JPH08296908A - Air conditioning equipment - Google Patents

Air conditioning equipment

Info

Publication number
JPH08296908A
JPH08296908A JP9829995A JP9829995A JPH08296908A JP H08296908 A JPH08296908 A JP H08296908A JP 9829995 A JP9829995 A JP 9829995A JP 9829995 A JP9829995 A JP 9829995A JP H08296908 A JPH08296908 A JP H08296908A
Authority
JP
Japan
Prior art keywords
pressure
indoor
outdoor
heat exchanger
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9829995A
Other languages
Japanese (ja)
Inventor
Takashi Kaneko
孝 金子
Masao Kurachi
正夫 蔵地
Kazuhiko Marumoto
一彦 丸本
Michiyoshi Kusaka
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP9829995A priority Critical patent/JPH08296908A/en
Publication of JPH08296908A publication Critical patent/JPH08296908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To prevent drop in the heating capacity by improving computing accuracy of the degree of supercooling at an outlet of an outdoor side heat exchanger to control an outdoor side expansion valve to a proper opening during the cooling-based operation in air conditioning equipment using a non- azeotropic mixture refrigerant. CONSTITUTION: A circulation refrigerant composition ratio forecasting means 20 is provided to forecast a composition ratio of a circulation refrigerant based on the height of a liquid surface in an accumulator 6 as detected by a liquid surface height detection sensor 19. Then, during the cooling-based operation, a degree of supercooling computing means 21 computes the degree of outlet supercooling of an outdoor side heat exchanger based on a high pressure side pressure detected by a high pressure side pressure detection sensor 15, an outlet temperature of an outdoor side heat exchanger detected by an outdoor side heat exchanger outlet temperature detection sensor 16 and the composition ratio of the circulation refrigerant forecast by the circulation refrigerant composition ratio forecasting means 20 to control the opening of an outdoor side expansion valve 5 by an outdoor side expansion valve control means 18 based on the results of computation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非共沸混合冷媒を用い
た各室内機毎に自由に冷暖房が選択可能な空気調和機に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner which uses a non-azeotropic mixed refrigerant and is capable of freely selecting heating and cooling for each indoor unit.

【0002】[0002]

【従来の技術】従来、この種の多室型空気調和機とし
て、例えば、特開平2−93263号公報に掲載された
ものがある。
2. Description of the Related Art Conventionally, as a multi-room type air conditioner of this type, for example, there is one disclosed in Japanese Patent Application Laid-Open No. 2-93263.

【0003】以下、図面を参照しながら上述した公報の
従来の空気調和機について説明する。
The conventional air conditioner of the above-mentioned publication will be described below with reference to the drawings.

【0004】図16において、1は空気調和機の室外機
であり、圧縮機2、三方切替機構としての切換弁3a,
3b、室外側熱交換器4、室外側膨張弁5、アキュムレ
ータ6から成っている。7は室内機であり、室内側膨張
弁8、室内側熱交換器9、高圧側二方弁10、低圧側二
方弁11から成っている。
In FIG. 16, 1 is an outdoor unit of an air conditioner, which is a compressor 2, a switching valve 3a as a three-way switching mechanism,
3b, the outdoor heat exchanger 4, the outdoor expansion valve 5, and the accumulator 6. An indoor unit 7 includes an indoor expansion valve 8, an indoor heat exchanger 9, a high pressure two-way valve 10, and a low pressure two-way valve 11.

【0005】そして室内側熱交換器9の一方は、高圧側
二方弁10を介して室外機1の高圧側と室内機7を接続
する高圧ガス管12と連通するとともに、低圧側二方弁
11を介して室外機1の低圧側である圧縮機2の吸入側
と連通したアキュムレータ6と室内機7を接続する低圧
ガス管13と連通しており、高圧側二方弁10と低圧側
二方弁11の開閉により、室内側熱交換器9の一方は、
高圧ガス管12または低圧ガス管13と切替可能に接続
されている。
One of the indoor heat exchangers 9 communicates with a high-pressure gas pipe 12 connecting the high-pressure side of the outdoor unit 1 and the indoor unit 7 via a high-pressure two-way valve 10 and a low-pressure two-way valve. A low pressure gas pipe 13 that connects the accumulator 6 and the indoor unit 7, which communicate with the suction side of the compressor 2 that is the low pressure side of the outdoor unit 1 via 11, is connected to the high pressure two-way valve 10 and the low pressure side two. By opening and closing the one-way valve 11, one of the indoor heat exchangers 9 is
It is switchably connected to the high-pressure gas pipe 12 or the low-pressure gas pipe 13.

【0006】さらに室内側熱交換器9の他方は、室内側
膨張弁8を介して室外機1の液管部と液管14で接続さ
れている。
Further, the other of the indoor heat exchangers 9 is connected to the liquid pipe portion of the outdoor unit 1 via the indoor expansion valve 8 by a liquid pipe 14.

【0007】また、高圧側圧力を検知する高圧側圧力検
知センサー15と、室外側熱交換器4と室外側膨張弁5
の間に取り付けられ温度を検知する室外側熱交換器出口
温度検知センサー16を備え、高圧側圧力検知センサー
15によって検知した高圧側圧力と、室外側熱交換器出
口温度検知センサー16によって検知した室外側熱交換
器出口温度に基づき過冷却度を演算する過冷却度演算手
段17と、過冷却度演算手段17によって演算した過冷
却度に基づき室外側膨張弁5を制御する室外側膨張弁制
御手段18を有している。尚、室内機7は本従来例では
3台接続されており、区別する場合は添字a、b、cを
付けることにする。
Further, the high pressure side pressure detection sensor 15 for detecting the high pressure side pressure, the outdoor heat exchanger 4 and the outdoor expansion valve 5
An outdoor heat exchanger outlet temperature detection sensor 16 mounted between the two is provided, and the high pressure side pressure detected by the high pressure side pressure detection sensor 15 and the outdoor side heat exchanger outlet temperature detection sensor 16 detected Supercooling degree calculating means 17 for calculating the supercooling degree based on the outside heat exchanger outlet temperature, and outdoor expansion valve control means for controlling the outdoor expansion valve 5 based on the supercooling degree calculated by the supercooling degree calculating means 17. Have eighteen. It should be noted that three indoor units 7 are connected in this conventional example, and the subscripts a, b, and c are added to distinguish them.

【0008】次に、上記構成の空気調和機の動作につい
て、本発明の対象である冷房主体運転時についてのみ説
明する。
Next, the operation of the air conditioner configured as described above will be described only when the cooling main operation, which is the object of the present invention, is performed.

【0009】ここで各室内機7の運転状態は、室内機7
a,7b…冷房、室内機7c…暖房とし、各弁の開閉状
態は次の通りである。即ち、切換弁3aは開、切換弁3
bは閉、高圧側二方弁10a,10bは閉、高圧側二方
弁10cは開、低圧側二方弁11a,11bは開、低圧
側二方弁11cは閉、各室内側膨張弁8は各室内負荷に
応じた開度である。
The operating state of each indoor unit 7 is as follows.
a, 7b ... Cooling, indoor unit 7c ... Heating, and the open / closed state of each valve is as follows. That is, the switching valve 3a is opened and the switching valve 3a is opened.
b is closed, high pressure two-way valves 10a and 10b are closed, high pressure two-way valve 10c is open, low pressure two-way valves 11a and 11b are open, low pressure two-way valve 11c is closed, and each indoor expansion valve 8 Is an opening degree according to each indoor load.

【0010】圧縮機2より吐出された冷媒の一部は、切
換弁3aを介し室外側熱交換器4で凝縮液化され、室外
側膨張弁5を通って液管14に導かれる。また残りの冷
媒は、高圧ガス管12、高圧側二方弁10cを介して室
内側熱交換器7cに導かれ、ここで凝縮液化して室内側
膨張弁8cを介して液管14に流入し、室外側熱交換器
4を通ってきた冷媒と合流する。そして室内側膨張弁8
a,8bを通って室内側熱交換器9a,9bに流入し、
それぞれ蒸発気化したあと、低圧側二方弁11a,11
bを経てアキュムレータ6を介して圧縮機2に戻り、冷
房主体運転を行なう。
A part of the refrigerant discharged from the compressor 2 is condensed and liquefied by the outdoor heat exchanger 4 via the switching valve 3a, and is guided to the liquid pipe 14 through the outdoor expansion valve 5. The remaining refrigerant is guided to the indoor heat exchanger 7c via the high pressure gas pipe 12 and the high pressure side two-way valve 10c, where it is condensed and liquefied and flows into the liquid pipe 14 via the indoor expansion valve 8c. , Joins the refrigerant having passed through the outdoor heat exchanger 4. And the indoor expansion valve 8
flows into the indoor heat exchangers 9a and 9b through a and 8b,
After evaporating and vaporizing each, the low pressure side two-way valves 11a, 11
After passing through b, it returns to the compressor 2 through the accumulator 6 to perform the cooling main operation.

【0011】この時、過冷却度演算手段17は、室外側
熱交換器出口過冷却度を、高圧側圧力検知センサー15
で検知した高圧側圧力より演算した液飽和温度と、室外
側熱交換器出口温度検知センサー16で検知した温度の
差として算出し、室外側膨張弁制御手段18により、室
外側膨張弁5を、演算した過冷却度が所定値より小さく
なると開度を減少させ、また、過冷却度が所定値より大
きくなると開度を増加させることにより、室外側膨張弁
5を適正開度に制御している。
At this time, the supercooling degree calculating means 17 determines the outlet supercooling degree of the outdoor heat exchanger by the high pressure side pressure detecting sensor 15
Calculated as the difference between the liquid saturation temperature calculated from the high pressure on the high pressure side and the temperature detected by the outdoor heat exchanger outlet temperature detection sensor 16, and the outdoor expansion valve control means 18 controls the outdoor expansion valve 5 to When the calculated supercooling degree becomes smaller than a predetermined value, the opening degree is decreased, and when the supercooling degree becomes larger than the predetermined value, the opening degree is increased to control the outdoor expansion valve 5 to an appropriate opening degree. .

【0012】[0012]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、非共沸混合冷媒(例えば高沸点冷媒であ
るR134aと低沸点冷媒であるR32の2種の混合冷
媒)を使用した場合の冷房主体運転時で、低温条件や冷
媒過封入時など、アキュームレータ6内で、非共沸混合
冷媒が気液平衡状態となると、液側は高沸点冷媒の組成
比率が高くなり、ガス側は低沸点冷媒の組成比率が高く
なる。従って、圧縮機2はアキュームレータ6内の低沸
点冷媒に富んだガス冷媒を吸い込むため、低沸点冷媒の
組成比率が高い冷媒がサイクル内を循環する。
However, in the above-described structure, cooling is performed when a non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used. When the non-azeotropic mixed refrigerant is in a vapor-liquid equilibrium state in the accumulator 6 during main operation, such as in low temperature conditions or when the refrigerant is overfilled, the composition ratio of the high boiling point refrigerant is high on the liquid side and the low boiling point is on the gas side The composition ratio of the refrigerant becomes high. Therefore, the compressor 2 sucks the gas refrigerant rich in the low boiling point refrigerant in the accumulator 6, so that the refrigerant having a high composition ratio of the low boiling point refrigerant circulates in the cycle.

【0013】よって、同一圧力では、循環冷媒の液飽和
温度が低下してしまい、過冷却度演算手段17により演
算した過冷却度が、循環冷媒の過冷却度より大きくな
り、室外側膨張弁制御手段18により制御される室外側
膨張弁5の開度が適正開度より大きくなってしまう。こ
のため、室外側熱交換器4へ必要以上のガス冷媒が分配
され、暖房室内機7cの室内側熱交換器9cへ分配され
るガス冷媒量が不足し、暖房能力が低下してしまうとい
う欠点があった。
Therefore, at the same pressure, the liquid saturation temperature of the circulating refrigerant decreases, and the degree of supercooling calculated by the supercooling degree calculating means 17 becomes larger than the degree of supercooling of the circulating refrigerant, so that the outdoor expansion valve control is performed. The opening degree of the outdoor expansion valve 5 controlled by the means 18 becomes larger than the appropriate opening degree. For this reason, more gas refrigerant than is necessary is distributed to the outdoor heat exchanger 4, the amount of gas refrigerant distributed to the indoor heat exchanger 9c of the heating indoor unit 7c is insufficient, and the heating capacity is reduced. was there.

【0014】本発明は従来の課題を解決するもので、非
共沸混合冷媒を使用した場合の冷房主体運転時に、循環
冷媒組成比率を予測し、精度良く液飽和温度を演算する
ことにより、室外側熱交換器出口過冷却度の演算精度を
向上させ、室外側膨張弁の開度を適正開度に制御するこ
とにより、暖房室内機の室内側熱交換器へ分配されるガ
ス冷媒量が不足するための、暖房能力の低下を防止する
ことができる空気調和機を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the conventional problems by predicting the circulating refrigerant composition ratio and accurately calculating the liquid saturation temperature during cooling-main operation when a non-azeotropic mixed refrigerant is used. The amount of gas refrigerant distributed to the indoor heat exchanger of the heating indoor unit is insufficient by improving the calculation accuracy of the supercooling degree at the outlet of the outside heat exchanger and controlling the opening of the outdoor expansion valve to an appropriate degree. It is an object of the present invention to provide an air conditioner capable of preventing a decrease in heating capacity.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に本発明は、非共沸混合冷媒を使用し、圧縮機、三方切
替機構、室外側熱交換器、室外側膨張弁、アキュームレ
ータから成る室外機と、室内側膨張弁、室内側熱交換器
から成る複数の室内機を高圧ガス管、低圧ガス管及び液
管を介して並列に接続し、前記室内側熱交換器の一方は
前記高圧ガス管または前記低圧ガス管と高圧側二方弁及
び低圧側二方弁の開閉により切替可能に接続し、前記室
内側熱交換器の他の一方は室内側膨張弁を介して前記液
管に接続し、前記アキュームレータ内の液面の高さを検
知する液面高さ検知センサーと、前記液面高さ検知セン
サーによって検知したアキュームレータ内の液面高さか
ら、循環冷媒の組成比率を予測する循環冷媒組成比率予
測手段と、高圧側圧力を検知する高圧側圧力検知センサ
ーと、室外側熱交換器出口温度を検知する室外側熱交換
器出口温度検知センサーと、冷房主体運転時に、前記循
環冷媒組成比率予測手段によって予測した循環冷媒の組
成比率と、前記高圧側圧力検知センサーにより検知した
高圧側圧力と、前記室外側熱交換器出口温度検知センサ
ーにより検知した室外側熱交換器出口温度とにより、室
外側熱交換器出口過冷却度を演算する過冷却度演算手段
と、前記過冷却度演算手段で演算された過冷却度に応じ
て前記室外側膨張弁の開度の制御を行う室外側膨張弁制
御手段とを備えた構成となっている。
In order to solve the above-mentioned problems, the present invention uses a non-azeotropic mixed refrigerant and comprises a compressor, a three-way switching mechanism, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator. An outdoor unit, a plurality of indoor units consisting of an indoor expansion valve and an indoor heat exchanger are connected in parallel via a high pressure gas pipe, a low pressure gas pipe and a liquid pipe, and one of the indoor heat exchangers has the high pressure. A gas pipe or the low-pressure gas pipe is connected so as to be switchable by opening and closing the high-pressure two-way valve and the low-pressure two-way valve, and the other one of the indoor heat exchangers is connected to the liquid pipe through an indoor expansion valve. Connected, from the liquid level height detection sensor that detects the height of the liquid level in the accumulator, and from the liquid level height in the accumulator detected by the liquid level height detection sensor, predict the composition ratio of the circulating refrigerant. Circulating refrigerant composition ratio prediction means and high pressure side High pressure side pressure detection sensor to detect the force, the outdoor heat exchanger outlet temperature detection sensor to detect the outdoor heat exchanger outlet temperature, during the cooling main operation, of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting means The composition ratio, the high-pressure side pressure detected by the high-pressure side pressure detection sensor, and the outdoor side heat exchanger outlet temperature detected by the outdoor side heat exchanger outlet temperature detection sensor, the outdoor side heat exchanger outlet supercooling degree And a sub-outdoor expansion valve control means for controlling the opening degree of the outdoor expansion valve according to the sub-cooling degree calculated by the sub-cooling degree calculation means. Has become.

【0016】また、非共沸混合冷媒を使用し、圧縮機、
三方切替機構、室外側熱交換器、室外側膨張弁、アキュ
ームレータから成る室外機と、室内側膨張弁、室内側熱
交換器から成る複数の室内機を高圧ガス管、低圧ガス管
及び液管を介して並列に接続し、前記室内側熱交換器の
一方は前記高圧ガス管または前記低圧ガス管と高圧側二
方弁及び低圧側二方弁の開閉により切替可能に接続し、
前記室内側熱交換器の他の一方は室内側膨張弁を介して
前記液管に接続し、高圧側圧力を検知する高圧側圧力検
知センサーと、外気温度を検知する外気温度検知センサ
ーと、室内負荷を検出する室内負荷検出手段と、前記室
内負荷検出手段によって検出した冷房室内機の室内負荷
と、前記外気温度検知センサーによって検知した外気温
度と、前記高圧側圧力検知センサーによって検知した高
圧側圧力から、循環冷媒の組成比率を予測する循環冷媒
組成比率予測手段と、室外側熱交換器出口温度を検知す
る室外側熱交換器出口温度検知センサーと、冷房主体運
転時に、前記循環冷媒組成比率予測手段によって予測し
た循環冷媒の組成比率と、前記高圧側圧力検知センサー
により検知した高圧側圧力と、前記室外側熱交換器出口
温度検知センサーにより検知した室外側熱交換器出口温
度とにより、室外側熱交換器出口過冷却度を演算する過
冷却度演算手段と、前記過冷却度演算手段で演算された
過冷却度に応じて前記室外側膨張弁の開度の制御を行う
室外側膨張弁制御手段とを備えた構成となっている。
Further, a non-azeotropic mixed refrigerant is used, a compressor,
An outdoor unit consisting of a three-way switching mechanism, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator and a plurality of indoor units consisting of an indoor expansion valve and an indoor heat exchanger are connected to a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe. Connected in parallel through, one of the indoor heat exchanger is switchably connected by opening and closing the high pressure gas pipe or the low pressure gas pipe and the high pressure side two-way valve and the low pressure side two-way valve,
The other one of the indoor heat exchangers is connected to the liquid pipe via an indoor expansion valve, a high pressure side pressure detection sensor that detects a high pressure side pressure, an outside air temperature detection sensor that detects an outside air temperature, and an indoor Indoor load detection means for detecting the load, indoor load of the cooling indoor unit detected by the indoor load detection means, outside air temperature detected by the outside air temperature detection sensor, high pressure side pressure detected by the high pressure side pressure detection sensor From, the circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant, the outdoor heat exchanger outlet temperature detection sensor for detecting the outdoor heat exchanger outlet temperature, and the circulating refrigerant composition ratio prediction during cooling main operation The composition ratio of the circulating refrigerant predicted by the means, the high-pressure side pressure detected by the high-pressure side pressure detection sensor, and the outdoor heat exchanger outlet temperature detection sensor A subcooling degree calculating means for calculating the outdoor superheater outlet supercooling degree based on the detected outdoor heat exchanger outlet temperature, and the chamber according to the subcooling degree calculated by the subcooling degree calculating means. The outdoor expansion valve control means for controlling the opening of the outer expansion valve is provided.

【0017】また、非共沸混合冷媒を使用し、圧縮機、
三方切替機構、室外側熱交換器、室外側膨張弁、アキュ
ームレータから成る室外機と、室内側膨張弁、室内側熱
交換器から成る複数の室内機を高圧ガス管、低圧ガス管
及び液管を介して並列に接続し、前記室内側熱交換器の
一方は前記高圧ガス管または前記低圧ガス管と高圧側二
方弁及び低圧側二方弁の開閉により切替可能に接続し、
前記室内側熱交換器の他の一方は室内側膨張弁を介して
前記液管に接続し、高圧側圧力を検知する高圧、高圧側
圧力を検知する高圧側圧力検知センサーと、低圧側圧力
を検知する低圧側圧力センサーと、外気温度を検知する
外気温度検知センサーと、前記低圧側圧力検知センサー
によって検知された低圧側圧力により前記圧縮機の運転
周波数を制御する圧縮機運転周波数制手段と、室内負荷
を検出する室内負荷検出手段と、前記室内負荷検出手段
によって検出した冷房室内機の室内負荷と、前記外気温
度検知センサーによって検知した外気温度と、前記圧縮
機の運転周波数から、循環冷媒の組成比率を予測する循
環冷媒組成比率予測手段と、室外側熱交換器出口温度を
検知する室外側熱交換器出口温度検知センサーと、冷房
主体運転時に、前記循環冷媒組成比率予測手段によって
予測した循環冷媒の組成比率と、前記高圧側圧力検知セ
ンサーにより検知した高圧側圧力と、前記室外側熱交換
器出口温度検知センサーにより検知した室外側熱交換器
出口温度とにより、室外側熱交換器出口過冷却度を演算
する過冷却度演算手段と、前記過冷却度演算手段で演算
された過冷却度に応じて室外側膨張弁の開度の制御を行
う室外側膨張弁制御手段とを備えた構成となっている。
Further, a non-azeotropic mixed refrigerant is used, a compressor,
An outdoor unit consisting of a three-way switching mechanism, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator and a plurality of indoor units consisting of an indoor expansion valve and an indoor heat exchanger are connected to a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe. Connected in parallel through, one of the indoor heat exchanger is switchably connected by opening and closing the high pressure gas pipe or the low pressure gas pipe and the high pressure side two-way valve and the low pressure side two-way valve,
The other one of the indoor heat exchangers is connected to the liquid pipe via an indoor expansion valve, and detects high pressure for detecting high pressure, high pressure detecting sensor for detecting high pressure, and low pressure for detecting low pressure. A low pressure side pressure sensor for detecting, an outside air temperature detecting sensor for detecting the outside air temperature, and a compressor operating frequency control means for controlling the operating frequency of the compressor by the low pressure side pressure detected by the low pressure side pressure detecting sensor, Indoor load detection means for detecting the indoor load, the indoor load of the cooling indoor unit detected by the indoor load detection means, the outside air temperature detected by the outside air temperature detection sensor, from the operating frequency of the compressor, of the circulating refrigerant Circulating refrigerant composition ratio prediction means for predicting the composition ratio, an outdoor heat exchanger outlet temperature detection sensor for detecting the outdoor heat exchanger outlet temperature, and during the cooling main operation, The composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting means, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the outdoor heat exchanger outlet temperature detected by the outdoor heat exchanger outlet temperature detection sensor And a subcooling degree calculation means for calculating the subcooling degree of the outdoor heat exchanger outlet, and a chamber for controlling the opening degree of the outdoor expansion valve according to the subcooling degree calculated by the subcooling degree calculation means. The external expansion valve control means is provided.

【0018】また、非共沸混合冷媒を使用し、圧縮機、
三方切替機構、室外側熱交換器、室外側膨張弁、アキュ
ームレータから成る室外機と、室内側膨張弁、室内側熱
交換器から成る複数の室内機を高圧ガス管、低圧ガス管
及び液管を介して並列に接続し、前記室内側熱交換器の
一方は前記高圧ガス管または前記低圧ガス管と高圧側二
方弁及び低圧側二方弁の開閉により切替可能に接続し、
前記室内側熱交換器の他の一方は室内側膨張弁を介して
前記液管に接続し、高圧側圧力を検知する高圧側圧力検
知センサーと、前記圧縮機の吐出温度を検知する吐出温
度検知センサーと、外気温度を検知する外気温度検知セ
ンサーと、前記外気温度検知センサーによって検知した
外気温度と、前記高圧側圧力検知センサーによって検知
した高圧側圧力と、前記吐出温度検知センサーによって
検知した前記圧縮機の吐出温度から、循環冷媒の組成比
率を予測する循環冷媒組成比率予測手段と、室外側熱交
換器出口温度を検知する室外側熱交換器出口温度検知セ
ンサーと、冷房主体運転時に、前記循環冷媒組成比率予
測手段によって予測した循環冷媒の組成比率と、前記高
圧側圧力検知センサーにより検知した高圧側圧力と、前
記室外側熱交換器出口温度検知センサーにより検知した
室外側熱交換器出口温度とにより、室外側熱交換器出口
過冷却度を演算する過冷却度演算手段と、前記過冷却度
演算手段で演算された過冷却度に応じて室外側膨張弁の
開度の制御を行う室外側膨張弁制御手段とを備えた構成
となっている。
Further, a non-azeotropic mixed refrigerant is used, a compressor,
An outdoor unit consisting of a three-way switching mechanism, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator and a plurality of indoor units consisting of an indoor expansion valve and an indoor heat exchanger are connected to a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe. Connected in parallel through, one of the indoor heat exchanger is switchably connected by opening and closing the high pressure gas pipe or the low pressure gas pipe and the high pressure side two-way valve and the low pressure side two-way valve,
The other one of the indoor heat exchangers is connected to the liquid pipe via an indoor expansion valve, and a high pressure side pressure detection sensor for detecting the high pressure side pressure, and a discharge temperature detection for detecting the discharge temperature of the compressor A sensor, an outside air temperature detection sensor for detecting an outside air temperature, an outside air temperature detected by the outside air temperature detection sensor, a high pressure side pressure detected by the high pressure side pressure detection sensor, and the compression detected by the discharge temperature detection sensor. From the discharge temperature of the machine, the circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant, the outdoor heat exchanger outlet temperature detection sensor for detecting the outdoor heat exchanger outlet temperature, and during the cooling main operation, the circulation The composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio prediction means, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the outdoor heat exchanger Based on the outlet temperature of the outdoor heat exchanger detected by the mouth temperature detection sensor, the supercooling degree calculation means for calculating the degree of subcooling of the outdoor heat exchanger outlet, and the degree of supercooling calculated by the supercooling degree calculation means Accordingly, the outdoor expansion valve control means for controlling the opening degree of the outdoor expansion valve is provided.

【0019】[0019]

【作用】本発明は上記のような構成により、非共沸混合
冷媒(例えば高沸点冷媒であるR134aと低沸点冷媒
であるR32の2種の混合冷媒)を使用した場合の冷房
主体運転時に、低温条件や冷媒過封入時など、アキュー
ムレータ内で、非共沸混合冷媒が気液平衡状態となる
と、液側は高沸点冷媒の組成比率が高くなり、ガス側は
低沸点冷媒の組成比率が高くなる。従って、圧縮機はア
キュームレータ内の低沸点冷媒に富んだガス冷媒を吸い
込むため、アキュームレータ内の液量が増加し液面高さ
が上昇すると、循環冷媒の低沸点冷媒組成比率が高くな
る。また、アキュームレータ内の液量が減少し液面高さ
が低下すると、循環冷媒の低沸点冷媒の組成比率が低く
なる。
According to the present invention, the non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used in the cooling main operation by the above-mentioned constitution. When the non-azeotropic mixed refrigerant is in a gas-liquid equilibrium state in the accumulator, such as at low temperature conditions or when the refrigerant is overfilled, the composition ratio of the high boiling point refrigerant is high on the liquid side and the low boiling point refrigerant is high on the gas side. Become. Therefore, since the compressor sucks the gas refrigerant rich in the low boiling point refrigerant in the accumulator, when the liquid amount in the accumulator increases and the liquid level rises, the low boiling point refrigerant composition ratio of the circulating refrigerant increases. Further, when the amount of liquid in the accumulator decreases and the height of the liquid surface decreases, the composition ratio of the low boiling point refrigerant of the circulating refrigerant becomes low.

【0020】よって、アキュームレータ内の液面の高さ
から循環冷媒の組成比率を予測できる。そして、予測し
た循環冷媒の組成比率より、液飽和温度が精度良く演算
でき、室外側熱交換器出口過冷却度の演算精度を向上で
き、室外側膨張弁の開度を適正開度に制御できる。その
ため、暖房室内機の室内側熱交換器へ分配されるガス冷
媒量が不足するための、暖房能力の低下を防止すること
ができる。
Therefore, the composition ratio of the circulating refrigerant can be predicted from the height of the liquid surface in the accumulator. Then, from the predicted composition ratio of the circulating refrigerant, the liquid saturation temperature can be accurately calculated, the calculation accuracy of the outdoor heat exchanger outlet supercooling degree can be improved, and the opening degree of the outdoor expansion valve can be controlled to an appropriate opening degree. . Therefore, it is possible to prevent a decrease in heating capacity due to a shortage of the amount of gas refrigerant distributed to the indoor heat exchanger of the heating indoor unit.

【0021】また、冷房室内側の負荷、及び、外気温度
が同一である場合は、循環冷媒の低沸点冷媒組成比率が
高くなると高圧側圧力が所定値より上昇する。また、循
環冷媒の低沸点冷媒組成比率が低くなると、高圧側圧力
が所定値より低下する。
When the load inside the cooling room and the outside air temperature are the same, the high pressure side pressure rises above a predetermined value as the low boiling point refrigerant composition ratio of the circulating refrigerant increases. Further, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes low, the high-pressure side pressure becomes lower than a predetermined value.

【0022】よって、冷房室内負荷と、外気温度から、
高圧側圧力の所定値を求め、その所定値と、高圧側圧力
検知センサーによって検知された高圧側圧力との差によ
り、循環冷媒の組成比率を予測できる。
Therefore, from the load in the cooling room and the outside air temperature,
A predetermined value of the high-pressure side pressure is obtained, and the composition ratio of the circulating refrigerant can be predicted by the difference between the predetermined value and the high-pressure side pressure detected by the high-pressure side pressure detection sensor.

【0023】そして、予測した循環冷媒の組成比率よ
り、液飽和温度が精度良く演算でき、室外側熱交換器出
口過冷却度の演算精度を向上でき、室外側膨張弁の開度
を適正開度に制御できる。そのため、暖房室内機の室内
側熱交換器へ分配されるガス冷媒量が不足するための、
暖房能力の低下を防止することができる。
The liquid saturation temperature can be accurately calculated from the predicted composition ratio of the circulating refrigerant, the calculation accuracy of the outdoor superheater outlet supercooling degree can be improved, and the opening degree of the outdoor expansion valve can be set to an appropriate opening degree. Can be controlled. Therefore, since the amount of gas refrigerant distributed to the indoor heat exchanger of the heating indoor unit is insufficient,
It is possible to prevent a decrease in heating capacity.

【0024】また、冷房室内側の負荷、及び、外気温度
が同一である場合は、循環冷媒の低沸点冷媒組成比率が
高くなると、低圧側力が上昇し、低圧側圧力により制御
される圧縮機の運転周波数が所定値より上昇する。ま
た、循環冷媒の低沸点冷媒組成比率が低くなると、低圧
側圧力が低下し、低圧側圧力により制御される圧縮機の
運転周波数が所定値より低下する。
When the load inside the cooling room and the outside air temperature are the same, the low-pressure side force rises as the low-boiling-point refrigerant composition ratio of the circulating refrigerant increases, and the compressor is controlled by the low-pressure side pressure. The operating frequency of is higher than a predetermined value. Further, when the low-boiling-point refrigerant composition ratio of the circulating refrigerant becomes low, the low-pressure side pressure drops, and the operating frequency of the compressor controlled by the low-pressure side pressure drops below a predetermined value.

【0025】よって、室内負荷と、外気温度から、圧縮
機の運転周波数の所定値を求め、その所定値と、実際の
圧縮機の運転周波数との差により、循環冷媒の組成比率
を予測できる。
Therefore, the predetermined value of the operating frequency of the compressor is obtained from the indoor load and the outside air temperature, and the composition ratio of the circulating refrigerant can be predicted from the difference between the predetermined value and the actual operating frequency of the compressor.

【0026】そして、予測した循環冷媒の組成比率よ
り、液飽和温度が精度良く演算でき、室外側熱交換器出
口過冷却度の演算精度を向上でき、室外側膨張弁の開度
を適正開度に制御できる。そのため、暖房室内機の室内
側熱交換器へ分配されるガス冷媒量が不足するための、
暖房能力の低下を防止することができる。
The liquid saturation temperature can be accurately calculated from the predicted composition ratio of the circulating refrigerant, the calculation accuracy of the subcooling degree at the outlet of the outdoor heat exchanger can be improved, and the opening degree of the outdoor expansion valve can be set to the appropriate opening degree. Can be controlled. Therefore, since the amount of gas refrigerant distributed to the indoor heat exchanger of the heating indoor unit is insufficient,
It is possible to prevent a decrease in heating capacity.

【0027】また、外気温度、及び、高圧側圧力が同一
である場合は、循環冷媒の低沸点冷媒組成比率が高くな
ると、ガス飽和温度が低下し、吐出温度が所定値より低
下する。また、循環冷媒の低沸点冷媒組成比率が低くな
ると、ガス飽和温度が上昇し、吐出温度が所定値より上
昇する。
When the outside air temperature and the pressure on the high-pressure side are the same, when the low boiling point refrigerant composition ratio of the circulating refrigerant increases, the gas saturation temperature decreases and the discharge temperature decreases below a predetermined value. Further, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes low, the gas saturation temperature rises and the discharge temperature rises above a predetermined value.

【0028】よって、外気温度と、高圧側圧力から、圧
縮機の吐出温度の所定値を求め、その所定値と、吐出温
度検知センサーによって検知された圧縮機の吐出温度と
の差により、循環冷媒の組成比率を予測できる。
Therefore, the predetermined value of the discharge temperature of the compressor is obtained from the outside air temperature and the pressure on the high pressure side, and the circulating refrigerant is obtained by the difference between the predetermined value and the discharge temperature of the compressor detected by the discharge temperature detection sensor. The composition ratio of can be predicted.

【0029】そして、予測した循環冷媒の組成比率よ
り、液飽和温度が精度良く演算でき、室外側熱交換器出
口過冷却度の演算精度を向上でき、室外側膨張弁の開度
を適正開度に制御できる。そのため、暖房室内機の室内
側熱交換器へ分配されるガス冷媒量が不足するための、
暖房能力の低下を防止することができる。
The liquid saturation temperature can be accurately calculated from the predicted composition ratio of the circulating refrigerant, the calculation accuracy of the outdoor superheater outlet supercooling degree can be improved, and the opening degree of the outdoor expansion valve can be set to an appropriate opening degree. Can be controlled. Therefore, since the amount of gas refrigerant distributed to the indoor heat exchanger of the heating indoor unit is insufficient,
It is possible to prevent a decrease in heating capacity.

【0030】[0030]

【実施例】以下本発明の実施例について図面を参照しな
がら説明する。尚、従来と同一部分については同一符号
を付しその詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. The same parts as those of the prior art are designated by the same reference numerals, and detailed description thereof will be omitted.

【0031】まず本発明の第1の実施例について図1〜
図3を用いて説明する。図1において、19はアキュー
ムレータ6内の液面の位置を検知する液面高さ検知セン
サー(例えば、複数のフロートスイッチ)である。ま
た、20は液面高さ検知センサー19によって検知した
アキュームレータ6内の液面の高さから循環冷媒の組成
比率を予測する循環冷媒組成比率予測手段である。
First, a first embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. In FIG. 1, 19 is a liquid level detection sensor (for example, a plurality of float switches) that detects the position of the liquid level in the accumulator 6. Reference numeral 20 is a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the height of the liquid surface in the accumulator 6 detected by the liquid surface height detection sensor 19.

【0032】ここで、過冷却度演算手段21は、この冷
媒組成比率予測手段20によって予測した循環冷媒の組
成比率と、冷房主体運転時に高圧側圧力検知センサー1
5により検知した高圧側圧力と、室外側熱交換器出口温
度検知センサー16により検知した室外側熱交換器出口
温度とにより、室外側熱交換器出口過冷却度を演算し、
そして、室外側膨張弁制御手段18は、過冷却度演算手
段21で演算された過冷却度に応じて室外側膨張弁5の
開度の制御を行う。
Here, the supercooling degree calculating means 21 and the composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio predicting means 20 and the high pressure side pressure detection sensor 1 during the cooling main operation.
5, the outdoor side heat exchanger outlet supercooling degree is calculated by the high pressure side pressure detected by 5 and the outdoor side heat exchanger outlet temperature detected by the outdoor heat exchanger outlet temperature detection sensor 16,
Then, the outdoor expansion valve control means 18 controls the opening degree of the outdoor expansion valve 5 according to the degree of supercooling calculated by the degree of supercooling calculation means 21.

【0033】次に、このように構成された空気調和機
の、問題となっている冷房主体運転時の動作について説
明する。尚、従来例と同一構成については同一符号を付
し、その詳細な説明は省略する。
Next, the operation of the air conditioner thus constructed during the cooling main operation, which is a problem, will be described. The same components as those in the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0034】まず、図2は本発明の第1の実施例におけ
る空気調和機の室外側膨張弁の制御を示すフローチャー
トであり、図3は本発明の第1の実施例におけるアキュ
ームレータの液面高さと循環冷媒の低沸点冷媒組成比率
の関係を示す特性図である。
First, FIG. 2 is a flow chart showing the control of the outdoor expansion valve of the air conditioner in the first embodiment of the present invention, and FIG. 3 is the liquid level of the accumulator in the first embodiment of the present invention. FIG. 4 is a characteristic diagram showing the relationship between the low boiling point refrigerant composition ratio of the circulating refrigerant and the circulating refrigerant.

【0035】図2より、まず、ステップ1では、液面高
さ検知センサー19がアキュームレータ6内の液面高さ
Hを検知する。ステップ2では、アキュームレータ6内
の液面高さHを、アキュームレータ6内で、非共沸混合
冷媒が気液平衡状態となると、液側は高沸点冷媒の組成
比率が高くなり、ガス側は低沸点冷媒の組成比率が高く
なり、圧縮機2はアキュームレータ6内の低沸点冷媒に
富んだガス冷媒を吸い込むため、アキュームレータ6内
の液量が増加し液面高さが上昇すると、循環冷媒の低沸
点冷媒組成比率が高くなり、また、アキュームレータ6
内の液量が減少し液面高さが低下すると、循環冷媒の低
沸点冷媒の組成比率が低くなることより求められる、図
3に示すアキュームレータ液面高さと循環冷媒の低沸点
冷媒組成比率の関係を示す特性図を用いて、循環冷媒の
低沸点冷媒組成比率Xに換算する。ステップ3では、高
圧側圧力検知センサー15が高圧側圧力Paを検知す
る。ステップ4では、室外側熱交換器出口温度検知セン
サー16が室外側熱交換器出口温度Taを検知する。
As shown in FIG. 2, first, in step 1, the liquid level height sensor 19 detects the liquid level height H in the accumulator 6. In step 2, when the liquid level height H in the accumulator 6 is changed to a gas-liquid equilibrium state in the accumulator 6, the composition ratio of the high boiling point refrigerant is high on the liquid side and low on the gas side. Since the composition ratio of the boiling point refrigerant becomes high and the compressor 2 sucks the gas refrigerant rich in the low boiling point refrigerant in the accumulator 6, when the liquid amount in the accumulator 6 increases and the liquid level rises, the circulating refrigerant becomes low. The boiling point refrigerant composition ratio becomes high, and the accumulator 6
When the amount of liquid in the inside decreases and the liquid level decreases, the composition ratio of the low boiling point refrigerant of the circulating refrigerant becomes low, and thus the accumulator liquid level height and the low boiling point refrigerant composition ratio of the circulating refrigerant shown in FIG. It is converted into the low boiling point refrigerant composition ratio X of the circulating refrigerant using the characteristic diagram showing the relationship. In step 3, the high side pressure detecting sensor 15 detects the high-pressure side pressure P a. In step 4, the outdoor heat exchanger outlet temperature detection sensor 16 detects the outdoor heat exchanger outlet temperature T a.

【0036】そして、ステップ5では、過冷却度演算手
段21が、循環冷媒の低沸点冷媒組成比率Xと高圧側圧
力Paより換算した液飽和温度Tbと、室外側熱交換器出
口温度Taの差を、過冷却度SCとして算出する。ステ
ップ6では、室外側膨張弁制御手段18が、室外側膨張
弁5を、演算された過冷却度SCに応じた開度に制御す
る。
Then, in step 5, the supercooling degree calculating means 21 causes the liquid saturation temperature T b converted from the low boiling point refrigerant composition ratio X of the circulating refrigerant and the high pressure side pressure P a, and the outdoor side heat exchanger outlet temperature T. the difference of a, is calculated as the supercooling degree SC. In step 6, the outdoor expansion valve control means 18 controls the outdoor expansion valve 5 to an opening degree according to the calculated supercooling degree SC.

【0037】この第1の実施例によれば、非共沸混合冷
媒(例えば高沸点冷媒であるR134aと低沸点冷媒で
あるR32の2種の混合冷媒)を使用した場合の冷房主
体運転時に、循環冷媒の組成比率を予測し、精度良く液
飽和温度を演算することにより、室外側膨張弁5入口過
冷却度の演算精度を向上させ、室外側膨張弁5の開度を
適正開度に制御することができる。従って、、暖房室内
機の室内側熱交換器へ分配されるガス冷媒量が不足する
ための、暖房能力の低下を防止することができる。
According to the first embodiment, when the non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used, the cooling main operation is performed, By predicting the composition ratio of the circulating refrigerant and accurately calculating the liquid saturation temperature, the calculation accuracy of the inlet supercooling degree of the outdoor expansion valve 5 is improved, and the opening degree of the outdoor expansion valve 5 is controlled to an appropriate opening degree. can do. Therefore, it is possible to prevent a decrease in heating capacity due to an insufficient amount of gas refrigerant distributed to the indoor heat exchanger of the indoor heating unit.

【0038】次に本発明の第2の実施例について図4〜
図7を用いて説明する。図4において、22は外気温度
を検知する外気温度検知センサーである。また、23は
室内負荷を検出する室内負荷検出手段であり、本実施例
では、室内機7の運転容量と室内側膨張弁8の開度より
室内負荷の検出を行っている。また、24は室内負荷検
出手段23によって検出した冷房室内機7a,7bの室
内負荷と、外気温度検知センサー22によって検出した
外気温度と、高圧側圧力検知センサー15によって検知
した高圧側圧力から、循環冷媒の組成比率を予測する循
環冷媒組成比率予測手段である。
Next, the second embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. In FIG. 4, reference numeral 22 is an outside air temperature detection sensor that detects the outside air temperature. Further, reference numeral 23 is an indoor load detecting means for detecting an indoor load, and in this embodiment, the indoor load is detected from the operating capacity of the indoor unit 7 and the opening degree of the indoor expansion valve 8. Further, 24 is a circulation from the indoor load of the cooling indoor units 7a and 7b detected by the indoor load detection means 23, the outside air temperature detected by the outside air temperature detection sensor 22, and the high pressure side pressure detected by the high pressure side pressure detection sensor 15. It is a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the refrigerant.

【0039】ここで、過冷却度演算手段21は、冷房主
体運転時に、この冷媒組成比率予測手段24によって予
測した循環冷媒の組成比率と、高圧側圧力検知センサー
15により検知した高圧側圧力と、室外側熱交換器出口
温度検知センサー16により検知した室外側熱交換器出
口温度とにより、室外側熱交換器出口過冷却度を演算
し、そして、室外側膨張弁制御手段18は、過冷却度演
算手段21で演算された過冷却度に応じて室外側膨張弁
5の開度の制御を行う。
Here, the subcooling degree calculating means 21, during the cooling main operation, the composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio predicting means 24, and the high pressure side pressure detected by the high pressure side pressure detecting sensor 15, The outdoor heat exchanger outlet temperature is detected by the outdoor heat exchanger outlet temperature detection sensor 16, and the outdoor heat exchanger outlet supercooling degree is calculated. The opening degree of the outdoor expansion valve 5 is controlled according to the degree of supercooling calculated by the calculation means 21.

【0040】次に、このように構成された空気調和機
の、問題となっている冷房主体運転時の動作について説
明する。尚、従来例と同一構成については同一符号を付
し、その詳細な説明は省略する。
Next, the operation of the air conditioner thus constructed during the cooling main operation, which is a problem, will be described. The same components as those in the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0041】まず、図5は本発明の第2の実施例におけ
る空気調和機の室外側膨張弁の制御を示すフローチャー
トであり、図6は本発明の第2の実施例における室内負
荷と外気温度と高圧側圧力の所定値の関係を示す特性図
であり、図7は本発明の第2の実施例における高圧側圧
力の検知値と所定値の差と、循環冷媒の低沸点冷媒組成
比率の関係を示す特性図である。
First, FIG. 5 is a flow chart showing the control of the outdoor expansion valve of the air conditioner in the second embodiment of the present invention, and FIG. 6 is the indoor load and outside air temperature in the second embodiment of the present invention. FIG. 7 is a characteristic diagram showing a relationship between a high pressure side pressure and a predetermined value, and FIG. 7 shows a difference between a high pressure side detection value and a predetermined value in a second embodiment of the present invention, and a low boiling point refrigerant composition ratio of a circulating refrigerant. It is a characteristic view which shows a relationship.

【0042】図5より、まず、ステップ11では、高圧
側圧力検知センサー15が高圧側圧力Paを検知する。
ステップ12では、室内負荷検出手段23a,23b
が、室内の温度が低下する、或いは、室内側ファン(図
示せず)が強運転と設定されることなどにより、室内側
の負荷が増加した場合は、室内側膨張弁8a,8bの開
度が増加し、また、室内の温度が上昇する、或いは、室
内側ファンが弱運転と設定されることなどにより、室内
側の負荷が低下した場合は、室内側膨張弁8a,8bの
開度が減少することを利用し、冷房室内機7a,7bの
運転容量と室内側膨張弁8a,8bの開度から冷房室内
負荷Aを検出する。ステップ13では、外気温度検知セ
ンサー22が外気温度Tcを検知する。
From FIG. 5, first, in step 11, the high pressure side pressure detection sensor 15 detects the high pressure side pressure P a .
In step 12, indoor load detection means 23a, 23b
However, when the load on the indoor side increases due to a decrease in the indoor temperature or the indoor fan (not shown) is set to strong operation, the opening degree of the indoor expansion valves 8a, 8b. Of the indoor side expansion valves 8a, 8b when the indoor side load decreases due to an increase in the indoor temperature, the indoor fan is set to a weak operation, or the like. By utilizing the decrease, the cooling room load A is detected from the operating capacities of the cooling indoor units 7a and 7b and the opening degrees of the indoor expansion valves 8a and 8b. In step 13, the outside air temperature detection sensor 22 detects the outside air temperature Tc .

【0043】次に、ステップ14では、循環冷媒組成比
率予測手段24が、室内負荷検出手段23a,23bが
検出した冷房室内負荷Aと、外気温度検知センサー22
が検知した外気温度Tcを、図6に示す冷房室内負荷と
外気温度と高圧側圧力の所定値の関係を示す特性図を用
いて、高圧側圧力の所定値Pbに換算する。
Next, at step 14, the circulating refrigerant composition ratio predicting means 24 causes the cooling indoor load A detected by the indoor load detecting means 23a and 23b and the outside air temperature detecting sensor 22.
There outside air temperature T c of detecting, by using a characteristic diagram showing the relationship of the predetermined value of the cooling indoor load and the outside air temperature and a high pressure side pressure as shown in FIG. 6, is converted to a predetermined value P b of the high-pressure side pressure.

【0044】そして、冷房室内側の負荷、及び、外気温
度が同一である場合は、循環冷媒の低沸点冷媒組成比率
が高くなると高圧側圧力が所定値より上昇し、また、循
環冷媒の低沸点冷媒組成比率が低くなると、高圧側圧力
が所定値より低下することより求められる、図7に示す
高圧側圧力の検知値と所定値の差と、循環冷媒の低沸点
冷媒組成比率の関係を示す特性図を用いて、高圧側セン
サー15が検知した高圧側圧力Paと高圧側圧力の所定
値Pbの差を、循環冷媒の低沸点冷媒組成比率Xに演算
する。ステップ15では、室外側熱交換器出口温度検知
センサー16が室外側熱交換器出口温度Taを検知す
る。
When the load inside the cooling room and the outside air temperature are the same, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes high, the high pressure side pressure rises above a predetermined value, and the low boiling point of the circulating refrigerant becomes low. When the refrigerant composition ratio becomes lower, the relationship between the low boiling point refrigerant composition ratio of the circulating refrigerant and the difference between the detected value of the high pressure side pressure and the predetermined value shown in FIG. by using the characteristic diagram, the difference between the predetermined value P b of the high-pressure side pressure P a and the high-pressure side pressure high pressure side sensor 15 has detected is calculated in the low-boiling refrigerant composition ratio X of the circulated refrigerant. In step 15, the outdoor heat exchanger outlet temperature detection sensor 16 detects the outdoor heat exchanger outlet temperature T a.

【0045】そして、ステップ16では、過冷却度演算
手段21が、循環冷媒組成比率予測手段24が予測した
循環冷媒の低沸点冷媒組成比率Xと高圧側センサー15
が検知した高圧側圧力Paより演算した液飽和温度T
bと、室外側熱交換器出口温度T aの差を、過冷却度SC
として算出する。ステップ17では、室外側膨張弁制御
手段17が、室外側膨張弁5を、演算された過冷却度S
Cに応じた開度に制御する。
Then, in step 16, supercooling degree calculation
The means 21 predicted by the circulating refrigerant composition ratio prediction means 24
Low boiling point refrigerant composition ratio X of circulating refrigerant and high pressure side sensor 15
High side pressure P detected byaLiquid saturation temperature T calculated from
bAnd the outdoor heat exchanger outlet temperature T aThe difference between
Calculate as In step 17, the outdoor expansion valve control
A means 17 controls the outdoor expansion valve 5 to calculate the calculated supercooling degree S.
The opening is controlled according to C.

【0046】この第2の実施例によれば、非共沸混合冷
媒(例えば高沸点冷媒であるR134aと低沸点冷媒で
あるR32の2種の混合冷媒)を使用した場合の冷房主
体運転時に、アキュームレータへの液面高さセンサー取
り付けによる生産工程の複雑化を発生させずに、循環冷
媒の組成比率を予測し、精度良く液飽和温度を演算する
ことにより、室外側熱交換器出口過冷却度の演算精度を
向上させ、室外側膨張弁5の開度を適正開度に制御する
ことができる。従って、暖房室内機の室内側熱交換器へ
分配されるガス冷媒量が不足するための、暖房能力の低
下を防止することができる。
According to the second embodiment, when a non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used, the cooling main operation is performed, The composition ratio of the circulating refrigerant is predicted and the liquid saturation temperature is calculated accurately without complicating the production process by mounting the liquid level sensor on the accumulator. It is possible to improve the calculation accuracy of and to control the opening degree of the outdoor expansion valve 5 to an appropriate opening degree. Therefore, it is possible to prevent a decrease in heating capacity due to a shortage of the amount of gas refrigerant distributed to the indoor heat exchanger of the indoor heating unit.

【0047】次に本発明の第3の実施例について図8〜
図11を用いて説明する。図8において、22は外気温
度を検知する外気温度検知センサーである。また、23
は室内負荷を検出する室内負荷検出手段であり、本実施
例では室内機7の運転容量と室内側膨張弁8の開度から
室内負荷の検出を行っている。また、25は低圧側圧力
を検知する低圧側圧力検知センサーである。また、26
は圧縮機2の運転周波数を制御する圧縮機運転周波数制
手段である。また、27は室内負荷検出手段23が検出
した室内負荷と、外気温度検知センサー22が検知した
外気温度と、圧縮機2の運転周波数から、循環冷媒の組
成比率を予測する循環冷媒組成比率予測手段である。
Next, a third embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. In FIG. 8, reference numeral 22 is an outside air temperature detection sensor that detects the outside air temperature. Also, 23
Is an indoor load detecting means for detecting an indoor load, and in this embodiment, the indoor load is detected from the operating capacity of the indoor unit 7 and the opening degree of the indoor expansion valve 8. Further, reference numeral 25 is a low pressure side pressure detection sensor for detecting the low pressure side pressure. Also, 26
Is a compressor operating frequency control means for controlling the operating frequency of the compressor 2. Further, 27 is a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the indoor load detected by the indoor load detecting means 23, the outside air temperature detected by the outside air temperature detection sensor 22, and the operating frequency of the compressor 2. Is.

【0048】ここで、過冷却度演算手段21は、この冷
媒組成比率予測手段27によって予測した循環冷媒の組
成比率と、冷房主体運転時に高圧側圧力検知センサー1
5により検知した高圧側圧力と、室外側熱交換器出口温
度検知センサー16により検知した室外側熱交換器出口
温度とにより、室外側熱交換器出口過冷却度を演算し、
そして、室外側膨張弁制御手段18は、過冷却度演算手
段21で演算された過冷却度に応じて室外側膨張弁5の
開度の制御を行う。
Here, the supercooling degree calculating means 21 and the composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio predicting means 27 and the high pressure side pressure detection sensor 1 during the cooling main operation.
5, the outdoor side heat exchanger outlet supercooling degree is calculated by the high pressure side pressure detected by 5 and the outdoor side heat exchanger outlet temperature detected by the outdoor heat exchanger outlet temperature detection sensor 16,
Then, the outdoor expansion valve control means 18 controls the opening degree of the outdoor expansion valve 5 according to the degree of supercooling calculated by the degree of supercooling calculation means 21.

【0049】次に、このように構成された空気調和機
の、問題となっている冷房主体運転時の動作について説
明する。尚、従来例と同一構成については同一符号を付
し、その詳細な説明は省略する。
Next, the operation of the air conditioner thus configured during the cooling main operation, which is a problem, will be described. The same components as those in the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0050】まず、図9は本発明の第3の実施例におけ
る空気調和機の室外側膨張弁の制御を示すフローチャー
トであり、図10は本発明の第3の実施例における室内
負荷と外気温度と圧縮機運転周波数の所定値の関係を示
す特性図であり、図11は本発明の第3の実施例におけ
る圧縮機運転周波数の所定値との差と、循環冷媒の低沸
点冷媒組成比率の関係を示す特性図である。
First, FIG. 9 is a flow chart showing the control of the outdoor expansion valve of the air conditioner in the third embodiment of the present invention, and FIG. 10 is the indoor load and outside air temperature in the third embodiment of the present invention. FIG. 11 is a characteristic diagram showing a relationship between a predetermined value of the compressor operating frequency and FIG. 11, and FIG. 11 shows a difference between the predetermined value of the compressor operating frequency and the low boiling point refrigerant composition ratio of the circulating refrigerant in the third embodiment of the present invention. It is a characteristic view which shows a relationship.

【0051】図9より、まず、ステップ21では、高圧
側圧力検知センサー15が高圧側圧力Paを検知する。
ステップ22では、低圧側圧力検知センサー25が低圧
側圧力Paを検知する。ステップ23では、室内負荷検
出手段23a,23bが、室内の温度が低下する、或い
は、室内側ファン(図示せず)が強運転と設定されるこ
となどにより、室内側の負荷が増加した場合は、室内側
膨張弁8a,8bの開度が増加し、また、室内の温度が
上昇する、或いは、室内側ファンが弱運転と設定される
ことなどにより、室内側の負荷が低下した場合は、室内
側膨張弁8a,8bの開度が減少することを利用し、室
内機7a,7bの運転容量と室内側膨張弁8a,8bの
開度から冷房室内負荷Aを検出する。
[0051] From FIG. 9, first, in step 21, the high side pressure detecting sensor 15 detects the high-pressure side pressure P a.
In step 22, the low-pressure side pressure detection sensor 25 detects the low-pressure side pressure P a. In step 23, when the indoor load detection means 23a and 23b increase the indoor load due to a decrease in the indoor temperature or the indoor fan (not shown) being set to strong operation, If the load on the indoor side is reduced due to an increase in the opening degree of the indoor expansion valves 8a and 8b, an increase in the indoor temperature, or a weak operation of the indoor fan, Utilizing the fact that the openings of the indoor expansion valves 8a, 8b decrease, the cooling indoor load A is detected from the operating capacity of the indoor units 7a, 7b and the openings of the indoor expansion valves 8a, 8b.

【0052】次に、ステップ24では、外気温度検知セ
ンサー22が外気温度Tcを検知する。ステップ25で
は、循環冷媒組成比率予測手段27が、室内負荷検出手
段23a.23bが検知した冷房室内負荷Aと、外気温
度検知センサー22が検知した外気温度Tcを、図10
に示す室内負荷と外気温度と圧縮機運転周波数の所定値
の関係を示す特性図を用いて、圧縮機周波数の所定値F
bに換算する。
Next, at step 24, the outside air temperature detection sensor 22 detects the outside air temperature T c . In step 25, the circulating refrigerant composition ratio predicting means 27 causes the indoor load detecting means 23a. The load A in the cooling room detected by 23b and the outside air temperature T c detected by the outside air temperature detection sensor 22 are shown in FIG.
Using the characteristic diagram showing the relationship between the indoor load, the outside air temperature, and the predetermined value of the compressor operating frequency shown in FIG.
Convert to b .

【0053】そして、室内側の負荷、及び、外気温度が
同一である場合は、循環冷媒の低沸点冷媒組成比率が高
くなると低圧側圧力が上昇し、圧縮機2の運転周波数が
所定値より上昇し、また、循環冷媒の低沸点冷媒組成比
率が低くなると、低圧側圧力が低下し、圧縮機2の運転
周波数が所定値より低下することより求められる、図1
1に示す圧縮機運転周波数の所定値との差と、循環冷媒
の低沸点冷媒組成比率の関係を示す特性図を用いて、圧
縮機運転周波数Faと圧縮機運転周波数の所定値Fbの差
を、循環冷媒の低沸点冷媒組成比率Xに演算する。ステ
ップ26では、室外側熱交換器出口温度検知センサー1
6が室外側熱交換器出口温度Taを検知する。
When the load on the indoor side and the outside air temperature are the same, the low-pressure side pressure rises as the low boiling point refrigerant composition ratio of the circulating refrigerant increases, and the operating frequency of the compressor 2 rises above a predetermined value. However, when the low-boiling-point refrigerant composition ratio of the circulating refrigerant becomes low, the pressure on the low-pressure side decreases, and the operating frequency of the compressor 2 becomes lower than a predetermined value.
Using the characteristic diagram showing the relationship between the difference between the compressor operating frequency and the predetermined value and the low boiling point refrigerant composition ratio of the circulating refrigerant, the compressor operating frequency Fa and the compressor operating frequency predetermined value Fb The difference is calculated as the low boiling point refrigerant composition ratio X of the circulating refrigerant. In step 26, the outdoor heat exchanger outlet temperature detection sensor 1
6 detects the outdoor heat exchanger outlet temperature T a .

【0054】そして、ステップ27では、過冷却度演算
手段21が、循環冷媒組成比率予測手段27が予測した
循環冷媒の低沸点冷媒組成比率Xと高圧側センサー15
が検知した高圧側圧力Paより演算した液飽和温度T
bと、室外側熱交換器出口温度T aの差を、過冷却度SC
として算出する。ステップ28では、室外側膨張弁制御
手段18が、室外側膨張弁5を、演算された過冷却度S
Cに応じた開度に制御する。
Then, in step 27, the degree of supercooling is calculated.
The means 21 predicted by the circulating refrigerant composition ratio prediction means 27
Low boiling point refrigerant composition ratio X of circulating refrigerant and high pressure side sensor 15
High side pressure P detected byaLiquid saturation temperature T calculated from
bAnd the outdoor heat exchanger outlet temperature T aThe difference between
Calculate as In step 28, the outdoor expansion valve control
A means 18 controls the outdoor expansion valve 5 to calculate the calculated supercooling degree S.
The opening is controlled according to C.

【0055】この第3の実施例によれば、非共沸混合冷
媒(例えば高沸点冷媒であるR134aと低沸点冷媒で
あるR32の2種の混合冷媒)を使用した場合の冷房主
体運転時に、アキュームレータへの液面高さセンサー取
り付けによる生産工程の複雑化を発生させずに、また、
圧縮機の運転周波数を変化させ高圧側圧力を一定値に制
御する構成となっており、循環冷媒の組成比率の変化が
高圧側圧力の変化となって現れない空気調和機において
も、循環冷媒の組成比率を予測し、精度良く液飽和温度
を演算することにより、室外側熱交換器出口過冷却度の
演算精度を向上させ、室外側膨張弁5の開度を適正開度
に制御することができる。従って、暖房室内機の室内側
熱交換器へ分配されるガス冷媒量が不足するための、暖
房能力の低下を防止することができる。
According to the third embodiment, when the non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used, the cooling main operation is performed. Without complicating the production process by attaching the liquid level sensor to the accumulator,
It is configured to change the operating frequency of the compressor to control the high pressure side pressure to a constant value, and even in an air conditioner in which the change in the composition ratio of the circulating refrigerant does not appear as a change in the high pressure side pressure, the circulating refrigerant By predicting the composition ratio and accurately calculating the liquid saturation temperature, it is possible to improve the calculation accuracy of the outdoor heat exchanger outlet supercooling degree and control the opening degree of the outdoor expansion valve 5 to an appropriate opening degree. it can. Therefore, it is possible to prevent a decrease in heating capacity due to a shortage of the amount of gas refrigerant distributed to the indoor heat exchanger of the indoor heating unit.

【0056】次に本発明の第4の実施例について図12
〜図15を用いて説明する。図12において、22は外
気温度を検知する外気温度検知センサーである。また、
28は圧縮機2の吐出温度を検知する吐出温度検知セン
サーである。また、また、29は外気温度検知センサー
22が検知した外気温度と、高圧側圧力検知センサー1
5が検知した高圧側圧力と、吐出温度検知センサー28
が検知した圧縮機2の吐出温度から、循環冷媒の組成比
率を予測する循環冷媒組成比率予測手段である。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
~ It demonstrates using FIG. In FIG. 12, reference numeral 22 is an outside air temperature detection sensor that detects the outside air temperature. Also,
A discharge temperature detection sensor 28 detects the discharge temperature of the compressor 2. Further, 29 is the outside air temperature detected by the outside air temperature detection sensor 22, and the high pressure side pressure detection sensor 1
High-side pressure detected by No. 5 and discharge temperature detection sensor 28
Is a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the discharge temperature of the compressor 2 detected by.

【0057】ここで、過冷却度演算手段21は、この冷
媒組成比率予測手段29によって予測した循環冷媒の組
成比率と、冷房主体運転時に高圧側圧力検知センサー1
5により検知した高圧側圧力と、室外側熱交換器出口温
度検知センサー16により検知した室外側熱交換器出口
温度とにより、室外側熱交換器出口過冷却度を演算し、
そして、室外側膨張弁制御手段18は、過冷却度演算手
段21で演算された過冷却度に応じて室外側膨張弁5の
開度の制御を行う。
Here, the supercooling degree calculating means 21 and the composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio predicting means 29 and the high pressure side pressure detection sensor 1 during the cooling main operation.
5, the outdoor side heat exchanger outlet supercooling degree is calculated by the high pressure side pressure detected by 5 and the outdoor side heat exchanger outlet temperature detected by the outdoor heat exchanger outlet temperature detection sensor 16,
Then, the outdoor expansion valve control means 18 controls the opening degree of the outdoor expansion valve 5 according to the degree of supercooling calculated by the degree of supercooling calculation means 21.

【0058】次に、このように構成された空気調和機
の、問題となっている冷房主体運転時の動作について説
明する。尚、従来例と同一構成については同一符号を付
し、その詳細な説明は省略する。
Next, the operation of the air conditioner thus constructed during the cooling main operation, which is a problem, will be described. The same components as those in the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0059】まず、図13は本発明の第4の実施例にお
ける空気調和機の室外側膨張弁の制御を示すフローチャ
ートであり、図14は本発明の第4の実施例における外
気温度と高圧側圧力と圧縮機吐出温度の所定値の関係を
示す特性図であり、図15は本発明の第4の実施例にお
ける圧縮機吐出温度の検知値と所定値の差と、循環冷媒
の低沸点冷媒組成比率の関係を示す特性図である。
First, FIG. 13 is a flow chart showing the control of the outdoor expansion valve of the air conditioner in the fourth embodiment of the present invention, and FIG. 14 is the outside air temperature and high pressure side in the fourth embodiment of the present invention. FIG. 15 is a characteristic diagram showing a relationship between a pressure and a predetermined value of a compressor discharge temperature, and FIG. 15 is a difference between a detected value of the compressor discharge temperature and a predetermined value in a fourth embodiment of the present invention, and a low boiling point refrigerant of a circulating refrigerant. It is a characteristic view which shows the relationship of a composition ratio.

【0060】図13より、まず、ステップ31では、高
圧側圧力検知センサー15が高圧側圧力Paを検知す
る。ステップ32では、吐出温度検知センサー28が圧
縮機2の吐出温度Tdを検知する。ステップ33では、
外気温度検知センサー22が外気温度Tcを検知する。
From FIG. 13, first, in step 31, the high pressure side pressure detection sensor 15 detects the high pressure side pressure P a . In step 32, the discharge temperature detection sensor 28 detects the discharge temperature T d of the compressor 2. In step 33,
The outside air temperature detection sensor 22 detects the outside air temperature Tc .

【0061】次に、ステップ34では、循環冷媒組成比
率予測手段29が、外気温度検知センサー22が検知し
た外気温度Tcと、高圧側センサー15が検知した高圧
側圧力Paと、圧縮機2の吐出温度Tdを、図14に示す
外気温度と高圧側圧力と圧縮機吐出温度の所定値の関係
を示す特性図を用いて、圧縮機2の吐出温度の所定値T
eに換算する。
Next, at step 34, the circulating refrigerant composition ratio predicting means 29 causes the outside air temperature T c detected by the outside air temperature detecting sensor 22, the high pressure side pressure P a detected by the high pressure side sensor 15, and the compressor 2 The discharge temperature T d of the compressor 2 is determined by using the characteristic diagram showing the relationship between the outside air temperature, the high-pressure side pressure, and the predetermined value of the compressor discharge temperature shown in FIG.
Convert to e .

【0062】そして、外気温度、及び、高圧側圧力が同
一である場合は、循環冷媒の低沸点冷媒組成比率が高く
なると、ガス飽和温度が低下し、圧縮機2の吐出温度が
低下する、また、循環冷媒の低沸点冷媒組成比率が低く
なると、ガス飽和温度が上昇し、圧縮機の吐出温度が上
昇することより求められる、図15に示す圧縮機吐出温
度の検知値と所定値の差と、循環冷媒の低沸点冷媒組成
比率の関係を示す特性図を用いて、吐出温度検知センサ
ー28が検知した圧縮機吐出温度Tdと圧縮機吐出温度
の所定値Teの差を、循環冷媒の低沸点冷媒組成比率X
に演算する。ステップ35では、室外側熱交換器出口温
度検知センサー16が室外側熱交換器出口温度Taを検
知する。
When the outside air temperature and the pressure on the high pressure side are the same, the gas saturation temperature decreases and the discharge temperature of the compressor 2 decreases when the low boiling point refrigerant composition ratio of the circulating refrigerant increases. When the low-boiling-point refrigerant composition ratio of the circulating refrigerant becomes low, the gas saturation temperature rises and the discharge temperature of the compressor rises. The difference between the detected value and the predetermined value of the compressor discharge temperature shown in FIG. , The difference between the compressor discharge temperature T d detected by the discharge temperature detection sensor 28 and the predetermined value T e of the compressor discharge temperature is calculated by using the characteristic diagram showing the relationship of the low boiling point refrigerant composition ratio of the circulating refrigerant. Low boiling point refrigerant composition ratio X
Calculate to. In step 35, the outdoor heat exchanger outlet temperature detection sensor 16 detects the outdoor heat exchanger outlet temperature T a.

【0063】そして、ステップ36では、過冷却度演算
手段21が、循環冷媒組成比率予測手段29が予測した
循環冷媒の低沸点冷媒組成比率Xと高圧側センサー15
が検知した高圧側圧力Paより演算した液飽和温度T
bと、室外側熱交換器出口温度T aの差を、過冷却度SC
として算出する。ステップ37では、室外側膨張弁制御
手段18が、室外側膨張弁5を、演算された過冷却度S
Cに応じた開度に制御する。
Then, in step 36, the degree of supercooling is calculated.
The means 21 predicted by the circulating refrigerant composition ratio prediction means 29
Low boiling point refrigerant composition ratio X of circulating refrigerant and high pressure side sensor 15
High side pressure P detected byaLiquid saturation temperature T calculated from
bAnd the outdoor heat exchanger outlet temperature T aThe difference between
Calculate as In step 37, the outdoor expansion valve control
A means 18 controls the outdoor expansion valve 5 to calculate the calculated supercooling degree S.
The opening is controlled according to C.

【0064】この第4の実施例によれば、非共沸混合冷
媒(例えば高沸点冷媒であるR134aと低沸点冷媒で
あるR32の2種の混合冷媒)を使用した場合の冷房主
体運転時に、アキュームレータへの液面高さセンサー取
り付けによる生産工程の複雑化を発生させずに、また、
室外機へ室内負荷を通信する配線設備のための工事工数
の増加を発生させずに、循環冷媒の組成比率を予測し、
精度良く液飽和温度を演算することにより、室外側膨張
弁5入口過冷却度の演算精度を向上させ、室外側膨張弁
5の開度を適正開度に制御することができる。従って、
暖房室内機の室内側熱交換器へ分配されるガス冷媒量が
不足するための、暖房能力の低下を防止することができ
る。
According to the fourth embodiment, when the non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used, the cooling main operation is performed. Without complicating the production process by attaching the liquid level sensor to the accumulator,
Predict the composition ratio of the circulating refrigerant without increasing the construction man-hours for the wiring equipment that communicates the indoor load to the outdoor unit,
By accurately calculating the liquid saturation temperature, it is possible to improve the calculation accuracy of the degree of supercooling at the inlet of the outdoor expansion valve 5 and control the opening of the outdoor expansion valve 5 to an appropriate opening. Therefore,
It is possible to prevent a decrease in heating capacity due to an insufficient amount of gas refrigerant distributed to the indoor heat exchanger of the heating indoor unit.

【0065】[0065]

【発明の効果】以上のように本発明は、非共沸混合冷媒
を使用した場合の冷房主体運転時に、アキュームレータ
内の液面の高さから、循環冷媒の組成比率を予測する循
環冷媒組成比率予測手段と、循環冷媒の組成比率と、高
圧側圧力と、室外側熱交換器出口温度とにより、室外側
熱交換器出口過冷却度を演算する過冷却度演算手段と、
過冷却度に応じて室外側膨張弁の開度を制御する室外側
膨張弁制御手段とを備えたものである。
As described above, according to the present invention, the circulation refrigerant composition ratio for predicting the composition ratio of the circulation refrigerant from the height of the liquid level in the accumulator during the cooling main operation when the non-azeotropic mixed refrigerant is used. Prediction means, the composition ratio of the circulating refrigerant, the high-pressure side pressure, and the outdoor heat exchanger outlet temperature, supercooling degree calculation means for calculating the outdoor heat exchanger outlet supercooling degree,
The outdoor expansion valve control means for controlling the opening of the outdoor expansion valve according to the degree of supercooling is provided.

【0066】そのため、循環冷媒の組成比率を予測し、
精度良く液飽和温度を演算することにより、室外側熱交
換器出口過冷却度の演算精度を向上させ、室外側膨張弁
の開度を適正開度に制御することにより、暖房室内機の
室内側熱交換器へ分配されるガス冷媒量が不足するため
の、暖房能力の低下を防止することができる。
Therefore, by predicting the composition ratio of the circulating refrigerant,
By calculating the liquid saturation temperature with high accuracy, the calculation accuracy of the degree of subcooling at the outlet of the outdoor heat exchanger is improved, and by controlling the opening of the outdoor expansion valve to an appropriate opening, the indoor side of the heating indoor unit It is possible to prevent a decrease in heating capacity due to a shortage of the amount of gas refrigerant distributed to the heat exchanger.

【0067】また、非共沸混合冷媒を使用した場合の冷
房主体運転時に、冷房室内負荷と、外気温度と、高圧側
圧力から、循環冷媒の組成比率を予測する循環冷媒組成
比率予測手段と、循環冷媒の組成比率と、高圧側圧力
と、室外側熱交換器出口温度とにより、室外側熱交換器
出口過冷却度を演算する過冷却度演算手段と、過冷却度
に応じて室外側膨張弁の開度を制御する室外側膨張弁制
御手段とを備えたものである。
Further, in the cooling main operation when the non-azeotropic mixed refrigerant is used, the circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the cooling indoor load, the outside air temperature and the high pressure side pressure, Supercooling degree calculating means for calculating the outdoor superheater outlet supercooling degree by the composition ratio of the circulating refrigerant, the high-pressure side pressure, and the outdoor heat exchanger outlet temperature, and the outdoor expansion according to the supercooling degree And an outdoor expansion valve control means for controlling the opening degree of the valve.

【0068】そのため、アキュームレータへの液面高さ
センサー取り付けによる生産工程の複雑化を発生させず
に、循環冷媒の組成比率を予測し、精度良く液飽和温度
を演算することにより、室外側熱交換器出口過冷却度の
演算精度を向上させ、室外側膨張弁の開度を適正開度に
制御することにより、暖房室内機の室内側熱交換器へ分
配されるガス冷媒量が不足するための、暖房能力の低下
を防止することができる。
Therefore, the outdoor heat exchange can be performed by predicting the composition ratio of the circulating refrigerant and accurately calculating the liquid saturation temperature without complicating the production process by mounting the liquid level sensor on the accumulator. By improving the calculation accuracy of the degree of supercooling at the outlet of the unit and controlling the opening of the outdoor expansion valve to an appropriate opening, the amount of gas refrigerant distributed to the indoor heat exchanger of the heating indoor unit is insufficient. , It is possible to prevent a decrease in heating capacity.

【0069】また、非共沸混合冷媒を使用した場合の冷
房主体運転時に、冷房室内負荷と、外気温度と、低圧側
圧力により制御される圧縮機の運転周波数から、循環冷
媒の組成比率を予測する循環冷媒組成比率予測手段と、
循環冷媒の組成比率と、高圧側圧力と、室外側熱交換器
出口温度とにより、室外側熱交換器出口過冷却度を演算
する過冷却度演算手段と、過冷却度に応じて室外側膨張
弁の開度を制御する室外側膨張弁制御手段とを備えたも
のである。
Further, in the cooling-main operation in the case where the non-azeotropic mixed refrigerant is used, the composition ratio of the circulating refrigerant is predicted from the cooling room load, the outside air temperature, and the operating frequency of the compressor controlled by the low-pressure side pressure. Circulating refrigerant composition ratio predicting means,
Supercooling degree calculating means for calculating the outdoor superheater outlet supercooling degree by the composition ratio of the circulating refrigerant, the high-pressure side pressure, and the outdoor heat exchanger outlet temperature, and the outdoor expansion according to the supercooling degree And an outdoor expansion valve control means for controlling the opening degree of the valve.

【0070】そのため、アキュームレータへの液面高さ
センサー取り付けによる生産工程の複雑化を発生させず
に、また、圧縮機の運転周波数を変化させ高圧側圧力を
一定値に制御する構成となっており、循環冷媒の組成比
率の変化が高圧側圧力の変化となって現れない空気調和
機においても、循環冷媒の組成比率を予測し、精度良く
液飽和温度を演算することにより、室外側熱交換器出口
過冷却度の演算精度を向上させ、室外側膨張弁の開度を
適正開度に制御することにより、暖房室内機の室内側熱
交換器へ分配されるガス冷媒量が不足するための、暖房
能力の低下を防止することができる。
Therefore, the production process is not complicated by mounting the liquid level sensor on the accumulator, and the operating frequency of the compressor is changed to control the high pressure side to a constant value. Even in an air conditioner in which a change in the composition ratio of the circulating refrigerant does not appear as a change in the high-pressure side pressure, by predicting the composition ratio of the circulating refrigerant and accurately calculating the liquid saturation temperature, the outdoor heat exchanger By improving the calculation accuracy of the outlet supercooling degree and controlling the opening degree of the outdoor expansion valve to an appropriate opening degree, the amount of gas refrigerant distributed to the indoor side heat exchanger of the heating indoor unit is insufficient, It is possible to prevent a decrease in heating capacity.

【0071】また、非共沸混合冷媒を使用した場合の冷
房主体運転時に、高圧側圧力と、外気温度と、圧縮機の
吐出温度から、循環冷媒の組成比率を予測する循環冷媒
組成比率予測手段と、循環冷媒の組成比率と、高圧側圧
力と、室外側熱交換器出口温度とにより、室外側熱交換
器出口過冷却度を演算する過冷却度演算手段と、過冷却
度に応じて室外側膨張弁の開度を制御する室外側膨張弁
制御手段とを備えたものである。
Further, in the cooling main operation in the case of using the non-azeotropic mixed refrigerant, the circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the high pressure side pressure, the outside air temperature, and the discharge temperature of the compressor. And the composition ratio of the circulating refrigerant, the high pressure side pressure, and the outdoor side heat exchanger outlet temperature, the subcooling degree calculation means for calculating the outdoor side heat exchanger outlet supercooling degree, and the chamber according to the subcooling degree. And an outdoor expansion valve control means for controlling the opening degree of the external expansion valve.

【0072】そのため、アキュームレータへの液面高さ
センサー取り付けによる生産工程の複雑化を発生させず
に、また、室外機へ室内機負荷を通信する配線設備のた
めの工事工数の増加を発生させずに、循環冷媒の組成比
率を予測し、精度良く液飽和温度を演算することによ
り、室外側熱交換器出口過冷却度の演算精度を向上さ
せ、室外側膨張弁の開度を適正開度に制御することによ
り、暖房室内機の室内側熱交換器へ分配されるガス冷媒
量が不足するための、暖房能力の低下を防止することが
できる。
Therefore, the production process is not complicated by mounting the liquid level sensor on the accumulator, and the number of construction man-hours for wiring equipment for communicating the indoor unit load to the outdoor unit is not increased. In addition, by predicting the composition ratio of the circulating refrigerant and accurately calculating the liquid saturation temperature, the calculation accuracy of the outdoor superheater outlet subcooling degree is improved, and the opening degree of the outdoor expansion valve is set to an appropriate opening degree. By controlling, it is possible to prevent a decrease in heating capacity due to an insufficient amount of gas refrigerant distributed to the indoor heat exchanger of the indoor heating unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における空気調和機の冷
凍サイクル図
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における空気調和機の室
外側膨張弁の制御を示すフローチャート
FIG. 2 is a flowchart showing the control of the outdoor expansion valve of the air conditioner in the first embodiment of the present invention.

【図3】本発明の第1の実施例におけるアキュームレー
タの液面高さと循環冷媒の低沸点冷媒組成比率の関係を
示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the liquid level height of the accumulator and the low boiling point refrigerant composition ratio of the circulating refrigerant in the first embodiment of the present invention.

【図4】本発明の第2の実施例における空気調和機の冷
凍サイクル図
FIG. 4 is a refrigeration cycle diagram of an air conditioner according to a second embodiment of the present invention.

【図5】本発明の第2の実施例における空気調和機の室
外側膨張弁の制御を示すフローチャート
FIG. 5 is a flowchart showing the control of the outdoor expansion valve of the air conditioner in the second embodiment of the present invention.

【図6】本発明の第2の実施例における冷房室内負荷と
外気温度と高圧側圧力の所定値の関係を示す特性図
FIG. 6 is a characteristic diagram showing a relationship between a load in a cooling room, an outside air temperature, and a predetermined value of a high-pressure side pressure in a second embodiment of the present invention.

【図7】本発明の第2の実施例における高圧側圧力の検
知値と所定値の差と循環冷媒の低沸点冷媒組成比率の関
係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the difference between the detected value and the predetermined value of the high pressure side and the low boiling point refrigerant composition ratio of the circulating refrigerant in the second embodiment of the present invention.

【図8】本発明の第3の実施例における空気調和機の冷
凍サイクル図
FIG. 8 is a refrigeration cycle diagram of an air conditioner according to a third embodiment of the present invention.

【図9】本発明の第3の実施例における空気調和機の室
外側膨張弁の制御を示すフローチャート
FIG. 9 is a flowchart showing control of an outdoor expansion valve of an air conditioner according to a third embodiment of the present invention.

【図10】本発明の第3の実施例における冷房室内負荷
と外気温度と圧縮機運転周波数の所定値の関係を示す特
性図
FIG. 10 is a characteristic diagram showing a relationship among a load in a cooling room, an outside air temperature, and a predetermined value of a compressor operating frequency in a third embodiment of the present invention.

【図11】本発明の第3の実施例における圧縮機運転周
波数の所定値との差と循環冷媒の低沸点冷媒組成比率の
関係を示す特性図
FIG. 11 is a characteristic diagram showing the relationship between the difference between the compressor operating frequency and a predetermined value and the low boiling point refrigerant composition ratio of the circulating refrigerant in the third embodiment of the present invention.

【図12】本発明の第4の実施例における空気調和機の
冷凍サイクル図
FIG. 12 is a refrigeration cycle diagram of an air conditioner according to a fourth embodiment of the present invention.

【図13】本発明の第4の実施例における空気調和機の
室外側膨張弁の制御を示すフローチャート
FIG. 13 is a flowchart showing control of an outdoor expansion valve of an air conditioner according to a fourth embodiment of the present invention.

【図14】本発明の第4の実施例における高圧側圧力と
圧縮機の吐出温度の所定値の関係を示す特性図
FIG. 14 is a characteristic diagram showing the relationship between the high-pressure side pressure and a predetermined value of the discharge temperature of the compressor in the fourth embodiment of the present invention.

【図15】本発明の第4の実施例における圧縮機吐出温
度の検知値と所定値の差と循環冷媒の低沸点冷媒組成比
率の関係を示す特性図
FIG. 15 is a characteristic diagram showing a relationship between a difference between a detected value of a compressor discharge temperature and a predetermined value and a low boiling point refrigerant composition ratio of a circulating refrigerant in a fourth example of the present invention.

【図16】従来の空気調和機の冷凍サイクル図FIG. 16 is a refrigeration cycle diagram of a conventional air conditioner

【符号の説明】[Explanation of symbols]

1 室外機 2 圧縮機 3a,3b 切換弁 4 室外側熱交換器 5 室外側膨張弁 6 アキュームレータ 7 室内機 8 室内側膨張弁 9 室内側熱交換器 10 高圧側二方弁 11 低圧側二方弁 12 高圧ガス管 13 低圧ガス管 14 液管 15 高圧側圧力検知センサー 16 室外側熱交換器出口温度検知センサー 18 室外側膨張弁制御手段 19 液面高さ検知センサー 20 循環冷媒組成比率予測手段 21 過冷却度演算手段 22 外気温度検知センサー 23 室内負荷検出手段 24 循環冷媒組成比率予測手段 25 低圧側圧力検知センサー 26 圧縮機運転周波数制御手段 27 循環冷媒組成比率予測手段 28 吐出温度検知センサー 29 循環冷媒組成比率予測手段 1 outdoor unit 2 compressors 3a, 3b switching valve 4 outdoor heat exchanger 5 outdoor expansion valve 6 accumulator 7 indoor unit 8 indoor expansion valve 9 indoor heat exchanger 10 high pressure two-way valve 11 low pressure two-way valve 12 high pressure gas pipe 13 low pressure gas pipe 14 liquid pipe 15 high pressure side pressure detection sensor 16 outdoor side heat exchanger outlet temperature detection sensor 18 outdoor side expansion valve control means 19 liquid level height detection sensor 20 circulating refrigerant composition ratio prediction means 21 excess Cooling degree calculating means 22 Outside air temperature detecting sensor 23 Indoor load detecting means 24 Circulating refrigerant composition ratio predicting means 25 Low pressure side pressure detecting sensor 26 Compressor operating frequency controlling means 27 Circulating refrigerant composition ratio predicting means 28 Discharge temperature detecting sensor 29 Circulating refrigerant composition Ratio predictor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日下 道美 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michi Kusaka Matsushita Refrigerating Machinery Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非共沸混合冷媒を使用し、圧縮機、三方
切替機構、室外側熱交換器、室外側膨張弁、アキューム
レータから成る室外機と、室内側膨張弁、室内側熱交換
器から成る複数の室内機を高圧ガス管、低圧ガス管及び
液管を介して並列に接続し、前記室内側熱交換器の一方
は前記高圧ガス管または前記低圧ガス管と高圧側二方弁
及び低圧側二方弁の開閉により切替可能に接続し、前記
室内側熱交換器の他の一方は室内側膨張弁を介して前記
液管に接続し、前記アキュームレータ内の液面の高さを
検知する液面高さ検知センサーと、前記液面高さ検知セ
ンサーによって検知した前記アキュームレータ内の液面
高さから、循環冷媒の組成比率を予測する循環冷媒組成
比率予測手段と、高圧側圧力を検知する高圧側圧力検知
センサーと、室外側熱交換器出口温度を検知する室外側
熱交換器出口温度検知センサーと、冷房主体運転時に、
前記循環冷媒組成比率予測手段によって予測した循環冷
媒の組成比率と、前記高圧側圧力検知センサーにより検
知した高圧側圧力と、前記室外側熱交換器出口温度検知
センサーにより検知した室外側熱交換器出口温度とによ
り、室外側熱交換器出口過冷却度を演算する過冷却度演
算手段と、前記過冷却度演算手段で演算された過冷却度
に応じて前記室外側膨張弁の開度の制御を行う室外側膨
張弁制御手段とを備えた空気調和機。
1. An outdoor unit including a compressor, a three-way switching mechanism, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, which uses a non-azeotropic mixed refrigerant, and an indoor expansion valve and an indoor heat exchanger. A plurality of indoor units are connected in parallel via a high-pressure gas pipe, a low-pressure gas pipe and a liquid pipe, and one of the indoor heat exchangers is the high-pressure gas pipe or the low-pressure gas pipe and a high-pressure two-way valve and a low pressure. The side two-way valve is switchably connected by opening and closing, and the other one of the indoor heat exchangers is connected to the liquid pipe via an indoor expansion valve to detect the height of the liquid level in the accumulator. From the liquid level height detection sensor and the liquid level height in the accumulator detected by the liquid level height detection sensor, the circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant, and the high pressure side pressure are detected. High pressure detection sensor and outdoor An outdoor heat exchanger outlet temperature detection sensor that detects the heat exchanger outlet temperature, and during cooling main operation,
Composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting unit, high pressure side pressure detected by the high pressure side pressure detection sensor, and outdoor heat exchanger outlet detected by the outdoor heat exchanger outlet temperature detection sensor A subcooling degree calculation means for calculating the outlet supercooling degree of the outdoor heat exchanger based on the temperature, and a control of the opening degree of the outdoor expansion valve according to the subcooling degree calculated by the subcooling degree calculation means. An air conditioner provided with an outdoor expansion valve control means for performing.
【請求項2】 非共沸混合冷媒を使用し、圧縮機、三方
切替機構、室外側熱交換器、室外側膨張弁、アキューム
レータから成る室外機と、室内側膨張弁、室内側熱交換
器から成る複数の室内機を高圧ガス管、低圧ガス管及び
液管を介して並列に接続し、前記室内側熱交換器の一方
は前記高圧ガス管または前記低圧ガス管と高圧側二方弁
及び低圧側二方弁の開閉により切替可能に接続し、前記
室内側熱交換器の他の一方は室内側膨張弁を介して前記
液管に接続し、高圧側圧力を検知する高圧側圧力検知セ
ンサーと、外気温度を検知する外気温度検知センサー
と、室内負荷を検出する室内負荷検出手段と、前記室内
負荷検出手段によって検出した冷房室内機の室内負荷
と、前記外気温度検知センサーによって検知した外気温
度と、前記高圧側圧力検知センサーによって検知した高
圧側圧力から、循環冷媒の組成比率を予測する循環冷媒
組成比率予測手段と、室外側熱交換器出口温度を検知す
る室外側熱交換器出口温度検知センサーと、冷房主体運
転時に、前記循環冷媒組成比率予測手段によって予測し
た循環冷媒の組成比率と、前記高圧側圧力検知センサー
により検知した高圧側圧力と、前記室外側熱交換器出口
温度検知センサーにより検知した室外側熱交換器出口温
度とにより、室外側熱交換器出口過冷却度を演算する過
冷却度演算手段と、前記過冷却度演算手段で演算された
過冷却度に応じて前記室外側膨張弁の開度の制御を行う
室外側膨張弁制御手段とを備えた空気調和機。
2. An outdoor unit comprising a compressor, a three-way switching mechanism, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator using a non-azeotropic mixed refrigerant, and an indoor expansion valve and an indoor heat exchanger. A plurality of indoor units are connected in parallel via a high-pressure gas pipe, a low-pressure gas pipe and a liquid pipe, and one of the indoor heat exchangers is the high-pressure gas pipe or the low-pressure gas pipe and a high-pressure two-way valve and a low pressure. And a high-pressure side pressure detection sensor for detecting a high-pressure side pressure, which is switchably connected by opening and closing the side two-way valve, and the other one of the indoor side heat exchangers is connected to the liquid pipe through an indoor expansion valve. An outdoor air temperature detection sensor for detecting an outdoor air temperature, an indoor load detection means for detecting an indoor load, an indoor load of a cooling indoor unit detected by the indoor load detection means, and an outdoor air temperature detected by the outdoor air temperature detection sensor, , The high pressure side pressure detection Circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the high pressure side pressure detected by the intelligent sensor, the outdoor heat exchanger outlet temperature detecting sensor for detecting the outdoor heat exchanger outlet temperature, and the cooling main operation At times, the composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting means, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the outdoor heat exchange detected by the outdoor heat exchanger outlet temperature detection sensor With the outlet temperature of the outdoor heat exchanger, the subcooling degree calculating means for calculating the outlet supercooling degree of the outdoor heat exchanger, and the opening degree of the outdoor expansion valve according to the subcooling degree calculated by the subcooling degree calculating means. An air conditioner comprising: an outdoor expansion valve control means for performing control.
【請求項3】 非共沸混合冷媒を使用し、圧縮機、三方
切替機構、室外側熱交換器、室外側膨張弁、アキューム
レータから成る室外機と、室内側膨張弁、室内側熱交換
器から成る複数の室内機を高圧ガス管、低圧ガス管及び
液管を介して並列に接続し、前記室内側熱交換器の一方
は前記高圧ガス管または前記低圧ガス管と高圧側二方弁
及び低圧側二方弁の開閉により切替可能に接続し、前記
室内側熱交換器の他の一方は室内側膨張弁を介して前記
液管に接続し、高圧側圧力を検知する高圧側圧力検知セ
ンサーと、低圧側圧力を検知する低圧側圧力検知センサ
ーと、外気温度を検知する外気温度検知センサーと、前
記低圧側圧力検知センサーによって検知された低圧側圧
力により前記圧縮機の運転周波数を制御する圧縮機運転
周波数制御手段と、室内負荷を検出する室内負荷検出手
段と、前記室内負荷検出手段によって検出した冷房室内
機の室内負荷と、前記外気温度検知センサーによって検
知した外気温度と、前記圧縮機の運転周波数から、循環
冷媒の組成比率を予測する循環冷媒組成比率予測手段
と、室外側熱交換器出口温度を検知する室外側熱交換器
出口温度検知センサーと、冷房主体運転時に、前記循環
冷媒組成比率予測手段によって予測した循環冷媒の組成
比率と、前記高圧側圧力検知センサーにより検知した高
圧側圧力と、前記室外側熱交換器出口温度検知センサー
により検知した室外側熱交換器出口温度とにより、室外
側熱交換器出口過冷却度を演算する過冷却度演算手段
と、前記過冷却度演算手段で演算された過冷却度に応じ
て前記室外側膨張弁の開度の制御を行う室外側膨張弁制
御手段とを備えた空気調和機。
3. An outdoor unit including a compressor, a three-way switching mechanism, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator using a non-azeotropic mixed refrigerant, and an indoor expansion valve and an indoor heat exchanger. A plurality of indoor units are connected in parallel via a high-pressure gas pipe, a low-pressure gas pipe and a liquid pipe, and one of the indoor heat exchangers is the high-pressure gas pipe or the low-pressure gas pipe and a high-pressure two-way valve and a low pressure. And a high-pressure side pressure detection sensor for detecting a high-pressure side pressure, which is switchably connected by opening and closing the side two-way valve, and the other one of the indoor side heat exchangers is connected to the liquid pipe through an indoor expansion valve. A low pressure side pressure detection sensor for detecting the low pressure side pressure, an outside air temperature detection sensor for detecting the outside air temperature, and a compressor for controlling the operating frequency of the compressor by the low pressure side pressure detected by the low pressure side pressure detection sensor. Operating frequency control means, Indoor load detection means for detecting the indoor load, the indoor load of the cooling indoor unit detected by the indoor load detection means, the outside air temperature detected by the outside air temperature detection sensor, from the operating frequency of the compressor, of the circulating refrigerant Circulating refrigerant composition ratio predicting means for predicting a composition ratio, an outdoor heat exchanger outlet temperature detecting sensor for detecting an outdoor heat exchanger outlet temperature, and a circulation predicted by the circulating refrigerant composition ratio predicting means during cooling main operation The composition ratio of the refrigerant, the high-pressure side pressure detected by the high-pressure side pressure detection sensor, and the outdoor side heat exchanger outlet temperature detected by the outdoor side heat exchanger outlet temperature detection sensor are used to determine the outdoor side heat exchanger outlet temperature. A subcooling degree calculating means for calculating a cooling degree, and a chamber for controlling the opening degree of the outdoor expansion valve according to the subcooling degree calculated by the subcooling degree calculating means Air conditioner having a side expansion valve control means.
【請求項4】 非共沸混合冷媒を使用し、圧縮機、三方
切替機構、室外側熱交換器、室外側膨張弁、アキューム
レータから成る室外機と、室内側膨張弁、室内側熱交換
器から成る複数の室内機を高圧ガス管、低圧ガス管及び
液管を介して並列に接続し、前記室内側熱交換器の一方
は前記高圧ガス管または前記低圧ガス管と高圧側二方弁
及び低圧側二方弁の開閉により切替可能に接続し、前記
室内側熱交換器の他の一方は室内側膨張弁を介して前記
液管に接続し、高圧側圧力を検知する高圧側圧力検知セ
ンサーと、前記圧縮機の吐出温度を検知する吐出温度検
知センサーと、外気温度を検知する外気温度検知センサ
ーと、前記外気温度検知センサーによって検知した外気
温度と、前記高圧側圧力検知センサーによって検知した
高圧側圧力と、前記吐出温度検知センサーによって検知
した前記圧縮機の吐出温度から、循環冷媒の組成比率を
予測する循環冷媒組成比率予測手段と、室外側熱交換器
出口温度を検知する室外側熱交換器出口温度検知センサ
ーと、冷房主体運転時に、前記循環冷媒組成比率予測手
段によって予測した循環冷媒の組成比率と、前記高圧側
圧力検知センサーにより検知した高圧側圧力と、前記室
外側熱交換器出口温度検知センサーにより検知した室外
側熱交換器出口温度とにより、室外側熱交換器出口過冷
却度を演算する過冷却度演算手段と、前記過冷却度演算
手段で演算された過冷却度に応じて前記室外側膨張弁の
開度の制御を行う室外側膨張弁制御手段とを備えた空気
調和機。
4. An outdoor unit comprising a compressor, a three-way switching mechanism, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator using a non-azeotropic mixed refrigerant, and an indoor expansion valve and an indoor heat exchanger. A plurality of indoor units are connected in parallel via a high-pressure gas pipe, a low-pressure gas pipe and a liquid pipe, and one of the indoor heat exchangers is the high-pressure gas pipe or the low-pressure gas pipe and a high-pressure two-way valve and a low pressure. And a high-pressure side pressure detection sensor for detecting a high-pressure side pressure, which is switchably connected by opening and closing the side two-way valve, and the other one of the indoor side heat exchangers is connected to the liquid pipe through an indoor expansion valve. , A discharge temperature detection sensor for detecting the discharge temperature of the compressor, an outside air temperature detection sensor for detecting the outside air temperature, an outside air temperature detected by the outside air temperature detection sensor, and a high pressure side detected by the high pressure side pressure detection sensor Pressure and the From the discharge temperature of the compressor detected by the discharge temperature detection sensor, a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant, and an outdoor heat exchanger outlet temperature detection sensor for detecting the outdoor heat exchanger outlet temperature During cooling main operation, the composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting unit, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the outdoor heat exchanger outlet temperature detection sensor And the outdoor expansion according to the degree of supercooling calculated by the degree of supercooling calculation means. An air conditioner comprising: an outdoor expansion valve control means for controlling the opening of a valve.
JP9829995A 1995-04-24 1995-04-24 Air conditioning equipment Pending JPH08296908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9829995A JPH08296908A (en) 1995-04-24 1995-04-24 Air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9829995A JPH08296908A (en) 1995-04-24 1995-04-24 Air conditioning equipment

Publications (1)

Publication Number Publication Date
JPH08296908A true JPH08296908A (en) 1996-11-12

Family

ID=14216047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9829995A Pending JPH08296908A (en) 1995-04-24 1995-04-24 Air conditioning equipment

Country Status (1)

Country Link
JP (1) JPH08296908A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175163A (en) * 2009-01-30 2010-08-12 Panasonic Corp Liquid circulation heating system
US8261574B2 (en) 2008-03-13 2012-09-11 Aisin Seiki Kabushiki Kaisha Air conditioning system and accumulator thereof
WO2017145826A1 (en) * 2016-02-24 2017-08-31 旭硝子株式会社 Refrigeration cycle device
WO2020066924A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Refrigeration cycle device and control method therefor
CN117404823A (en) * 2023-12-15 2024-01-16 北京环都拓普空调有限公司 High-drop-height direct expansion machine
US11988426B2 (en) 2018-09-28 2024-05-21 Daikin Industries, Ltd. Refrigerant charging method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8261574B2 (en) 2008-03-13 2012-09-11 Aisin Seiki Kabushiki Kaisha Air conditioning system and accumulator thereof
JP2010175163A (en) * 2009-01-30 2010-08-12 Panasonic Corp Liquid circulation heating system
WO2017145826A1 (en) * 2016-02-24 2017-08-31 旭硝子株式会社 Refrigeration cycle device
JPWO2017145826A1 (en) * 2016-02-24 2018-12-13 Agc株式会社 Refrigeration cycle equipment
WO2020066924A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Refrigeration cycle device and control method therefor
JPWO2020066924A1 (en) * 2018-09-28 2021-08-30 ダイキン工業株式会社 Refrigeration cycle device and its control method
US11988426B2 (en) 2018-09-28 2024-05-21 Daikin Industries, Ltd. Refrigerant charging method
US11994323B2 (en) 2018-09-28 2024-05-28 Daikin Industries, Ltd. Refrigerant charging method, heat source unit, and renewed refrigeration cycle apparatus
CN117404823A (en) * 2023-12-15 2024-01-16 北京环都拓普空调有限公司 High-drop-height direct expansion machine
CN117404823B (en) * 2023-12-15 2024-03-29 北京环都拓普空调有限公司 High-drop-height direct expansion machine

Similar Documents

Publication Publication Date Title
US7617694B2 (en) Apparatus and method for controlling super-heating degree in heat pump system
US6701732B2 (en) Air conditioner
JP3953029B2 (en) Refrigeration equipment
EP1134515A1 (en) Refrigerator
US6843066B2 (en) Air conditioning system and method for controlling the same
JP6628911B1 (en) Refrigeration cycle device
JP2009236428A (en) Compression type refrigerating machine
JPH06257828A (en) Multi-chamber type air conditioning system
EP0445368B1 (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
JPH08296908A (en) Air conditioning equipment
KR101329752B1 (en) Air conditioning system
JPH09280681A (en) Air conditioner
JP2007155143A (en) Refrigerating device
JP7150135B2 (en) refrigeration cycle equipment
JP2000283568A (en) Refrigerating device and control method therefor
JP2893844B2 (en) Air conditioner
JP2921254B2 (en) Refrigeration equipment
JPH08219572A (en) Air conditioner
JP2730398B2 (en) Multi-room air conditioning system
KR100339552B1 (en) Multi air conditioner and operating control method for the same
JPH06257827A (en) Multi chamber type air conditioning system
JP2668973B2 (en) Car air conditioner control device
JPH0733095Y2 (en) Accumulator oil return device
JP3334331B2 (en) Air conditioner
JPH0821667A (en) Air-conditioning machine