JP2015014596A - Cantilever type rotary-bending fatigue testing apparatus under high temperature environment - Google Patents

Cantilever type rotary-bending fatigue testing apparatus under high temperature environment Download PDF

Info

Publication number
JP2015014596A
JP2015014596A JP2014118915A JP2014118915A JP2015014596A JP 2015014596 A JP2015014596 A JP 2015014596A JP 2014118915 A JP2014118915 A JP 2014118915A JP 2014118915 A JP2014118915 A JP 2014118915A JP 2015014596 A JP2015014596 A JP 2015014596A
Authority
JP
Japan
Prior art keywords
test piece
temperature
thermocouple
test
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014118915A
Other languages
Japanese (ja)
Inventor
憲吾 山本
Kengo Yamamoto
憲吾 山本
昭雄 國分
Akio Kokubu
昭雄 國分
英二 深田
Eiji Fukada
英二 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Kinzoku Seisakusho KK
Original Assignee
Yamamoto Kinzoku Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Kinzoku Seisakusho KK filed Critical Yamamoto Kinzoku Seisakusho KK
Priority to JP2014118915A priority Critical patent/JP2015014596A/en
Publication of JP2015014596A publication Critical patent/JP2015014596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature fatigue testing apparatus capable of performing a rotary bending fatigue test of a metal material test piece under a high temperature environment having no temperature unevenness while achieving downsizing of the apparatus.SOLUTION: The high-temperature fatigue testing apparatus and a high temperature furnace thereof comprise: a mounting member for fixing and supporting one end of a cylindrical test piece made of a metallic material by cooperating with the one end; and a load applying member for pulling the other end of the test piece downward in a vertical direction by using self weight and that measures the rotary bending fatigue strength of the test piece. The high-temperature fatigue testing apparatus includes a hollow high temperature furnace that is disposed around the axis of the test piece and controls the atmospheric temperature around the test piece. The high temperature furnace includes a heater that is disposed so as to surround the test piece and has a shape opening upward.

Description

本発明は、高温環境下で、円柱形状または、その一部に切欠きを有する金属材料試験片に、曲げ荷重を負荷しつつ回転させて、材料の疲労強度を評価するための、片持ち式回転曲げ高温環境下疲労試験機に関するものである。 The present invention is a cantilever type for evaluating the fatigue strength of a material by rotating a metal material test piece having a cylindrical shape or a notch in a part thereof under a high temperature environment while applying a bending load. The present invention relates to a fatigue testing machine under a rotating bending high temperature environment.

一般に、金属材料はその降伏強度以下の負荷応力であっても、繰り返し応力を負荷することによって疲労し、破壊に至ることが知られている。このような繰り返し応力による金属材料の疲労強度を試験する疲労試験の1つとして、円柱形状を有する試験片へ、一方向の曲げ荷重を加えながら回転させることにより、試験片表面に長手方向の引張りと圧縮の繰り返し荷重を与える試験があり、一般に片持ち式回転曲げ疲労試験と称される。 In general, it is known that even if a metal material has a load stress lower than its yield strength, fatigue is caused by repeatedly applying a stress, resulting in fracture. As one of fatigue tests for testing the fatigue strength of metal materials due to such repeated stresses, a test piece having a cylindrical shape is rotated while applying a bending load in one direction, whereby the test piece surface is pulled in the longitudinal direction. There is a test that gives a repeated load of compression and is generally called a cantilever rotary bending fatigue test.

ここで原子炉や自動車のエンジン周辺部品は、高温環境下で使用された場合通常環境よりも疲労強度が低下することが知られている。したがって、高温環境下で使用される部品等の金属材料は、特に高温環境下での疲労試験を行う必要がある。このため近年、試験片を両端で保持する所謂両持ち式で高温環境疲労試験装置が開発されているが、両持ち式の疲労試験装置の場合(例えば、特許文献1)、試験片を1本ずつしか試験できないため効率が悪かった。 Here, it is known that the peripheral strength of a nuclear reactor or an automobile engine has a lower fatigue strength than a normal environment when used in a high temperature environment. Therefore, a metal material such as a component used in a high temperature environment needs to be subjected to a fatigue test particularly in a high temperature environment. For this reason, in recent years, a so-called both-end-type high-temperature environmental fatigue test apparatus that holds a test piece at both ends has been developed. In the case of a double-end type fatigue test apparatus (for example, Patent Document 1), one test piece is used. The efficiency was poor because it could only be tested one by one.

したがって、近年、複数の試験片を同時に試験可能な片持ち式の疲労試験装置が開発された。片持ち式の疲労試験装置の場合、金属材料試験片の一端を把持・回転させつ、試験片の他端におもりを保持して金属材料の高温環境下疲労寿命を試験するものであり、この試験片を複数同時に試験することが可能である。すなわち、片持ち式疲労試験装置では小スペースで同時に複数の試験片の試験できる点で有利である。 Therefore, in recent years, a cantilever type fatigue test apparatus capable of simultaneously testing a plurality of test pieces has been developed. In the case of a cantilever type fatigue testing device, one end of a metal material test piece is held and rotated, and a weight is held at the other end of the test piece to test the fatigue life of the metal material in a high temperature environment. It is possible to test a plurality of test pieces simultaneously. That is, the cantilever type fatigue testing apparatus is advantageous in that a plurality of test pieces can be tested simultaneously in a small space.

しかしながら、特許文献1の疲労試験装置を高温環境下での疲労試験に利用する場合、試験片の雰囲気温度を高温に保持する炉が必要となり、複数同時に温度制御するための小型の高温炉が必要となる。一方、高温炉は一般的に炉内の温度ムラをなくすためにある程度の炉内スペースを確保すべきであり上記高温炉の小型化の要求と背反する。 However, when the fatigue test apparatus of Patent Document 1 is used for a fatigue test under a high temperature environment, a furnace for maintaining the atmosphere temperature of the test piece at a high temperature is required, and a plurality of small high temperature furnaces for simultaneously controlling the temperature are required. It becomes. On the other hand, in general, a high temperature furnace should secure a certain amount of space in the furnace in order to eliminate temperature unevenness in the furnace, which contradicts the demand for downsizing the high temperature furnace.

一方、特に試験片の内部温度条件を設定しその環境下で疲労試験を行う場合、試験片の表層温度を測定してもこれと試験片内部温度の差が大きい場合には、温度条件に基づく精緻な疲労試験を行うことができない。 On the other hand, when the internal temperature condition of the test piece is set and the fatigue test is performed in that environment, if the surface temperature of the test piece is measured and there is a large difference between this and the internal temperature of the test piece, it is based on the temperature condition. A precise fatigue test cannot be performed.

特開2012−078106号公報JP 2012-078106 A

以上の事情に鑑みて本発明は創作されたものであり、本発明の第一発明は、小型化を図りながらも試験片の雰囲気温度のムラがない高温環境下で金属材料試験片の回転曲げ疲労試験をなし得る高温疲労試験装置の提供を目的とした。 The present invention has been created in view of the above circumstances, and the first invention of the present invention is a rotating bending of a metal material test piece in a high-temperature environment where there is no variation in the ambient temperature of the test piece while achieving downsizing. An object of the present invention is to provide a high temperature fatigue test apparatus capable of performing a fatigue test.

また、本発明の第二発明は、第一発明と同じく小型化を図りながらも試験片の内部温度と温度を測定し得ることができ、高温環境下で金属材料試験片の回転曲げ疲労試験をなし得る高温疲労試験装置の提供を目的としている。 Further, the second invention of the present invention can measure the internal temperature and temperature of the test piece while reducing the size as in the first invention, and can perform the rotational bending fatigue test of the metal material test piece in a high temperature environment. The purpose is to provide a high-temperature fatigue testing apparatus that can be used.

第一の本発明は、円筒状の金属材料の試験片の一端を該一端と協動して軸回転自在に固定支持する装着部材と、前記試験片の他端を自重により鉛直下方に引っ張る荷重付加部材とを備える試験片の回転曲げ疲労強度を測定する高温疲労試験装置を提供する。
この高温疲労試験装置では、前記試験片の軸周りに配設され、該試験片の周囲の雰囲気温度を制御する中空の高温炉を備えている。この高温炉の中には、試験片の周囲を囲むように配設され、上方に開放する形状(代表的には上方に開放するU字形状)のヒータを有する。
A first aspect of the present invention is a mounting member for fixing and supporting one end of a cylindrical metal material test piece in a freely rotatable manner in cooperation with the one end, and a load for pulling the other end of the test piece vertically downward by its own weight. Provided is a high temperature fatigue test apparatus for measuring the rotational bending fatigue strength of a test piece including an additional member.
This high-temperature fatigue testing apparatus includes a hollow high-temperature furnace that is disposed around the axis of the test piece and controls the ambient temperature around the test piece. This high-temperature furnace has a heater that is arranged so as to surround the periphery of the test piece and that opens upward (typically a U-shape that opens upward).

第一の本発明は、高温環境下の金属材料試験片の回転曲げ疲労試験を所謂片持ち式で行う高温疲労試験装置である。本高温疲労試験装置は、片持ち式であり複数の試験片を同時に測定できるため省スペース化、効率化を図ることができる。 The first aspect of the present invention is a high temperature fatigue testing apparatus for performing a rotating bending fatigue test of a metal material test piece in a high temperature environment by a so-called cantilever type. Since this high temperature fatigue test apparatus is a cantilever type and can measure a plurality of test pieces at the same time, it can save space and increase efficiency.

また、本高温疲労試験装置の高温炉の場合、小型でありながら試験片周りの雰囲気温度をムラなく高温に保持することができる。これは高温炉のヒータを試験片の周囲を覆うU字形状やV字形状等の上部開放形状にすることで、熱の対流と相俟ってムラのない熱分布を形成することになるからである(詳細には後述)。 Further, in the case of the high temperature furnace of the present high temperature fatigue test apparatus, the ambient temperature around the test piece can be maintained at a high temperature without unevenness while being small in size. This is because the heater of the high-temperature furnace is formed into an open top shape such as a U-shape or a V-shape that covers the periphery of the test piece, thereby forming a uniform heat distribution in combination with heat convection. (Details will be described later).

前記試験片は、その一部の径が細くなるように周方向全体に亘って削られた切欠部を設け、該切欠部の近傍の雰囲気温度を測定する熱電対を配設し、
該熱電対の先端は試験片の外周面の上側と略同一高さに位置決めされ、
前記熱電対により測定された温度に基づいて前記ヒータを温度制御しても良い。
The test piece is provided with a notch that is cut over the entire circumferential direction so that the diameter of a part of the test piece is thin, and a thermocouple that measures the ambient temperature in the vicinity of the notch is provided.
The tip of the thermocouple is positioned at substantially the same height as the upper side of the outer peripheral surface of the test piece,
The heater may be temperature controlled based on the temperature measured by the thermocouple.

具体的に本高温疲労試験装置は、金属材料の試験片の真ん中近傍を削って径を細くすることでそこに曲げ応力を集中させる。そして、この応力集中部分に熱電対を近づけて位置決めすることで応力が作用する部分のみを迅速に測定し得る。 Specifically, this high-temperature fatigue test apparatus concentrates bending stress there by cutting the vicinity of the center of a metal material test piece to reduce the diameter. Then, by positioning the thermocouple close to the stress concentration portion, only the portion where the stress acts can be quickly measured.

また、熱電対の先端を試験片の外周面の上側と略同一高さに位置決めすると、
(1)熱電対の先端を試験片の外表面に当接させない限界の位置で、試験片を高温炉内に挿入・抜去させることができ、試験片の交換効率を高め、さらに高温炉ひいては本高温疲労試験装置の省スペース化を促進し得る。
When the tip of the thermocouple is positioned at substantially the same height as the upper side of the outer peripheral surface of the test piece,
(1) The test piece can be inserted into and removed from the high temperature furnace at the limit where the tip of the thermocouple does not contact the outer surface of the test piece. Space saving of the high temperature fatigue test apparatus can be promoted.

(2)また、熱電対は昇降させることも考えられるが、熱電対が高温炉から出た状態で炉内温度を上昇させてしまうような可能性もあり、安全面で好ましくない。このような問題は、熱電対を固定する場合にはなく安全上好ましい。また、熱電対を固定することは昇降機構搭載による本高温疲労試験装置の大型化も避けることができる。 (2) Although it is conceivable to move the thermocouple up and down, there is a possibility that the temperature inside the furnace rises while the thermocouple is out of the high temperature furnace, which is not preferable in terms of safety. Such a problem is preferable in terms of safety, not in the case of fixing a thermocouple. In addition, fixing the thermocouple can avoid an increase in the size of the high-temperature fatigue test apparatus by mounting the lifting mechanism.

また、第一の本発明は、一端を把持して中心軸で回転させつつ他端に曲げ荷重を負荷する円筒状の試験片の高温環境下疲労寿命を試験する装置において試験片周りの雰囲気温度を高温に保持するために配設される高温炉をも提供する。
この高温炉は、前記試験片の軸周りに配設され、該試験片の周囲の雰囲気温度を制御する中空の箱状部を備えている。また、箱状部の中には、試験片の周囲を囲むように配設され、上方に開放する形状(代表的にはU字形状)を有する。
The first aspect of the present invention is an apparatus for testing a fatigue life under a high temperature environment of a cylindrical test piece that grips one end and rotates a central axis while applying a bending load to the other end. There is also provided a high temperature furnace arranged to keep the temperature at a high temperature.
The high-temperature furnace includes a hollow box-shaped portion that is disposed around the axis of the test piece and controls the ambient temperature around the test piece. Further, the box-like portion has a shape (typically a U-shape) that is disposed so as to surround the periphery of the test piece and opens upward.

本高温炉は、上記第一の本発明の高温疲労試験装置等の試験片の環境雰囲気温度を制御する高温炉である。上述してきたように本高温炉は、U字形状等であり、小型でありながら温度ムラのない高温環境雰囲気を保持することができる。 This high-temperature furnace is a high-temperature furnace that controls the ambient atmosphere temperature of a test piece such as the high-temperature fatigue test apparatus according to the first aspect of the present invention. As described above, the present high-temperature furnace has a U-shape or the like, and can maintain a high-temperature environment atmosphere without temperature unevenness even though it is small.

第二の本発明は、円筒状の金属材料の試験片の一端を該一端と協動して軸回転自在に固定支持する装着部材と、前記試験片の他端を自重により鉛直下方に引っ張る荷重付加部材とを備える試験片の回転曲げ疲労強度を測定する高温疲労試験装置であって、前記試験片の回転曲げ疲労強度を測定する領域の該試験片の外表面を照射し得る位置にハロゲンランプを配設している。 The second aspect of the present invention is a mounting member for fixing and supporting one end of a cylindrical metal material test piece in a freely rotatable manner in cooperation with the one end, and a load for pulling the other end of the test piece vertically downward by its own weight. A high-temperature fatigue testing apparatus for measuring the rotational bending fatigue strength of a test piece comprising an additional member, wherein the halogen lamp is positioned at a position where the outer surface of the test piece can be irradiated in a region for measuring the rotational bending fatigue strength of the test piece. Is arranged.

第二の本発明も第一の本発明と同様に、高温環境下の金属材料試験片の回転曲げ疲労試験を所謂片持ち式で行う高温疲労試験装置である。本高温疲労試験装置は、片持ち式であり複数の試験片を同時に測定できるため省スペース化、効率化を図ることができる。 Similarly to the first invention, the second invention is a high temperature fatigue testing apparatus for performing a rotating bending fatigue test of a metal material test piece in a high temperature environment in a so-called cantilever type. Since this high temperature fatigue test apparatus is a cantilever type and can measure a plurality of test pieces at the same time, it can save space and increase efficiency.

また、本高温疲労試験装置の場合、ハロゲンランプで直接試験片を照射して加熱しているが、ハロゲンランプからの照射光のエネルギーは試験片に吸収され、その分子運動を増幅させることで温度上昇される。したがって、熱伝導率が小さい材質の試験片であっても表層の温度と内部の温度との差が軽減され、試験片内の温度のムラを小さくした状態で疲労試験を行うことができる。 In the case of this high-temperature fatigue test apparatus, the test piece is directly irradiated with a halogen lamp and heated, but the energy of the irradiation light from the halogen lamp is absorbed by the test piece and the molecular motion is amplified to increase the temperature. Be raised. Therefore, even if the test piece is made of a material having a low thermal conductivity, the difference between the temperature of the surface layer and the internal temperature is reduced, and the fatigue test can be performed with the temperature unevenness in the test piece being reduced.

また、本高温疲労試験装置は、試験片の軸周りに配設され、該試験片の周囲の雰囲気温度の低下を低減する中空の高温炉を備えるものであっても良い。 The high-temperature fatigue test apparatus may be provided with a hollow high-temperature furnace that is disposed around the axis of the test piece and reduces a decrease in the ambient temperature around the test piece.

第二の本発明の高温疲労試験装置でも上記第一発明の高温疲労試験装置と同様に試験片の周囲を囲む高温炉を設けた場合の方が雰囲気温度が上昇し、試験片内部の放熱が少なく、より試験片内部の温度ムラを低減することができる。また、高温雰囲気を外部放出を低減できるので、各高温炉ごとに試験することができ、小スペースで複数の試験片を同時に測定することができる。 Similarly to the high temperature fatigue test apparatus of the first invention, the atmosphere temperature rises when the high temperature furnace surrounding the test piece is provided in the high temperature fatigue test apparatus of the second aspect of the invention, and the heat radiation inside the test piece is increased. The temperature unevenness inside the test piece can be further reduced. Moreover, since external discharge | release can be reduced in a high temperature atmosphere, it can test for each high temperature furnace, and can measure a several test piece simultaneously in a small space.

また、本高温疲労試験装置は、ハロゲンランプから試験片に照射された光を試験片方向に反射する反射手段を配設しても良い。 Further, the high temperature fatigue test apparatus may be provided with a reflecting means for reflecting the light irradiated to the test piece from the halogen lamp in the direction of the test piece.

ハロゲンランプからの照射光の光エネルギーは試験片を透過するものもあり、また照射光は拡散するため試験片に照射されずにそのまま試験片の後方に到達するものもある。これら試験片の温度上昇に寄与しなかった光を反射光で試験片に再度戻してやって試験片への照射増強することができる。したがって、ハロゲンランプの光力が小さくても効率よく試験片を温度上昇させることができる。その結果、省電力かつ小スペースの装置を構成することができる。 Some of the light energy of the irradiation light from the halogen lamp passes through the test piece, and some of the irradiation light diffuses and reaches the rear of the test piece as it is without being irradiated to the test piece. The light that has not contributed to the temperature rise of the test piece can be returned to the test piece again by reflected light to enhance the irradiation of the test piece. Therefore, even when the light power of the halogen lamp is small, the temperature of the test piece can be increased efficiently. As a result, a power saving and small space device can be configured.

また、本高温疲労試験装置は、試験片の周辺の温度を測定する熱電対を備え、
予め測定された該試験片と同材質の試験片の周辺の温度に対する該試験片の内部温度との関係に基づいて、前記熱電対の測定温度から試験片の内部温度を測定することもできる。
The high-temperature fatigue testing apparatus is equipped with a thermocouple that measures the temperature around the test piece,
The internal temperature of the test piece can also be measured from the measured temperature of the thermocouple based on the relationship between the test piece and the internal temperature of the test piece with respect to the temperature around the test piece of the same material.

予め所定材料の試験片にハロゲンランプからの光を照射し、試験片の周囲の温度と試験片の内部の温度とを複数測定することで、本高温疲労装置における所定材料の試験片の表層温度と内部温度との相関を分析しておく。そして、実際の試験の際に試験片の周囲の温度から試験片内部の温度も推定して疲労試験を行うことができる。
なお、温度を測定する熱電対は、測定領域近傍までの中空穴を試験片の軸方向に配設し、この中空穴に位置する。
また、熱電対の代わりに放射温度計をしようするのも有効である。
The surface temperature of the test piece of the predetermined material in this high temperature fatigue apparatus is obtained by irradiating the test piece of the predetermined material with light from a halogen lamp in advance and measuring a plurality of temperatures around the test piece and the temperature inside the test piece. The correlation between the temperature and the internal temperature is analyzed. In the actual test, the fatigue test can be performed by estimating the temperature inside the test piece from the temperature around the test piece.
In addition, the thermocouple which measures temperature arrange | positions the hollow hole to the measurement region vicinity in the axial direction of a test piece, and is located in this hollow hole.
It is also effective to use a radiation thermometer instead of a thermocouple.

さらに、本高温疲労試験装置は、前記試験片の回転曲げ疲労強度を測定する領域表面に黒色耐熱塗料を塗布しても良い。 Furthermore, this high temperature fatigue test apparatus may apply a black heat-resistant paint to the surface of the region where the rotational bending fatigue strength of the test piece is measured.

試験片の温度測定領域を黒色にすると照射光エネルギーの熱吸率が増加し、温度上昇させやすくなる。 When the temperature measurement region of the test piece is black, the heat absorption rate of the irradiation light energy increases, and it becomes easy to raise the temperature.

第一の本発明で提案する高温疲労試験装置等によれば、小型化を図りながらもムラのない高温環境雰囲気下で金属材料試験片の回転曲げ疲労試験を行うことができ、とりわけ原子炉や橋梁、自動車エンジン周辺部品のように少なくとも表層を高温外気にさらされている状態の金属疲労強度を効率よく調査することが可能となる。 According to the high-temperature fatigue test apparatus proposed in the first aspect of the present invention, it is possible to perform a rotating bending fatigue test of a metal material test piece in a high-temperature environment atmosphere that is uniform while achieving downsizing. It is possible to efficiently investigate the metal fatigue strength in the state where at least the surface layer is exposed to high temperature outside air, such as a bridge and an automobile engine peripheral part.

また、第二の本発明で提案する高温疲労試験装置等によれば、第一の本発明と同様に小型化を図りながらも、金属材料の表層と内部との温度変化が少ない条件下まで含めた高温環境下で金属材料試験片の回転曲げ疲労試験を効率よく適正に行うことが可能となる。 In addition, according to the high temperature fatigue test apparatus proposed in the second invention, it is possible to include a condition in which the temperature change between the surface layer and the inside of the metal material is small while reducing the size as in the first invention. Therefore, it is possible to efficiently and appropriately perform a rotating bending fatigue test of a metal material test piece in a high temperature environment.

本発明の片持ち式の高温疲労試験装置の概観斜視図を示している。1 shows a perspective overview of a cantilevered high temperature fatigue testing apparatus of the present invention. 図1の高温疲労試験装置の駆動部を抽出した図である。It is the figure which extracted the drive part of the high temperature fatigue test apparatus of FIG. 図1の疲労試験装置の試験片3近傍を拡大した図2と同視点の図である。FIG. 3 is an enlarged view of the vicinity of the test piece 3 of the fatigue test apparatus of FIG. 図1〜図3の疲労試験装置に高温炉を設置した状態を示した試験片近傍の拡大図である。It is the enlarged view of the test piece vicinity which showed the state which installed the high temperature furnace in the fatigue test apparatus of FIGS. 第二の本発明の本高温疲労試験装置の高温炉をスケルトン表示し、チャンバー内部の試験片とヒータと熱電対との位置関係を示す斜視図である。It is a perspective view which shows the positional relationship of the test piece inside a chamber, a heater, and a thermocouple by displaying the high temperature furnace of this high temperature fatigue test apparatus of 2nd this invention as a skeleton. (a)は、熱電対の先端と試験片との位置関係を示しており、(b)は試験片の表面から3mmの位置に配設された熱電対で測定される温度と、実際の試験片の表面温度と、の関係について異なる金属材料で測定した結果のグラフ図である。(A) shows the positional relationship between the tip of the thermocouple and the test piece, and (b) shows the temperature measured by the thermocouple placed 3 mm from the surface of the test piece and the actual test. It is a graph figure of the result measured with a different metal material about the relationship between the surface temperature of a piece. 図2〜図4に示すU字形状のヒータと試験片の位置関係を示している。The positional relationship of the U-shaped heater shown in FIGS. 2-4 and a test piece is shown. ヒータの設定温度600℃の場合のチャンバー内の温度分布を(a)〜(c)の順に試験片3の回転数0rpm、3000rpm、5000rpmの場合にわけて示したものである。The temperature distribution in the chamber in the case where the heater set temperature is 600 ° C. is shown in the order of (a) to (c) when the rotation speed of the test piece 3 is 0 rpm, 3000 rpm, and 5000 rpm. (a)は試験片を2本のヒータで幅方向に挟んで上下方向並列に配設した様子を示す断面写真であり、(b)は試験片を2本のヒータで上下方向に挟んで横方向並列に配設した様子を示す断面写真であり、図9(c)は試験片を2本のヒータで幅方向に挟んで下方向に接近するV字形状に配設した様子を示す断面写真である。(A) is a cross-sectional photograph showing a state in which a test piece is sandwiched between two heaters in the width direction and arranged in parallel in the vertical direction, and (b) is a side view with the test piece sandwiched in the vertical direction between two heaters. 9C is a cross-sectional photograph showing a state in which the test pieces are arranged in parallel, and FIG. 9C is a cross-sectional photograph showing a state in which the test pieces are arranged in a V shape approaching in the downward direction with two heaters sandwiched in the width direction. It is. 図9(a)のヒータの設定温度400℃の場合のチャンバー内の温度分布を試験片の回転数(a)0rpm、(b)3150rpmの場合にわけて示したものである。FIG. 9A shows the temperature distribution in the chamber when the heater set temperature is 400 ° C., divided into the case where the number of revolutions of the test piece is (a) 0 rpm and (b) 3150 rpm. 図9(b)のヒータの設定温度400℃の場合のチャンバー内の温度分布を試験片の回転数(a)0rpm、(b)3150rpmの場合にわけて示したものである。FIG. 9B shows the temperature distribution in the chamber when the heater set temperature of 400 ° C. is divided into the case where the rotation speed of the test piece is (a) 0 rpm and (b) 3150 rpm. 図9(c)のヒータの設定温度400℃の場合のチャンバー内の温度分布を試験片の回転数(a)0rpm、(b)3150rpmの場合にわけて示したものである。The temperature distribution in the chamber when the heater set temperature of 400 ° C. in FIG. 9C is shown separately for the case where the number of revolutions of the test piece is (a) 0 rpm and (b) 3150 rpm. 第二の本発明の本高温疲労試験装置をスケルトン表示している。The high temperature fatigue test apparatus of the second aspect of the present invention is displayed in a skeleton. 図13に示す本高温疲労試験装置においてハロゲンランプが装着された実験室レベルの構成を示されており、(a)は高温炉で試験片等の周囲を覆った状態を示し、(b)は(a)の高温炉の内部の様子を示しているFIG. 13 shows a laboratory-level configuration in which a halogen lamp is mounted in the high-temperature fatigue test apparatus shown in FIG. 13, (a) shows a state where the periphery of a test piece or the like is covered with a high-temperature furnace, and (b) shows (A) shows the inside of the high-temperature furnace (a)にハロゲンランプと試験片との位置および照射光の焦点の関係の模式図を示しており、(b)に実際に放射温度センサで温度測定している様子を示している。(A) shows a schematic diagram of the relationship between the position of the halogen lamp and the test piece and the focal point of the irradiation light, and (b) shows a state in which the temperature is actually measured by the radiation temperature sensor. 第一熱電対の先端と試験片との上下方向の位置関係、および第二熱電対の先端と試験片3との横方向の位置関係を模式的に示している。The positional relationship of the up-down direction of the front-end | tip of a 1st thermocouple and a test piece, and the horizontal positional relationship of the front-end | tip of a 2nd thermocouple and the test piece 3 are shown typically. 放射温度計で測定した場合の試験片の各位置の温度を示したグラフ図であり、(a)〜(c)に向かって1回目〜3回目の測定結果を示している。It is the graph which showed the temperature of each position of the test piece at the time of measuring with a radiation thermometer, and has shown the 1st-3rd measurement result toward (a)-(c). 高温疲労試験装置ごとの熱電対の温度と試験片内部温度との相関を検証するための装置構成の一例である。It is an example of the apparatus structure for verifying the correlation with the temperature of the thermocouple for every high temperature fatigue test apparatus, and test piece internal temperature. 図18の装置で測定した結果に基づく第一熱電対と試験片内部温度の相関関係を示すグラフ図である。It is a graph which shows the correlation of the 1st thermocouple and test piece internal temperature based on the result measured with the apparatus of FIG.

以下、本発明(第一の発明および第二の発明)の実施の形態について図面を参照しながら説明する。
図1は本発明の片持ち式の高温疲労試験装置の代表的な一例としての高温疲労試験装置10の概観斜視図を示しており、図2はその駆動部を抽出した図である。この高温疲労試験装置10は、所謂、片持ち式の回転曲げ疲労試験装置のうち試験片を高温環境下で測定するものである。具体的な構成としては、回転を発生する駆動部1と、試験片回転数をカウント、駆動部1の電気制御を行う制御部4を有している。駆動部1について詳細に説明すれば駆動部1は、回転数の回転(1000〜5000回/分)であり、駆動部伝達ベルト6で金属材料の試験片3を把持する両端の装着部2と同軸になっている装着部軸2aを回転させる。このように固定端としての試験片3の一端は回転伝達機能を持っており、一方、自由端としての試験片3の他端は荷重付加部5で把持する構造となっている。
Hereinafter, embodiments of the present invention (first and second inventions) will be described with reference to the drawings.
FIG. 1 is a schematic perspective view of a high temperature fatigue test apparatus 10 as a typical example of the cantilever type high temperature fatigue test apparatus of the present invention, and FIG. This high-temperature fatigue test apparatus 10 measures a test piece in a so-called cantilever type rotating bending fatigue test apparatus in a high-temperature environment. As a specific configuration, there is a drive unit 1 that generates rotation and a control unit 4 that counts the number of rotations of the test piece and performs electrical control of the drive unit 1. The drive unit 1 will be described in detail. The drive unit 1 is rotated at a rotational speed (1000 to 5000 times / minute), and the mounting unit 2 at both ends for holding the test piece 3 of the metal material by the drive unit transmission belt 6; The mounting shaft 2a that is coaxial is rotated. In this way, one end of the test piece 3 as a fixed end has a rotation transmission function, while the other end of the test piece 3 as a free end is held by the load applying portion 5.

荷重付加部5は、上記自由端としての試験片3の他端と連結するためのアダプタ5aと、試験片3に鉛直下方向の自重を作用させる錘としての加重部5cと、試験片3と加重部5cを連結するための吊り下げ部5bからなっている。荷重部5cは試験片3の形状、評価条件によって0.5Kgから20Kgまでの付加設定をおこなう。アダプタ5aと荷重部5cを連結するため多くの場合弾性体である引張ばね5bを使うが針金等の剛性のあるものを使用しても良い。 The load applying part 5 includes an adapter 5a for connecting to the other end of the test piece 3 as the free end, a weighting part 5c as a weight for causing the test piece 3 to exert its own weight in the vertically downward direction, and the test piece 3 It consists of a hanging part 5b for connecting the weight part 5c. The load part 5c performs additional setting from 0.5 kg to 20 kg depending on the shape of the test piece 3 and the evaluation conditions. In many cases, the tension spring 5b, which is an elastic body, is used to connect the adapter 5a and the load portion 5c, but a rigid one such as a wire may be used.

このように図1〜図2の高温疲労試験装置10では、装着軸部2aの両先端の装着部2でそれぞれ試験片3を回転させながら片持ち状態で把持し、装着部2と逆の試験片端部に荷重を作用させており、片持ち式なので試験片3を同時に両側2つ測定することができる。図1の高温疲労試験装置10の場合、同時に試験片3を4つ測定することができる。 As described above, in the high-temperature fatigue testing apparatus 10 shown in FIGS. 1 to 2, the test piece 3 is held in a cantilevered state while rotating at the mounting portions 2 at both ends of the mounting shaft 2 a, and the test opposite to the mounting portion 2 is performed. A load is applied to one end, and since it is a cantilever type, two test pieces 3 can be measured simultaneously on both sides. In the case of the high temperature fatigue test apparatus 10 of FIG. 1, four test pieces 3 can be measured simultaneously.

ここで図3を参照しつつ再び本高温疲労試験装置10における機能について説明する。図3は図1の疲労試験装置10の試験片3近傍を拡大した図2と同視点の図である。試験片3はその一端(紙面右端)を軸周りに回転駆動する装着部2によって把持・回転させる(矢印X参照)。また、試験片3の他端(紙面左端)に荷重付加部5により下方荷重を作用させる(矢印Y参照)。このように試験片3を回転させながら一定方向(ここでは下方)に荷重をかけ続けることで、試験片3の上部(紙面上側)に引っ張り荷重、下部(紙面下側)に圧縮荷重をかける続け、破断時間等の測定を行っている。試験片3は回転しているので、この負荷がサインカーブを描きながら繰り返されることが特徴である。 Here, the function in the high temperature fatigue test apparatus 10 will be described again with reference to FIG. 3 is an enlarged view of the vicinity of the test piece 3 of the fatigue test apparatus 10 of FIG. The test piece 3 is gripped and rotated by the mounting portion 2 that rotationally drives one end (right end of the paper) around the axis (see arrow X). Further, a downward load is applied to the other end (left end of the paper) of the test piece 3 by the load applying portion 5 (see arrow Y). By continuously applying a load in a certain direction (here downward) while rotating the test piece 3 in this way, a tensile load is continuously applied to the upper part (upper side of the paper) and a compressive load is applied to the lower part (lower side of the paper). Measurement of break time and the like is performed. Since the test piece 3 is rotating, the load is repeated while drawing a sine curve.

とりわけ、本発明では試験片3を高温雰囲気下で又は試験片3を高温にして荷重をかけて測定する高温疲労試験装置として使用する場合に注目しており、実際には試験片3の周囲を覆う高温炉が配設される。高温炉を配設した状態を示したものが図4又は図13に参照される。なお、図1〜図2では荷重付加部5の吊り下げ部5bを一体の棒状部材のように図示しているが実際には図3のごとくバネ部5b1とこれと連結する棒部5b2で構成されており、バネ部5b1で荷重部5cの振動を吸収している。 In particular, in the present invention, attention is paid to the case where the test piece 3 is used as a high-temperature fatigue test apparatus in which a test piece 3 is measured in a high-temperature atmosphere or under a load with the test piece 3 heated to a high temperature. An overlying high temperature furnace is provided. The thing which showed the state which has arrange | positioned the high temperature furnace is referred to FIG. 4 or FIG. 1 and 2, the hanging portion 5b of the load adding portion 5 is illustrated as an integral rod-like member, but actually includes a spring portion 5b1 and a rod portion 5b2 connected thereto as shown in FIG. The vibration of the load portion 5c is absorbed by the spring portion 5b1.

《第一の発明の実施形態》
図4は、第一の本発明の実施形態を例示しており、図1〜図3に示す片持ち式の回転曲げ疲労試験装置10において試験片3の周囲雰囲気温度を高温に制御・保持するための高温炉11を設けた様子を示す試験片3近傍を示す拡大図である。高温炉11は概ね図4に示すように、チャンバー7とヒータ8と熱電対9とで構成される。チャンバー7は、試験片3の軸周りに覆う中空の箱状部材であり試験片3周囲の雰囲気温度を所望の温度に保持した状態で密封している。詳細な形状・配設位置については後述するが、ヒータ8はチャンバー7内の雰囲気温度を上昇させるための電熱体であり、試験片3の周囲をU字形状に囲んでいる。さらに、熱電対9はチャンバー7上方から炉内に挿入され、先端を試験片3の切欠3a近傍に配置し(詳細は後述)、その配置部分の温度を測定する。
<< Embodiment of the First Invention >>
FIG. 4 illustrates an embodiment of the first aspect of the present invention. In the cantilever rotary bending fatigue test apparatus 10 shown in FIGS. 1 to 3, the ambient temperature of the test piece 3 is controlled and maintained at a high temperature. It is an enlarged view which shows the test piece 3 vicinity which shows a mode that the high temperature furnace 11 for providing was provided. As shown in FIG. 4, the high temperature furnace 11 generally includes a chamber 7, a heater 8, and a thermocouple 9. The chamber 7 is a hollow box-shaped member that covers the periphery of the test piece 3 and is sealed in a state where the ambient temperature around the test piece 3 is maintained at a desired temperature. Although the detailed shape and arrangement position will be described later, the heater 8 is an electric heating element for raising the ambient temperature in the chamber 7 and surrounds the test piece 3 in a U shape. Further, the thermocouple 9 is inserted into the furnace from above the chamber 7, the tip is arranged in the vicinity of the notch 3a of the test piece 3 (details will be described later), and the temperature of the arrangement portion is measured.

図5は、本高温疲労試験装置10の高温炉11をスケルトン表示し、チャンバー7内部の試験片3とヒータ8と熱電対9との位置関係を示す斜視図である。図5から試験片3の軸周りにその下側及び両側を囲んで上側を開放するようにU字形状のヒータ8が配設されていることがわかる。ヒータ8は、略円筒形状の導電性材料で形成される。 FIG. 5 is a perspective view showing the high temperature furnace 11 of the high temperature fatigue test apparatus 10 in a skeleton manner and showing the positional relationship among the test piece 3, the heater 8, and the thermocouple 9 inside the chamber 7. FIG. 5 shows that a U-shaped heater 8 is disposed around the axis of the test piece 3 so as to surround the lower side and both sides and open the upper side. The heater 8 is formed of a substantially cylindrical conductive material.

次に、試験片3と熱電対9との位置関係について説明する。図6(a)は、熱電対9の先端と試験片3との位置関係を示しており、図6(b)は試験片3の表面から3mmの位置に配設された熱電対9で測定される温度と、実際の試験片3の表面温度と、の関係について異なる金属材料で測定した結果のグラフ図である。図6(a)に示すように熱電対9から3mm離間した位置に配置され、その温度を計測するが、ヒータ8の設定温度に達してから30分後に測定している。 Next, the positional relationship between the test piece 3 and the thermocouple 9 will be described. FIG. 6A shows the positional relationship between the tip of the thermocouple 9 and the test piece 3, and FIG. 6B shows the measurement with the thermocouple 9 disposed at a position 3 mm from the surface of the test piece 3. It is a graph of the result of having measured with the different metal material about the relationship between the temperature to be measured and the surface temperature of the actual test piece 3. FIG. As shown in FIG. 6A, the temperature is measured at a position 3 mm away from the thermocouple 9 and the temperature is measured. The temperature is measured 30 minutes after the set temperature of the heater 8 is reached.

図6(b)では横軸にヒータ8の設定温度が示され、これに対する熱電対9の測定温度が縦軸に示されている。さらに、試験片3は、S45CとTi合金との2材種が測定され、測定結果がそれぞれ図6(b)にプロットされている。 In FIG. 6B, the set temperature of the heater 8 is shown on the horizontal axis, and the measured temperature of the thermocouple 9 is shown on the vertical axis. Furthermore, two types of the test piece 3 of S45C and Ti alloy were measured, and the measurement results are plotted in FIG. 6B, respectively.

図6(b)のグラフ図からわかるように熱電対9での測定温度は、試験片3の表面温度より下がるが、表面温度の上下変化に追従して変化することがわかる。したがって、チャンバー7内の雰囲気温度にムラがなく試験片3表面と熱電対9での測定値との関係がわかり、熱電対9の測定値を見るだけで試験片3の表面温度を正確に測定し得る。なお、図6(a)にも示すように試験片3はチャンバー7内で軸線方向に100mmの長さを有し、切欠3aはその中心近傍に有していることがわかる。 As can be seen from the graph of FIG. 6B, the measurement temperature at the thermocouple 9 is lower than the surface temperature of the test piece 3, but it is understood that the temperature changes following the vertical change of the surface temperature. Therefore, there is no unevenness in the ambient temperature in the chamber 7, the relationship between the surface of the test piece 3 and the measured value at the thermocouple 9 can be understood, and the surface temperature of the test piece 3 can be accurately measured simply by looking at the measured value of the thermocouple 9. Can do. As shown in FIG. 6A, it can be seen that the test piece 3 has a length of 100 mm in the axial direction in the chamber 7, and the notch 3a is provided near the center thereof.

以下、本高温疲労試験装置10の高温炉11におけるU字型の熱電対9と試験片3周囲の雰囲気温度分布を実験例1に説明し、その後、その他の形状・位置の熱電対9(1)〜9(3)を示す比較例1〜比較例3を説明する。 Hereinafter, the atmosphere temperature distribution around the U-shaped thermocouple 9 and the test piece 3 in the high-temperature furnace 11 of the high-temperature fatigue test apparatus 10 will be described in Experimental Example 1, and then the thermocouple 9 (1 ) To 9 (3) Comparative Examples 1 to 3 will be described.

図7は、図2〜図4に示すU字形状のヒータ8と試験片3の位置関係を示しており、図8はヒータ8の設定温度600℃の場合のチャンバー7内の温度分布を(a)〜(c)の順に試験片3の回転数0rpm、3000rpm、5000rpmの場合にわけて示したものである。なお、図8に示すように試験片3は紙面矢印Z方向(反時計方向)に回転する。 7 shows the positional relationship between the U-shaped heater 8 shown in FIGS. 2 to 4 and the test piece 3. FIG. 8 shows the temperature distribution in the chamber 7 when the set temperature of the heater 8 is 600 ° C. The test pieces 3 are shown separately in the order of a) to (c) when the rotation speed is 0 rpm, 3000 rpm, and 5000 rpm. As shown in FIG. 8, the test piece 3 rotates in the direction of the arrow Z (counterclockwise) on the paper.

図8(a)の回転数0rpmの状態(停止状態)では、試験片3上方3mmの位置で595℃、試験片3左右3mmの位置でそれぞれ585℃、590℃、試験片3下方3mmの位置で610℃と測定された。ここで通常、熱電対9が位置決めされる試験片3上方3mmの位置を基準として、その温度と最も温度差があるのは試験片3下方3mmであり、温度差15℃であった。 In the state of 0 rpm of rotation (stop state) in FIG. 8A, 595 ° C. at the position 3 mm above the test piece 3, 585 ° C., 590 ° C. at the position 3 mm left and right of the test piece 3, and 3 mm below the test piece 3. Measured at 610 ° C. Here, with reference to the position 3 mm above the test piece 3 where the thermocouple 9 is positioned as a reference, the temperature difference is most 3 mm below the test piece 3 and the temperature difference is 15 ° C.

また、図8(b)の回転数3000rpmの状態では、試験片3上方3mmの位置で590℃、試験片3左右3mmの位置でそれぞれ604℃、575℃、試験片3下方3mmの位置で595℃と測定された。この場合、熱電対9が位置決めされる試験片3上方3mmの位置を基準として、その温度と最も温度差があるのは試験片3右方3mmであり、温度差−15℃であった。 8B, at a rotational speed of 3000 rpm, 590 ° C. at a position 3 mm above the test piece 3, 604 ° C. and 575 ° C. at a position 3 mm from the left and right of the test piece 3, and 595 at a position 3 mm below the test piece 3. Measured as ° C. In this case, with reference to the position 3 mm above the test piece 3 where the thermocouple 9 is positioned as a reference, the temperature difference is 3 mm to the right of the test piece 3 and the temperature difference is −15 ° C.

さらに、図8(c)の回転数5000rpmの状態では、試験片3上方3mmの位置で593℃、試験片3左右3mmの位置でそれぞれ600℃、570℃、試験片3下方3mmの位置で610℃と測定された。熱電対9が位置決めされる試験片3上方3mmの位置を基準として、その温度と最も温度差があるのは試験片3下方3mmであり、温度差23℃であった。 Further, in the state of the rotational speed of 5000 rpm in FIG. 8C, 593 ° C. at the position 3 mm above the test piece 3, 600 ° C. and 570 ° C. at the position 3 mm left and right of the test piece 3, and 610 at the position 3 mm below the test piece 3. Measured as ° C. With reference to the position 3 mm above the test piece 3 where the thermocouple 9 is positioned as a reference, the temperature difference is most 3 mm below the test piece 3 and the temperature difference is 23 ° C.

この結果からU字形状のヒータ8を採用した場合、回転速度によって温度分布にバラツキがあるもの後述する比較例1〜比較例3に示すヒータ8の配置方法に比べて最も均一な温度分布を示す雰囲気環境であると判断される。 From this result, when the U-shaped heater 8 is adopted, the temperature distribution varies depending on the rotation speed, and the most uniform temperature distribution is shown as compared with the heater 8 arrangement method shown in Comparative Examples 1 to 3 described later. Judged to be an atmospheric environment.

比較例1Comparative Example 1

図9は、上記実施例1と異なる形状のヒータ8と試験片3の位置関係を示しており、図9(a)は試験片3を2本のヒータ8で幅方向に挟んで上下方向並列に配設している。具体的にはヒータ8は幅方向に50mm離間しており、上下方向には40mmチャンバー7内に露出した状態を示している。図9(b)は試験片3を2本のヒータ8で上下方向に挟んで横方向並列に配設している。具体的にはヒータ8は上下方向に±15mm離間した状態を示している。図9(c)は試験片3を2本のヒータ8で幅方向に挟んで下方向に接近するV字形状に配設している。 FIG. 9 shows the positional relationship between the heater 8 having a shape different from that of the first embodiment and the test piece 3. FIG. 9A shows the test piece 3 sandwiched between the two heaters 8 in the width direction and arranged in the vertical direction. It is arranged. Specifically, the heater 8 is separated by 50 mm in the width direction and is exposed in the 40 mm chamber 7 in the vertical direction. In FIG. 9B, the test piece 3 is arranged in parallel in the horizontal direction with the two heaters 8 sandwiched in the vertical direction. Specifically, the heater 8 shows a state in which the heater 8 is separated by ± 15 mm in the vertical direction. In FIG. 9C, the test piece 3 is disposed in a V-shape approaching the lower side with the two heaters 8 sandwiching the test piece 3 in the width direction.

図9(b)は試験片3を2本のヒータ8で幅方向に挟んで上下方向並列に配設している。具体的にはヒータ8は幅方向に50mm離間しており、上下方向には40mmチャンバー7内に露出した状態を示している。図9(b)は試験片3を2本のヒータ8で上下方向に挟んで横方向並列に配設している。具体的にはヒータ8は上下方向に±10mm離間した状態を示している。図9(c)は試験片3を2本のヒータ8で幅方向に挟んで下方向に接近するV字形状に配設している。 In FIG. 9B, the test piece 3 is disposed in parallel in the vertical direction with the two heaters 8 sandwiching the test piece 3 in the width direction. Specifically, the heater 8 is separated by 50 mm in the width direction and is exposed in the 40 mm chamber 7 in the vertical direction. In FIG. 9B, the test piece 3 is arranged in parallel in the horizontal direction with the two heaters 8 sandwiched in the vertical direction. Specifically, the heater 8 is shown in a state where it is separated by ± 10 mm in the vertical direction. In FIG. 9C, the test piece 3 is disposed in a V-shape approaching the lower side with the two heaters 8 sandwiching the test piece 3 in the width direction.

図10〜図12は、図9(a)〜(c)のヒータ8の設定温度400℃の場合のチャンバー7内の温度分布を試験片3の回転数(a)0rpm、(b)3150rpmの場合にわけて示したものである。なお、実施例1では温度測定位置が試験片3から3mmであったが、図10〜図12の比較例1〜3の場合は、試験片3の位置から1ブロック離れるに従って、試験片3から3mm、5mm、10mmの位置の温度を示している。また、試験片3は図8同様に紙面反時計方向に回転する。 FIGS. 10 to 12 show the temperature distribution in the chamber 7 when the set temperature of the heater 8 in FIGS. 9A to 9C is 400 ° C. The rotational speed of the test piece 3 is (a) 0 rpm, and (b) 3150 rpm. It is shown in case. In Example 1, the temperature measurement position was 3 mm from the test piece 3, but in the case of Comparative Examples 1 to 3 in FIGS. The temperature at positions of 3 mm, 5 mm, and 10 mm is shown. In addition, the test piece 3 rotates counterclockwise as in FIG.

図10は、(a)の回転数0rpmの状態(停止状態)では、試験片3上方3mm、5mm、10mmの位置でそれぞれ398℃、377℃、350℃、試験片3左3mm、5mm、10mmの位置でそれぞれ330℃、340℃、333℃、試験片3右3mm、5mm、10mmの位置でそれぞれ331℃、340℃、337℃、試験片3下方3mm、5mm、10mmの位置でそれぞれ343℃、279℃、339℃と測定された。また、(b)の回転数3150rpmの状態では、試験片3上方3mm、5mm、10mmの位置でそれぞれ400℃、370℃、405℃、試験片3左3mm、5mm、10mmの位置でそれぞれ350℃、3320℃、395℃、試験片3右3mm、5mm、10mmの位置でそれぞれ348℃、320℃、391℃、試験片3下方3mm、5mm、10mmの位置でそれぞれ355℃、350℃、404℃と測定された。 FIG. 10 shows that in the state (rotation state) of 0 rpm of (a), 398 ° C., 377 ° C., 350 ° C. at the position of 3 mm, 5 mm, 10 mm above the test piece 3, 3 mm, 5 mm, 10 mm at the left of the test piece 3. At positions of 330 ° C, 340 ° C, 333 ° C, test piece 3 right 3mm, 5mm, 10mm, respectively 331 ° C, 340 ° C, 337 ° C, test piece 3 below 3mm, 5mm, 10mm at positions 343 ° C, respectively It was measured as 279 ° C and 339 ° C. Moreover, in the state of 3150 rpm of rotation of (b), it is 400 degreeC, 370 degreeC, and 405 degreeC at the position of 3 mm, 5 mm, and 10 mm above the test piece 3, respectively 350 degreeC at the position of 3 mm, 5 mm, and 10 mm on the left of the test piece 3 3320 ° C, 395 ° C, 348 ° C, 320 ° C, 391 ° C at positions 3 mm, 5 mm, and 10 mm on the right of test piece 3 355 ° C, 350 ° C, 404 ° C at positions 3 mm, 5 mm, and 10 mm below test piece 3, respectively And measured.

ここで試験片3の回転状態(図10(b))で通常、熱電対9が位置決めされる試験片3上方3mmの位置を基準として、その温度とそれ以外の温度差は大きく温度差−45℃〜−54℃であった。したがって、図9(a)のヒータ8配置の場合には上方の温度に対して他の部分の温度差が大きく好ましくないことがわかる。 Here, in the rotation state of the test piece 3 (FIG. 10 (b)), the temperature difference between the temperature and the other temperature is usually −45 with respect to the position 3 mm above the test piece 3 where the thermocouple 9 is positioned. C. to -54.degree. Therefore, in the case of the heater 8 arrangement of FIG. 9A, it can be seen that the temperature difference of the other portions is not preferable due to the upper temperature.

比較例2Comparative Example 2

図11は、(a)の回転数0rpmの状態(停止状態)では、試験片3上方3mmの位置で374℃、試験片3左右3mmの位置でそれぞれ330℃、330℃、50rpmの状態では、試験片3上方3mmの位置で380℃、試験片3下方3mmの位置で370℃と測定された。 FIG. 11 shows that in the state of 0 rpm of rotation (stop state) in (a) at 374 ° C. at the position 3 mm above the test piece 3 and at 330 ° C., 330 ° C. and 50 rpm at the positions of 3 mm on the left and right of the test piece 3, It was measured as 380 ° C. at a position 3 mm above the test piece 3 and 370 ° C. at a position 3 mm below the test piece 3.

ここで試験片3の回転状態(図11(b))で通常、熱電対9が位置決めされる試験片3上方3mmの位置を基準として、その温度と下方の温度差はあまりなく温度差−10℃であった。ただし、試験片3の停止状態(図11(a))の試験片3の左右の温度を見る限り、上方の温度から大きく低下し、温度差−34℃であることから、当然、図9(b)の回転数3150rpmの状態の試験片3の左右の温度も当然に大きく低下しているものと判断できる。したがって、図9(b)のヒータ8配置は好ましくないことがわかる。 Here, in the rotation state of the test piece 3 (FIG. 11 (b)), there is not much difference between the temperature and the temperature below the reference piece 3mm above the test piece 3 where the thermocouple 9 is positioned. ° C. However, as long as the left and right temperatures of the test piece 3 in the stopped state of the test piece 3 (FIG. 11 (a)) are seen, the temperature is greatly lowered from the upper temperature and the temperature difference is −34 ° C. It can be judged that the left and right temperatures of the test piece 3 in the state of 3) rpm of b) are also greatly reduced. Therefore, it can be seen that the arrangement of the heater 8 in FIG.

比較例3Comparative Example 3

図12は、(a)の回転数0rpmの状態(停止状態)では、試験片3上方3mmの位置で370℃、試験片3左右3mmの位置でそれぞれ375℃、435s℃、試験片3下方3mmの位置で370℃と測定された。また、(b)の回転数3150rpmの状態では、試験片3左右3mmの位置でそれぞれ410℃、395℃、試験片3下方3mmの位置で395℃と測定された。 FIG. 12 shows that in the state of 0 rpm (stopped state) of (a), 370 ° C. at the position 3 mm above the test piece 3, 375 ° C. and 435 s ° C. at the position 3 mm left and right of the test piece 3, 3 mm below the test piece 3 And measured at 370 ° C. Moreover, in the state of 3150 rpm of the rotation number of (b), it measured 410 degreeC and 395 degreeC in the position of 3 mm of the test piece 3 right and left, respectively, and 395 degreeC in the position of 3 mm below the test piece 3.

ここで試験片3の回転状態(図12(b))で通常、熱電対9が位置決めされる試験片3上方3mmの位置を基準として、その温度とそれ以外の温度差は大きく温度差25℃〜40℃であった。したがって、図9(c)のヒータ8配置の場合には上方の温度に対して他の部分の温度差が大きく好ましくないことがわかる。したがって、図9(c)のヒータ8配置は良好とまでは言えないことがわかる。 Here, in the rotating state of the test piece 3 (FIG. 12 (b)), the temperature difference between the temperature and the other temperature is usually 25 ° C. with the temperature 3mm above the test piece 3 where the thermocouple 9 is normally positioned as a reference. -40 ° C. Therefore, in the case of the heater 8 arrangement of FIG. 9C, it can be seen that the temperature difference of the other portions is not preferable because of the upper temperature. Therefore, it can be seen that the heater 8 arrangement in FIG. 9C is not good.

図9(c)のヒータ8の配置の場合、試験片3の左右及び下方の温度は同程度の温度であり且つ試験片3の設定温度400℃に近似しており、良好な測定結果であるが、反面、試験片3の上方の温度が大きく下がっており実施例1のU字形状のヒータ8に比べて不良な測定結果である。これはU字形状のヒータ8と異なり下方(底部)に熱源としての下支えがないことが理由であると推察される。したがって、略V字形状のヒータ8の場合には良好な配置である場合も想定される。 In the case of the arrangement of the heater 8 in FIG. 9 (c), the left and right and lower temperatures of the test piece 3 are comparable and approximate to the set temperature 400 ° C. of the test piece 3, which is a good measurement result. On the other hand, the temperature above the test piece 3 is greatly lowered, which is a poor measurement result compared to the U-shaped heater 8 of Example 1. This is presumed to be because there is no support as a heat source below (bottom) unlike the U-shaped heater 8. Therefore, in the case of the substantially V-shaped heater 8, it may be assumed that the arrangement is good.

《第二の発明の実施形態》
図13〜図19は、第二の本発明の実施形態を例示しており、図13では本高温疲労試験装置20をスケルトン表示し、上記第一の本発明と同様に試験片3の一端に荷重付加部5の吊り下げ部5bが下方に荷重を付加し、この状態で試験片3を軸周りに回転させている。また、図13では後述する熱源となるハロゲンランプ22と熱電対9とが示されている。熱電対9が高温炉(炉壁)21に刺さっており、高温炉21はハロゲンランプ22を包んで覆っている
<< Embodiment of the Second Invention >>
FIGS. 13 to 19 illustrate the second embodiment of the present invention. In FIG. 13, the high temperature fatigue test apparatus 20 is displayed in a skeleton form, and at one end of the test piece 3 as in the first embodiment of the present invention. The hanging part 5b of the load applying part 5 applies a load downward, and the test piece 3 is rotated around the axis in this state. Further, FIG. 13 shows a halogen lamp 22 and a thermocouple 9 as heat sources to be described later. A thermocouple 9 is stuck in a high temperature furnace (furnace wall) 21, and the high temperature furnace 21 covers and covers a halogen lamp 22.

図14は、図13に示す本高温疲労試験装置20においてハロゲンランプ22が装着された実験室レベルの構成を図13の側部(図13の左斜め下方)から見た様子が示されており、(a)は高温炉21で試験片23等の周囲を覆った状態を示している。(b)は(a)の高温炉21の内部の様子を示している。(b)からも明らかなように、ハロゲンランプ22が試験片23の上方に配置され、ハロゲンランプ22から下方、試験片23方向に向かって光が照射される。また、高温炉21は光を反射する材質(ここではアルミニウム素材)で構成されており、試験片3の下方およびその周囲に到達した照射光が反射されて、再度、試験片23を照射するようになっている。 FIG. 14 shows a laboratory-level configuration in which the halogen lamp 22 is mounted in the high-temperature fatigue test apparatus 20 shown in FIG. 13 as viewed from the side of FIG. 13 (downward diagonally to the left in FIG. 13). (A) has shown the state which covered the circumference | surroundings of the test piece 23 grade | etc., With the high temperature furnace 21. FIG. (B) has shown the inside of the high temperature furnace 21 of (a). As is clear from (b), the halogen lamp 22 is disposed above the test piece 23, and light is irradiated downward from the halogen lamp 22 toward the test piece 23. Further, the high temperature furnace 21 is made of a material that reflects light (here, an aluminum material), and the irradiation light that reaches the lower part of the test piece 3 and the periphery thereof is reflected to irradiate the test piece 23 again. It has become.

なお、高温炉21は光を反射する材質であれば良く、ハロゲンランプ22からの照射光を再度、試験片23に戻してその光エネルギーを効率よく試験片23の温度上昇に付与するためのものである。したがって、高温炉21内で試験片23に対してハロゲンランプ22に対向する位置(図14では下方)に別途の反射手段を配設しても良い。 The high temperature furnace 21 may be made of any material that reflects light, and the irradiation light from the halogen lamp 22 is returned again to the test piece 23 to efficiently apply the light energy to the temperature rise of the test piece 23. It is. Therefore, a separate reflecting means may be disposed in the high temperature furnace 21 at a position facing the halogen lamp 22 with respect to the test piece 23 (downward in FIG. 14).

このようにハロゲンランプ22からの照射光を試験片23に照射し、これによって試験片23の表層のみならず内部も温度上昇させた状態で疲労試験装置を使用する場合、実際の試験片23は内部をくり抜いて温度測定できない。したがって、試験片23の表層温度と内部温度との相関について予め検証しておく必要がある。 In this way, when the test light 23 is irradiated with the irradiation light from the halogen lamp 22 and the temperature of not only the surface layer of the test piece 23 but also the inside thereof is increased, the actual test piece 23 is The temperature cannot be measured by hollowing out the inside. Therefore, it is necessary to verify in advance the correlation between the surface temperature of the test piece 23 and the internal temperature.

まず、ハロゲンランプ22で照射した場合の試験片23の表層温度と内部温度とを検証するために検証用の試験片23における内部温度を測定する第一熱電対28と、表層温度を測定する第二熱電対29との位置関係について例示説明する。図15は、第一熱電対28の先端と試験片3との上下方向の位置関係、および第二熱電対29の先端と試験片3との横方向の位置関係を模式的に示している。 First, in order to verify the surface temperature and the internal temperature of the test piece 23 when irradiated with the halogen lamp 22, a first thermocouple 28 for measuring the internal temperature of the test piece 23 for verification, and a first thermocouple 28 for measuring the surface temperature. An example of the positional relationship with the two thermocouple 29 will be described. FIG. 15 schematically shows the positional relationship in the vertical direction between the tip of the first thermocouple 28 and the test piece 3 and the positional relationship in the horizontal direction between the tip of the second thermocouple 29 and the test piece 3.

この試験片23は軸方向に中空穴23aが空けられている。その先端は温度測定領域として試験片23の中央部外径を小さくした切り欠き部23bが設けられている。試験片23として、後述する実験例では、S45C(焼き鈍し)、SUS304、A2017を用いており、外径10mm、切り欠き部23bの最細部の外径4mm、中空穴23aの内径3mmである。中空穴23aは試験片23を貫通させてもよいが、第一熱電対28を左端部から挿入し・押し込んでその先端を温度測定領域である切り欠き部23bの下方まで到達させて位置決めし易くするため切り欠き部23bの最細部(切り欠き部23b)より少し先まで穿孔により中空穴を設けている。したがって、中空穴23aは穿孔手段の形状の都合上、その先端が尖っている。 The test piece 23 has a hollow hole 23a in the axial direction. The tip is provided with a notch 23b in which the outer diameter of the central portion of the test piece 23 is reduced as a temperature measurement region. In the experimental example to be described later, S45C (annealing), SUS304, and A2017 are used as the test piece 23. The outer diameter is 10 mm, the outermost diameter of the cutout portion 23b is 4 mm, and the inner diameter of the hollow hole 23a is 3 mm. Although the hollow hole 23a may penetrate the test piece 23, the first thermocouple 28 is inserted and pushed in from the left end portion, and the tip thereof reaches the lower portion of the notch portion 23b which is a temperature measurement region for easy positioning. Therefore, a hollow hole is formed by drilling slightly beyond the most detailed portion (notch portion 23b) of the notch portion 23b. Therefore, the hollow hole 23a has a sharp tip for the convenience of the shape of the punching means.

図示しないが、第一熱電対28は、スムーズに挿入するためにガイド部材としてのセラミック管で被覆されている。また、第一熱電対28の先端は切り欠き部23bの所定位置でその内壁に十分に接触している必要がある。接触が不十分だと試験片23の内部温度に相当する温度が測定できず、熱伝導率の悪い中空穴23aの空気層を測定してしまうからである。したがって、ここでは切り欠き部23bの内部に導電性樹脂材料である藤倉化成製のドータイトを貯留させて第一熱電対28の先端の接着剤とすることで対応している。 Although not shown, the first thermocouple 28 is covered with a ceramic tube as a guide member for smooth insertion. The tip of the first thermocouple 28 needs to be in sufficient contact with the inner wall at a predetermined position of the notch 23b. This is because if the contact is insufficient, the temperature corresponding to the internal temperature of the test piece 23 cannot be measured, and the air layer of the hollow hole 23a having poor thermal conductivity is measured. Therefore, here, the notch 23 b is accommodated by storing a doughite made of Fujikura Kasei, which is a conductive resin material, as an adhesive at the tip of the first thermocouple 28.

また、第二熱電対29は、温度測定領域である切り欠き部23bの上方近傍に配設している。試験片23の表面から第二熱電対29までの距離は試験片23の材質やハロゲンランプ22の強度、印加電圧、雰囲気温度によっても適正な距離が変動するが、ここでは図15の試験片23としてS45C(焼き鈍し)を用いて距離3mm離間した位置に配設した。このときハロゲンランプF30 36V/450Wで印加電圧22Vで照射した場合、第二熱電対29と第一熱電対28との温度差は概ね180℃であり、同様の条件で行った前述する第一の発明におけるヒータ8を用いる高温炉11の場合に内部と表層の温度差が440℃であり、少なともこの条件でもハロゲンランプ22の方が表層と内部との温度差が小さいことがわかる。 The second thermocouple 29 is disposed in the vicinity of the upper portion of the notch 23b, which is a temperature measurement region. The appropriate distance from the surface of the test piece 23 to the second thermocouple 29 varies depending on the material of the test piece 23, the strength of the halogen lamp 22, the applied voltage, and the ambient temperature, but here the test piece 23 of FIG. As S45C (annealing) as a distance of 3 mm. At this time, when the halogen lamp F30 is irradiated with an applied voltage of 22 V at 36 V / 450 W, the temperature difference between the second thermocouple 29 and the first thermocouple 28 is approximately 180 ° C., and the above-described first first performed under similar conditions. In the case of the high-temperature furnace 11 using the heater 8 in the present invention, the temperature difference between the inside and the surface layer is 440 ° C., and it can be seen that the temperature difference between the surface layer and the inside is smaller in the halogen lamp 22 even under this condition.

次に、試験片3の温度測定として熱電対ではなく、放射温度計27を用いて検証した。図16は、(a)に本検証でハロゲンランプ22と試験片23との位置および照射光の焦点の関係の模式図を示しており、(b)に実際に放射温度センサで温度測定している様子を示している。 Next, the temperature of the test piece 3 was verified using a radiation thermometer 27 instead of a thermocouple. FIG. 16 shows a schematic diagram of the relationship between the position of the halogen lamp 22 and the test piece 23 and the focal point of the irradiation light in this verification in (a), and (b) shows the actual temperature measurement with a radiation temperature sensor. It shows how it is.

図16の例では、ハロゲンランプ22を用いて試験片23としてS45C材質の切欠き部23bを加熱したときの温度を放射温度計27で測定した。実際には図16(a)の試験片23の右部を放射温度計27で測定し、同じ測定を3度実施した。実験条件としては、ハロゲンランプ27としては、F30 36V/450W、図示しない ハロゲンヒータ用コントローラとしては、36V-500W/AC100V、試験片23としては、材質S45CB200の外径10mm(切り欠き部23b外径4mm)で長さL=100mm、内径穴は3mm、 ハロゲンランプ22から試験片23表面までの焦点距離30mmであり、冷却水を図示しない水道管から引き込んだ。また、温度測定は、上部、横部、下部、内部、表面の計5ヶ所を同時に測定し、図16(b)に示すように右部のみ放射温度センサ FT50を使用した。放射温度センサ27の測定機としては熱伝対、放射温度センサ FT50(キーエンス、焦点距離200mm)を使用した。なお、放射温度計は、物体から放射される赤外線の強さ(エネルギー量)が温度上昇に応じて増加する特性を生かし、赤外線の放射エネルギー量を検知することで温度を測定する非接触型の温度計である。なお、放射温度計は、ハロゲンランプ22の光自体に含まれる赤外線も測定してしまうことに留意する。 In the example of FIG. 16, the temperature when the notch 23 b made of S45C material was heated as the test piece 23 using the halogen lamp 22 was measured with the radiation thermometer 27. Actually, the right part of the test piece 23 of FIG. 16A was measured with the radiation thermometer 27, and the same measurement was performed three times. As experimental conditions, the halogen lamp 27 is F30 36 V / 450 W, the halogen heater controller (not shown) is 36 V-500 W / AC 100 V, and the test piece 23 is an outer diameter of 10 mm (notch portion 23 b outer diameter) of the material S45CB200. 4 mm), the length L = 100 mm, the inner diameter hole was 3 mm, the focal length from the halogen lamp 22 to the surface of the test piece 23 was 30 mm, and cooling water was drawn from a water pipe (not shown). In addition, the temperature was measured at the same time at the top, side, bottom, inside, and surface, and the radiation temperature sensor FT50 was used only on the right side as shown in FIG. 16 (b). As a measuring machine for the radiation temperature sensor 27, a thermocouple, a radiation temperature sensor FT50 (Keyence, focal length 200 mm) was used. The radiation thermometer is a non-contact type that measures the temperature by detecting the amount of infrared radiation energy, taking advantage of the characteristic that the intensity (energy amount) of infrared radiation emitted from an object increases as the temperature rises. It is a thermometer. It should be noted that the radiation thermometer also measures infrared rays contained in the light of the halogen lamp 22 itself.

図17は放射温度計27で測定した場合の試験片23の各位置の温度を示したグラフ図であり、(a)〜(c)に向かって1回目〜3回目の測定結果を示している。また、 表面(表層)温度が600℃付近のときの各位置の温度を抽出したものが下記表1に示されている。 FIG. 17 is a graph showing the temperature at each position of the test piece 23 when measured with the radiation thermometer 27, and shows the first to third measurement results toward (a) to (c). . Table 1 below shows the extracted temperature at each position when the surface (surface) temperature is around 600 ° C.

図17のグラフと表1とからハロゲンランプ22による試験片23の表層温度および内部温度の測定に放射温度計による測定も有効であることがわかる。2回目の測定で内部と表面の温度差が大きく測定されているが、これは焦点のずれなどの影響もあると判断される。したがって、本高温疲労試験装置20における温度測定は、上述する熱電対28、29のみならず、位置の固定された熱電対28、29と放射温度計27との組み合わせで、雰囲気温度と試験片23の表面(表層)温度と内部温度との相関で実際の疲労試験中の温度制御を行うことができると考えられる。 It can be seen from the graph of FIG. 17 and Table 1 that measurement using a radiation thermometer is also effective in measuring the surface temperature and internal temperature of the test piece 23 using the halogen lamp 22. In the second measurement, the temperature difference between the inside and the surface is greatly measured, but this is judged to have an influence such as defocusing. Therefore, the temperature measurement in the high-temperature fatigue test apparatus 20 is performed not only by the thermocouples 28 and 29 described above, but also by the combination of the thermocouples 28 and 29 with fixed positions and the radiation thermometer 27, and the ambient temperature and the test piece 23. It is considered that the temperature control during the actual fatigue test can be performed by the correlation between the surface (surface layer) temperature and the internal temperature.

次に、高温炉内に熱電対を設置し、試験片の内部と制御熱電対の温度を比較し、装置ごとの熱電対の温度と試験片内部温度との相関を検証した。この相関により実際の試験片が内部をくり抜いて中空穴を設けることができなくても熱電対による測定温度から疲労試験中の試験片の内部温度を制御することができる。すなわち、試験片33内部が何℃のとき、高温炉31内に設置した第二熱電対39の温度が何度であるのか、明確にし、疲労試験時の目安となる。この検証実験では、図18に示すように高温炉31内に試験片33を設け、情報から高温炉31内に延びる第一熱電対38で高温炉31内の雰囲気温度を、第二熱電対29で試験片33の温度測定領域(切り欠き部)の内部温度を、測定し、下方のハロゲンランプ22で試験片33を照射した。 Next, a thermocouple was installed in the high-temperature furnace, the temperature inside the test piece and the temperature of the control thermocouple were compared, and the correlation between the temperature of the thermocouple for each device and the temperature inside the test piece was verified. This correlation allows the internal temperature of the test piece during the fatigue test to be controlled from the temperature measured by the thermocouple, even if the actual test piece cannot be hollowed out to provide a hollow hole. That is, it is clarified how the temperature inside the test piece 33 is what the temperature of the second thermocouple 39 installed in the high temperature furnace 31 is, and it becomes a standard at the time of the fatigue test. In this verification experiment, as shown in FIG. 18, a test piece 33 is provided in the high temperature furnace 31, and the ambient temperature in the high temperature furnace 31 is determined by the first thermocouple 38 extending from the information into the high temperature furnace 31. Then, the internal temperature of the temperature measurement region (notch portion) of the test piece 33 was measured, and the test piece 33 was irradiated with the lower halogen lamp 22.

実験条件としては、ハロゲンランプ32としてF30 36V/450W、ハロゲンヒータ用コントローラとして36V-500W/AC100V、試験片33として外径10mm(切り欠き部の外径4mm)、長さL=100mm、内径穴は3mm、焦点距離は 30mm、冷却ユニットで冷却水、熱電対としてKタイプ、熱電対は、試験片33表面から15mmを使用した。また、試験片33の材質は、それぞれ3種類のS45C(焼入れ焼戻し)、SUS304、A2017、A2017(切り欠き部に黒色耐熱塗料塗布)を使用した。 The experimental conditions are: F30 36V / 450W as halogen lamp 32, 36V-500W / AC100V as controller for halogen heater, outer diameter 10mm as test piece 33 (outer diameter of notch 4mm), length L = 100mm, inner diameter hole 3 mm, focal length 30 mm, cooling unit with cooling water, K type thermocouple, and thermocouple 15 mm from the surface of the test piece 33. The test piece 33 was made of three types of S45C (quenching and tempering), SUS304, A2017, and A2017 (black heat-resistant paint applied to the notch).

測定の結果、第一熱電対38と試験片33内部温度の相関関係は図19のグラフ図の通りである。熱伝導率の違いによって大きく最高到達温度が異なることがわかった。このグラフからS45C、SUS304では、第一熱電対38の温度(雰囲気温度)と試験片33の内部温度は近くなることがわかり、A2017(Al)では内部温度がほとんど上がらないことがわかった。ただし、黒色耐熱塗料を切り欠き部に塗布すると内部温度を100℃上昇させることができ、熱伝導率の悪い材質の場合、黒色耐熱塗料を塗布することで内部温度を上昇させるに有効であることが理解される。 As a result of the measurement, the correlation between the first thermocouple 38 and the internal temperature of the test piece 33 is as shown in the graph of FIG. It was found that the maximum temperature reached differs greatly depending on the thermal conductivity. From this graph, it was found that the temperature (atmosphere temperature) of the first thermocouple 38 and the internal temperature of the test piece 33 were close in S45C and SUS304, and the internal temperature was hardly increased in A2017 (Al). However, if black heat-resistant paint is applied to the notch, the internal temperature can be increased by 100 ° C. If the material has poor thermal conductivity, it is effective to increase the internal temperature by applying black heat-resistant paint. Is understood.

以上が本発明の実施形態について種々例示してきたが、本発明はこれに限定されるものではなく、特許請求の範囲の記載および精神を逸脱しない範囲で他の実施形態が想定されることを当業者は容易に理解するであろう。 Although various embodiments of the present invention have been described above, the present invention is not limited to this, and other embodiments are envisaged without departing from the description and spirit of the claims. The merchant will easily understand.

1 駆動部
2 装着部
2a 装着部軸
3 試験片
3a 切欠
4 制御部
5 荷重付加部
5a アダプタ
5b 吊り下げ部
5b1 バネ部
5b2 棒部
5c 荷重部
6 棒部
7 チャンバー(箱状部材)
8 ヒータ
9、28、29、38、39 熱電対
10、20 高温疲労試験装置
11、21、31 高温炉
22 ハロゲンランプ
DESCRIPTION OF SYMBOLS 1 Drive part 2 Mounting part 2a Mounting part axis | shaft 3 Test piece 3a Notch 4 Control part 5 Load addition part 5a Adapter 5b Hanging part 5b1 Spring part 5b2 Rod part 5c Load part 6 Rod part 7 Chamber (box-shaped member)
8 Heater 9, 28, 29, 38, 39 Thermocouple 10, 20 High-temperature fatigue test equipment 11, 21, 31 High-temperature furnace 22 Halogen lamp

Claims (10)

円筒状の金属材料の試験片の一端を該一端と協動して軸回転自在に固定支持する装着部材と、前記試験片の他端を自重により鉛直下方に引っ張る荷重付加部材とを備える試験片の回転曲げ疲労強度を測定する高温疲労試験装置であって、
前記試験片の軸周りに配設され、該試験片の周囲の雰囲気温度を制御する中空の高温炉を備え、
該高温炉の中には、試験片の周囲を囲むように配設され、上方に開放する形状のヒータを有する、ことを特徴とする高温疲労試験装置。
A test piece comprising: a mounting member for fixing and supporting one end of a cylindrical metal material test piece in cooperation with the one end so as to be axially rotatable; and a load application member for pulling the other end of the test piece vertically downward by its own weight. A high temperature fatigue testing device for measuring the rotational bending fatigue strength of
A hollow high-temperature furnace disposed around the axis of the specimen and controlling the ambient temperature around the specimen;
A high-temperature fatigue testing apparatus, characterized in that the high-temperature furnace includes a heater that is disposed so as to surround the periphery of the test piece and opens upward.
前記ヒータは、上方に開放するU字形状を形成する、ことを特徴とする請求項1に記載の高温疲労試験装置。 The high-temperature fatigue testing apparatus according to claim 1, wherein the heater forms a U shape that opens upward. 前記試験片は、その一部の径が細くなるように周方向全体に亘って削られた切欠部を設け、該切欠部の近傍の雰囲気温度を測定する熱電対を配設し、
該熱電対の先端は試験片の外周面の上側と略同一高さに位置決めされ、
前記熱電対により測定された温度に基づいて前記ヒータを温度制御する、ことを特徴とする請求項1又は2に記載の高温疲労試験装置。
The test piece is provided with a notch that is cut over the entire circumferential direction so that the diameter of a part of the test piece is thin, and a thermocouple that measures the ambient temperature in the vicinity of the notch is provided.
The tip of the thermocouple is positioned at substantially the same height as the upper side of the outer peripheral surface of the test piece,
The high-temperature fatigue test apparatus according to claim 1, wherein the heater is temperature-controlled based on a temperature measured by the thermocouple.
一端を把持して中心軸で回転させつつ他端に曲げ荷重を負荷する円筒状の試験片の高温環境下疲労寿命を試験する装置において試験片周りの雰囲気温度を高温に保持するために配設される高温炉であって、
前記試験片の軸周りに配設され、該試験片の周囲の雰囲気温度を制御する中空の箱状部を備え、
該箱状部の中には、試験片の周囲を囲むように配設され、上方に開放するU字形状を有する、ことを特徴とする高温炉。
Arranged to keep the ambient temperature around the test piece high in a device that tests fatigue life in a high temperature environment of a cylindrical test piece that grips one end and rotates around the center axis while applying a bending load to the other end. A high temperature furnace,
A hollow box-like portion disposed around the axis of the test piece for controlling the ambient temperature around the test piece;
A high-temperature furnace characterized in that the box-shaped portion has a U-shape which is disposed so as to surround the periphery of the test piece and opens upward.
円筒状の金属材料の試験片の一端を該一端と協動して軸回転自在に固定支持する装着部材と、前記試験片の他端を自重により鉛直下方に引っ張る荷重付加部材とを備える試験片の回転曲げ疲労強度を測定する高温疲労試験装置であって、
前記試験片の回転曲げ疲労強度を測定する領域の該試験片の外表面を照射し得る位置にハロゲンランプを配設する、ことを特徴とする高温疲労試験装置。
A test piece comprising: a mounting member for fixing and supporting one end of a cylindrical metal material test piece in cooperation with the one end so as to be axially rotatable; and a load application member for pulling the other end of the test piece vertically downward by its own weight. A high temperature fatigue testing device for measuring the rotational bending fatigue strength of
A high-temperature fatigue testing apparatus, wherein a halogen lamp is disposed at a position where the outer surface of the test piece can be irradiated in a region where the rotational bending fatigue strength of the test piece is measured.
前記試験片の軸周りに配設され、該試験片の周囲の雰囲気温度の低下を低減する中空の高温炉を備える、ことを特徴とする請求項5に記載の高温疲労試験装置。 The high-temperature fatigue testing apparatus according to claim 5, further comprising a hollow high-temperature furnace that is disposed around an axis of the test piece and reduces a decrease in ambient temperature around the test piece. 前記ハロゲンランプから前記試験片に照射された光を該試験片方向に反射する反射手段を配設する、ことを特徴とする請求項5に記載の高温疲労試験装置。 6. The high-temperature fatigue testing apparatus according to claim 5, further comprising a reflecting means for reflecting light emitted from the halogen lamp to the test piece in the direction of the test piece. 試験片の周辺の温度を測定する熱電対を備え、
予め測定された該試験片と同材質の試験片の周辺の温度に対する該試験片の内部温度との関係に基づいて、前記熱電対の測定温度から試験片の内部温度を測定する、請求項5〜6のいずれか1項に記載の高温疲労試験装置。
Equipped with a thermocouple to measure the temperature around the specimen,
6. The internal temperature of the test piece is measured from the measured temperature of the thermocouple based on the relationship between the internal temperature of the test piece with respect to the temperature around the test piece of the same material as that of the test piece. The high temperature fatigue testing apparatus according to any one of -6.
試験片の周辺の温度を測定する放射温度計を備え、
予め測定された該試験片と同材質の試験片の周辺の温度に対する該試験片の内部温度との関係に基づいて、前記熱電対の測定温度から試験片の内部温度を測定する、請求項5〜6のいずれか1項に記載の高温疲労試験装置。
Equipped with a radiation thermometer to measure the temperature around the specimen,
6. The internal temperature of the test piece is measured from the measured temperature of the thermocouple based on the relationship between the internal temperature of the test piece with respect to the temperature around the test piece of the same material as that of the test piece. The high temperature fatigue testing apparatus according to any one of -6.
前記試験片の回転曲げ疲労強度を測定する領域表面に黒色耐熱塗料を塗布した、請求項5〜7のいずれか1項に記載の高温疲労試験装置。 The high-temperature fatigue test apparatus according to any one of claims 5 to 7, wherein a black heat-resistant paint is applied to a surface of a region where the rotational bending fatigue strength of the test piece is measured.
JP2014118915A 2013-06-08 2014-06-09 Cantilever type rotary-bending fatigue testing apparatus under high temperature environment Pending JP2015014596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118915A JP2015014596A (en) 2013-06-08 2014-06-09 Cantilever type rotary-bending fatigue testing apparatus under high temperature environment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013121364 2013-06-08
JP2013121364 2013-06-08
JP2014118915A JP2015014596A (en) 2013-06-08 2014-06-09 Cantilever type rotary-bending fatigue testing apparatus under high temperature environment

Publications (1)

Publication Number Publication Date
JP2015014596A true JP2015014596A (en) 2015-01-22

Family

ID=52436387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118915A Pending JP2015014596A (en) 2013-06-08 2014-06-09 Cantilever type rotary-bending fatigue testing apparatus under high temperature environment

Country Status (1)

Country Link
JP (1) JP2015014596A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527310A (en) * 2015-12-30 2016-04-27 重庆精榜高分子材料有限公司 A testing device for polymer material thermal aging and a testing method
WO2017146245A1 (en) * 2016-02-24 2017-08-31 株式会社山本金属製作所 Fatigue testing device
CN112378775A (en) * 2020-11-06 2021-02-19 西安近代化学研究所 Quasi-static mechanical property testing device and testing method suitable for high-temperature environment
CN112834214A (en) * 2021-01-07 2021-05-25 浙江奇碟汽车零部件有限公司 Clutch driven plate assembly axial displacement fatigue test stand
CN113432853A (en) * 2021-06-17 2021-09-24 四川建安工业有限责任公司 Drive axle assembly-based semi-floating half shaft rotation bending fatigue test device and method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360878U (en) * 1976-10-25 1978-05-24
JPS58134754U (en) * 1982-03-08 1983-09-10 三菱重工業株式会社 Rotating bending fatigue tester
JPS58163854U (en) * 1982-04-28 1983-10-31 川崎重工業株式会社 Specimen holding structure in rotary bending fatigue testing machine
JPS593240A (en) * 1982-06-29 1984-01-09 Shimadzu Corp Tester for atmospheric material
JPS6251179A (en) * 1985-08-29 1987-03-05 富士電気化学株式会社 Lamp for infrared concentrated heating furnace
JPH01269038A (en) * 1988-03-01 1989-10-26 Instron Corp Heater and material test load frame
JPH07134085A (en) * 1993-11-10 1995-05-23 Natl Aerospace Lab Tension impact tester
JPH08122159A (en) * 1994-10-20 1996-05-17 Ishikawajima Harima Heavy Ind Co Ltd Test piece temperature controller of ultra-high-temperature strength testing machine
JPH08210881A (en) * 1995-02-06 1996-08-20 Tokyo Electron Ltd Method and device of inspection
JPH10260598A (en) * 1997-03-17 1998-09-29 Fuji Photo Film Co Ltd Fixing device for wet system electrophotographic plate making device
JP2000283901A (en) * 1999-03-31 2000-10-13 Sanyo Special Steel Co Ltd Test piece gripping device for high-speed rotary bend fatigue testing machine comprising chucking rod and taper bush
JP2001163693A (en) * 1999-12-08 2001-06-19 Natl Space Development Agency Of Japan Temperature gradient furnace
WO2010049175A2 (en) * 2008-10-31 2010-05-06 Montanuniversität Leoben Sample analysis system
JP2012181560A (en) * 2012-06-27 2012-09-20 Ricoh Co Ltd Fixing device and image forming apparatus including the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360878U (en) * 1976-10-25 1978-05-24
JPS58134754U (en) * 1982-03-08 1983-09-10 三菱重工業株式会社 Rotating bending fatigue tester
JPS58163854U (en) * 1982-04-28 1983-10-31 川崎重工業株式会社 Specimen holding structure in rotary bending fatigue testing machine
JPS593240A (en) * 1982-06-29 1984-01-09 Shimadzu Corp Tester for atmospheric material
JPS6251179A (en) * 1985-08-29 1987-03-05 富士電気化学株式会社 Lamp for infrared concentrated heating furnace
JPH01269038A (en) * 1988-03-01 1989-10-26 Instron Corp Heater and material test load frame
JPH07134085A (en) * 1993-11-10 1995-05-23 Natl Aerospace Lab Tension impact tester
JPH08122159A (en) * 1994-10-20 1996-05-17 Ishikawajima Harima Heavy Ind Co Ltd Test piece temperature controller of ultra-high-temperature strength testing machine
JPH08210881A (en) * 1995-02-06 1996-08-20 Tokyo Electron Ltd Method and device of inspection
JPH10260598A (en) * 1997-03-17 1998-09-29 Fuji Photo Film Co Ltd Fixing device for wet system electrophotographic plate making device
JP2000283901A (en) * 1999-03-31 2000-10-13 Sanyo Special Steel Co Ltd Test piece gripping device for high-speed rotary bend fatigue testing machine comprising chucking rod and taper bush
JP2001163693A (en) * 1999-12-08 2001-06-19 Natl Space Development Agency Of Japan Temperature gradient furnace
WO2010049175A2 (en) * 2008-10-31 2010-05-06 Montanuniversität Leoben Sample analysis system
JP2012181560A (en) * 2012-06-27 2012-09-20 Ricoh Co Ltd Fixing device and image forming apparatus including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527310A (en) * 2015-12-30 2016-04-27 重庆精榜高分子材料有限公司 A testing device for polymer material thermal aging and a testing method
WO2017146245A1 (en) * 2016-02-24 2017-08-31 株式会社山本金属製作所 Fatigue testing device
JPWO2017146245A1 (en) * 2016-02-24 2018-12-13 株式会社山本金属製作所 Fatigue testing equipment
CN112378775A (en) * 2020-11-06 2021-02-19 西安近代化学研究所 Quasi-static mechanical property testing device and testing method suitable for high-temperature environment
CN112834214A (en) * 2021-01-07 2021-05-25 浙江奇碟汽车零部件有限公司 Clutch driven plate assembly axial displacement fatigue test stand
CN113432853A (en) * 2021-06-17 2021-09-24 四川建安工业有限责任公司 Drive axle assembly-based semi-floating half shaft rotation bending fatigue test device and method

Similar Documents

Publication Publication Date Title
JP2015014596A (en) Cantilever type rotary-bending fatigue testing apparatus under high temperature environment
JP5792660B2 (en) Thermal analyzer
CN102768158A (en) Automatic tester for thermal shock resistance of ceramic material
KR101710054B1 (en) Apparatus and method for deformation by the contact-measurement at high temperature
JP2006078365A (en) Tensile tester
JP2013101105A (en) High-temperature friction and abrasion measuring apparatus
US20130112005A1 (en) Apparatus and method for testing the adhesive strength of a coating on a substrate
JP5865614B2 (en) Water level detector for nuclear power plant
JP5023995B2 (en) Heat-resistant material testing equipment and test piece
JP5448587B2 (en) Sample holder for X-ray diffraction measurement and X-ray diffraction measurement method
JPH08122159A (en) Test piece temperature controller of ultra-high-temperature strength testing machine
RU2007125086A (en) DEVICE FOR MEASURING THE INTENSITY OF RADIUS FLOWS DURING HEAT AND VACUUM TESTS OF SPACE VEHICLES AND METHOD OF ITS OPERATION
US20150323437A1 (en) Apparatus and method to measure durometer hardness at, above, and below room temperature
CN112858381A (en) Heat insulation performance test device and test method for heat insulation material for high-speed aircraft engine
JP5985398B2 (en) Temperature controller for thermal analysis test
JP2016004004A (en) Canister inspection method and inspection device
JP6712892B2 (en) Thermal analysis device and sample analysis system
JP2005147976A (en) Temperature-measuring apparatus, chuck monitor, and plasma processing device
JP2006242574A (en) Pad type thermocouple
CN106908556B (en) Conical heating assembly for gas chromatography column
RU2566393C1 (en) Device for stretching test of bow-shaped samples from conducting material at increased temperature
KR20160043189A (en) Apparatus for fatigue test and fatigue crack growth test of rubber material with high temperature air blowing device
CN212432856U (en) High-temperature hardness measuring device based on induction heating
ES2323072T3 (en) PROCEDURE AND DEVICE FOR THERMAL DEFORMING A TOOL HOUSING.
JP2013076653A (en) Thermal constant measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181109