WO2017146109A1 - Metallic container or tube, method for producing sponge titanium, and method for producing titanium processed product or titanium cast product - Google Patents

Metallic container or tube, method for producing sponge titanium, and method for producing titanium processed product or titanium cast product Download PDF

Info

Publication number
WO2017146109A1
WO2017146109A1 PCT/JP2017/006640 JP2017006640W WO2017146109A1 WO 2017146109 A1 WO2017146109 A1 WO 2017146109A1 JP 2017006640 W JP2017006640 W JP 2017006640W WO 2017146109 A1 WO2017146109 A1 WO 2017146109A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
metal
sponge
magnesium
tube
Prior art date
Application number
PCT/JP2017/006640
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 井上
渡辺 明治
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to JP2018501740A priority Critical patent/JP6784746B2/en
Publication of WO2017146109A1 publication Critical patent/WO2017146109A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08

Definitions

  • the present invention relates to a metal container or tube used for producing sponge titanium by the reduction reaction of titanium tetrachloride and metallic magnesium, a method for producing sponge titanium, and a method for producing titanium processed or cast articles, particularly metal
  • the present invention relates to a metal container or tube capable of preventing contamination with impurities from a container and / or a tube and enabling the production of high-purity sponge titanium, a method of producing a sponge titanium, and a method of producing a titanium processed or cast article. .
  • Sponge titanium is industrially manufactured by the Kroll method.
  • the sponge titanium production process by the Kroll method can be roughly classified into four processes of liquid formation process, reduction separation process, crushing process and electrolysis process.
  • One of these steps, the reduction separation step comprises a reduction step and a vacuum separation step.
  • the reduction step titanium tetrachloride is dropped to molten metal magnesium in a stainless steel or steel reaction vessel, whereby a reduction reaction occurs to generate sponge titanium.
  • the sponge titanium produced in the reduction step is vacuumed at high temperature and under reduced pressure to produce sponge titanium from which the remaining magnesium chloride and metallic magnesium are removed.
  • a reaction container for producing titanium sponge used in the reduction separation step (hereinafter simply referred to as a reaction container) and an inner wall which is an inner surface of a container for storage and transfer of molten metal magnesium are made of stainless steel or low carbon steel Therefore, at high temperatures, impurity metals such as iron, nickel and chromium are eluted from the inner wall of the container, which causes the purity of titanium sponge and metallic magnesium to be lowered. In particular, in the reaction container which has not been used, the elution of the impurity metal is remarkable. Furthermore, in the reduction separation step, the transfer of the metallic magnesium in the molten state to the reaction vessel, and the removal of the molten magnesium chloride and metallic magnesium by vacuum separation from the metal tubes used. The elution of impurity metals into the molten metal and / or metal salt also causes the purity of sponge titanium and metal magnesium to decrease.
  • Patent Document 1 discloses that titanium, which is the same metal as the metal to be produced, is evaporated in the reaction vessel and evaporated on the inner wall of the vessel. Thus, a method of forming an alloy layer of metal and titanium forming the reaction vessel on the inner wall of the reaction vessel to prevent contamination by impurity metals is described.
  • Patent Document 2 also describes an invention of a method for preventing contamination of a titanium sponge reaction container with impurity metals.
  • a method for preventing contamination of a titanium sponge reaction container with impurity metals According to the present invention, when using an unused reaction vessel, ground particles of high chlorine sponge titanium are loaded, and the temperature is raised to a high temperature, thereby forming a reaction vessel on the inner wall of the reaction vessel with titanium and titanium. It is an invention of a method of forming an alloy layer and preventing contamination with impurity metals at a level equivalent to that of a reaction vessel already used.
  • an alloy of the metal forming the reaction vessel and the metal (titanium etc.) formed in the reaction vessel is previously deposited on the inner wall of the reaction vessel. It is disclosed to form. By doing so, it is possible to intentionally form, on the inner wall of the unused reaction vessel, an alloy layer equivalent to the alloy layer naturally formed in the reaction vessel used in the several reductive separation steps. And, by using this reaction vessel, metal (sponge titanium etc.) generated by the reaction comes in contact with the alloy layer formed on the inner wall of the reaction vessel, and impurity metal (metals forming the reaction vessel etc.) It is possible to prevent contamination by
  • the present invention solves the above-mentioned problems, and an impurity metal to sponge titanium is obtained from the inner wall of the metal container and / or tube used in the method for producing sponge titanium by the reduction reaction of titanium tetrachloride and metal magnesium. It is an object of the present invention to provide a metal container or tube capable of effectively solving the problem of elution, a method of manufacturing titanium sponge, and a method of manufacturing a titanium processed product or a cast product.
  • the inventors of the present invention have conducted intensive studies and have found that a metal container and / or tube having a titanium film on at least a part of a portion in contact with molten metal etc. It has been found that the prevention of contamination of the titanium sponge by the impurity metals is significantly improved, and the present invention has been completed.
  • Metal container or tube
  • a method for producing sponge titanium by the reduction reaction of titanium tetrachloride and metal magnesium, which is in contact with metal magnesium in a molten state, magnesium chloride in a molten state or a sponge titanium formed or a mixture of two or more thereof A method of producing titanium sponge using a metal container and / or a tube having a titanium film on at least a part of the portion.
  • the titanium film is formed by applying a paste containing titanium powder, titanium hydride powder or both of them to the inner wall of a metal container and / or tube and heat treating it, the above-mentioned [4] or [5] ] The manufacturing method of sponge titanium as described in-.
  • the metal container or tube of the present invention, and the method for producing titanium sponge are provided from the metal container and / or tube to the titanium sponge formed and to magnesium chloride and magnesium metal in the molten state to be stored and transported. It has the effect of preventing the elution of impurity metals. Since the titanium sponge obtained by the manufacturing method of the present invention has high purity, it is suitable as a raw material of various titanium products or cast products. In addition, the metal container and / or tube used in the production method of the present invention is also suitable as a member in contact with magnesium in a molten state, magnesium chloride or sponge titanium in a molten state, or a mixture of two or more thereof. .
  • the reduction reaction between titanium tetrachloride and metallic magnesium in the method for producing titanium sponge according to the present invention involves melting metallic magnesium from the metallic container for storing magnesium after setting the reaction container made of metal to an inert atmosphere.
  • the metal titanium tube is charged using a metal tube, and titanium tetrachloride is added dropwise to the charged metal magnesium to produce titanium sponge and magnesium chloride, and then metal is removed from the reaction vessel. And magnesium chloride and unreacted metallic magnesium are vacuum-separated through a tube to obtain a sponge titanium.
  • molten metal magnesium is filled in a metal reaction vessel kept at high temperature, titanium tetrachloride is dropped there, titanium tetrachloride is reduced with magnesium, metal reaction Form sponge titanium on the rooster in the vessel.
  • magnesium chloride Since magnesium chloride is by-produced in the reduction step, it is appropriately withdrawn from the reaction vessel, but it is impossible to completely withdraw it, and even after the process is completed, the magnesium chloride reacts with the unreacted metallic magnesium and the metal reaction. Remain in the container. It is vacuum separation process to remove these from sponge titanium.
  • a metal reaction container containing the produced sponge titanium and an empty metal reaction container are disposed adjacent to each other, and the upper portions of the two are connected by a metal pipe. And by vacuuming the inside of the latter metal reaction container while heating the former metal reaction container from the outside, the metal magnesium and magnesium chloride contained in the sponge titanium in the former metal reaction container Are transferred into the empty metal reaction vessel in the gaseous and / or molten state through the metal tube.
  • the metallic magnesium transferred into the empty metallic reaction vessel is again used for the reduction step.
  • the magnesium chloride which is also transferred into the empty metal reaction vessel, is electrolytically returned to metal magnesium and reused in the reduction step.
  • the metal container and / or tube used in the method for producing titanium sponge according to the present invention is at least a portion in contact with metallic magnesium in molten state, magnesium chloride in molten state or titanium sponge formed or a mixture of two or more thereof.
  • a part has a titanium film.
  • the titanium film of the present invention is a layer formed of titanium metal.
  • the titanium film of the present invention is a layer formed of titanium metal.
  • the boundary between the metal reaction container inner wall 1 and the titanium film 3 is as shown in FIG.
  • An alloy layer 2 formed by the mutual diffusion of metal and titanium on the inner wall of the metal reaction vessel is formed.
  • a portion having a titanium concentration of 75% or more is defined as the titanium film of the present invention.
  • the titanium concentration mentioned here is calculated by the following equation from the measurement result of each metal measured using an electron beam micro analyzer (SUPERPROBE JXA-8100, manufactured by Nippon Denshi Co., Ltd.).
  • (Ti concentration) (%) (Mass% of Ti) / ⁇ (mass% of Ti) + (mass% of Ni) + (mass% of Fe) + (mass% of Cr) ⁇ ⁇ 100
  • the thickness of the titanium film of the present invention is measured by the following method. Using a part of the inner wall of a metal container or tube (about 1 cm x 1 cm x 1 cm square) on which a titanium film is formed as a measurement sample, using an electron beam microanalyzer (SUPERPROBE JXA-8100, manufactured by Nippon Denshi Co., Ltd.) The cross section is measured, and the thickness of the titanium film in the measurement sample is measured at 10 points. Then, the minimum value of the ten points is taken as the thickness of the titanium film.
  • an electron beam microanalyzer SUPERPROBE JXA-8100, manufactured by Nippon Denshi Co., Ltd.
  • the thickness of the titanium film is preferably 0.02 mm or more, more preferably 0.02 mm or more and 5 mm or less, further preferably 0.1 mm or more and 5 mm or less, still more preferably 0.3 mm or more and 5 mm or less, and 0. 7 mm or more and 5 mm or less are more preferable, and 2 mm or more and 5 mm or less are the most preferable.
  • the metal container and tube are a metal container for storing molten metal magnesium, a metal container for transferring molten metal magnesium, and titanium tetrachloride in a reduction step.
  • Metal reaction container for reacting with metal magnesium, metal container for heating the collected metal magnesium and magnesium chloride to a molten state after recovering metal magnesium or magnesium chloride or a mixture thereof in a vacuum separation step Alternatively, it refers to a metal pipe or the like in contact with magnesium in a molten state, magnesium chloride in a molten state, or a mixture of two or more thereof in the method of producing titanium sponge.
  • the metal container and / or tube in the method for producing sponge titanium according to the present invention is at least a part of the portion in contact with metallic magnesium in molten state, magnesium chloride in molten state or titanium sponge formed or a mixture of two or more thereof.
  • the metal container and / or tube may be in contact with the molten magnesium, the molten magnesium chloride or the titanium sponge formed, or the mixture of two or more of them in the entirety. It is preferable to have a titanium film, and it is more preferable to have a titanium film on the entire inner wall of the metal container and / or tube.
  • the titanium film is, in particular, a metal reaction vessel in which titanium tetrachloride and molten metal magnesium are reacted, and metal magnesium recovered after recovering metal magnesium, magnesium chloride or a mixture thereof in a vacuum separation step.
  • magnesium chloride is preferably formed on at least a part of the inner wall of the metal container for heating it to a molten state.
  • a metal reaction vessel applying to at least a part of a portion which may come in contact with molten metal magnesium, molten magnesium chloride or sponge titanium produced or a mixture of two or more thereof preferable.
  • the metal container and / or tube of the present invention is preferably made of stainless steel or low carbon steel so that it can withstand the reaction at high temperature where reduction reaction between molten metal magnesium and titanium tetrachloride occurs. Is used.
  • the titanium film in the method for producing sponge titanium according to the present invention is, for example, a paste containing titanium powder, titanium hydride powder or both (ie, titanium powder paste, titanium hydride powder paste, or titanium powder and titanium hydride powder A mixed powder paste can be produced, and the produced paste can be applied to at least a part of the inner wall of a metal container and / or a tube and then heat-treated.
  • a paste containing titanium powder, titanium hydride powder or both is applied to the inner wall of a metal container and / or tube,
  • titanium on at least a part of the inner wall of the metal container and / or tube in contact with molten magnesium metal, molten magnesium chloride or formed titanium sponge or a mixture of two or more thereof in the inner wall of the metal container and / or tube There can be mentioned a method of forming a film, and using a metal container and / or a tube in which the titanium film is formed, to produce a sponge titanium by a reduction reaction of titanium tetrachloride and metal magnesium.
  • the titanium powder paste that can be used to form the titanium film of the present invention is preferably a paste comprising an organic component containing titanium powder and a binder resin.
  • the average particle diameter of titanium powder used for the above-mentioned titanium powder paste is 1 ⁇ m or more and 500 ⁇ m or less from the viewpoint of forming a titanium film having high adhesion with the inner wall and preventing elution of impurity metal by partial peeling of titanium film. Is preferably 1 ⁇ m to 200 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and still more preferably 1 ⁇ m to 25 ⁇ m.
  • the lower limit of the average particle size may be 15 ⁇ m or more because titanium powder involves a risk of ignition.
  • the average particle size of titanium powder can be measured by a laser diffraction / scattering particle size distribution measuring apparatus.
  • a laser diffraction / scattering particle size distribution measuring apparatus using pure water as a dispersion medium and sodium hexametaphosphate as a dispersing agent Let D50 measured by (LA-920, manufactured by Horiba, Ltd.) be the average particle diameter of titanium powder.
  • the titanium powder to be used can use a well-known titanium powder.
  • known titanium powder include HDH powder produced by the HDH method (hydrodehydrogenation method), atomized powder produced by the gas atomization method, titanium powder produced by the PREP method (plasma rotating electrode method), etc.
  • the binder resin is preferably one that oxidizes and / or decomposes and / or vaporizes during heat treatment, for example, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl butyral, aqueous cellulose (methylcellulose, 2-methacryloyloxyethyl phosphorylcholine, hydroxypropyl methylcellulose etc.), aqueous Acrylic (emulsion etc.), polyethylene oxide, ethyl cellulose, nitrocellulose etc. may be mentioned.
  • the titanium film of the present invention can be formed by forming a titanium powder paste by adding water, an organic solvent and the like to titanium powder, if necessary, and performing heat treatment.
  • the organic solvent for producing the titanium powder paste it is preferable to use one prepared by mixing water so that the ratio of organic solvent to water is 1:10 to 1: 1000.
  • a dispersing agent as needed.
  • SN Disperse 5040 manufactured by Sampnoko Co., Ltd.
  • the addition amount of the dispersant is preferably about 0.1% by mass with respect to the total amount of the titanium powder, the binder and the solvent.
  • a method for producing a titanium powder paste for example, the titanium powder, a binder resin, and, if necessary, an organic component containing a solvent, a dispersant, and other agents (plasticizer, thixo agent, defoamer, etc.) are kneaded There is a method of dispersing.
  • the dispersion method for kneading is not particularly limited. In the case of using a dispersing machine, for example, a three-roll mill, a ball mill, a bead mill, a roller mill, a planetary mixer, or Claire Mix can be used.
  • the heat treatment of titanium powder paste applied to the inner wall of a metal container and / or tube is preferably at 100 ° C. or more and 1080 ° C. or less in vacuum or in an inert gas atmosphere (argon gas atmosphere, nitrogen gas atmosphere, etc.) Preferably, it is performed at 700 ° C. or more and 1080 ° C. or less.
  • the reason for performing the heat treatment in this temperature range is that the eutectic melting temperature of iron and titanium is 1080 ° C., and if the heat treatment is performed at a temperature exceeding 1080 ° C., there is a risk of melting the container wall surface.
  • the inner wall surface of the container can be temporarily dissolved, and the titanium powder and the inner wall of the container can be baked, so it is necessary to carry out temperature and time in an appropriate combination.
  • the titanium powder paste applied to the inner wall of the metal container and / or the tube may be defoamed before the heat treatment.
  • the removal of the solvent means that most of the organic solvent and water are volatilized and removed from the titanium paste by heating. For example, it is preferable to remove the solvent while flowing dry air at 100 ° C. or more and 300 ° C. or less for 1 to 3 hours, because deterioration of the vacuum pump used at the time of vacuum heating can be prevented.
  • the sponge titanium obtained by the method for producing sponge titanium according to the present invention is sponge titanium in which the concentration of impurity metals is significantly reduced as compared to general sponge titanium.
  • sponge titanium having 2 ppm or less of iron and 1 ppm or less of each of nickel and chromium in the central portion (50 mm from the surface) of the sponge titanium.
  • the method for producing a titanium product or cast product of the present invention uses sponge titanium produced by the method of the present invention. Since titanium sponge obtained by the manufacturing method of the present invention has high purity, it is suitable as a raw material of various titanium products or cast products.
  • examples of titanium castings include ingots, billets, slabs and the like
  • examples of titanium processed products include titanium plates, titanium strips, titanium tubes, titanium rods, titanium rods, titanium wires, titanium target materials and the like.
  • the metal container and / or tube of the present invention is a metal container or tube used for producing titanium sponge by reduction reaction of titanium tetrachloride and metal magnesium, and has a titanium film on at least a part of the inner wall.
  • a metal container and / or tube in contact with molten magnesium metal, molten magnesium chloride or formed titanium sponge, or a mixture of two or more thereof is preferable, and the molten metal which is brought to a high temperature state More preferably, it is a metallic container and / or tube in contact with magnesium or molten magnesium chloride or mixtures thereof.
  • Titanium powder HDH powder (average particle diameter 20 ⁇ m), HDH powder (average particle diameter 45 ⁇ m), HDH powder (average particle diameter 150 ⁇ m) 2)
  • Organic solvent Polyvinyl alcohol 3)
  • Dispersant SN Dispersant (manufactured by San Nopco Co., Ltd.)
  • the thickness of the layer corresponding to the titanium film was measured at 10 points using the electron beam microanalyzer (SUPERPROBE JXA-8100, manufactured by Nippon Denshi Co., Ltd.) for the sample thus obtained, and the minimum value among them was measured.
  • the thickness of the titanium film was measured at 10 points using the electron beam microanalyzer (SUPERPROBE JXA-8100, manufactured by Nippon Denshi Co., Ltd.) for the sample thus obtained, and the minimum value among them was measured. was the thickness of the titanium film.
  • SPS 3100 24H
  • Example 1 A reaction container (made of low carbon steel, diameter: about 2 m, height: about) using titanium powder paste using HDH powder (average particle diameter 20 ⁇ m) as titanium powder and having a titanium film with a film thickness of 0.6 mm on the entire inner wall 4m) was produced. This was used to determine the relative dissolution rate of iron from the reaction vessel to metallic magnesium. The results are shown in Table 1.
  • Example 2 Under the same conditions as in Example 1 except that the thickness of the titanium film was changed from 0.6 mm to 0.02 mm, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
  • Example 3 Under the same conditions as in Example 1 except that the thickness of the titanium film was changed from 0.6 mm to 1 mm, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
  • Example 4 Under the same conditions as in Example 1 except that the thickness of the titanium film was changed from 0.6 mm to 3 mm, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
  • Example 5 Under the same conditions as in Example 1 except that titanium powder was changed from HDH powder (average particle diameter 20 ⁇ m) to HDH powder (average particle diameter 45 ⁇ m), the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined The The results are shown in Table 1.
  • Example 6 Under the same conditions as in Example 1 except that titanium powder was changed from HDH powder (average particle diameter 20 ⁇ m) to HDH powder (average particle diameter 150 ⁇ m), the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined The The results are shown in Table 1.
  • Comparative Example 2 A container made of low carbon steel (diameter: about 2 m, height: about 4 m) and crushed particles (average particle size: 50 mm to 150 mm, porosity 30 to 50%) of sponge titanium (raw material for film formation) Heat treatment was performed under the following conditions as described in Example 1 of 2009-127107 to deposit titanium on the entire inner wall of the reaction vessel, thereby forming an alloy layer of the material of the inner wall of the reaction vessel and titanium. Under the same conditions as in Example 1 except that this vessel was used instead of the reaction vessel with a film thickness of 0.6 mm of the titanium film, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
  • Heat treatment condition temperature 1000 ° C. Degree of vacuum: 10 to 50 Pa Time: 40 hours
  • Example 3 Using a container made of low carbon steel (diameter: about 2 m, height: about 4 m) and ground particles of high chlorine sponge titanium (average particle size: 12.5 mm), it is shown in Example 2 of JP-A 2014-214356. As done, an alloy layer was formed at the contact between titanium and the material of the inner wall of the reaction vessel. Specifically, ground particles of high chlorine sponge titanium were loaded into an unused reaction vessel, and heat treatment was performed under the following conditions. Under the same conditions as in Example 1 except that this vessel was used instead of the reaction vessel with a film thickness of 0.6 mm of the titanium film, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
  • Example 7 A reaction vessel made of SUS316 (diameter: about 2 m, height: about 4 m) is used instead of the low carbon steel reaction vessel, and a titanium film 0.6 mm thick is formed on the entire inner wall in the same manner as in Example 1. Under the same conditions as Example 1, the relative dissolution rate of impurity metals (iron, nickel, chromium) from the reaction vessel to metal magnesium was determined under the same conditions as in Example 1. The results are shown in Table 2.
  • impurity metals iron, nickel, chromium
  • Example 8 A titanium film having a thickness of 0.6 mm was formed in the same manner as in Example 1 on the entire inner wall of a reaction vessel (made of SUS316, diameter: about 2 m, height: about 4 m). Using this reaction vessel, sponge titanium was manufactured by the method described in Non-Patent Document 1, and the iron concentration in the center of the sponge titanium was measured. The results are shown in Table 3.
  • Example 9 In the same manner as in Example 1, the following container for transferring molten metal magnesium and the entire container inner wall for storing molten metal magnesium in addition to the entire inner wall of the reaction container used in Example 8 A titanium film of 0.6 mm in thickness was formed. Using this container, sponge titanium was manufactured by the method described in Non-Patent Document 1, and the iron concentration in the center of the sponge titanium was measured. The results are shown in Table 3.
  • Comparative Example 5 As shown in Example 2 of JP-A-2014-214356, an alloy layer is formed at the contact portion between titanium and the material of the inner wall of the reaction vessel (made of SUS316, diameter: about 2 m, height: about 4 m) The Using this reaction vessel having an alloy layer, sponge titanium was produced by the method described in Non-patent Document 1, and the iron concentration in the center of the sponge titanium was measured. The results are shown in Table 3.
  • the manufacturing method of the metal container or tube and the sponge titanium of the present invention can prevent the contamination by the impurities from the metal container and / or the pipe, and thus enables the manufacture of high purity sponge titanium.
  • the high purity sponge titanium produced according to the present invention can be suitably used as a raw material of various titanium products or castings.

Abstract

Provided are: a metallic container or tube capable of effectively solving the problem in which impurity metals are eluted into sponge titanium from the inner walls of metal containers and/or tubes used in methods for producing sponge titanium through a reduction reaction of titanium tetrachloride and metallic magnesium; a method for producing sponge titanium; and a method for producing a titanium processed product or a titanium cast product. The metallic container or tube is used for producing sponge titanium through a reduction reaction of titanium tetrachloride and metallic magnesium, and has a titanium film on at least a part of the inner wall thereof.

Description

金属製容器又は管、スポンジチタンの製造方法、及び、チタン加工品又は鋳造品の製造方法Metal container or tube, method of manufacturing sponge titanium, and method of manufacturing titanium product or cast product
 本発明は、四塩化チタンと金属マグネシウムとの還元反応によるスポンジチタンの製造に使用する金属製容器又は管、スポンジチタンの製造方法、及び、チタン加工品又は鋳造品の製造方法に関し、特に、金属製容器及び/又は管からの不純物による汚染を防止し、高純度なスポンジチタンの製造を可能とする金属製容器又は管、スポンジチタンの製造方法、及び、チタン加工品又は鋳造品の製造方法に関する。 The present invention relates to a metal container or tube used for producing sponge titanium by the reduction reaction of titanium tetrachloride and metallic magnesium, a method for producing sponge titanium, and a method for producing titanium processed or cast articles, particularly metal The present invention relates to a metal container or tube capable of preventing contamination with impurities from a container and / or a tube and enabling the production of high-purity sponge titanium, a method of producing a sponge titanium, and a method of producing a titanium processed or cast article. .
 スポンジチタンは、工業的にはクロール法により製造される。クロール法によるスポンジチタン製造工程は、造液工程、還元分離工程、破砕工程及び電解工程の四工程に大別することができる。
 これらの工程の一つである還元分離工程は、還元工程及び真空分離工程からなる。還元工程では、ステンレス製もしくは鋼製の反応容器内の溶融状態の金属マグネシウムに四塩化チタンを滴下することで還元反応が起こり、スポンジチタンが生成する。さらに、真空分離工程において、還元工程で生成したスポンジチタンを高温かつ減圧下で真空引きすることで、残存した塩化マグネシウムや金属マグネシウムが取り除かれたスポンジチタンが製造される。(非特許文献1)
Sponge titanium is industrially manufactured by the Kroll method. The sponge titanium production process by the Kroll method can be roughly classified into four processes of liquid formation process, reduction separation process, crushing process and electrolysis process.
One of these steps, the reduction separation step, comprises a reduction step and a vacuum separation step. In the reduction step, titanium tetrachloride is dropped to molten metal magnesium in a stainless steel or steel reaction vessel, whereby a reduction reaction occurs to generate sponge titanium. Furthermore, in the vacuum separation step, the sponge titanium produced in the reduction step is vacuumed at high temperature and under reduced pressure to produce sponge titanium from which the remaining magnesium chloride and metallic magnesium are removed. (Non-patent document 1)
 還元分離工程で用いられるスポンジチタン製造用の反応容器(以下、単に反応容器という)及び溶融状態の金属マグネシウムの保管、移送用の容器の内面である内壁は、ステンレス製又は低炭素鋼製であるため、高温下では鉄、ニッケル、クロムなどの不純物金属が容器の内壁から溶出し、スポンジチタンや金属マグネシウムの純度を低下させる原因となる。特に、未使用の反応容器では、不純物金属の溶出が顕著に目立つ。
 さらに、還元分離工程における、溶融状態の金属マグネシウムの反応容器への移送の際の、及び、真空分離による溶融状態の塩化マグネシウム及び金属マグネシウムの除去の際の、使用する金属製の管からこれらの溶融状態の金属及び/又は金属塩への不純物金属の溶出もまた、スポンジチタンや金属マグネシウムの純度を低下させる原因となる。
A reaction container for producing titanium sponge used in the reduction separation step (hereinafter simply referred to as a reaction container) and an inner wall which is an inner surface of a container for storage and transfer of molten metal magnesium are made of stainless steel or low carbon steel Therefore, at high temperatures, impurity metals such as iron, nickel and chromium are eluted from the inner wall of the container, which causes the purity of titanium sponge and metallic magnesium to be lowered. In particular, in the reaction container which has not been used, the elution of the impurity metal is remarkable.
Furthermore, in the reduction separation step, the transfer of the metallic magnesium in the molten state to the reaction vessel, and the removal of the molten magnesium chloride and metallic magnesium by vacuum separation from the metal tubes used. The elution of impurity metals into the molten metal and / or metal salt also causes the purity of sponge titanium and metal magnesium to decrease.
 金属製容器及び/又は管からスポンジチタンへ不純物金属が溶出した場合、純度の低下はスポンジチタンの外周部が特に顕著であり、純度の低下が起きたスポンジチタンの外周部を除去する必要が生じる。
 純度の低いスポンジチタンは、航空機向けなどの高純度チタンと比較すると大きく価値が下がってしまう。そのため、より高純度なスポンジチタンを製造する必要がある。
When the impurity metal is eluted from the metal container and / or tube to the sponge titanium, the decrease in purity is particularly remarkable at the outer periphery of the sponge titanium, and it becomes necessary to remove the outer periphery of the sponge titanium where the decrease in purity occurs. .
Low-purity sponge titanium is greatly reduced in value compared to high-purity titanium for aircraft. Therefore, it is necessary to produce a titanium sponge of higher purity.
 このようなスポンジチタンの反応容器からの不純物金属による汚染を防ぐ方法の一つとして、特許文献1には、生成する金属と同じ金属であるチタンを反応容器内で蒸発させて容器内壁に蒸着させることにより、反応容器の内壁に反応容器を形成する金属とチタンとの合金層を形成し、不純物金属による汚染を防止する方法が記載されている。 As one of the methods for preventing the contamination of the sponge titanium with the impurity metal from the reaction vessel, Patent Document 1 discloses that titanium, which is the same metal as the metal to be produced, is evaporated in the reaction vessel and evaporated on the inner wall of the vessel. Thus, a method of forming an alloy layer of metal and titanium forming the reaction vessel on the inner wall of the reaction vessel to prevent contamination by impurity metals is described.
 また、特許文献2にも、スポンジチタンの反応容器からの不純物金属による汚染を防ぐ方法の発明が記載されている。この発明は、未使用の反応容器を使用する際に、高塩素のスポンジチタンの粉砕粒を装填し、高温に昇温することで、反応容器の内壁に反応容器を形成する金属とチタンとの合金層を形成させ、既に使用した反応容器と同等のレベルで不純物金属による汚染を防止する方法の発明である。 Patent Document 2 also describes an invention of a method for preventing contamination of a titanium sponge reaction container with impurity metals. According to the present invention, when using an unused reaction vessel, ground particles of high chlorine sponge titanium are loaded, and the temperature is raised to a high temperature, thereby forming a reaction vessel on the inner wall of the reaction vessel with titanium and titanium. It is an invention of a method of forming an alloy layer and preventing contamination with impurity metals at a level equivalent to that of a reaction vessel already used.
 これらの先行技術は、いずれも、未使用の反応容器の初回使用前に、反応容器を形成する金属と反応容器中で生成する金属(チタン、等)との合金を、反応容器の内壁にあらかじめ形成させることを開示している。そうすることによって、未使用の反応容器の内壁に、数回の還元分離工程に使用された反応容器に自然に形成される合金層と同等の合金層を意図的に形成することができる。そして、この反応容器を使用することで、反応により生成する金属(スポンジチタン、等)は反応容器の内壁に形成された合金層と接することとなり、不純物金属(反応容器を形成する金属、等)による汚染を防ぐことが可能となる。 In any of these prior arts, prior to the first use of an unused reaction vessel, an alloy of the metal forming the reaction vessel and the metal (titanium etc.) formed in the reaction vessel is previously deposited on the inner wall of the reaction vessel. It is disclosed to form. By doing so, it is possible to intentionally form, on the inner wall of the unused reaction vessel, an alloy layer equivalent to the alloy layer naturally formed in the reaction vessel used in the several reductive separation steps. And, by using this reaction vessel, metal (sponge titanium etc.) generated by the reaction comes in contact with the alloy layer formed on the inner wall of the reaction vessel, and impurity metal (metals forming the reaction vessel etc.) It is possible to prevent contamination by
 しかしながら、反応容器の内壁に合金層を形成させる上記先行技術の方法では、生成する金属の不純物金属による汚染を幾分低減させることは可能であるが、大幅な汚染の低減にまでは至っていない。
 さらに、上記先行技術の方法では、反応容器を形成する金属とチタンとの合金層の形成を反応容器のみでしか行うことができず、不純物金属による汚染の防止の効果は反応容器のみに限定されてしまう。また、これらの方法では、四塩化チタンの還元に供される溶融状態の金属マグネシウムの保管又は移送のための金属製容器、及び、還元反応に用いる金属製の管を形成する金属による、溶融状態の塩化マグネシウム及び金属マグネシウムへの汚染を防ぐことはできない。
However, in the above-mentioned prior art method of forming an alloy layer on the inner wall of the reaction vessel, although it is possible to somewhat reduce the contamination of the produced metal by the impurity metal, it does not lead to a significant reduction of the contamination.
Furthermore, in the above prior art method, the formation of the alloy layer of metal and titanium forming the reaction vessel can be performed only by the reaction vessel, and the effect of preventing the contamination by the impurity metal is limited to the reaction vessel only. It will Moreover, in these methods, a molten state is obtained by a metal container for storing or transferring molten magnesium metal to be subjected to reduction of titanium tetrachloride, and a metal forming a metal tube used for the reduction reaction. Contamination of magnesium chloride and metallic magnesium can not be prevented.
 そのため、反応により生成する金属、特にスポンジチタン、のさらなる高純度化を目指すためには、容器の内壁を形成する金属と生成する金属との合金層を形成する上記先行技術の方法よりも優れた汚染防止効果があり、かつ、短時間で行うことができる方法が求められている。 Therefore, in order to further refine the metal produced by the reaction, in particular, titanium sponge, it is superior to the above-mentioned prior art method of forming an alloy layer of the metal forming the inner wall of the container and the metal forming. There is a need for a method that has a contamination prevention effect and can be performed in a short time.
特開2009-127107号JP, 2009-127107, A 特開2014-214356号JP 2014-214356
 本発明は上記課題を解決するもので、四塩化チタンと金属マグネシウムとの還元反応によりスポンジチタンを製造する方法において使用される金属製容器及び/又は管の内壁から、スポンジチタンへの不純物金属が溶出する問題を効果的に解決できる金属製容器又は管、スポンジチタンの製造方法、及び、チタン加工品又は鋳造品の製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and an impurity metal to sponge titanium is obtained from the inner wall of the metal container and / or tube used in the method for producing sponge titanium by the reduction reaction of titanium tetrachloride and metal magnesium. It is an object of the present invention to provide a metal container or tube capable of effectively solving the problem of elution, a method of manufacturing titanium sponge, and a method of manufacturing a titanium processed product or a cast product.
 上記問題を解決すべく、本発明者らが鋭意検討を重ねたところ、溶融状態の金属等と接触する部分の少なくとも一部にチタン膜を有する金属製容器及び/又は管を用いることで、生成するスポンジチタンの不純物金属による汚染の防止が著しく改善されることを見いだし、本発明を完成するに至った。 In order to solve the above problems, the inventors of the present invention have conducted intensive studies and have found that a metal container and / or tube having a titanium film on at least a part of a portion in contact with molten metal etc. It has been found that the prevention of contamination of the titanium sponge by the impurity metals is significantly improved, and the present invention has been completed.
 本発明は、かかる知見に基づきなされたもので、次のとおりである。
〔1〕四塩化チタンと金属マグネシウムとの還元反応によるスポンジチタンの製造に使用する金属製容器又は管であって、内壁の少なくとも一部にチタン膜を有する金属製容器又は管。
〔2〕前記チタン膜の厚さが0.02mm以上である、上記〔1〕に記載の金属製容器又は管。
〔3〕前記チタン膜が、溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくはスポンジチタン又はこれらの2つ以上の混合物と接触する部分に形成される、上記〔1〕又は〔2〕に記載の金属製容器又は管。
The present invention was made based on such findings and is as follows.
[1] A metallic container or tube used for producing titanium sponge by reduction reaction of titanium tetrachloride and metallic magnesium, wherein the metallic container or tube has a titanium film on at least a part of the inner wall.
[2] The metal container or tube according to the above [1], wherein the thickness of the titanium film is 0.02 mm or more.
[3] The titanium film according to the above [1] or [2], wherein the titanium film is formed in a portion in contact with molten metal magnesium, molten magnesium chloride or sponge titanium, or a mixture of two or more thereof. Metal container or tube.
〔4〕四塩化チタンと金属マグネシウムとの還元反応によるスポンジチタンの製造方法であって、溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくは生成したスポンジチタン又はこれらの2つ以上の混合物と接触する部分の少なくとも一部にチタン膜を有する金属製容器及び/又は管を用いる、スポンジチタンの製造方法。
〔5〕前記チタン膜の厚さが0.02mm以上である、上記〔4〕に記載のスポンジチタンの製造方法。
〔6〕前記チタン膜は、チタン粉、水素化チタン粉又はその両方を含むペーストを金属製容器及び/又は管の内壁に塗布し、熱処理することにより形成される、上記〔4〕又は〔5〕に記載のスポンジチタンの製造方法。
[4] A method for producing sponge titanium by the reduction reaction of titanium tetrachloride and metal magnesium, which is in contact with metal magnesium in a molten state, magnesium chloride in a molten state or a sponge titanium formed or a mixture of two or more thereof A method of producing titanium sponge using a metal container and / or a tube having a titanium film on at least a part of the portion.
[5] The method for producing sponge titanium according to the above [4], wherein the thickness of the titanium film is 0.02 mm or more.
[6] The titanium film is formed by applying a paste containing titanium powder, titanium hydride powder or both of them to the inner wall of a metal container and / or tube and heat treating it, the above-mentioned [4] or [5] ] The manufacturing method of sponge titanium as described in-.
〔7〕上記〔4〕~〔6〕のいずれか1つに記載の製造方法により製造されたスポンジチタンを用いる、チタン加工品又は鋳造品の製造方法。 [7] A manufacturing method of a titanium processed product or a cast product using the sponge titanium manufactured by the manufacturing method according to any one of the above [4] to [6].
 本発明の金属製容器又は管、及び、スポンジチタンの製造方法は、金属製容器及び/又は管からの、生成するスポンジチタン、並びに、保管、移送される溶融状態の塩化マグネシウム及び金属マグネシウムへの不純物金属の溶出を防止する効果を奏する。本発明の製造方法で得られたスポンジチタンは高純度であるため、様々なチタン加工品又は鋳造品の原料として好適である。また、本発明の製造方法に使用される金属製容器及び/又は管は、溶融状態のマグネシウム、溶融状態の塩化マグネシウム若しくはスポンジチタン又はこれらの2つ以上の混合物と接触する部材としても好適である。 The metal container or tube of the present invention, and the method for producing titanium sponge, are provided from the metal container and / or tube to the titanium sponge formed and to magnesium chloride and magnesium metal in the molten state to be stored and transported. It has the effect of preventing the elution of impurity metals. Since the titanium sponge obtained by the manufacturing method of the present invention has high purity, it is suitable as a raw material of various titanium products or cast products. In addition, the metal container and / or tube used in the production method of the present invention is also suitable as a member in contact with magnesium in a molten state, magnesium chloride or sponge titanium in a molten state, or a mixture of two or more thereof. .
本発明の一実施形態によるチタン膜を説明するための模式図である。It is a schematic diagram for demonstrating the titanium film | membrane by one Embodiment of this invention.
 本発明のスポンジチタンの製造方法における四塩化チタンと金属マグネシウムとの還元反応とは、金属製の反応容器を不活性雰囲気とした後、マグネシウムの保管のための金属製容器から金属マグネシウムを溶融状態で金属製の管を用いて装入し、装入された金属マグネシウムに対して四塩化チタンを滴下することで、スポンジチタンと塩化マグネシウムを製造する還元工程と、その後、反応容器中から金属製の管を通じて塩化マグネシウムと未反応の金属マグネシウムを真空分離し、スポンジチタンを得る真空分離工程とからなる反応をいう。前記還元工程では、高温に保持された金属製の反応容器のなかに溶融状態の金属マグネシウムを満たし、そこに四塩化チタンを滴下することにより、四塩化チタンをマグネシウムで還元し、金属製の反応容器内のロストル上にスポンジチタンを生成する。 The reduction reaction between titanium tetrachloride and metallic magnesium in the method for producing titanium sponge according to the present invention involves melting metallic magnesium from the metallic container for storing magnesium after setting the reaction container made of metal to an inert atmosphere. The metal titanium tube is charged using a metal tube, and titanium tetrachloride is added dropwise to the charged metal magnesium to produce titanium sponge and magnesium chloride, and then metal is removed from the reaction vessel. And magnesium chloride and unreacted metallic magnesium are vacuum-separated through a tube to obtain a sponge titanium. In the reduction step, molten metal magnesium is filled in a metal reaction vessel kept at high temperature, titanium tetrachloride is dropped there, titanium tetrachloride is reduced with magnesium, metal reaction Form sponge titanium on the rooster in the vessel.
 前記還元工程では塩化マグネシウムが副生するため、これを反応容器内から適宜抜き取るが、完全に抜き取ることは不可能であり、工程終了後もこの塩化マグネシウムが未反応の金属マグネシウムと共に金属製の反応容器内に残る。これらをスポンジチタンから除去するのが真空分離工程である。
 また、前記真空分離工程では、生成したスポンジチタンが入っている金属製の反応容器と空の金属製の反応容器を隣接配置し、両者の上部同士を金属製の管により接続する。そして、前者の金属製の反応容器を外部から加熱しながら後者の金属製の反応容器の内部を真空引きすることにより、前者の金属製の反応容器内のスポンジチタンに含まれる金属マグネシウム及び塩化マグネシウムを、前記金属製の管を通じてガス状および/または溶融状態で空の金属製の反応容器内へ移動させる。空の金属製の反応容器内へ移動された金属マグネシウムは再び還元工程に利用される。また、同じく空の金属製の反応容器内へ移動された塩化マグネシウムは電気分解反応により金属マグネシウムに戻され、還元工程に再利用される。
Since magnesium chloride is by-produced in the reduction step, it is appropriately withdrawn from the reaction vessel, but it is impossible to completely withdraw it, and even after the process is completed, the magnesium chloride reacts with the unreacted metallic magnesium and the metal reaction. Remain in the container. It is vacuum separation process to remove these from sponge titanium.
In the vacuum separation step, a metal reaction container containing the produced sponge titanium and an empty metal reaction container are disposed adjacent to each other, and the upper portions of the two are connected by a metal pipe. And by vacuuming the inside of the latter metal reaction container while heating the former metal reaction container from the outside, the metal magnesium and magnesium chloride contained in the sponge titanium in the former metal reaction container Are transferred into the empty metal reaction vessel in the gaseous and / or molten state through the metal tube. The metallic magnesium transferred into the empty metallic reaction vessel is again used for the reduction step. Also, the magnesium chloride, which is also transferred into the empty metal reaction vessel, is electrolytically returned to metal magnesium and reused in the reduction step.
 本発明のスポンジチタンの製造方法において用いられる金属製容器及び/又は管は、溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくは生成したスポンジチタン又はこれらの2つ以上の混合物と接触する部分の少なくとも一部にチタン膜を有する。このようなチタン膜を設けることにより、金属製容器及び/又は管から溶出する不純物金属の拡散速度を抑えることができ、スポンジチタンのみでなく、溶融状態の金属マグネシウム及び溶融状態の塩化マグネシウムへの不純物金属による汚染を低減することができる。このため、最終的に生成するスポンジチタンへの不純物金属による汚染を著しく低減することができる。 The metal container and / or tube used in the method for producing titanium sponge according to the present invention is at least a portion in contact with metallic magnesium in molten state, magnesium chloride in molten state or titanium sponge formed or a mixture of two or more thereof. A part has a titanium film. By providing such a titanium film, the diffusion rate of impurity metals eluted from the metal container and / or tube can be suppressed, and not only to sponge titanium but also to molten metal magnesium and molten magnesium chloride. Contamination with impurity metals can be reduced. For this reason, the contamination by the impurity metal to the sponge titanium finally formed can be reduced remarkably.
 本発明のチタン膜とは、金属チタンにより形成されている層である。例えば、容器の内壁にチタン粉ペーストを塗布し熱処理を行った金属製の反応容器の場合、図1に示されるように、該金属製の反応容器内壁1とチタン膜3との境界には、金属製の反応容器内壁の金属とチタンとの相互拡散により生成した合金層2が形成される。本発明のチタン膜は、チタン濃度が75%以上で構成されている部分を本発明のチタン膜と定義する。ここでいうチタン濃度とは、電子線マイクロアナライザ(SUPERPROBE JXA-8100、日本電子株式会社製)を用いて測定した各金属の測定結果から、下記式で算出したものである。
 (Ti濃度)(%)
   =(Tiの質量%)/{(Tiの質量%)+(Niの質量%)+(Feの質量%)+(Crの質量%)}
   ×100
The titanium film of the present invention is a layer formed of titanium metal. For example, in the case of a metal reaction container in which titanium powder paste is applied to the inner wall of the container and heat treated, the boundary between the metal reaction container inner wall 1 and the titanium film 3 is as shown in FIG. An alloy layer 2 formed by the mutual diffusion of metal and titanium on the inner wall of the metal reaction vessel is formed. In the titanium film of the present invention, a portion having a titanium concentration of 75% or more is defined as the titanium film of the present invention. The titanium concentration mentioned here is calculated by the following equation from the measurement result of each metal measured using an electron beam micro analyzer (SUPERPROBE JXA-8100, manufactured by Nippon Denshi Co., Ltd.).
(Ti concentration) (%)
= (Mass% of Ti) / {(mass% of Ti) + (mass% of Ni) + (mass% of Fe) + (mass% of Cr)}
× 100
 本発明のチタン膜の厚さの測定は、下記方法で行う。チタン膜が成膜されている金属製容器又は管の内壁の一部(約1cm×1cm×1cm角)を測定サンプルとして、電子線マイクロアナライザ(SUPERPROBE JXA-8100、日本電子株式会社製)を用いて断面を測定し、該測定サンプル中のチタン膜の厚さを10点測定する。そして、その10点のうちの最小値をチタン膜の厚さとする。 The thickness of the titanium film of the present invention is measured by the following method. Using a part of the inner wall of a metal container or tube (about 1 cm x 1 cm x 1 cm square) on which a titanium film is formed as a measurement sample, using an electron beam microanalyzer (SUPERPROBE JXA-8100, manufactured by Nippon Denshi Co., Ltd.) The cross section is measured, and the thickness of the titanium film in the measurement sample is measured at 10 points. Then, the minimum value of the ten points is taken as the thickness of the titanium film.
 上記チタン膜の厚さは、0.02mm以上が好ましく、0.02mm以上、5mm以下がより好ましく、0.1mm以上、5mm以下がさらに好ましく、0.3mm以上、5mm以下が一層好ましく、0.7mm以上、5mm以下がより一層好ましく、2mm以上、5mm以下が最も好ましい。膜厚をこの範囲とすることで、金属製容器及び/又は管から溶出する不純物金属の拡散速度をより効果的に抑えることができ、不純物金属によるスポンジチタンへの汚染をより一層低減することができる。 The thickness of the titanium film is preferably 0.02 mm or more, more preferably 0.02 mm or more and 5 mm or less, further preferably 0.1 mm or more and 5 mm or less, still more preferably 0.3 mm or more and 5 mm or less, and 0. 7 mm or more and 5 mm or less are more preferable, and 2 mm or more and 5 mm or less are the most preferable. By setting the film thickness in this range, the diffusion speed of the impurity metal eluted from the metal container and / or the tube can be more effectively suppressed, and the contamination of the sponge titanium by the impurity metal can be further reduced. it can.
 前記金属製容器及び管とは、より具体的には、溶融状態の金属マグネシウムを保管するための金属製容器、溶融状態の金属マグネシウムを移送するための金属製容器、還元工程において四塩化チタンと金属マグネシウムとを反応させる金属製の反応容器、真空分離工程において金属マグネシウム若しくは塩化マグネシウム又はこれらの混合物を回収後、回収された金属マグネシウムと塩化マグネシウムを加熱して溶融状態とするための金属製容器、或いは、スポンジチタンの製造方法において溶融状態のマグネシウム、溶融状態の塩化マグネシウム又はこれらの2つ以上の混合物と接触する金属製の管等を指す。 More specifically, the metal container and tube are a metal container for storing molten metal magnesium, a metal container for transferring molten metal magnesium, and titanium tetrachloride in a reduction step. Metal reaction container for reacting with metal magnesium, metal container for heating the collected metal magnesium and magnesium chloride to a molten state after recovering metal magnesium or magnesium chloride or a mixture thereof in a vacuum separation step Alternatively, it refers to a metal pipe or the like in contact with magnesium in a molten state, magnesium chloride in a molten state, or a mixture of two or more thereof in the method of producing titanium sponge.
 本発明のスポンジチタンの製造方法における金属製容器及び/又は管は、溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくは生成したスポンジチタン又はこれらの2つ以上の混合物と接触する部分の少なくとも一部にチタン膜を有していればよく、金属製容器及び/又は管は、溶融状態のマグネシウム、溶融状態の塩化マグネシウム若しくは生成したスポンジチタン又はこれらの2つ以上の混合物と接触する部分の全体にチタン膜を有することが好ましく、金属製容器及び/又は管の内壁全体にチタン膜を有することがより好ましい。 The metal container and / or tube in the method for producing sponge titanium according to the present invention is at least a part of the portion in contact with metallic magnesium in molten state, magnesium chloride in molten state or titanium sponge formed or a mixture of two or more thereof. The metal container and / or tube may be in contact with the molten magnesium, the molten magnesium chloride or the titanium sponge formed, or the mixture of two or more of them in the entirety. It is preferable to have a titanium film, and it is more preferable to have a titanium film on the entire inner wall of the metal container and / or tube.
 前記チタン膜は、特に、四塩化チタンと溶融状態の金属マグネシウムとを反応させる金属製の反応容器、及び、真空分離工程において金属マグネシウム、塩化マグネシウム又はこれらの混合物を回収後、回収された金属マグネシウムと塩化マグネシウムを加熱して溶融状態とするための金属製容器の内壁の少なくとも一部に形成させることが好ましい。金属製の反応容器であれば、溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくは生成したスポンジチタン又はこれらの2つ以上の混合物と接触する可能性のある部分の少なくとも一部に塗布することが好ましい。また、金属マグネシウムを保管又は移送するため金属製容器であれば、溶融状態のマグネシウムが直接接触する高さまでの少なくとも一部に前記チタン膜を形成することが好ましい。また、金属製の管であれば、溶融状態の金属が流れる際に接触する可能性のある部分の少なくとも一部に前記チタン膜を形成することが好ましい。 The titanium film is, in particular, a metal reaction vessel in which titanium tetrachloride and molten metal magnesium are reacted, and metal magnesium recovered after recovering metal magnesium, magnesium chloride or a mixture thereof in a vacuum separation step. And magnesium chloride is preferably formed on at least a part of the inner wall of the metal container for heating it to a molten state. In the case of a metal reaction vessel, applying to at least a part of a portion which may come in contact with molten metal magnesium, molten magnesium chloride or sponge titanium produced or a mixture of two or more thereof preferable. In the case of a metal container for storing or transferring metallic magnesium, it is preferable to form the titanium film at least at a portion up to the height at which the molten magnesium directly contacts. Further, in the case of a metal pipe, it is preferable to form the titanium film on at least a part of a portion which may come into contact when molten metal flows.
 本発明の金属製容器及び/又は管は、溶融状態の金属マグネシウムと四塩化チタンとの還元反応が起こる高温下での反応に耐えうるように、好ましくは、ステンレス鋼又は低炭素鋼で製造されているものが使用される。 The metal container and / or tube of the present invention is preferably made of stainless steel or low carbon steel so that it can withstand the reaction at high temperature where reduction reaction between molten metal magnesium and titanium tetrachloride occurs. Is used.
 本発明のスポンジチタンの製造方法におけるチタン膜は、例えば、チタン粉、水素化チタン粉又はその両方を含むペースト(すなわち、チタン粉ペースト、水素化チタン粉ペースト、又はチタン粉と水素化チタン粉の混合粉ペースト)を作成し、作成したペーストを金属製容器及び/又は管の内壁の少なくとも一部に塗布し、その後、熱処理することにより形成することができる。 The titanium film in the method for producing sponge titanium according to the present invention is, for example, a paste containing titanium powder, titanium hydride powder or both (ie, titanium powder paste, titanium hydride powder paste, or titanium powder and titanium hydride powder A mixed powder paste can be produced, and the produced paste can be applied to at least a part of the inner wall of a metal container and / or a tube and then heat-treated.
 上記ペーストを用いた本発明におけるスポンジチタンの製造方法の一つの実施形態として、例えば、チタン粉、水素化チタン粉又はその両方を含むペーストを金属製容器及び/又は管の内壁に塗布し、その後熱処理することによって、該金属製容器及び/又は管の内壁における溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくは生成したスポンジチタン又はこれらの2つ以上の混合物と接触する部分の少なくとも一部にチタン膜を形成し、該チタン膜が形成された金属製容器及び/又は管を用いて、四塩化チタンと金属マグネシウムとの還元反応によるスポンジチタンの製造を行う方法を挙げることができる。 In one embodiment of the method for producing sponge titanium according to the present invention using the above paste, for example, a paste containing titanium powder, titanium hydride powder or both is applied to the inner wall of a metal container and / or tube, By heat treatment, titanium on at least a part of the inner wall of the metal container and / or tube in contact with molten magnesium metal, molten magnesium chloride or formed titanium sponge or a mixture of two or more thereof in the inner wall of the metal container and / or tube There can be mentioned a method of forming a film, and using a metal container and / or a tube in which the titanium film is formed, to produce a sponge titanium by a reduction reaction of titanium tetrachloride and metal magnesium.
 以下、チタン粉ペーストによる、チタン膜の形成の好ましい例について説明する。なお、水素化チタン粉ペースト、又はチタン粉と水素化チタン粉の混合粉ペーストを用いる場合であっても、チタン粉ペーストを用いる場合と同様に、下記の好ましい態様又は範囲を適用することができる。 Hereinafter, a preferable example of formation of a titanium film by titanium powder paste will be described. Even in the case of using titanium hydride powder paste or a mixed powder paste of titanium powder and titanium hydride powder, the following preferred embodiments or ranges can be applied as in the case of using titanium powder paste. .
 本発明のチタン膜の形成に使用することができるチタン粉ペーストは、チタン粉とバインダー樹脂を含む有機成分からなるペーストであることが好ましい。 The titanium powder paste that can be used to form the titanium film of the present invention is preferably a paste comprising an organic component containing titanium powder and a binder resin.
 上記チタン粉ペーストに使用するチタン粉の平均粒径は、内壁との密着性が高いチタン膜を形成し、チタン膜の部分的な剥離による不純物金属の溶出を防ぐ観点から、1μm以上、500μm以下が好ましく、1μm以上、200μm以下がより好ましく、1μm以上、50μm以下がさらに好ましく、1μm以上、25μm以下がより一層好ましい。チタン粉は発火の危険を伴うため、平均粒径の下限は15μm以上でも良い。
 チタン粉の平均粒径は、レーザ回折/散乱式粒度分布測定装置によって測定することができる。具体的には、出力30Wにて4分間チタン粉の超音波分散処理した後、分散媒である純水と分散剤であるヘキサメタりん酸ナトリウムとを用いて、レーザ回折/散乱式粒度分布測定装置(LA-920、株式会社堀場製作所製)により測定されるD50を、チタン粉の平均粒径とする。
The average particle diameter of titanium powder used for the above-mentioned titanium powder paste is 1 μm or more and 500 μm or less from the viewpoint of forming a titanium film having high adhesion with the inner wall and preventing elution of impurity metal by partial peeling of titanium film. Is preferably 1 μm to 200 μm, more preferably 1 μm to 50 μm, and still more preferably 1 μm to 25 μm. The lower limit of the average particle size may be 15 μm or more because titanium powder involves a risk of ignition.
The average particle size of titanium powder can be measured by a laser diffraction / scattering particle size distribution measuring apparatus. Specifically, after ultrasonic dispersion treatment of titanium powder at an output of 30 W for 4 minutes, a laser diffraction / scattering particle size distribution measuring apparatus using pure water as a dispersion medium and sodium hexametaphosphate as a dispersing agent Let D50 measured by (LA-920, manufactured by Horiba, Ltd.) be the average particle diameter of titanium powder.
 使用するチタン粉は、公知のチタン粉を使用することができる。公知のチタン粉としては、例えば、HDH法(水素化脱水素法)で製造されたHDH粉、ガスアトマイズ法で製造されたアトマイズ粉、PREP法(プラズマ回転電極法)で作成したチタン粉などがあげられる。バインダー樹脂は、熱処理時に酸化及び/又は分解及び/又は気化するものが好ましく、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルブチラール、水系セルロース(メチルセルロース、2-メタクリロイルオキシエチルホスホリルコリン、ヒドロキシプロピルメチルセルロースなど)、水系アクリル(エマルジョンなど)、ポリエチレンオキサイド、エチルセルロース、ニトロセルロースなどがあげられる。 The titanium powder to be used can use a well-known titanium powder. Examples of known titanium powder include HDH powder produced by the HDH method (hydrodehydrogenation method), atomized powder produced by the gas atomization method, titanium powder produced by the PREP method (plasma rotating electrode method), etc. Be The binder resin is preferably one that oxidizes and / or decomposes and / or vaporizes during heat treatment, for example, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl butyral, aqueous cellulose (methylcellulose, 2-methacryloyloxyethyl phosphorylcholine, hydroxypropyl methylcellulose etc.), aqueous Acrylic (emulsion etc.), polyethylene oxide, ethyl cellulose, nitrocellulose etc. may be mentioned.
 本発明のチタン膜は、必要に応じて、チタン粉に水や有機溶剤などを添加してチタン粉ペーストを作成し、熱処理することにより形成することができる。チタン粉ペーストを作成する際の有機溶剤には、有機溶剤対水が1:10~1:1000になるように水を混合して作成したものを使用することが好ましい。 The titanium film of the present invention can be formed by forming a titanium powder paste by adding water, an organic solvent and the like to titanium powder, if necessary, and performing heat treatment. As the organic solvent for producing the titanium powder paste, it is preferable to use one prepared by mixing water so that the ratio of organic solvent to water is 1:10 to 1: 1000.
 また、チタン粉の分散性を向上させるために、必要に応じて分散剤を添加しても良い。例えば、SNディスパーサント5040(サンプノコ株式会社製)などがあげられる。分散剤の添加量は、チタン粉、バインダー及び溶媒の全量に対して0.1質量%程度が好ましい。 Moreover, in order to improve the dispersibility of titanium powder, you may add a dispersing agent as needed. For example, SN Disperse 5040 (manufactured by Sampnoko Co., Ltd.) may, for example, be mentioned. The addition amount of the dispersant is preferably about 0.1% by mass with respect to the total amount of the titanium powder, the binder and the solvent.
 チタン粉ペーストを製造する方法としては、例えば、前記チタン粉末、バインダー樹脂と必要に応じて溶媒、分散剤、その他の剤(可塑剤、チキソ剤、泡消剤など)を含む有機成分を、混練、分散する方法があげられる。混練するための分散方法は特に限定されない。分散機を用いる場合は、例えば、3本ロールミルやボールミル、ビーズミル、ローラーミル、プラネタリーミキサー、クレアミックスなどを用いることができる。 As a method for producing a titanium powder paste, for example, the titanium powder, a binder resin, and, if necessary, an organic component containing a solvent, a dispersant, and other agents (plasticizer, thixo agent, defoamer, etc.) are kneaded There is a method of dispersing. The dispersion method for kneading is not particularly limited. In the case of using a dispersing machine, for example, a three-roll mill, a ball mill, a bead mill, a roller mill, a planetary mixer, or Claire Mix can be used.
 金属製容器及び/又は管の内壁に塗布したチタン粉ペーストの熱処理は、好ましくは、真空中又は不活性ガス雰囲気(アルゴンガス雰囲気、窒素ガス雰囲気など)にて100℃以上、1080℃以下、より好ましくは、700℃以上、1080℃以下で行う。この温度域で熱処理を行う理由は、鉄とチタンの共晶溶融温度が1080℃であり、1080℃を越える温度で熱処理を行うと容器壁面が溶融する危険性があるためである。しかしながら、短時間であれば、一時的に容器の内壁表面を溶解し、チタン粉と容器の内壁とを焼き固めることもできるため、温度と時間は適切な組み合わせで行う必要がある。
 なお、金属製容器及び/又は管の内壁に塗布したチタン粉ペーストは、熱処理を行う前に、脱媒を行っても良い。脱媒とは、加熱することでチタンペースト中から有機溶媒、および水のほとんどが揮発除去されることを指す。例えば、100℃以上、300℃以下で1~3時間乾燥空気を流しながら脱媒することで、真空加熱時に使用する真空ポンプの劣化を防ぐことができるため好ましい。
The heat treatment of titanium powder paste applied to the inner wall of a metal container and / or tube is preferably at 100 ° C. or more and 1080 ° C. or less in vacuum or in an inert gas atmosphere (argon gas atmosphere, nitrogen gas atmosphere, etc.) Preferably, it is performed at 700 ° C. or more and 1080 ° C. or less. The reason for performing the heat treatment in this temperature range is that the eutectic melting temperature of iron and titanium is 1080 ° C., and if the heat treatment is performed at a temperature exceeding 1080 ° C., there is a risk of melting the container wall surface. However, if it is a short time, the inner wall surface of the container can be temporarily dissolved, and the titanium powder and the inner wall of the container can be baked, so it is necessary to carry out temperature and time in an appropriate combination.
The titanium powder paste applied to the inner wall of the metal container and / or the tube may be defoamed before the heat treatment. The removal of the solvent means that most of the organic solvent and water are volatilized and removed from the titanium paste by heating. For example, it is preferable to remove the solvent while flowing dry air at 100 ° C. or more and 300 ° C. or less for 1 to 3 hours, because deterioration of the vacuum pump used at the time of vacuum heating can be prevented.
 本発明のスポンジチタンの製造方法で得られるスポンジチタンは、一般的なスポンジチタンと比べ、不純物金属の濃度が大幅に低減されたスポンジチタンである。特に、スポンジチタンの中心部(表面から50mm内側)の鉄が2ppm以下、ニッケル及びクロムがそれぞれ1ppm以下のスポンジチタンを得ることができる。 The sponge titanium obtained by the method for producing sponge titanium according to the present invention is sponge titanium in which the concentration of impurity metals is significantly reduced as compared to general sponge titanium. In particular, it is possible to obtain sponge titanium having 2 ppm or less of iron and 1 ppm or less of each of nickel and chromium in the central portion (50 mm from the surface) of the sponge titanium.
 また、本発明のチタン加工品又は鋳造品の製造方法は、本発明の方法により製造されたスポンジチタンを用いる。本発明の製造方法で得られたスポンジチタンは、高純度であるため、様々なチタン加工品又は鋳造品の原料として好適である。例えば、チタン鋳造品としては、インゴット、ビレット、スラブなどが挙げられ、チタン加工品としては、チタン板、チタン条、チタン管、チタン棒、チタン線、チタンターゲット材などが挙げられる。 In addition, the method for producing a titanium product or cast product of the present invention uses sponge titanium produced by the method of the present invention. Since titanium sponge obtained by the manufacturing method of the present invention has high purity, it is suitable as a raw material of various titanium products or cast products. For example, examples of titanium castings include ingots, billets, slabs and the like, and examples of titanium processed products include titanium plates, titanium strips, titanium tubes, titanium rods, titanium rods, titanium wires, titanium target materials and the like.
 本発明の金属製容器及び/又は管は、四塩化チタンと金属マグネシウムとの還元反応によるスポンジチタンの製造に使用する金属製容器又は管であって、内壁の少なくとも一部にチタン膜を有する。特に、溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくは生成したスポンジチタン又はこれらの2つ以上の混合物と接触する金属製容器及び/又は管であることが好ましく、高温状態となる溶融状態の金属マグネシウム若しくは溶融状態の塩化マグネシウム又はこれらの混合物と接触する金属製容器及び/又は管であることがより好ましい。 The metal container and / or tube of the present invention is a metal container or tube used for producing titanium sponge by reduction reaction of titanium tetrachloride and metal magnesium, and has a titanium film on at least a part of the inner wall. In particular, a metal container and / or tube in contact with molten magnesium metal, molten magnesium chloride or formed titanium sponge, or a mixture of two or more thereof is preferable, and the molten metal which is brought to a high temperature state More preferably, it is a metallic container and / or tube in contact with magnesium or molten magnesium chloride or mixtures thereof.
 以下、本発明の内容を実施例及び比較例によってさらに具体的に説明するが、本発明はこれら例によってなんら限定されるものではない。 Hereinafter, the contents of the present invention will be more specifically described by examples and comparative examples, but the present invention is not limited by these examples.
(1)チタン粉ペーストの原料、及びチタン粉ペーストの製造方法
1)チタン粉:HDH粉(平均粒径20μm),HDH粉(平均粒径45μm),HDH粉(平均粒径150μm)
2)有機溶剤:ポリビニルアルコール
3)分散剤:SNディスパーサント(サンノプコ株式会社製)
(1) Raw material of titanium powder paste and manufacturing method of titanium powder paste 1) Titanium powder: HDH powder (average particle diameter 20 μm), HDH powder (average particle diameter 45 μm), HDH powder (average particle diameter 150 μm)
2) Organic solvent: Polyvinyl alcohol 3) Dispersant: SN Dispersant (manufactured by San Nopco Co., Ltd.)
 (有機溶剤):(水)=1:100の割合になるように配合して混合溶剤とし、分散剤を前記混合溶剤に対して0.2質量%で添加し、溶媒を作製した。その後、チタン粉と前記溶媒とを(チタン粉):(溶媒)=30kg:9kgの割合になるように混合し、チタン粉ペーストを製造した。 (Organic solvent): (water) It mix | blended so that it might become a ratio of 1: 100, it was set as mixed solvent, the dispersing agent was added by 0.2 mass% with respect to the said mixed solvent, and the solvent was produced. Thereafter, titanium powder and the solvent were mixed so that the ratio of (titanium powder) :( solvent) = 30 kg: 9 kg, to prepare a titanium powder paste.
(2)チタン膜の成膜方法
 上記(1)で得られたチタン粉ペーストを低炭素鋼製又はSUS316製の反応容器の内壁に塗布し、チタン粉ペースト膜を形成後、以下の条件にて脱媒、熱処理を行い、反応容器の内壁にチタン膜を形成した。
(2) Film forming method of titanium film The titanium powder paste obtained in the above (1) is applied to the inner wall of a low carbon steel or stainless steel reaction container made of SUS316 to form a titanium powder paste film under the following conditions. The solvent was removed and heat treatment was performed to form a titanium film on the inner wall of the reaction vessel.
 1)脱媒条件
   温度:100℃
   乾燥空気通気時間:3時間
 2)熱処理条件
   温度:800℃
   時間:3時間
   雰囲気:真空
1) Demixing conditions Temperature: 100 ° C
Dry air aeration time: 3 hours 2) heat treatment conditions temperature: 800 ° C.
Time: 3 hours Atmosphere: Vacuum
(3)チタン膜厚の測定方法
 チタン膜の厚さの測定方法は、例えば、図1に示すように、反応容器の内壁1にチタン層3が成膜されている場合、反応容器の内壁の材料とチタンとの合金層2の外側の部分のチタン膜3のみの厚さを下記のとおり測定する。反応容器の内壁に成膜されているチタン膜の一部を切り取り、スライシングマシンで約1cm×1cm×1cm角に切断し、冷間埋込樹脂(主成分ポリエステル系樹脂)約20gと硬化剤(メチルエチルケトンパーオキサイド、メチルエチルケトン)約2gを用いて成形型に埋め込み、1日程度放置して樹脂を固め、サンプルとする。そして、耐水研磨紙を用いてサンプルの断面が樹脂層から出るように研磨を行い、さらに、測定を行うサンプル表面を真空蒸着機で白金コーティングする。このようにして得られたサンプルについて、電子線マイクロアナライザ(SUPERPROBE JXA-8100、日本電子株式会社製)を用いてチタン膜に相当する層の厚さを10点測定し、それらのうちの最小値をチタン膜の厚さとした。
(3) Measurement Method of Titanium Film Thickness For example, as shown in FIG. 1, when the titanium layer 3 is formed on the inner wall 1 of the reaction vessel, the titanium film thickness is measured on the inner wall of the reaction vessel. The thickness of only the titanium film 3 in the outer part of the alloy layer 2 of material and titanium is measured as follows. Cut a part of the titanium film formed on the inner wall of the reaction vessel, cut it into about 1 cm x 1 cm x 1 cm square with a slicing machine, and about 20 g of cold embedding resin (main component polyester resin) and curing agent ( The mixture is embedded in a mold using about 2 g of methyl ethyl ketone peroxide, methyl ethyl ketone), and allowed to stand for about a day to harden the resin, to give a sample. Then, polishing is performed using a water-resistant abrasive paper so that the cross section of the sample comes out of the resin layer, and the surface of the sample to be measured is platinum-coated with a vacuum deposition machine. The thickness of the layer corresponding to the titanium film was measured at 10 points using the electron beam microanalyzer (SUPERPROBE JXA-8100, manufactured by Nippon Denshi Co., Ltd.) for the sample thus obtained, and the minimum value among them was measured. Was the thickness of the titanium film.
(4)反応容器の内壁からの不純物金属の相対的な溶出速度の測定方法
 上記(2)で得られた反応容器内に、純度99.9%の金属マグネシウムを10t添加後、アルゴン雰囲気中で3時間加熱し、900℃で3時間保持し、冷却した。得られた金属マグネシウムをサンプリングし、その中の不純物金属の濃度(鉄、ニッケル、クロム)を、ICP発光分光分析装置(SPS3100(24H)、株式会社日立ハイテクサイエンス製)により測定し、チタン膜を成膜していない比較例1(又は比較例4)を基準(=1)として、反応容器から金属マグネシウムへ溶出した不純物金属の相対濃度を求め、これを不純物金属の相対的な溶出速度とした。
(4) Method of measuring relative elution rate of impurity metal from inner wall of reaction vessel In the reaction vessel obtained in the above (2), after adding 10 t of metallic magnesium having a purity of 99.9%, in an argon atmosphere Heat for 3 hours, hold at 900 ° C. for 3 hours, and cool. The obtained metallic magnesium is sampled, and the concentration of impurity metals (iron, nickel, chromium) in the metallic magnesium is measured by an ICP emission spectral analyzer (SPS 3100 (24H), manufactured by Hitachi High-Tech Science Co., Ltd.) to obtain a titanium film Based on Comparative Example 1 (or Comparative Example 4) not having a film formed as a standard (= 1), the relative concentration of the impurity metal eluted from the reaction vessel to metallic magnesium was determined, and this was taken as the relative elution rate of the impurity metal. .
(5)スポンジチタンの中心部の鉄濃度の測定方法
 スポンジチタンの中心部の鉄濃度は、還元反応工程を行い、その後の真空分離工程を終え、反応容器から抜き出したスポンジチタンの円柱塊(直径約2m、高さ約2m)の外周面から50mmの深さより内側部分の平均鉄濃度を、ICP-MS(SPQ9700、株式会社日立ハイテクサイエンス製)により測定した。
(5) Measuring method of iron concentration in the central part of sponge titanium Iron concentration in the central part of sponge titanium is subjected to a reduction reaction step, and then vacuum separation step is completed, and a cylindrical lump of sponge titanium (diameter The average iron concentration in the inner portion of a depth of 50 mm from the outer peripheral surface of about 2 m and a height of about 2 m) was measured by ICP-MS (SPQ 9700, manufactured by Hitachi High-Tech Science Co., Ltd.).
[実施例1]
 チタン粉としてHDH粉(平均粒径20μm)を用いたチタン粉ペーストを用い、内壁全体に膜厚0.6mmのチタン膜を有する反応容器(低炭素鋼製、直径:約2m、高さ:約4m)を作製した。これを用いて、反応容器から金属マグネシウムへの鉄の相対的な溶出速度を求めた。その結果を表1に示す。
Example 1
A reaction container (made of low carbon steel, diameter: about 2 m, height: about) using titanium powder paste using HDH powder (average particle diameter 20 μm) as titanium powder and having a titanium film with a film thickness of 0.6 mm on the entire inner wall 4m) was produced. This was used to determine the relative dissolution rate of iron from the reaction vessel to metallic magnesium. The results are shown in Table 1.
[実施例2]
 チタン膜の膜厚を0.6mmから0.02mmに変更した以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの鉄の相対的な溶出速度を求めた。その結果を表1に示す。
Example 2
Under the same conditions as in Example 1 except that the thickness of the titanium film was changed from 0.6 mm to 0.02 mm, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
[実施例3]
 チタン膜の膜厚を0.6mmから1mmに変更した以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの鉄の相対的な溶出速度を求めた。その結果を表1に示す。
[Example 3]
Under the same conditions as in Example 1 except that the thickness of the titanium film was changed from 0.6 mm to 1 mm, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
[実施例4]
 チタン膜の膜厚を0.6mmから3mmに変更した以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの鉄の相対的な溶出速度を求めた。その結果を表1に示す。
Example 4
Under the same conditions as in Example 1 except that the thickness of the titanium film was changed from 0.6 mm to 3 mm, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
[実施例5]
 チタン粉をHDH粉(平均粒径20μm)からHDH粉(平均粒径45μm)に変更した以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの鉄の相対的な溶出速度を求めた。その結果を表1に示す。
[Example 5]
Under the same conditions as in Example 1 except that titanium powder was changed from HDH powder (average particle diameter 20 μm) to HDH powder (average particle diameter 45 μm), the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined The The results are shown in Table 1.
[実施例6]
 チタン粉をHDH粉(平均粒径20μm)からHDH粉(平均粒径150μm)に変更した以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの鉄の相対的な溶出速度を求めた。その結果を表1に示す。
[Example 6]
Under the same conditions as in Example 1 except that titanium powder was changed from HDH powder (average particle diameter 20 μm) to HDH powder (average particle diameter 150 μm), the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined The The results are shown in Table 1.
[比較例1]
 チタン膜を有しない反応容器(低炭素鋼製、直径:約2m、高さ:約4m)を用いた以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの鉄の溶出濃度を求め、これを実施例1~6及び比較例2~3に対する基準(=1)とした。
Comparative Example 1
Under the same conditions as Example 1, the elution concentration of iron from the reaction vessel to metallic magnesium was measured except that a reaction vessel without titanium film (made of low carbon steel, diameter: about 2 m, height: about 4 m) was used This was determined as a reference (= 1) for Examples 1 to 6 and Comparative Examples 2 to 3.
[比較例2]
 低炭素鋼製の容器(直径:約2m、高さ:約4m)及びスポンジチタン(成膜原料)の粉砕粒(平均粒径:50mm~150mm,気孔率30~50%)を用い、特開2009-127107号の実施例1に記載されたとおりの以下の条件にて熱処理を行い、反応容器の内壁全体にチタンを蒸着させ、反応容器の内壁の材料とチタンとの合金層を形成した。チタン膜の膜厚0.6mmの反応容器の代わりにこの容器を用いたこと以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの鉄の相対的な溶出速度を求めた。その結果を表1に示す。
Comparative Example 2
A container made of low carbon steel (diameter: about 2 m, height: about 4 m) and crushed particles (average particle size: 50 mm to 150 mm, porosity 30 to 50%) of sponge titanium (raw material for film formation) Heat treatment was performed under the following conditions as described in Example 1 of 2009-127107 to deposit titanium on the entire inner wall of the reaction vessel, thereby forming an alloy layer of the material of the inner wall of the reaction vessel and titanium. Under the same conditions as in Example 1 except that this vessel was used instead of the reaction vessel with a film thickness of 0.6 mm of the titanium film, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
 熱処理条件
   温度:1000℃
   真空度:10~50Pa
   時間:40時間
Heat treatment condition temperature: 1000 ° C.
Degree of vacuum: 10 to 50 Pa
Time: 40 hours
[比較例3]
 低炭素鋼製の容器(直径:約2m、高さ:約4m)及び高塩素スポンジチタンの粉砕粒(平均粒径:12.5mm)を用い、特開2014-214356号の実施例2に示されたとおりに、チタンと反応容器の内壁の材料との接触部に合金層を形成させた。具体的には、高塩素スポンジチタンの粉砕粒を未使用の反応容器に装填し、以下の条件にて熱処理を行った。チタン膜の膜厚0.6mmの反応容器の代わりにこの容器を用いたこと以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの鉄の相対的な溶出速度を求めた。その結果を表1に示す。
Comparative Example 3
Using a container made of low carbon steel (diameter: about 2 m, height: about 4 m) and ground particles of high chlorine sponge titanium (average particle size: 12.5 mm), it is shown in Example 2 of JP-A 2014-214356. As done, an alloy layer was formed at the contact between titanium and the material of the inner wall of the reaction vessel. Specifically, ground particles of high chlorine sponge titanium were loaded into an unused reaction vessel, and heat treatment was performed under the following conditions. Under the same conditions as in Example 1 except that this vessel was used instead of the reaction vessel with a film thickness of 0.6 mm of the titanium film, the relative dissolution rate of iron from the reaction vessel to metallic magnesium was determined. The results are shown in Table 1.
 熱処理条件
   温度:800℃~1080℃
   時間:100時間
Heat treatment conditions Temperature: 800 ° C to 1080 ° C
Time: 100 hours
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例7]
 低炭素鋼製の反応容器に代えてSUS316製の反応容器(直径:約2m、高さ:約4m)を使用し、内壁全体に実施例1と同じ方法で、厚さ0.6mmのチタン膜を形成した以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの不純物金属(鉄、ニッケル、クロム)の相対的な溶出速度を求めた。その結果を表2に示す。
[Example 7]
A reaction vessel made of SUS316 (diameter: about 2 m, height: about 4 m) is used instead of the low carbon steel reaction vessel, and a titanium film 0.6 mm thick is formed on the entire inner wall in the same manner as in Example 1. Under the same conditions as Example 1, the relative dissolution rate of impurity metals (iron, nickel, chromium) from the reaction vessel to metal magnesium was determined under the same conditions as in Example 1. The results are shown in Table 2.
[比較例4]
 低炭素鋼製の反応容器に代えてSUS316製の反応容器(直径:約2m、高さ:約4m)を使用し、かつ、チタン膜を形成しなかった以外は、実施例1と同じ条件で、反応容器から金属マグネシウムへの不純物金属(鉄、ニッケル、クロム)の溶出濃度を求め、これを実施例7に対する基準(=1)とした。
Comparative Example 4
A reaction container made of SUS316 (diameter: about 2 m, height: about 4 m) is used instead of the low carbon steel reaction container, and the same conditions as in Example 1 are used except that a titanium film is not formed. The elution concentration of impurity metals (iron, nickel, chromium) from the reaction vessel to metallic magnesium was determined, and this was used as the standard (= 1) for Example 7.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例8]
 反応容器(SUS316製、直径:約2m、高さ:約4m)の内壁全体に実施例1と同じ方法で、厚さ0.6mmのチタン膜を成膜した。この反応容器を用いて、非特許文献1に記載の方法でスポンジチタンを製造し、スポンジチタンの中心部の鉄濃度を測定した。その結果を表3に示す。
[Example 8]
A titanium film having a thickness of 0.6 mm was formed in the same manner as in Example 1 on the entire inner wall of a reaction vessel (made of SUS316, diameter: about 2 m, height: about 4 m). Using this reaction vessel, sponge titanium was manufactured by the method described in Non-Patent Document 1, and the iron concentration in the center of the sponge titanium was measured. The results are shown in Table 3.
[実施例9]
 実施例8で用いた反応容器の内壁全体に加えて、溶融状態の金属マグネシウムを移送する下記の容器及び溶融状態の金属マグネシウムを保管する下記容器の内壁全体に、実施例1と同じ方法で厚さ0.6mmのチタン膜を成膜した。この容器を用いて非特許文献1に記載の方法でスポンジチタンを製造し、スポンジチタンの中心部の鉄濃度を測定した。その結果を表3に示す。
[Example 9]
In the same manner as in Example 1, the following container for transferring molten metal magnesium and the entire container inner wall for storing molten metal magnesium in addition to the entire inner wall of the reaction container used in Example 8 A titanium film of 0.6 mm in thickness was formed. Using this container, sponge titanium was manufactured by the method described in Non-Patent Document 1, and the iron concentration in the center of the sponge titanium was measured. The results are shown in Table 3.
  溶融状態のマグネシウムの保管容器:低炭素鋼直径:約1.5m、高さ:約2m
  溶融状態のマグネシウムの移送容器:低炭素鋼直径:約1.5m、高さ:約1.5m
Storage container of magnesium in molten state: Low carbon steel diameter: about 1.5 m, height: about 2 m
Magnesium transfer container in the molten state: Low carbon steel diameter: about 1.5m, height: about 1.5m
[比較例5]
 特開2014-214356号の実施例2に示されたとおりに、チタンと反応容器(SUS316製、直径:約2m、高さ:約4m)の内壁の材料との接触部に合金層を形成させた。合金層を有するこの反応容器を用いて、非特許文献1に記載の方法でスポンジチタンを製造し、スポンジチタンの中心部の鉄濃度を測定した。その結果を表3に示す。
Comparative Example 5
As shown in Example 2 of JP-A-2014-214356, an alloy layer is formed at the contact portion between titanium and the material of the inner wall of the reaction vessel (made of SUS316, diameter: about 2 m, height: about 4 m) The Using this reaction vessel having an alloy layer, sponge titanium was produced by the method described in Non-patent Document 1, and the iron concentration in the center of the sponge titanium was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の金属製容器又は管、及び、スポンジチタンの製造方法は、金属製容器及び/又は管からの不純物による汚染を防止することができるため、高純度なスポンジチタンの製造を可能にする。本発明により製造された高純度なスポンジチタンは、様々なチタン加工品又は鋳造品の原料として好適に使用することができる。 The manufacturing method of the metal container or tube and the sponge titanium of the present invention can prevent the contamination by the impurities from the metal container and / or the pipe, and thus enables the manufacture of high purity sponge titanium. The high purity sponge titanium produced according to the present invention can be suitably used as a raw material of various titanium products or castings.
1   反応容器の内壁
2   反応容器の内壁の金属とチタンとの合金層
3   チタン膜
 
1 inner wall of reaction vessel 2 alloy layer of metal and titanium on inner wall of reaction vessel 3 titanium film

Claims (7)

  1.  四塩化チタンと金属マグネシウムとの還元反応によるスポンジチタンの製造に使用する金属製容器又は管であって、内壁の少なくとも一部にチタン膜を有する金属製容器又は管。 A metal container or tube used for producing titanium sponge by reduction reaction of titanium tetrachloride and metal magnesium, wherein the metal container or tube has a titanium film on at least a part of the inner wall.
  2.  前記チタン膜の厚さが0.02mm以上である、請求項1に記載の金属製容器又は管。 The metal container or tube according to claim 1, wherein the thickness of the titanium film is 0.02 mm or more.
  3.  前記チタン膜が、溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくはスポンジチタン又はこれらの2つ以上の混合物と接触する部分に形成される、請求項1又は2に記載の金属製容器又は管。 The metal container or tube according to claim 1 or 2, wherein the titanium film is formed in a portion in contact with molten metal magnesium, molten magnesium chloride or titanium sponge, or a mixture of two or more thereof.
  4.  四塩化チタンと金属マグネシウムとの還元反応によるスポンジチタンの製造方法であって、溶融状態の金属マグネシウム、溶融状態の塩化マグネシウム若しくは生成したスポンジチタン又はこれらの2つ以上の混合物と接触する部分の少なくとも一部にチタン膜を有する金属製容器及び/又は管を用いる、スポンジチタンの製造方法。 A method for producing sponge titanium by a reduction reaction of titanium tetrachloride and metallic magnesium, which comprises at least a portion in contact with metallic magnesium in molten state, magnesium chloride in molten state or sponge titanium formed or a mixture of two or more thereof. The manufacturing method of sponge titanium using the metal containers and / or pipe which have a titanium film in part.
  5.  前記チタン膜の厚さが0.02mm以上である、請求項4に記載のスポンジチタンの製造方法。 The method for producing sponge titanium according to claim 4, wherein the thickness of the titanium film is 0.02 mm or more.
  6.  前記チタン膜は、チタン粉、水素化チタン粉又はその両方を含むペーストを金属製容器及び/又は管の内壁に塗布し、熱処理することにより形成される、請求項4又は5に記載のスポンジチタンの製造方法。 The sponge titanium according to claim 4 or 5, wherein the titanium film is formed by applying a paste containing titanium powder, titanium hydride powder or both to the inner wall of a metal container and / or a tube and heat treating it. Manufacturing method.
  7.  請求項4~6のいずれか1項に記載の製造方法により製造されたスポンジチタンを用いる、チタン加工品又は鋳造品の製造方法。
     
    A method of producing a titanium product or cast using the sponge titanium produced by the method according to any one of claims 4 to 6.
PCT/JP2017/006640 2016-02-23 2017-02-22 Metallic container or tube, method for producing sponge titanium, and method for producing titanium processed product or titanium cast product WO2017146109A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501740A JP6784746B2 (en) 2016-02-23 2017-02-22 Manufacturing method of metal container or tube, sponge titanium, and manufacturing method of titanium processed product or cast product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-032363 2016-02-23
JP2016032363 2016-02-23

Publications (1)

Publication Number Publication Date
WO2017146109A1 true WO2017146109A1 (en) 2017-08-31

Family

ID=59686193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006640 WO2017146109A1 (en) 2016-02-23 2017-02-22 Metallic container or tube, method for producing sponge titanium, and method for producing titanium processed product or titanium cast product

Country Status (2)

Country Link
JP (1) JP6784746B2 (en)
WO (1) WO2017146109A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044917A1 (en) * 2017-09-01 2019-03-07 東邦チタニウム株式会社 Device for analyzing chlorine concentration, method for analyzing chlorine concentration, device for producing titanium tetrachloride, and method for producing sponge titanium
JP2020002434A (en) * 2018-06-28 2020-01-09 東邦チタニウム株式会社 Manufacturing method of metallic reduction reaction vessel including diffusion layer, manufacturing method of high melting point metal, and coating material for metallic reduction reaction vessel
JP2020002435A (en) * 2018-06-28 2020-01-09 東邦チタニウム株式会社 Manufacturing method of metallic reduction reaction vessel, metallic reduction reaction vessel, and manufacturing method of titanium
JP2020180358A (en) * 2019-04-26 2020-11-05 東邦チタニウム株式会社 Manufacturing method of sponge titanium, and titanium product or manufacturing method of cast product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110824A (en) * 1983-11-22 1985-06-17 Mitsubishi Metal Corp Reaction vessel for producing high melting high- toughness metal
JPS6112838A (en) * 1984-06-28 1986-01-21 Hiroshi Ishizuka Manufacturing apparatus of spongy titanium
WO2003020992A1 (en) * 2001-09-03 2003-03-13 Sumitomo Titanium Corporation Reaction vessel for use in producing titanium sponge, heat shielding plate provided therein, and method for producing titanium sponge
JP2014065968A (en) * 2012-09-07 2014-04-17 Toho Titanium Co Ltd Porous titanium thin film and method of fabricating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751724B2 (en) * 2013-04-26 2015-07-22 株式会社大阪チタニウムテクノロジーズ Refractory metal manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110824A (en) * 1983-11-22 1985-06-17 Mitsubishi Metal Corp Reaction vessel for producing high melting high- toughness metal
JPS6112838A (en) * 1984-06-28 1986-01-21 Hiroshi Ishizuka Manufacturing apparatus of spongy titanium
WO2003020992A1 (en) * 2001-09-03 2003-03-13 Sumitomo Titanium Corporation Reaction vessel for use in producing titanium sponge, heat shielding plate provided therein, and method for producing titanium sponge
JP2014065968A (en) * 2012-09-07 2014-04-17 Toho Titanium Co Ltd Porous titanium thin film and method of fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TADAO TOMONARI, TITANIUM INDUSTRY: ITS GROWING STEPS AND FUTURE POSSIBILITIES, 2001, Tokyo, pages 67 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044917A1 (en) * 2017-09-01 2019-03-07 東邦チタニウム株式会社 Device for analyzing chlorine concentration, method for analyzing chlorine concentration, device for producing titanium tetrachloride, and method for producing sponge titanium
JPWO2019044917A1 (en) * 2017-09-01 2020-05-28 東邦チタニウム株式会社 Chlorine concentration analyzer, chlorine concentration analysis method, titanium tetrachloride production device and titanium sponge production method
JP2020002434A (en) * 2018-06-28 2020-01-09 東邦チタニウム株式会社 Manufacturing method of metallic reduction reaction vessel including diffusion layer, manufacturing method of high melting point metal, and coating material for metallic reduction reaction vessel
JP2020002435A (en) * 2018-06-28 2020-01-09 東邦チタニウム株式会社 Manufacturing method of metallic reduction reaction vessel, metallic reduction reaction vessel, and manufacturing method of titanium
JP7106371B2 (en) 2018-06-28 2022-07-26 東邦チタニウム株式会社 METHOD FOR MANUFACTURING METAL REDUCTION REACTION VESSEL WITH DIFFUSION LAYER, METHOD FOR MANUFACTURE OF HIGH-MELTING METAL, AND COATING MATERIAL FOR METAL REDUCE REACTION VESSEL
JP7106372B2 (en) 2018-06-28 2022-07-26 東邦チタニウム株式会社 METHOD FOR MANUFACTURING METAL REDUCTION REACTION VESSEL, METHOD FOR MANUFACTURING METAL REDUCTION REACTION VESSEL, AND TITANIUM
JP2020180358A (en) * 2019-04-26 2020-11-05 東邦チタニウム株式会社 Manufacturing method of sponge titanium, and titanium product or manufacturing method of cast product
JP7301590B2 (en) 2019-04-26 2023-07-03 東邦チタニウム株式会社 A method for producing sponge titanium, and a method for producing titanium processed or cast products.

Also Published As

Publication number Publication date
JPWO2017146109A1 (en) 2018-12-20
JP6784746B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2017146109A1 (en) Metallic container or tube, method for producing sponge titanium, and method for producing titanium processed product or titanium cast product
US9421612B2 (en) Production of substantially spherical metal powders
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
US9067264B2 (en) Method of manufacturing pure titanium hydride powder and alloyed titanium hydride powders by combined hydrogen-magnesium reduction of metal halides
JP3794713B2 (en) Tantalum powder, its production method and sintered anode obtained therefrom
JP5912559B2 (en) Method for producing FePt-C sputtering target
JP4894008B2 (en) Method for producing MoNb-based sintered sputtering target material
US5623725A (en) Process for producing very pure platinum materials, semi-finished parts and foils dispersion-reinforced with Y203
US7156974B2 (en) Method of manufacturing titanium and titanium alloy products
US20100064852A1 (en) Method for purification of metal based alloy and intermetallic powders
JP6185644B2 (en) Process for producing tantalum alloys
CN108213440A (en) A kind of preparation method of Mo Re alloys tubing
CN111118379B (en) Co-bonded TiZrNbMoTa refractory high-entropy alloy and preparation method thereof
JP3671133B2 (en) Method for producing titanium
CN106794498B (en) Titanium-encapsulated structure and titanium material
JP2004169139A (en) Production method for high-purity titanium
JP5403825B2 (en) Method for storing high-purity sponge titanium particles and method for producing high-purity titanium ingot using the same
US20140127068A1 (en) Production of metal or alloy objects
WO2003106082A1 (en) Method for producing metal powder and formed product of raw material for metal
Guo et al. Preparation of low-oxygen-containing Ti–48Al–2Cr–2Nb alloy powder by direct reduction of oxides
RU2761494C1 (en) Method for obtaining an electrode for the production of powder materials from titanium alloys for additive and granular technologies
JP2001011609A (en) Sputtering target and its manufacture
JP2018177554A (en) PRODUCTION METHOD OF FINE Mg2Si PARTICLE AND FINE Mg2Si PARTICLE
JP2020132916A (en) Metal reduction reactor, method for producing metal reduction reactor, and method for producing sponge titanium
WO2017171056A1 (en) Titanium composite material and method for manufacturing same, and package

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756547

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756547

Country of ref document: EP

Kind code of ref document: A1