WO2017145826A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2017145826A1
WO2017145826A1 PCT/JP2017/005020 JP2017005020W WO2017145826A1 WO 2017145826 A1 WO2017145826 A1 WO 2017145826A1 JP 2017005020 W JP2017005020 W JP 2017005020W WO 2017145826 A1 WO2017145826 A1 WO 2017145826A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
working medium
hfo
refrigeration cycle
compressor
Prior art date
Application number
PCT/JP2017/005020
Other languages
French (fr)
Japanese (ja)
Inventor
洋輝 速水
正人 福島
高木 洋一
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2018501588A priority Critical patent/JPWO2017145826A1/en
Publication of WO2017145826A1 publication Critical patent/WO2017145826A1/en
Priority to US16/110,694 priority patent/US20180363965A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/08Refrigeration machines, plants and systems having means for detecting the concentration of a refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus using a working medium containing 1,1,2-trifluoroethylene.
  • HFC hydrofluorocarbon
  • GWP global warming potential
  • Patent Document 1 describes a refrigeration cycle apparatus using a working medium containing 1,1,2-trifluoroethylene (HFO-1123).
  • refrigeration oil highly compatible with the working medium is stored in the compressor to prevent seizure.
  • a part of this refrigeration oil is discharged out of the compressor together with the working medium.
  • the refrigeration oil discharged to the outside of the compressor accumulates in an accumulator provided on the suction side of the compressor. If the compressor oil in the compressor is insufficient, problems such as seizure occur in the compressor.
  • An oil return mechanism is provided in the refrigeration cycle apparatus so that the refrigeration oil does not accumulate more than a certain amount outside the compressor.
  • an oil return mechanism for example, there is an oil return hole provided in a lead-out pipe or the like in an accumulator (Patent Document 2, etc.).
  • a so-called stagnation phenomenon may occur in which the working medium dissolves in refrigeration oil accumulated outside a compressor such as an accumulator.
  • a working medium containing HFO-1123 depending on the type of components other than HFO-1123, if the temperature of the refrigeration oil is low, the components other than HFO-1123 have higher solubility in the refrigeration oil than HFO-1123.
  • the outside air temperature during operation is low, components other than HFO-1123 are selectively dissolved in the refrigerating machine oil that has been cooled by the ambient air to a low temperature.
  • a non-azeotropic refrigerant or a pseudo-azeotropic refrigerant is used as a working medium in a refrigeration cycle apparatus, since the boiling point of each refrigerant component contained in the working medium is different, an accumulator that stores a large amount of liquid refrigerant in the refrigeration cycle apparatus, In a receiver or the like, a refrigerant component having a high boiling point is likely to stay as a liquid refrigerant than a refrigerant component having a low boiling point.
  • a working medium containing HFO-1123 is used in the refrigeration cycle apparatus, for example, assuming that HFO-1123 has the lowest boiling point among refrigerant components, components other than HFO-1123 are more accumulator than HFO-1123. It tends to stay as a liquid refrigerant in receivers and receivers. For this reason, the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle may increase.
  • a disproportionation reaction is a chemical reaction in which two or more of the same type of molecule react with each other to produce two or more different types of products.
  • a working medium containing HFO-1123 is used in the refrigeration cycle apparatus, the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle is kept below a certain level in order to reduce the risk of disproportionation reaction of HFO-1123.
  • the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle increases due to changes in various conditions such as the outside air temperature during the operation of the refrigeration cycle apparatus, the risk of causing a disproportionation reaction of HFO-1123 increases. .
  • the present invention has been made in view of the above background, and when a working medium containing HFO-1123 is used, a refrigeration cycle apparatus capable of effectively suppressing the occurrence of a disproportionation reaction of HFO-1123.
  • the purpose is to provide.
  • a refrigeration cycle apparatus circulates a working medium containing 1,1,2-trifluoroethylene from a compressor to the compressor via a condenser, an expansion valve, and an evaporator.
  • a refrigeration cycle apparatus having a circulation path for causing the composition of the working refrigerant to change from a steady composition, a composition change detecting means for adjusting the composition of the working medium, and the composition adjustment.
  • Control means for controlling the means, and the control means controls the composition adjusting means based on a detection result by the composition change detecting means.
  • the composition change detection means is a discharge temperature sensor that detects a discharge temperature of the compressor, and the discharge temperature sensor detects the discharge temperature sensor. When the temperature exceeds a predetermined temperature, it is detected that the composition of the working medium has changed from a steady composition.
  • the refrigeration cycle apparatus is the above-described refrigeration cycle apparatus, wherein the composition change detection means is a superheat degree detection means for detecting a superheat degree of the working medium sucked into the compressor.
  • the composition change detection means is a superheat degree detection means for detecting a superheat degree of the working medium sucked into the compressor.
  • a refrigeration cycle apparatus is the above-described refrigeration cycle apparatus, wherein the composition change detection means detects a degree of supercooling of the working medium sucked into the compressor. And detecting that the composition of the working medium has changed when the degree of supercooling detected by the supercooling degree detection means deviates from a predetermined range.
  • the refrigeration cycle apparatus is the above-described refrigeration cycle apparatus, further comprising an accumulator that stores excess working medium between the evaporator and the compressor in the circulation path,
  • the adjusting means is a heater attached to the accumulator, and the control means energizes the heater when the composition change detecting means detects that the composition of the working medium has changed.
  • the refrigeration cycle apparatus is the above-described refrigeration cycle apparatus, further comprising an accumulator for accumulating excess working medium between the evaporator and the compressor in the circulation path,
  • the adjusting means has a hot gas bypass passage for diverting a part of hot gas discharged from the compressor and introducing the hot gas into the accumulator, and an on-off valve provided in the hot gas bypass passage, and the composition
  • the control means opens the on-off valve from the closed state.
  • the refrigeration cycle apparatus is the above-described refrigeration cycle apparatus, wherein the composition adjusting means is a motor that drives a compression mechanism of the compressor, and the composition change detecting means is configured to detect the working medium. When it is detected that the composition has changed, the control means increases the rotational speed of the motor.
  • the refrigeration cycle apparatus is the above-described refrigeration cycle apparatus, wherein the composition adjusting means is the expansion valve, and the composition change detecting means detects that the composition of the working medium has changed.
  • the control means increases the opening of the expansion valve.
  • the refrigeration cycle apparatus is the above-described refrigeration cycle apparatus, further comprising a receiver that accumulates excess working medium between the condenser and the expansion valve in the circulation path.
  • the adjusting means has a liquid refrigerant bypass passage for taking out the liquid refrigerant accumulated in the receiver and injecting it into the intermediate pressure part of the compressor via the auxiliary expansion valve, and the composition change detecting means uses the composition change detection means to compose the working medium.
  • the control means increases the opening of the auxiliary expansion valve.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a refrigeration cycle apparatus.
  • FIG. 2 is a temperature-entropy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus.
  • FIG. 3 is a pressure-enthalpy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus.
  • FIG. 4 is a diagram showing a schematic configuration of the accumulator.
  • FIG. 5 is a block diagram showing a schematic configuration of a composition adjustment mechanism for adjusting the composition of the working medium circulating in the refrigeration cycle.
  • FIG. 6 is a diagram for explaining the superheat degree detection means as the composition change detection means of the first modification.
  • FIG. 7 is a diagram for explaining superheat degree detection means as composition change detection means of Modification 2.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a refrigeration cycle apparatus.
  • FIG. 2 is a temperature-entropy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus.
  • FIG. 3 is
  • FIG. 8 is a diagram for explaining a hot gas introducing unit which is a composition adjusting unit of the third modification.
  • FIG. 9 is a diagram showing a schematic configuration of an accumulator to which a hot gas bypass path in the hot gas introducing means is connected.
  • FIG. 10 is a diagram for explaining the composition adjusting means of the fourth modification.
  • FIG. 11 is a diagram for explaining the composition adjusting means of the fifth modification.
  • FIG. 12 is a diagram for explaining the composition adjusting means of the sixth modification.
  • the working medium used in the present invention includes 1,1,2-trifluoroethylene (HFO-1123).
  • HFO-1123 as a working medium are shown particularly in Table 1 in a relative comparison with R410A (a pseudo-azeotropic refrigerant mixture having a mass ratio of 1: 1 between HFC-32 and HFC-125).
  • the cycle performance is indicated by a coefficient of performance and a refrigerating capacity obtained by a method described later.
  • the coefficient of performance and the refrigeration capacity of HFO-1123 are expressed as relative values (hereinafter referred to as the relative coefficient of performance and relative refrigeration capacity) with R410A as the reference (1.000).
  • the global warming potential (GWP) is a value of 100 years indicated in the Intergovernmental Panel on climate Change (IPCC) Fourth Assessment Report (2007) or measured according to the method. In this specification, GWP refers to this value unless otherwise specified.
  • IPCC Intergovernmental Panel on climate Change
  • the working medium used in the present invention preferably contains HFO-1123, and may optionally contain a compound used as a normal working medium in addition to HFO-1123 as long as the effects of the present invention are not impaired.
  • a compound used as a normal working medium in addition to HFO-1123 examples include HFO other than HFC and HFO-1123 (HFC having a carbon-carbon double bond), other components that vaporize and liquefy together with HFO-1123 other than these, etc. Is mentioned.
  • HFO other than HFC and HFO-1123 HFC having a carbon-carbon double bond
  • the working medium contains such a compound in combination with HFO-1123, a better cycle performance can be obtained while keeping the GWP low, and the influence of the temperature gradient is small.
  • thermo gradient When the working medium contains, for example, HFO-1123 and an optional component, it has a considerable temperature gradient except when the HFO-1123 and the optional component have an azeotropic composition.
  • the temperature gradient of the working medium varies depending on the type of the optional component and the mixing ratio of HFO-1123 and the optional component.
  • azeotropic or pseudo-azeotropic mixture such as R410A is preferably used.
  • Non-azeotropic compositions have the problem of causing composition changes when filled from a pressure vessel to a refrigeration air conditioner. Furthermore, when refrigerant leakage from the refrigeration air conditioner occurs, the refrigerant composition in the refrigeration air conditioner is very likely to change, and it is difficult to restore the refrigerant composition to the initial state. On the other hand, the above problem can be avoided if the mixture is azeotropic or pseudo-azeotropic.
  • Temperature gradient is generally used as an index for measuring the possibility of using the mixture in the working medium.
  • a temperature gradient is defined as the nature of heat exchangers, such as evaporation in an evaporator or condensation in a condenser, with different start and end temperatures. In the azeotrope, the temperature gradient is 0, and in the pseudoazeotrope, the temperature gradient is very close to 0, for example, the temperature gradient of R410A is 0.2.
  • the inlet temperature in the evaporator decreases, which increases the possibility of frost formation, which is a problem.
  • a heat cycle system in order to improve heat exchange efficiency, it is common to make the working medium flowing through the heat exchanger and a heat source fluid such as water or air counter flow, and in a stable operation state Since the temperature difference of the heat source fluid is small, it is difficult to obtain an energy efficient thermal cycle system in the case of a non-azeotropic mixed medium having a large temperature gradient. For this reason, when a mixture is used as a working medium, a working medium having an appropriate temperature gradient is desired.
  • HFC The optional HFC is preferably selected from the above viewpoint.
  • HFC is known to have higher GWP than HFO-1123. Therefore, the HFC combined with HFO-1123 is appropriately selected from the viewpoint of improving the cycle performance as the working medium and keeping the temperature gradient within an appropriate range, and particularly keeping the GWP within an allowable range. It is preferred that
  • an HFC having 1 to 5 carbon atoms is preferable as an HFC that has little influence on the ozone layer and has little influence on global warming.
  • the HFC may be linear, branched, or cyclic.
  • HFC examples include HFC-32, difluoroethane, trifluoroethane, tetrafluoroethane, HFC-125, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane, and the like.
  • HFC 1,1-difluoroethane
  • HFC-152a 1,1,1-trifluoroethane
  • HFC-125 1,1,2,2-tetrafluoroethane
  • HFC-132, HFC -152a, HFC-134a, and HFC-125 are more preferred.
  • One HFC may be used alone, or two or more HFCs may be used in combination.
  • the content of HFC in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium.
  • the coefficient of performance and the refrigerating capacity are improved when the content of HFC-32 is in the range of 1 to 99% by mass.
  • the coefficient of performance improves when the content of HFC-134a is in the range of 1 to 99% by mass.
  • the preferred HFC GWP is 675 for HFC-32, 1430 for HFC-134a and 3500 for HFC-125. From the viewpoint of keeping the GWP of the obtained working medium low, the HFC-32 is most preferable as an optional HFC.
  • HFO-1123 and HFC-32 can form a pseudo-azeotropic mixture close to azeotropy in a composition range of 99: 1 to 1:99 by mass ratio. The temperature gradient is close to zero. Also in this respect, HFC-32 is advantageous as an HFC combined with HFO-1123.
  • the content of HFC-32 with respect to 100% by mass of the working medium is specifically preferably 20% by mass or more, and 20 to 80% by mass. % Is more preferable, and 40 to 60% by mass is further preferable.
  • HFOs other than HFO-1123 may be used alone or in combination of two or more.
  • the content of HFO other than HFO-1123 in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium.
  • the coefficient of performance improves when the content of HFO-1234yf or HFO-1234ze is in the range of 1 to 99% by mass.
  • composition range (S) A preferred composition range in the case where the working medium used in the present invention contains HFO-1123 and HFO-1234yf is shown below as a composition range (S).
  • the abbreviation of each compound is the ratio (% by mass) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and other components (HFC-32, etc.). Show.
  • the working medium in the composition range (S) has an extremely low GWP and a small temperature gradient.
  • refrigeration cycle performance that can be substituted for the conventional R410A can be expressed.
  • the ratio of HFO-1123 to the total amount of HFO-1123 and HFO-1234yf is more preferably 40 to 95% by mass, further preferably 50 to 90% by mass, and more preferably 50 to 85%. Mass% is particularly preferable, and 60 to 85 mass% is most preferable.
  • the total content of HFO-1123 and HFO-1234yf in 100% by mass of the working medium is more preferably 80 to 100% by mass, further preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. .
  • the working medium used in the present invention preferably contains HFO-1123, HFC-32, and HFO-1234yf, and a preferred composition range (P) in the case of containing HFO-1123, HFO-1234yf, and HFC-32.
  • P a preferred composition range
  • the abbreviation of each compound indicates the ratio (mass%) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32.
  • R composition range
  • L composition range
  • M composition range
  • the total amount of HFO-1123, HFO-1234yf, and HFC-32 specifically described is more than 90% by mass and less than 100% by mass with respect to the total amount of the working medium for heat cycle. It is preferable that
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the defects possessed by each are suppressed.
  • this working medium is a working medium that has a very low GWP, has a small temperature gradient, and has a certain capacity and efficiency when used in a thermal cycle, and can obtain good cycle performance.
  • the total amount of HFO-1123 and HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32 is preferably 70% by mass or more.
  • the working medium used in the present invention is more preferably composed of 30 to 70% by mass of HFO-1123 and 4 to 4% of HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32.
  • Examples include a composition containing 40% by mass and HFC-32 in a proportion of 0 to 30% by mass, and the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less.
  • the working medium in the above range is a highly durable working medium in which the above effect is enhanced and the self-decomposition reaction of HFO-1123 is suppressed.
  • the content of HFC-32 is preferably 5% by mass or more, and more preferably 8% by mass or more.
  • the working medium used in the present invention contains HFO-1123, HFO-1234yf, and HFC-32.
  • the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less.
  • the self-decomposition reaction of HFO-1123 is suppressed, and a highly durable working medium can be obtained.
  • a more preferred composition range (R) is shown below. ⁇ Composition range (R)> 10% by mass ⁇ HFO-1123 ⁇ 70% by mass 0% by mass ⁇ HFO-1234yf ⁇ 50% by mass 30% by mass ⁇ HFC-32 ⁇ 75% by mass
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the defects possessed by each are suppressed. That is, it is a working medium in which good cycle performance can be obtained by having a low temperature gradient and high performance and efficiency when used in a thermal cycle after GWP is kept low and durability is ensured.
  • composition range (R) preferred ranges are shown below. 20% by mass ⁇ HFO-1123 ⁇ 70% by mass 0% by mass ⁇ HFO-1234yf ⁇ 40% by mass 30% by mass ⁇ HFC-32 ⁇ 75% by mass
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the defects possessed by each of them are suppressed. That is, it is a working medium in which GWP is kept low and durability is ensured, and when used in a thermal cycle, the temperature gradient is smaller and the cycle performance is higher by having higher capacity and efficiency. is there.
  • composition range (R) a more preferred composition range (L) is shown below.
  • the composition range (M) is more preferable.
  • the working medium having the composition range (M) is a working medium in which the characteristics of the HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the drawbacks of the working medium are suppressed.
  • this working medium has a GWP with an upper limit of 300 or less, and durability is ensured, and when used in a heat cycle, the temperature gradient is less than 5.8, and the relative coefficient of performance and relative This is a working medium having a refrigerating capacity close to 1 and good cycle performance.
  • the upper limit of the temperature gradient is lowered, and the lower limit of the relative coefficient of performance x the relative refrigeration capacity is raised. From the viewpoint of a large relative coefficient of performance, 8% by mass ⁇ HFO-1234yf is more preferable. Further, HFO-1234yf ⁇ 35 mass% is more preferable from the viewpoint of high relative refrigeration capacity.
  • another working medium used in the present invention preferably contains HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the combustibility of the working medium is suppressed by this composition. More preferably, it includes HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total amount of the working medium is 90%.
  • the ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 3% by mass or more and 35% by mass or less, and HFC-134a.
  • the ratio of HFC-125 is preferably 4% by mass to 50% by mass, and the ratio of HFO-1234yf is preferably 5% by mass to 50% by mass.
  • the working medium is non-flammable and excellent in safety, has less influence on the ozone layer and global warming, and has better cycle performance when used in a thermal cycle system. It can be set as the working medium which has these. Most preferably, it includes HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total amount of the working medium is 90%.
  • the ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 6 mass% or more and 25 mass% or less, and HFC-134a. It is even more preferable that the ratio of HFC-125 is 20% by mass to 35% by mass, the ratio of HFC-125 is 8% by mass to 30% by mass, and the ratio of HFO-1234yf is 20% by mass to 50% by mass.
  • the working medium is non-flammable, and is more excellent in safety, has less influence on the ozone layer and global warming, and is even better when used in a heat cycle system.
  • the working medium having a high cycle performance can be obtained.
  • the working medium used in the composition for a heat cycle system of the present invention may contain carbon dioxide, hydrocarbon, chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO) and the like in addition to the above optional components.
  • CFO chlorofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • Other optional components are preferably components that have little influence on the ozone layer and little influence on global warming.
  • hydrocarbon examples include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.
  • a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
  • the working medium contains a hydrocarbon
  • the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 5% by weight, and more preferably 3 to 5% by weight. If a hydrocarbon is more than a lower limit, the solubility of the mineral refrigeration oil to a working medium will become more favorable.
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • CFO 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium.
  • CFO-1214yb 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are preferred.
  • One type of CFO may be used alone, or two or more types may be used in combination.
  • the working medium contains CFO
  • the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 8% by weight, and more preferably 2 to 5% by weight. If the CFO content is at least the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of CFO is not more than the upper limit value, good cycle performance can be easily obtained.
  • HCFO examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
  • HCFO 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd)
  • 1-chloro can be used because flammability of the working medium can be easily suppressed without greatly reducing the cycle performance of the working medium.
  • -1,2-difluoroethylene (HCFO-1122) is preferred.
  • HCFO may be used alone or in combination of two or more.
  • the content of HCFO in 100% by mass of the working medium is less than 10% by mass, preferably 1 to 8% by mass, and more preferably 2 to 5% by mass. If the content of HCFO is equal to or higher than the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of HCFO is not more than the upper limit value, good cycle performance can be easily obtained.
  • the total content of other optional components in the working medium is less than 10% by mass with respect to 100% by mass of the working medium, and 8% by mass. % Or less is preferable, and 5 mass% or less is more preferable.
  • FIG. 1 is a diagram showing a schematic configuration of a refrigeration cycle apparatus 1 according to the present embodiment.
  • the refrigeration cycle apparatus 1 has a circulation path for circulating a working medium containing 1,1,2-trifluoroethylene from the compressor 10 via the condenser 12, the expansion valve 13, and the evaporator 14 to the compressor 10. Have.
  • An accumulator 11 is provided between the compressor 10 and the evaporator 14 in the circulation path.
  • Compressor 10 compresses the working medium (steam), and refrigeration oil for preventing seizure is stored inside.
  • the refrigerating machine oil is highly compatible with the working medium, and is, for example, a polyol ester oil.
  • the accumulator 11 is a liquid reservoir for storing a refrigerant that becomes excessive in the refrigerant cycle due to a change in operating load or the like, and is provided on the suction side of the compressor 10.
  • the condenser 12 cools the vapor of the working medium discharged from the compressor 10 into a liquid.
  • the expansion valve 13 expands the working medium (liquid) discharged from the condenser 12.
  • the expansion valve 13 is, for example, an electronic expansion valve that is electrically driven to perform an opening / closing operation.
  • the evaporator 14 heats the working medium (liquid) discharged from the expansion valve 13 to make it vapor.
  • the evaporator 14 and the condenser 12 are configured to exchange heat between the working medium and a heat source fluid that flows opposite or in parallel.
  • the refrigeration cycle apparatus 1 includes fluid supply means 15 for supplying a heat source fluid E such as water or air to the evaporator 14, and fluid supply means 16 for supplying a heat source fluid F such as water or air to the condenser 12. ing.
  • the discharge pipe 21 is provided with a discharge temperature sensor 33
  • the suction pipe 22 is provided with a suction temperature sensor 34.
  • the discharge temperature sensor 33 detects the temperature of the refrigerant discharged from the compressor 10.
  • the suction temperature sensor 34 detects the temperature of the refrigerant sucked into the compressor 10.
  • the discharge pressure may be estimated from the temperature or each part temperature detected by the discharge temperature sensor 33, or may be directly detected by providing the discharge pressure sensor 31 in the discharge pipe 21.
  • the suction pressure may be estimated from the temperature or each part temperature detected by the suction temperature sensor 34, or may be directly detected by providing the suction pressure sensor 32 in the suction pipe 22.
  • a liquid side temperature sensor 35 that detects the temperature of the refrigerant is provided on the liquid side of the condenser 12. Furthermore, the refrigeration cycle apparatus 1 includes a mechanism that adjusts the composition of the working medium circulating in the refrigeration cycle. A mechanism for adjusting the composition of the working medium will be described later.
  • the working medium vapor A discharged from the evaporator 14 is sucked into the compressor 10 through the accumulator 11. Then, it is compressed by the compressor 10 to become high-temperature and high-pressure working medium vapor B.
  • the working medium vapor B discharged from the compressor 10 is cooled by the fluid F in the condenser 12 and liquefied to become the working medium liquid C.
  • the fluid F is heated to become a fluid F ′ and is discharged from the condenser 12.
  • the working medium liquid C discharged from the condenser 12 is expanded by the expansion valve 13 to become a low temperature and low pressure working medium liquid D.
  • the working medium D discharged from the expansion valve 13 is heated by the fluid E in the evaporator 14 to become working medium vapor A.
  • the fluid E is cooled to become a fluid E ′ and discharged from the evaporator 14.
  • FIG. 2 is a temperature-entropy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus 1.
  • FIG. 3 is a pressure-enthalpy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus 1.
  • FIG. 1 is also referred to as appropriate.
  • adiabatic compression is performed by the compressor 10
  • the low-temperature and low-pressure working medium vapor A is changed to high-temperature and high-pressure working medium vapor B.
  • isobaric cooling is performed by the condenser 12, and the working medium vapor B is used as the working medium C.
  • the expansion valve 13 performs isenthalpy expansion, and the high-temperature high-pressure working medium C is used as the low-temperature low-pressure working medium D.
  • isobaric heating is performed by the evaporator 14, and the working medium D is returned to the working medium vapor A.
  • the working medium In G, the working medium is in a saturated liquid state, and in C, the working medium is in a supercooled liquid state.
  • T3-T4 is the degree of subcooling of the working medium.
  • H the working medium is in a saturated steam state, and in A, the working medium is in a superheated steam state. Assuming that the temperature of the working medium at H is T6 and the temperature of the working medium at A is T1, T1-T6 is the superheat degree of the working medium (superheat).
  • FIG. 4 is a diagram showing a schematic configuration of the accumulator 11.
  • the accumulator 11 includes a sealed casing 51, an introduction pipe 52, and a lead-out pipe 53.
  • the introduction pipe 52 is inserted into the inside from the upper part of the casing 51, and the opening end opens inward of the upper part of the casing 51.
  • the lead-out pipe 53 includes a bent portion that is inserted into the casing 51 from the top and is bent in a substantially U shape at a portion near the bottom in the casing 51, and has an open end that opens to the top of the casing 51. Yes.
  • An oil return hole 54 is provided in the bent portion of the outlet pipe 53 so that the refrigerating machine oil does not accumulate more than a certain amount.
  • a band-shaped heater 55 is wound around the outer periphery of the casing 51.
  • the working medium dissolves in the refrigeration oil accumulated outside the compressor such as the accumulator 11.
  • a working medium containing HFO-1123 depending on the type of components other than HFO-1123, if the temperature of the refrigeration oil is low, the components other than HFO-1123 have higher solubility in the refrigeration oil than HFO-1123.
  • HFO-1123 when the outside air temperature during operation is low, components other than HFO-1123 are selectively dissolved in the refrigerating machine oil that has been cooled by the ambient air to a low temperature.
  • various conditions such as the outside air temperature may change, and the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle may increase.
  • liquid refrigerant tends to accumulate in places such as the accumulator 11. Moreover, in the location where the liquid refrigerant such as the accumulator 11 tends to accumulate, the refrigerant component having a high boiling point in the working medium is more likely to stay as the liquid refrigerant than the refrigerant component having a low boiling point.
  • Table 2 shows boiling points of typical HFO-1123 and other refrigerant component candidates. Of the refrigerants shown in Table 2, HFO-1123 has the lowest boiling point.
  • the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle is increased, the risk of disproportionation reaction of HFO-1123 increases.
  • the ratio of HFO-1123 in the composition of the working medium is controlled by a mechanism that adjusts the composition of the working medium when the ratio of HFO-1123 in the composition of the working medium increases. Needs to be adjusted so that is within a certain range.
  • the ratio of HFO-1123 is within a certain range in the composition of the working medium, the composition of the working medium is said to be a steady composition.
  • FIG. 5 is a block diagram showing a schematic configuration of the composition adjustment mechanism 40 that adjusts the composition of the working medium circulating in the refrigeration cycle.
  • the composition adjustment mechanism 40 includes a composition change detection means 41 that detects that the composition of the working refrigerant has changed from a steady composition, a composition adjustment means 42 that adjusts the composition of the working medium, and a composition adjustment.
  • Control means 43 for controlling the means 42. The control means 43 controls the composition adjustment means 42 based on the detection result by the composition change detection means 41.
  • the discharge temperature sensor 33 is used as the composition change detection means 41 in the refrigeration cycle apparatus 1.
  • the discharge temperature sensor 33 is attached to the discharge pipe 21 that connects the compressor 10 and the condenser 12, and detects the discharge temperature of the compressor 10.
  • the behavior is the same as when the working medium is insufficient, so the discharge temperature rises.
  • the refrigeration cycle apparatus 1 when a large amount of liquid refrigerant other than HFO-1123 stays in a place where liquid refrigerant is likely to accumulate, such as the accumulator 11, the same as when the working medium is insufficient. Since it shows a behavior, the discharge temperature rises.
  • the temperature detected by the discharge temperature sensor 33 exceeds a predetermined temperature, it is detected that the composition of the working medium has changed from the steady composition.
  • the composition adjusting means 42 is a heater 55 attached to the accumulator 11.
  • the control means 43 energizes the heater 55.
  • a working medium containing HFO-1123 when HFO-1123 has a lower condensation temperature than components other than HFO-1123, more components than HFO-1123 are present in the accumulator 11 than HFO-1123. It is assumed that the ratio of HFO-1123 in the working medium circulating in the circulation path of the refrigeration cycle apparatus 1 is increased by dissolving in the accumulated refrigeration oil. Even in such a case, since the refrigerating machine oil accumulated in the accumulator 11 is heated by energizing the heater 55, the refrigerant component dissolved in the refrigerating machine oil is expelled and circulates in the circulation path of the refrigerating cycle apparatus 1. The composition of the working medium can be returned to a steady composition. Thereby, when the working medium containing HFO-1123 is used, the occurrence of the disproportionation reaction of HFO-1123 can be effectively suppressed.
  • FIG. 6 is a diagram for explaining the superheat degree detection means 70 as the composition change detection means 41 in the refrigeration cycle apparatus 101. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted.
  • the superheat degree detection means 70 determines the saturated steam temperature T ⁇ b> 6 (from the suction pressure Ps (see FIG. 3)) detected by the suction pressure sensor 32.
  • the degree of superheat is detected by subtracting the saturated vapor temperature T6 from the temperature value (T1) detected by the suction temperature sensor 34.
  • the suction pressure Ps used for detecting the degree of superheat is estimated from the suction temperature sensor 34 or the temperature of each part as described above.
  • the refrigeration cycle apparatus 101 when components other than HFO-1123 in the working medium are selectively dissolved in the refrigerating machine oil, the behavior is the same as when the working medium is insufficient, so the degree of superheat increases.
  • the refrigeration cycle apparatus 1 when a large amount of liquid refrigerant other than HFO-1123 stays in a place where liquid refrigerant is likely to accumulate, such as the accumulator 11, the same as when the working medium is insufficient. Since it exhibits behavior, the degree of superheat increases.
  • the superheat degree detected by the superheat degree detection means 70 exceeds a predetermined value, it is detected that the composition of the working medium has changed from the steady composition.
  • the predetermined temperature is determined based on the degree of superheat when the composition of the working medium is a steady composition and the refrigeration cycle apparatus 101 is operating stably.
  • FIG. 7 is a diagram for explaining the supercooling degree detection means 80 as the composition change detection means 41 in the refrigeration cycle apparatus 201. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted.
  • the supercooling degree detection means 80 is based on the discharge pressure Pd (see FIG. 3) of the compressor 10 detected by the discharge pressure sensor 31.
  • a saturated liquid temperature T3 see FIG.
  • the degree of supercooling is detected by subtracting from the temperature value (T4) detected by the liquid side temperature sensor 35 from the saturated liquid temperature T3.
  • the discharge pressure Pd used for detecting the degree of supercooling is estimated from the discharge temperature sensor 33 or the temperature of each part as described above.
  • the degree of supercooling detection means 80 deviates from a predetermined range, it is detected that the composition of the working medium has changed from the steady composition. This predetermined range is determined based on the degree of supercooling when the composition of the working medium is a steady composition and the refrigeration cycle apparatus 1 is operating stably.
  • the composition adjustment unit 42 may be a hot gas introduction unit 60 that introduces hot gas discharged from the compressor 10 into the accumulator 111.
  • FIG. 8 is a diagram for explaining the hot gas introduction means 60 in the refrigeration cycle apparatus 301. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted.
  • the hot gas introduction means 60 is provided in the hot gas bypass passage 61 and the hot gas bypass passage 61 that diverts a part of the hot gas discharged from the compressor 10 and introduces it into the accumulator 111.
  • an open / close valve 62 is normally closed.
  • FIG. 9 is a diagram showing a schematic configuration of the accumulator 111 to which the hot gas bypass passage 61 is connected. Constituent elements common to those in FIG. 4 are denoted by common reference numerals, and description thereof is omitted. As shown in FIG. 9, the hot gas bypass passage 61 is connected to the casing 51 so that hot gas is introduced into the accumulator 111.
  • the composition adjusting means 42 may be the compressor 10 (a motor that drives the compression mechanism of the compressor 10).
  • FIG. 10 is a diagram for explaining the composition adjusting means 42 in the refrigeration cycle 401. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted.
  • the composition adjustment unit 42 is a motor that drives the compression mechanism of the compressor 10.
  • the control means 43 increases the rotation speed of the motor of the compressor 10.
  • the composition adjusting means 42 may be the expansion valve 13.
  • FIG. 11 is a diagram for explaining the composition adjusting means 42 in the refrigeration cycle 501. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted.
  • the composition adjusting means 42 is the expansion valve 13.
  • the control means 43 increases the opening of the expansion valve 13.
  • Modification 6 When the refrigeration cycle apparatus is, for example, a large air conditioner, a configuration in which a receiver that accumulates an excess working medium is provided between a condenser and an expansion valve in a circulation path is common.
  • the composition adjustment means 42 (see FIG. 5) may be liquid refrigerant return means for returning the liquid refrigerant accumulated in the receiver to the intermediate pressure portion of the compressor.
  • FIG. 12 is a diagram for explaining the liquid refrigerant return means 90 in the refrigeration cycle apparatus 601. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted. As shown in FIG.
  • the liquid refrigerant return means 90 has a liquid refrigerant bypass path 91 for taking out the liquid refrigerant accumulated in the receiver 17 and injecting it into the intermediate pressure portion of the compressor 10 via the auxiliary expansion valve 92.
  • the auxiliary expansion valve 92 decompresses and expands the refrigerant that is conducted through the liquid refrigerant bypass passage 91, and is configured by, for example, an electronic expansion valve.
  • the auxiliary expansion valve 92 is normally closed.
  • the control means 43 increases the opening degree of the auxiliary expansion valve 92 so that the liquid refrigerant having a high ratio of components other than HFO-1123 accumulated in the receiver 17 is decompressed by the auxiliary expansion valve 92. After being expanded, it is injected into the intermediate pressure portion of the compressor 10.
  • the liquid refrigerant having a high ratio of components other than HFO-1123 injected into the intermediate pressure portion of the compressor 10 is compressed again by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the composition of the working medium circulating in the circulation path can be returned to the steady composition.
  • composition change detection means of Modification 3 the composition change detection means of Modification 1 or Modification 2 can be used.
  • composition change detection means of Modification 4 the composition change detection means of Modification 1 or Modification 2 can be used.
  • composition change detection means of Modification 5 the composition change detection means of Modification 1 or Modification 2 can be used.
  • composition change detection means of Modification 6 the composition change detection means of Modification 1 or Modification 2 can be used.
  • the heater energization and hot gas are performed.
  • a method of heating and evaporating the liquid refrigerant retained by the introduction of can be applied. That is, when the composition change detecting means detects that the composition of the working refrigerant has changed from the steady composition, the heater attached to the liquid refrigerant staying place is energized and hot gas is introduced into the liquid refrigerant staying place.
  • the composition of the working medium can be returned to the steady composition by heating the liquid refrigerant retained at the liquid refrigerant retention location.
  • the refrigeration oil accumulated in the crankcase is heated by a crankcase heater or the like, and the refrigerant component dissolved in the refrigeration oil is expelled, so that the composition of the working medium is kept constant. The composition can be restored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Provided is a refrigeration cycle device that has a circulation path for circulating a working medium containing 1,1,2-trifluoroethylene from a compressor to the compressor via a condenser, an expansion valve, and an evaporator. The refrigeration cycle device is provided with a composition change detection means, a composition adjustment means, and a control means. The composition change detection means detects that the composition of the working medium has changed from a steady composition. The composition adjustment means adjusts the composition of the working medium. The control means controls the composition adjustment means on the basis of a detection result by the composition change detection means.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、1,1,2-トリフルオロエチレンを含む作動媒体を使用した冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus using a working medium containing 1,1,2-trifluoroethylene.
 空調機や冷凍・冷蔵機器などの冷凍サイクル装置において、作動冷媒としてヒドロフルオロカーボン(HFC)系冷媒が広く用いられている。しかし、HFCは、地球温暖化係数(GWP)が高く、地球温暖化の原因となる可能性が指摘されている。このため、オゾン層への影響が少なく、かつ地球温暖化係数の小さい冷凍サイクル用作動媒体の開発が急務となっている。オゾン層への影響が少なく、かつ地球温暖化への影響が少ない冷凍サイクル用作動媒体として、大気中のOHラジカルによって分解されやすい炭素-炭素二重結合を有するヒドロフルオロオレフィン(HFO)を含むものが検討されている。特許文献1には、1,1,2-トリフルオロエチレン(HFO-1123)を含む作動媒体を用いた冷凍サイクル装置が記載されている。 In refrigeration cycle apparatuses such as air conditioners and refrigeration / refrigeration equipment, hydrofluorocarbon (HFC) refrigerants are widely used as working refrigerants. However, it has been pointed out that HFC has a high global warming potential (GWP) and may cause global warming. For this reason, there is an urgent need to develop a working medium for a refrigeration cycle that has little influence on the ozone layer and has a low global warming potential. Containing hydrofluoroolefin (HFO) with a carbon-carbon double bond that is easily decomposed by OH radicals in the atmosphere as a working medium for the refrigeration cycle that has little impact on the ozone layer and less impact on global warming Is being considered. Patent Document 1 describes a refrigeration cycle apparatus using a working medium containing 1,1,2-trifluoroethylene (HFO-1123).
日本国特開2015-145452号公報Japanese Laid-Open Patent Publication No. 2015-144542 日本国特開平11-14200号公報Japanese Unexamined Patent Publication No. 11-14200
 冷凍サイクル装置において、圧縮機の内部には焼付き防止のため作動媒体と相溶性の高い冷凍機油が蓄えられている。冷凍サイクル装置の運転中に、この冷凍機油の一部は作動媒体とともに圧縮機の外へと排出される。冷凍サイクル装置の運転中、圧縮機の外に排出された冷凍機油は、圧縮機の吸込み側に設けられたアキュムレータなどに溜まる。圧縮機内部の冷凍機油が不足すると圧縮機において焼き付きなどの不具合が生じる。圧縮機の外部に冷凍機油が一定量以上溜まらないようにするため、冷凍サイクル装置には油戻し機構が設けられている。油戻し機構として、例えばアキュムレータ内の導出管などに設けられた油戻し穴がある(特許文献2など)。 In the refrigeration cycle apparatus, refrigeration oil highly compatible with the working medium is stored in the compressor to prevent seizure. During operation of the refrigeration cycle apparatus, a part of this refrigeration oil is discharged out of the compressor together with the working medium. During operation of the refrigeration cycle apparatus, the refrigeration oil discharged to the outside of the compressor accumulates in an accumulator provided on the suction side of the compressor. If the compressor oil in the compressor is insufficient, problems such as seizure occur in the compressor. An oil return mechanism is provided in the refrigeration cycle apparatus so that the refrigeration oil does not accumulate more than a certain amount outside the compressor. As an oil return mechanism, for example, there is an oil return hole provided in a lead-out pipe or the like in an accumulator (Patent Document 2, etc.).
 冷凍サイクル装置の運転中、アキュムレータなどの圧縮機の外部に溜まった冷凍機油に作動媒体が溶け込む、いわゆる寝込みと呼ばれる現象が起きる場合がある。HFO-1123を含む作動媒体において、HFO-1123以外の成分の種類によっては、冷凍機油の温度が低いとHFO-1123に比べてHFO-1123以外の成分の方が冷凍機油への溶解度が高くなる場合がある。このような場合、例えば運転中における外気温度が低いと、周囲空気に冷やされて低温になった冷凍機油にHFO-1123以外の成分が選択的に溶け込む。つまり、冷凍サイクル装置の運転中において、特許文献2に記載された油戻し機構などにより圧縮機の外部に溜まる冷凍機油が一定量を超えないように維持していても、外気温度などの諸条件が変化することにより、冷凍サイクル内を循環する作動媒体におけるHFO-1123の比率が高くなる場合がある。 During operation of the refrigeration cycle apparatus, a so-called stagnation phenomenon may occur in which the working medium dissolves in refrigeration oil accumulated outside a compressor such as an accumulator. In a working medium containing HFO-1123, depending on the type of components other than HFO-1123, if the temperature of the refrigeration oil is low, the components other than HFO-1123 have higher solubility in the refrigeration oil than HFO-1123. There is a case. In such a case, for example, when the outside air temperature during operation is low, components other than HFO-1123 are selectively dissolved in the refrigerating machine oil that has been cooled by the ambient air to a low temperature. In other words, during the operation of the refrigeration cycle apparatus, various conditions such as the outside air temperature are maintained even if the refrigeration oil accumulated outside the compressor is maintained so as not to exceed a certain amount by the oil return mechanism described in Patent Document 2. May change, the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle may increase.
 また、冷凍サイクル装置において非共沸冷媒または擬似共沸冷媒を作動媒体として用いる場合には、作動媒体に含まれる各冷媒成分の沸点が異なるため、冷凍サイクル装置内で液冷媒が多く溜まるアキュムレータやレシーバなどの箇所において、沸点の高い冷媒成分が沸点の低い冷媒成分よりも液冷媒として滞留しやすい。冷凍サイクル装置内においてHFO-1123を含む作動媒体を用いる場合、例えば、冷媒成分の中でHFO-1123が最も低沸点であるとすると、HFO-1123よりもHFO-1123以外の成分の方がアキュムレータやレシーバなどに液冷媒として滞留しやすい。このため、冷凍サイクル内を循環する作動媒体におけるHFO-1123の比率が高くなる場合がある。 Further, when a non-azeotropic refrigerant or a pseudo-azeotropic refrigerant is used as a working medium in a refrigeration cycle apparatus, since the boiling point of each refrigerant component contained in the working medium is different, an accumulator that stores a large amount of liquid refrigerant in the refrigeration cycle apparatus, In a receiver or the like, a refrigerant component having a high boiling point is likely to stay as a liquid refrigerant than a refrigerant component having a low boiling point. When a working medium containing HFO-1123 is used in the refrigeration cycle apparatus, for example, assuming that HFO-1123 has the lowest boiling point among refrigerant components, components other than HFO-1123 are more accumulator than HFO-1123. It tends to stay as a liquid refrigerant in receivers and receivers. For this reason, the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle may increase.
 HFO-1123は、高温高圧の状態でエネルギーが投入されると、不均化反応(自己分解反応)と呼ばれる発熱を伴う化学反応が連鎖的に起こる場合のあることが知られている。不均化反応とは、同一種類の分子が2個以上互いに反応して2種以上の異なる種類の生成物を生じる化学反応のことである。冷凍サイクル装置においてHFO-1123を含む作動媒体を用いる場合、HFO-1123の不均化反応が生じるリスクを低減するため、冷凍サイクル内を循環する作動媒体におけるHFO-1123の比率を一定以下に維持する必要がある。冷凍サイクル装置の運転中において、外気温度などの諸条件が変化することにより冷凍サイクル内を循環する作動媒体におけるHFO-1123の比率が高くなると、HFO-1123の不均化反応が生じるリスクが高まる。 It is known that when HFO-1123 is charged with energy in a high temperature and high pressure state, a chemical reaction accompanied by heat generation called a disproportionation reaction (self-decomposition reaction) may occur in a chain. A disproportionation reaction is a chemical reaction in which two or more of the same type of molecule react with each other to produce two or more different types of products. When a working medium containing HFO-1123 is used in the refrigeration cycle apparatus, the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle is kept below a certain level in order to reduce the risk of disproportionation reaction of HFO-1123. There is a need to. When the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle increases due to changes in various conditions such as the outside air temperature during the operation of the refrigeration cycle apparatus, the risk of causing a disproportionation reaction of HFO-1123 increases. .
 本発明は、以上の背景に鑑みなされたものであり、HFO-1123を含む作動媒体を用いた場合に、HFO-1123の不均化反応の発生を効果的に抑制することができる冷凍サイクル装置を提供することを目的とする。 The present invention has been made in view of the above background, and when a working medium containing HFO-1123 is used, a refrigeration cycle apparatus capable of effectively suppressing the occurrence of a disproportionation reaction of HFO-1123. The purpose is to provide.
 本発明の第1の態様にかかる冷凍サイクル装置は、1,1,2-トリフルオロエチレンを含む作動媒体を、圧縮機から、凝縮器、膨張弁、蒸発器を経由して前記圧縮機に循環させる循環経路を有する冷凍サイクル装置であって、前記作動冷媒の組成が定常の組成から変化したことを検知する組成変化検知手段と、前記作動媒体の組成を調整する組成調整手段と、前記組成調整手段を制御する制御手段と、を備え、前記制御手段は、前記組成変化検知手段による検知結果に基づいて前記組成調整手段を制御するものである。 A refrigeration cycle apparatus according to a first aspect of the present invention circulates a working medium containing 1,1,2-trifluoroethylene from a compressor to the compressor via a condenser, an expansion valve, and an evaporator. A refrigeration cycle apparatus having a circulation path for causing the composition of the working refrigerant to change from a steady composition, a composition change detecting means for adjusting the composition of the working medium, and the composition adjustment. Control means for controlling the means, and the control means controls the composition adjusting means based on a detection result by the composition change detecting means.
 本発明の第2の態様にかかる冷凍サイクル装置は、上述の冷凍サイクル装置において、前記組成変化検知手段は、前記圧縮機の吐出温度を検知する吐出温度センサであり、前記吐出温度センサが検出した温度が所定の温度を超えた場合に前記作動媒体の組成が定常の組成から変化したと検知するものである。 In the refrigeration cycle apparatus according to the second aspect of the present invention, in the above-described refrigeration cycle apparatus, the composition change detection means is a discharge temperature sensor that detects a discharge temperature of the compressor, and the discharge temperature sensor detects the discharge temperature sensor. When the temperature exceeds a predetermined temperature, it is detected that the composition of the working medium has changed from a steady composition.
 本発明の第3の態様にかかる冷凍サイクル装置は、上述の冷凍サイクル装置において、前記組成変化検知手段は、前記圧縮機に吸入される前記作動媒体の過熱度を検出する過熱度検出手段であり、前記過熱度検出手段が検出した過熱度が所定の値を超えた場合に前記作動媒体の組成が変化したと検知するものである。 The refrigeration cycle apparatus according to a third aspect of the present invention is the above-described refrigeration cycle apparatus, wherein the composition change detection means is a superheat degree detection means for detecting a superheat degree of the working medium sucked into the compressor. When the degree of superheat detected by the superheat degree detection means exceeds a predetermined value, it is detected that the composition of the working medium has changed.
 本発明の第4の態様にかかる冷凍サイクル装置は、上述の冷凍サイクル装置において、前記組成変化検知手段は、前記圧縮機に吸入される前記作動媒体の過冷却度を検出する過冷却度検出手段であり、前記過冷却度検出手段が検出した過冷却度が所定の範囲を逸脱した場合に前記作動媒体の組成が変化したと検知するものである。 A refrigeration cycle apparatus according to a fourth aspect of the present invention is the above-described refrigeration cycle apparatus, wherein the composition change detection means detects a degree of supercooling of the working medium sucked into the compressor. And detecting that the composition of the working medium has changed when the degree of supercooling detected by the supercooling degree detection means deviates from a predetermined range.
 本発明の第5の態様にかかる冷凍サイクル装置は、上述の冷凍サイクル装置において、前記循環経路における前記蒸発器と前記圧縮機との間に余剰の前記作動媒体を溜めるアキュムレータをさらに備え、前記組成調整手段は、前記アキュムレータに取り付けられたヒータであり、前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記ヒータを通電するものである。 The refrigeration cycle apparatus according to a fifth aspect of the present invention is the above-described refrigeration cycle apparatus, further comprising an accumulator that stores excess working medium between the evaporator and the compressor in the circulation path, The adjusting means is a heater attached to the accumulator, and the control means energizes the heater when the composition change detecting means detects that the composition of the working medium has changed.
 本発明の第6の態様にかかる冷凍サイクル装置は、上述の冷凍サイクル装置において、前記循環経路における前記蒸発器と前記圧縮機との間に余剰の前記作動媒体を溜めるアキュムレータをさらに備え、前記組成調整手段は、前記圧縮機から吐出されるホットガスの一部を分流して前記アキュムレータへ導入するホットガスバイパス路と、前記ホットガスバイパス路に設けられた開閉弁と、を有し、前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記開閉弁を閉状態から開状態にするものである。 The refrigeration cycle apparatus according to a sixth aspect of the present invention is the above-described refrigeration cycle apparatus, further comprising an accumulator for accumulating excess working medium between the evaporator and the compressor in the circulation path, The adjusting means has a hot gas bypass passage for diverting a part of hot gas discharged from the compressor and introducing the hot gas into the accumulator, and an on-off valve provided in the hot gas bypass passage, and the composition When the change detecting means detects that the composition of the working medium has changed, the control means opens the on-off valve from the closed state.
 本発明の第7の態様にかかる冷凍サイクル装置は、上述の冷凍サイクル装置において、前記組成調整手段は、前記圧縮機の圧縮機構を駆動するモータであり、前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記モータの回転数を増加させるものである。 The refrigeration cycle apparatus according to a seventh aspect of the present invention is the above-described refrigeration cycle apparatus, wherein the composition adjusting means is a motor that drives a compression mechanism of the compressor, and the composition change detecting means is configured to detect the working medium. When it is detected that the composition has changed, the control means increases the rotational speed of the motor.
 本発明の第8の態様にかかる冷凍サイクル装置は、上述の冷凍サイクル装置において、前記組成調整手段は、前記膨張弁であり、前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記膨張弁の開度を増加させるものである。 The refrigeration cycle apparatus according to an eighth aspect of the present invention is the above-described refrigeration cycle apparatus, wherein the composition adjusting means is the expansion valve, and the composition change detecting means detects that the composition of the working medium has changed. In this case, the control means increases the opening of the expansion valve.
 本発明の第9の態様にかかる冷凍サイクル装置は、上述の冷凍サイクル装置において、前記循環経路における前記凝縮器と前記膨張弁との間に余剰の前記作動媒体を溜めるレシーバをさらに備え、前記組成調整手段は、前記レシーバに溜まった液冷媒を取り出し補助膨張弁を介して前記圧縮機の中間圧部に注入するための液冷媒バイパス路を有し、前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記補助膨張弁の開度を増加させるものである。 The refrigeration cycle apparatus according to a ninth aspect of the present invention is the above-described refrigeration cycle apparatus, further comprising a receiver that accumulates excess working medium between the condenser and the expansion valve in the circulation path. The adjusting means has a liquid refrigerant bypass passage for taking out the liquid refrigerant accumulated in the receiver and injecting it into the intermediate pressure part of the compressor via the auxiliary expansion valve, and the composition change detecting means uses the composition change detection means to compose the working medium. When it is detected that the change has occurred, the control means increases the opening of the auxiliary expansion valve.
 本発明によれば、HFO-1123を含む作動媒体を用いる場合に、HFO-1123の不均化反応の発生を効果的に抑制することができる。 According to the present invention, when a working medium containing HFO-1123 is used, generation of a disproportionation reaction of HFO-1123 can be effectively suppressed.
図1は、冷凍サイクル装置の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an example of a refrigeration cycle apparatus. 図2は、冷凍サイクル装置の作動媒体の状態変化を示す温度-エントロピ線図である。FIG. 2 is a temperature-entropy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus. 図3は、冷凍サイクル装置の作動媒体の状態変化を示す圧力-エンタルピ線図である。FIG. 3 is a pressure-enthalpy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus. 図4は、アキュムレータの概略構成を示す図である。FIG. 4 is a diagram showing a schematic configuration of the accumulator. 図5は、冷凍サイクル内を循環する作動媒体の組成を調整する組成調整機構の概略構成を示すブロック図である。FIG. 5 is a block diagram showing a schematic configuration of a composition adjustment mechanism for adjusting the composition of the working medium circulating in the refrigeration cycle. 図6は、変形例1の組成変化検知手段としての過熱度検出手段について説明する図である。FIG. 6 is a diagram for explaining the superheat degree detection means as the composition change detection means of the first modification. 図7は、変形例2の組成変化検知手段としての過熱度検出手段について説明する図である。FIG. 7 is a diagram for explaining superheat degree detection means as composition change detection means of Modification 2. 図8は、変形例3の組成調整手段であるホットガス導入手段について説明する図である。FIG. 8 is a diagram for explaining a hot gas introducing unit which is a composition adjusting unit of the third modification. 図9は、ホットガス導入手段におけるホットガスバイパス路が接続されたアキュムレータの概略構成を示す図である。FIG. 9 is a diagram showing a schematic configuration of an accumulator to which a hot gas bypass path in the hot gas introducing means is connected. 図10は、変形例4の組成調整手段について説明する図である。FIG. 10 is a diagram for explaining the composition adjusting means of the fourth modification. 図11は、変形例5の組成調整手段について説明する図である。FIG. 11 is a diagram for explaining the composition adjusting means of the fifth modification. 図12は、変形例6の組成調整手段について説明する図である。FIG. 12 is a diagram for explaining the composition adjusting means of the sixth modification.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、本発明の冷凍サイクル装置に使用される作動媒体について説明する。
<作動媒体>
(HFO-1123)
 本発明で用いる作動媒体は1,1,2-トリフルオロエチレン(HFO-1123)を含む。
First, the working medium used for the refrigeration cycle apparatus of the present invention will be described.
<Working medium>
(HFO-1123)
The working medium used in the present invention includes 1,1,2-trifluoroethylene (HFO-1123).
 まず、本発明の冷凍サイクル装置に使用される作動媒体について説明する。
 HFO-1123の作動媒体としての特性を、特に、R410A(HFC-32とHFC-125との質量比1:1の擬似共沸混合冷媒)との相対比較において表1に示す。サイクル性能は、後述する方法で求められる成績係数と冷凍能力とで示される。HFO-1123の成績係数と冷凍能力とは、R410Aを基準(1.000)とした相対値(以下、相対成績係数および相対冷凍能力という)で示す。地球温暖化係数(GWP)は、気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)に示される、または該方法に準じて測定された100年の値である。本明細書において、GWPは特に断りのない限りこの値をいう。作動媒体が混合物からなる場合、後述するとおり温度勾配は、作動媒体を評価する上で重要なファクターとなり、値は小さい方が好ましい。
First, the working medium used for the refrigeration cycle apparatus of the present invention will be described.
The characteristics of HFO-1123 as a working medium are shown particularly in Table 1 in a relative comparison with R410A (a pseudo-azeotropic refrigerant mixture having a mass ratio of 1: 1 between HFC-32 and HFC-125). The cycle performance is indicated by a coefficient of performance and a refrigerating capacity obtained by a method described later. The coefficient of performance and the refrigeration capacity of HFO-1123 are expressed as relative values (hereinafter referred to as the relative coefficient of performance and relative refrigeration capacity) with R410A as the reference (1.000). The global warming potential (GWP) is a value of 100 years indicated in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007) or measured according to the method. In this specification, GWP refers to this value unless otherwise specified. When the working medium is composed of a mixture, the temperature gradient is an important factor in evaluating the working medium as described later, and a smaller value is preferable.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[任意成分]
 本発明で用いる作動媒体はHFO-1123を含むことが好ましく、本発明の効果を損なわない範囲でHFO-1123以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。このような任意の化合物(任意成分)としては、例えば、HFC、HFO-1123以外のHFO(炭素-炭素二重結合を有するHFC)、これら以外のHFO-1123とともに気化、液化する他の成分等が挙げられる。任意成分としては、HFC、HFO-1123以外のHFO(炭素-炭素二重結合を有するHFC)が好ましい。
[Optional ingredients]
The working medium used in the present invention preferably contains HFO-1123, and may optionally contain a compound used as a normal working medium in addition to HFO-1123 as long as the effects of the present invention are not impaired. Examples of such an arbitrary compound (optional component) include HFO other than HFC and HFO-1123 (HFC having a carbon-carbon double bond), other components that vaporize and liquefy together with HFO-1123 other than these, etc. Is mentioned. As an optional component, HFO other than HFC and HFO-1123 (HFC having a carbon-carbon double bond) is preferable.
 任意成分としては、例えばHFO-1123と組み合わせて熱サイクルに用いた際に、上記相対成績係数、相対冷凍能力をより高める作用を有しながら、GWPや温度勾配を許容の範囲にとどめられる化合物が好ましい。作動媒体がHFO-1123との組合せにおいてこのような化合物を含むと、GWPを低く維持しながら、より良好なサイクル性能が得られるとともに、温度勾配による影響も少ない。 As an optional component, for example, when used in a heat cycle in combination with HFO-1123, there is a compound capable of keeping the GWP and the temperature gradient within an allowable range while having the effect of further increasing the relative coefficient of performance and the relative refrigeration capacity. preferable. When the working medium contains such a compound in combination with HFO-1123, a better cycle performance can be obtained while keeping the GWP low, and the influence of the temperature gradient is small.
(温度勾配)
 作動媒体が例えばHFO-1123と任意成分とを含有する場合、HFO-1123と任意成分とが共沸組成である場合を除いて相当の温度勾配を有する。作動媒体の温度勾配は、任意成分の種類およびHFO-1123と任意成分との混合割合により異なる。
(Temperature gradient)
When the working medium contains, for example, HFO-1123 and an optional component, it has a considerable temperature gradient except when the HFO-1123 and the optional component have an azeotropic composition. The temperature gradient of the working medium varies depending on the type of the optional component and the mixing ratio of HFO-1123 and the optional component.
 作動媒体として混合物を用いる場合、通常、共沸またはR410Aのような擬似共沸の混合物が好ましく用いられる。非共沸組成物は、圧力容器から冷凍空調機器へ充てんされる際に組成変化を生じる問題点を有している。さらに、冷凍空調機器からの冷媒漏えいが生じた場合、冷凍空調機器内の冷媒組成が変化する可能性が極めて大きく、初期状態への冷媒組成の復元が困難である。一方、共沸または擬似共沸の混合物であれば上記問題が回避できる。 When a mixture is used as the working medium, usually an azeotropic or pseudo-azeotropic mixture such as R410A is preferably used. Non-azeotropic compositions have the problem of causing composition changes when filled from a pressure vessel to a refrigeration air conditioner. Furthermore, when refrigerant leakage from the refrigeration air conditioner occurs, the refrigerant composition in the refrigeration air conditioner is very likely to change, and it is difficult to restore the refrigerant composition to the initial state. On the other hand, the above problem can be avoided if the mixture is azeotropic or pseudo-azeotropic.
 混合物の作動媒体における使用可能性をはかる指標として、一般に「温度勾配」が用いられる。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、または凝縮器における凝縮の、開始温度と終了温度が異なる性質、と定義される。共沸混合物においては、温度勾配は0であり、擬似共沸混合物では、例えばR410Aの温度勾配が0.2であるように、温度勾配は極めて0に近い。 “Temperature gradient” is generally used as an index for measuring the possibility of using the mixture in the working medium. A temperature gradient is defined as the nature of heat exchangers, such as evaporation in an evaporator or condensation in a condenser, with different start and end temperatures. In the azeotrope, the temperature gradient is 0, and in the pseudoazeotrope, the temperature gradient is very close to 0, for example, the temperature gradient of R410A is 0.2.
 温度勾配が大きいと、例えば、蒸発器における入口温度が低下することで着霜の可能性が大きくなり問題である。さらに、熱サイクルシステムにおいては、熱交換効率の向上をはかるために熱交換器を流れる作動媒体と水や空気等の熱源流体とを対向流にすることが一般的であり、安定運転状態においては該熱源流体の温度差が小さいことから、温度勾配の大きい非共沸混合媒体の場合、エネルギー効率のよい熱サイクルシステムを得ることが困難である。このため、混合物を作動媒体として使用する場合は適切な温度勾配を有する作動媒体が望まれる。 If the temperature gradient is large, for example, the inlet temperature in the evaporator decreases, which increases the possibility of frost formation, which is a problem. Furthermore, in a heat cycle system, in order to improve heat exchange efficiency, it is common to make the working medium flowing through the heat exchanger and a heat source fluid such as water or air counter flow, and in a stable operation state Since the temperature difference of the heat source fluid is small, it is difficult to obtain an energy efficient thermal cycle system in the case of a non-azeotropic mixed medium having a large temperature gradient. For this reason, when a mixture is used as a working medium, a working medium having an appropriate temperature gradient is desired.
(HFC)
 任意成分のHFCとしては、上記観点から選択されることが好ましい。ここで、HFCは、HFO-1123に比べてGWPが高いことが知られている。したがって、HFO-1123と組合せるHFCとしては、上記作動媒体としてのサイクル性能を向上させ、かつ温度勾配を適切な範囲にとどめることに加えて、特にGWPを許容の範囲にとどめる観点から、適宜選択されることが好ましい。
(HFC)
The optional HFC is preferably selected from the above viewpoint. Here, HFC is known to have higher GWP than HFO-1123. Therefore, the HFC combined with HFO-1123 is appropriately selected from the viewpoint of improving the cycle performance as the working medium and keeping the temperature gradient within an appropriate range, and particularly keeping the GWP within an allowable range. It is preferred that
 オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCとして具体的には炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。 More specifically, an HFC having 1 to 5 carbon atoms is preferable as an HFC that has little influence on the ozone layer and has little influence on global warming. The HFC may be linear, branched, or cyclic.
 HFCとしては、HFC-32、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、HFC-125、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。 Examples of HFC include HFC-32, difluoroethane, trifluoroethane, tetrafluoroethane, HFC-125, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane, and the like.
 なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクル特性が優れる点から、HFC-32、1,1-ジフルオロエタン(HFC-152a)、1,1,1-トリフルオロエタン(HFC-143a)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、およびHFC-125が好ましく、HFC-32、HFC-152a、HFC-134a、およびHFC-125がより好ましい。
 HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Among them, as HFC, HFC-32, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC) have little influence on the ozone layer and have excellent refrigeration cycle characteristics. -143a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,2-tetrafluoroethane (HFC-134a), and HFC-125 are preferred, HFC-32, HFC -152a, HFC-134a, and HFC-125 are more preferred.
One HFC may be used alone, or two or more HFCs may be used in combination.
 作動媒体(100質量%)中のHFCの含有量は、作動媒体の要求特性に応じ任意に選択可能である。例えば、HFO-1123とHFC-32とからなる作動媒体の場合、HFC-32の含有量が1~99質量%の範囲で成績係数および冷凍能力が向上する。HFO-1123とHFC-134aとからなる作動媒体の場合、HFC-134aの含有量が1~99質量%の範囲で成績係数が向上する。 The content of HFC in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium. For example, in the case of a working medium composed of HFO-1123 and HFC-32, the coefficient of performance and the refrigerating capacity are improved when the content of HFC-32 is in the range of 1 to 99% by mass. In the case of a working medium composed of HFO-1123 and HFC-134a, the coefficient of performance improves when the content of HFC-134a is in the range of 1 to 99% by mass.
 また、上記好ましいHFCのGWPは、HFC-32については675であり、HFC-134aについては1430であり、HFC-125については3500である。得られる作動媒体のGWPを低く抑える観点から、任意成分のHFCとしては、HFC-32が最も好ましい。 Also, the preferred HFC GWP is 675 for HFC-32, 1430 for HFC-134a and 3500 for HFC-125. From the viewpoint of keeping the GWP of the obtained working medium low, the HFC-32 is most preferable as an optional HFC.
 また、HFO-1123とHFC-32とは、質量比で99:1~1:99の組成範囲で共沸に近い擬似共沸混合物を形成可能であり、両者の混合物はほぼ組成範囲を選ばずに温度勾配が0に近い。この点においてもHFO-1123と組合せるHFCとしてはHFC-32が有利である。 Further, HFO-1123 and HFC-32 can form a pseudo-azeotropic mixture close to azeotropy in a composition range of 99: 1 to 1:99 by mass ratio. The temperature gradient is close to zero. Also in this respect, HFC-32 is advantageous as an HFC combined with HFO-1123.
 本発明に用いる作動媒体において、HFO-1123とともにHFC-32を用いる場合、作動媒体の100質量%に対するHFC-32の含有量は、具体的には、20質量%以上が好ましく、20~80質量%がより好ましく、40~60質量%がさらに好ましい。 In the working medium used in the present invention, when HFC-32 is used together with HFO-1123, the content of HFC-32 with respect to 100% by mass of the working medium is specifically preferably 20% by mass or more, and 20 to 80% by mass. % Is more preferable, and 40 to 60% by mass is further preferable.
 本発明に用いる作動媒体において、例えば、HFO―1123を含む場合は、HFO-1123以外のHFOとしては、高い臨界温度を有し、耐久性、成績係数が優れる点から、HFO-1234yf(GWP=4)、HFO-1234ze(E)、HFO-1234ze(Z)((E)体、(Z)体共にGWP=6)が好ましく、HFO-1234yf、HFO-1234ze(E)がより好ましい。HFO-1123以外のHFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。作動媒体(100質量%)中のHFO-1123以外のHFOの含有量は、作動媒体の要求特性に応じ任意に選択可能である。例えば、HFO-1123とHFO-1234yfまたはHFO-1234zeとからなる作動媒体の場合、HFO-1234yfまたはHFO-1234zeの含有量が1~99質量%の範囲で成績係数が向上する。 In the working medium used in the present invention, for example, when HFO-1123 is included, HFO other than HFO-1123 has a high critical temperature, and has excellent durability and coefficient of performance. Therefore, HFO-1234yf (GWP = 4), HFO-1234ze (E), HFO-1234ze (Z) (GWP = 6 for both (E) and (Z) isomers) are preferred, and HFO-1234yf and HFO-1234ze (E) are more preferred. HFOs other than HFO-1123 may be used alone or in combination of two or more. The content of HFO other than HFO-1123 in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium. For example, in the case of a working medium composed of HFO-1123 and HFO-1234yf or HFO-1234ze, the coefficient of performance improves when the content of HFO-1234yf or HFO-1234ze is in the range of 1 to 99% by mass.
 本発明に用いる作動媒体が、HFO-1123およびHFO-1234yfを含む場合の、好ましい組成範囲を組成範囲(S)として以下に示す。
 なお、組成範囲(S)を示す各式において、各化合物の略称は、HFO-1123とHFO-1234yfとその他の成分(HFC-32等)との合計量に対する当該化合物の割合(質量%)を示す。
A preferred composition range in the case where the working medium used in the present invention contains HFO-1123 and HFO-1234yf is shown below as a composition range (S).
In each formula showing the composition range (S), the abbreviation of each compound is the ratio (% by mass) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and other components (HFC-32, etc.). Show.
<組成範囲(S)>
 HFO-1123+HFO-1234yf≧70質量%
 95質量%≧HFO-1123/(HFO-1123+HFO-1234yf)≧35質量%
<Composition range (S)>
HFO-1123 + HFO-1234yf ≧ 70% by mass
95% by mass ≧ HFO-1123 / (HFO-1123 + HFO-1234yf) ≧ 35% by mass
 組成範囲(S)の作動媒体は、GWPが極めて低く、温度勾配が小さい。また、成績係数、冷凍能力および臨界温度の観点からも従来のR410Aに代替し得る冷凍サイクル性能を発現できる。 The working medium in the composition range (S) has an extremely low GWP and a small temperature gradient. In addition, from the viewpoint of coefficient of performance, refrigeration capacity, and critical temperature, refrigeration cycle performance that can be substituted for the conventional R410A can be expressed.
 組成範囲(S)の作動媒体において、HFO-1123とHFO-1234yfとの合計量に対するHFO-1123の割合は、40~95質量%がより好ましく、50~90質量%がさらに好ましく、50~85質量%が特に好ましく、60~85質量%がもっとも好ましい。 In the working medium having the composition range (S), the ratio of HFO-1123 to the total amount of HFO-1123 and HFO-1234yf is more preferably 40 to 95% by mass, further preferably 50 to 90% by mass, and more preferably 50 to 85%. Mass% is particularly preferable, and 60 to 85 mass% is most preferable.
 また、作動媒体100質量%中のHFO-1123とHFO-1234yfとの合計の含有量は、80~100質量%がより好ましく、90~100質量%がさらに好ましく、95~100質量%が特に好ましい。 The total content of HFO-1123 and HFO-1234yf in 100% by mass of the working medium is more preferably 80 to 100% by mass, further preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. .
 また、本発明に用いる作動媒体は、HFO-1123とHFC-32とHFO-1234yfとを含むことが好ましく、HFO-1123、HFO-1234yfおよびHFC-32を含有する場合の好ましい組成範囲(P)を以下に示す。
 なお、組成範囲(P)を示す各式において、各化合物の略称は、HFO-1123とHFO-1234yfとHFC-32との合計量に対する当該化合物の割合(質量%)を示す。組成範囲(R)、組成範囲(L)、組成範囲(M)においても同様である。また、以下に記載の組成範囲では、具体的に記載したHFO-1123とHFO-1234yfとHFC-32との合計量が、熱サイクル用作動媒体全量に対して90質量%を超え100質量%以下であることが好ましい。
The working medium used in the present invention preferably contains HFO-1123, HFC-32, and HFO-1234yf, and a preferred composition range (P) in the case of containing HFO-1123, HFO-1234yf, and HFC-32. Is shown below.
Note that, in each formula showing the composition range (P), the abbreviation of each compound indicates the ratio (mass%) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32. The same applies to the composition range (R), composition range (L), and composition range (M). In the composition range described below, the total amount of HFO-1123, HFO-1234yf, and HFC-32 specifically described is more than 90% by mass and less than 100% by mass with respect to the total amount of the working medium for heat cycle. It is preferable that
<組成範囲(P)>
 70質量%≦HFO-1123+HFO-1234yf
 30質量%≦HFO-1123≦80質量%
 0質量%<HFO-1234yf≦40質量%
 0質量%<HFC-32≦30質量%
 HFO-1123/HFO-1234yf≦95/5質量%
<Composition range (P)>
70 mass% ≦ HFO-1123 + HFO-1234yf
30% by mass ≦ HFO-1123 ≦ 80% by mass
0% by mass <HFO-1234yf ≦ 40% by mass
0% by mass <HFC-32 ≦ 30% by mass
HFO-1123 / HFO-1234yf ≦ 95/5% by mass
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性がバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、この作動媒体は、GWPが極めて低く抑えられ、熱サイクルに用いた際に、温度勾配が小さく、一定の能力と効率とを有することで良好なサイクル性能が得られる作動媒体である。ここで、HFO-1123とHFO-1234yfとHFC-32との合計量に対する、HFO-1123とHFO-1234yfとの合計量は70質量%以上であることが好ましい。 The working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the defects possessed by each are suppressed. In other words, this working medium is a working medium that has a very low GWP, has a small temperature gradient, and has a certain capacity and efficiency when used in a thermal cycle, and can obtain good cycle performance. Here, the total amount of HFO-1123 and HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32 is preferably 70% by mass or more.
 また、本発明に用いる作動媒体のより好ましい組成としては、HFO-1123とHFO-1234yfとHFC-32との合計量に対して、HFO-1123を30~70質量%、HFO-1234yfを4~40質量%、およびHFC-32を0~30質量%の割合で含有し、かつ、作動媒体全量に対するHFO-1123の含有量が70モル%以下である組成が挙げられる。前記範囲の作動媒体は、上記の効果が高まるのに加え、HFO-1123の自己分解反応が抑制され、耐久性の高い作動媒体である。相対成績係数の観点からは、HFC-32の含有量は5質量%以上が好ましく、8質量%以上がより好ましい。 The working medium used in the present invention is more preferably composed of 30 to 70% by mass of HFO-1123 and 4 to 4% of HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32. Examples include a composition containing 40% by mass and HFC-32 in a proportion of 0 to 30% by mass, and the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less. The working medium in the above range is a highly durable working medium in which the above effect is enhanced and the self-decomposition reaction of HFO-1123 is suppressed. From the viewpoint of relative coefficient of performance, the content of HFC-32 is preferably 5% by mass or more, and more preferably 8% by mass or more.
 また、本発明に用いる作動媒体がHFO-1123、HFO-1234yfおよびHFC-32を含む場合の、別の好ましい組成を示すが、作動媒体全量に対するHFO-1123の含有量が70モル%以下であれば、HFO-1123の自己分解反応が抑制され、耐久性の高い作動媒体が得られる。
 さらに好ましい組成範囲(R)を、以下に示す。
<組成範囲(R)>
 10質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦50質量%
 30質量%<HFC-32≦75質量%
Further, another preferred composition is shown when the working medium used in the present invention contains HFO-1123, HFO-1234yf, and HFC-32. However, the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less. For example, the self-decomposition reaction of HFO-1123 is suppressed, and a highly durable working medium can be obtained.
A more preferred composition range (R) is shown below.
<Composition range (R)>
10% by mass ≦ HFO-1123 <70% by mass
0% by mass <HFO-1234yf ≦ 50% by mass
30% by mass <HFC-32 ≦ 75% by mass
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性がバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、GWPが低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配が小さく、高い能力と効率を有することで良好なサイクル性能が得られる作動媒体である。 The working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the defects possessed by each are suppressed. That is, it is a working medium in which good cycle performance can be obtained by having a low temperature gradient and high performance and efficiency when used in a thermal cycle after GWP is kept low and durability is ensured.
 上記組成範囲(R)を有する本発明の作動媒体において、好ましい範囲を、以下に示す。
 20質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦40質量%
 30質量%<HFC-32≦75質量%
In the working medium of the present invention having the composition range (R), preferred ranges are shown below.
20% by mass ≦ HFO-1123 <70% by mass
0% by mass <HFO-1234yf ≦ 40% by mass
30% by mass <HFC-32 ≦ 75% by mass
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性が特にバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、GWPが低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配がより小さく、より高い能力と効率を有することで良好なサイクル性能が得られる作動媒体である。 The working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the defects possessed by each of them are suppressed. That is, it is a working medium in which GWP is kept low and durability is ensured, and when used in a thermal cycle, the temperature gradient is smaller and the cycle performance is higher by having higher capacity and efficiency. is there.
 上記組成範囲(R)を有する本発明の作動媒体において、より好ましい組成範囲(L)を、以下に示す。組成範囲(M)がさらに好ましい。
<組成範囲(L)>
 10質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦50質量%
 30質量%<HFC-32≦44質量%
In the working medium of the present invention having the composition range (R), a more preferred composition range (L) is shown below. The composition range (M) is more preferable.
<Composition range (L)>
10% by mass ≦ HFO-1123 <70% by mass
0% by mass <HFO-1234yf ≦ 50% by mass
30% by mass <HFC-32 ≦ 44% by mass
<組成範囲(M)>
 20質量%≦HFO-1123<70質量%
 5質量%≦HFO-1234yf≦40質量%
 30質量%<HFC-32≦44質量%
<Composition range (M)>
20% by mass ≦ HFO-1123 <70% by mass
5% by mass ≦ HFO-1234yf ≦ 40% by mass
30% by mass <HFC-32 ≦ 44% by mass
 上記組成範囲(M)を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性が特にバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、この作動媒体は、GWPの上限が300以下に低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配が5.8未満と小さく、相対成績係数および相対冷凍能力が1に近く良好なサイクル性能が得られる作動媒体である。
 この範囲にあると温度勾配の上限が下がり、相対成績係数×相対冷凍能力の下限が上がる。相対成績係数が大きい点から8質量%≦HFO-1234yfがより好ましい。また、相対冷凍能力が大きい点からHFO-1234yf≦35質量%がより好ましい。
The working medium having the composition range (M) is a working medium in which the characteristics of the HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the drawbacks of the working medium are suppressed. In other words, this working medium has a GWP with an upper limit of 300 or less, and durability is ensured, and when used in a heat cycle, the temperature gradient is less than 5.8, and the relative coefficient of performance and relative This is a working medium having a refrigerating capacity close to 1 and good cycle performance.
Within this range, the upper limit of the temperature gradient is lowered, and the lower limit of the relative coefficient of performance x the relative refrigeration capacity is raised. From the viewpoint of a large relative coefficient of performance, 8% by mass ≦ HFO-1234yf is more preferable. Further, HFO-1234yf ≦ 35 mass% is more preferable from the viewpoint of high relative refrigeration capacity.
 また、本発明に用いる別の作動媒体は、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含むことが好ましく、この組成により作動媒体の燃焼性が抑えられる。
 さらに好ましくは、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含み、作動媒体全量に対するHFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が3質量%以上35質量%以下、HFC-134aの割合が10質量%以上53質量%以下、HFC-125の割合が4質量%以上50質量%以下、HFO-1234yfの割合が5質量%以上50質量%以下であることが好ましい。このような作動媒体とすることにより、作動媒体が不燃性であり、かつ安全性に優れ、オゾン層および地球温暖化への影響をより少なくし、熱サイクルシステムに用いた際により優れたサイクル性能を有する作動媒体とすることができる。
 最も好ましくは、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含み、作動媒体全量に対するHFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が6質量%以上25質量%以下、HFC-134aの割合が20質量%以上35質量%以下、HFC-125の割合が8質量%以上30質量%以下、HFO-1234yfの割合が20質量%以上50質量%以下であることがより一層好ましい。このような作動媒体とすることにより、作動媒体が不燃性であり、かつ安全性により一層優れ、オゾン層および地球温暖化への影響をより一層少なくし、熱サイクルシステムに用いた際により一層優れたサイクル性能を有する作動媒体とすることができる。
Further, another working medium used in the present invention preferably contains HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the combustibility of the working medium is suppressed by this composition.
More preferably, it includes HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total amount of the working medium is 90%. The ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 3% by mass or more and 35% by mass or less, and HFC-134a. The ratio of HFC-125 is preferably 4% by mass to 50% by mass, and the ratio of HFO-1234yf is preferably 5% by mass to 50% by mass. By using such a working medium, the working medium is non-flammable and excellent in safety, has less influence on the ozone layer and global warming, and has better cycle performance when used in a thermal cycle system. It can be set as the working medium which has these.
Most preferably, it includes HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total amount of the working medium is 90%. The ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 6 mass% or more and 25 mass% or less, and HFC-134a. It is even more preferable that the ratio of HFC-125 is 20% by mass to 35% by mass, the ratio of HFC-125 is 8% by mass to 30% by mass, and the ratio of HFO-1234yf is 20% by mass to 50% by mass. By using such a working medium, the working medium is non-flammable, and is more excellent in safety, has less influence on the ozone layer and global warming, and is even better when used in a heat cycle system. The working medium having a high cycle performance can be obtained.
(その他の任意成分)
 本発明の熱サイクルシステム用組成物に用いる作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)、ヒドロクロロフルオロオレフィン(HCFO)等を含有してもよい。その他の任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
(Other optional ingredients)
The working medium used in the composition for a heat cycle system of the present invention may contain carbon dioxide, hydrocarbon, chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO) and the like in addition to the above optional components. Other optional components are preferably components that have little influence on the ozone layer and little influence on global warming.
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。
 炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the hydrocarbon include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.
A hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
 上記作動媒体が炭化水素を含有する場合、その含有量は作動媒体の100質量%に対して10質量%未満であり、1~5質量%が好ましく、3~5質量%がさらに好ましい。炭化水素が下限値以上であれば、作動媒体への鉱物系冷凍機油の溶解性がより良好になる。 When the working medium contains a hydrocarbon, the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 5% by weight, and more preferably 3 to 5% by weight. If a hydrocarbon is more than a lower limit, the solubility of the mineral refrigeration oil to a working medium will become more favorable.
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。
 CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of CFO include chlorofluoropropene and chlorofluoroethylene. As CFO, 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium. , 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are preferred.
One type of CFO may be used alone, or two or more types may be used in combination.
 作動媒体がCFOを含有する場合、その含有量は作動媒体の100質量%に対して10質量%未満であり、1~8質量%が好ましく、2~5質量%がさらに好ましい。CFOの含有量が下限値以上であれば、作動媒体の燃焼性を抑制しやすい。CFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。 When the working medium contains CFO, the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 8% by weight, and more preferably 2 to 5% by weight. If the CFO content is at least the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of CFO is not more than the upper limit value, good cycle performance can be easily obtained.
 HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、HCFOとしては、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)が好ましい。
 HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of HCFO include hydrochlorofluoropropene and hydrochlorofluoroethylene. As HCFO, 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd), 1-chloro can be used because flammability of the working medium can be easily suppressed without greatly reducing the cycle performance of the working medium. -1,2-difluoroethylene (HCFO-1122) is preferred.
HCFO may be used alone or in combination of two or more.
 上記作動媒体がHCFOを含む場合、作動媒体100質量%中のHCFOの含有量は、10質量%未満であり、1~8質量%が好ましく、2~5質量%がさらに好ましい。HCFOの含有量が下限値以上であれば、作動媒体の燃焼性を抑制しやすい。HCFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。 When the working medium contains HCFO, the content of HCFO in 100% by mass of the working medium is less than 10% by mass, preferably 1 to 8% by mass, and more preferably 2 to 5% by mass. If the content of HCFO is equal to or higher than the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of HCFO is not more than the upper limit value, good cycle performance can be easily obtained.
 本発明に用いる作動媒体が上記のようなその他の任意成分を含有する場合、作動媒体におけるその他の任意成分の合計含有量は、作動媒体100質量%に対して10質量%未満であり、8質量%以下が好ましく、5質量%以下がさらに好ましい。 When the working medium used in the present invention contains other optional components as described above, the total content of other optional components in the working medium is less than 10% by mass with respect to 100% by mass of the working medium, and 8% by mass. % Or less is preferable, and 5 mass% or less is more preferable.
 次に、本実施の形態にかかる冷凍サイクル装置について説明する。
 図1は、本実施の形態にかかる冷凍サイクル装置1の概略構成を示す図である。冷凍サイクル装置1は、1,1,2-トリフルオロエチレンを含む作動媒体を、圧縮機10から、凝縮器12、膨張弁13、蒸発器14を経由して圧縮機10に循環させる循環経路を有する。循環経路において、圧縮機10と蒸発器14との間にはアキュムレータ11が設けられている。
Next, the refrigeration cycle apparatus according to the present embodiment will be described.
FIG. 1 is a diagram showing a schematic configuration of a refrigeration cycle apparatus 1 according to the present embodiment. The refrigeration cycle apparatus 1 has a circulation path for circulating a working medium containing 1,1,2-trifluoroethylene from the compressor 10 via the condenser 12, the expansion valve 13, and the evaporator 14 to the compressor 10. Have. An accumulator 11 is provided between the compressor 10 and the evaporator 14 in the circulation path.
 圧縮機10は、作動媒体(蒸気)を圧縮するもので、内部には焼付き防止のための冷凍機油が蓄えられている。冷凍機油は、作動媒体との相溶性が高いものであり、例えばポリオールエステル油である。アキュムレータ11は、運転負荷の変化などにより冷媒サイクル中で余剰となる冷媒を貯留するための液溜めで、圧縮機10の吸入側に設けられている。凝縮器12は、圧縮機10から排出された作動媒体の蒸気を冷却し液体とする。膨張弁13は、凝縮器12から排出された作動媒体(液体)を膨張させる。膨張弁13は、例えば電気的に駆動して開閉操作を行う電子膨張弁である。蒸発器14は、膨張弁13から排出された作動媒体(液体)を加熱して蒸気とする。蒸発器14および凝縮器12は、作動媒体と対向または並行して流れる熱源流体との間で熱交換を行うように構成されている。冷凍サイクル装置1は、蒸発器14に水や空気などの熱源流体Eを供給する流体供給手段15と、凝縮器12に水や空気などの熱源流体Fを供給する流体供給手段16と、を備えている。 Compressor 10 compresses the working medium (steam), and refrigeration oil for preventing seizure is stored inside. The refrigerating machine oil is highly compatible with the working medium, and is, for example, a polyol ester oil. The accumulator 11 is a liquid reservoir for storing a refrigerant that becomes excessive in the refrigerant cycle due to a change in operating load or the like, and is provided on the suction side of the compressor 10. The condenser 12 cools the vapor of the working medium discharged from the compressor 10 into a liquid. The expansion valve 13 expands the working medium (liquid) discharged from the condenser 12. The expansion valve 13 is, for example, an electronic expansion valve that is electrically driven to perform an opening / closing operation. The evaporator 14 heats the working medium (liquid) discharged from the expansion valve 13 to make it vapor. The evaporator 14 and the condenser 12 are configured to exchange heat between the working medium and a heat source fluid that flows opposite or in parallel. The refrigeration cycle apparatus 1 includes fluid supply means 15 for supplying a heat source fluid E such as water or air to the evaporator 14, and fluid supply means 16 for supplying a heat source fluid F such as water or air to the condenser 12. ing.
 冷凍サイクル装置1には各種センサが設けられている。具体的に、吐出配管21には吐出温度センサ33が設けられ、吸入配管22には吸入温度センサ34が設けられている。吐出温度センサ33は、圧縮機10から吐出された冷媒の温度を検出する。吸入温度センサ34は、圧縮機10へ吸入される冷媒の温度を検出する。吐出圧力については、吐出温度センサ33の検出した温度または各部温度から推算してもよいし、吐出配管21に吐出圧力センサ31を設けて直接検出するようにしてもよい。吸入圧力については、吸入温度センサ34の検出した温度または各部温度から推算してもよいし、吸入配管22に吸入圧力センサ32を設けて直接検出するようにしてもよい。また、凝縮器12の液側には冷媒の温度を検出する液側温度センサ35が設けられている。さらに、冷凍サイクル装置1は、冷凍サイクルを循環する作動媒体の組成を調整する機構を備えている。この作動媒体の組成を調整する機構については後述する。 Various sensors are provided in the refrigeration cycle apparatus 1. Specifically, the discharge pipe 21 is provided with a discharge temperature sensor 33, and the suction pipe 22 is provided with a suction temperature sensor 34. The discharge temperature sensor 33 detects the temperature of the refrigerant discharged from the compressor 10. The suction temperature sensor 34 detects the temperature of the refrigerant sucked into the compressor 10. The discharge pressure may be estimated from the temperature or each part temperature detected by the discharge temperature sensor 33, or may be directly detected by providing the discharge pressure sensor 31 in the discharge pipe 21. The suction pressure may be estimated from the temperature or each part temperature detected by the suction temperature sensor 34, or may be directly detected by providing the suction pressure sensor 32 in the suction pipe 22. A liquid side temperature sensor 35 that detects the temperature of the refrigerant is provided on the liquid side of the condenser 12. Furthermore, the refrigeration cycle apparatus 1 includes a mechanism that adjusts the composition of the working medium circulating in the refrigeration cycle. A mechanism for adjusting the composition of the working medium will be described later.
 冷凍サイクル装置1では、以下の冷凍サイクルが繰り返される。まず、蒸発器14から排出された作動媒体蒸気Aは、アキュムレータ11を通って圧縮機10へ吸入される。そして、圧縮機10にて圧縮されて高温高圧の作動媒体蒸気Bとなる。圧縮機10から排出された作動媒体蒸気Bは、凝縮器12において流体Fによって冷却され、液化して作動媒体液Cとなる。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される。続いて、凝縮器12から排出された作動媒体液Cは、膨張弁13にて膨張されて低温低圧の作動媒体液Dとなる。続いて、膨張弁13から排出された作動媒体Dは、蒸発器14にて流体Eによって加熱され作動媒体蒸気Aとなる。この際、流体Eは冷却されて流体E’となり、蒸発器14から排出される。 In the refrigeration cycle apparatus 1, the following refrigeration cycle is repeated. First, the working medium vapor A discharged from the evaporator 14 is sucked into the compressor 10 through the accumulator 11. Then, it is compressed by the compressor 10 to become high-temperature and high-pressure working medium vapor B. The working medium vapor B discharged from the compressor 10 is cooled by the fluid F in the condenser 12 and liquefied to become the working medium liquid C. At this time, the fluid F is heated to become a fluid F ′ and is discharged from the condenser 12. Subsequently, the working medium liquid C discharged from the condenser 12 is expanded by the expansion valve 13 to become a low temperature and low pressure working medium liquid D. Subsequently, the working medium D discharged from the expansion valve 13 is heated by the fluid E in the evaporator 14 to become working medium vapor A. At this time, the fluid E is cooled to become a fluid E ′ and discharged from the evaporator 14.
 図2は、冷凍サイクル装置1の作動媒体の状態変化を示す温度-エントロピ線図である。また、図3は、冷凍サイクル装置1の作動媒体の状態変化を示す圧力-エンタルピ線図である。なお、以下の説明では、図1も適宜参照する。図2及び図3に示すように、AからBへの状態変化の過程では、圧縮機10で断熱圧縮を行い、低温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする。BからCへの状態変化の過程では、凝縮器12で等圧冷却を行い、作動媒体蒸気Bを作動媒体Cとする。CからDへの状態変化の過程では、膨張弁13で等エンタルピ膨張を行い、高温高圧の作動媒体Cを低温低圧の作動媒体Dとする。DからAへの状態変化の過程では、蒸発器14で等圧加熱を行い、作動媒体Dを作動媒体蒸気Aに戻す。 FIG. 2 is a temperature-entropy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus 1. FIG. 3 is a pressure-enthalpy diagram showing a change in the state of the working medium of the refrigeration cycle apparatus 1. In the following description, FIG. 1 is also referred to as appropriate. As shown in FIGS. 2 and 3, in the process of state change from A to B, adiabatic compression is performed by the compressor 10, and the low-temperature and low-pressure working medium vapor A is changed to high-temperature and high-pressure working medium vapor B. In the process of the state change from B to C, isobaric cooling is performed by the condenser 12, and the working medium vapor B is used as the working medium C. In the process of changing the state from C to D, the expansion valve 13 performs isenthalpy expansion, and the high-temperature high-pressure working medium C is used as the low-temperature low-pressure working medium D. In the process of state change from D to A, isobaric heating is performed by the evaporator 14, and the working medium D is returned to the working medium vapor A.
 Gにおいて作動媒体は飽和液の状態であり、Cにおいて作動媒体は過冷却液の状態である。Gにおける作動媒体の温度をT3、Cにおける作動媒体の温度をT4とすると、T3-T4が作動媒体の過冷却度(サブクール)である。また、Hにおいて作動媒体は飽和蒸気の状態であり、Aにおいて作動媒体は過熱蒸気の状態である。Hにおける作動媒体の温度をT6、Aにおける作動媒体の温度をT1とすると、T1-T6が作動媒体の過熱度(スーパーヒート)である。 In G, the working medium is in a saturated liquid state, and in C, the working medium is in a supercooled liquid state. When the temperature of the working medium in G is T3 and the temperature of the working medium in C is T4, T3-T4 is the degree of subcooling of the working medium. In H, the working medium is in a saturated steam state, and in A, the working medium is in a superheated steam state. Assuming that the temperature of the working medium at H is T6 and the temperature of the working medium at A is T1, T1-T6 is the superheat degree of the working medium (superheat).
 冷凍サイクル装置1の運転中に、この冷凍機油の一部は作動媒体とともに圧縮機10の外へと排出される(図1参照)。冷凍サイクル装置1の運転中、圧縮機10の外に排出された冷凍機油は、圧縮機の吸込み側に設けられたアキュムレータ11などに溜まる。図4は、アキュムレータ11の概略構成を示す図である。図4に示すように、アキュムレータ11は、密閉構造のケーシング51と、導入管52と、導出管53と、を備えている。導入管52は、ケーシング51の上部から内部に挿入され、開口端がケーシング51の上部内方に開口している。導出管53は、ケーシング51の上部から内部に挿入され、ケーシング51内の底部の近傍部位で略U字状に曲成される曲成部を備え、開口端がケーシング51の上部に開口している。冷凍機油が一定量以上溜まらないようにするため、導出管53の曲成部には油戻し穴54が設けられている。また、ケーシング51の外周にはバンド状のヒータ55が巻き付けられている。 During operation of the refrigeration cycle apparatus 1, a part of this refrigeration oil is discharged out of the compressor 10 together with the working medium (see FIG. 1). During operation of the refrigeration cycle apparatus 1, the refrigeration oil discharged outside the compressor 10 is accumulated in an accumulator 11 provided on the suction side of the compressor. FIG. 4 is a diagram showing a schematic configuration of the accumulator 11. As shown in FIG. 4, the accumulator 11 includes a sealed casing 51, an introduction pipe 52, and a lead-out pipe 53. The introduction pipe 52 is inserted into the inside from the upper part of the casing 51, and the opening end opens inward of the upper part of the casing 51. The lead-out pipe 53 includes a bent portion that is inserted into the casing 51 from the top and is bent in a substantially U shape at a portion near the bottom in the casing 51, and has an open end that opens to the top of the casing 51. Yes. An oil return hole 54 is provided in the bent portion of the outlet pipe 53 so that the refrigerating machine oil does not accumulate more than a certain amount. A band-shaped heater 55 is wound around the outer periphery of the casing 51.
 冷凍サイクル装置1の運転中、アキュムレータ11などの圧縮機の外部に溜まった冷凍機油に作動媒体が溶け込む。HFO-1123を含む作動媒体において、HFO-1123以外の成分の種類によっては、冷凍機油の温度が低いとHFO-1123に比べてHFO-1123以外の成分の方が冷凍機油への溶解度が高くなる場合がある。このような場合、例えば運転中における外気温度が低いと、周囲空気に冷やされて低温になった冷凍機油にHFO-1123以外の成分が選択的に溶け込む。つまり、冷凍サイクル装置1の運転中において、外気温度などの諸条件が変化することにより、冷凍サイクル内を循環する作動媒体におけるHFO-1123の比率が高くなる場合がある。 During operation of the refrigeration cycle apparatus 1, the working medium dissolves in the refrigeration oil accumulated outside the compressor such as the accumulator 11. In a working medium containing HFO-1123, depending on the type of components other than HFO-1123, if the temperature of the refrigeration oil is low, the components other than HFO-1123 have higher solubility in the refrigeration oil than HFO-1123. There is a case. In such a case, for example, when the outside air temperature during operation is low, components other than HFO-1123 are selectively dissolved in the refrigerating machine oil that has been cooled by the ambient air to a low temperature. In other words, during the operation of the refrigeration cycle apparatus 1, various conditions such as the outside air temperature may change, and the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle may increase.
 冷凍サイクル装置1の運転中、アキュムレータ11などの箇所において液冷媒が溜まりやすい。また、アキュムレータ11のような液冷媒が溜まりやすい箇所において、作動媒体のうち沸点の高い冷媒成分の方が沸点の低い冷媒成分よりも液冷媒として滞留しやすい。HFO-1123とその他の冷媒成分の候補として代表的なものの沸点について表2に示す。表2に示した冷媒のうち、HFO-1123の沸点が最も低い。冷凍サイクル装置1の運転中、作動媒体における冷媒成分の中でHFO-1123が最も低沸点である場合、HFO-1123よりもHFO-1123以外の成分の方がアキュムレータに液冷媒として滞留しやすい。このため、冷凍サイクル内を循環する作動媒体におけるHFO-1123の比率が高くなる場合がある。 During the operation of the refrigeration cycle apparatus 1, liquid refrigerant tends to accumulate in places such as the accumulator 11. Moreover, in the location where the liquid refrigerant such as the accumulator 11 tends to accumulate, the refrigerant component having a high boiling point in the working medium is more likely to stay as the liquid refrigerant than the refrigerant component having a low boiling point. Table 2 shows boiling points of typical HFO-1123 and other refrigerant component candidates. Of the refrigerants shown in Table 2, HFO-1123 has the lowest boiling point. During operation of the refrigeration cycle apparatus 1, when HFO-1123 has the lowest boiling point among the refrigerant components in the working medium, components other than HFO-1123 are more likely to stay in the accumulator as liquid refrigerant than HFO-1123. For this reason, the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle may increase.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 冷凍サイクル内を循環する作動媒体におけるHFO-1123の比率が高くなると、HFO-1123の不均化反応が生じるリスクが高まる。HFO-1123の不均化反応を抑制するため、作動媒体の組成においてHFO-1123の比率が高くなった場合に、作動媒体の組成を調整する機構により、作動媒体の組成においてHFO-1123の比率が一定の範囲内になるように調整する必要がある。なお、作動媒体の組成においてHFO-1123の比率が一定の範囲内であるときに、作動媒体の組成は定常の組成であるという。 If the ratio of HFO-1123 in the working medium circulating in the refrigeration cycle is increased, the risk of disproportionation reaction of HFO-1123 increases. In order to suppress the disproportionation reaction of HFO-1123, the ratio of HFO-1123 in the composition of the working medium is controlled by a mechanism that adjusts the composition of the working medium when the ratio of HFO-1123 in the composition of the working medium increases. Needs to be adjusted so that is within a certain range. When the ratio of HFO-1123 is within a certain range in the composition of the working medium, the composition of the working medium is said to be a steady composition.
 ここで、本発明の特徴部である、冷凍サイクル内を循環する作動媒体の組成を調整する機構について説明する。
 図5は、冷凍サイクル内を循環する作動媒体の組成を調整する組成調整機構40の概略構成を示すブロック図である。図5に示すように、組成調整機構40は、作動冷媒の組成が定常の組成から変化したことを検知する組成変化検知手段41と、作動媒体の組成を調整する組成調整手段42と、組成調整手段42を制御する制御手段43と、を備えている。制御手段43は、組成変化検知手段41による検知結果に基づいて組成調整手段42を制御する。
Here, a mechanism for adjusting the composition of the working medium circulating in the refrigeration cycle, which is a characteristic part of the present invention, will be described.
FIG. 5 is a block diagram showing a schematic configuration of the composition adjustment mechanism 40 that adjusts the composition of the working medium circulating in the refrigeration cycle. As shown in FIG. 5, the composition adjustment mechanism 40 includes a composition change detection means 41 that detects that the composition of the working refrigerant has changed from a steady composition, a composition adjustment means 42 that adjusts the composition of the working medium, and a composition adjustment. Control means 43 for controlling the means 42. The control means 43 controls the composition adjustment means 42 based on the detection result by the composition change detection means 41.
 図1に示すように、冷凍サイクル装置1において、吐出温度センサ33を組成変化検知手段41として用いる。吐出温度センサ33は、圧縮機10と凝縮器12とを接続する吐出配管21に取り付けられ、圧縮機10の吐出温度を検知するものである。冷凍サイクル装置1において、作動媒体におけるHFO-1123以外の成分が冷凍機油に選択的に溶け込んだ場合、作動媒体が不足した場合と同様の挙動を示すので、吐出温度が上昇する。
また、冷凍サイクル装置1において、アキュムレータ11などの液冷媒が溜まりやすい箇所にHFO-1123以外の成分の比率が高い液冷媒が多く滞留している場合にも、作動媒体が不足した場合と同様の挙動を示すので、吐出温度が上昇する。吐出温度センサ33が検出した温度が所定の温度を超えた場合に、作動媒体の組成が定常の組成から変化したと検知する。
As shown in FIG. 1, the discharge temperature sensor 33 is used as the composition change detection means 41 in the refrigeration cycle apparatus 1. The discharge temperature sensor 33 is attached to the discharge pipe 21 that connects the compressor 10 and the condenser 12, and detects the discharge temperature of the compressor 10. In the refrigeration cycle apparatus 1, when components other than HFO-1123 in the working medium are selectively dissolved in the refrigerating machine oil, the behavior is the same as when the working medium is insufficient, so the discharge temperature rises.
Further, in the refrigeration cycle apparatus 1, when a large amount of liquid refrigerant other than HFO-1123 stays in a place where liquid refrigerant is likely to accumulate, such as the accumulator 11, the same as when the working medium is insufficient. Since it shows a behavior, the discharge temperature rises. When the temperature detected by the discharge temperature sensor 33 exceeds a predetermined temperature, it is detected that the composition of the working medium has changed from the steady composition.
 図1に示すように、組成調整手段42は、アキュムレータ11に取り付けられたヒータ55である。組成変化検知手段41によって作動媒体の組成が定常の組成から変化したと検知された場合に、制御手段43が、ヒータ55を通電する。 As shown in FIG. 1, the composition adjusting means 42 is a heater 55 attached to the accumulator 11. When the composition change detecting means 41 detects that the composition of the working medium has changed from the steady composition, the control means 43 energizes the heater 55.
 例えば、HFO-1123を含む作動媒体においてHFO-1123の方がHFO-1123以外の成分よりも凝縮温度が低い場合に、HFO-1123以外の成分の方がHFO-1123よりも多くアキュムレータ11内に滞留した冷凍機油に溶解することで、冷凍サイクル装置1の循環経路を循環する作動媒体におけるHFO-1123の比率が高くなっていたとする。このような場合にも、アキュムレータ11内に溜まった冷凍機油はヒータ55を通電することにより加熱されるので、冷凍機油に溶け込んでいた冷媒成分が追い出され、冷凍サイクル装置1の循環経路を循環する作動媒体の組成を定常の組成に戻すことができる。これにより、HFO-1123を含む作動媒体を用いる場合に、HFO-1123の不均化反応の発生を効果的に抑制することができる。 For example, in a working medium containing HFO-1123, when HFO-1123 has a lower condensation temperature than components other than HFO-1123, more components than HFO-1123 are present in the accumulator 11 than HFO-1123. It is assumed that the ratio of HFO-1123 in the working medium circulating in the circulation path of the refrigeration cycle apparatus 1 is increased by dissolving in the accumulated refrigeration oil. Even in such a case, since the refrigerating machine oil accumulated in the accumulator 11 is heated by energizing the heater 55, the refrigerant component dissolved in the refrigerating machine oil is expelled and circulates in the circulation path of the refrigerating cycle apparatus 1. The composition of the working medium can be returned to a steady composition. Thereby, when the working medium containing HFO-1123 is used, the occurrence of the disproportionation reaction of HFO-1123 can be effectively suppressed.
 また、例えば、作動媒体における冷媒成分の中でHFO-1123が最も低沸点である場合に、アキュムレータ11内にHFO-1123以外の成分の比率が高い液冷媒が多く滞留し、冷凍サイクル装置1の循環経路を循環する作動媒体におけるHFO-1123の比率が高くなっていたとする。このような場合にも、アキュムレータ11内に溜まったHFO-1123以外の成分の比率が高い液冷媒はヒータ55を通電することにより蒸発するので、冷凍サイクル装置1の循環経路を循環する作動媒体の組成を定常の組成に戻すことができる。これにより、HFO-1123を含む作動媒体を用いる場合に、HFO-1123の不均化反応の発生を効果的に抑制することができる。 Further, for example, when HFO-1123 has the lowest boiling point among the refrigerant components in the working medium, a large amount of liquid refrigerant with a high ratio of components other than HFO-1123 stays in the accumulator 11, and the refrigeration cycle apparatus 1 Assume that the ratio of HFO-1123 in the working medium circulating in the circulation path is high. Even in such a case, the liquid refrigerant having a high ratio of components other than HFO-1123 accumulated in the accumulator 11 evaporates when the heater 55 is energized, so that the working medium circulating in the circulation path of the refrigeration cycle apparatus 1 The composition can be returned to a steady composition. Thereby, when the working medium containing HFO-1123 is used, the occurrence of the disproportionation reaction of HFO-1123 can be effectively suppressed.
[変形例1]
 組成変化検知手段41(図5参照)として、圧縮機10に吸入される作動媒体の過熱度を検出する過熱度検出手段70を用いてもよい。図6は、冷凍サイクル装置101における組成変化検知手段41としての過熱度検出手段70について説明する図である。図1と共通の構成要素には共通の符号を付し、その説明を省略する。図6に示すように、過熱度検出手段70は、例えば、吸入配管22に吸入圧力センサ32を設ける場合、吸入圧力センサ32により検出される吸入圧力Ps(図3参照)から飽和蒸気温度T6(図3参照)を導出し、この飽和蒸気温度T6を吸入温度センサ34により検出される温度値(T1)から差し引くことにより過熱度を検出する。なお、吸入配管22に吸入圧力センサ32を設けない場合には、過熱度の検出に用いる吸入圧力Psは、上述したように、吸入温度センサ34または各部温度から推算したものとする。冷凍サイクル装置101において、作動媒体におけるHFO-1123以外の成分が冷凍機油に選択的に溶け込んだ場合、作動媒体が不足した場合と同様の挙動を示すので、過熱度が大きくなる。また、冷凍サイクル装置1において、アキュムレータ11などの液冷媒が溜まりやすい箇所にHFO-1123以外の成分の比率が高い液冷媒が多く滞留している場合にも、作動媒体が不足した場合と同様の挙動を示すので、過熱度が上昇する。過熱度検出手段70が検出した過熱度が所定の値を超えた場合に作動媒体の組成が定常の組成から変化したと検知する。なお、この所定の温度は、作動媒体の組成が定常の組成で冷凍サイクル装置101が安定運転をしている時の過熱度に基づいて決める。
[Modification 1]
As the composition change detecting means 41 (see FIG. 5), a superheat degree detecting means 70 for detecting the superheat degree of the working medium sucked into the compressor 10 may be used. FIG. 6 is a diagram for explaining the superheat degree detection means 70 as the composition change detection means 41 in the refrigeration cycle apparatus 101. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted. As shown in FIG. 6, for example, when the suction pressure sensor 32 is provided in the suction pipe 22, the superheat degree detection means 70 determines the saturated steam temperature T <b> 6 (from the suction pressure Ps (see FIG. 3)) detected by the suction pressure sensor 32. 3), and the degree of superheat is detected by subtracting the saturated vapor temperature T6 from the temperature value (T1) detected by the suction temperature sensor 34. When the suction pressure sensor 32 is not provided in the suction pipe 22, the suction pressure Ps used for detecting the degree of superheat is estimated from the suction temperature sensor 34 or the temperature of each part as described above. In the refrigeration cycle apparatus 101, when components other than HFO-1123 in the working medium are selectively dissolved in the refrigerating machine oil, the behavior is the same as when the working medium is insufficient, so the degree of superheat increases. Further, in the refrigeration cycle apparatus 1, when a large amount of liquid refrigerant other than HFO-1123 stays in a place where liquid refrigerant is likely to accumulate, such as the accumulator 11, the same as when the working medium is insufficient. Since it exhibits behavior, the degree of superheat increases. When the superheat degree detected by the superheat degree detection means 70 exceeds a predetermined value, it is detected that the composition of the working medium has changed from the steady composition. The predetermined temperature is determined based on the degree of superheat when the composition of the working medium is a steady composition and the refrigeration cycle apparatus 101 is operating stably.
[変形例2]
 組成変化検知手段41(図5参照)として、凝縮器12の出口における冷媒の過冷却度を検出する過冷却度検出手段80を用いてもよい。図7は、冷凍サイクル装置201における組成変化検知手段41としての過冷却度検出手段80について説明する図である。図1と共通の構成要素には共通の符号を付し、その説明を省略する。図7に示すように、過冷却度検出手段80は、例えば、吐出配管21に吐出圧力センサ31を設ける場合、吐出圧力センサ31により検出される圧縮機10の吐出圧力Pd(図3参照)から飽和液温度T3(図3参照)を導出し、この飽和液温度T3から液側温度センサ35により検出される温度値(T4)から差し引くことにより過冷却度を検出する。なお、吐出配管21に吐出圧力センサ31を設けない場合には、過冷却度の検出に用いる吐出圧力Pdは、上述したように、吐出温度センサ33または各部温度から推算したものとする。作動媒体におけるHFO-1123以外の成分が冷凍機油に選択的に溶け込んだ場合、作動媒体が不足した場合と同様の挙動を示す。また、冷凍サイクル装置201において、アキュムレータ11などの液冷媒が溜まりやすい箇所にHFO-1123以外の成分の比率が高い液冷媒が多く滞留している場合にも、作動媒体が不足した場合と同様の挙動を示す。過冷却度検出手段80が検出した過冷却度が所定の範囲を逸脱した場合に作動媒体の組成が定常の組成から変化したと検知する。なお、この所定の範囲は、作動媒体の組成が定常の組成で冷凍サイクル装置1が安定運転をしている時の過冷却度に基づいて決める。
[Modification 2]
As the composition change detecting means 41 (see FIG. 5), a supercooling degree detecting means 80 for detecting the supercooling degree of the refrigerant at the outlet of the condenser 12 may be used. FIG. 7 is a diagram for explaining the supercooling degree detection means 80 as the composition change detection means 41 in the refrigeration cycle apparatus 201. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted. As shown in FIG. 7, for example, when the discharge pressure sensor 31 is provided in the discharge pipe 21, the supercooling degree detection means 80 is based on the discharge pressure Pd (see FIG. 3) of the compressor 10 detected by the discharge pressure sensor 31. A saturated liquid temperature T3 (see FIG. 3) is derived, and the degree of supercooling is detected by subtracting from the temperature value (T4) detected by the liquid side temperature sensor 35 from the saturated liquid temperature T3. When the discharge pressure sensor 31 is not provided in the discharge pipe 21, the discharge pressure Pd used for detecting the degree of supercooling is estimated from the discharge temperature sensor 33 or the temperature of each part as described above. When components other than HFO-1123 in the working medium are selectively dissolved in the refrigerating machine oil, the same behavior as when the working medium is insufficient is exhibited. Further, in the refrigeration cycle apparatus 201, when a large amount of liquid refrigerant with a high ratio of components other than HFO-1123 stays in a place where liquid refrigerant is likely to accumulate, such as the accumulator 11, the same as when the working medium is insufficient. Shows behavior. When the degree of supercooling detected by the degree of supercooling detection means 80 deviates from a predetermined range, it is detected that the composition of the working medium has changed from the steady composition. This predetermined range is determined based on the degree of supercooling when the composition of the working medium is a steady composition and the refrigeration cycle apparatus 1 is operating stably.
[変形例3]
 組成調整手段42(図5参照)は、圧縮機10から吐出されるホットガスをアキュムレータ111に導入するホットガス導入手段60であってもよい。図8は、冷凍サイクル装置301におけるホットガス導入手段60について説明する図である。図1と共通の構成要素には共通の符号を付し、その説明を省略する。図8に示すように、ホットガス導入手段60は、圧縮機10から吐出されるホットガスの一部を分流してアキュムレータ111へ導入するホットガスバイパス路61と、ホットガスバイパス路61に設けられた開閉弁62と、を有する。開閉弁62は、通常時には閉じられている。組成変化検知手段41によって作動媒体の組成が変化したと検知された場合に、制御手段43が、開閉弁62を閉状態から開状態にする。図9は、ホットガスバイパス路61が接続されたアキュムレータ111の概略構成を示す図である。図4と共通の構成要素には共通の符号を付し、その説明を省略する。図9に示すように、ホットガスバイパス路61は、アキュムレータ111内にホットガスが導入されるようにケーシング51に接続されている。
[Modification 3]
The composition adjustment unit 42 (see FIG. 5) may be a hot gas introduction unit 60 that introduces hot gas discharged from the compressor 10 into the accumulator 111. FIG. 8 is a diagram for explaining the hot gas introduction means 60 in the refrigeration cycle apparatus 301. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted. As shown in FIG. 8, the hot gas introduction means 60 is provided in the hot gas bypass passage 61 and the hot gas bypass passage 61 that diverts a part of the hot gas discharged from the compressor 10 and introduces it into the accumulator 111. And an open / close valve 62. The on-off valve 62 is normally closed. When the composition change detection means 41 detects that the composition of the working medium has changed, the control means 43 changes the on-off valve 62 from the closed state to the open state. FIG. 9 is a diagram showing a schematic configuration of the accumulator 111 to which the hot gas bypass passage 61 is connected. Constituent elements common to those in FIG. 4 are denoted by common reference numerals, and description thereof is omitted. As shown in FIG. 9, the hot gas bypass passage 61 is connected to the casing 51 so that hot gas is introduced into the accumulator 111.
 例えば、HFO-1123を含む作動媒体においてHFO-1123の方がHFO-1123以外の成分よりも凝縮温度が低い場合に、HFO-1123以外の成分の方がHFO-1123よりも多くアキュムレータ111内に滞留した冷凍機油に溶解することで、冷凍サイクル装置301の循環経路を循環する作動媒体におけるHFO-1123の比率が高くなっていたとする。このような場合にも、アキュムレータ111内に溜まった冷凍機油がホットガスによって加熱されるので、冷凍機油に溶け込んでいた冷媒成分を追い出すことができる。これにより、作動媒体の組成を定常の組成に戻すことができる。 For example, in a working medium containing HFO-1123, when the condensation temperature of HFO-1123 is lower than that of components other than HFO-1123, more components than HFO-1123 are present in the accumulator 111 than HFO-1123. It is assumed that the ratio of HFO-1123 in the working medium circulating in the circulation path of the refrigeration cycle apparatus 301 is increased by dissolving in the accumulated refrigeration oil. Even in such a case, since the refrigerating machine oil accumulated in the accumulator 111 is heated by the hot gas, the refrigerant component dissolved in the refrigerating machine oil can be driven out. Thereby, the composition of the working medium can be returned to the steady composition.
 また、例えば、作動媒体における冷媒成分の中でHFO-1123が最も低沸点である場合に、アキュムレータ111内にHFO-1123以外の成分の比率が高い液冷媒が多く滞留し、冷凍サイクル装置301の循環経路を循環する作動媒体におけるHFO-1123の比率が高くなっていたとする。このような場合にも、アキュムレータ111内に溜まったHFO-1123以外の成分の比率が高い液冷媒はホットガスにより加熱されて蒸発するので、冷凍サイクル装置1の循環経路を循環する作動媒体の組成を定常の組成に戻すことができる。これにより、HFO-1123を含む作動媒体を用いる場合に、HFO-1123の不均化反応の発生を効果的に抑制することができる。 Also, for example, when HFO-1123 has the lowest boiling point among the refrigerant components in the working medium, a large amount of liquid refrigerant with a high ratio of components other than HFO-1123 stays in the accumulator 111 and the refrigeration cycle apparatus 301 Assume that the ratio of HFO-1123 in the working medium circulating in the circulation path is high. Even in such a case, since the liquid refrigerant having a high ratio of components other than HFO-1123 accumulated in the accumulator 111 is heated and evaporated by the hot gas, the composition of the working medium that circulates in the circulation path of the refrigeration cycle apparatus 1. Can be returned to a steady composition. Thereby, when the working medium containing HFO-1123 is used, the occurrence of the disproportionation reaction of HFO-1123 can be effectively suppressed.
[変形例4]
 組成調整手段42(図5参照)は、圧縮機10(圧縮機10の圧縮機構を駆動するモータ)であってもよい。図10は、冷凍サイクル401における組成調整手段42について説明する図である。図1と共通の構成要素には共通の符号を付し、その説明を省略する。
図10に示すように、組成調整手段42は、圧縮機10の圧縮機構を駆動するモータである。組成変化検知手段41によって作動媒体の組成が変化したと検知された場合に、制御手段43が、圧縮機10のモータの回転数を増加させる。
[Modification 4]
The composition adjusting means 42 (see FIG. 5) may be the compressor 10 (a motor that drives the compression mechanism of the compressor 10). FIG. 10 is a diagram for explaining the composition adjusting means 42 in the refrigeration cycle 401. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted.
As shown in FIG. 10, the composition adjustment unit 42 is a motor that drives the compression mechanism of the compressor 10. When the composition change detection means 41 detects that the composition of the working medium has changed, the control means 43 increases the rotation speed of the motor of the compressor 10.
 例えば、HFO-1123を含む作動媒体においてHFO-1123の方がHFO-1123以外の成分よりも凝縮温度が低い場合に、HFO-1123以外の成分の方がHFO-1123よりも多くアキュムレータ11内に滞留した冷凍機油に溶解することで、冷凍サイクル装置401の循環経路を循環する作動媒体におけるHFO-1123の比率が高くなっていたとする。このような場合にも、圧縮機10のモータの回転数を増加させると冷凍サイクル装置401内を循環する作動媒体の流速が増加するので、圧縮機10の外部に排出されてアキュムレータ11などに溜まっている冷凍機油を圧縮機10に戻す量を増やすことができる。圧縮機10へと戻った冷凍機油は圧縮機10の内部で加熱されるので冷凍機油に溶け込んでいた冷媒成分を追い出すことができる。これにより、作動媒体の組成を定常の組成に戻すことができる。 For example, in a working medium containing HFO-1123, when HFO-1123 has a lower condensation temperature than components other than HFO-1123, more components than HFO-1123 are present in the accumulator 11 than HFO-1123. It is assumed that the ratio of HFO-1123 in the working medium circulating in the circulation path of the refrigeration cycle apparatus 401 is increased by dissolving in the accumulated refrigeration oil. Even in such a case, if the number of rotations of the motor of the compressor 10 is increased, the flow rate of the working medium circulating in the refrigeration cycle apparatus 401 increases, so that it is discharged outside the compressor 10 and collected in the accumulator 11 or the like. The amount of the refrigerating machine oil returned to the compressor 10 can be increased. The refrigerating machine oil that has returned to the compressor 10 is heated inside the compressor 10, so that the refrigerant component dissolved in the refrigerating machine oil can be driven out. Thereby, the composition of the working medium can be returned to the steady composition.
[変形例5]
 組成調整手段42(図5参照)は、膨張弁13であってもよい。図11は、冷凍サイクル501における組成調整手段42について説明する図である。図1と共通の構成要素には共通の符号を付し、その説明を省略する。図11に示すように、組成調整手段42は、膨張弁13である。組成変化検知手段41によって作動媒体の組成が変化したと検知された場合に、制御手段43が膨張弁13の開度を増加させる。
[Modification 5]
The composition adjusting means 42 (see FIG. 5) may be the expansion valve 13. FIG. 11 is a diagram for explaining the composition adjusting means 42 in the refrigeration cycle 501. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted. As shown in FIG. 11, the composition adjusting means 42 is the expansion valve 13. When the composition change detection means 41 detects that the composition of the working medium has changed, the control means 43 increases the opening of the expansion valve 13.
 例えば、HFO-1123を含む作動媒体においてHFO-1123の方がHFO-1123以外の成分よりも凝縮温度が低い場合に、HFO-1123以外の成分の方がHFO-1123よりも多くアキュムレータ11内に滞留した冷凍機油に溶解することで、冷凍サイクル装置501の循環経路を循環する作動媒体におけるHFO-1123の比率が高くなっていたとする。このような場合にも、膨張弁13の開度を増加させると冷凍サイクル装置501を循環する作動媒体の流速が増加するので、圧縮機10の外部に排出されてアキュムレータ11などに溜まっている冷凍機油を圧縮機10に戻す量を増やすことができる。圧縮機10へと戻った冷凍機油は圧縮機10の内部で加熱されるので冷凍機油に溶け込んでいた冷媒成分を追い出すことができる。これにより、作動媒体の組成を定常の組成に戻すことができる。 For example, in a working medium containing HFO-1123, when HFO-1123 has a lower condensation temperature than components other than HFO-1123, more components than HFO-1123 are present in the accumulator 11 than HFO-1123. It is assumed that the ratio of HFO-1123 in the working medium circulating in the circulation path of the refrigeration cycle apparatus 501 is increased by dissolving in the accumulated refrigeration oil. Even in such a case, if the opening degree of the expansion valve 13 is increased, the flow rate of the working medium circulating through the refrigeration cycle apparatus 501 increases, so that the refrigeration discharged to the outside of the compressor 10 and accumulated in the accumulator 11 or the like. The amount of machine oil returned to the compressor 10 can be increased. The refrigerating machine oil that has returned to the compressor 10 is heated inside the compressor 10, so that the refrigerant component dissolved in the refrigerating machine oil can be driven out. Thereby, the composition of the working medium can be returned to the steady composition.
[変形例6]
 冷凍サイクル装置が例えば大型の空気調和機である場合、循環経路において、凝縮器と膨張弁との間に余剰の作動媒体を溜めるレシーバを設ける構成が一般的である。組成調整手段42(図5参照)は、このレシーバに溜まった液冷媒を圧縮機の中間圧部へと戻す液冷媒戻し手段であってもよい。図12は、冷凍サイクル装置601における液冷媒戻し手段90について説明する図である。図1と共通の構成要素には共通の符号を付し、その説明を省略する。図12に示すように、液冷媒戻し手段90は、レシーバ17に溜まった液冷媒を取り出し補助膨張弁92を介して圧縮機10の中間圧部に注入するための液冷媒バイパス路91を有する。補助膨張弁92は、液冷媒バイパス路91を導通する冷媒を減圧して膨張させるものであり、例えば電子膨張弁で構成される。補助膨張弁92は、通常時は閉じられている。組成変化検知手段41によって作動媒体の組成が変化したと検知された場合に、制御手段43が、補助膨張弁92の開度を増加させる。
[Modification 6]
When the refrigeration cycle apparatus is, for example, a large air conditioner, a configuration in which a receiver that accumulates an excess working medium is provided between a condenser and an expansion valve in a circulation path is common. The composition adjustment means 42 (see FIG. 5) may be liquid refrigerant return means for returning the liquid refrigerant accumulated in the receiver to the intermediate pressure portion of the compressor. FIG. 12 is a diagram for explaining the liquid refrigerant return means 90 in the refrigeration cycle apparatus 601. Constituent elements common to those in FIG. 1 are denoted by common reference numerals, and description thereof is omitted. As shown in FIG. 12, the liquid refrigerant return means 90 has a liquid refrigerant bypass path 91 for taking out the liquid refrigerant accumulated in the receiver 17 and injecting it into the intermediate pressure portion of the compressor 10 via the auxiliary expansion valve 92. The auxiliary expansion valve 92 decompresses and expands the refrigerant that is conducted through the liquid refrigerant bypass passage 91, and is configured by, for example, an electronic expansion valve. The auxiliary expansion valve 92 is normally closed. When the composition change detecting means 41 detects that the composition of the working medium has changed, the control means 43 increases the opening of the auxiliary expansion valve 92.
 例えば、作動媒体における冷媒成分の中でHFO-1123が最も低沸点である場合に、レシーバ17内にHFO-1123以外の成分の比率が高い液冷媒が多く滞留し、冷凍サイクル装置601の循環経路を循環する作動媒体におけるHFO-1123の比率が高くなっていたとする。このような場合に、制御手段43が補助膨張弁92の開度を増加させることで、レシーバ17内に溜まったHFO-1123以外の成分の比率が高い液冷媒は、補助膨張弁92によって減圧され膨張してから圧縮機10の中間圧部に注入される。
圧縮機10の中間圧部に注入されたHFO-1123以外の成分の比率が高い液冷媒は、圧縮機10で再び圧縮され高温高圧のガス冷媒となって吐出されるので、冷凍サイクル装置1の循環経路を循環する作動媒体の組成を定常の組成に戻すことができる。これにより、HFO-1123を含む作動媒体を用いる場合に、HFO-1123の不均化反応の発生を効果的に抑制することができる。
For example, when HFO-1123 has the lowest boiling point among the refrigerant components in the working medium, a large amount of liquid refrigerant with a high ratio of components other than HFO-1123 stays in the receiver 17, and the circulation path of the refrigeration cycle apparatus 601 Suppose that the ratio of HFO-1123 in the working medium circulating in the tank is high. In such a case, the control means 43 increases the opening degree of the auxiliary expansion valve 92 so that the liquid refrigerant having a high ratio of components other than HFO-1123 accumulated in the receiver 17 is decompressed by the auxiliary expansion valve 92. After being expanded, it is injected into the intermediate pressure portion of the compressor 10.
The liquid refrigerant having a high ratio of components other than HFO-1123 injected into the intermediate pressure portion of the compressor 10 is compressed again by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The composition of the working medium circulating in the circulation path can be returned to the steady composition. Thereby, when the working medium containing HFO-1123 is used, the occurrence of the disproportionation reaction of HFO-1123 can be effectively suppressed.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、各々の変形例は適宜組み合わせることができる。例えば、変形例3の組成変化検知手段として、変形例1または変形例2の組成変化検知手段を用いることができる。変形例4の組成変化検知手段として、変形例1または変形例2の組成変化検知手段を用いることができる。変形例5の組成変化検知手段として、変形例1または変形例2の組成変化検知手段を用いることができる。変形例6の組成変化検知手段として、変形例1または変形例2の組成変化検知手段を用いることができる。 Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. Moreover, each modification can be combined suitably. For example, as the composition change detection means of Modification 3, the composition change detection means of Modification 1 or Modification 2 can be used. As the composition change detection means of Modification 4, the composition change detection means of Modification 1 or Modification 2 can be used. As the composition change detection means of Modification 5, the composition change detection means of Modification 1 or Modification 2 can be used. As the composition change detection means of Modification 6, the composition change detection means of Modification 1 or Modification 2 can be used.
 また、冷凍サイクル装置内で液冷媒が多く溜まるアキュムレータ以外の箇所(以下、液冷媒滞留箇所という)においても、上記実施の形態でアキュムレータを例として説明したのと同様に、ヒータの通電やホットガスの導入によって滞留した液冷媒を加熱し蒸発させる方法は適用できる。つまり、組成変化検知手段が、作動冷媒の組成が定常の組成から変化したことを検知した際に、液冷媒滞留箇所に取り付けたヒータの通電や液冷媒滞留箇所へのホットガスの導入を行って、液冷媒滞留箇所に滞留した液冷媒を加熱することにより、作動媒体の組成を定常の組成に戻すことができる。 Further, in places other than the accumulator where the liquid refrigerant is accumulated in the refrigeration cycle apparatus (hereinafter referred to as the liquid refrigerant staying place), as in the case of the accumulator described in the above embodiment, the heater energization and hot gas are performed. A method of heating and evaporating the liquid refrigerant retained by the introduction of can be applied. That is, when the composition change detecting means detects that the composition of the working refrigerant has changed from the steady composition, the heater attached to the liquid refrigerant staying place is energized and hot gas is introduced into the liquid refrigerant staying place. The composition of the working medium can be returned to the steady composition by heating the liquid refrigerant retained at the liquid refrigerant retention location.
 さらに、上記実施の形態では、冷凍サイクル装置の運転中において冷凍機油にHFO-1123以外の成分が選択的に溶け込む場合について説明したが、冷凍サイクル装置の停止中においても圧縮機のクランクケース内に溜まった冷凍機油にHFO-1123以外の成分が選択的に溶け込む場合がある。冷凍サイクル装置の停止中において、圧縮機のクランクケース内に溜まった冷凍機油にHFO-1123以外の成分が選択的に溶け込む場合にも、冷凍サイクル装置の運転を開始した際に、冷凍サイクル内を循環する作動媒体におけるHFO-1123の比率が高くなり、HFO-1123の不均化反応が生じるリスクが高まる。この場合、冷凍サイクル装置の運転を開始する前に、クランクケースヒータなどによってクランクケース内に溜まった冷凍機油を加熱し、冷凍機油に溶け込んでいた冷媒成分を追い出すことで、作動媒体の組成を定常の組成に戻すことができる。 Furthermore, in the above-described embodiment, the case where components other than HFO-1123 are selectively dissolved in the refrigeration oil during operation of the refrigeration cycle apparatus has been described. However, even when the refrigeration cycle apparatus is stopped, it is contained in the compressor crankcase. In some cases, components other than HFO-1123 selectively dissolve in the accumulated refrigeration oil. Even when components other than HFO-1123 are selectively dissolved in the refrigeration machine oil accumulated in the crankcase of the compressor while the refrigeration cycle apparatus is stopped, when the operation of the refrigeration cycle apparatus is started, The ratio of HFO-1123 in the circulating working medium increases, and the risk of causing a disproportionation reaction of HFO-1123 increases. In this case, before starting the operation of the refrigeration cycle apparatus, the refrigeration oil accumulated in the crankcase is heated by a crankcase heater or the like, and the refrigerant component dissolved in the refrigeration oil is expelled, so that the composition of the working medium is kept constant. The composition can be restored.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年2月24日出願の日本特許出願(特願2016-32692)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on February 24, 2016 (Japanese Patent Application No. 2016-32692), the contents of which are incorporated herein by reference.
 1 冷凍サイクル装置
 10 圧縮機
 11 アキュムレータ
 12 凝縮器
 13 膨張弁
 14 蒸発器
 40 組成調整機構
 41 組成変化検知手段
 42 組成調整手段
 43 制御手段
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus 10 Compressor 11 Accumulator 12 Condenser 13 Expansion valve 14 Evaporator 40 Composition adjustment mechanism 41 Composition change detection means 42 Composition adjustment means 43 Control means

Claims (9)

  1.  1,1,2-トリフルオロエチレンを含む作動媒体を、圧縮機から、凝縮器、膨張弁、蒸発器を経由して前記圧縮機に循環させる循環経路を有する冷凍サイクル装置であって、
     前記作動冷媒の組成が定常の組成から変化したことを検知する組成変化検知手段と、
     前記作動媒体の組成を調整する組成調整手段と、
     前記組成調整手段を制御する制御手段と、を備え、
     前記制御手段は、前記組成変化検知手段による検知結果に基づいて前記組成調整手段を制御する、冷凍サイクル装置。
    A refrigeration cycle apparatus having a circulation path for circulating a working medium containing 1,1,2-trifluoroethylene from a compressor to the compressor via a condenser, an expansion valve, and an evaporator,
    A composition change detecting means for detecting that the composition of the working refrigerant has changed from a steady composition;
    A composition adjusting means for adjusting the composition of the working medium;
    Control means for controlling the composition adjusting means,
    The refrigeration cycle apparatus, wherein the control means controls the composition adjusting means based on a detection result by the composition change detecting means.
  2.  前記組成変化検知手段は、前記圧縮機の吐出温度を検知する吐出温度センサであり、前記吐出温度センサが検出した温度が所定の温度を超えた場合に前記作動媒体の組成が定常の組成から変化したと検知する、請求項1に記載の冷凍サイクル装置。 The composition change detecting means is a discharge temperature sensor that detects a discharge temperature of the compressor, and the composition of the working medium changes from a steady composition when the temperature detected by the discharge temperature sensor exceeds a predetermined temperature. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is detected as having occurred.
  3.  前記組成変化検知手段は、前記圧縮機に吸入される前記作動媒体の過熱度を検出する過熱度検出手段であり、前記過熱度検出手段が検出した過熱度が所定の値を超えた場合に前記作動媒体の組成が変化したと検知する、請求項1に記載の冷凍サイクル装置。 The composition change detecting means is a superheat degree detecting means for detecting a superheat degree of the working medium sucked into the compressor, and the superheat degree detected by the superheat degree detecting means exceeds the predetermined value. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus detects that the composition of the working medium has changed.
  4.  前記組成変化検知手段は、前記圧縮機に吸入される前記作動媒体の過冷却度を検出する過冷却度検出手段であり、前記過冷却度検出手段が検出した過冷却度が所定の範囲を逸脱した場合に前記作動媒体の組成が変化したと検知する、請求項1に記載の冷凍サイクル装置。 The composition change detecting means is a supercooling degree detecting means for detecting a supercooling degree of the working medium sucked into the compressor, and the supercooling degree detected by the supercooling degree detection means deviates from a predetermined range. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle device detects that the composition of the working medium has changed.
  5.  前記循環経路における前記蒸発器と前記圧縮機との間に余剰の前記作動媒体を溜めるアキュムレータをさらに備え、
     前記組成調整手段は、前記アキュムレータに取り付けられたヒータであり、
     前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記ヒータを通電する、請求項1~4のうちいずれか一項に記載の冷凍サイクル装置。
    An accumulator for accumulating excess working medium between the evaporator and the compressor in the circulation path;
    The composition adjusting means is a heater attached to the accumulator,
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the control means energizes the heater when the composition change detection means detects that the composition of the working medium has changed.
  6.  前記循環経路における前記蒸発器と前記圧縮機との間に余剰の前記作動媒体を溜めるアキュムレータをさらに備え、
     前記組成調整手段は、前記圧縮機から吐出されるホットガスの一部を分流して前記アキュムレータへ導入するホットガスバイパス路と、前記ホットガスバイパス路に設けられた開閉弁と、を有し、
     前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記開閉弁を閉状態から開状態にする、請求項1~4のうちいずれか一項に記載の冷凍サイクル装置。
    An accumulator for accumulating excess working medium between the evaporator and the compressor in the circulation path;
    The composition adjusting means includes a hot gas bypass passage for diverting a part of hot gas discharged from the compressor and introducing the hot gas to the accumulator, and an on-off valve provided in the hot gas bypass passage,
    The control means causes the on-off valve to open from the closed state to the open state when the composition change detecting means detects that the composition of the working medium has changed. Refrigeration cycle equipment.
  7.  前記組成調整手段は、前記圧縮機の圧縮機構を駆動するモータであり、前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記モータの回転数を増加させる、請求項1~4のうちいずれか一項に記載の冷凍サイクル装置。 The composition adjusting means is a motor that drives a compression mechanism of the compressor, and the control means increases the rotation speed of the motor when the composition change detecting means detects that the composition of the working medium has changed. The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein:
  8.  前記組成調整手段は、前記膨張弁であり、前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記膨張弁の開度を増加させる、請求項1~4のうちいずれか一項に記載の冷凍サイクル装置。 The composition adjusting means is the expansion valve, and the control means increases the opening of the expansion valve when the composition change detecting means detects that the composition of the working medium has changed. The refrigeration cycle apparatus according to any one of 4.
  9.  前記循環経路における前記凝縮器と前記膨張弁との間に余剰の前記作動媒体を溜めるレシーバをさらに備え、
     前記組成調整手段は、前記レシーバに溜まった液冷媒を取り出し補助膨張弁を介して前記圧縮機の中間圧部に注入するための液冷媒バイパス路を有し、
     前記組成変化検知手段によって前記作動媒体の組成が変化したと検知された場合に前記制御手段が前記補助膨張弁の開度を増加させる、請求項1~4のうちいずれか一項に記載の冷凍サイクル装置。
    A receiver for accumulating excess working medium between the condenser and the expansion valve in the circulation path;
    The composition adjusting means has a liquid refrigerant bypass passage for taking out the liquid refrigerant accumulated in the receiver and injecting it into the intermediate pressure part of the compressor via an auxiliary expansion valve,
    The refrigeration according to any one of claims 1 to 4, wherein the control means increases the opening of the auxiliary expansion valve when the composition change detecting means detects that the composition of the working medium has changed. Cycle equipment.
PCT/JP2017/005020 2016-02-24 2017-02-10 Refrigeration cycle device WO2017145826A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018501588A JPWO2017145826A1 (en) 2016-02-24 2017-02-10 Refrigeration cycle equipment
US16/110,694 US20180363965A1 (en) 2016-02-24 2018-08-23 Refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032692 2016-02-24
JP2016-032692 2016-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/110,694 Continuation US20180363965A1 (en) 2016-02-24 2018-08-23 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2017145826A1 true WO2017145826A1 (en) 2017-08-31

Family

ID=59685463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005020 WO2017145826A1 (en) 2016-02-24 2017-02-10 Refrigeration cycle device

Country Status (3)

Country Link
US (1) US20180363965A1 (en)
JP (1) JPWO2017145826A1 (en)
WO (1) WO2017145826A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766444A (en) * 2016-11-17 2017-05-31 广东美的暖通设备有限公司 The liquid impact prevention control method and control device and air-conditioning system of air-conditioning system
JP2020034249A (en) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル Refrigeration cycle device
KR20200100740A (en) * 2017-12-18 2020-08-26 다이킨 고교 가부시키가이샤 Refrigeration cycle device
JP2020159687A (en) * 2020-07-02 2020-10-01 三菱電機株式会社 Refrigeration cycle device and refrigeration device
WO2021240800A1 (en) * 2020-05-29 2021-12-02 三菱電機株式会社 Refrigeration cycle device
WO2022004895A1 (en) * 2020-07-03 2022-01-06 ダイキン工業株式会社 Use as refrigerant in compressor, compressor, and refrigeration cycle apparatus
WO2022210794A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device
WO2022210872A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device
US11656015B2 (en) 2017-09-14 2023-05-23 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013077A1 (en) * 2014-07-23 2016-01-28 三菱電機株式会社 Refrigeration cycle device
FR3067035B1 (en) * 2017-06-02 2020-10-30 Arkema France COMPOSITIONS BASED ON TRIFLUOROETHYLENE, AND THEIR USES

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296908A (en) * 1995-04-24 1996-11-12 Matsushita Refrig Co Ltd Air conditioning equipment
WO2012172611A1 (en) * 2011-06-16 2012-12-20 三菱電機株式会社 Air conditioner
WO2014203353A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Air conditioner
WO2015140883A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioner
WO2015140879A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
WO2015140884A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1464453A (en) * 1973-09-21 1977-02-16 Daikin Ind Ltd Refrigerating apparatus
US4317334A (en) * 1980-06-16 1982-03-02 Silva Restaurant Equipment Co., Inc. Remote refrigeration system with controlled air flow
US4785639A (en) * 1986-05-20 1988-11-22 Sundstrand Corporation Cooling system for operation in low temperature environments
US5115645A (en) * 1990-11-29 1992-05-26 Wynn's Climate Systems, Inc. Heat exchanger for refrigerant recovery system
JP3178103B2 (en) * 1992-08-31 2001-06-18 株式会社日立製作所 Refrigeration cycle
KR0152286B1 (en) * 1992-10-22 1998-11-02 윤종용 Cooling/heating airconditioner and its control method
US5551255A (en) * 1994-09-27 1996-09-03 The United States Of America As Represented By The Secretary Of Commerce Accumulator distillation insert for zeotropic refrigerant mixtures
US5845502A (en) * 1996-07-22 1998-12-08 Lockheed Martin Energy Research Corporation Heat pump having improved defrost system
US6644066B1 (en) * 2002-06-14 2003-11-11 Liebert Corporation Method and apparatus to relieve liquid pressure from receiver to condenser when the receiver has filled with liquid due to ambient temperature cycling
KR100499485B1 (en) * 2002-11-23 2005-07-07 엘지전자 주식회사 accumulator of heat pump system with at least two compressors
KR20040064982A (en) * 2003-01-13 2004-07-21 엘지전자 주식회사 Air conditioner
JP4459776B2 (en) * 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP4726600B2 (en) * 2005-10-06 2011-07-20 三菱電機株式会社 Refrigeration air conditioner
JP5310101B2 (en) * 2009-03-03 2013-10-09 ダイキン工業株式会社 Air conditioner
KR101342385B1 (en) * 2011-06-10 2013-12-16 엘지전자 주식회사 Air conditioner for electric vehicle
WO2014059410A1 (en) * 2012-10-12 2014-04-17 Thermo King Corporation Combined accumulator and receiver tank
WO2014102940A1 (en) * 2012-12-26 2014-07-03 三菱電機株式会社 Refrigeration cycle device and method for controlling refrigeration cycle device
US9772124B2 (en) * 2013-03-13 2017-09-26 Nortek Air Solutions Canada, Inc. Heat pump defrosting system and method
US10132529B2 (en) * 2013-03-14 2018-11-20 Rolls-Royce Corporation Thermal management system controlling dynamic and steady state thermal loads
JP5549773B1 (en) * 2013-09-30 2014-07-16 株式会社富士通ゼネラル Air conditioner
JP6184314B2 (en) * 2013-12-19 2017-08-23 三菱電機株式会社 Accumulator and air conditioner
CN106415156B (en) * 2014-03-14 2019-05-31 三菱电机株式会社 Refrigerating circulatory device
EP3121541B1 (en) * 2014-03-17 2021-11-10 Mitsubishi Electric Corporation Refrigerating device and refrigerating device control method
JP6413100B2 (en) * 2014-05-12 2018-10-31 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
US10197304B2 (en) * 2014-05-23 2019-02-05 Lennox Industries Inc. Tandem compressor discharge pressure and temperature control logic
US10401047B2 (en) * 2014-06-27 2019-09-03 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6621616B2 (en) * 2014-09-03 2019-12-18 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigerant amount detection device
WO2016182135A1 (en) * 2015-05-11 2016-11-17 Lg Electronics Inc. Refrigerator and control method thereof
WO2017006452A1 (en) * 2015-07-08 2017-01-12 三菱電機株式会社 Air-conditioning device
CN110291349B (en) * 2017-02-14 2021-05-18 大金工业株式会社 Refrigerating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296908A (en) * 1995-04-24 1996-11-12 Matsushita Refrig Co Ltd Air conditioning equipment
WO2012172611A1 (en) * 2011-06-16 2012-12-20 三菱電機株式会社 Air conditioner
WO2014203353A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Air conditioner
WO2015140883A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Air conditioner
WO2015140879A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
WO2015140884A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766444B (en) * 2016-11-17 2019-10-01 广东美的暖通设备有限公司 The liquid impact prevention control method and control device and air-conditioning system of air-conditioning system
CN106766444A (en) * 2016-11-17 2017-05-31 广东美的暖通设备有限公司 The liquid impact prevention control method and control device and air-conditioning system of air-conditioning system
US11656015B2 (en) 2017-09-14 2023-05-23 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration apparatus
KR20200100740A (en) * 2017-12-18 2020-08-26 다이킨 고교 가부시키가이샤 Refrigeration cycle device
KR102655073B1 (en) * 2017-12-18 2024-04-08 다이킨 고교 가부시키가이샤 refrigeration cycle device
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
JP7151282B2 (en) 2018-08-31 2022-10-12 株式会社富士通ゼネラル refrigeration cycle equipment
JP2020034249A (en) * 2018-08-31 2020-03-05 株式会社富士通ゼネラル Refrigeration cycle device
WO2021240800A1 (en) * 2020-05-29 2021-12-02 三菱電機株式会社 Refrigeration cycle device
JP2020159687A (en) * 2020-07-02 2020-10-01 三菱電機株式会社 Refrigeration cycle device and refrigeration device
JP2022013930A (en) * 2020-07-03 2022-01-18 ダイキン工業株式会社 Use of refrigerant in compressor, compressor, and refrigeration cycle system
WO2022004895A1 (en) * 2020-07-03 2022-01-06 ダイキン工業株式会社 Use as refrigerant in compressor, compressor, and refrigeration cycle apparatus
JP2022157188A (en) * 2021-03-31 2022-10-14 ダイキン工業株式会社 Heat pump device
WO2022210872A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device
JP7280521B2 (en) 2021-03-31 2023-05-24 ダイキン工業株式会社 heat pump equipment
WO2022210794A1 (en) * 2021-03-31 2022-10-06 ダイキン工業株式会社 Heat pump device
CN117120782A (en) * 2021-03-31 2023-11-24 大金工业株式会社 Heat pump device

Also Published As

Publication number Publication date
US20180363965A1 (en) 2018-12-20
JPWO2017145826A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
WO2017145826A1 (en) Refrigeration cycle device
JP6950765B2 (en) Working media for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
JP6680386B2 (en) Composition for heat cycle system and heat cycle system
US20220177761A1 (en) Working fluid for heat cycle, composition for heat cycle system and heat cycle system
US11015840B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP6409595B2 (en) Composition for thermal cycle system and thermal cycle system
WO2020071380A1 (en) Composition for heat cycle system, and heat cycle system
JP5783341B1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP7226623B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US20180371958A1 (en) Heat cycle system and heat cycle method using the same
JP7081600B2 (en) Azeotrope or azeotropic composition, working medium for thermal cycle and thermal cycle system
WO2019039510A1 (en) 1-chloro-2,3,3-trifluoropropene-containing working medium for thermal cycling, composition for thermal cycling system, and thermal cycling system
WO2018043430A1 (en) Heat cycle system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501588

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756267

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756267

Country of ref document: EP

Kind code of ref document: A1