the load depending on the shape of the test piece 12 and the evaluation conditions.
  • FIG. 3 illustrates a test piece 12 used in the rotary bending fatigue test 1, (a) is a schematic front view of the entire test piece 12, and (b) is an enlarged view near the center. is there.
  • the right side of the drawing is the load side (free end side), and the left side is the rotation main shaft 10a side (fixed end side).
  • the test piece 12 is notched in the vicinity of the central portion XX in the axial direction so as to reduce the diameter in order to induce cracks and fractures (also referred to as “notched portion”).
  • the test piece 12 has a hole 24 in the inner axial direction from the end on the rotating main shaft 10a side, and the terminal end 12a of the hole 24 is located at a predetermined distance on the rotating main shaft 10a side from the center XX.
  • the thermocouple 20 protruding from the temperature measuring unit 14 is inserted into the hole 24, and the measurement portion at the tip thereof is positioned at the terminal end 12 a of the hole 24.
  • the temperature measurement result in the test piece 12 measured by the thermocouple 20 of the rotating bending fatigue testing machine 1 as described above is as follows.
  • SUS304 which is one of stainless steel materials, was used and tested at a load of 300 MPa.
  • the test is performed at three shaft rotation speeds, (1) 1,000 rpm, (2) 3,000 rpm, (3) 5000 rpm, (4) 6000 rpm, which are higher than the rotation speeds that have been regulated so far.
  • the graph of the result is shown in FIG. In (1) to (4), the test started at room temperature of about 15 ° C to 16 ° C, and the environmental temperature conditions are considered to be almost the same. Further, it can be seen that (1) to (4), as the number of revolutions increases, the temperature rise with the passage of time increases, and the temperature rise becomes moderate (converges to the upper limit temperature) at a predetermined temperature. Specifically, (1) It can be seen that at 1,000 rpm, the temperature rise is very gradual and reaches only 17 ° C. In addition, (2) at 3,000 rpm, it can be seen that the temperature hardly increased at around 18 ° C. from around 4,000 (s).
  • FIG. 5 the relationship among the shaft rotation speed, the load (load), and the maximum temperature of the test piece 12 is schematically illustrated.
  • the present rotational bending fatigue test apparatus 1 can measure in detail the relationship among the rotational speed, load, temperature change, and fracture, thereby improving the accuracy of fatigue test evaluation.
  • the results of this fatigue test can be applied to the selection of the actual tool material, shape, rotation speed, etc., and proper prediction of tool fatigue life according to the usage status and history. .
  • FIG. 6 shows a schematic cross-sectional view of the YY position of the test piece 12 of FIG.
  • one hole 24 for the thermocouple 20 is provided at the center of rotation, but in this example, a plurality of thermocouples 20 are arranged in the test piece 12.
  • a hole 24c is disposed at a position radially outward from the rotation center C, and the thermocouple 20 is positioned.
  • a hole 24 a is disposed at a position A in the vicinity of the outer surface 12 b of the test piece 12, and the thermocouple 20 is positioned.
  • a hole 24b is disposed at a radial intermediate position B between the rotation center C and the position A, and the thermocouple 20 is positioned.
  • the position A and the position B are shown on the opposite side with respect to the rotation center C, but this shows only the relative positions on the machining accuracy of the three holes 24a to 24c.
  • the rotation center C, the position A, and the position B may be arranged in the same direction.
  • the thermocouple 20 is disposed at two positions of the position A and the position B. However, only one of them may be provided, and a plurality of thermocouples may be added.
  • the axial end positions of the holes 24a to 24c which are the heat measurement positions of the thermocouple 20, are rotated by a predetermined distance from the vicinity of the axial center of the test piece 12 (XX position in FIG. 3) as in the example of FIG. It is arranged at a position on the main shaft 10a side. This is because the temperature during rotation is most easily measured while taking into consideration the influence on the fatigue test evaluation due to the breakage, cracks, and strength reduction at the position of the test piece 12.
  • FIG. 7 is a graph showing the result of temperature measurement during rotation at the position of FIG. As the test piece 12, SUS304 was used and rotated at a shaft rotational speed of 800 rpm. Specific temperature data is as shown in Table 2 below.
  • Tm is the maximum temperature (° C.) of the test piece 12
  • ⁇ T is the difference in maximum temperature at the position of each thermocouple 20 (see FIG. 6)
  • test piece 12 of SUS304 changes in temperature while maintaining the same temperature and temperature gradient at the positions A to C.
  • Table 3 shows the results of using S45C as the test piece 12 and rotating the shaft at 800 rpm as in Table 1.
  • Table 3 shows the results of using S45C as the test piece 12 and rotating the shaft at 800 rpm as in Table 1.
  • the temperature difference ⁇ T 8.8 ° C. between the positions A to C
  • the temperature gradient from the surface to the inside of the test piece 12 is small, and the atmospheric temperature condition is the same as in the normal rotational bending fatigue test. It was found that the evaluation was almost the same as the test result.
  • the test pieces 12 of other shapes and materials may have a large temperature gradient and have a large effect on fatigue evaluation. If the temperature verification / calibration function of this rotating bending fatigue tester is used, fatigue evaluation can be performed with high accuracy. Therefore, it is possible to accurately reflect the actual cooling tool cooling control conditions and the like.
  • thermocouple 20 in the rotating bending fatigue test apparatus of the present invention.
  • the same reference numerals are assigned to the same members as those of the rotating bending fatigue testing apparatus 1 of the present invention described above.
  • thermocouple 20 is modified examples of the test piece 12 shown in FIG. 3, and the upper diagrams of FIGS. 8 to 10 and 12 are for positioning the thermocouple 20 in the test piece 12.
  • the following figure clearly shows the position of the thermocouple 20 with the holes omitted.
  • thermocouples 20 are disposed inside the test piece 12.
  • the thermocouple 20 is disposed at the position YY shown in FIG. 3, that is, at the predetermined position (2) of the notch as a predetermined area where the fracture of the test piece 12 is predicted.
  • the position (2) is located at the axial center position XX of the test piece 12.
  • the test piece 12 is provided with a hole 124-2 extending in the axial direction from the fixed end side (left side in FIG. 8), and a thermocouple is disposed at a position (2) which is the tip of the hole 124-2.
  • thermocouple 20 is arranged at the position (1) beyond the notch on the fixed end side from the position (2).
  • the test piece 12 is provided with a hole 124-1 extending in the axial direction from the fixed end side, and a thermocouple is disposed at a position (1) which is the tip of the hole 124-1.
  • the thermocouple 20 is also disposed at the position (3) beyond the notch on the free end side from the position (2).
  • the test piece 12 is provided with a hole 124-3 extending in the axial direction from the fixed end side, and a thermocouple is disposed at a position (3) that is beyond the notch and becomes the tip of the hole 124-1.
  • the temperature gradient (temperature distribution) in the axial direction of the test piece 12 can be evaluated by measuring the temperature with the thermocouple at the positions (1) to (3).
  • a main heat source can be specified, and a portion requiring cooling can be detected.
  • the free end side is the main cause of the temperature rise of the test piece 12.
  • it is possible to take measures such as installing a cooling mechanism on the load side, improving the cooling efficiency, and reducing the influence of the temperature rise on the test part (notch part).
  • FIG. 9 is a diagram showing positions (1) to (4) in the side view of the test piece 12 on the right side.
  • Three axial holes 224-1, 224-2 (common with the hole 224-4), and a hole 224-3 are provided in order from the fixed end side of the test piece 12.
  • the thermocouple 20 has a position (1) at the tip of the hole 224-1, a position (2) in front of the tip of the hole 224-4 in the hole 224-2 common to the hole 224-4, and a hole 224-3.
  • Position (3) is disposed at the position (4) at the tip of the hole 224-4 common to the hole 224-2.
  • the positions of the plurality of thermocouples 20 do not need to be arranged on a straight line in the radial direction, and the distances from the surface of the test piece 12 may be different. This also applies to other examples in which a plurality of thermocouples 20 are disposed (see FIGS. 8 to 10, 12, and 13). Further, for example, even when a plurality of thermocouples 20 are arranged at the position of the axial center XX, if the distance from the surface is different and they are on the same plane, it is not necessary to arrange them on the same radial line.
  • the temperature gradient (distribution) of the test piece 12 can be evaluated without measuring the temperature at the center XX.
  • the test part (notch part) is set to be long and temperature measurement positions (1) to (4) are provided in the area, but the positions (1) to (4) are arranged beyond the test part. (The effect of measurement at a plurality of points in the test section will be described later with reference to FIG. 14).
  • thermocouples 20 are disposed inside the test piece 12.
  • the thermocouple 20 is installed in three places other than the test part.
  • the holes 324-2, holes 324-3, and 324-4 are provided in the axial direction from the fixed end side (left side in FIG. 10) of the test piece 12.
  • the position (2) of the tip of the hole 324-2 is on the fixed end side from the position (5), and the position (3) of the tip of the hole 324-3 is between the position (2) and the position (5).
  • the position (4) of the tip of 324-4 is on the free end side beyond the position (5), and the thermocouple 20 is disposed at the positions (2) to (4).
  • FIG. 11 shows a graph in which the temperature at the position (5) is estimated from the measured temperatures at the three positions (2) to (4) in the test piece 12 of FIG.
  • three points are plotted from each measurement position (distance (mm) from the fixed end side) and measurement temperature (° C.) at each of the positions (2) to (4) (see black square marks). The relationship between the measurement position and the measurement temperature is graphed from these three points.
  • thermocouples 20 are arranged inside the fixed end side (left side in the figure) of the test piece 12. This example is also the case where it is difficult to install the thermocouple 20 at the position (5) of the center XX of the test portion of the test piece 12 as in FIG. Specifically, holes 424-4, holes 424-2, and 424-3 along the axial direction are provided in order from the fixed end side of the test piece 12, and the positions (4) and (2) of the respective tips are provided.
  • the thermocouple 20 is disposed in (3).
  • FIG. 13 shows a graph in which the temperature at the position (5) is estimated from the measured temperatures at the three positions (2) to (4) in the test piece 12 of FIG.
  • FIG. 11 shows three points which the temperature at the position (5) is estimated from the measured temperatures at the three positions (2) to (4) in the test piece 12 of FIG.
  • three points are plotted from each of the measurement positions (mm) and measurement temperatures (° C.) of the positions (2) to (4) (see black square marks), and the measurement positions are calculated from the plotted three points.
  • Graph the relationship with measured temperature.
  • thermocouple 20 disposed in the test piece 12 does not have to be the tip position of the hole provided along the axial direction from the fixed side as described above, and is the same from the surface as shown in FIG. It may be embedded at a depth.
  • the positions in the axial direction of the positions (1) to (6) are different, but the distance in the radial direction from the surface is the same. Therefore, the influence of the temperature gradient in the radial direction can be reduced.
  • the influence of the change in thermal resistance due to the shape change can be reduced by increasing the number of temperature measurement points (five points in the figure) in the test part (notch part).
  • Rotating bending fatigue tester 10 Mounting part (spindle (rotary drive means)) 10a Rotating spindle 10b Through-hole 12 Test piece 14 Temperature measurement part 14a Connection part 14b Body part 14c Rear end part 16 Bearing unit 18 Chuck part 20 Thermocouple 22 Load application part 22a Load application part 22b Suspension part 22c Weighting part

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

[Problem] The present invention provides a fatigue testing device in which a roughly cylindrical metal material specimen is fixed to a mounting unit on the fixed end side of the specimen and axially rotated, and the rotary bending fatigue strength of the specimen is measured by applying a load vertically downward on the free end side of the specimen . [Solution] This fatigue testing device is characterized in that: the mounting unit is equipped with a temperature measuring means that axially rotates in conjunction with the specimen and the mounting unit; the temperature measuring means is provided with a thermocouple, the leading end of which is positioned in the interior of the specimen; and information pertaining to the temperature of the specimen interior detected by the thermocouple is transmitted to the exterior by a transmitting means.

Description

疲労試験装置Fatigue testing equipment
 本発明は、回転工具等を想定した材料片に曲げ荷重を負荷しつつ回転させてその材料の疲労強度を評価する際にリアルタイムの温度条件を考慮し得る疲労試験機に関するものである。 The present invention relates to a fatigue testing machine capable of considering real-time temperature conditions when rotating a material piece assuming a rotating tool or the like while applying a bending load and evaluating the fatigue strength of the material.
 難削材や複雑形状物等を加工するにはマシニングセンタなどの工作機械が用いられ、この工作機械では工具そのものが回転する回転工具が用いられている。しかしながら、従来、回転工具の刃先や回転工具そのもので発生する切削熱を加工しながら定量的に計測できる機器が存在しておらず、加工現象を正確に把握できないことが大きな問題であった。 A machine tool such as a machining center is used to machine difficult-to-cut materials or complex shapes, and a rotating tool that rotates the tool itself is used in this machine tool. However, conventionally, there is no device that can quantitatively measure cutting heat generated by the cutting edge of the rotary tool or the rotary tool itself, and it has been a big problem that the machining phenomenon cannot be accurately grasped.
 この問題に対して出願人は、回転工具を用いる工作機械において回転加工中の温度を直接測定する装置を開発することで加工中の工具温度を精緻にモニタリングできるようになった(特許文献1)。しかしながら、上記装置においても回転加工中の被加工物から工具への横方向の負荷により発生する繰り返し応力と工具温度との関係について必ずしも精緻に検証することはできていない。 In response to this problem, the applicant has been able to precisely monitor the tool temperature during machining by developing a device that directly measures the temperature during rotation in a machine tool using a rotary tool (Patent Document 1). . However, even in the above-described apparatus, the relationship between the repetitive stress generated by the lateral load on the tool from the workpiece being rotated and the tool temperature cannot always be precisely verified.
 一方、このことを検証するため従来より回転曲げ疲労試験法が存在し、この疲労試験において片持ち試験片の自由端で下方に過重を負荷し、片持ち試験片を回転させて破断するまでの時間を工具の繰り返し疲労結果として評価している。しかしながら、回転曲げ疲労試験ではJIS規格により5,000rpm以下の回転数での試験が求められている。その理由として、5,000rpmになると、試験片(素材)が急激に発熱し、信頼性のあるデータがとれないということが挙げられるが、5,000rpmが適正であることを示す具体的な事例はなく、根拠がない状態で一律に定められた規制値であるに過ぎない。このため本来、環境条件や試験片の材料、形状によって規制値が変化するものであると考えられる。出願人は試験片に応じた精緻な疲労検証や、迅速な疲労試験の実行を考慮し、回転負荷中の試験片をモニタリングする必要性を感じていた。一旦、回転負荷中の試験片をモニタリングする方法が提唱されると、高回転で高精度を要求される工作機械であればあるほど、その必要性が高まってくると予想される。 On the other hand, in order to verify this, there has been a conventional rotating bending fatigue test method. In this fatigue test, an overload is applied downward at the free end of the cantilever test piece, and the cantilever test piece is rotated until it breaks. Time is evaluated as a result of repeated tool fatigue. However, in the rotating bending fatigue test, a test at a rotational speed of 5,000 rpm or less is required according to JIS standards. The reason is that when 5,000 rpm is reached, the test piece (material) suddenly generates heat, and reliable data cannot be obtained, but a concrete example showing that 5,000 rpm is appropriate. No, it is just a regulation value that is uniformly determined without any grounds. For this reason, it is considered that the regulation value is originally changed depending on the environmental conditions, the material of the test piece, and the shape. The applicant felt that it was necessary to monitor the test piece under a rotational load in consideration of precise fatigue verification according to the test piece and execution of a quick fatigue test. Once a method for monitoring a test piece under a rotational load is proposed, it is expected that the more the machine tool is required to have high rotation and high accuracy, the greater the necessity.
 また、原子炉や自動車のエンジン周辺部品は、高温環境下で使用された場合通常環境よりも上記疲労強度が低下することが知られている。したがって、高温環境下で使用される工具等の金属材料は、特に高温環境下での疲労試験を行う必要がある。このことを踏まえると、回転曲げ疲労試験機の温度環境ユニットの信頼性確認できることが望ましい。 Also, it is known that the fatigue strength of the peripheral components of the nuclear reactor and automobile is lower than that of the normal environment when used in a high temperature environment. Therefore, a metal material such as a tool used in a high temperature environment needs to be subjected to a fatigue test particularly in a high temperature environment. In view of this, it is desirable to be able to confirm the reliability of the temperature environment unit of the rotating bending fatigue tester.
 回転曲げ疲労試験機において、高温環境ユニットや低温環境ユニットが標準機に後付できる様々なタイプがある。従来、試験片周辺に環境ユニットを組付け、外部より、加熱・冷却を施す例(例えば、特許文献3)があるが、試験片表面と中心部で温度勾配が生じ、深さ方向での例えば熱膨張量の差異によって、応力勾配が生じると、その影響が疲労試験結果に加味され、データの信頼性を完全に確保することは難しくなる。したがって、高温環境、もしくは低温環境下の試験を実施しながら、回転・負荷中の試験片に対し、温度差表面から内部までの温度勾配をモニタリングして試験片周辺に設置された環境ユニットが、信頼性のある疲労試験ができるものであるかどうか検証したいという潜在的なニーズが存在すると考えられる。 There are various types of rotary bending fatigue testing machines that can be retrofitted to standard machines with high-temperature environment units and low-temperature environment units. Conventionally, there is an example in which an environmental unit is assembled around a test piece and heating / cooling is performed from the outside (for example, Patent Document 3). However, a temperature gradient is generated between the surface and the center of the test piece. If a stress gradient occurs due to the difference in thermal expansion, the effect is added to the fatigue test result, and it is difficult to ensure complete data reliability. Therefore, an environmental unit installed around the test piece by monitoring the temperature gradient from the temperature difference surface to the inside of the rotating and loaded test piece while performing a test in a high temperature environment or a low temperature environment, There appears to be a potential need to verify whether a reliable fatigue test is possible.
国際公開公報WO2015/022967号International Publication No. WO2015 / 022967 特開2012-078106号公報JP 2012-078106 A 特開2015-014596号公報JP2015-014596A
 以上の事情に鑑みて本発明は創作されたものであり、本発明は、回転工具等を想定した片持ち式の金属材料片に曲げ荷重を負荷しつつ回転させてその材料の疲労強度を評価する際にリアルタイムの温度条件を考慮し得る疲労試験装置を提供することを目的としている。 The present invention has been created in view of the above circumstances, and the present invention evaluates the fatigue strength of a material by rotating a cantilevered metal material assuming a rotating tool or the like while applying a bending load. It is an object of the present invention to provide a fatigue test apparatus that can take into account real-time temperature conditions.
 とりわけ第一の本発明では、回転曲げ疲労試験において回転負荷中に試験片の温度をモニタリングすることで試験片それぞれに応じた試験条件を適正に検証して高精度で迅速な疲労試験結果を入手し得る疲労試験装置を提供し、第二の本発明では、高温又は低温環境下での回転曲げ疲労試験において回転負荷中で生じる試験片内の温度勾配をモニタリングすることで、高温又は低温環境を提供する装置を付加した場合に於いても、当該装置が正しく試験片に対して作用しているかを検証できることとなり、より高精度な疲労試験結果を提供し得る疲労試験装置を提供することを目的とする。 In particular, according to the first aspect of the present invention, the temperature of the test piece is monitored during the rotating load in the rotating bending fatigue test to appropriately verify the test conditions according to each test piece and obtain a high-precision and quick fatigue test result. In the second aspect of the present invention, a high temperature or low temperature environment is obtained by monitoring a temperature gradient in a test piece that occurs in a rotating load in a rotating bending fatigue test in a high temperature or low temperature environment. An object of the present invention is to provide a fatigue test apparatus capable of verifying whether or not the apparatus is correctly acting on a test piece even when the apparatus to be provided is added and capable of providing a more accurate fatigue test result. And
 本発明は、略円筒状の金属材料の試験片を固定端側で装着部に対して固定して軸回転させ、自由端側で鉛直下方に荷重を負荷して試験片の回転曲げ疲労強度を測定する疲労試験装置であって、
 前記装着部は、前記試験片および該装着部と協動して軸回転する温度計測手段を備え、該温度計測手段は先端が試験片の内部に位置決めされる熱電対を有し、該熱電対で検出された試験片内部の温度情報が送信手段より試験片の外部に伝達される、ことを特徴とする。
In the present invention, a test piece made of a substantially cylindrical metal material is fixed to the mounting portion on the fixed end side and axially rotated, and a load is applied vertically downward on the free end side to increase the rotational bending fatigue strength of the test piece. A fatigue testing device for measuring,
The mounting portion includes the test piece and a temperature measuring means that rotates in cooperation with the mounting portion, and the temperature measuring means includes a thermocouple whose tip is positioned inside the test piece, and the thermocouple The temperature information inside the test piece detected in (1) is transmitted from the transmission means to the outside of the test piece.
 本疲労試験装置によれば、試験の内部に直接熱電対を設け温度計測することができるため、軸回転数について前記規制値によらず試験片に応じて疲労試験評価への影響を適正に判断することができ、試験片の材質・形状毎に、所望の軸回転数を設定して試験を行うことができることとなる。したがって、試験時間の大幅な短縮も可能となる。 According to this fatigue test device, a thermocouple can be directly installed inside the test and the temperature can be measured. Therefore, the influence on the fatigue test evaluation is appropriately determined according to the test piece regardless of the regulation value for the shaft rotation speed. Therefore, the test can be performed by setting a desired shaft rotation number for each material and shape of the test piece. Therefore, the test time can be greatly shortened.
 前記送信手段は、前記熱電対で検出された温度情報を疲労試験中に外部に送信する、ことが好ましい。具体的には、無線で温度情報を外部送信することで回転曲げ疲労試験中の試験片の温度情報又は後述の温度勾配をリアルタイムに検出することができ、精緻な破断予測や冷却制御を行うことが可能となる。 It is preferable that the transmitting means transmits temperature information detected by the thermocouple to the outside during a fatigue test. Specifically, the temperature information of the test piece during the rotating bending fatigue test or the temperature gradient described later can be detected in real time by transmitting the temperature information wirelessly, and precise fracture prediction and cooling control are performed. Is possible.
 また、軸方向に沿って、前記試験片の固定端側にスピンドルとしての前記装着部と前記温度計測手段とが連結されており、
 前記試験片は、少なくとも破断が予想される近傍の所定領域まで固定端側から軸方向の中空孔が形成され、
 前記温度手段から試験片側に突出する熱電対の先端の温度計測部分が前記装着部の貫通孔を通過して前記試験片の中空孔の前記所定領域に位置決めされる、ことを特徴とすることが好ましい。
Further, along the axial direction, the mounting portion as the spindle and the temperature measuring means are connected to the fixed end side of the test piece,
The test piece is formed with an axial hollow hole from the fixed end side to at least a predetermined region in the vicinity where fracture is expected,
A temperature measurement portion at the tip of a thermocouple protruding from the temperature means to the test piece side is positioned in the predetermined region of the hollow hole of the test piece through the through hole of the mounting portion. preferable.
 本疲労試験装置の代表例としては、温度計測部は、スピンドルに連結協動して軸回転し、温度測定部に接続された熱電対をスピンドル内に通過等させ、さらに前方の試験片も中空にくり抜いて(チャンネル形成して)破断位置の近傍に位置決めする構成がある。 As a representative example of this fatigue test apparatus, the temperature measurement unit is connected to the spindle and rotates, the thermocouple connected to the temperature measurement unit is passed through the spindle, and the front test piece is also hollow. There is a configuration in which it is hollowed out (formed with a channel) and positioned near the breaking position.
 また、前記試験片は、少なくとも破断が予想される近傍の所定領域まで固定端側から軸方向の中空孔が複数形成され、
 複数の前記中空孔は、少なくとも、
 略中心軸線上の位置の中心孔と、該中心孔から径方向外側の位置の外側孔とを有しても良い。
The test piece is formed with a plurality of axial hollow holes from the fixed end side to at least a predetermined region in the vicinity where fracture is expected,
The plurality of hollow holes are at least
You may have the center hole of the position on a substantially central axis, and the outer hole of the position of radial direction outer side from this center hole.
 本発明の変形として、径方向に複数のチャンネルを設けることができる。この構成を採用すれば、高温・低温環境下での回転曲げ疲労試験において試験片の表面から内部へ向かう径方向の温度勾配を回転中に計測することができ、高温又は低温環境を提供する装置を付加した場合にも、正しく試験片に対して前記装置が作用しているかを検証できることとなり、より精緻な疲労評価を行うことができる。 As a modification of the present invention, a plurality of channels can be provided in the radial direction. By adopting this configuration, it is possible to measure the temperature gradient in the radial direction from the surface of the test piece to the inside during rotation in a rotating bending fatigue test in a high-temperature / low-temperature environment while providing a high-temperature or low-temperature environment. Even when the is added, it is possible to verify whether or not the device is operating correctly on the test piece, and more precise fatigue evaluation can be performed.
 また、前記外側孔は、
 試験片の外周表面近傍の外周孔と、軸線中心から外周表面までの径方向中間であって前記中心孔に対して前記外周孔と径方向反対側の位置に形成された中間孔と、を含むことができる。
In addition, the outer hole is
An outer peripheral hole in the vicinity of the outer peripheral surface of the test piece, and an intermediate hole formed in the radial direction from the center of the axis to the outer peripheral surface and at a position opposite to the outer peripheral hole in the radial direction with respect to the central hole. be able to.
 上記試験片内の温度計測チャンネルは、回転軸中心、外表面近傍以外に別途設けても良く、より正確な温度勾配計測を行うことができる。 The temperature measurement channel in the test piece may be separately provided in addition to the rotation axis center and the vicinity of the outer surface, and more accurate temperature gradient measurement can be performed.
 また、前記試験片の内部において試験中に破断が予想される近傍の所定領域であって該試験片の略中心軸線上の位置に前記熱電対を位置決めする、ことが好ましい。 In addition, it is preferable that the thermocouple is positioned in a predetermined region in the vicinity of the test piece that is expected to break during the test and on a substantially central axis of the test piece.
 さらに、前記熱電対の計測部を位置決めする位置は、少なくとも、
 略中心軸線上の中心位置と、該中心位置から径方向外側の外側位置とを有しても良く、
 前記外側位置は、
 試験片の外周表面近傍の外周位置と、軸線中心から外周表面までの径方向中間であって前記中心位置に対して前記外周位置と径方向反対側の位置孔と、を含んでも良い。
Furthermore, the position for positioning the measurement part of the thermocouple is at least:
It may have a center position on a substantially central axis and an outer position radially outward from the center position,
The outer position is
An outer peripheral position in the vicinity of the outer peripheral surface of the test piece may be included, and a position hole in the radial direction from the center of the axis to the outer peripheral surface and opposite to the outer peripheral position with respect to the central position.
 また、本疲労試験装置は、
 軸方向に沿って前記試験片の固定端側に、スピンドルとしての前記装着部と前記温度計測手段とが連結されており、
 前記試験片は内部に、それぞれ軸方向の深さが異なる3つ以上の温度測定位置に前記熱電対が配設される、場合もある。
In addition, this fatigue test device
The mounting part as the spindle and the temperature measuring means are connected to the fixed end side of the test piece along the axial direction,
In some cases, the thermocouple is disposed inside the test piece at three or more temperature measurement positions each having a different axial depth.
 この場合、試験片の軸方向に計測位置が異なる3つ以上の温度測定ができるため、試験片の温度勾配(分布)を評価でき、高温/低温環境下での試験における試験部での温度制御のズレを計測することができる。さらに、後述するが、内外挿法を駆使することにより、実際には測定していない部位の温度も推定することができる。 In this case, since three or more temperatures can be measured at different measurement positions in the axial direction of the test piece, the temperature gradient (distribution) of the test piece can be evaluated, and temperature control at the test section in a test under a high / low temperature environment Can be measured. Furthermore, as will be described later, by using the extrapolation method, it is also possible to estimate the temperature of a part that is not actually measured.
 以下、3点以上の温度測定位置の具体例を列挙する。第一の例として、
 前記温度測定位置は、少なくとも、前記試験片の破断が予想される近傍の所定領域の第一所定位置と、該第一所定位置に対して前記試験片の固定側の第二所定位置と、前記第一所定位置に対して前記試験片の自由端側の第三所定位置と、を有する。
Specific examples of three or more temperature measurement positions are listed below. As a first example,
The temperature measurement position includes at least a first predetermined position in a predetermined region in the vicinity where the test piece is expected to be broken, a second predetermined position on the fixed side of the test piece with respect to the first predetermined position, and And a third predetermined position on the free end side of the test piece with respect to the first predetermined position.
 第二の例として、
 前記温度測定位置は、少なくとも、前記試験片の破断が予想される近傍の所定領域の第一所定位置と、該第一所定位置に対して前記試験片の固定側又は自由端側いずれか一方の第二所定位置及び第三所定位置と、を有する。
As a second example,
The temperature measurement position includes at least a first predetermined position in a predetermined region in the vicinity where the test piece is expected to break, and one of a fixed side and a free end side of the test piece with respect to the first predetermined position. A second predetermined position and a third predetermined position.
 第三の例として、
 前記温度測定位置は、少なくとも、前記試験片の破断が予想される近傍の所定領域に対して前記試験片の固定側又は自由端側いずれか一方の第一所定位置及び第二所定位置と、前記第一所定位置及び第二所定位置に対して前記試験片の自由端側又は固定端側の他方の第三所定位置と、を有する。
As a third example,
The temperature measurement position is at least a first predetermined position and a second predetermined position on either the fixed side or the free end side of the test piece with respect to a predetermined region in the vicinity where the test piece is expected to break, And a third predetermined position on the free end side or the fixed end side of the test piece with respect to the first predetermined position and the second predetermined position.
 第四の例として、
 前記温度測定位置は、少なくとも、前記試験片の破断が予想される近傍の所定領域に対して前記試験片の固定側又は自由端側いずれか一方の第一所定位置、第二所定位置及び第三所定位置、を有する。
As a fourth example,
The temperature measurement position is at least a first predetermined position, a second predetermined position, and a third predetermined position on either the fixed side or the free end side of the test piece with respect to a predetermined region in the vicinity where the test piece is expected to break. A predetermined position.
 上記本発明の疲労試験装置の試験片の固定端側の軸方向後端又は自由端側の軸受け方向前端は、温度計測手段が配設されており、
 軸回転を滑り軸受するベアリングユニットで支持されることが好ましい。
The axial direction rear end on the fixed end side or the free end side bearing direction front end of the test piece of the fatigue test apparatus of the present invention is provided with temperature measuring means,
It is preferably supported by a bearing unit that slides the shaft rotation.
 回転曲げ疲労試験中の振動をベアリングユニットにより支持・吸収することで、特に高回転域での回転曲げ疲労試験に際し、発生する振動を抑制することが出来、疲労試験精度を向上させることが可能となる。 By supporting and absorbing the vibration during the rotating bending fatigue test with the bearing unit, it is possible to suppress the generated vibration, especially during the rotating bending fatigue test in the high rotation range, and to improve the fatigue test accuracy. Become.
 前記温度測定位置は、前記試験片の破断が予想される近傍の所定領域内に複数配設する、ことが好ましい。 It is preferable that a plurality of the temperature measurement positions are arranged in a predetermined region in the vicinity where the test piece is expected to break.
 この場合、試験片の径方向の温度勾配の影響を低減することができ、試験部内での温度計測点数を増やすことで形状変更による熱抵抗の変化の影響も低減することができる。 In this case, the influence of the temperature gradient in the radial direction of the test piece can be reduced, and the influence of the change in thermal resistance due to the shape change can be reduced by increasing the number of temperature measurement points in the test section.
 本発明では、回転曲げ疲労試験において回転負荷中の試験片の温度を直接モニタリングできるので、JIS規格に拘泥されず試験片それぞれに応じた所望の軸回転数での疲労試験評価を行うことができ、高精度かつ迅速に疲労試験結果を得ることができる。 In the present invention, since the temperature of the test piece under a rotational load can be directly monitored in the rotating bending fatigue test, it is possible to perform a fatigue test evaluation at a desired shaft rotational speed corresponding to each test piece without being bound by JIS standards. Fatigue test results can be obtained with high accuracy and speed.
 また、本発明では、高温又は低温環境下での回転曲げ疲労試験において回転負荷中で生じる試験片内の温度勾配をモニタリングすることで、高温又は低温環境を提供する装置を付加した場合にも、正しく試験片に対して前記装置が作用しているかを検証できることとなり、より高精度な疲労試験結果を提供することができる。 Further, in the present invention, by monitoring a temperature gradient in a test piece generated in a rotating load in a rotating bending fatigue test in a high temperature or low temperature environment, even when a device that provides a high temperature or low temperature environment is added, It is possible to verify whether the device is correctly acting on the test piece, and to provide a more accurate fatigue test result.
 また、試験片の内部の軸方向に3つ以上の温度測定点を設けることで、試験片の温度勾配(分布)を評価できる。したがって、高温/低温環境下での試験において試験部(切欠部)での温度制御のズレを計測することができ、試験部の位置で温度測定ができない場合でも温度を推定することができる。 Also, the temperature gradient (distribution) of the test piece can be evaluated by providing three or more temperature measurement points in the axial direction inside the test piece. Therefore, it is possible to measure the temperature control deviation in the test part (notch part) in the test under the high temperature / low temperature environment, and it is possible to estimate the temperature even when the temperature cannot be measured at the position of the test part.
本発明の回転曲げ疲労試験装置の要部の構成を示す概略図である。It is the schematic which shows the structure of the principal part of the rotation bending fatigue test apparatus of this invention. 荷重付加部の要部の構成を示す概略図である。It is the schematic which shows the structure of the principal part of a load addition part. 本発明の一実施形態に係る回転曲げ疲労試験装置及びその回転曲げ疲労試験に使用される試験片を例示する略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which illustrates the test piece used for the rotation bending fatigue test apparatus which concerns on one Embodiment of this invention, and its rotation bending fatigue test. 本回転曲げ疲労試験装置の熱電対により計測された試験片の温度計測結果のグラフ図である。It is a graph figure of the temperature measurement result of the test piece measured with the thermocouple of this rotation bending fatigue test apparatus. 軸回転速度と荷重(負荷)と試験片との温度との関係の模式図である。It is a schematic diagram of the relationship between a shaft rotational speed, a load (load), and the temperature of a test piece. 図3の試験片のY-Yの位置の略断面図である。FIG. 4 is a schematic cross-sectional view of the YY position of the test piece of FIG. 3. 四種類の温度環境下における各熱電対位置での試験時間と温度との関係を示すグラフ図である。It is a graph which shows the relationship between the test time and temperature in each thermocouple position in four types of temperature environments. 図3に示す試験片の変形例であり、試験片の内部の試験部(切欠部)と固定端側と自由端側との3箇所に熱電対を配置した概略図である。It is the modification of the test piece shown in FIG. 3, and is the schematic which has arrange | positioned the thermocouple in three places, the test part (notch part) inside a test piece, a fixed end side, and a free end side. 図3に示す試験片の他の変形例であり、試験片の内部の試験部(切欠部)の4箇所に熱電対を配置した概略図である。It is the other modification of the test piece shown in FIG. 3, and is the schematic which arrange | positioned the thermocouple in four places of the test part (notch part) inside a test piece. 図3に示す試験片の他の変形例であり、試験片の内部の試験部(切欠部)の中心以外に3箇所に熱電対を配置した概略図である。It is the other modification of the test piece shown in FIG. 3, and is the schematic which arrange | positioned the thermocouple in three places other than the center of the test part (notch part) inside a test piece. 図10の試験片の3箇所での計測温度から試験部の温度を推定したグラフ図である。It is the graph which estimated the temperature of the test part from the measured temperature in three places of the test piece of FIG. 図10に示す試験片の他の変形例を示す図である。It is a figure which shows the other modification of the test piece shown in FIG. 図12の試験片の3箇所での計測温度から試験部の温度を推定したグラフ図である。It is the graph which estimated the temperature of the test part from the measured temperature in three places of the test piece of FIG. 試験部において軸方向位置が異なるが表面から径方向の距離は同じである位置に熱電対を配設する例を示す図である。It is a figure which shows the example which arrange | positions a thermocouple in the position where the axial direction position differs in the test part, but the distance of radial direction from the surface is the same.
 まず、本発明の実施の形態を説明する前提として、本発明で用いる回転曲げ疲労試験装置の構造について図1~図3を参照して説明する。 First, as a premise for explaining the embodiment of the present invention, the structure of a rotating bending fatigue test apparatus used in the present invention will be described with reference to FIGS.
 本発明の回転曲げ疲労試験装置1の要部の構成を示す概略図である図1と、本発明の一実施形態に係る回転曲げ疲労試験装置1における、荷重付加部の要部の構成を示す概略図である図2と、本発明の一実施形態に係る回転曲げ疲労試験装置1、及び回転曲げ疲労試験1に使用される試験片12を例示する略図である図3と、を参照しながら詳細に説明する。 FIG. 1, which is a schematic diagram illustrating a configuration of a main part of a rotating bending fatigue test apparatus 1 according to the present invention, and a configuration of a main part of a load adding unit in the rotating bending fatigue test apparatus 1 according to an embodiment of the present invention. With reference to FIG. 2 which is a schematic diagram, and FIG. 3 which is a schematic diagram illustrating a test piece 12 used in the rotating bending fatigue test apparatus 1 and the rotating bending fatigue test 1 according to an embodiment of the present invention. This will be described in detail.
 図1に示すように、回転曲げ疲労試験装置1は少なくとも、試験片12を回転させるスピンドル(回転駆動手段)10と、その回転駆動手段10の回転主軸10aの一方の側に、回転主軸10aの後端で協動して軸回転するように回転主軸10aと同芯に固定される温度測定部14と、温度測定部14の後端で軸回転を滑り軸受するベアリングユニット16とを備えている。 As shown in FIG. 1, the rotary bending fatigue test apparatus 1 includes at least a spindle (rotation drive means) 10 for rotating a test piece 12 and a rotation spindle 10a on one side of the rotation spindle 10a. The temperature measuring unit 14 is fixed concentrically with the rotary main shaft 10a so as to rotate in cooperation with the rear end, and the bearing unit 16 slide-bears the shaft at the rear end of the temperature measuring unit 14. .
 また、図1の回転曲げ疲労試験装置1の回転駆動手段10は、回転主軸10aとその内部の貫通孔10bとで構成され、温度計測部14は、その前端の連結部14aが回転主軸10aの後端で貫通孔10bに挿入されて結合している。連結部14aは内部に熱電対20の一端が挿入されて本体部14b内の検出部に接続される。また、熱電対20は、連結部14aから突出して貫通孔10bを通過して先端が試験片12の所定位置まで到達する(試験片12内の位置決めについては後述)。 Moreover, the rotation drive means 10 of the rotating bending fatigue test apparatus 1 of FIG. 1 is comprised by the rotation main shaft 10a and the through-hole 10b in the inside, and the temperature measurement part 14 has the connection part 14a of the front end of the rotation main shaft 10a. At the rear end, it is inserted into the through hole 10b and joined. One end of the thermocouple 20 is inserted into the connecting portion 14a and connected to the detecting portion in the main body portion 14b. The thermocouple 20 protrudes from the connecting portion 14a, passes through the through hole 10b, and the tip reaches the predetermined position of the test piece 12 (positioning in the test piece 12 will be described later).
 また、温度計測部14の後端には本体部14bと協動して軸回転する後端部14cが連結される。したがって、回転主軸10aが軸回転すると後端部14cも軸回転し、回転曲げ疲労試験装置1の振動を吸収しつつ回転を軸受している。 Further, a rear end portion 14c that rotates in cooperation with the main body portion 14b is connected to the rear end of the temperature measurement unit 14. Therefore, when the rotation main shaft 10a rotates, the rear end portion 14c also rotates, and the rotation is supported while absorbing the vibration of the rotating bending fatigue test apparatus 1.
 次に、図1に示す本回転曲げ疲労試験装置1の前端における荷重付加部22の構成の要部概略図である図2を説明する。回転曲げ疲労試験装置1において、回転駆動手段10により回転可能な試験片12に荷重を付加する。この回転曲げ疲労試験装置1では、装着部10の回転主軸10aの先端(前端)を試験片12の固定端(後端)をチャック部18で把持し、試験片12の自由端としての他端には、荷重負荷部22が配設される。 Next, FIG. 2 which is a schematic diagram of a main part of the configuration of the load applying portion 22 at the front end of the rotary bending fatigue test apparatus 1 shown in FIG. 1 will be described. In the rotating bending fatigue test apparatus 1, a load is applied to the test piece 12 that can be rotated by the rotation driving means 10. In this rotating bending fatigue test apparatus 1, the front end (front end) of the rotating spindle 10 a of the mounting portion 10 is held by the chuck portion 18 at the fixed end (rear end) of the test piece 12, and the other end as the free end of the test piece 12. The load load part 22 is arrange | positioned.
 荷重付加部22は、回転駆動手段10により回転される試験片12の上記自由端としての試験片40の端部を、回転自在に連結するためのアダプタ22aと、試験片12に鉛直下方向の自重を作用させる錘としての加重部22cと、アダプタ22aと加重部22cとを連結するための吊下げ部22bと、で構成される。加重部22cは、試験片12の形状、評価条件によって荷重の付加設定を行う。 The load adding unit 22 includes an adapter 22a for rotatably connecting the end of the test piece 40 as the free end of the test piece 12 rotated by the rotation driving means 10, and a vertically downward direction to the test piece 12. It is comprised by the weight part 22c as a weight which makes self weight act, and the suspension part 22b for connecting the adapter 22a and the weight part 22c. The weighting unit 22c performs additional setting of the load depending on the shape of the test piece 12 and the evaluation conditions.
 図3には本回転曲げ疲労試験1で使用される試験片12を例示しており、(a)は試験片12全体の略正面図であり、(b)はその中心部近傍の拡大図である。なお、紙面右側が加重側(自由端側)であり、左側が回転主軸10a側(固定端側)である。試験片12は軸方向中央部X-X近傍領域を切欠いて径を小さくしているのは、き裂、破断を誘導するためであり(「切欠部」とも称する)、この切欠部は、前述する「試験片12の破断が予想される近傍の所定位置」である。試験片12は回転主軸10a側の端部から内部軸方向に孔24を有し、孔24の終端12aは、中心X-Xよりも回転主軸10a側所定距離に位置する。孔24には温度計測部14から突出した熱電対20が挿入され、その先端の計測部分が孔24の終端12aに位置決めされる。 FIG. 3 illustrates a test piece 12 used in the rotary bending fatigue test 1, (a) is a schematic front view of the entire test piece 12, and (b) is an enlarged view near the center. is there. The right side of the drawing is the load side (free end side), and the left side is the rotation main shaft 10a side (fixed end side). The test piece 12 is notched in the vicinity of the central portion XX in the axial direction so as to reduce the diameter in order to induce cracks and fractures (also referred to as “notched portion”). The “predetermined position in the vicinity where the test piece 12 is expected to break”. The test piece 12 has a hole 24 in the inner axial direction from the end on the rotating main shaft 10a side, and the terminal end 12a of the hole 24 is located at a predetermined distance on the rotating main shaft 10a side from the center XX. The thermocouple 20 protruding from the temperature measuring unit 14 is inserted into the hole 24, and the measurement portion at the tip thereof is positioned at the terminal end 12 a of the hole 24.
 以上のような回転曲げ疲労試験機1の熱電対20により計測された試験片12内の温度計測結果は以下のとおりである。試験片12としては、ステンレス鋼材の1つであるSUS304を使用し、負荷300MPaで試験した。また、試験は3つの軸回転数で行い、それぞれ(1)1,000rpmと、(2)3,000rpm、これまで規制されていた回転数以上の(3)5000rpm、(4)6000rpm、試験終了時間5,000s(=sec)で行った。 The temperature measurement result in the test piece 12 measured by the thermocouple 20 of the rotating bending fatigue testing machine 1 as described above is as follows. As the test piece 12, SUS304, which is one of stainless steel materials, was used and tested at a load of 300 MPa. In addition, the test is performed at three shaft rotation speeds, (1) 1,000 rpm, (2) 3,000 rpm, (3) 5000 rpm, (4) 6000 rpm, which are higher than the rotation speeds that have been regulated so far. The time was 5,000 s (= sec).
 その結果のグラフ図が図4に示されている。(1)~(4)ともに室温が約15℃~16℃で試験開始しており、概ね環境温度条件は同一と考えられる。また、(1)~(4)と回転数が増加するにつれ時間経過に応じた温度上昇が増加し、所定の温度で温度上昇が緩やかになる(上限温度に収束していく)様子がわかる。具体的には、(1)1,000rpmでは、温度上昇が非常に緩やかであり17℃までしか到達していないことがわかる。また、(2)3,000rpmでは、4,000(s)前後から18℃付近でほとんど温度上昇していないことがわかる。また、(3)5,000rpmでは、(1)、(2)よりも温度上昇勾配は増加しており20℃付近まで温度上昇していることがわかる。さらに、(4)6000rpmでは、(3)よりさらに温度上昇勾配が増加し、4,500(s)前後で22℃付近の温度上昇が非常に緩やか又は温度上限に近づいていることがわかる。なお、(1)~(4)の軸回転数ともに上限が約22℃以下であり、SUS材の疲労試験評価としては問題ないことがわかった。 The graph of the result is shown in FIG. In (1) to (4), the test started at room temperature of about 15 ° C to 16 ° C, and the environmental temperature conditions are considered to be almost the same. Further, it can be seen that (1) to (4), as the number of revolutions increases, the temperature rise with the passage of time increases, and the temperature rise becomes moderate (converges to the upper limit temperature) at a predetermined temperature. Specifically, (1) It can be seen that at 1,000 rpm, the temperature rise is very gradual and reaches only 17 ° C. In addition, (2) at 3,000 rpm, it can be seen that the temperature hardly increased at around 18 ° C. from around 4,000 (s). In addition, it can be seen that (3) at 5,000 rpm, the temperature increase gradient is higher than in (1) and (2), and the temperature is increased to around 20 ° C. Furthermore, it can be seen that (4) at 6000 rpm, the temperature rise gradient further increases from (3), and the temperature rise around 22 ° C. is very gradual or approaching the upper temperature limit at around 4,500 (s). It should be noted that the upper limit of the shaft rotational speeds of (1) to (4) is about 22 ° C. or less, and it was found that there is no problem in the fatigue test evaluation of SUS materials.
 したがって、この図4のグラフ図からSUS304材の場合、JIS規格の上限を超えた軸回転数6,000rpmであっても1,000rpm、3,000rpm、5,000rpm同様に、遜色のない疲労試験評価を行うことができることが検証された。 Therefore, in the case of SUS304 material from the graph of FIG. 4, even if the shaft rotation speed exceeds the upper limit of JIS standard, the fatigue test is inferior in the same manner as 1,000 rpm, 3,000 rpm, and 5,000 rpm. It was verified that the evaluation can be performed.
 上記図4の試験(負荷300MPa)の他に、同条件で3種類の負荷100Mpa、200MPa、600MPaについても検証した。図5では軸回転速度と荷重(負荷)と試験片12の最大温度との関係を図式化している。 In addition to the test shown in FIG. 4 (load 300 MPa), three types of loads 100 MPa, 200 MPa, and 600 MPa were verified under the same conditions. In FIG. 5, the relationship among the shaft rotation speed, the load (load), and the maximum temperature of the test piece 12 is schematically illustrated.
 図5から荷重(負荷)の増加に伴う試験片12の温度上昇は緩やかであると言える。一方、軸回転速度については、その増加とともに試験片12の最大温度が緩やかに上昇しているが、回転数が大きいほど最大温度の上昇率も大きい傾向が見られた。SUS304の場合、JIS規格の上限値である5,000rpmを超えると最大温度上昇率が大きくなっているが、図4での温度上昇の収束化と踏まえて判断すると6,000rpm程度の軸回転速度の場合は、問題がないこともわかる。 From FIG. 5, it can be said that the temperature rise of the test piece 12 accompanying the increase in load (load) is moderate. On the other hand, with respect to the shaft rotation speed, the maximum temperature of the test piece 12 gradually increased with the increase, but the increase rate of the maximum temperature tended to increase as the rotation speed increased. In the case of SUS304, the maximum temperature increase rate increases when it exceeds the JIS standard upper limit value of 5,000 rpm, but the shaft rotation speed of about 6,000 rpm is determined based on the convergence of the temperature increase in FIG. In the case of, it is understood that there is no problem.
 このように本回転曲げ疲労試験装置1により回転速度と負荷と温度変化と破断との関係を詳細に測定することができ、疲労試験評価の精度が向上する。また、この疲労試験の結果を実際の工具材料・形状・回転数等の選択、使用状況や履歴に応じた工具疲労寿命予測を適正に行うことへの応用展開が可能となる点も有利である。 Thus, the present rotational bending fatigue test apparatus 1 can measure in detail the relationship among the rotational speed, load, temperature change, and fracture, thereby improving the accuracy of fatigue test evaluation. In addition, it is advantageous that the results of this fatigue test can be applied to the selection of the actual tool material, shape, rotation speed, etc., and proper prediction of tool fatigue life according to the usage status and history. .
 次に、高温又は低温環境下での回転曲げ疲労試験における第二の本発明の回転曲げ疲労試験装置について説明する。なお、ここでは上述してきた第一の本発明の回転曲げ疲労試験装置1と同様の装置を使用するため装置全体の説明は省略するとともに、同一部材については同一参照番号を付することとする。 Next, a rotating bending fatigue test apparatus according to the second aspect of the present invention in a rotating bending fatigue test under a high temperature or low temperature environment will be described. In addition, since the apparatus similar to the rotating bending fatigue test apparatus 1 of 1st this invention mentioned above is used here, while the description of the whole apparatus is abbreviate | omitted, suppose that the same reference number is attached | subjected about the same member.
 図6は、図3の試験片12のY-Yの位置の略断面図が示されている。図2では熱電対20用の孔24が回転中央に1つ設けられていたが、この例では、熱電対20は複数、試験片12に配設している。具体的には、回転中心Cの位置の以外に、回転中心Cから径方向外側の位置に孔24cが配設され、熱電対20が位置決めされている。図6では、試験片12の外表面12b近傍の位置Aに孔24aが配設され、熱電対20が位置決めされる。さらに、回転中心Cと位置Aとの径方向中間位置Bに孔24bが配設され、熱電対20が位置決めされる。 FIG. 6 shows a schematic cross-sectional view of the YY position of the test piece 12 of FIG. In FIG. 2, one hole 24 for the thermocouple 20 is provided at the center of rotation, but in this example, a plurality of thermocouples 20 are arranged in the test piece 12. Specifically, in addition to the position of the rotation center C, a hole 24c is disposed at a position radially outward from the rotation center C, and the thermocouple 20 is positioned. In FIG. 6, a hole 24 a is disposed at a position A in the vicinity of the outer surface 12 b of the test piece 12, and the thermocouple 20 is positioned. Further, a hole 24b is disposed at a radial intermediate position B between the rotation center C and the position A, and the thermocouple 20 is positioned.
 図6では、回転中心Cに対して位置Aと位置Bとが反対側に示されているが、これは3つの孔24a~24cの加工精度上の相対的な位置を示しているものに過ぎず、回転中心Cと位置Aと位置Bとが同方向に配置されても良い。また、図6では位置Aと位置Bとの2つの位置に熱電対20が配設されているが、いずれか1つだけでも良く、さらに複数個追加されても良い。なお、熱電対20の熱計測位置となる孔24a~24cの軸方向終端位置は、図3の例と同様に試験片12の軸方向中心近傍(図3のX-X位置)から所定距離回転主軸10a側の位置に配置される。試験片12の破断、き裂やその位置での強度低下による疲労試験評価への影響を考慮しつつ、最も回転中の温度を容易に計測できる位置だからである。 In FIG. 6, the position A and the position B are shown on the opposite side with respect to the rotation center C, but this shows only the relative positions on the machining accuracy of the three holes 24a to 24c. Instead, the rotation center C, the position A, and the position B may be arranged in the same direction. In FIG. 6, the thermocouple 20 is disposed at two positions of the position A and the position B. However, only one of them may be provided, and a plurality of thermocouples may be added. The axial end positions of the holes 24a to 24c, which are the heat measurement positions of the thermocouple 20, are rotated by a predetermined distance from the vicinity of the axial center of the test piece 12 (XX position in FIG. 3) as in the example of FIG. It is arranged at a position on the main shaft 10a side. This is because the temperature during rotation is most easily measured while taking into consideration the influence on the fatigue test evaluation due to the breakage, cracks, and strength reduction at the position of the test piece 12.
 この試験片12での回転曲げ疲労試験では、試験片12内の表面から内部までの温度勾配がわかり、高温・低温環境を提供する装置を付加した場合での回転工具等の疲労評価を温度的に校正できるため、より高精度に行うことができる。以下、高温環境下で実際に行った回転曲げ疲労試験について説明する。 In this rotating bending fatigue test on the test piece 12, the temperature gradient from the surface to the inside of the test piece 12 is known, and the fatigue evaluation of a rotating tool or the like when a device providing a high temperature / low temperature environment is added is evaluated in terms of temperature. Therefore, it can be performed with higher accuracy. Hereinafter, the rotational bending fatigue test actually performed in a high temperature environment will be described.
 図7は、図6の位置で回転中に温度測定した結果のグラフ図である。試験片12としてはSUS304を用いて、軸回転数800rpmで回転させた。具体的温度データは下記表2に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
FIG. 7 is a graph showing the result of temperature measurement during rotation at the position of FIG. As the test piece 12, SUS304 was used and rotated at a shaft rotational speed of 800 rpm. Specific temperature data is as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
 図7、表2は、(1)~(4)の四種類の温度環境下における温度の各熱電対20の位置(図6のA、B、C参照)の試験時間(s)と温度とを示しており、Tmは試験片12の最高温度(℃)、ΔTは各熱電対20の位置(図6参照)の最高温度の差、ΔT/TmはΔTとTmとの比(%)を示している。(1)の環境温度条件では位置A~CはTm=95~96℃程度まで上昇し、位置A~Cの温度差ΔT=1℃、ΔTとTmとの比ΔT/Tm=1(%)となっている。(2)の環境温度条件では位置A~CはTm=391~399℃程度まで上昇し、位置A~Cの温度差ΔT=8℃、ΔTとTmとの比ΔT/Tm=2(%)となっている。(3)の環境温度条件では位置A~CはTm=538~549℃程度まで上昇し、位置A~Cの温度差ΔT=11℃、ΔTとTmとの比ΔT/Tm=2(%)となっている。さらに、(4)の環境温度条件では位置A~CはTm=777~793℃程度まで上昇し、位置A~Cの温度差ΔT=16℃、ΔTとTmとの比ΔT/Tm=2(%)となっている。この結果から、環境温度条件にかかわらずSUS304の試験片12では、位置A~Cともに同程度の温度、温度勾配を維持しつつ温度変化していることがわかる。 7 and Table 2 show the test time (s) and temperature of the position of each thermocouple 20 (see A, B, and C in FIG. 6) under the four types of temperature environments (1) to (4). Tm is the maximum temperature (° C.) of the test piece 12, ΔT is the difference in maximum temperature at the position of each thermocouple 20 (see FIG. 6), and ΔT / Tm is the ratio (%) between ΔT and Tm. Show. Under the environmental temperature condition (1), the positions A to C rise to about Tm = 95 to 96 ° C., the temperature difference between the positions A to C ΔT = 1 ° C., the ratio ΔT / Tm = 1 (%) between ΔT and Tm It has become. Under the environmental temperature condition (2), the positions A to C rise to about Tm = 391 to 399 ° C., the temperature difference ΔT = 8 ° C. between the positions A to C, and the ratio ΔT / Tm = 2 (%) between ΔT and Tm. It has become. Under the environmental temperature condition (3), the positions A to C rise to about Tm = 538 to 549 ° C., the temperature difference ΔT = 11 ° C. between the positions A to C, and the ratio ΔT / Tm = 2 (%) between ΔT and Tm. It has become. Further, under the environmental temperature condition (4), the positions A to C rise to about Tm = 777 to 793 ° C., the temperature difference ΔT = 16 ° C. between the positions A to C, and the ratio ΔT / Tm = 2 (ΔT / Tm = 2 ( %). From this result, it can be seen that, regardless of the environmental temperature condition, the test piece 12 of SUS304 changes in temperature while maintaining the same temperature and temperature gradient at the positions A to C.
 また、表3は試験片12としてS45Cを使用し、800rpmで軸回転させた結果が表1同様に示されている。表3では、(5)の環境温度条件では位置A~CはTm=255.5~259℃程度まで上昇し、位置A~Cの温度差ΔT=3.5℃、ΔTとTmとの比ΔT/Tm=1(%)となっている。(6)の環境温度条件では位置A~CはTm=490.5~499℃程度まで上昇し、位置A~Cの温度差ΔT=8.8℃、ΔTとTmとの比ΔT/Tm=1.6(%)となっている。(7)の環境温度条件では位置A~CはTm=612~624℃程度まで上昇し、位置A~Cの温度差ΔT=12℃、ΔTとTmとの比ΔT/Tm=2(%)となっている。
Figure JPOXMLDOC01-appb-T000002
Table 3 shows the results of using S45C as the test piece 12 and rotating the shaft at 800 rpm as in Table 1. In Table 3, in the environmental temperature condition (5), the positions A to C rise to about Tm = 255.5 to 259 ° C., and the temperature difference between the positions A to C ΔT = 3.5 ° C., the ratio between ΔT and Tm ΔT / Tm = 1 (%). Under the environmental temperature condition (6), the positions A to C rise to about Tm = 490.5 to 499 ° C., the temperature difference ΔT = 8.8 ° C. between the positions A to C, and the ratio ΔT / Tm = ΔT and Tm = 1.6 (%). Under the environmental temperature condition (7), the positions A to C rise to about Tm = 612 to 624 ° C., the temperature difference between the positions A to C ΔT = 12 ° C., the ratio ΔT / Tm = 2 (%) between ΔT and Tm It has become.
Figure JPOXMLDOC01-appb-T000002
 これらの結果から、概ね図7に示す鉄系材料の試験片12の場合には、試験片12の表面から内部までの温度勾配は小さく、通常の回転曲げ疲労試験のように雰囲気温度条件での試験結果と略同様の評価ができることがわかった。一方、他の形状、材質の試験片12では温度勾配が大きく疲労評価への影響が大きいこともあり、本回転曲げ疲労試験機の温度検証・校正機能を使用すれば高精度に疲労評価することができ、実際の回転工具等の冷却制御条件等に精緻に反映することが可能となる。 From these results, in the case of the iron-based material test piece 12 shown in FIG. 7, the temperature gradient from the surface to the inside of the test piece 12 is small, and the atmospheric temperature condition is the same as in the normal rotational bending fatigue test. It was found that the evaluation was almost the same as the test result. On the other hand, the test pieces 12 of other shapes and materials may have a large temperature gradient and have a large effect on fatigue evaluation. If the temperature verification / calibration function of this rotating bending fatigue tester is used, fatigue evaluation can be performed with high accuracy. Therefore, it is possible to accurately reflect the actual cooling tool cooling control conditions and the like.
 次に、本発明の回転曲げ疲労試験装置における熱電対20の位置についての他の例を説明する。なお、上述してきた本発明の回転曲げ疲労試験装置1と同一部材については同一参照番号を付することとする。 Next, another example of the position of the thermocouple 20 in the rotating bending fatigue test apparatus of the present invention will be described. The same reference numerals are assigned to the same members as those of the rotating bending fatigue testing apparatus 1 of the present invention described above.
 図8~図10、図12、図14は、図3に示す試験片12の変形例であり、図8~図10、図12の上図は試験片12内に熱電対20を位置決めするための孔を表示したものであり、下図は該孔を省略して熱電対20の位置を明確に示したものである。 8 to 10, 12, and 14 are modified examples of the test piece 12 shown in FIG. 3, and the upper diagrams of FIGS. 8 to 10 and 12 are for positioning the thermocouple 20 in the test piece 12. The following figure clearly shows the position of the thermocouple 20 with the holes omitted.
 図8の例では、試験片12の内部に熱電対20を3箇所配設している。まず、図3に示す熱電対20の位置Y-Y、すなわち試験片12の破断を予測する所定領域としての切欠部の所定位置(2)に、配設している。(2)の位置は、試験片12の軸方向中心位置X-Xに位置している。試験片12は、その固定端側(図8の左側)から軸方向に沿った孔124-2が設けられ、孔124-2の先端となる(2)の位置に熱電対を配設する。 In the example of FIG. 8, three thermocouples 20 are disposed inside the test piece 12. First, the thermocouple 20 is disposed at the position YY shown in FIG. 3, that is, at the predetermined position (2) of the notch as a predetermined area where the fracture of the test piece 12 is predicted. The position (2) is located at the axial center position XX of the test piece 12. The test piece 12 is provided with a hole 124-2 extending in the axial direction from the fixed end side (left side in FIG. 8), and a thermocouple is disposed at a position (2) which is the tip of the hole 124-2.
 また、(2)の位置から固定端側で切欠部を超えた(1)の位置にも熱電対20が配設している。試験片12は、その固定端側から軸方向に沿った孔124-1が設けられ、孔124-1の先端となる(1)の位置に熱電対を配設する。また、(2)の位置から自由端側で切欠部を超えた(3)の位置にも熱電対20が配設している。試験片12は、その固定端側から軸方向に沿った孔124-3が設けられ、切欠部を超えて孔124-1の先端となる(3)の位置に熱電対を配設する。 Also, the thermocouple 20 is arranged at the position (1) beyond the notch on the fixed end side from the position (2). The test piece 12 is provided with a hole 124-1 extending in the axial direction from the fixed end side, and a thermocouple is disposed at a position (1) which is the tip of the hole 124-1. Further, the thermocouple 20 is also disposed at the position (3) beyond the notch on the free end side from the position (2). The test piece 12 is provided with a hole 124-3 extending in the axial direction from the fixed end side, and a thermocouple is disposed at a position (3) that is beyond the notch and becomes the tip of the hole 124-1.
 このように(1)~(3)の位置で熱電対による温度測定をすることにより試験片12の軸方向の温度勾配(温度分布)を評価することができる。その結果、主な熱源を特定することができ、冷却を要する箇所を検出できる。例えば、自由端側(荷重側)が試験片12の温度上昇の主な原因であることを検出できる等の点で有利ある。この場合、冷却機構を荷重側に設置し、冷却効率を向上させ、温度上昇の試験部(切欠部)への影響を低減させる等の措置を講じることができる。 Thus, the temperature gradient (temperature distribution) in the axial direction of the test piece 12 can be evaluated by measuring the temperature with the thermocouple at the positions (1) to (3). As a result, a main heat source can be specified, and a portion requiring cooling can be detected. For example, it is advantageous in that it can be detected that the free end side (load side) is the main cause of the temperature rise of the test piece 12. In this case, it is possible to take measures such as installing a cooling mechanism on the load side, improving the cooling efficiency, and reducing the influence of the temperature rise on the test part (notch part).
 図9の例では、試験片12の内部に熱電対20を4箇所配設している。図9は右側に試験片12の側面視における位置(1)~(4)を示す図が示されている。試験片12の固定端側から順に3つの軸方向の孔224-1、孔224-2(孔224-4と共通)、孔224-3が設けられている。熱電対20はそれぞれ、孔224-1の先端の位置(1)、孔224-4と共通の孔224-2内で孔224-4の先端より手前の位置(2)、孔224-3の位置(3)、前記孔224-2と共通の孔224-4の先端の位置(4)に配設される。 In the example of FIG. 9, four thermocouples 20 are disposed inside the test piece 12. FIG. 9 is a diagram showing positions (1) to (4) in the side view of the test piece 12 on the right side. Three axial holes 224-1, 224-2 (common with the hole 224-4), and a hole 224-3 are provided in order from the fixed end side of the test piece 12. The thermocouple 20 has a position (1) at the tip of the hole 224-1, a position (2) in front of the tip of the hole 224-4 in the hole 224-2 common to the hole 224-4, and a hole 224-3. Position (3) is disposed at the position (4) at the tip of the hole 224-4 common to the hole 224-2.
 また、図9の右側図に示すように複数の熱電対20の位置は径方向一直線上に並べて配設する必要はなく、試験片12の表面からの距離を異であれば良い。この点は複数の熱電対20を配設する他の例(図8~図10、図12、図13参照)でも同様である。また、たとえば熱電対20を軸方向中心X-Xの位置に複数配設する場合であっても表面からの距離が異なり同一平面上であれば径方向同一線上に並べる必要はない。 Further, as shown in the right side view of FIG. 9, the positions of the plurality of thermocouples 20 do not need to be arranged on a straight line in the radial direction, and the distances from the surface of the test piece 12 may be different. This also applies to other examples in which a plurality of thermocouples 20 are disposed (see FIGS. 8 to 10, 12, and 13). Further, for example, even when a plurality of thermocouples 20 are arranged at the position of the axial center XX, if the distance from the surface is different and they are on the same plane, it is not necessary to arrange them on the same radial line.
 図9のように軸方向に異なる位置で温度測定した場合、中心X-Xでの温度測定をしなくても試験片12の温度勾配(分布)が評価できるため、高温/低温環境下での試験において試験部(切欠部)での温度制御のズレを計測することができる。なお、図9では試験部(切欠部)を長く設定し、その領域に温度測定位置(1)~(4)を設けているが、位置(1)~(4)が試験部を超えて配設されても良い(試験部の複数点での計測の効果は図14で後述する)。 When the temperature is measured at different positions in the axial direction as shown in FIG. 9, the temperature gradient (distribution) of the test piece 12 can be evaluated without measuring the temperature at the center XX. In the test, it is possible to measure the temperature control deviation in the test part (notch part). In FIG. 9, the test part (notch part) is set to be long and temperature measurement positions (1) to (4) are provided in the area, but the positions (1) to (4) are arranged beyond the test part. (The effect of measurement at a plurality of points in the test section will be described later with reference to FIG. 14).
 図10の例では、試験片12の内部に熱電対20を3箇所配設している。この例では試験片12の試験部の中心X-Xの位置(5)に熱電対20の設置が困難な場合、たとえば孔324-1((1)の位置)に水素を封入している場合等、試験部以外の3箇所に熱電対20を設置する。具体的には、試験片12の固定端側(図10の左側)から軸方向に沿って孔324-2、孔324-3、324-4が配設が設けられる。孔324-2の先端の位置(2)は、位置(5)より固定端側に、孔324-3の先端の位置(3)は、位置(2)と位置(5)の間に、孔324-4の先端の位置(4)は、位置(5)を超えて自由端側にあり、その位置(2)~(4)に熱電対20が配設される。 10, three thermocouples 20 are disposed inside the test piece 12. In this example, when it is difficult to install the thermocouple 20 at the position (5) of the center XX of the test part of the test piece 12, for example, when hydrogen is sealed in the hole 324-1 (position (1)) The thermocouple 20 is installed in three places other than the test part. Specifically, the holes 324-2, holes 324-3, and 324-4 are provided in the axial direction from the fixed end side (left side in FIG. 10) of the test piece 12. The position (2) of the tip of the hole 324-2 is on the fixed end side from the position (5), and the position (3) of the tip of the hole 324-3 is between the position (2) and the position (5). The position (4) of the tip of 324-4 is on the free end side beyond the position (5), and the thermocouple 20 is disposed at the positions (2) to (4).
 この例では、X-Xの近傍の位置(5)で温度測定できない場合であっても位置(2)~(4)の温度測定を行うことで、その結果に基づいて試験部の位置(5)の温度を推定することができる。 In this example, even if the temperature cannot be measured at the position (5) in the vicinity of XX, the temperature of the positions (2) to (4) is measured, and based on the result, the position of the test section (5 ) Temperature can be estimated.
 例えば、図11を参照する。図11は、図10の試験片12における位置(2)~(4)の3箇所での計測温度から位置(5)の温度を推定したグラフ図が示されている。まず、位置(2)~(4)それぞれの計測位置(固定端側からの距離(mm))と計測温度(℃)とから3点プロットする(黒四角印参照)。この3点から計測位置と計測温度との関係がグラフ化する。そして、グラフ図における位置(5)の計測位置(=50mm)の計測温度を検出する。この図からは位置(5)での計測温度は32℃であると推定される(黒丸印参照)。 For example, refer to FIG. FIG. 11 shows a graph in which the temperature at the position (5) is estimated from the measured temperatures at the three positions (2) to (4) in the test piece 12 of FIG. First, three points are plotted from each measurement position (distance (mm) from the fixed end side) and measurement temperature (° C.) at each of the positions (2) to (4) (see black square marks). The relationship between the measurement position and the measurement temperature is graphed from these three points. And the measurement temperature of the measurement position (= 50 mm) of the position (5) in a graph figure is detected. From this figure, it is estimated that the measured temperature at position (5) is 32 ° C. (see black circles).
 図12の例では、試験片12の固定端側(図中左側)の内部に熱電対20を3箇所配設している。この例も図10と同様に試験片12の試験部の中心X-Xの位置(5)に熱電対20の設置が困難な場合である。具体的には、試験片12の固定端側から順に軸方向に沿った孔424-4、孔424-2、424-3が配設が設けられ、それぞれの先端の位置(4)(2)(3)に熱電対20が配設される。 12, three thermocouples 20 are arranged inside the fixed end side (left side in the figure) of the test piece 12. This example is also the case where it is difficult to install the thermocouple 20 at the position (5) of the center XX of the test portion of the test piece 12 as in FIG. Specifically, holes 424-4, holes 424-2, and 424-3 along the axial direction are provided in order from the fixed end side of the test piece 12, and the positions (4) and (2) of the respective tips are provided. The thermocouple 20 is disposed in (3).
 この例における位置(5)の温度の推定について図13を参照して説明する。図13は、図12の試験片12における位置(2)~(4)3箇所での計測温度から位置(5)の温度を推定したグラフ図が示されている。まず、図11と同様に位置(2)~(4)それぞれの計測位置(mm)と計測温度(℃)とから3点プロットし(黒四角印参照)、プロットされた3点から計測位置と計測温度との関係をグラフ化する。そして、グラフ図における位置(5)の計測位置(=50mm)の計測温度を検出すると、位置(5)での計測温度が32℃であると推定される(黒丸印参照)。 The estimation of the temperature at position (5) in this example will be described with reference to FIG. FIG. 13 shows a graph in which the temperature at the position (5) is estimated from the measured temperatures at the three positions (2) to (4) in the test piece 12 of FIG. First, as in FIG. 11, three points are plotted from each of the measurement positions (mm) and measurement temperatures (° C.) of the positions (2) to (4) (see black square marks), and the measurement positions are calculated from the plotted three points. Graph the relationship with measured temperature. And if the measurement temperature of the measurement position (= 50 mm) of the position (5) in a graph figure is detected, it will be estimated that the measurement temperature in a position (5) is 32 degreeC (refer black circle mark).
 さらに、試験片12内に配設する熱電対20は上述してきたような固定側からの軸方向に沿って設けられた孔の先端位置でなくてもよく、図14に示すように表面から同じ深さのところに埋め込んでも良い。図14の例では、位置(1)~(6)の軸方向の位置は異なるが、表面から径方向の距離は同じである。したがって、径方向の温度勾配の影響を低減することができる。また、図14に示すように試験部(切欠部)内での温度計測点数(図では5点)を増やすことで形状変更による熱抵抗の変化の影響も低減することができる。 Further, the thermocouple 20 disposed in the test piece 12 does not have to be the tip position of the hole provided along the axial direction from the fixed side as described above, and is the same from the surface as shown in FIG. It may be embedded at a depth. In the example of FIG. 14, the positions in the axial direction of the positions (1) to (6) are different, but the distance in the radial direction from the surface is the same. Therefore, the influence of the temperature gradient in the radial direction can be reduced. Moreover, as shown in FIG. 14, the influence of the change in thermal resistance due to the shape change can be reduced by increasing the number of temperature measurement points (five points in the figure) in the test part (notch part).
 以上が本発明の実施形態について種々例示してきたが、本発明はこれに限定されるものではなく、例えば、工具破断現象の発生時を模擬した工具温度異常の再現実験装置といった、特許請求の範囲の記載および精神を逸脱しない範囲で他の実施形態が想定されることを当業者は容易に理解するであろう。 The above has exemplified various embodiments of the present invention. However, the present invention is not limited to this, and for example, a tool temperature abnormality reproduction experiment device that simulates the occurrence of a tool fracture phenomenon. Those skilled in the art will readily understand that other embodiments are envisaged without departing from the description and the spirit.
1  回転曲げ疲労試験機
10 装着部(スピンドル(回転駆動手段))
10a  回転主軸
10b  貫通孔
12 試験片
14 温度計測部
14a 連結部
14b 本体部
14c 後端部
16 ベアリングユニット
18 チャック部
20 熱電対
22 荷重付加部
22a 荷重付加部
22b 吊り下げ部
22c 加重部
1 Rotating bending fatigue tester 10 Mounting part (spindle (rotary drive means))
10a Rotating spindle 10b Through-hole 12 Test piece 14 Temperature measurement part 14a Connection part 14b Body part 14c Rear end part 16 Bearing unit 18 Chuck part 20 Thermocouple 22 Load application part 22a Load application part 22b Suspension part 22c Weighting part

Claims (15)

  1.  略円筒状の金属材料の試験片を固定端側で装着部に対して固定して軸回転させ、自由端側で鉛直下方に荷重を負荷して試験片の回転曲げ疲労強度を測定する疲労試験装置であって、
     前記装着部は、前記試験片および該装着部と協動して軸回転する温度計測手段を備え、該温度計測手段は先端が試験片の内部に位置決めされる熱電対を有し、該熱電対で検出された試験片内部の温度情報が送信手段より試験片の外部に伝達される、ことを特徴とする疲労試験装置。
    A fatigue test in which a test piece of a substantially cylindrical metal material is fixed to the mounting part on the fixed end side and rotated axially, and a load is applied vertically downward on the free end side to measure the rotational bending fatigue strength of the test piece. A device,
    The mounting portion includes the test piece and a temperature measuring means that rotates in cooperation with the mounting portion, and the temperature measuring means includes a thermocouple whose tip is positioned inside the test piece, and the thermocouple The fatigue test apparatus characterized in that the temperature information inside the test piece detected in step (b) is transmitted from the transmitting means to the outside of the test piece.
  2.  前記送信手段が、前記熱電対で検出された温度情報を疲労試験中に外部に送信する、ことを特徴とする請求項1に記載の疲労試験装置。 The fatigue test apparatus according to claim 1, wherein the transmission means transmits temperature information detected by the thermocouple to the outside during a fatigue test.
  3.  軸方向に沿って、前記試験片の固定端側にスピンドルとしての前記装着部と前記温度計測手段とが連結されており、
     前記試験片は、少なくとも破断が予想される近傍の所定領域まで固定端側から軸方向の中空孔が形成され、
     前記温度手段から試験片側に突出する熱電対の先端の温度計測部分が前記装着部の貫通孔を通過して前記試験片の中空孔の前記所定領域に位置決めされる、ことを特徴とする請求項1又は2に記載の疲労試験装置。
    Along the axial direction, the mounting portion as a spindle and the temperature measuring means are connected to the fixed end side of the test piece,
    The test piece is formed with an axial hollow hole from the fixed end side to at least a predetermined region in the vicinity where fracture is expected,
    The temperature measurement portion at the tip of a thermocouple protruding from the temperature means toward the test piece side passes through the through hole of the mounting portion and is positioned in the predetermined region of the hollow hole of the test piece. The fatigue test apparatus according to 1 or 2.
  4.  前記試験片は、少なくとも破断が予想される近傍の所定領域まで固定端側から軸方向の中空孔が複数形成され、
     複数の前記中空孔は、少なくとも、
     略中心軸線上の位置の中心孔と、該中心孔から径方向外側の位置の外側孔とを有する、ことを特徴とする請求項3に記載の疲労試験装置。
    The test piece is formed with a plurality of axial hollow holes from the fixed end side to at least a predetermined region in the vicinity where fracture is expected,
    The plurality of hollow holes are at least
    The fatigue test apparatus according to claim 3, comprising a center hole at a position substantially on the central axis, and an outer hole at a position radially outward from the center hole.
  5.  前記外側孔は、
     試験片の外周表面近傍の外周孔と、軸線中心から外周表面までの径方向中間であって前記中心孔に対して前記外周孔と径方向反対側の位置に形成された中間孔と、を含むことを特徴とする請求項4に記載の疲労試験装置。
    The outer hole is
    An outer peripheral hole in the vicinity of the outer peripheral surface of the test piece, and an intermediate hole formed in the radial direction from the center of the axis to the outer peripheral surface and at a position opposite to the outer peripheral hole in the radial direction with respect to the central hole. The fatigue test apparatus according to claim 4, wherein:
  6.  前記試験片の内部において試験中に破断が予想される近傍の所定領域であって該試験片の略中心軸線上の位置に前記熱電対を位置決めする、ことを特徴とする請求項1又は2に記載の温度測定方法。 The thermocouple is positioned at a position on a substantially central axis of the test piece in a predetermined region in the vicinity of the test piece where fracture is expected during the test. The temperature measuring method described.
  7.  前記熱電対の計測部を位置決めする位置は、少なくとも、
     略中心軸線上の中心位置と、該中心位置から径方向外側の外側位置とを有する、ことを特徴とする請求項6に記載の温度測定方法。
    The position for positioning the measurement part of the thermocouple is at least:
    The temperature measuring method according to claim 6, comprising a center position on a substantially central axis and an outer position radially outward from the center position.
  8.  前記外側位置は、
     試験片の外周表面近傍の外周位置と、軸線中心から外周表面までの径方向中間であって前記中心位置に対して前記外周位置と径方向反対側の位置孔と、を含むことを特徴とする請求項7に記載の温度測定方法。
    The outer position is
    An outer peripheral position in the vicinity of the outer peripheral surface of the test piece, and a position hole that is radially intermediate from the center of the axis to the outer peripheral surface and opposite to the outer peripheral position and the radial direction with respect to the central position. The temperature measuring method according to claim 7.
  9.  軸方向に沿って前記試験片の固定端側に、スピンドルとしての前記装着部と前記温度計測手段とが連結されており、
     前記試験片は内部に、それぞれ軸方向の深さが異なる3つ以上の温度測定位置に前記熱電対が配設される、ことを特徴とする請求項1又は2に記載の疲労試験装置。
    The mounting part as the spindle and the temperature measuring means are connected to the fixed end side of the test piece along the axial direction,
    3. The fatigue test apparatus according to claim 1, wherein the thermocouple is disposed inside the test piece at three or more temperature measurement positions having different axial depths. 4.
  10.  前記温度測定位置は、少なくとも、
     前記試験片の破断が予想される近傍の所定領域の第一所定位置と、該第一所定位置に対して前記試験片の固定側の第二所定位置と、前記第一所定位置に対して前記試験片の自由端側の第三所定位置と、
     を有する、ことを特徴とする請求項9に記載の疲労試験装置。
    The temperature measurement position is at least
    A first predetermined position in a predetermined region in the vicinity where the test piece is expected to break, a second predetermined position on a fixed side of the test piece with respect to the first predetermined position, and the first predetermined position with respect to the first predetermined position. A third predetermined position on the free end side of the test piece;
    The fatigue test apparatus according to claim 9, wherein
  11.  前記温度測定位置は、少なくとも、
     前記試験片の破断が予想される近傍の所定領域の第一所定位置と、該第一所定位置に対して前記試験片の固定側又は自由端側いずれか一方の第二所定位置及び第三所定位置と、
     を有する、ことを特徴とする請求項9に記載の疲労試験装置。
    The temperature measurement position is at least
    A first predetermined position in a predetermined region in the vicinity where the test piece is expected to break, and a second predetermined position and a third predetermined position on either the fixed side or the free end side of the test piece with respect to the first predetermined position; location and,
    The fatigue test apparatus according to claim 9, wherein
  12.  前記温度測定位置は、少なくとも、
     前記試験片の破断が予想される近傍の所定領域に対して前記試験片の固定側又は自由端側いずれか一方の第一所定位置及び第二所定位置と、前記第一所定位置及び第二所定位置に対して前記試験片の自由端側又は固定端側の他方の第三所定位置と、
     を有する、ことを特徴とする請求項9に記載の疲労試験装置。
    The temperature measurement position is at least
    The first predetermined position and the second predetermined position on either the fixed side or the free end side of the test piece, and the first predetermined position and the second predetermined position with respect to a predetermined region in the vicinity where the test piece is expected to break. The other third predetermined position on the free end side or fixed end side of the test piece with respect to the position;
    The fatigue test apparatus according to claim 9, wherein
  13.  前記温度測定位置は、少なくとも、
     前記試験片の破断が予想される近傍の所定領域に対して前記試験片の固定側又は自由端側いずれか一方の第一所定位置、第二所定位置及び第三所定位置、
     を有する、ことを特徴とする請求項9に記載の疲労試験装置。
    The temperature measurement position is at least
    The first predetermined position, the second predetermined position, and the third predetermined position on either the fixed side or the free end side of the test piece with respect to a predetermined area in the vicinity where the test piece is expected to break.
    The fatigue test apparatus according to claim 9, wherein
  14.  請求項1~13のいずれか1項に記載の疲労試験装置の試験片の固定端側の軸方向後端又は自由端側の軸受け方向前端は、
     軸回転を滑り軸受するベアリングユニットで支持されている、ことを特徴とする記載の疲労試験装置。
    The axial rear end on the fixed end side or the front end in the bearing direction on the free end side of the test piece of the fatigue test apparatus according to any one of claims 1 to 13,
    The fatigue test apparatus according to claim 1, wherein the fatigue test apparatus is supported by a bearing unit that slide-bears the shaft.
  15.  前記温度測定位置は、前記試験片の破断が予想される近傍の所定領域内に複数配設する、ことを特徴とする請求項3~14のいずれか1項に記載の疲労試験装置。
     
     
    The fatigue test apparatus according to any one of claims 3 to 14, wherein a plurality of the temperature measurement positions are arranged in a predetermined region in the vicinity where the test piece is expected to break.

PCT/JP2017/007238 2016-02-24 2017-02-24 Fatigue testing device WO2017146245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501819A JP6853464B2 (en) 2016-02-24 2017-02-24 Fatigue test equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-033359 2016-02-24
JP2016033359 2016-02-24

Publications (1)

Publication Number Publication Date
WO2017146245A1 true WO2017146245A1 (en) 2017-08-31

Family

ID=59686367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007238 WO2017146245A1 (en) 2016-02-24 2017-02-24 Fatigue testing device

Country Status (2)

Country Link
JP (1) JP6853464B2 (en)
WO (1) WO2017146245A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264567A (en) * 2022-01-05 2022-04-01 中国人民解放军陆军装甲兵学院 Test safety monitoring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183713A (en) * 1997-09-12 1999-03-26 Fuji Denpa Koki Kk Hot working representation test device
JP2012078106A (en) * 2010-09-30 2012-04-19 Yamamoto Kinzoku Seisakusho:Kk Corrosion fatigue testing instrument
JP2015014596A (en) * 2013-06-08 2015-01-22 株式会社山本金属製作所 Cantilever type rotary-bending fatigue testing apparatus under high temperature environment
WO2015022967A1 (en) * 2013-08-13 2015-02-19 株式会社山本金属製作所 Temperature measurement method, and temperature measurement device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266435A (en) * 1986-05-15 1987-11-19 Toray Ind Inc Detection for defect in strength of rotating member
JP2004309217A (en) * 2003-04-03 2004-11-04 Toshiba Corp Coating film fatigue test apparatus and coating film fatigue test method
JP4679493B2 (en) * 2006-11-21 2011-04-27 株式会社牧野フライス製作所 Machine tool spindle equipment
EP2297562A4 (en) * 2008-06-20 2013-12-11 Test Devices Inc Systems and methods for producing thermal mechanical fatigue on gas turbine rotors in a spin test environment
JP5503608B2 (en) * 2010-10-28 2014-05-28 株式会社神戸製鋼所 Fatigue fracture evaluation method for cylindrical metal materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183713A (en) * 1997-09-12 1999-03-26 Fuji Denpa Koki Kk Hot working representation test device
JP2012078106A (en) * 2010-09-30 2012-04-19 Yamamoto Kinzoku Seisakusho:Kk Corrosion fatigue testing instrument
JP2015014596A (en) * 2013-06-08 2015-01-22 株式会社山本金属製作所 Cantilever type rotary-bending fatigue testing apparatus under high temperature environment
WO2015022967A1 (en) * 2013-08-13 2015-02-19 株式会社山本金属製作所 Temperature measurement method, and temperature measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264567A (en) * 2022-01-05 2022-04-01 中国人民解放军陆军装甲兵学院 Test safety monitoring system
CN114264567B (en) * 2022-01-05 2024-03-08 中国人民解放军陆军装甲兵学院 Test safety monitoring system

Also Published As

Publication number Publication date
JPWO2017146245A1 (en) 2018-12-13
JP6853464B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
EP3450081B1 (en) Friction stir welding tool, a friction stir welding system and the usage thereof
Jun et al. Evaluation of a spindle-based force sensor for monitoring and fault diagnosis of machining operations
US20180264614A1 (en) Linear guiding device for a feed axis of a machine tool
WO2010044139A1 (en) Device for detecting defect of turbine rotor blade and method for detecting defect of turbine rotor blade
US4555955A (en) Combination loading transducer
US20110041625A1 (en) Torque measurement device and arrangement composed of a torque measurement device and a drive shaft
Tian-Shou et al. Development and use of a downhole system for measuring drilling engineering parameters
JP6950856B2 (en) Cutting tools, cutting systems, processing methods and processing programs
KR20150138444A (en) Controlling method torsion testing machine and torsion testing machine
WO2017146245A1 (en) Fatigue testing device
CN109396958A (en) In conjunction with lathe main shaft using geometry probe method and be configured to execute the method lathe
CN110887590B (en) High-speed bearing friction tester
JP7346085B2 (en) System and method for determining structural characteristics of machine tools
EP2447691B1 (en) Measuring device.
CN102607750B (en) Test-bed for friction torque of rolling bearing
CN108136558A (en) The control device of lathe
CA2732408C (en) Method for correcting slow roll by heating and quenching
KR101424772B1 (en) Abrasion Tester With Cooling Tip and Vibration Isolation Part and Method For The Same.
CN107290435A (en) A kind of elastic wave excitation device for live spindle crack detection
JP2018004290A (en) Thrust load measurement device
KR20170025829A (en) Thrust bearing, measuring instrument for friction loss using the same and measuring system for friction loss using the same
JP5543954B2 (en) Creep strain inspection method and inspection apparatus
CN213148307U (en) Bearing load test assembly
Jacobs et al. Measuring the rigid body behaviour of a deep groove ball bearing setup
JP5244883B2 (en) Sliding bearing test equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501819

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756679

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756679

Country of ref document: EP

Kind code of ref document: A1