WO2017145779A1 - Valuable document identification apparatus, valuable document processor, image sensor unit, and method for detecting optical variable element area - Google Patents

Valuable document identification apparatus, valuable document processor, image sensor unit, and method for detecting optical variable element area Download PDF

Info

Publication number
WO2017145779A1
WO2017145779A1 PCT/JP2017/004779 JP2017004779W WO2017145779A1 WO 2017145779 A1 WO2017145779 A1 WO 2017145779A1 JP 2017004779 W JP2017004779 W JP 2017004779W WO 2017145779 A1 WO2017145779 A1 WO 2017145779A1
Authority
WO
WIPO (PCT)
Prior art keywords
valuable document
light
angle
optical variable
variable element
Prior art date
Application number
PCT/JP2017/004779
Other languages
French (fr)
Japanese (ja)
Inventor
史哲 嶋岡
孝洋 柳内
晶 坊垣
高明 森本
Original Assignee
グローリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローリー株式会社 filed Critical グローリー株式会社
Priority to CN201780008355.7A priority Critical patent/CN108496207B/en
Publication of WO2017145779A1 publication Critical patent/WO2017145779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon

Definitions

  • the present invention relates to a valuable document identification device, a valuable document processor, an image sensor unit, and a method for detecting an optical variable element region. More specifically, a valuable document identification device and a valuable document processing machine equipped with an optical variable element region suitable for authenticity evaluation of valuable documents such as banknotes, gift certificates, checks, and card-like media.
  • the present invention relates to an image sensor unit and a method for detecting an optical variable element region.
  • banknotes Various security features are imparted to valuable documents such as banknotes, gift certificates, and checks to prevent counterfeiting.
  • paper used for banknotes is mainly made of vegetable fiber, but for the purpose of improving durability, water resistance, security, etc., paper made of synthetic fiber or synthetic resin sheet is used.
  • a polymer sheet may be used.
  • a banknote made from a polymer sheet is called a polymer banknote, and a polymer banknote provided with a transparent window is difficult to counterfeit.
  • an optical variable element (Optical Variable Device: OVD) is used in many countries.
  • the optical variable element uses an optical element such as a diffraction grating, a thin film, or a microlens to cause an optical effect such as a change in color or pattern.
  • the appearance of the optical variable element such as a color or a pattern is changed by changing the angle of light illuminating the optical variable element and / or the angle at which the optical variable element is seen.
  • Holograms, optically variable ink (Optical ari Variable Ink: ⁇ OVI), motion threads, and the like are types of optically variable elements.
  • a motion thread is formed by arranging microlenses on a plurality of minute images called icons via optical spacers (see, for example, Patent Document 1).
  • the optical variable element is useful not only for the naked eye but also for authenticity determination of valuable documents using the apparatus. Specifically, it is determined whether or not there is an optical variable element at a position corresponding to the type of the valuable document.
  • Other technologies that use optical variable elements for authenticity determination of valuable documents are disclosed below.
  • Patent Document 2 light sources having different emission angles are arranged on both sides of a lens combined with a photoelectric conversion element in order to detect color-shifting inks having different colors when viewed from different angles.
  • a contact image sensor having a non-reflective film attached to the inner surface of the plate is disclosed.
  • Patent Document 3 discloses a step of taking a first image of at least a part of a document while at least a part of the document is exposed to a first electromagnetic radiation from a first incident angle; Capturing a second image of at least a portion of a document while at least a portion is exposed to a second electromagnetic radiation from a second angle of incidence. Is disclosed.
  • Patent Document 4 discloses a verification device that identifies optically variable ink and verifies the authenticity of a valuable ticket.
  • the verification device includes a first light source light emitting unit, a second light source light emitting unit, a light receiving element, Are disposed on both sides of the normal line of the valuable ticket, and the angle formed by the optical axis of the second light source light emitting unit and the normal line is greater than the angle formed by the optical axis of the first light source light emitting unit and the normal line. large.
  • Patent Document 5 a first image captured by a first light source that irradiates light from a first direction toward a paper sheet, and a second light source that irradiates light from a second direction toward the paper sheet.
  • a paper sheet identification device that generates a captured second image and determines that the paper sheet has a motion thread when the thread image included in the first image is different from the thread image included in the second image. It is disclosed.
  • optical variable elements such as optical variable ink and color shift ink that change color according to the angle viewed by the observer and the incident angle of irradiation light, and optical variable elements whose pattern changes with color, such as rainbow holograms Detecting the presence or absence of an optical variable element that changes is useful for accurate authenticity determination of valuable documents such as banknotes.
  • the optical variable element is to be observed from different angles as in the case of observation with the naked eye, it is necessary to provide a plurality of optical sensors having different light receiving angles, which increases the cost of the apparatus. For this reason, it is preferable to provide a plurality of light sources having different irradiation angles and one photosensor. At this time, since the detection capability of the optical variable element varies depending on the angle of the light source and the angle of the optical sensor, each angle must be set to an appropriate angle.
  • Patent Documents 2 to 5 described above disclose apparatuses that use a plurality of light sources and one optical sensor to detect an optical variable element.
  • Patent document 2 is disclosing the sensor unit which has arrange
  • the banknote identification surface discoloration ink on the conveyed sheet is photographed from the vertical direction.
  • the color change of the optically variable ink viewed from the vertical direction is less than that observed from the oblique direction. Therefore, it is not suitable for detection of optically variable ink whose color changes according to the viewing angle.
  • Patent Document 3 discloses an example in which the incident angle of the electromagnetic radiation source is ⁇ 90 to 90 ° and the incident angle of the imaging device is ⁇ 90 to 90 °.
  • the optically variable material is directly irradiated with an electromagnetic irradiation beam and photographed.
  • a light source, a light receiving unit, an optical variable element, In general, a transparent window portion made of glass or the like is provided. When transparent glass is disposed, if the imaging device is disposed near ⁇ 90 °, illumination and photographing may not be performed satisfactorily due to reflection on the glass surface. Therefore, in Patent Document 3, the angle of the imaging device is not specified.
  • the angle between the optical axis of the first light source light emitting unit and the normal line of the valuable ticket is 0 to 30 °, and the angle between the optical axis of the light receiving element and the normal line is 0 to 20 °. is there.
  • the light receiving element is 0 to 20 °, as described above, it is not suitable for detecting optically variable ink whose color changes according to the viewing angle.
  • the first light source light emitting unit and the light receiving element are arranged at positions almost symmetrical with respect to the normal line of the valuable ticket, if a transparent window portion made of glass is provided, the light reflected on the glass surface May directly illuminate the light receiving sensor, and there is a possibility that the optical variable element cannot be imaged satisfactorily.
  • Patent Document 5 identifies a motion thread as described in Patent Document 1, that is, an optical variable element in which an image (symbol) itself changes according to a viewing angle
  • the identification disclosed in Patent Document 5 is disclosed.
  • the apparatus and the identification method cannot be used as they are for detecting holograms and optically variable ink. This is because, for holograms and optically variable inks that change color and pattern due to optical effects such as diffraction and interference, the motion thread color and pattern change is the color and pattern placed at the position where the microlens forms an image. It depends on. That is, since this is a problem in the design of a motion thread, a technique effective in a specific motion thread is not necessarily effective in other motion threads.
  • the present invention has been made in view of the above-described present situation, improves the determination accuracy of the presence or absence of an optical variable element region on the surface of a valuable document, and provides a valuable document identification device capable of determining the authenticity of a valuable document with high accuracy.
  • An object of the present invention is to provide a document processing machine, an image sensor unit, and an optical variable element region detection method.
  • the present invention relates to a valuable document identification device for identifying the authenticity of a valuable document having an optical variable element region, the first light source for irradiating the optical variable element region from a first direction, and a second direction A second light source for irradiating light to the optical variable element region, a light receiving unit for receiving light reflected from the optical variable element region from a third direction, and information on reflected light of the first light source.
  • a determination unit that determines presence / absence of the optical variable element region based on one reflected light information and second reflected light information that is information of reflected light of the second light source, and includes the optical variable element region A first angle that is an angle between a vertical line of the surface of the valuable document and the first direction; a second angle that is an angle between the vertical line and the second direction; and the vertical line And the third angle which is an angle formed by the third direction is different from each other, Serial third angle is 25 ° or more, and less than 90 °.
  • the optical variable element region includes at least one of an optical interference structure and an optical diffraction structure.
  • the present invention is characterized in that, in the above invention, the determination unit determines the authenticity of the valuable document based on a color difference between the first reflected light information and the second reflected light information.
  • the present invention is the above invention, wherein the valuable document has an optical variable ink region and a hologram region as the optical variable element region, and the determination unit determines a type of the valuable document and determines the type. Identifying the position of the optically variable ink area and the position of the hologram area from information relating to the valuable document of the type determined by the section, wherein the optically variable ink area includes the first reflected light information and the second reflected light information; The authenticity of the valuable document is determined based on the color difference between the first reflected light information and the second reflected light information in the hologram area, and at least one of color, brightness, and shape between the first reflected light information and the second reflected light information is determined. The authenticity of the valuable document is determined based on the difference between the two.
  • the present invention is characterized in that, in the above-mentioned invention, the third angle is 60 ° or less.
  • the third angle is 55 ° or less.
  • the first angle is -10 ° to 20 °
  • the second angle is 40 ° to 70 °.
  • the first angle is ⁇ 5 ° to 15 °
  • the second angle is 45 ° to 65 °.
  • the first light source, the second light source, and the light receiving unit are arranged on the same plane
  • the valuable document identification device includes the first light source and the second light source.
  • a transparent plate disposed between the valuable document and the first light source and the second light source, when the transparent plate is irradiated with light, a region where specularly reflected light is incident on the light receiving unit is provided. It is characterized by being placed between them.
  • the light receiving unit includes a line sensor that images the valuable document in a straight line, and each of the first light source and the second light source includes a linear sensor by the line sensor.
  • the imaging region is irradiated with light.
  • the present invention is the above invention, wherein the light receiving unit receives light emitted from the first light source and the second light source and reflected by the optical variable element region, and the first angle,
  • the second angle and the third angle are angles on a reference plane orthogonal to the linear imaged region, the first angle is smaller than the third angle, and the second angle Is greater than the third angle.
  • the present invention is further characterized by further comprising a transport mechanism for transporting the valuable document.
  • the determination unit may compare the color of the first image based on the first reflected light information with the color of the second image based on the second reflected light information. It is characterized by determining the authenticity of the document.
  • a valuable document processing machine including the valuable document identification device.
  • the present invention also relates to a method for detecting an optical variable element region of a valuable document, wherein the optical variable element region is irradiated with light from a first direction, and the light reflected from the optical variable element region is received.
  • One reading step, a second reading step of irradiating the optical variable element region with light from a second direction and receiving light reflected from the optical variable element region, and a reflected light of the first reading step A determination step of determining presence or absence of the optical variable element region based on first reflected light information that is information and second reflected light information that is information of reflected light in the second reading step, and
  • the first irradiation step and the second irradiation step the light reflected from the optical variable element region is received from a third direction, and the vertical line of the surface of the valuable document including the optical variable element region and the first Angle with the direction of A first angle, a second angle that is an angle between the vertical line and the second direction, and a third angle that is an angle between the vertical line and
  • the present invention also provides an image sensor unit for detecting an optical variable element region of a valuable document, the first light source for irradiating the optical variable element region from a first direction, and the second direction.
  • the valuable document including the optical variable element region, comprising: a second light source that irradiates light to the optical variable element region; and a light receiving unit that receives light reflected from the optical variable element region from a third direction.
  • a first angle that is an angle between the vertical line of the surface and the first direction, a second angle that is an angle between the vertical line and the second direction, the vertical line and the first direction.
  • the third angle which is an angle formed with the three directions, is different from each other, and the third angle is 25 ° or more and less than 90 °.
  • the valuable document identification device the valuable document processor, the image sensor unit, and the optical variable element region detection method of the present invention, it is possible to improve the determination accuracy of the presence or absence of the optical variable element region on the valuable document surface. Therefore, the authenticity of the valuable document can be determined with high accuracy.
  • FIG. 1 is a schematic plan view of an image acquisition device according to Embodiment 1.
  • FIG. 3 is a schematic perspective view for explaining an imaging method in the image acquisition apparatus according to Embodiment 1.
  • FIG. It is a graph which shows the incident angle dependence of the reflectance on the surface of a transparent plate, The refractive index of a transparent plate is 1.5, and is derived from Fresnel's formula.
  • 6 is another schematic cross-sectional view of the image acquisition device according to Embodiment 1.
  • FIG. 1 is a schematic plan view of an image acquisition device according to Embodiment 1.
  • FIG. 3 is a schematic perspective view for explaining an imaging method in the image acquisition apparatus according to Embodiment 1.
  • FIG. It is a graph which shows the incident angle dependence of the reflectance on the surface of a transparent plate, The refractive index of a transparent plate is 1.5, and is derived from Fresnel's formula.
  • 6 is another schematic cross-sectional view of the image acquisition device according to Embodi
  • (A) is the figure which showed the captured image (irradiation angle 0 degree, light reception angle 45 degrees) which concerns on Embodiment 1
  • (b) is R, G, and B computed from the captured image of (a). It is a histogram which shows intensity distribution.
  • (A) is the figure which showed the captured image (irradiation angle 60 degrees, light reception angle 45 degrees) based on Embodiment 1
  • (b) is R, G, and B computed from the captured image of (a). It is a histogram which shows intensity distribution. In this ticket, it is a graph which shows the result of having normalized the color ratio of blue with the value of 60 degrees of irradiation angles.
  • FIG. 1 is a schematic cross-sectional view of a valuable document identification device according to Embodiment 1.
  • FIG. It is a functional block diagram of the valuable document identification device according to the first embodiment. It is a cross-sectional schematic diagram which shows the layer structure of the optical variable ink area
  • FIG. 1 is a schematic cross-sectional view of a valuable document identification device according to Embodiment 1.
  • FIG. It is a functional block diagram of the valuable document identification device according to the first embodiment. It is a cross-sectional schematic diagram which shows the layer structure of the optical variable ink area
  • FIG. 3 is a schematic cross-sectional view illustrating a layer configuration of an optically variable ink region according to Embodiment 1 and illustrates a case where the optically variable ink includes an optically variable pigment.
  • 6 is a flowchart showing optical variable ink region determination processing performed by the valuable document identification apparatus according to the first embodiment. 6 is a flowchart illustrating a method for determining an optically variable ink area performed by the valuable document identifying apparatus according to the first embodiment. It is a schematic diagram for demonstrating the case where the 100 yuan banknote issued in 2005 is processed with the flow shown in FIG. 6 is a flowchart illustrating a method for calculating an evaluation value of an optically variable ink area, which is performed by the valuable document identifying apparatus according to the first embodiment.
  • FIG. 1 is a perspective schematic diagram which shows the external appearance of the valuable document processing apparatus which concerns on Embodiment 1
  • (b) is a cross-sectional schematic diagram which shows the structure outline
  • FIG. It is a perspective view which shows the external appearance of another valuable document processing apparatus which concerns on Embodiment 1.
  • the image acquisition apparatus has a function of acquiring at least color image information as reflected light information from various valuable documents such as banknotes, checks, gift certificates, securities, and the like in the valuable document identification apparatus according to the present embodiment.
  • the feature is extracted from the acquired image information and used to determine the type of valuable document and the presence or absence of the optical variable element region.
  • the valuable document identification device includes an image acquisition device (image sensor unit) 10 shown in FIG.
  • the image acquisition device 10 acquires a reflected image of the valuable document 100 being conveyed.
  • the conveyance direction of the valuable document 100 is the negative X-axis direction
  • the axis perpendicular to the conveyance surface is the Z-axis
  • the Y-axis is orthogonal to the X-axis and the Z-axis.
  • the valuable document 100 is conveyed substantially parallel to the conveyance surface, and the positive side of the Z axis is referred to as the upper side, and the negative side of the Z axis is referred to as the lower side.
  • the Z-axis positive side surface of the valuable document 100 is referred to as an upper surface
  • the Z-axis negative side surface of the valuable document 100 is referred to as a lower surface.
  • the valuable document 100 is provided with an optical variable element region 101, and symbols and patterns such as numerals are drawn in the optical variable element region 101 by the optical variable element.
  • the optical variable element that can be used in the present embodiment include an optical variable element that changes its color or pattern due to an optical effect such as a hologram and an optical variable ink.
  • an optical variable element that changes color by an optical effect such as an optical variable ink, is preferable.
  • the color change of the optical variable element is caused by interference of reflected light of the light irradiated to the optical variable element due to the effect of a thin film or a diffraction grating.
  • the image acquisition apparatus 10 includes a housing 18, and a transparent plate 19 formed of glass or resin is fitted on one surface of the housing 18 (a surface facing the valuable document 100) to form a transparent window portion. .
  • the image acquisition apparatus 10 includes a first light source 11 and a second light source 12 that irradiate light on the surface of the valuable document 100, and a light receiving unit 13 that receives light reflected on the surface of the valuable document 100. The light emitted from the first light source 11 and the second light source 12 is reflected by the surface of the valuable document 100 and received by the light receiving unit 13.
  • the light receiving unit 13 includes a line sensor 14, and the line sensor 14 includes a plurality of imaging elements 15, a substrate 17, and a plurality of light receiving elements 16 provided on the substrate 17.
  • the plurality of imaging elements 15 are arranged in the Y-axis direction to form an imaging element array
  • the plurality of light-receiving elements 16 are arranged in the Y-axis direction to form a light-receiving element array.
  • the imaging element 15 condenses the reflected light emitted from the first light source 11 and reflected from the surface of the valuable document 100 and the reflected light emitted from the second light source 12 and reflected from the surface of the valuable document 100.
  • the light receiving element 16 is arranged to receive light. As shown in FIG.
  • the line sensor 14 having the light receiving element array and the imaging element array arranged in the Y-axis direction images the linear imaged region 102 of the valuable document 100 all at once over the entire Y-axis direction. . Further, the line sensor 14 captures the entire valuable document 100 by sequentially performing such imaging on the valuable document 100 being conveyed.
  • the imaging element 15 is a transparent cylindrical condensing lens called a rod lens, and condenses the reflected light reflected by the valuable document 100 on the light receiving element 16 and propagates it.
  • the light receiving element 16 is an arrayed light receiving element such as a CCD (Charge-Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor). When the reflected light reflected by the valuable document 100 is received, the light receiving element 16 corresponds to the amount of light received. A signal is output to the substrate 17.
  • Each of the light receiving elements 16 is provided with a color selection filter, specifically, a color filter of red (R), green (G), or blue (B) that is the three primary colors of light. Thereby, each pixel has color information and the output signal is colored.
  • the type of sensor of the light receiving unit 13 is not limited to the line sensor 14, and other sensors such as an area sensor used for the camera may be used.
  • the imaging element 15 is not limited to an equal-magnification optical system such as a rod lens as long as a clear image can be picked up by the sensor of the light receiving unit 13, and may be a reduction optical system. A structure without an optical system such as the child 15 may be used. Further, depending on the configuration of the imaging element 15, for example, using a mirror, the optical axis of the imaging element 15 and the imaging optical axis of the light receiving element 16 may not be on a straight line.
  • the substrate 17 includes a drive circuit for driving the light receiving element 16 and a signal processing circuit for processing and outputting a signal from the light receiving element 16.
  • the substrate 17 takes out and amplifies the output signal of each light receiving element 16 by AFE (Analog Front End), converts it to a digital value by an A / D converter, cuts the dark output, and outputs it to an image processing unit to be described later. .
  • AFE Analog Front End
  • the 1st light source 11 and the 2nd light source 12 are arrange
  • each of the light sources 11 and 12 is a linear light source, and when the valuable document 100 passes, it can irradiate at least a region including the linear imaged region 102 with linear light. it can.
  • the light sources 11 and 12 emit white light including red, green, and blue light.
  • the first light source 11 and the second light source 12 for example, a linear light source using an LED array in which red LED elements, green LED elements, and blue LED elements are arrayed or an LED array in which white LEDs are arrayed is used. be able to.
  • the linear light source which propagates the light from a red LED element, a green LED element, a blue LED element, or from white LED with a light guide, and irradiates light linearly can be utilized.
  • each of the light sources 11 and 12 is not particularly limited as long as it includes light having a wavelength corresponding to the color of the optical variable element region 101.
  • each of the light sources 11 and 12 may sequentially emit red, green, and blue light.
  • each light receiving element 16 may not be provided with a color selection filter.
  • the light sources 11 and 12 may be surface light sources.
  • the first light source 11 and the second light source 12 irradiate the valuable document 100 (optical variable element region 101) with light from the first direction and the second direction, respectively. It is arranged.
  • the light receiving unit 13 is disposed so as to receive light reflected from the valuable document 100 (optical variable element region 101) from the third direction. More specifically, the optical axes 11A and 12A of the light emitted from the first light source 11 and the second light source 12 are parallel to the first direction and the second direction, respectively, and have a refractive index of the transparent plate 19.
  • the value document 100 is arranged with an offset to the vertical line 103 side (Z-axis positive side) of the surface of the valuable document 100.
  • the optical axis 15A of each imaging element 15 and the imaging optical axis 16A of each light receiving element 16 are parallel to the third direction, and the vertical axis 103 side (Z-axis positive side) according to the refractive index of the transparent plate 19. It is offset and arranged.
  • the amount of offset of each optical axis is determined according to the refractive index and thickness of the transparent plate 19. Since the traveling direction of the light before entering the light transmitting plate 19 and the traveling direction of the light after passing through the light transmitting plate 19 are parallel to each other as shown in FIG. In the description regarding the angles formed by the first direction, the second direction, and the third direction and the vertical line 103, the description will be made without considering the offset of each optical axis unless otherwise required.
  • the angles formed by the first direction, the second direction, and the third direction with respect to the vertical line 103 of the surface of the valuable document 100 are the first angle ⁇ 1, the second angle ⁇ 2, and the third angle, respectively.
  • the first light source 11, the second light source 12, and the light receiving unit 13 are arranged such that ⁇ 1, ⁇ 2, and ⁇ 3 are different from each other. Thereby, the appearance of the color or the like of the optical variable element region 101 in the first image of the valuable document 100 by the first light source 11, and the color or the like of the optical variable element region 101 in the second image of the valuable document 100 by the second light source 12. As a result, the optical variable element region 101 can be detected.
  • the third angle ⁇ 3 is set to be 25 ° or more and less than 90 °.
  • ⁇ 3 is set to 25 ° or more, as described later, it is possible to clarify the difference between the color of the optical variable element region 101 in the first image and the color of the optical variable element region 101 in the second image.
  • the variable element region 101 can be detected with high accuracy.
  • ⁇ 3 is less than 25 °, these color changes are scarce and the detection accuracy of the optical variable element region 101 is significantly lowered.
  • the upper limit of the third angle ⁇ 3 is not particularly limited as long as it is within a range in which the reflected light on the surface of the valuable document 100 can be received, that is, less than 90 °, but is preferably 65 ° or less, and more preferably 60 ° or less. Preferably, it is 55 degrees or less.
  • the reflectance on the surface of the transparent plate 19 rapidly increases when the incident angle exceeds 65 °. Therefore, when ⁇ 3 exceeds 65 °, it is caused by the reflected light on the surface of the transparent plate 19. Thus, the first image and the second image may be unclear. If ⁇ 3 exceeds 60 °, it may be difficult to accommodate the light receiving unit 13 in the housing 18.
  • ⁇ 3 by setting ⁇ 3 to 55 ° or less, the color change between the optical variable element region 101 in the first image and the optical variable element region 101 in the second image can be made more reliable.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are not particularly limited, but it is preferable to increase the color change of the optical variable element region 101. Accordingly, the first direction is preferably as close as possible to the vertical line 103, while the second direction is preferably as far away from the vertical line 103 as possible.
  • the specular reflection component from the second light source 12 may directly enter the light receiving unit 13 as described later.
  • the reflectance at the surface of the transparent plate 19 increases rapidly when the incident angle exceeds 65 °.
  • ⁇ 1 is preferably ⁇ 10 ° to 20 °
  • ⁇ 2 is preferably 40 ° to 70 °
  • ⁇ 1 is ⁇ 5 ° to 15 °
  • ⁇ 2 is 45 °. More preferably, it is ⁇ 65 °.
  • the first light source 11, the second light source 12, and the light receiving unit 13 are arranged in parallel along the linear imaged region 102. Therefore, as shown in FIGS. 4 and 6, the positional relationship between the reference surface 104 orthogonal to the imaging region 102 at an arbitrary position is the positional relationship as illustrated.
  • the transparent plate 19 is disposed between the first light source 11 and the second light source 12 and the valuable document 100. Therefore, as shown in FIG. 6, there is a region 19 ⁇ / b> R where regular reflection light from the transparent plate 19 can enter the light receiving unit 13.
  • the detection accuracy of the optical variable element region 101 decreases. Therefore, the first light source 11 and the second light source 12 are not disposed in the region 19R, but are disposed with the region 19R interposed therebetween. Thereby, regular reflection light from the transparent plate 19 is effectively suppressed from entering the light receiving unit 13.
  • an antireflection layer may be provided on at least one surface (preferably both surfaces) of the transparent plate 19, and this also reduces the incidence of regular reflection light from the transparent plate 19 on the light receiving unit 13. Is possible.
  • a 100 yuan banknote issued in 2005 (hereinafter referred to as a “100 yuan banknote”) and an optically variable ink of this book at various illumination angles of light sources and light receiving angles of various light receiving sections.
  • a transparent plate was not disposed, and a white light source (parallel light) was directly illuminated on the banknote and photographed by a line sensor.
  • the irradiation angle means an angle formed between the irradiation direction (optical axis) of the light source and the vertical line of the banknote surface, and corresponds to the above ⁇ 1 and ⁇ 2.
  • the light receiving angle means an angle formed between the imaging direction (imaging optical axis) of the line sensor and the vertical line of the banknote surface, and corresponds to the above ⁇ 3.
  • FIGS. 7A and 8A data of 5 ⁇ 5 pixels (0.5 mm ⁇ 0.5 mm) at the same place is obtained from images obtained under each condition. Extracted. The range of pixels to be extracted was determined so that the color change was large depending on the irradiation angle and the light receiving angle.
  • FIGS. 7B and 8B R, G, and B intensity distributions were calculated in the extracted range.
  • the average of each intensity of R, G, B is calculated, and the calculated average intensity of each of R, G, B is The ratio (color ratio) of R, G, and B to the entire average intensity was calculated.
  • variation of the blue color ratio at the time of changing an irradiation angle and a light reception angle was evaluated.
  • the reason why the blue color ratio is used is that the optically variable ink area of the 100 yuan banknote changes from green to blue as the irradiation angle and the light receiving angle increase, and the change of the blue component is large.
  • 9 to 11 show the results of normalizing the blue color ratio with the value of the irradiation angle of 60 ° for each medium.
  • the measurement was performed at an irradiation angle of 25 ° or more at a light reception angle of 0 ° and at an irradiation angle of 10 ° or more at a light reception angle of 15 °.
  • the variation of the blue color ratio when the irradiation angle is changed at any light receiving angle is small, but as shown in FIG. Then, when the light receiving angle was increased to some extent, the variation in the blue color ratio when the irradiation angle was changed increased.
  • Table 1 shows the results of calculating the blue increase rate by dividing the blue color ratio at the irradiation angle of 60 ° by the blue color ratio at the minimum irradiation angle at each light receiving angle.
  • the light receiving angle is 25 ° or more (preferably 30 ° or more), the change in the color of the optically variable ink region becomes sufficiently large, so that the optically variable ink region can be detected.
  • the blue increase rate of the coupon is small and the blue increase rate of the test sample is low. There is a risk of being confused with a large one.
  • the valuable document identification device and the valuable document identification method according to the present embodiment will be described in detail.
  • the valuable document identifying apparatus determines the presence or absence of an optical variable element region in the valuable document to be identified. Any valuable document provided with an optical variable element region can be applied regardless of the type of valuable document.
  • the optical variable element whose appearance changes depending on the observation angle
  • the optical that is observed at the position of the light receiving unit The change in the appearance of the variable element region is used. That is, the valuable document is irradiated with light from two different directions, and the reflected light information of the two optical variable element regions obtained by using the light from each direction, specifically, the valuable information based on the image information. It is determined whether or not the document has an optical variable element region.
  • the valuable document identification apparatus 1 includes a timing sensor 2 that detects the arrival of the valuable document 100, a roller (conveying mechanism) 3 that conveys the valuable document 100, and two image acquisitions.
  • Devices (image sensor units) 10a and 10b are provided on the Z axis direction positive side and the Z axis direction negative side of the transport surface, respectively.
  • Each of the image acquisition devices 10a and 10b has a configuration similar to that of the image acquisition device 10 described above.
  • the valuable document identification device 1 according to the present embodiment includes such two image acquisition devices 10a and 10b, thereby imaging one of the upper surface and the lower surface of the valuable document 100 or both the upper and lower surfaces of the valuable document 100.
  • the optical variable element region of the valuable document 100 can be imaged regardless of the front and back of the valuable document 100 that has been conveyed.
  • the timing sensor 2 has a function of detecting the arrival of the valuable document 100 to be identified, and is used to determine the timing for starting processing related to the valuable document 100.
  • the timing sensor 2 is formed by, for example, a light projecting unit and a light receiving unit.
  • the arrival of the valuable document 100 is detected by utilizing the fact that the light projected from the light projecting unit and received by the light receiving unit is blocked by the valuable document 100 conveyed between the light projecting unit and the light receiving unit. .
  • processing for capturing an image of the valuable document 100 is started. Details of these processes will be described later.
  • the roller 3 is driven by a driving device (not shown) such as a motor and functions as a transport mechanism that transports the valuable document 100 in the valuable document identification device 1.
  • the valuable document 100 received by the valuable document identification apparatus 1 is conveyed by a plurality of rollers 3 provided in the apparatus, passes between the image acquisition apparatuses 10a and 10b, and is discharged out of the apparatus.
  • Each roller 3 is installed so as to be rotatable in both clockwise and counterclockwise directions, and the rotation of these rollers 3 is controlled by a later-described conveyance control unit, whereby the valuable document 100 has an X-axis negative direction. It is conveyed in the direction.
  • the conveyance direction (X-axis direction) of the valuable document 100 is parallel to the longitudinal direction or the short direction of the valuable document 100.
  • the valuable document 100 may be conveyed in either the longitudinal direction or the short direction of the valuable document 100.
  • the appearance of the optical variable element region such as the color changes only when it is conveyed in a direction parallel to either the longitudinal direction or the lateral direction of the valuable document 100
  • the longitudinal direction or the short direction parallel to that direction is changed.
  • the valuable document 100 may be conveyed in the hand direction.
  • the method for transporting the valuable document 100 including the transport direction and the transport speed is appropriately determined according to the characteristics of the optical variable element so that the presence or absence of the optical variable element region can be detected by a method described later.
  • the valuable document identification device 1 includes a communication interface 4 (hereinafter referred to as “communication I / F”), a control unit 20 and a storage unit 30 as shown in FIG. have.
  • the control unit 20 also identifies the type of the valuable document 100 and the like, determines the presence / absence of the optical variable element region, the light source control unit 22 that controls each of the light sources 11 and 12, It has an image processing unit 23 that performs image processing of a captured image, and a conveyance control unit 24 that controls a conveyance mechanism such as a roller 3 that conveys the valuable document 100.
  • the storage unit 30 also includes a first image 31 of the valuable document 100 captured by the irradiation light from the first light source 11, and a second image 32 of the valuable document 100 captured by the irradiation light from the second light source 12.
  • Each of the images 31 and 32 obtained by capturing the valuable document 100 or various reference images 33 used for performing the determination processing of the characteristic portion and the like and information related thereto are stored.
  • the determination unit 21 compares the first image 31 or the second image 32 obtained by capturing the valuable document 100 with the reference image 33 stored in the storage unit 30 with respect to the valuable document 100 to be processed in advance. It has a function of specifying the type of document 100 and the like.
  • the storage unit 30 stores in advance a reference image of each dollar bill, $ 2, $ 5, $ 10, $ 20, $ 50, and $ 100. 33 is stored. Then, the characteristic portion of the image obtained by capturing the valuable document 100 being processed is compared with each reference image 33. As a result, if the characteristic portion of the image obtained by capturing the valuable document 100 matches the reference image 33 of the 100 dollar bill and is different from the reference image 33 of another denomination, the valuable document 100 is a 100 dollar bill. judge.
  • the determination unit 21 performs denomination identification as described above, authenticity determination for determining whether or not the banknote is genuine, and the banknote as a predetermined standard. It is also possible to perform processing such as damage determination for determining whether or not the bill is reusable.
  • Such a valuable document identification process is a technique conventionally used in the field of a valuable document identification apparatus, and thus detailed description thereof is omitted.
  • the determination unit 21 has a function of determining whether the valuable document 100 has the optical variable element region 101. Whether or not the valuable document 100 has the optical variable element region 101 is determined by using the first image 31 and the second image 32 obtained by capturing the valuable document 100, details of which will be described later.
  • the light source control unit 22 has a function of controlling lighting of the first light source 11 and the second light source 12 of each of the image acquisition devices 10a and 10b. In order to capture individual valuable document images from the light sources 11 and 12, dynamic lighting control is performed to turn on the light sources 11 and 12 in order.
  • the image processing unit 23 has a function of controlling light reception by the light receiving element 16 in accordance with the lighting timing of the light sources 11 and 12 controlled by the light source control unit 22. Further, it has a function of processing the output signal from the light receiving unit 13 and saving the first image 31 and the second image 32 in the storage unit 30. In addition, it also has a function of performing image processing on each of the images 31 and 32 in accordance with processing by the determination unit 21, and details thereof will be described later.
  • the storage unit 30 includes a storage device such as a volatile or nonvolatile memory or a hard disk, and is used to store various data necessary for processing performed by the valuable document identification device 1.
  • the communication I / F 4 has a function of receiving a signal from the outside of the valuable document identification device 1 and transmitting a signal from the valuable document identification device 1 to the outside.
  • the communication I / F 4 receives, for example, an external signal, changes the operation setting of the control unit 20, and performs update, addition, and deletion processing of software programs and data stored in the storage unit 30. Or the determination result of the valuable document 100 by the valuable document identification device 1 can be output to the outside.
  • control unit 20 includes, for example, a software program for realizing various processes, a CPU that executes the software program, and various hardware controlled by the CPU.
  • a storage unit 30 For storage of software programs and data necessary for the operation of each unit, a storage unit 30, a memory such as a RAM and a ROM provided separately, a hard disk, and the like are used.
  • the optically variable ink or the color shift ink is an optically variable ink (printing) depending on the light irradiation angle and the light receiving angle (observation direction). This is a special ink structure in which the color of the printed pattern), more specifically, the hue and / or lightness is observed to change.
  • the optically variable ink region 110 is provided with an optical interference structure composed of a multilayer thin film structure in which reflected lights at different interfaces interfere with each other. More specifically, as shown in FIG.
  • a multilayer thin film structure (light interference structure) 111 may be laminated on the base material 105 of the valuable document 100, or as shown in FIG.
  • a layer formed from an ink containing a multilayer thin film structure (light interference structure) 111 may be provided as the pigment.
  • the multilayer thin film structure 111 has a structure in which a reflective layer 112, a light transmission layer 113, and a coating layer 114 are laminated in this order from the substrate 105 side.
  • the multilayer thin film structure 111 has a structure in which the entire structure in which the reflective layer 112 is sandwiched between the light transmission layers 113 is covered with the coating layer 114.
  • the reflective layer 112 is formed from a metal such as aluminum
  • the light transmission layer 113 is formed from a light transmission material such as resin or glass
  • the coating layer 114 is a translucent metal layer. Acts as a mirror. With such a structure, light having a strengthening wavelength is emitted by interference between reflected light from the reflective layer 112 and reflected light from the coating layer 114. Then, the color of the interference light changes depending on the incident angle and the reflection angle. Further, by changing the thickness of the light transmission layer 113, inks of various colors can be produced.
  • the 100 yuan banknote changes from green to blue
  • the US 20 dollar banknote issued in 2003 changes from yellow to green
  • the 50 euro banknote issued in 2002 changes from purple to green
  • the 5 euro banknote issued in 2013 changes from green to blue.
  • the position of the light receiving unit 13 and the positions of the first light source 11 and the second light source 12 with respect to the light receiving unit 13 are adjusted so that the colors of the optically variable ink areas 110 to be different from each other. That is, the above-described angles ⁇ 1, ⁇ 2, and ⁇ 3 are adjusted so that images of the optically variable ink regions 110 of different colors are captured by the light sources 11 and 12, respectively.
  • step S1 when it is detected by the timing sensor 2 that the valuable document 100 has arrived at the valuable document identification device 1 (step S1; Yes), the control unit 20 performs lighting control of the light sources 11 and 12 by the light source control unit 22. At the same time, imaging of the valuable document 100 by the image processing unit 23 and storage processing of the captured image in the storage unit 30 are started (step S2).
  • the valuable document identification device 1 is in a state of monitoring the arrival of the valuable document 100 while the valuable document 100 is not detected (step S1; No).
  • step S2 the first image by the first light source 11 and the second image by the second light source 12 of the image acquisition device 10a and the image acquisition device during one transport of the valuable document 100 passing below the line sensor 14.
  • Four types of images ie, a first image by the first light source 11 and a second image by the second light source 12 are captured.
  • an image of only that side may be taken.
  • the optical variable ink region 110 is provided on the top surface of the valuable document 100, that is, the image acquisition device 10a side will be described.
  • the case where the optical variable ink region 110 is provided on the bottom surface of the valuable document 100 is described. Can be processed similarly.
  • the light source control unit 22 performs dynamic lighting control for repeatedly lighting the light sources 11 and 12 at different timings. Then, the reflected light emitted from each of the light sources 11 and 12 and reflected by the valuable document 100 is measured by the line sensor 14 of the light receiving unit 13. A signal measured by the line sensor 14 is input to the image processing unit 23.
  • the data appropriately processed by the image processing unit 23 is stored in the storage unit 30 as data forming the first image 31 and the second image 32. Data of each image 31 and 32 is stored for each color of red (R), green (G), and blue (B).
  • the light sources 11 and 12 are controlled to emit light at different timings, and signals measured by the light receiving unit 13 using the light sources 11 and 12 are sequentially stored in the storage unit 30.
  • the storage unit 30 stores the first image 31 and the second image obtained by capturing the entire surface of the valuable document 100 under the light sources 11 and 12.
  • the image 32 is stored.
  • Specific dynamic lighting control is not particularly limited. Further, if the first image 31 of the valuable document 100 by the first light source 11 and the second image 32 of the valuable document 100 by the second light source 12 can be captured separately, the light emission timings and data of the light sources 11 and 12 are obtained.
  • the order of processing is not particularly limited, and is determined as appropriate according to the processing speed of the line sensor 14 and the like. For example, when it is not required to process the valuable document 100 at a high speed, dynamic lighting is not performed, and the valuable document 100 is conveyed in the positive direction of the X axis and the first image 31 is captured by the first light source 11. Thereafter, the valuable document may be conveyed again in the negative direction of the X axis and the second image 32 by the second light source 12 may be captured.
  • the images 31 and 32 are preferably images obtained by capturing the entire surface of the valuable document 100 so that the images can be used for other identification processing performed using the valuable document image. Instead, it may be an image obtained by capturing only a partial area including the optical variable
  • the determination unit 21 determines the type (denomination in the case of banknotes) and direction of the valuable document 100 (step S3). Thereafter, the determination unit 21 determines whether or not the valuable document 100 has the optically variable ink area 110 (step S4). In the following, a case where a 100 yuan banknote is used will be described as appropriate, but any kind of valuable document 100 can be processed in the same manner.
  • the flow shown in FIG. 17 calculates the difference between the color of the optically variable ink area 110 of the first image 31 and the color of the optically variable ink area 110 of the second image 32, thereby calculating the optically variable ink area.
  • the presence or absence of 110 is determined.
  • FIG. 18 shows a case where 100 yuan banknotes are processed.
  • the image processing unit 23 corresponds to the optically variable ink region 110 from the first image 31.
  • a partial area image (hereinafter referred to as “first OVI image”) is extracted, and similarly, a partial area image corresponding to the optically variable ink area 110 from the second image 32 (hereinafter referred to as “second OVI image”). ) Is extracted (step S10).
  • a pixel at a specific position corresponding to the type and direction of the valuable document 100 may be extracted from each of the images 31 and 32 so as to be each OVI image.
  • a specific mask image corresponding to the type and direction of the valuable document 100 specifically, a mask image in which the optically variable ink portion is 1 and the other portion is 0 is multiplied with each image 31 and 32 to extract pixels.
  • Each OVI image may be used.
  • step S11 processing for calculating the evaluation value of the optically variable ink region 110 is performed (step S11).
  • FIG. 20 shows an example of measurement results and calculation results of a 100 yuan banknote under conditions of a light receiving angle of 45 °, an irradiation angle of 5 ° at the time of first image capturing, and an irradiation angle of 60 ° at the time of second image capturing.
  • the determination unit 21 performs the entire pixel of the optical variable ink unit, a specific pixel with the optical variable ink (for example, 10 ⁇ 10 pixels), or the optical variable ink region 110.
  • the average of each intensity is calculated for each color of R, G, and B in a specific row of pixels (step S20).
  • the determination unit 21 calculates a ratio (color ratio) between the calculated average intensities of R, G, and B for the first OVI image and the second OVI image (step S21).
  • the determination unit 21 compares the color ratio of a specific color between the first OVI image and the second OVI image (step S22). Specifically, for example, a change rate (increase rate) of the color ratio of the specific one color of the second OVI image with respect to the color ratio of the specific one color of the first OVI image is calculated, or the first OVI A ratio or a change rate of the color ratio of the specific two colors of the second OVI image to the ratio or difference of the color ratios of the specific two colors of the image is calculated.
  • the color to be used varies depending on the type (denomination) of the valuable document 100. For example, in 100 yuan banknotes, the color ratio of B or G may be compared to calculate the increase rate of B or G.
  • the presence or absence of the optically variable ink region 110 can be determined by comparing the first OVI image and the second OVI image with the first reference image and the second reference image recorded in the storage unit 30 in advance.
  • the first reference image and the second reference image are references corresponding to the first OVI image and the second OVI image obtained when the optical variable ink region 110 is imaged by the first light source 11 and the second light source 12, respectively. It is an image.
  • the determination unit 21 sets the value calculated in step S22 as an evaluation value (step S23).
  • the determination unit 21 compares the calculated evaluation value with a predetermined threshold value, and determines whether or not the evaluation value is larger than the threshold value (step S12 in FIG. 17). If the obtained evaluation value is larger than the threshold (step S13; Yes), it is determined that the valuable document 100 has the optical variable ink region 110. On the other hand, when the evaluation value is equal to or less than the threshold value (step S14; No), it is determined that the valuable document 100 does not have the optical variable ink area 110.
  • the determination result of the presence or absence of the optically variable ink area 110 obtained in this way is used as one of the determination conditions for determining the authenticity of the valuable document 100 inside the valuable document identification device 1 or output to the outside by the communication I / F 4. And used for processing in an external device.
  • the first light source 11, the second light source 12, and the line sensor 14 are arranged so that different colors can be obtained. Whether or not the valuable document 100 has the optical variable ink area 110 can be correctly determined from the difference in the color of the image of the optical variable ink area 110. If there is no optical variable ink area 110, it is processed as a fake ticket or a true / false uncertain ticket.
  • the evaluation value specifically blue color
  • a 100-yuan banknote this voucher
  • a test sample in which the design of the optically variable ink portion of the voucher is printed with general ink.
  • evaluation values were calculated for 1000 tickets and 250 test samples.
  • the irradiation angles were 5 ° and 60 °, and the light receiving angle was 45 °.
  • an evaluation value at a light receiving angle other than 45 ° is obtained by multiplying the evaluation value at each light receiving angle by a ratio of 45 ° to the light receiving angle.
  • a calculation example is shown in Table 3 below.
  • the verification results of these evaluation value distributions are shown in Table 4 below.
  • the threshold value was (average value ⁇ 3 ⁇ ).
  • the evaluation value of the ticket that is, the color change rate of the optically variable ink area 110 is small, so that the pass rate of the test sample is significantly increased. End up.
  • the light receiving angle is 25 ° or more, preferably 30 ° or more, the passing rate of the test sample can be 0%, and the presence or absence of the optically variable ink region 110 can be determined with very high accuracy. I found it possible. Therefore, the authenticity of the valuable document 100 can be determined with high accuracy.
  • the type of the valuable document 100 (denomination in the case of banknote) and the presence or absence of the optical variable element region 101 are determined.
  • the type of the valuable document 100 may be performed using another image acquisition device. Specifically, the type is determined based on the image of the valuable document 100 acquired by another image acquisition device arranged on the upstream side of the image acquisition devices 10a and 10b, and the image acquisition device and / or 10b is determined.
  • the presence / absence of the optical variable element region 101 may be determined based on the first image 31 and the second image 32 acquired in step S2.
  • the determination unit 21 may determine the type of the valuable document 100 based on the first image 31 or the second image 32 and information acquired by the sensor unit 215 described later. Thereafter, the determination unit 21 may specify the position of the optically variable ink area 110 and the position of the hologram area from the reference image 33 relating to the determined type of valuable document 100.
  • the presence or absence of the optical variable ink region 110 is determined based on the color difference between the first image 31 and the second image 32 at the position specified as the optical variable ink region 110, and the position specified as the hologram region
  • the presence / absence of the hologram region may be determined based on at least one difference in color, luminance, and shape between the first image 31 and the second image 32 in FIG.
  • the hologram region usually includes a light diffraction structure in which a diffraction grating is formed.
  • the valuable document identification apparatus 1 can be realized by itself, but the valuable document identification apparatus 1 is built in the valuable document processing apparatus as shown in FIG. 27 or 28, for example. To be used.
  • the valuable document processing apparatus 200 includes a hopper 210 on which a plurality of valuable documents 100 can be placed, a conveyance path 211 that conveys banknotes placed on the hopper 210, and a valuable value.
  • the stacking unit 213 that accumulates the valuable documents 100 identified by the valuable document identification device 1, the valuable document 100 that cannot be identified, and the valuable document 100 that satisfies a predetermined condition
  • a reject unit 214 that separates and accumulates the valuable documents 100.
  • the valuable document processing apparatus 200 includes a sensor unit 215 other than the line sensor 14 in accordance with the identification process of the valuable document 100 to be processed.
  • the sensor unit 215 for example, an optical line sensor for measuring optical characteristics of the valuable document 100 by irradiating a plurality of types of light such as infrared light, ultraviolet light, and visible light, or the valuable document 100.
  • processing of the valuable document identification device 1, specifically, the presence / absence of the optical variable ink region 110 is determined. For example, from the first image 31 and the second image 32 acquired by the image acquisition device 10a and / or 10b based on the type (denomination), direction, etc. of the valuable document 100 determined from the information acquired by the sensor unit 215. The position of the optical variable element region 101 to be extracted may be determined. By performing the role assignment in this way, the authenticity of the valuable document 100 can be determined with higher accuracy. Since the sensor unit 215 is a technique that has been conventionally used in the field of banknote processing devices, a detailed description thereof will be omitted.
  • the valuable document processing apparatus 300 is a small banknote processing apparatus that is installed on a table and used.
  • the valuable document identification apparatus (not shown) performs identification processing of the valuable document 100. )
  • Each stacker unit 306 has a display unit 305 for displaying information such as the banknote identification count result and the stacking status of each stacker unit 306.
  • the valuable document 100 determined to be a fake ticket or a genuine / indeterminate ticket without the optical variable element region may be returned to the reject unit 302 or may be stored in any stacker unit 306.
  • the first light source 11, the second light source 12, and the light receiving unit 13 are arranged so that the first angle ⁇ 1, the second angle ⁇ 2, and the third angle ⁇ 3 are different from each other.
  • ⁇ 3 is 25 ° or more and less than 90 °, the presence / absence of the optical variable element region 101 can be detected with high accuracy, and as a result, the authenticity determination accuracy of the optical variable element region 101 is improved. can do.
  • the light receiving element 16 may be an arrayed light receiving element as described above, or may be a single light receiving element such as a photodiode or a color sensor.
  • each light source 11 and 12 may be a point light source. In this case, the relationship between the light receiving element 16 and the light sources 11 and 12 is the same as that shown in FIGS.
  • the light sources 11 and 12 are point light sources, the light sources 11 and 12 are not limited to the reference plane 104 but can be positioned in any direction.
  • the present invention is a useful technique for accurately identifying the authenticity of a valuable document in which an optical variable element is employed to prevent forgery.
  • Valuable document identification device 2 Timing sensor 3: Transport mechanism 4: Communication interface 10, 10a, 10b: Image acquisition device (image sensor unit) 11: first light source 11A: optical axis 12 of the first light source 12: second light source 12A: optical axis 13 of the second light source 13: light receiving unit 14: line sensor 15: imaging element 15A: optical axis 16 of the imaging element: light reception Element 16A: Imaging optical axis 17 of the light receiving element 17: Substrate 18: Housing 19: Transparent plate 19R: Regular reflection light incident area 20: Control unit 21: Determination unit 22: Light source control unit 23: Image processing unit 24: Conveyance control unit 30 : Storage unit 31: first image 32: second image 33: reference image 100: valuable document 101: optical variable element region 102: imaged region 103: vertical line 104: reference surface 105: substrate 110: optical variable ink region 111: Multilayer thin film structure (light interference structure) 112: reflection layer 113: light transmission layer 114: coating layer 200: valuable document processing

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

The present invention provides: a valuable document identification apparatus that is capable of improving the accuracy of determining the presence of an optical variable element area on a valuable document surface, and of highly accurately determining the authenticity of a valuable document; a valuable document processor; an image sensor unit; and a method for detecting the optical variable element area. The valuable document identification apparatus according to the present invention is provided with: a first light source and a second light source from which light is applied to the optical variable element area from a first direction and a second direction; a light receiving unit that receives, from a third direction, the light reflected from the optical variable element area; and a determination unit that determines the presence of the optical variable element area on the basis of information about the reflected light of the first light source and information about the reflected light of the second light source. A first angle formed between a vertical line with respect to a surface of the valuable document and the first direction, a second angle formed between the vertical line and the second direction, and a third angle formed between the vertical line and the third direction are different from one another, and the third angle is not less than 25° but less than 90°.

Description

有価書類識別装置、有価書類処理機、画像センサユニット及び光学可変素子領域の検出方法Valuable Document Identification Device, Valuable Document Processing Machine, Image Sensor Unit, and Optical Variable Element Area Detection Method
本発明は、有価書類識別装置、有価書類処理機、画像センサユニット及び光学可変素子領域の検出方法に関する。より詳しくは、光学可変素子領域を備えた、紙幣(銀行券)や商品券、小切手、カード状媒体等の有価書類(valuable documents)の真偽判定に好適な有価書類識別装置、有価書類処理機、画像センサユニット及び光学可変素子領域の検出方法に関するものである。 The present invention relates to a valuable document identification device, a valuable document processor, an image sensor unit, and a method for detecting an optical variable element region. More specifically, a valuable document identification device and a valuable document processing machine equipped with an optical variable element region suitable for authenticity evaluation of valuable documents such as banknotes, gift certificates, checks, and card-like media. The present invention relates to an image sensor unit and a method for detecting an optical variable element region.
紙幣(銀行券)や商品券、小切手等の有価書類には、偽造防止のために様々なセキュリティ特徴が付与されている。例えば、紙幣に用いられる紙は、植物繊維を素材にした紙が主流だが、耐久性や耐水性、セキュリティ性等の向上を目的として、合成繊維を素材とした紙を用いたり、合成樹脂のシートであるポリマーシートが用いられることがある。ポリマーシートから作られた紙幣は、ポリマー紙幣と呼ばれ、透明の窓が設けられたポリマー紙幣は偽造が難しい。 Various security features are imparted to valuable documents such as banknotes, gift certificates, and checks to prevent counterfeiting. For example, paper used for banknotes is mainly made of vegetable fiber, but for the purpose of improving durability, water resistance, security, etc., paper made of synthetic fiber or synthetic resin sheet is used. A polymer sheet may be used. A banknote made from a polymer sheet is called a polymer banknote, and a polymer banknote provided with a transparent window is difficult to counterfeit.
更に、これら有価書類の偽造防止技術として、光学可変素子(Optical Variable Device: OVD)が多くの国で用いられている。光学可変素子は、回折格子や薄膜、マイクロレンズ等の光学素子を用いて、色や模様の変化等、光学的な効果を生じさせるものである。具体的には、光学可変素子に照らす光の角度、及び/又は、光学可変素子が見られる角度が変化することにより、色や模様等の光学可変素子の外観が変化する。ホログラムや光学可変インク(Optical Variable Ink: OVI)、モーションスレッド等は、光学可変素子の一種である。例えば、モーションスレッドは、アイコンと呼ばれる複数の微小画像の上に光学スペーサを介してマイクロレンズを配置して形成されるものである(例えば、特許文献1参照。)。 Furthermore, as a technique for preventing forgery of these valuable documents, an optical variable element (Optical Variable Device: OVD) is used in many countries. The optical variable element uses an optical element such as a diffraction grating, a thin film, or a microlens to cause an optical effect such as a change in color or pattern. Specifically, the appearance of the optical variable element such as a color or a pattern is changed by changing the angle of light illuminating the optical variable element and / or the angle at which the optical variable element is seen. Holograms, optically variable ink (Optical ari Variable Ink: 等 OVI), motion threads, and the like are types of optically variable elements. For example, a motion thread is formed by arranging microlenses on a plurality of minute images called icons via optical spacers (see, for example, Patent Document 1).
光学可変素子は、肉眼だけでなく、装置を用いた有価書類の真偽判定にも有用である。具体的には、有価書類の種類に応じた位置に光学可変素子が有るか無いかを判別し、無い場合には偽券又は真偽不確定券と判定する。有価書類の真偽判定に光学可変素子を用いる技術としては、他に以下が開示されている。 The optical variable element is useful not only for the naked eye but also for authenticity determination of valuable documents using the apparatus. Specifically, it is determined whether or not there is an optical variable element at a position corresponding to the type of the valuable document. Other technologies that use optical variable elements for authenticity determination of valuable documents are disclosed below.
特許文献2には、異なる角度から見ると色が異なるカラーシフトインク(Color-shifting ink)を検出するために、光電変換素子と組み合わされたレンズ両側に発光角度の異なる光源が配置され、透光版内面に無反射膜が貼着された密着イメージセンサが開示されている。 In Patent Document 2, light sources having different emission angles are arranged on both sides of a lens combined with a photoelectric conversion element in order to detect color-shifting inks having different colors when viewed from different angles. A contact image sensor having a non-reflective film attached to the inner surface of the plate is disclosed.
また、特許文献3には、文書の少なくとも一部が第1の入射角からの第1の電磁照射線に晒される間に文書の少なくとも一部の第1の像を撮影する工程と、文書の少なくとも一部が第2の入射角からの第2の電磁照射線に晒される間に文書の少なくとも一部の第2の像を撮影する工程と、を含む光学的可変素子を検出するための方法が開示されている。 Patent Document 3 discloses a step of taking a first image of at least a part of a document while at least a part of the document is exposed to a first electromagnetic radiation from a first incident angle; Capturing a second image of at least a portion of a document while at least a portion is exposed to a second electromagnetic radiation from a second angle of incidence. Is disclosed.
特許文献4には、光学可変インクを識別して有価チケットの真偽を検証する検証装置が開示されており、該検証装置では、第一光源発光ユニット及び第二光源発光ユニットと、受光素子とが有価チケットの法線を挟んで両側に配置されており、第二光源発光ユニットの光軸と上記法線とのなす角が第一光源発光ユニットの光軸と上記法線とのなす角より大きい。 Patent Document 4 discloses a verification device that identifies optically variable ink and verifies the authenticity of a valuable ticket. The verification device includes a first light source light emitting unit, a second light source light emitting unit, a light receiving element, Are disposed on both sides of the normal line of the valuable ticket, and the angle formed by the optical axis of the second light source light emitting unit and the normal line is greater than the angle formed by the optical axis of the first light source light emitting unit and the normal line. large.
特許文献5には、紙葉類に向けて第1方向から光を照射する第1光源により撮像された第1画像と、第2方向から紙葉類に向けて光を照射する第2光源により撮像された第2画像とを生成し、第1画像に含まれるスレッド画像と第2画像に含まれるスレッド画像とが異なる場合に紙葉類がモーションスレッドを有すると判定する紙葉類識別装置が開示されている。 In Patent Document 5, a first image captured by a first light source that irradiates light from a first direction toward a paper sheet, and a second light source that irradiates light from a second direction toward the paper sheet. A paper sheet identification device that generates a captured second image and determines that the paper sheet has a motion thread when the thread image included in the first image is different from the thread image included in the second image. It is disclosed.
米国特許第7333268号明細書US Pat. No. 7,333,268 中国特許出願公開第101986352号明細書Chinese Patent Application Publication No. 101986352 国際公開第2011/085041号International Publication No. 2011/085041 中国特許出願公開第104424688号明細書Chinese Patent Application No. 104424688 特開2013-20540号公報JP 2013-20540 A
光学可変インクやカラーシフトインク等の観察者が見る角度や照射光が入射する角度に応じて色が変化する光学可変素子や、レインボーホログラムのように色とともに模様が変化する光学可変素子等の外観が変わる光学可変素子の有無を検出することは、紙幣等の有価書類の正確な真偽判定に有用である。しかしながら、肉眼での観察のように、光学可変素子を異なる角度から観察しようとすると、受光角が異なる複数の光センサを設ける必要があり、装置のコストが高くなってしまう。このため、照射角が異なる複数の光源と、1つの光センサを設けることが好ましい。このとき、光源の角度と光センサの角度によって光学可変素子の検出能力が変わるため、それぞれの角度を適切な角度とする必要がある。 Appearance of optical variable elements such as optical variable ink and color shift ink that change color according to the angle viewed by the observer and the incident angle of irradiation light, and optical variable elements whose pattern changes with color, such as rainbow holograms Detecting the presence or absence of an optical variable element that changes is useful for accurate authenticity determination of valuable documents such as banknotes. However, if the optical variable element is to be observed from different angles as in the case of observation with the naked eye, it is necessary to provide a plurality of optical sensors having different light receiving angles, which increases the cost of the apparatus. For this reason, it is preferable to provide a plurality of light sources having different irradiation angles and one photosensor. At this time, since the detection capability of the optical variable element varies depending on the angle of the light source and the angle of the optical sensor, each angle must be set to an appropriate angle.
上述の特許文献2~5には、光学可変素子を検出するために複数の光源と1つの光センサを用いる装置が開示されている。 Patent Documents 2 to 5 described above disclose apparatuses that use a plurality of light sources and one optical sensor to detect an optical variable element.
特許文献2は、紙幣の面に対して垂直方向に光電変換素子の列を配置したセンサユニットを開示している。このセンサユニットでは、搬送されるシート上の紙幣識別表面変色インクを垂直方向から撮影することになる。しかしながら、実験によると、垂直方向から見る光学可変インクの色の変化は、斜め方向から見る場合に比べて乏しい。したがって、見る角度に応じて色が変わる光学可変インクの検出には適していない。 Patent document 2 is disclosing the sensor unit which has arrange | positioned the row | line | column of a photoelectric conversion element in the orthogonal | vertical direction with respect to the surface of a banknote. In this sensor unit, the banknote identification surface discoloration ink on the conveyed sheet is photographed from the vertical direction. However, according to experiments, the color change of the optically variable ink viewed from the vertical direction is less than that observed from the oblique direction. Therefore, it is not suitable for detection of optically variable ink whose color changes according to the viewing angle.
特許文献3には、電磁放射線源の入射角を-90~90°、撮像装置の入射角を-90~90°とした例が開示されている。しかしながら、撮像装置の角度によっては、上述のように、光学可変インクの検出に適さなくなる。また、この例では、光学可変材料に電磁照射線を直接照射し、撮影しているが、センサユニットおいては、特許文献2に記載されているように、光源及び受光部と光学可変素子との間に、ガラス等から形成された透明な窓部を設けることが一般的である。透明なガラスを配置した場合、撮像装置を±90°付近に配置すると、ガラス表面での反射により、照明も撮影も良好にできないことがある。よって、特許文献3では、撮像装置の角度は特定されていないに等しい。 Patent Document 3 discloses an example in which the incident angle of the electromagnetic radiation source is −90 to 90 ° and the incident angle of the imaging device is −90 to 90 °. However, depending on the angle of the imaging device, as described above, it is not suitable for detection of optically variable ink. Further, in this example, the optically variable material is directly irradiated with an electromagnetic irradiation beam and photographed. However, in the sensor unit, as described in Patent Document 2, a light source, a light receiving unit, an optical variable element, In general, a transparent window portion made of glass or the like is provided. When transparent glass is disposed, if the imaging device is disposed near ± 90 °, illumination and photographing may not be performed satisfactorily due to reflection on the glass surface. Therefore, in Patent Document 3, the angle of the imaging device is not specified.
特許文献4では、第一光源発光ユニットの光軸と有価チケットの法線とのなす角度が0~30°であり、受光素子の光軸と上記法線とのなす角度が0~20°である。しかしながら、受光素子が0~20°では、上述した通り、見る角度に応じて色が変わる光学可変インクの検出に適していない。また、第一光源発光ユニットと受光素子とが有価チケットの法線に対してほぼ対称な位置に配置されているため、ガラスから形成された透明な窓部を設けると、ガラス表面で反射した光が直接受光センサを照らすおそれがあり、光学可変素子を良好に撮像できない可能性がある。 In Patent Document 4, the angle between the optical axis of the first light source light emitting unit and the normal line of the valuable ticket is 0 to 30 °, and the angle between the optical axis of the light receiving element and the normal line is 0 to 20 °. is there. However, when the light receiving element is 0 to 20 °, as described above, it is not suitable for detecting optically variable ink whose color changes according to the viewing angle. In addition, since the first light source light emitting unit and the light receiving element are arranged at positions almost symmetrical with respect to the normal line of the valuable ticket, if a transparent window portion made of glass is provided, the light reflected on the glass surface May directly illuminate the light receiving sensor, and there is a possibility that the optical variable element cannot be imaged satisfactorily.
特許文献5は、特許文献1に記載のようなモーションスレッド、すなわち、見る角度に応じて画像(図柄)そのものが変化する光学可変素子の識別を行うものであるため、特許文献5に開示の識別装置や識別方法をそのまま、ホログラムや光学可変インクの検出に利用することはできない。なぜなら、回折や干渉等の光学的な効果によって色や模様が変化するホログラムや光学可変インクに対して、モーションスレッドの色や模様の変化は、マイクロレンズが結像する位置に置かれる色や模様によって決まる。すなわちモーションスレッドの設計上の問題であるため、特定のモーションスレッドにおいて有効な技術が、他のモーションスレッドでも有効とは限らない。まして、ホログラムや光学可変インク等の光学的な効果で外観が変化する光学可変素子に対して示唆を与えるものではない。また、特許文献5は、ガラスから形成された透明な窓部を設けた場合のガラス表面での反射に起因する課題も考慮されていない。 Since Patent Document 5 identifies a motion thread as described in Patent Document 1, that is, an optical variable element in which an image (symbol) itself changes according to a viewing angle, the identification disclosed in Patent Document 5 is disclosed. The apparatus and the identification method cannot be used as they are for detecting holograms and optically variable ink. This is because, for holograms and optically variable inks that change color and pattern due to optical effects such as diffraction and interference, the motion thread color and pattern change is the color and pattern placed at the position where the microlens forms an image. It depends on. That is, since this is a problem in the design of a motion thread, a technique effective in a specific motion thread is not necessarily effective in other motion threads. Furthermore, it does not give any suggestion to an optical variable element whose appearance changes due to an optical effect such as a hologram or optical variable ink. Moreover, the patent document 5 does not consider the problem resulting from the reflection on the glass surface at the time of providing the transparent window part formed from glass.
本発明は、上記現状に鑑みてなされたものであり、有価書類表面の光学可変素子領域の有無の判定精度を向上し、有価書類の真偽を高精度に判定可能な有価書類識別装置、有価書類処理機、画像センサユニット及び光学可変素子領域の検出方法を提供することを目的とするものである。 The present invention has been made in view of the above-described present situation, improves the determination accuracy of the presence or absence of an optical variable element region on the surface of a valuable document, and provides a valuable document identification device capable of determining the authenticity of a valuable document with high accuracy. An object of the present invention is to provide a document processing machine, an image sensor unit, and an optical variable element region detection method.
本発明は、光学可変素子領域を有する有価書類の真偽を識別する有価書類識別装置であって、第一の方向から前記光学可変素子領域に光を照射する第一光源と、第二の方向から前記光学可変素子領域に光を照射する第二光源と、前記光学可変素子領域から反射された光を第三の方向から受光する受光部と、前記第一光源の反射光の情報である第一反射光情報と、前記第二光源の反射光の情報である第二反射光情報とに基づいて前記光学可変素子領域の有無を判定する判定部と、を備え、前記光学可変素子領域を含む前記有価書類の面の垂直線と前記第一の方向とのなす角度である第一の角度と、前記垂直線と前記第二の方向とのなす角度である第二の角度と、前記垂直線と前記第三の方向とのなす角度である第三の角度と、は互いに異なり、前記第三の角度は25°以上、90°未満であることを特徴とする。 The present invention relates to a valuable document identification device for identifying the authenticity of a valuable document having an optical variable element region, the first light source for irradiating the optical variable element region from a first direction, and a second direction A second light source for irradiating light to the optical variable element region, a light receiving unit for receiving light reflected from the optical variable element region from a third direction, and information on reflected light of the first light source. A determination unit that determines presence / absence of the optical variable element region based on one reflected light information and second reflected light information that is information of reflected light of the second light source, and includes the optical variable element region A first angle that is an angle between a vertical line of the surface of the valuable document and the first direction; a second angle that is an angle between the vertical line and the second direction; and the vertical line And the third angle which is an angle formed by the third direction is different from each other, Serial third angle is 25 ° or more, and less than 90 °.
また、本発明は、上記発明において、前記光学可変素子領域は、光干渉構造及び光回折構造の少なくとも一方を有することを特徴とする。 In the invention described above, the optical variable element region includes at least one of an optical interference structure and an optical diffraction structure.
また、本発明は、上記発明において、前記判定部は、前記第一反射光情報と前記第二反射光情報との間の色の違いに基づいて前記有価書類の真偽を判定することを特徴とする。 Moreover, the present invention is characterized in that, in the above invention, the determination unit determines the authenticity of the valuable document based on a color difference between the first reflected light information and the second reflected light information. And
また、本発明は、上記発明において、前記有価書類は、前記光学可変素子領域として、光学可変インク領域及びホログラム領域を有し、前記判定部は、前記有価書類の種類を判定し、前記種類判定部で判定された種類の有価書類に関する情報から前記光学可変インク領域の位置と前記ホログラム領域の位置とを特定し、前記光学可変インク領域では前記第一反射光情報と前記第二反射光情報との間の色の違いに基づいて前記有価書類の真偽を判定し、かつ、前記ホログラム領域では前記第一反射光情報と前記第二反射光情報との間における色、輝度及び形状の少なくとも1つの違いに基づいて前記有価書類の真偽を判定することを特徴とする。 Further, the present invention is the above invention, wherein the valuable document has an optical variable ink region and a hologram region as the optical variable element region, and the determination unit determines a type of the valuable document and determines the type. Identifying the position of the optically variable ink area and the position of the hologram area from information relating to the valuable document of the type determined by the section, wherein the optically variable ink area includes the first reflected light information and the second reflected light information; The authenticity of the valuable document is determined based on the color difference between the first reflected light information and the second reflected light information in the hologram area, and at least one of color, brightness, and shape between the first reflected light information and the second reflected light information is determined. The authenticity of the valuable document is determined based on the difference between the two.
また、本発明は、上記発明において、前記第三の角度は、60°以下であることを特徴とする。 Moreover, the present invention is characterized in that, in the above-mentioned invention, the third angle is 60 ° or less.
また、本発明は、上記発明において、前記第三の角度は、55°以下であることを特徴とする。 In the present invention, the third angle is 55 ° or less.
また、本発明は、上記発明において、前記第一の角度は、-10°~20°であり、前記第二の角度は、40°~70°であることを特徴とする。 In the present invention, the first angle is -10 ° to 20 °, and the second angle is 40 ° to 70 °.
また、本発明は、上記発明において、前記第一の角度は、-5°~15°であり、前記第二の角度は、45°~65°であることを特徴とする。 In the present invention, the first angle is −5 ° to 15 °, and the second angle is 45 ° to 65 °.
また、本発明は、上記発明において、前記第一光源、前記第二光源及び前記受光部は、同一平面上に配置されており、前記有価書類識別装置は、前記第一光源及び前記第二光源と前記有価書類との間に配置された透明板を更に備え、前記第一光源及び前記第二光源は、前記透明板に光を照射したとすると正反射光が前記受光部に入射する領域を間に挟んで配置されていることを特徴とする。 In the present invention, the first light source, the second light source, and the light receiving unit are arranged on the same plane, and the valuable document identification device includes the first light source and the second light source. And a transparent plate disposed between the valuable document and the first light source and the second light source, when the transparent plate is irradiated with light, a region where specularly reflected light is incident on the light receiving unit is provided. It is characterized by being placed between them.
また、本発明は、上記発明において、前記受光部は、前記有価書類を直線状に撮像するラインセンサを備え、前記第一光源及び前記第二の光源はそれぞれ、前記ラインセンサによる直線状の被撮像領域に光を照射することを特徴とする。 Further, according to the present invention, in the above invention, the light receiving unit includes a line sensor that images the valuable document in a straight line, and each of the first light source and the second light source includes a linear sensor by the line sensor. The imaging region is irradiated with light.
また、本発明は、上記発明において、前記受光部は、前記第一光源及び前記第二光源から照射されて、前記光学可変素子領域で反射された光を受光し、前記第一の角度、前記第二の角度及び前記第三の角度は、前記直線状の被撮像領域に直交する基準面上における角度であり、前記第一の角度は、前記第三の角度より小さく、前記第二の角度は、前記第三の角度より大きいことを特徴とする。 Further, the present invention is the above invention, wherein the light receiving unit receives light emitted from the first light source and the second light source and reflected by the optical variable element region, and the first angle, The second angle and the third angle are angles on a reference plane orthogonal to the linear imaged region, the first angle is smaller than the third angle, and the second angle Is greater than the third angle.
また、本発明は、上記発明において、前記有価書類を搬送させる搬送機構を更に備えることを特徴とする。 In the invention described above, the present invention is further characterized by further comprising a transport mechanism for transporting the valuable document.
また、本発明は、上記発明において、前記判定部は、前記第一反射光情報に基づく第一画像の色と、前記第二反射光情報に基づく第二画像の色とを比較して前記有価書類の真偽を判定することを特徴とする。 In the invention described above, the determination unit may compare the color of the first image based on the first reflected light information with the color of the second image based on the second reflected light information. It is characterized by determining the authenticity of the document.
また、本発明は、前記有価書類識別装置を備えることを特徴とする有価書類処理機である。 According to another aspect of the present invention, there is provided a valuable document processing machine including the valuable document identification device.
また、本発明は、有価書類の光学可変素子領域の検出方法であって、第一の方向から前記光学可変素子領域に光を照射し、前記光学可変素子領域から反射された光を受光する第一読取ステップと、第二の方向から前記光学可変素子領域に光を照射し、前記光学可変素子領域から反射された光を受光する第二読取ステップと、前記第一読取ステップでの反射光の情報である第一反射光情報と、前記第二読取ステップでの反射光の情報である第二反射光情報とに基づいて前記光学可変素子領域の有無を判定する判定ステップと、を含み、前記第一照射ステップ及び前記第二照射ステップでは、前記光学可変素子領域から反射された光を第三の方向から受光し、前記光学可変素子領域を含む前記有価書類の面の垂直線と前記第一の方向とのなす角度である第一の角度と、前記垂直線と前記第二の方向とのなす角度である第二の角度と、前記垂直線と前記第三の方向とのなす角度である第三の角度と、は互いに異なり、前記第三の角度は25°以上、90°未満であることを特徴とする。 The present invention also relates to a method for detecting an optical variable element region of a valuable document, wherein the optical variable element region is irradiated with light from a first direction, and the light reflected from the optical variable element region is received. One reading step, a second reading step of irradiating the optical variable element region with light from a second direction and receiving light reflected from the optical variable element region, and a reflected light of the first reading step A determination step of determining presence or absence of the optical variable element region based on first reflected light information that is information and second reflected light information that is information of reflected light in the second reading step, and In the first irradiation step and the second irradiation step, the light reflected from the optical variable element region is received from a third direction, and the vertical line of the surface of the valuable document including the optical variable element region and the first Angle with the direction of A first angle, a second angle that is an angle between the vertical line and the second direction, and a third angle that is an angle between the vertical line and the third direction are: Different from each other, the third angle is 25 ° or more and less than 90 °.
また、本発明は、有価書類の光学可変素子領域を検出するための画像センサユニットであって、第一の方向から前記光学可変素子領域に光を照射する第一光源と、第二の方向から前記光学可変素子領域に光を照射する第二光源と、前記光学可変素子領域から反射された光を第三の方向から受光する受光部と、を備え、前記光学可変素子領域を含む前記有価書類の面の垂直線と前記第一の方向とのなす角度である第一の角度と、前記垂直線と前記第二の方向とのなす角度である第二の角度と、前記垂直線と前記第三の方向とのなす角度である第三の角度と、は互いに異なり、前記第三の角度は25°以上、90°未満であることを特徴とする。 The present invention also provides an image sensor unit for detecting an optical variable element region of a valuable document, the first light source for irradiating the optical variable element region from a first direction, and the second direction. The valuable document including the optical variable element region, comprising: a second light source that irradiates light to the optical variable element region; and a light receiving unit that receives light reflected from the optical variable element region from a third direction. A first angle that is an angle between the vertical line of the surface and the first direction, a second angle that is an angle between the vertical line and the second direction, the vertical line and the first direction. The third angle, which is an angle formed with the three directions, is different from each other, and the third angle is 25 ° or more and less than 90 °.
本発明の有価書類識別装置、有価書類処理機、画像センサユニット及び光学可変素子領域の検出方法によれば、有価書類表面の光学可変素子領域の有無の判定精度を向上することができる。そのため、有価書類の真偽を高精度に判定することができる。 According to the valuable document identification device, the valuable document processor, the image sensor unit, and the optical variable element region detection method of the present invention, it is possible to improve the determination accuracy of the presence or absence of the optical variable element region on the valuable document surface. Therefore, the authenticity of the valuable document can be determined with high accuracy.
(a)は、実施形態1に係る画像取得装置の断面模式図であり、(b)は、(a)の図における円で囲まれた領域の拡大図である。(A) is a cross-sectional schematic diagram of the image acquisition device according to the first embodiment, and (b) is an enlarged view of a region surrounded by a circle in the diagram of (a). 実施形態1に係る有価書類の平面模式図である。3 is a schematic plan view of a valuable document according to Embodiment 1. FIG. 実施形態1に係る画像取得装置の平面模式図である。1 is a schematic plan view of an image acquisition device according to Embodiment 1. FIG. 実施形態1に係る画像取得装置における撮像方法を説明するための斜視模式図である。3 is a schematic perspective view for explaining an imaging method in the image acquisition apparatus according to Embodiment 1. FIG. 透明板表面での反射率の入射角依存性を示すグラフであり、透明板の屈折率を1.5とし、フレネルの式から導出されたものである。It is a graph which shows the incident angle dependence of the reflectance on the surface of a transparent plate, The refractive index of a transparent plate is 1.5, and is derived from Fresnel's formula. 実施形態1に係る画像取得装置の別の断面模式図である。6 is another schematic cross-sectional view of the image acquisition device according to Embodiment 1. FIG. (a)は、実施形態1に係る撮像画像(照射角0°、受光角45°)を示した図であり、(b)は、(a)の撮像画像から算出したR、G、Bの強度分布を示すヒストグラムである。(A) is the figure which showed the captured image (irradiation angle 0 degree, light reception angle 45 degrees) which concerns on Embodiment 1, (b) is R, G, and B computed from the captured image of (a). It is a histogram which shows intensity distribution. (a)は、実施形態1に係る撮像画像(照射角60°、受光角45°)を示した図であり、(b)は、(a)の撮像画像から算出したR、G、Bの強度分布を示すヒストグラムである。(A) is the figure which showed the captured image (irradiation angle 60 degrees, light reception angle 45 degrees) based on Embodiment 1, (b) is R, G, and B computed from the captured image of (a). It is a histogram which shows intensity distribution. 本券において、青の色比率を照射角60°の値で規格化した結果を示すグラフである。In this ticket, it is a graph which shows the result of having normalized the color ratio of blue with the value of 60 degrees of irradiation angles. 第一の試験用サンプルにおいて、青の色比率を照射角60°の値で規格化した結果を示すグラフである。It is a graph which shows the result of having normalized the blue color ratio with the value of 60 degrees of irradiation angles in the 1st test sample. 第二の試験用サンプルにおいて、青の色比率を照射角60°の値で規格化した結果を示すグラフである。It is a graph which shows the result of having normalized the color ratio of blue with the value of 60 degrees of irradiation angles in the 2nd sample for a test. 実施形態1に係る有価書類識別装置の断面模式図である。1 is a schematic cross-sectional view of a valuable document identification device according to Embodiment 1. FIG. 実施形態1に係る有価書類識別装置の機能ブロック図である。It is a functional block diagram of the valuable document identification device according to the first embodiment. 実施形態1に係る光学可変インク領域の層構成を示す断面模式図であり、光学可変インクとして有価書類上に薄膜構造が設けられた場合を示す。It is a cross-sectional schematic diagram which shows the layer structure of the optical variable ink area | region which concerns on Embodiment 1, and shows the case where the thin film structure is provided on valuable documents as optical variable ink. 実施形態1に係る光学可変インク領域の層構成を示す断面模式図であり、光学可変インクが光学可変性の顔料を含む場合を示す。FIG. 3 is a schematic cross-sectional view illustrating a layer configuration of an optically variable ink region according to Embodiment 1 and illustrates a case where the optically variable ink includes an optically variable pigment. 実施形態1に係る有価書類識別装置によって行われる光学可変インク領域の判定処理を示すフローチャートである。6 is a flowchart showing optical variable ink region determination processing performed by the valuable document identification apparatus according to the first embodiment. 実施形態1に係る有価書類識別装置によって行われる光学可変インク領域の判定方法を示すフローチャートである。6 is a flowchart illustrating a method for determining an optically variable ink area performed by the valuable document identifying apparatus according to the first embodiment. 図17に示したフローによって2005年発行の100元紙幣を処理する場合を説明するための模式図である。It is a schematic diagram for demonstrating the case where the 100 yuan banknote issued in 2005 is processed with the flow shown in FIG. 実施形態1に係る有価書類識別装置によって行われる光学可変インク領域の評価値の演算方法を示すフローチャートである。6 is a flowchart illustrating a method for calculating an evaluation value of an optically variable ink area, which is performed by the valuable document identifying apparatus according to the first embodiment. 図19に示したフローによって2005年発行の100元紙幣を処理する場合を説明するための図である。It is a figure for demonstrating the case where the 100 yuan banknote issued in 2005 is processed with the flow shown in FIG. 受光角0°における本券と試験用サンプルの評価値分布を示したグラフである。It is the graph which showed the evaluation value distribution of this ticket and the sample for a test in the light reception angle of 0 degree. 受光角15°における本券と試験用サンプルの評価値分布を示したグラフである。It is the graph which showed the evaluation value distribution of this ticket and the sample for a test in the light reception angle of 15 degrees. 受光角30°における本券と試験用サンプルの評価値分布を示したグラフである。It is the graph which showed the evaluation value distribution of this ticket and the sample for a test in the light reception angle of 30 degrees. 受光角40°における本券と試験用サンプルの評価値分布を示したグラフである。It is the graph which showed the evaluation value distribution of this ticket and the sample for a test in the light reception angle of 40 degrees. 受光角45°における本券と試験用サンプルの評価値分布を示したグラフである。It is the graph which showed the evaluation value distribution of this ticket and the test sample in the light reception angle of 45 degrees. 受光角50°における本券と試験用サンプルの評価値分布を示したグラフである。It is the graph which showed the evaluation value distribution of this ticket and the test sample in the light reception angle of 50 degrees. (a)は、実施形態1に係る有価書類処理装置の外観を示す斜視模式図であり、(b)は、実施形態1に係る有価書類処理装置内部の構造概要を示す断面模式図である。(A) is a perspective schematic diagram which shows the external appearance of the valuable document processing apparatus which concerns on Embodiment 1, (b) is a cross-sectional schematic diagram which shows the structure outline | summary inside the valuable document processing apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る別の有価書類処理装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of another valuable document processing apparatus which concerns on Embodiment 1. FIG.
以下、図面を参照して、本発明に係る有価書類識別装置及び有価書類識別方法の好適な実施形態を詳細に説明する。まず、本実施形態に係る有価書類識別装置が備える画像取得装置(画像センサユニット)について説明する。該画像取得装置は、紙幣、小切手、商品券、有価証券等、様々な有価書類から、反射光情報として少なくともカラー画像情報を取得する機能を有し、本実施形態に係る有価書類識別装置内で、取得した画像情報から特徴を抽出して有価書類の種類や光学可変素子領域の有無を判定するために利用される。 DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a valuable document identification device and a valuable document identification method according to the present invention will be described in detail with reference to the drawings. First, an image acquisition device (image sensor unit) included in the valuable document identification device according to the present embodiment will be described. The image acquisition apparatus has a function of acquiring at least color image information as reflected light information from various valuable documents such as banknotes, checks, gift certificates, securities, and the like in the valuable document identification apparatus according to the present embodiment. The feature is extracted from the acquired image information and used to determine the type of valuable document and the presence or absence of the optical variable element region.
本実施形態に係る有価書類識別装置は、図1(a)に示される画像取得装置(画像センサユニット)10を備えている。画像取得装置10は、搬送されている有価書類100の反射画像を取得するものである。有価書類100の搬送方向をX軸負方向とし、搬送面に垂直な軸をZ軸とし、Y軸はX軸及びZ軸に直交するものとする。また、有価書類100は搬送面と略平行に搬送されるものとし、Z軸正側を上方、Z軸負側を下方という。更に、説明の便宜上、有価書類100のZ軸正側の面を上面といい、有価書類100のZ軸負側の面を下面という。 The valuable document identification device according to the present embodiment includes an image acquisition device (image sensor unit) 10 shown in FIG. The image acquisition device 10 acquires a reflected image of the valuable document 100 being conveyed. Assume that the conveyance direction of the valuable document 100 is the negative X-axis direction, the axis perpendicular to the conveyance surface is the Z-axis, and the Y-axis is orthogonal to the X-axis and the Z-axis. The valuable document 100 is conveyed substantially parallel to the conveyance surface, and the positive side of the Z axis is referred to as the upper side, and the negative side of the Z axis is referred to as the lower side. Furthermore, for convenience of explanation, the Z-axis positive side surface of the valuable document 100 is referred to as an upper surface, and the Z-axis negative side surface of the valuable document 100 is referred to as a lower surface.
有価書類100には、光学可変素子領域101が設けられており、光学可変素子領域101には、光学可変素子によって数字等の記号や模様が描かれている。例えば、有価書類100が2005年発行の中国の100元札のとき、図2に示すように、光学可変素子で「100」の文字が描かれている。本実施形態で利用可能な光学可変素子としては、ホログラム及び光学可変インクのような光学的な効果によって色や模様が変化する光学可変素子が挙げられる。なかでも、光学可変インクのように、光学的な効果によって色が変化する光学的可変素子が好適である。この光学可変素子の色の変化は、光学可変素子に照射された光の反射光が、薄膜や回折格子の効果により、干渉することによって起こるものである。 The valuable document 100 is provided with an optical variable element region 101, and symbols and patterns such as numerals are drawn in the optical variable element region 101 by the optical variable element. For example, when the valuable document 100 is a Chinese 100 yuan bill issued in 2005, as shown in FIG. 2, the character “100” is drawn by an optical variable element. Examples of the optical variable element that can be used in the present embodiment include an optical variable element that changes its color or pattern due to an optical effect such as a hologram and an optical variable ink. Among them, an optical variable element that changes color by an optical effect, such as an optical variable ink, is preferable. The color change of the optical variable element is caused by interference of reflected light of the light irradiated to the optical variable element due to the effect of a thin film or a diffraction grating.
画像取得装置10は、筺体18を有し、筺体18の一面(有価書類100に対向する面)にはガラス又は樹脂から形成された透明板19が嵌め込まれて透明な窓部を構成している。画像取得装置10は、有価書類100の表面に光を照射する第一光源11及び第二光源12と、有価書類100の表面で反射される光を受光する受光部13とを有する。第一光源11及び第二光源12から照射された光は、有価書類100の表面で反射されて、受光部13によって受光される。 The image acquisition apparatus 10 includes a housing 18, and a transparent plate 19 formed of glass or resin is fitted on one surface of the housing 18 (a surface facing the valuable document 100) to form a transparent window portion. . The image acquisition apparatus 10 includes a first light source 11 and a second light source 12 that irradiate light on the surface of the valuable document 100, and a light receiving unit 13 that receives light reflected on the surface of the valuable document 100. The light emitted from the first light source 11 and the second light source 12 is reflected by the surface of the valuable document 100 and received by the light receiving unit 13.
受光部13は、ラインセンサ14を備え、ラインセンサ14は、複数の結像素子15と、基板17と、基板17上に設けられた複数の受光素子16から構成される。図3に示すように、複数の結像素子15は、Y軸方向に配列されて結像素子アレイを構成し、複数の受光素子16は、Y軸方向に配列されて受光素子アレイを構成する。結像素子15は、第一光源11から出射されて有価書類100の表面で反射した反射光と、第二光源12から出射されて有価書類100の表面で反射した反射光とを集光して、受光素子16に受光させるように配置される。Y軸方向に配置された受光素子アレイ及び結像素子アレイを有するラインセンサ14は、図4に示すように、Y軸方向全体にわたって有価書類100の直線状の被撮像領域102を一度に撮像する。また、ラインセンサ14は、搬送されている有価書類100に対して、このような撮像を順次行うことにより、有価書類100全体の撮像を行う。 The light receiving unit 13 includes a line sensor 14, and the line sensor 14 includes a plurality of imaging elements 15, a substrate 17, and a plurality of light receiving elements 16 provided on the substrate 17. As shown in FIG. 3, the plurality of imaging elements 15 are arranged in the Y-axis direction to form an imaging element array, and the plurality of light-receiving elements 16 are arranged in the Y-axis direction to form a light-receiving element array. . The imaging element 15 condenses the reflected light emitted from the first light source 11 and reflected from the surface of the valuable document 100 and the reflected light emitted from the second light source 12 and reflected from the surface of the valuable document 100. The light receiving element 16 is arranged to receive light. As shown in FIG. 4, the line sensor 14 having the light receiving element array and the imaging element array arranged in the Y-axis direction images the linear imaged region 102 of the valuable document 100 all at once over the entire Y-axis direction. . Further, the line sensor 14 captures the entire valuable document 100 by sequentially performing such imaging on the valuable document 100 being conveyed.
結像素子15は、ロッドレンズと呼ばれるような透明の筒状の集光レンズであり、有価書類100で反射された反射光を受光素子16に集光するとともに伝搬する。 The imaging element 15 is a transparent cylindrical condensing lens called a rod lens, and condenses the reflected light reflected by the valuable document 100 on the light receiving element 16 and propagates it.
受光素子16は、CCD(Charge-Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等のアレイ状の受光素子を構成し、有価書類100で反射された反射光を受光すると、その受光量に応じた信号を基板17に出力する。また、各受光素子16には、色選択用のフィルタ、具体的には光の三原色である赤(R)、緑(G)又は青(B)のカラーフィルタが設けられている。これにより、各画素に色情報を持たせ、出力信号をカラー化している。 The light receiving element 16 is an arrayed light receiving element such as a CCD (Charge-Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor). When the reflected light reflected by the valuable document 100 is received, the light receiving element 16 corresponds to the amount of light received. A signal is output to the substrate 17. Each of the light receiving elements 16 is provided with a color selection filter, specifically, a color filter of red (R), green (G), or blue (B) that is the three primary colors of light. Thereby, each pixel has color information and the output signal is colored.
なお、有価書類100を撮像可能であれば、受光部13のセンサの種類はラインセンサ14に限定されず、カメラに用いられるエリアセンサ等の他のセンサを利用してもよい。結像素子15についても、受光部13のセンサによって鮮明な画像を撮像可能であれば、ロッドレンズのような等倍光学系に限らず、縮小光学系でもよいし、画像取得装置10が結像素子15等の光学系を有さない構造であってもよい。また、例えばミラーを用いる等、結像素子15の構成によっては、結像素子15の光軸と受光素子16の撮像光軸とが、一直線上にない場合もある。 As long as the valuable document 100 can be imaged, the type of sensor of the light receiving unit 13 is not limited to the line sensor 14, and other sensors such as an area sensor used for the camera may be used. The imaging element 15 is not limited to an equal-magnification optical system such as a rod lens as long as a clear image can be picked up by the sensor of the light receiving unit 13, and may be a reduction optical system. A structure without an optical system such as the child 15 may be used. Further, depending on the configuration of the imaging element 15, for example, using a mirror, the optical axis of the imaging element 15 and the imaging optical axis of the light receiving element 16 may not be on a straight line.
基板17は、受光素子16を駆動するための駆動回路と、受光素子16からの信号を処理して出力するための信号処理回路とを含んでいる。基板17は、各受光素子16の出力信号をAFE(Analog Front End)により取り出し増幅し、A/Dコンバータによりデジタル値に変換し、暗出力をカットした上で、後述する画像処理部に出力する。 The substrate 17 includes a drive circuit for driving the light receiving element 16 and a signal processing circuit for processing and outputting a signal from the light receiving element 16. The substrate 17 takes out and amplifies the output signal of each light receiving element 16 by AFE (Analog Front End), converts it to a digital value by an A / D converter, cuts the dark output, and outputs it to an image processing unit to be described later. .
第一光源11及び第二光源12は、搬送される有価書類100に向けて互いに異なる方向から光を照射するように配置されている。図3に示すように、各光源11、12は、線状光源であり、有価書類100が通過する際に、少なくとも直線状の被撮像領域102を含む領域に直線状の光を照射することができる。また、各光源11、12は、赤、緑及び青の光を含む白色光を照射する。第一光源11及び第二光源12としては、例えば、赤色LED素子、緑色LED素子及び青色LED素子が配列されたLEDアレイや白色LEDが配列されたLEDアレイを用いた線状の光源を利用することができる。あるいは、赤色LED素子、緑色LED素子及び青色LED素子からの、又は白色LEDからの光を導光体で伝播し、直線状に光を照射する線状光源を利用することができる。 The 1st light source 11 and the 2nd light source 12 are arrange | positioned so that light may be irradiated from the mutually different direction toward the valuable document 100 conveyed. As shown in FIG. 3, each of the light sources 11 and 12 is a linear light source, and when the valuable document 100 passes, it can irradiate at least a region including the linear imaged region 102 with linear light. it can. The light sources 11 and 12 emit white light including red, green, and blue light. As the first light source 11 and the second light source 12, for example, a linear light source using an LED array in which red LED elements, green LED elements, and blue LED elements are arrayed or an LED array in which white LEDs are arrayed is used. be able to. Or the linear light source which propagates the light from a red LED element, a green LED element, a blue LED element, or from white LED with a light guide, and irradiates light linearly can be utilized.
なお、各光源11、12が照射する光は、光学可変素子領域101の色に対応する波長の光を含むものであれば特に限定されない。また、各光源11、12は、赤、緑及び青の光を順次照射してもよく、この場合は、各受光素子16に色選択用のフィルタを設けなくてもよい。更に、各光源11、12は、面光源であってもよい。 The light emitted from each of the light sources 11 and 12 is not particularly limited as long as it includes light having a wavelength corresponding to the color of the optical variable element region 101. In addition, each of the light sources 11 and 12 may sequentially emit red, green, and blue light. In this case, each light receiving element 16 may not be provided with a color selection filter. Furthermore, the light sources 11 and 12 may be surface light sources.
次に、画像取得装置10における第一光源11、第二光源12及び受光部13の配置について説明する。図1及び図4に示すように、第一光源11及び第二光源12は、それぞれ、第一の方向及び第二の方向から有価書類100(光学可変素子領域101)に光を照射するように配設されている。また、受光部13は、有価書類100(光学可変素子領域101)から反射される光を第三の方向から受光するように配設されている。より具体的には、第一光源11及び第二光源12から照射される光の光軸11A及び12Aは、それぞれ、第一の方向及び第二の方向と平行で、透明板19の屈折率に応じて有価書類100の面の垂直線103側(Z軸正側)にオフセットして配設されている。また、各結像素子15の光軸15A及び各受光素子16の撮像光軸16Aは、第三の方向と平行で、透明板19の屈折率に応じて垂直軸103側(Z軸正側)にオフセットして配設されている。各光軸のオフセットの量は、透明板19の屈折率及び厚みに応じて決定されている。なお、透光板19に入射前の光の進行方向と、透光板19を透過後の光の進行方向とは、図1(b)に示すように、互いに平行であることから、以下の第一の方向、第二の方向及び第三の方向と垂直線103とがなす角度に関する説明では、特に必要がない限り、各光軸のオフセットを考慮せずに説明する。 Next, the arrangement of the first light source 11, the second light source 12, and the light receiving unit 13 in the image acquisition device 10 will be described. As shown in FIGS. 1 and 4, the first light source 11 and the second light source 12 irradiate the valuable document 100 (optical variable element region 101) with light from the first direction and the second direction, respectively. It is arranged. The light receiving unit 13 is disposed so as to receive light reflected from the valuable document 100 (optical variable element region 101) from the third direction. More specifically, the optical axes 11A and 12A of the light emitted from the first light source 11 and the second light source 12 are parallel to the first direction and the second direction, respectively, and have a refractive index of the transparent plate 19. Accordingly, the value document 100 is arranged with an offset to the vertical line 103 side (Z-axis positive side) of the surface of the valuable document 100. Further, the optical axis 15A of each imaging element 15 and the imaging optical axis 16A of each light receiving element 16 are parallel to the third direction, and the vertical axis 103 side (Z-axis positive side) according to the refractive index of the transparent plate 19. It is offset and arranged. The amount of offset of each optical axis is determined according to the refractive index and thickness of the transparent plate 19. Since the traveling direction of the light before entering the light transmitting plate 19 and the traveling direction of the light after passing through the light transmitting plate 19 are parallel to each other as shown in FIG. In the description regarding the angles formed by the first direction, the second direction, and the third direction and the vertical line 103, the description will be made without considering the offset of each optical axis unless otherwise required.
ここで、有価書類100の面の垂直線103に対して、第一の方向、第二の方向及び第三の方向がなす角度をそれぞれ、第一の角度θ1、第二の角度θ2及び第三の角度θ3とすると、第一光源11、第二光源12及び受光部13は、θ1、θ2及びθ3が互いに異なる関係となるように配置されている。これにより、第一光源11による有価書類100の第一画像における光学可変素子領域101の色等の外観と、第二光源12による有価書類100の第二画像における光学可変素子領域101の色等の外観とが異なることになり、光学可変素子領域101の検出が可能となる。 Here, the angles formed by the first direction, the second direction, and the third direction with respect to the vertical line 103 of the surface of the valuable document 100 are the first angle θ1, the second angle θ2, and the third angle, respectively. The first light source 11, the second light source 12, and the light receiving unit 13 are arranged such that θ1, θ2, and θ3 are different from each other. Thereby, the appearance of the color or the like of the optical variable element region 101 in the first image of the valuable document 100 by the first light source 11, and the color or the like of the optical variable element region 101 in the second image of the valuable document 100 by the second light source 12. As a result, the optical variable element region 101 can be detected.
特に第三の角度θ3に関しては、25°以上、90°未満となるように設定されている。θ3を25°以上とすることによって、後述するように、第一画像における光学可変素子領域101の色と第二画像における光学可変素子領域101の色との相違を明確にすることができ、光学可変素子領域101を高精度に検出することが可能となる。他方、θ3が25°未満であると、これらの色の変化が乏しく、光学可変素子領域101の検出精度が著しく低下する。 In particular, the third angle θ3 is set to be 25 ° or more and less than 90 °. By setting θ3 to 25 ° or more, as described later, it is possible to clarify the difference between the color of the optical variable element region 101 in the first image and the color of the optical variable element region 101 in the second image. The variable element region 101 can be detected with high accuracy. On the other hand, if θ3 is less than 25 °, these color changes are scarce and the detection accuracy of the optical variable element region 101 is significantly lowered.
第三の角度θ3の上限は、有価書類100表面における反射光を受光できる範囲、すなわち90°未満であれば特に限定されないが、65°以下であることが好ましく、60°以下であることがより好ましく、55°以下であることが更に好ましい。図5に示すように、透明板19表面での反射率は、入射角が65°を超えると急激に大きくなるため、θ3が65°を超えると、透明板19表面での反射光に起因して、第一画像及び第二画像が不明瞭となる場合がある。θ3が60°を超えると、受光部13を筺体18内に収容することが困難になる場合がある。また、θ3を55°以下とすることによって、第一画像における光学可変素子領域101と第二画像における光学可変素子領域101との間における色の変化をより確実なものとすることができる。 The upper limit of the third angle θ3 is not particularly limited as long as it is within a range in which the reflected light on the surface of the valuable document 100 can be received, that is, less than 90 °, but is preferably 65 ° or less, and more preferably 60 ° or less. Preferably, it is 55 degrees or less. As shown in FIG. 5, the reflectance on the surface of the transparent plate 19 rapidly increases when the incident angle exceeds 65 °. Therefore, when θ3 exceeds 65 °, it is caused by the reflected light on the surface of the transparent plate 19. Thus, the first image and the second image may be unclear. If θ3 exceeds 60 °, it may be difficult to accommodate the light receiving unit 13 in the housing 18. In addition, by setting θ3 to 55 ° or less, the color change between the optical variable element region 101 in the first image and the optical variable element region 101 in the second image can be made more reliable.
第一の角度θ1及び第二の角度θ2は特に限定されないが、光学可変素子領域101の色変化を大きくすることが好ましい。したがって、第一の方向は垂直線103にできるだけ近いことが好ましく、他方、第二の方向は垂直線103からできるだけ離れていることが好ましい。また、θ2がθ3に近くなると、後述するように第二光源12からの正反射成分が受光部13に直接入射する可能性がある。更に、図5に示したように、透明板19表面での反射率は、入射角が65°を超えると急激に大きくなる。以上のような観点から、θ1は、-10°~20°であり、θ2は、40°~70°であることが好ましく、θ1は、-5°~15°であり、θ2は、45°~65°であることがより好ましい。なお、第一光源11及び第二光源12は、通常、無偏光を照射するため、第二光源12からの正反射成分の反射率は、反射率=S波成分の割合×S波の反射率+P波成分の割合×P波の反射率(ただし、S波成分の割合=P波成分の割合=50%)の式で表されると考えられる。すなわち、反射率=(S波の反射率+P波の反射率)/2の式で表されると考えられる。 The first angle θ1 and the second angle θ2 are not particularly limited, but it is preferable to increase the color change of the optical variable element region 101. Accordingly, the first direction is preferably as close as possible to the vertical line 103, while the second direction is preferably as far away from the vertical line 103 as possible. When θ2 is close to θ3, the specular reflection component from the second light source 12 may directly enter the light receiving unit 13 as described later. Furthermore, as shown in FIG. 5, the reflectance at the surface of the transparent plate 19 increases rapidly when the incident angle exceeds 65 °. From the above viewpoint, θ1 is preferably −10 ° to 20 °, θ2 is preferably 40 ° to 70 °, θ1 is −5 ° to 15 °, and θ2 is 45 °. More preferably, it is ˜65 °. Since the first light source 11 and the second light source 12 normally irradiate non-polarized light, the reflectance of the regular reflection component from the second light source 12 is as follows: reflectance = ratio of S wave component × S wave reflectance. It is considered that it is expressed by an expression of the ratio of + P wave component × the reflectance of P wave (where the ratio of S wave component = the ratio of P wave component = 50%). In other words, it is considered that reflectance = (reflectance of S wave + reflectivity of P wave) / 2.
第一光源11、第二光源12及び受光部13は、直線状の被撮像領域102に沿って平行に配置されている。そのため、図4及び図6に示すように、被撮像領域102と任意の位置で直交する基準面104において、それらの位置関係は図示するような位置関係となる。また、透明板19は、第一光源11及び第二光源12と、有価書類100との間に配置されている。そのため、図6に示すように、透明板19での正反射光が受光部13に入射し得る領域19Rが存在する。この透明板19での正反射光が受光部13に入射すると光学可変素子領域101の検出精度が低下する。そこで、第一光源11及び第二光源12は、この領域19R内に配置されずに、領域19Rを間に挟んで配置されている。これにより、透明板19での正反射光が受光部13に入射することを効果的に抑制している。 The first light source 11, the second light source 12, and the light receiving unit 13 are arranged in parallel along the linear imaged region 102. Therefore, as shown in FIGS. 4 and 6, the positional relationship between the reference surface 104 orthogonal to the imaging region 102 at an arbitrary position is the positional relationship as illustrated. The transparent plate 19 is disposed between the first light source 11 and the second light source 12 and the valuable document 100. Therefore, as shown in FIG. 6, there is a region 19 </ b> R where regular reflection light from the transparent plate 19 can enter the light receiving unit 13. When the specularly reflected light from the transparent plate 19 enters the light receiving unit 13, the detection accuracy of the optical variable element region 101 decreases. Therefore, the first light source 11 and the second light source 12 are not disposed in the region 19R, but are disposed with the region 19R interposed therebetween. Thereby, regular reflection light from the transparent plate 19 is effectively suppressed from entering the light receiving unit 13.
なお、透明板19の少なくとも一方の面(好ましくは両面)に反射防止層を設けてもよく、これによっても、透明板19での正反射光が受光部13に入射することを軽減することが可能である。 It should be noted that an antireflection layer may be provided on at least one surface (preferably both surfaces) of the transparent plate 19, and this also reduces the incidence of regular reflection light from the transparent plate 19 on the light receiving unit 13. Is possible.
ここで実際に、種々の光源の照射角と種々の受光部の受光角において、2005年発行の100元紙幣(本券。以下、単に100元紙幣とも言う。)と、本券の光学可変インク部の図柄を一般的なインクで印刷した試験用サンプル二種との光学可変インク領域を撮像し、得られた画像の赤(R)、緑(G)、青(B)の強度比を測定した結果を示す。ここでは、透明板を配置せず、白色光源(平行光)を紙幣に直接照明し、ラインセンサにより撮影した。照射角とは、光源の照射方向(光軸)と紙幣面の垂直線との間のなす角を意味し、上記θ1及びθ2に相当する。受光角とは、ラインセンサの撮像方向(撮像光軸)と紙幣面の垂直線との間のなす角を意味し、上記θ3に相当する。 Here, in actuality, a 100 yuan banknote issued in 2005 (hereinafter referred to as a “100 yuan banknote”) and an optically variable ink of this book at various illumination angles of light sources and light receiving angles of various light receiving sections. Image the optically variable ink area with two types of test samples printed with general ink on the design of the part, and measure the intensity ratio of red (R), green (G), and blue (B) in the resulting image The results are shown. Here, a transparent plate was not disposed, and a white light source (parallel light) was directly illuminated on the banknote and photographed by a line sensor. The irradiation angle means an angle formed between the irradiation direction (optical axis) of the light source and the vertical line of the banknote surface, and corresponds to the above θ1 and θ2. The light receiving angle means an angle formed between the imaging direction (imaging optical axis) of the line sensor and the vertical line of the banknote surface, and corresponds to the above θ3.
具体的には、まず、図7(a)及び図8(a)に示すように、各条件において得られた画像から、同じ場所の5×5画素(0.5mm×0.5mm)のデータを抽出した。抽出する画素の範囲は、照射角及び受光角によって色の変化が大きくなるように決定した。次に、図7(b)及び図8(b)に示すように、抽出した範囲でR、G、Bの強度分布を算出した。 Specifically, first, as shown in FIGS. 7A and 8A, data of 5 × 5 pixels (0.5 mm × 0.5 mm) at the same place is obtained from images obtained under each condition. Extracted. The range of pixels to be extracted was determined so that the color change was large depending on the irradiation angle and the light receiving angle. Next, as shown in FIGS. 7B and 8B, R, G, and B intensity distributions were calculated in the extracted range.
次に、図7(b)及び図8(b)に示すように、各画像について、R、G、Bの各強度の平均を算出し、算出したR、G、Bの各平均強度の、R、G及びBの平均強度全体に対する比率(色比率)を算出した。そして、照射角及び受光角を変化させた際の青の色比率の変動を評価した。なお、青の色比率を用いた理由は、100元紙幣の光学可変インク領域は、照射角及び受光角が大きくなるにつれて緑色から青色に変化し、青色成分の変化が大きいためである。また、図9~11に、各媒体別に、青の色比率を照射角60°の値で規格化した結果を示す。なお、測定装置の配置の関係上、受光角0°では照射角25°以上、受光角15°では照射角10°以上で測定を行った。図10及び図11に示すように、試験用サンプルでは、いずれの受光角でも照射角を変化させたときの青の色比率の変動は小さいのに対して、図9に示すように、本券では、受光角がある程度大きくなると、照射角を変化させた時の青の色比率の変動が大きくなった。 Next, as shown in FIG. 7B and FIG. 8B, for each image, the average of each intensity of R, G, B is calculated, and the calculated average intensity of each of R, G, B is The ratio (color ratio) of R, G, and B to the entire average intensity was calculated. And the fluctuation | variation of the blue color ratio at the time of changing an irradiation angle and a light reception angle was evaluated. The reason why the blue color ratio is used is that the optically variable ink area of the 100 yuan banknote changes from green to blue as the irradiation angle and the light receiving angle increase, and the change of the blue component is large. 9 to 11 show the results of normalizing the blue color ratio with the value of the irradiation angle of 60 ° for each medium. Note that, due to the arrangement of the measuring apparatus, the measurement was performed at an irradiation angle of 25 ° or more at a light reception angle of 0 ° and at an irradiation angle of 10 ° or more at a light reception angle of 15 °. As shown in FIG. 10 and FIG. 11, in the test sample, the variation of the blue color ratio when the irradiation angle is changed at any light receiving angle is small, but as shown in FIG. Then, when the light receiving angle was increased to some extent, the variation in the blue color ratio when the irradiation angle was changed increased.
また、本券について、各受光角において、照射角60°の青の色比率を最小の照射角の青の色比率で割り、青色の増加率を算出した結果を下記表1に示す。 Table 1 below shows the results of calculating the blue increase rate by dividing the blue color ratio at the irradiation angle of 60 ° by the blue color ratio at the minimum irradiation angle at each light receiving angle.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
この結果、本券では、受光角25°以上(好ましくは30°以上)であれば、光学可変インク領域の色の変化が充分に大きくなるため、光学可変インク領域の検出が可能であることが分かった。なお、後述するように、個々の紙幣の測定値にはばらつきがあるため、受光角0°又は15°では、本券の青色の増加率が小さいものと、試験用サンプルの青色の増加率が大きいものとが混同されるおそれがある。 As a result, in the present ticket, if the light receiving angle is 25 ° or more (preferably 30 ° or more), the change in the color of the optically variable ink region becomes sufficiently large, so that the optically variable ink region can be detected. I understood. As will be described later, since the measured values of individual banknotes vary, at a light receiving angle of 0 ° or 15 °, the blue increase rate of the coupon is small and the blue increase rate of the test sample is low. There is a risk of being confused with a large one.
次に、本実施形態に係る有価書類識別装置及び有価書類識別方法を詳細に説明する。本実施形態に係る有価書類識別装置は、有価書類の識別を行うに際し、識別対象となる有価書類における光学可変素子領域の有無を判定する。光学可変素子領域が設けられた有価書類であれば、有価書類の種類に拘わらず適用可能な技術である。 Next, the valuable document identification device and the valuable document identification method according to the present embodiment will be described in detail. When identifying a valuable document, the valuable document identifying apparatus according to the present embodiment determines the presence or absence of an optical variable element region in the valuable document to be identified. Any valuable document provided with an optical variable element region can be applied regardless of the type of valuable document.
本実施形態では、観察する角度によって外観が変化する光学可変素子の特徴から、光学可変素子領域を撮像する受光部の位置を固定して光源を移動すると、該受光部の位置で観察される光学可変素子領域の外観が変化することを利用する。すなわち、異なる2つの方向から有価書類に向けて光を照射し、各方向からの光を利用して得られた2つの光学可変素子領域の反射光情報、具体的には画像情報に基づいて有価書類が光学可変素子領域を有するか否かを判定するものである。 In the present embodiment, from the feature of the optical variable element whose appearance changes depending on the observation angle, when the position of the light receiving unit that images the optical variable element region is fixed and the light source is moved, the optical that is observed at the position of the light receiving unit The change in the appearance of the variable element region is used. That is, the valuable document is irradiated with light from two different directions, and the reflected light information of the two optical variable element regions obtained by using the light from each direction, specifically, the valuable information based on the image information. It is determined whether or not the document has an optical variable element region.
本実施形態に係る有価書類識別装置1は、図12に示すように、有価書類100の到来を検知するタイミングセンサ2と、有価書類100を搬送するローラ(搬送機構)3と、2つの画像取得装置(画像センサユニット)10a及び10bとを備えている。画像取得装置10a及び10bは、それぞれ、搬送面のZ軸方向正側及びZ軸方向負側に設けられている。各画像取得装置10a、10bは、上述した画像取得装置10と同様の構成を有する。本実施形態に係る有価書類識別装置1は、このような2つの画像取得装置10a及び10bを備えることによって、有価書類100の上面若しくは下面の一方、又は、有価書類100の上下両面を撮像することが可能であり、搬送されてきた有価書類100の表裏に関わらず、有価書類100の光学可変素子領域を撮像することができる。 As shown in FIG. 12, the valuable document identification apparatus 1 according to the present embodiment includes a timing sensor 2 that detects the arrival of the valuable document 100, a roller (conveying mechanism) 3 that conveys the valuable document 100, and two image acquisitions. Devices (image sensor units) 10a and 10b. The image acquisition devices 10a and 10b are provided on the Z axis direction positive side and the Z axis direction negative side of the transport surface, respectively. Each of the image acquisition devices 10a and 10b has a configuration similar to that of the image acquisition device 10 described above. The valuable document identification device 1 according to the present embodiment includes such two image acquisition devices 10a and 10b, thereby imaging one of the upper surface and the lower surface of the valuable document 100 or both the upper and lower surfaces of the valuable document 100. The optical variable element region of the valuable document 100 can be imaged regardless of the front and back of the valuable document 100 that has been conveyed.
タイミングセンサ2は、識別対象となる有価書類100の到来を検知する機能を有し、この有価書類100に関する処理を開始するタイミングを決定するために利用される。タイミングセンサ2は、例えば投光部及び受光部によって形成される。投光部から投光されて受光部によって受光される光が、投光部と受光部の間を搬送される有価書類100によって遮られることを利用して、有価書類100の到来が検知される。そして、処理対象となる有価書類100の到来が検知されると、有価書類100の画像を撮像するための処理等が開始される。これらの処理の詳細は後述する。 The timing sensor 2 has a function of detecting the arrival of the valuable document 100 to be identified, and is used to determine the timing for starting processing related to the valuable document 100. The timing sensor 2 is formed by, for example, a light projecting unit and a light receiving unit. The arrival of the valuable document 100 is detected by utilizing the fact that the light projected from the light projecting unit and received by the light receiving unit is blocked by the valuable document 100 conveyed between the light projecting unit and the light receiving unit. . When the arrival of the valuable document 100 to be processed is detected, processing for capturing an image of the valuable document 100 is started. Details of these processes will be described later.
ローラ3は、モータ等の図示しない駆動装置で駆動され、有価書類識別装置1内で有価書類100を搬送する搬送機構として機能する。有価書類識別装置1に受け入れられた有価書類100は、装置内に設けられた複数のローラ3によって搬送され、画像取得装置10a及び10bの間を通過して、装置外へ排出される。各ローラ3は、時計回り及び反時計回りのいずれにも回転可能に設置されており、これらのローラ3の回転が後述の搬送制御部によって制御されることによって、有価書類100は、X軸負方向へ搬送される。 The roller 3 is driven by a driving device (not shown) such as a motor and functions as a transport mechanism that transports the valuable document 100 in the valuable document identification device 1. The valuable document 100 received by the valuable document identification apparatus 1 is conveyed by a plurality of rollers 3 provided in the apparatus, passes between the image acquisition apparatuses 10a and 10b, and is discharged out of the apparatus. Each roller 3 is installed so as to be rotatable in both clockwise and counterclockwise directions, and the rotation of these rollers 3 is controlled by a later-described conveyance control unit, whereby the valuable document 100 has an X-axis negative direction. It is conveyed in the direction.
なお、有価書類100の搬送方向(X軸方向)が、有価書類100の長手方向又は短手方向のいずれと平行な方向となるかは特に限定されない。例えば、光学可変素子領域の色等の外観が全方位で変化する場合には、有価書類100の長手方向又は短手方向のいずれに有価書類100を搬送してもよい。また、光学可変素子領域の色等の外観が有価書類100の長手方向又は短手方向のいずれかと平行な方向に搬送される時のみで変化する場合には、その方向と平行な長手方向又は短手方向に有価書類100を搬送すればよい。搬送方向や搬送速度等を含む有価書類100の搬送方法は、光学可変素子の特性に応じて、後述する方法によって光学可変素子領域の有無を検出できるように適宜決定される。 Note that there is no particular limitation as to whether the conveyance direction (X-axis direction) of the valuable document 100 is parallel to the longitudinal direction or the short direction of the valuable document 100. For example, when the appearance such as the color of the optical variable element region changes in all directions, the valuable document 100 may be conveyed in either the longitudinal direction or the short direction of the valuable document 100. Further, when the appearance of the optical variable element region such as the color changes only when it is conveyed in a direction parallel to either the longitudinal direction or the lateral direction of the valuable document 100, the longitudinal direction or the short direction parallel to that direction is changed. The valuable document 100 may be conveyed in the hand direction. The method for transporting the valuable document 100 including the transport direction and the transport speed is appropriately determined according to the characteristics of the optical variable element so that the presence or absence of the optical variable element region can be detected by a method described later.
有価書類識別装置1は、図1及び図12に示した構成の他に、図13に示すように、通信インターフェイス4(以下「通信I/F」と記載する)、制御部20及び記憶部30を有している。また、制御部20は、有価書類100の種類等の識別や光学可変素子領域の有無を判定する判定部21と、各光源11、12を制御する光源制御部22と、有価書類100の撮像及び撮像した画像の画像処理を行う画像処理部23と、有価書類100を搬送するローラ3等の搬送機構を制御する搬送制御部24とを有する。また、記憶部30は、第一光源11からの照射光によって撮像された有価書類100の第一画像31と、第二光源12からの照射光によって撮像された有価書類100の第二画像32と、有価書類100を撮像した各画像31、32の全体又は特徴部の判定処理等を行うために利用される各種の基準画像33と、これらに関連する情報とを記憶している。 In addition to the configuration shown in FIGS. 1 and 12, the valuable document identification device 1 includes a communication interface 4 (hereinafter referred to as “communication I / F”), a control unit 20 and a storage unit 30 as shown in FIG. have. The control unit 20 also identifies the type of the valuable document 100 and the like, determines the presence / absence of the optical variable element region, the light source control unit 22 that controls each of the light sources 11 and 12, It has an image processing unit 23 that performs image processing of a captured image, and a conveyance control unit 24 that controls a conveyance mechanism such as a roller 3 that conveys the valuable document 100. The storage unit 30 also includes a first image 31 of the valuable document 100 captured by the irradiation light from the first light source 11, and a second image 32 of the valuable document 100 captured by the irradiation light from the second light source 12. Each of the images 31 and 32 obtained by capturing the valuable document 100 or various reference images 33 used for performing the determination processing of the characteristic portion and the like and information related thereto are stored.
判定部21は、有価書類100を撮像した第一画像31又は第二画像32と、予め処理対象となる有価書類100に関して記憶部30に記憶されている基準画像33とを比較することにより、有価書類100の種類等を特定する機能を有する。 The determination unit 21 compares the first image 31 or the second image 32 obtained by capturing the valuable document 100 with the reference image 33 stored in the storage unit 30 with respect to the valuable document 100 to be processed in advance. It has a function of specifying the type of document 100 and the like.
具体的には、例えば、処理対象が米国紙幣である場合には、記憶部30には予め1ドル、2ドル、5ドル、10ドル、20ドル、50ドル及び100ドルの各紙幣の基準画像33が記憶されている。そして、処理中の有価書類100を撮像した画像の特徴部分が、各基準画像33と比較される。その結果、有価書類100を撮像した画像の特徴部分が、100ドル紙幣の基準画像33と一致するとともに他の金種の基準画像33と異なる場合に、この有価書類100を100ドル紙幣であると判定する。処理対象とする有価書類100が紙幣である場合には、判定部21は、このように金種識別を行う他、紙幣が本物であるか否かを判定する真偽判別や、紙幣が所定基準を満たし再利用可能な紙幣であるか否かを判定する正損判別等の処理を行うこともできる。このような有価書類の識別処理は、有価書類識別装置の分野において従来から利用されている技術であるため、詳細な説明は省略する。 Specifically, for example, when the processing target is a US banknote, the storage unit 30 stores in advance a reference image of each dollar bill, $ 2, $ 5, $ 10, $ 20, $ 50, and $ 100. 33 is stored. Then, the characteristic portion of the image obtained by capturing the valuable document 100 being processed is compared with each reference image 33. As a result, if the characteristic portion of the image obtained by capturing the valuable document 100 matches the reference image 33 of the 100 dollar bill and is different from the reference image 33 of another denomination, the valuable document 100 is a 100 dollar bill. judge. When the valuable document 100 to be processed is a banknote, the determination unit 21 performs denomination identification as described above, authenticity determination for determining whether or not the banknote is genuine, and the banknote as a predetermined standard. It is also possible to perform processing such as damage determination for determining whether or not the bill is reusable. Such a valuable document identification process is a technique conventionally used in the field of a valuable document identification apparatus, and thus detailed description thereof is omitted.
また、判定部21は、有価書類100が光学可変素子領域101を有するか否かの判定を行う機能を有している。有価書類100を撮像した第一画像31及び第二画像32を利用して、有価書類100が光学可変素子領域101を有するか否かを判定するものであるが、これについての詳細は後述する。 The determination unit 21 has a function of determining whether the valuable document 100 has the optical variable element region 101. Whether or not the valuable document 100 has the optical variable element region 101 is determined by using the first image 31 and the second image 32 obtained by capturing the valuable document 100, details of which will be described later.
光源制御部22は、各画像取得装置10a、10bの第一光源11及び第二光源12の点灯を制御する機能を有する。各光源11、12による個別の有価書類画像を撮像するために、各光源11、12を順に点灯させる動的点灯制御を行うものである。 The light source control unit 22 has a function of controlling lighting of the first light source 11 and the second light source 12 of each of the image acquisition devices 10a and 10b. In order to capture individual valuable document images from the light sources 11 and 12, dynamic lighting control is performed to turn on the light sources 11 and 12 in order.
画像処理部23は、光源制御部22が制御する各光源11、12の点灯のタイミングに合わせて受光素子16による受光を制御する機能を有する。また、受光部13からの出力信号を処理して、第一画像31及び第二画像32を記憶部30に保存する機能を有する。また、判定部21による処理に応じて各画像31、32の画像処理を行う機能も有するが、これらについての詳細は後述する。 The image processing unit 23 has a function of controlling light reception by the light receiving element 16 in accordance with the lighting timing of the light sources 11 and 12 controlled by the light source control unit 22. Further, it has a function of processing the output signal from the light receiving unit 13 and saving the first image 31 and the second image 32 in the storage unit 30. In addition, it also has a function of performing image processing on each of the images 31 and 32 in accordance with processing by the determination unit 21, and details thereof will be described later.
記憶部30は、揮発性又は不揮発性のメモリやハードディスク等の記憶装置で構成され、有価書類識別装置1で行われる処理に必要な各種のデータを記憶するために利用される。 The storage unit 30 includes a storage device such as a volatile or nonvolatile memory or a hard disk, and is used to store various data necessary for processing performed by the valuable document identification device 1.
通信I/F4は、有価書類識別装置1の外部からの信号を受信したり、有価書類識別装置1から外部へ信号を送信する機能を有する。通信I/F4によって、例えば、外部からの信号を受信して、制御部20の動作設定を変更したり、記憶部30に記憶されているソフトウェアプログラムやデータの更新、追加及び削除の処理を行ったり、有価書類識別装置1による有価書類100の判定結果を外部へ出力することができる。 The communication I / F 4 has a function of receiving a signal from the outside of the valuable document identification device 1 and transmitting a signal from the valuable document identification device 1 to the outside. The communication I / F 4 receives, for example, an external signal, changes the operation setting of the control unit 20, and performs update, addition, and deletion processing of software programs and data stored in the storage unit 30. Or the determination result of the valuable document 100 by the valuable document identification device 1 can be output to the outside.
なお、制御部20は、例えば、各種の処理を実現するためのソフトウェアプログラムと、当該ソフトウェアプログラムを実行するCPUと、当該CPUによって制御される各種ハードウェア等によって構成されている。各部の動作に必要なソフトウェアプログラムやデータの保存には、記憶部30や、別途専用に設けられたRAMやROM等のメモリやハードディスク等が利用される。 Note that the control unit 20 includes, for example, a software program for realizing various processes, a CPU that executes the software program, and various hardware controlled by the CPU. For storage of software programs and data necessary for the operation of each unit, a storage unit 30, a memory such as a RAM and a ROM provided separately, a hard disk, and the like are used.
次に、有価書類識別装置1によって有価書類100上の光学可変素子領域、特に光学可変インク領域の有無を判定するための処理について説明する。 Next, a process for determining the presence or absence of the optical variable element region on the valuable document 100, particularly the optically variable ink region, by the valuable document identification device 1 will be described.
まず、有価書類100に印刷された光学可変インクについて説明する。有価書類100に使用される偽造防止用インクには様々な種類のものがあるが、光学可変インク又はカラーシフトインクとは、光の照射角及び受光角(観察方向)により、光学可変インク(印刷された模様)の色、より詳細には色相及び/又は明度が変化する様子が観察される特殊なインク構造のことを言う。光学可変インク領域110には、異なる界面における反射光が互いに干渉する多層薄膜構造から構成される光干渉構造が設けられている。より具体的には、図14に示すように、多層薄膜構造(光干渉構造)111が有価書類100の基材105上に積層されていてもよいし、図15に示すように、光学可変性の顔料として多層薄膜構造(光干渉構造)111を含有するインクから形成された層が設けられていてもよい。前者の場合、多層薄膜構造111は、基材105側から、反射層112、光透過層113及びコーティング層114がこの順に積層された構造を有する。後者の場合、多層薄膜構造111は、反射層112が光透過層113で挟み込まれた構造全体がコーティング層114で被覆された構造を有する。いずれの場合も、反射層112は、アルミニウム等の金属から形成され、光透過層113は、樹脂、ガラス等の光透過材料から形成され、コーティング層114は、半透明の金属層であり、ハーフミラーとして機能する。このような構造により、反射層112からの反射光と、コーティング層114からの反射光との干渉により、強め合う波長の光が出射される。そして、入射角及び反射角の大きさによって干渉光の色が変化することになる。また、光透過層113の厚みを変更することによって、様々な色のインクを作製することができる。紙幣の光学可変インク領域に白色光を照射した場合について例示すると、照射角及び受光角が大きくなるにつれて、100元紙幣では緑色から青色に、2003年発行の米国20ドル紙幣では黄色から緑色に、2002年発行の50ユーロ紙幣では紫色から緑色に、2013年発行の5ユーロ紙幣では緑色から青色に、それぞれ変化する。 First, the optical variable ink printed on the valuable document 100 will be described. There are various types of anti-counterfeit ink used for the valuable document 100. The optically variable ink or the color shift ink is an optically variable ink (printing) depending on the light irradiation angle and the light receiving angle (observation direction). This is a special ink structure in which the color of the printed pattern), more specifically, the hue and / or lightness is observed to change. The optically variable ink region 110 is provided with an optical interference structure composed of a multilayer thin film structure in which reflected lights at different interfaces interfere with each other. More specifically, as shown in FIG. 14, a multilayer thin film structure (light interference structure) 111 may be laminated on the base material 105 of the valuable document 100, or as shown in FIG. A layer formed from an ink containing a multilayer thin film structure (light interference structure) 111 may be provided as the pigment. In the former case, the multilayer thin film structure 111 has a structure in which a reflective layer 112, a light transmission layer 113, and a coating layer 114 are laminated in this order from the substrate 105 side. In the latter case, the multilayer thin film structure 111 has a structure in which the entire structure in which the reflective layer 112 is sandwiched between the light transmission layers 113 is covered with the coating layer 114. In any case, the reflective layer 112 is formed from a metal such as aluminum, the light transmission layer 113 is formed from a light transmission material such as resin or glass, and the coating layer 114 is a translucent metal layer. Acts as a mirror. With such a structure, light having a strengthening wavelength is emitted by interference between reflected light from the reflective layer 112 and reflected light from the coating layer 114. Then, the color of the interference light changes depending on the incident angle and the reflection angle. Further, by changing the thickness of the light transmission layer 113, inks of various colors can be produced. Illustrating the case of irradiating the optically variable ink area of the banknote with white light, as the irradiation angle and the light receiving angle increase, the 100 yuan banknote changes from green to blue, and the US 20 dollar banknote issued in 2003 changes from yellow to green. The 50 euro banknote issued in 2002 changes from purple to green, and the 5 euro banknote issued in 2013 changes from green to blue.
有価書類識別装置1では、第一光源11から白色光を照射して受光部13によって撮像される光学可変インク領域110の色と、第二光源12から白色光を照射して受光部13によって撮像される光学可変インク領域110の色とが互いに異なるように、受光部13の位置と、受光部13に対する第一光源11及び第二光源12の位置とが調整されている。すなわち、各光源11及び12によって異なる色の光学可変インク領域110の画像が撮像されるように、上述の角度θ1、θ2及びθ3が調整されている。 In the valuable document identification device 1, the color of the optically variable ink region 110 that is imaged by the light receiving unit 13 by irradiating the white light from the first light source 11 and the image by the light receiving unit 13 by irradiating the white light from the second light source 12. The position of the light receiving unit 13 and the positions of the first light source 11 and the second light source 12 with respect to the light receiving unit 13 are adjusted so that the colors of the optically variable ink areas 110 to be different from each other. That is, the above-described angles θ1, θ2, and θ3 are adjusted so that images of the optically variable ink regions 110 of different colors are captured by the light sources 11 and 12, respectively.
次に、図16のフローチャートを参照して、有価書類100が光学可変インク領域110を含むものであるか否かを判定するための処理について説明する。 Next, a process for determining whether or not the valuable document 100 includes the optically variable ink area 110 will be described with reference to the flowchart of FIG.
まず、タイミングセンサ2により有価書類識別装置1に有価書類100が到来したことが検知されると(ステップS1;Yes)、制御部20では、光源制御部22による各光源11、12の点灯制御が開始されるとともに、画像処理部23による有価書類100の撮像及び撮像された画像の記憶部30への保存処理が開始される(ステップS2)。なお、有価書類識別装置1は、有価書類100を検知しない間は(ステップS1;No)、有価書類100の到来を監視する状態にある。 First, when it is detected by the timing sensor 2 that the valuable document 100 has arrived at the valuable document identification device 1 (step S1; Yes), the control unit 20 performs lighting control of the light sources 11 and 12 by the light source control unit 22. At the same time, imaging of the valuable document 100 by the image processing unit 23 and storage processing of the captured image in the storage unit 30 are started (step S2). The valuable document identification device 1 is in a state of monitoring the arrival of the valuable document 100 while the valuable document 100 is not detected (step S1; No).
ステップS2では、有価書類100がラインセンサ14の下方を通過する1回の搬送中に、画像取得装置10aの第一光源11による第一画像及び第二光源12による第二画像と、画像取得装置10bの第一光源11による第一画像及び第二光源12による第二画像との4種類の画像が撮像される。なお、光学可変インク領域110が有価書類100の片面のみに設けられている場合は、その面のみの画像を撮像してもよい。以下では、有価書類100の上面、すなわち画像取得装置10a側に光学可変インク領域110が設けられている場合について説明するが、有価書類100の下面に光学可変インク領域110が設けられている場合についても同様に処理することができる。 In step S2, the first image by the first light source 11 and the second image by the second light source 12 of the image acquisition device 10a and the image acquisition device during one transport of the valuable document 100 passing below the line sensor 14. Four types of images, ie, a first image by the first light source 11 and a second image by the second light source 12 are captured. When the optically variable ink area 110 is provided on only one side of the valuable document 100, an image of only that side may be taken. In the following, the case where the optical variable ink region 110 is provided on the top surface of the valuable document 100, that is, the image acquisition device 10a side will be described. However, the case where the optical variable ink region 110 is provided on the bottom surface of the valuable document 100 is described. Can be processed similarly.
各光源11、12による有価書類100の画像は個別に色毎に撮像する必要があるために、光源制御部22は各光源11、12を異なるタイミングで繰り返し点灯する動的点灯制御を行う。そして、各光源11、12から射出され、有価書類100で反射された反射光が、受光部13のラインセンサ14によって計測される。ラインセンサ14によって計測された信号は、画像処理部23に入力される。そして、画像処理部23によって、適宜処理が施されたデータは、第一画像31及び第二画像32を形成するデータとして記憶部30に保存される。各画像31、32のデータは、赤(R)、緑(G)、青(B)の色毎に保存される。 Since the image of the valuable document 100 by the light sources 11 and 12 needs to be individually captured for each color, the light source control unit 22 performs dynamic lighting control for repeatedly lighting the light sources 11 and 12 at different timings. Then, the reflected light emitted from each of the light sources 11 and 12 and reflected by the valuable document 100 is measured by the line sensor 14 of the light receiving unit 13. A signal measured by the line sensor 14 is input to the image processing unit 23. The data appropriately processed by the image processing unit 23 is stored in the storage unit 30 as data forming the first image 31 and the second image 32. Data of each image 31 and 32 is stored for each color of red (R), green (G), and blue (B).
このように、各光源11、12は異なるタイミングで発光するように制御され、各光源11、12を利用して受光部13によって計測された信号は順次記憶部30に保存される。この結果、有価書類100が受光部13の下方を1回通過する間に、記憶部30には、各光源11、12の下で有価書類100の全面が撮像された第一画像31及び第二画像32が記憶された状態となる。 In this manner, the light sources 11 and 12 are controlled to emit light at different timings, and signals measured by the light receiving unit 13 using the light sources 11 and 12 are sequentially stored in the storage unit 30. As a result, while the valuable document 100 passes under the light receiving unit 13 once, the storage unit 30 stores the first image 31 and the second image obtained by capturing the entire surface of the valuable document 100 under the light sources 11 and 12. The image 32 is stored.
なお、具体的な動的点灯制御は特に限定されない。また、第一光源11による有価書類100の第一画像31と、第二光源12による有価書類100の第二画像32とを別々に撮像することができれば、各光源11、12の発光タイミングやデータ処理の順序は特に限定されず、ラインセンサ14の処理速度等に応じて、適宜決定される。例えば、有価書類100を高速に処理することが求められない場合には、動的点灯を行わず、有価書類100をX軸正方向へ搬送して第一光源11による第一画像31を撮像した後、再度有価書類をX軸負方向へ搬送して第二光源12による第二画像32を撮像してもよい。また、各画像31、32は、有価書類画像を利用して行われる他の識別処理にも利用できるように有価書類100の全面を撮像した画像であることが好ましいが、これに限定されるものではなく、光学可変素子領域101が含まれる部分領域のみを撮像した画像であっても構わない。 Specific dynamic lighting control is not particularly limited. Further, if the first image 31 of the valuable document 100 by the first light source 11 and the second image 32 of the valuable document 100 by the second light source 12 can be captured separately, the light emission timings and data of the light sources 11 and 12 are obtained. The order of processing is not particularly limited, and is determined as appropriate according to the processing speed of the line sensor 14 and the like. For example, when it is not required to process the valuable document 100 at a high speed, dynamic lighting is not performed, and the valuable document 100 is conveyed in the positive direction of the X axis and the first image 31 is captured by the first light source 11. Thereafter, the valuable document may be conveyed again in the negative direction of the X axis and the second image 32 by the second light source 12 may be captured. The images 31 and 32 are preferably images obtained by capturing the entire surface of the valuable document 100 so that the images can be used for other identification processing performed using the valuable document image. Instead, it may be an image obtained by capturing only a partial area including the optical variable element area 101.
こうして得られた第一画像31及び第二画像32を用いて、上述のように、判定部21が有価書類100の種類(紙幣の場合は金種)と方向を判定する(ステップS3)。その後、判定部21によって、有価書類100が光学可変インク領域110を有するか否かを判定する処理が行われる(ステップS4)。以下では、100元紙幣を用いた場合を適宜例示しながら説明するが、どのような種類の有価書類100であっても同様に処理が可能である。 Using the first image 31 and the second image 32 thus obtained, as described above, the determination unit 21 determines the type (denomination in the case of banknotes) and direction of the valuable document 100 (step S3). Thereafter, the determination unit 21 determines whether or not the valuable document 100 has the optically variable ink area 110 (step S4). In the following, a case where a 100 yuan banknote is used will be described as appropriate, but any kind of valuable document 100 can be processed in the same manner.
本実施形態では、図17に示すフローにより、第一画像31の光学可変インク領域110の色と、第二画像32の光学可変インク領域110の色との相違を算出することによって光学可変インク領域110の有無を判定する。図18には100元紙幣を処理する場合を示す。 In the present embodiment, the flow shown in FIG. 17 calculates the difference between the color of the optically variable ink area 110 of the first image 31 and the color of the optically variable ink area 110 of the second image 32, thereby calculating the optically variable ink area. The presence or absence of 110 is determined. FIG. 18 shows a case where 100 yuan banknotes are processed.
まず、判定された有価書類100の種類(紙幣の場合は金種)と方向から光学可変インク部の位置が分かるため、画像処理部23によって、第一画像31から光学可変インク領域110に対応する部分領域画像(以下「第一OVI画像」と言う。)を抽出するとともに、同様に、第二画像32から光学可変インク領域110に対応する部分領域画像(以下「第二OVI画像」と言う。)を抽出する(ステップS10)。 First, since the position of the optically variable ink portion is known from the determined type (denomination in the case of banknotes) and direction of the valuable document 100, the image processing unit 23 corresponds to the optically variable ink region 110 from the first image 31. A partial area image (hereinafter referred to as “first OVI image”) is extracted, and similarly, a partial area image corresponding to the optically variable ink area 110 from the second image 32 (hereinafter referred to as “second OVI image”). ) Is extracted (step S10).
例えば、各画像31、32から、有価書類100の種類と方向に応じた特定の位置の画素を抽出し、各OVI画像としてもよい。また、有価書類100の種類と方向に応じた特定のマスク画像、具体的には光学可変インク部を1、他の部分を0としたマスク画像を各画像31、32に掛け合わせて画素を抽出し、各OVI画像としてもよい。 For example, a pixel at a specific position corresponding to the type and direction of the valuable document 100 may be extracted from each of the images 31 and 32 so as to be each OVI image. Also, a specific mask image corresponding to the type and direction of the valuable document 100, specifically, a mask image in which the optically variable ink portion is 1 and the other portion is 0 is multiplied with each image 31 and 32 to extract pixels. Each OVI image may be used.
こうして得られた第一OVI画像及び第二OVI画像を用いて、光学可変インク領域110の評価値を演算する処理が行われる(ステップS11)。 Using the first OVI image and the second OVI image obtained in this way, processing for calculating the evaluation value of the optically variable ink region 110 is performed (step S11).
次に、図19を参照し、第一OVI画像及び第二OVI画像を利用して光学可変インク領域110の評価値を演算する方法について説明する。本実施形態では、第一画像31の光学可変インク領域110の色比率と、第二画像32の光学可変インク領域110の色比率とを算出する。図20には受光角45°、第一画像撮像時の照射角5°及び第二画像撮像時の照射角60°の条件における100元紙幣の測定結果と算出結果の一例を示す。 Next, a method of calculating the evaluation value of the optically variable ink area 110 using the first OVI image and the second OVI image will be described with reference to FIG. In the present embodiment, the color ratio of the optically variable ink area 110 of the first image 31 and the color ratio of the optically variable ink area 110 of the second image 32 are calculated. FIG. 20 shows an example of measurement results and calculation results of a 100 yuan banknote under conditions of a light receiving angle of 45 °, an irradiation angle of 5 ° at the time of first image capturing, and an irradiation angle of 60 ° at the time of second image capturing.
まず、判定部21は、第一OVI画像及び第二OVI画像について、光学可変インク部の画素全体、光学可変インクがある特定の画素(例えば10×10画素)、又は、光学可変インク領域110上の特定の画素一列分において、R、G、Bの色別に、各強度の平均を算出する(ステップS20)。 First, for the first OVI image and the second OVI image, the determination unit 21 performs the entire pixel of the optical variable ink unit, a specific pixel with the optical variable ink (for example, 10 × 10 pixels), or the optical variable ink region 110. The average of each intensity is calculated for each color of R, G, and B in a specific row of pixels (step S20).
次に、判定部21は、第一OVI画像及び第二OVI画像について、算出したR、G、Bの各平均強度間の比率(色比率)を算出する(ステップS21)。 Next, the determination unit 21 calculates a ratio (color ratio) between the calculated average intensities of R, G, and B for the first OVI image and the second OVI image (step S21).
次に、判定部21は、第一OVI画像及び第二OVI画像の間で、特定の色の色比率を比較する(ステップS22)。具体的には、例えば、第一OVI画像の特定の1色の色比率に対する第二OVI画像の該特定の1色の色比率の変化率(増加率)を算出するか、又は、第一OVI画像の特定の2色の色比率の比又は差に対する第二OVI画像の該特定の2色の色比率の比又は差の変化率を算出する。使用する色は、有価書類100の種類(金種)によって異なるが、例えば100元紙幣では、B又はGの色比率を比較してB又はGの増加率を算出してもよいし、BとGの色比率の比又は差を比較してもよい。また、第一OVI画像及び第二OVI画像をそれぞれ、予め記憶部30に記録されている第一基準画像及び第二基準画像と比較することによって、光学可変インク領域110の有無を判別してもよい。なお、第一基準画像及び第二基準画像とはそれぞれ、光学可変インク領域110を第一光源11及び第二光源12によって撮像した場合に得られる第一OVI画像及び第二OVI画像に対応する基準画像である。 Next, the determination unit 21 compares the color ratio of a specific color between the first OVI image and the second OVI image (step S22). Specifically, for example, a change rate (increase rate) of the color ratio of the specific one color of the second OVI image with respect to the color ratio of the specific one color of the first OVI image is calculated, or the first OVI A ratio or a change rate of the color ratio of the specific two colors of the second OVI image to the ratio or difference of the color ratios of the specific two colors of the image is calculated. The color to be used varies depending on the type (denomination) of the valuable document 100. For example, in 100 yuan banknotes, the color ratio of B or G may be compared to calculate the increase rate of B or G. You may compare the ratio or difference of the color ratio of G. Further, the presence or absence of the optically variable ink region 110 can be determined by comparing the first OVI image and the second OVI image with the first reference image and the second reference image recorded in the storage unit 30 in advance. Good. The first reference image and the second reference image are references corresponding to the first OVI image and the second OVI image obtained when the optical variable ink region 110 is imaged by the first light source 11 and the second light source 12, respectively. It is an image.
次に、判定部21は、ステップS22で算出された値を評価値とする(ステップS23)。 Next, the determination unit 21 sets the value calculated in step S22 as an evaluation value (step S23).
そして、判定部21は、算出された評価値と、所定の閾値とを比較して、この評価値が閾値より大きいか否かを判定する(図17ステップS12)。そして、得られた評価値が閾値より大きい場合には(ステップS13;Yes)、有価書類100が光学可変インク領域110を有すると判定する。一方、評価値が閾値以下である場合には(ステップS14;No)、有価書類100は光学可変インク領域110を有さないと判定する。 Then, the determination unit 21 compares the calculated evaluation value with a predetermined threshold value, and determines whether or not the evaluation value is larger than the threshold value (step S12 in FIG. 17). If the obtained evaluation value is larger than the threshold (step S13; Yes), it is determined that the valuable document 100 has the optical variable ink region 110. On the other hand, when the evaluation value is equal to or less than the threshold value (step S14; No), it is determined that the valuable document 100 does not have the optical variable ink area 110.
こうして得られた光学可変インク領域110有無の判定結果は、有価書類類識別装置1の内部において有価書類100の真偽判別の判定条件の一つとして利用されたり、通信I/F4によって外部へ出力されて外部装置での処理に利用される。 The determination result of the presence or absence of the optically variable ink area 110 obtained in this way is used as one of the determination conditions for determining the authenticity of the valuable document 100 inside the valuable document identification device 1 or output to the outside by the communication I / F 4. And used for processing in an external device.
このように、光学可変インク領域110を撮像した際に、異なる色が得られるように第一光源11及び第二光源12とラインセンサ14とを配置することにより、各光源11及び12によって得られた光学可変インク領域110の画像の色の相違から、有価書類100が光学可変インク領域110を有するか否かを正しく判定することができる。なお、光学可変インク領域110がない場合は、偽券又は真偽不確定券として処理する。 As described above, when the optical variable ink region 110 is imaged, the first light source 11, the second light source 12, and the line sensor 14 are arranged so that different colors can be obtained. Whether or not the valuable document 100 has the optical variable ink area 110 can be correctly determined from the difference in the color of the image of the optical variable ink area 110. If there is no optical variable ink area 110, it is processed as a fake ticket or a true / false uncertain ticket.
次に、上述の方法に従い、100元紙幣(本券)と、本券の光学可変インク部の図柄を一般的なインクで印刷した試験用サンプルとについて、実際に評価値、具体的には青色の増加率を演算した結果について説明する。ここでは、本券1000枚と試験用サンプル250枚につて評価値を演算した。照射角は5°及び60°とし、受光角は45°とした。 Next, according to the above-mentioned method, the evaluation value, specifically blue color, is actually obtained for a 100-yuan banknote (this voucher) and a test sample in which the design of the optically variable ink portion of the voucher is printed with general ink. The result of calculating the rate of increase of the will be described. Here, evaluation values were calculated for 1000 tickets and 250 test samples. The irradiation angles were 5 ° and 60 °, and the light receiving angle was 45 °.
また、図9に示したグラフから、受光角45°における青色増加率に対する各受光角の青色増加率の比(対45°比)を算出した。その結果を下記表2に示す。 Further, from the graph shown in FIG. 9, the ratio of the blue increase rate of each light receiving angle to the blue increase rate at the light receiving angle of 45 ° (vs. 45 ° ratio) was calculated. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
そして、上述の本券1000枚について、受光角45°以外の受光角における評価値を推定した。具体的には、各受光角おける評価値に、その受光角の対45°比を乗じることによって、受光角45°以外の受光角における評価値とした。下記表3に計算例を示す。 And the evaluation value in light reception angles other than light reception angle 45 degrees was estimated about 1000 above-mentioned this tickets. Specifically, an evaluation value at a light receiving angle other than 45 ° is obtained by multiplying the evaluation value at each light receiving angle by a ratio of 45 ° to the light receiving angle. A calculation example is shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
これらの演算結果に基づいて、図21~図26に示すように、本券及び試験用サンプルについて、得られた評価値の分布を算出した。なお、各図において、試験用サンプルに関しては、照射角による色変化が無いため、上述の受光角45°における実測データを使用した。 Based on these calculation results, as shown in FIGS. 21 to 26, distributions of the obtained evaluation values were calculated for the tickets and the test samples. In each figure, for the test sample, since there is no color change due to the irradiation angle, the actual measurement data at the light receiving angle of 45 ° was used.
これらの評価値分布の検証結果を下記表4に示す。閾値は、(平均値-3σ)とした。 The verification results of these evaluation value distributions are shown in Table 4 below. The threshold value was (average value −3σ).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
表4に示されるように、受光角0°又は15°では、本券の評価値、すなわち光学可変インク領域110の色の変化率が小さいため、試験用サンプルの通過率が大幅に上昇してしまう。それに対して、受光角が25°以上、好ましくは30°以上であれば、試験用サンプルの通過率を0%とすることができ、非常に高精度に光学可変インク領域110の有無の判定が可能であることが分かった。そのため、有価書類100の真偽を高精度に判定することができる。 As shown in Table 4, when the light receiving angle is 0 ° or 15 °, the evaluation value of the ticket, that is, the color change rate of the optically variable ink area 110 is small, so that the pass rate of the test sample is significantly increased. End up. On the other hand, if the light receiving angle is 25 ° or more, preferably 30 ° or more, the passing rate of the test sample can be 0%, and the presence or absence of the optically variable ink region 110 can be determined with very high accuracy. I found it possible. Therefore, the authenticity of the valuable document 100 can be determined with high accuracy.
以上では、画像取得装置10a及び/又は10bで取得した第一画像31及び第二画像32に基づいて、有価書類100の種類(紙幣の場合は金種)と光学可変素子領域101の有無を判定したのに対して、有価書類100の種類を別の画像取得装置を用いて行ってもよい。具体的には、画像取得装置10a及び10bの上流側に配置された別の画像取得装置で取得した有価書類100の画像に基づいて、その種類を判定し、そして、画像取得装置及び/又は10bで取得した第一画像31及び第二画像32に基づいて、光学可変素子領域101の有無を判定してもよい。 In the above, based on the first image 31 and the second image 32 acquired by the image acquisition device 10a and / or 10b, the type of the valuable document 100 (denomination in the case of banknote) and the presence or absence of the optical variable element region 101 are determined. On the other hand, the type of the valuable document 100 may be performed using another image acquisition device. Specifically, the type is determined based on the image of the valuable document 100 acquired by another image acquisition device arranged on the upstream side of the image acquisition devices 10a and 10b, and the image acquisition device and / or 10b is determined. The presence / absence of the optical variable element region 101 may be determined based on the first image 31 and the second image 32 acquired in step S2.
また、有価書類100が光学可変素子領域101として、光学可変インク領域110のみならずホログラム領域を有する場合は、光学可変インク領域110の画像に基づく有価書類100の真偽判定とともに、ホログラム領域の画像に基づく有価書類100の真偽判定を行ってもよい。この場合、まず、判定部21が第一画像31又は第二画像32や、後述するセンサユニット215によって取得された情報に基づいて有価書類100の種類を判定してもよい。その後、判定部21は、判定された種類の有価書類100に関する基準画像33から光学可変インク領域110の位置とホログラム領域の位置とを特定してもよい。そして、光学可変インク領域110と特定された位置における第一画像31と第二画像32の間の色の違いに基づいて光学可変インク領域110の有無を判定するとともに、ホログラム領域と特定された位置における第一画像31と第二画像32の間における色、輝度及び形状の少なくとも1つの違いに基づいてホログラム領域の有無を判定してもよい。なお、ホログラム領域は、通常、回折格子が形成された光回折構造を含んでいる。 When the valuable document 100 has not only the optical variable ink region 110 but also a hologram region as the optical variable element region 101, the authenticity determination of the valuable document 100 based on the image of the optical variable ink region 110 and the image of the hologram region are performed. The authenticity of the valuable document 100 based on the above may be determined. In this case, first, the determination unit 21 may determine the type of the valuable document 100 based on the first image 31 or the second image 32 and information acquired by the sensor unit 215 described later. Thereafter, the determination unit 21 may specify the position of the optically variable ink area 110 and the position of the hologram area from the reference image 33 relating to the determined type of valuable document 100. Then, the presence or absence of the optical variable ink region 110 is determined based on the color difference between the first image 31 and the second image 32 at the position specified as the optical variable ink region 110, and the position specified as the hologram region The presence / absence of the hologram region may be determined based on at least one difference in color, luminance, and shape between the first image 31 and the second image 32 in FIG. The hologram region usually includes a light diffraction structure in which a diffraction grating is formed.
上述の本実施形態に係る有価書類識別装置1の機能及び動作は、単体で実現可能であるが、有価書類識別装置1は、例えば、図27又は図28に示すように有価書類処理装置に内蔵されて利用される。 The functions and operations of the valuable document identification apparatus 1 according to the above-described embodiment can be realized by itself, but the valuable document identification apparatus 1 is built in the valuable document processing apparatus as shown in FIG. 27 or 28, for example. To be used.
本実施形態に係る有価書類処理装置200は、図27に示すように、複数の有価書類100を載置可能なホッパ210と、ホッパ210に載置された紙幣を搬送する搬送路211と、有価書類100の識別処理を行う有価書類識別装置1と、有価書類識別装置1で識別された有価書類100を集積する集積部213と、識別不能な有価書類100や所定条件をみたす有価書類100を他の有価書類100と分けて集積するリジェクト部214とを備える。有価書類識別装置1をこのような有価書類処理装置200に内蔵して利用することにより、ホッパ210に載置された複数の有価書類100を、1枚ずつ、連続して処理することができる。そして、光学可変素子領域101がない偽券又は真偽不確定券と判断された有価書類100がリジェクト部214に返却される。 As shown in FIG. 27, the valuable document processing apparatus 200 according to the present embodiment includes a hopper 210 on which a plurality of valuable documents 100 can be placed, a conveyance path 211 that conveys banknotes placed on the hopper 210, and a valuable value. Other than the valuable document identification device 1 that performs identification processing of the document 100, the stacking unit 213 that accumulates the valuable documents 100 identified by the valuable document identification device 1, the valuable document 100 that cannot be identified, and the valuable document 100 that satisfies a predetermined condition And a reject unit 214 that separates and accumulates the valuable documents 100. By using the valuable document identification apparatus 1 in such a valuable document processing apparatus 200, a plurality of valuable documents 100 placed on the hopper 210 can be successively processed one by one. Then, the valuable document 100 that is determined to be a fake ticket or a genuine / indeterminate ticket without the optical variable element region 101 is returned to the reject unit 214.
有価書類処理装置200は、処理対象となる有価書類100の識別処理に応じてラインセンサ14以外のセンサユニット215を備える。具体的には、センサユニット215は、例えば、赤外光、紫外光、可視光等の複数種類の光を照射して有価書類100の光学特性を計測するための光学ラインセンサや、有価書類100の磁気特性を計測する磁気センサ、有価書類100の厚みを計測するための厚みセンサを備えている。そして、センサユニット215によって、有価書類100の金種識別や真贋判別、有価書類100の向きや表裏の判定等が行われる。そして、センサユニット215で取得した情報に基づいて、有価書類識別装置1の処理、具体的には光学可変インク領域110の有無の判定が行われる。例えば、センサユニット215で取得した情報から判定された有価書類100の種類(金種)、方向等に基づいて、画像取得装置10a及び/又は10bで取得した第一画像31及び第二画像32から抽出する光学可変素子領域101の位置を決定してもよい。このように役割分担を行うことによって、有価書類100の真偽をより高精度に判定可能となる。なお、センサユニット215については、紙幣処理装置の分野で従来から利用されている技術であるため詳細な説明は省略する。 The valuable document processing apparatus 200 includes a sensor unit 215 other than the line sensor 14 in accordance with the identification process of the valuable document 100 to be processed. Specifically, the sensor unit 215, for example, an optical line sensor for measuring optical characteristics of the valuable document 100 by irradiating a plurality of types of light such as infrared light, ultraviolet light, and visible light, or the valuable document 100. A magnetic sensor for measuring the magnetic properties of the paper, and a thickness sensor for measuring the thickness of the valuable document 100. Then, the sensor unit 215 performs the denomination and authenticity identification of the valuable document 100, the orientation and front / back determination of the valuable document 100, and the like. Based on the information acquired by the sensor unit 215, processing of the valuable document identification device 1, specifically, the presence / absence of the optical variable ink region 110 is determined. For example, from the first image 31 and the second image 32 acquired by the image acquisition device 10a and / or 10b based on the type (denomination), direction, etc. of the valuable document 100 determined from the information acquired by the sensor unit 215. The position of the optical variable element region 101 to be extracted may be determined. By performing the role assignment in this way, the authenticity of the valuable document 100 can be determined with higher accuracy. Since the sensor unit 215 is a technique that has been conventionally used in the field of banknote processing devices, a detailed description thereof will be omitted.
本実施形態に係る有価書類処理装置300は、図28に示すように、テーブル上に設置して利用する小型の紙幣処理装置であり、有価書類100の識別処理を行う有価書類識別装置(図示せず)と、処理対象の複数紙幣が積層状体で載置されるホッパ301と、ホッパ301から筐体310内に繰り出された紙幣が偽券等のリジェクト紙幣であった場合に該リジェクト紙幣が排出される2つのリジェクト部302と、オペレータからの指示を入力するための操作部303と、筐体310内で金種や真偽が識別された正常な紙幣を分類して集積するための4つのスタッカ部306と、紙幣の識別計数結果や各スタッカ部306の集積状況等の情報を表示するための表示部305とを有している。ホッパ301から筐体310内部に1枚ずつ繰り出された紙幣が搬送路に沿って搬送されて、有価書類識別装置によって該紙幣の光学可変インク部の画像が読み取られて真偽を判別するために利用される。光学可変素子領域がない偽券又は真偽不確定券と判断された有価書類100は、リジェクト部302に返却されてもよいし、いずれかのスタッカ部306に収納されてもよい。 As shown in FIG. 28, the valuable document processing apparatus 300 according to the present embodiment is a small banknote processing apparatus that is installed on a table and used. The valuable document identification apparatus (not shown) performs identification processing of the valuable document 100. ), A hopper 301 on which a plurality of bills to be processed are placed in a stacked body, and a bill that is fed from the hopper 301 into the housing 310 is a reject bill such as a fake bill, the reject bill is Two reject units 302 to be discharged, an operation unit 303 for inputting an instruction from an operator, and 4 for classifying and collecting normal banknotes whose denomination and authenticity are identified in the housing 310 Each stacker unit 306 has a display unit 305 for displaying information such as the banknote identification count result and the stacking status of each stacker unit 306. In order to discriminate authenticity of the bills fed out one by one from the hopper 301 into the housing 310 along the transport path, and the image of the optically variable ink portion of the bill is read by the valuable document identification device. Used. The valuable document 100 determined to be a fake ticket or a genuine / indeterminate ticket without the optical variable element region may be returned to the reject unit 302 or may be stored in any stacker unit 306.
上述のように、本実施形態では、第一の角度θ1、第二の角度θ2及び第三の角度θ3が互いに異なるように、第一光源11、第二光源12及び受光部13が配置されており、また、θ3が25°以上、90°未満であることから、光学可変素子領域101の有無を高精度で検出することができ、その結果、光学可変素子領域101の真偽判定精度を向上することができる。 As described above, in the present embodiment, the first light source 11, the second light source 12, and the light receiving unit 13 are arranged so that the first angle θ1, the second angle θ2, and the third angle θ3 are different from each other. In addition, since θ3 is 25 ° or more and less than 90 °, the presence / absence of the optical variable element region 101 can be detected with high accuracy, and as a result, the authenticity determination accuracy of the optical variable element region 101 is improved. can do.
なお、上記実施形態では、反射光情報として画像情報を取得する例を示したが、反射光情報として色別の光の強度を取得してもよい。このとき、受光素子16は、上述のようにアレイ状の受光素子であってもよいし、フォトダイオードやカラーセンサ等の単体の受光素子であってもよい。また、各光源11、12は点光源であってもよい。この場合、受光素子16と各光源11、12との関係は、図4及び図6に示した場合と同様となる。更に、光源11、12が点光源の場合は、光源11、12は基準面104上に限らず、任意の方向に位置することができる。 In the above embodiment, an example in which image information is acquired as reflected light information has been described. However, the intensity of light for each color may be acquired as reflected light information. At this time, the light receiving element 16 may be an arrayed light receiving element as described above, or may be a single light receiving element such as a photodiode or a color sensor. Moreover, each light source 11 and 12 may be a point light source. In this case, the relationship between the light receiving element 16 and the light sources 11 and 12 is the same as that shown in FIGS. Furthermore, when the light sources 11 and 12 are point light sources, the light sources 11 and 12 are not limited to the reference plane 104 but can be positioned in any direction.
以上、図面を参照しながら本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。また、各実施形態の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。 As mentioned above, although embodiment of this invention was described referring drawings, this invention is not limited to the said embodiment. In addition, the configurations of the respective embodiments may be appropriately combined or changed within a range not departing from the gist of the present invention.
以上のように、本発明は、偽造防止のために光学可変素子が採用された有価書類の真偽を精度よく識別するために有用な技術である。 As described above, the present invention is a useful technique for accurately identifying the authenticity of a valuable document in which an optical variable element is employed to prevent forgery.
1:有価書類識別装置
2:タイミングセンサ
3:搬送機構
4:通信インターフェイス
10、10a、10b:画像取得装置(画像センサユニット)
11:第一光源
11A:第一光源の光軸
12:第二光源
12A:第二光源の光軸
13:受光部
14:ラインセンサ
15:結像素子
15A:結像素子の光軸
16:受光素子
16A:受光素子の撮像光軸
17:基板
18:筺体
19:透明板
19R:正反射光入射領域
20:制御部
21:判定部
22:光源制御部
23:画像処理部
24:搬送制御部
30:記憶部
31:第一画像
32:第二画像
33:基準画像
100:有価書類
101:光学可変素子領域
102:被撮像領域
103:垂直線
104:基準面
105:基材
110:光学可変インク領域
111:多層薄膜構造(光干渉構造)
112:反射層
113:光透過層
114:コーティング層
200:有価書類処理装置
210:ホッパ
211:搬送路
213:集積部
214:リジェクト部
215:センサユニット
300:有価書類処理装置
301:ホッパ
302:リジェクト部
303:操作部
305:表示部
306:スタッカ部
310:筐体
θ1:第一の角度
θ2:第二の角度
θ3:第三の角度

 
1: Valuable document identification device 2: Timing sensor 3: Transport mechanism 4: Communication interface 10, 10a, 10b: Image acquisition device (image sensor unit)
11: first light source 11A: optical axis 12 of the first light source 12: second light source 12A: optical axis 13 of the second light source 13: light receiving unit 14: line sensor 15: imaging element 15A: optical axis 16 of the imaging element: light reception Element 16A: Imaging optical axis 17 of the light receiving element 17: Substrate 18: Housing 19: Transparent plate 19R: Regular reflection light incident area 20: Control unit 21: Determination unit 22: Light source control unit 23: Image processing unit 24: Conveyance control unit 30 : Storage unit 31: first image 32: second image 33: reference image 100: valuable document 101: optical variable element region 102: imaged region 103: vertical line 104: reference surface 105: substrate 110: optical variable ink region 111: Multilayer thin film structure (light interference structure)
112: reflection layer 113: light transmission layer 114: coating layer 200: valuable document processing device 210: hopper 211: transport path 213: stacking unit 214: rejection unit 215: sensor unit 300: valuable document processing device 301: hopper 302: reject Unit 303: Operation unit 305: Display unit 306: Stacker unit 310: Housing θ1: First angle θ2: Second angle θ3: Third angle

Claims (16)

  1. 光学可変素子領域を有する有価書類の真偽を識別する有価書類識別装置であって、
    第一の方向から前記光学可変素子領域に光を照射する第一光源と、
    第二の方向から前記光学可変素子領域に光を照射する第二光源と、
    前記光学可変素子領域から反射された光を第三の方向から受光する受光部と、
    前記第一光源の反射光の情報である第一反射光情報と、前記第二光源の反射光の情報である第二反射光情報とに基づいて前記光学可変素子領域の有無を判定する判定部と、を備え、
    前記光学可変素子領域を含む前記有価書類の面の垂直線と前記第一の方向とのなす角度である第一の角度と、前記垂直線と前記第二の方向とのなす角度である第二の角度と、前記垂直線と前記第三の方向とのなす角度である第三の角度と、は互いに異なり、
    前記第三の角度は25°以上、90°未満である有価書類識別装置。
    A valuable document identification device for identifying authenticity of a valuable document having an optical variable element region,
    A first light source that irradiates light to the optical variable element region from a first direction;
    A second light source that irradiates light to the optical variable element region from a second direction;
    A light receiving portion for receiving light reflected from the optical variable element region from a third direction;
    A determination unit that determines presence or absence of the optical variable element region based on first reflected light information that is information of reflected light of the first light source and second reflected light information that is information of reflected light of the second light source And comprising
    A first angle that is an angle formed between a vertical line of the surface of the valuable document including the optical variable element region and the first direction, and a second angle that is formed between the vertical line and the second direction. And a third angle that is an angle formed between the vertical line and the third direction are different from each other,
    3. The valuable document identification device, wherein the third angle is 25 ° or more and less than 90 °.
  2. 前記光学可変素子領域は、光干渉構造及び光回折構造の少なくとも一方を有する請求項1記載の有価書類識別装置。 The valuable document identification device according to claim 1, wherein the optical variable element region has at least one of an optical interference structure and an optical diffraction structure.
  3. 前記判定部は、前記第一反射光情報と前記第二反射光情報との間の色の違いに基づいて前記有価書類の真偽を判定する請求項1又は2記載の有価書類識別装置。 The valuable document identification apparatus according to claim 1, wherein the determination unit determines the authenticity of the valuable document based on a color difference between the first reflected light information and the second reflected light information.
  4. 前記有価書類は、前記光学可変素子領域として、光学可変インク領域及びホログラム領域を有し、
    前記判定部は、前記有価書類の種類を判定し、前記種類判定部で判定された種類の有価書類に関する情報から前記光学可変インク領域の位置と前記ホログラム領域の位置とを特定し、前記光学可変インク領域では前記第一反射光情報と前記第二反射光情報との間の色の違いに基づいて前記有価書類の真偽を判定し、かつ、前記ホログラム領域では前記第一反射光情報と前記第二反射光情報との間における色、輝度及び形状の少なくとも1つの違いに基づいて前記有価書類の真偽を判定する請求項1~3のいずれかに記載の有価書類識別装置。
    The valuable document has an optical variable ink region and a hologram region as the optical variable element region,
    The determination unit determines a type of the valuable document, specifies a position of the optically variable ink region and a position of the hologram region from information relating to the valuable document of the type determined by the type determination unit, and the optically variable In the ink area, the authenticity of the valuable document is determined based on the color difference between the first reflected light information and the second reflected light information, and in the hologram area, the first reflected light information and the The valuable document identification device according to any one of claims 1 to 3, wherein the authenticity of the valuable document is determined based on at least one of a difference in color, luminance, and shape from the second reflected light information.
  5. 前記第三の角度は、60°以下である請求項1~4のいずれかに記載の有価書類識別装置。 The valuable document identification device according to any one of claims 1 to 4, wherein the third angle is 60 ° or less.
  6. 前記第三の角度は、55°以下である請求項5記載の有価書類識別装置。 The valuable document identification device according to claim 5, wherein the third angle is 55 ° or less.
  7. 前記第一の角度は、-10°~20°であり、
    前記第二の角度は、40°~70°である請求項1~6のいずれかに記載の有価書類識別装置。
    The first angle is −10 ° to 20 °;
    The valuable document identification device according to any one of claims 1 to 6, wherein the second angle is 40 ° to 70 °.
  8. 前記第一の角度は、-5°~15°であり、
    前記第二の角度は、45°~65°である請求項7記載の有価書類識別装置。
    The first angle is −5 ° to 15 °;
    The valuable document identification device according to claim 7, wherein the second angle is 45 ° to 65 °.
  9. 前記第一光源、前記第二光源及び前記受光部は、同一平面上に配置されており、
    前記有価書類識別装置は、前記第一光源及び前記第二光源と前記有価書類との間に配置された透明板を更に備え、
    前記第一光源及び前記第二光源は、前記透明板に光を照射したとすると正反射光が前記受光部に入射する領域を間に挟んで配置されている請求項1~8のいずれかに記載の有価書類識別装置。
    The first light source, the second light source, and the light receiving unit are arranged on the same plane,
    The valuable document identification device further includes a transparent plate disposed between the first light source and the second light source and the valuable document,
    The first light source and the second light source are arranged with a region in which specularly reflected light is incident on the light receiving unit, if the transparent plate is irradiated with light. The document identification device described.
  10. 前記受光部は、前記有価書類を直線状に撮像するラインセンサを備え、
    前記第一光源及び前記第二の光源はそれぞれ、前記ラインセンサによる直線状の被撮像領域に光を照射する請求項1~9のいずれかに記載の有価書類識別装置。
    The light receiving unit includes a line sensor that images the valuable document in a straight line,
    10. The valuable document identification device according to claim 1, wherein each of the first light source and the second light source irradiates light on a linear imaged region by the line sensor.
  11. 前記受光部は、前記第一光源及び前記第二光源から照射されて、前記光学可変素子領域で反射された光を受光し、
    前記第一の角度、前記第二の角度及び前記第三の角度は、前記直線状の被撮像領域に直交する基準面上における角度であり、
    前記第一の角度は、前記第三の角度より小さく、
    前記第二の角度は、前記第三の角度より大きい請求項10記載の有価書類識別装置。
    The light receiving unit receives light irradiated from the first light source and the second light source and reflected by the optical variable element region,
    The first angle, the second angle, and the third angle are angles on a reference plane that is orthogonal to the linear imaging region,
    The first angle is smaller than the third angle,
    The valuable document identification device according to claim 10, wherein the second angle is larger than the third angle.
  12. 前記有価書類を搬送させる搬送機構を更に備える請求項1~11のいずれかに記載の有価書類識別装置。 12. The valuable document identification apparatus according to claim 1, further comprising a transport mechanism for transporting the valuable document.
  13. 前記判定部は、前記第一反射光情報に基づく第一画像の色と、前記第二反射光情報に基づく第二画像の色とを比較して前記有価書類の真偽を判定する請求項1~12のいずれかに記載の有価書類識別装置。 The determination unit compares the color of the first image based on the first reflected light information and the color of the second image based on the second reflected light information to determine the authenticity of the valuable document. The valuable document identification device according to any one of 12 to 12.
  14. 請求項1~13のいずれかに記載の有価書類識別装置を備える有価書類処理機。 A valuable document processing machine comprising the valuable document identification device according to any one of claims 1 to 13.
  15. 有価書類の光学可変素子領域の検出方法であって、
    第一の方向から前記光学可変素子領域に光を照射し、前記光学可変素子領域から反射された光を受光する第一読取ステップと、
    第二の方向から前記光学可変素子領域に光を照射し、前記光学可変素子領域から反射された光を受光する第二読取ステップと、
    前記第一読取ステップでの反射光の情報である第一反射光情報と、前記第二読取ステップでの反射光の情報である第二反射光情報とに基づいて前記光学可変素子領域の有無を判定する判定ステップと、を含み、
    前記第一照射ステップ及び前記第二照射ステップでは、前記光学可変素子領域から反射された光を第三の方向から受光し、
    前記光学可変素子領域を含む前記有価書類の面の垂直線と前記第一の方向とのなす角度である第一の角度と、前記垂直線と前記第二の方向とのなす角度である第二の角度と、前記垂直線と前記第三の方向とのなす角度である第三の角度と、は互いに異なり、
    前記第三の角度は25°以上、90°未満である光学可変素子領域の検出方法。
    A method for detecting an optical variable element region of a valuable document,
    A first reading step of irradiating the optical variable element region with light from a first direction and receiving light reflected from the optical variable element region;
    A second reading step of irradiating light from the second direction to the optical variable element region and receiving light reflected from the optical variable element region;
    The presence or absence of the optical variable element region is determined based on first reflected light information that is reflected light information in the first reading step and second reflected light information that is reflected light information in the second reading step. A determination step for determining,
    In the first irradiation step and the second irradiation step, light reflected from the optical variable element region is received from a third direction,
    A first angle that is an angle formed between a vertical line of the surface of the valuable document including the optical variable element region and the first direction, and a second angle that is formed between the vertical line and the second direction. And a third angle that is an angle formed between the vertical line and the third direction are different from each other,
    The method of detecting an optical variable element region, wherein the third angle is 25 ° or more and less than 90 °.
  16. 有価書類の光学可変素子領域を検出するための画像センサユニットであって、
    第一の方向から前記光学可変素子領域に光を照射する第一光源と、
    第二の方向から前記光学可変素子領域に光を照射する第二光源と、
    前記光学可変素子領域から反射された光を第三の方向から受光する受光部と、を備え、
    前記光学可変素子領域を含む前記有価書類の面の垂直線と前記第一の方向とのなす角度である第一の角度と、前記垂直線と前記第二の方向とのなす角度である第二の角度と、前記垂直線と前記第三の方向とのなす角度である第三の角度と、は互いに異なり、
    前記第三の角度は25°以上、90°未満である画像センサユニット。
    An image sensor unit for detecting an optical variable element region of a valuable document,
    A first light source that irradiates light to the optical variable element region from a first direction;
    A second light source that irradiates light to the optical variable element region from a second direction;
    A light receiving unit that receives light reflected from the optical variable element region from a third direction,
    A first angle that is an angle formed between a vertical line of the surface of the valuable document including the optical variable element region and the first direction, and a second angle that is formed between the vertical line and the second direction. And a third angle that is an angle formed between the vertical line and the third direction are different from each other,
    The image sensor unit wherein the third angle is 25 ° or more and less than 90 °.
PCT/JP2017/004779 2016-02-23 2017-02-09 Valuable document identification apparatus, valuable document processor, image sensor unit, and method for detecting optical variable element area WO2017145779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780008355.7A CN108496207B (en) 2016-02-23 2017-02-09 Value document recognition device, value document processing machine, image sensor unit, and method for detecting optically variable element region

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032543A JP6751569B2 (en) 2016-02-23 2016-02-23 Method for detecting the document identification device, the document processor, the image sensor unit, and the optical variable element region
JP2016-032543 2016-02-23

Publications (1)

Publication Number Publication Date
WO2017145779A1 true WO2017145779A1 (en) 2017-08-31

Family

ID=59686563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004779 WO2017145779A1 (en) 2016-02-23 2017-02-09 Valuable document identification apparatus, valuable document processor, image sensor unit, and method for detecting optical variable element area

Country Status (3)

Country Link
JP (1) JP6751569B2 (en)
CN (1) CN108496207B (en)
WO (1) WO2017145779A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3965079A1 (en) 2020-09-08 2022-03-09 Glory Ltd. Sheet recognition unit, sheet handling device, and sheet recognition method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277252A (en) * 2009-05-27 2010-12-09 Toshiba Corp Paper sheet handling apparatus
JP2013020540A (en) * 2011-07-13 2013-01-31 Glory Ltd Paper sheet identification device and paper sheet identification method
JP2013527909A (en) * 2010-01-07 2013-07-04 デ ラ ルー ノース アメリカ インコーポレイテッド System and method for detecting optically variable materials
JP2014223768A (en) * 2013-05-17 2014-12-04 凸版印刷株式会社 Antifalsification medium and method for reading antifalsification medium
JP2014240832A (en) * 2013-05-17 2014-12-25 旭硝子株式会社 Inspection method for inspection object, inspection device for inspection object and method for producing glass plate

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3223730B2 (en) * 1994-11-30 2001-10-29 凸版印刷株式会社 True / false judgment method of mark with invisible ink
US6473165B1 (en) * 2000-01-21 2002-10-29 Flex Products, Inc. Automated verification systems and methods for use with optical interference devices
US7672475B2 (en) * 2003-12-11 2010-03-02 Fraudhalt Limited Method and apparatus for verifying a hologram and a credit card
JP2006133054A (en) * 2004-11-05 2006-05-25 Oki Electric Ind Co Ltd Interference pigment detector
JP4073907B2 (en) * 2004-11-16 2008-04-09 株式会社日本コンラックス Paper sheet identification device
JP2007249656A (en) * 2006-03-16 2007-09-27 Toshiba Corp Hologram inspecting equipment
JP4779792B2 (en) * 2006-04-27 2011-09-28 凸版印刷株式会社 Information recording medium and information recording medium authenticity determination device
JP2007325050A (en) * 2006-06-02 2007-12-13 Sharp Corp Image reader and image reading method
JP2008257395A (en) * 2007-04-03 2008-10-23 Toshiba Corp Paper leaf processing unit
JP2009157504A (en) * 2007-12-25 2009-07-16 Toshiba Corp Paper sheet discrimination device
CN101533536B (en) * 2009-04-15 2010-08-18 谭一舟 Double light path imaging device used for discriminating spectrum difference and gravure characteristics of notes
JP2010266647A (en) * 2009-05-14 2010-11-25 Sony Corp Hologram determination apparatus
JP2011107512A (en) * 2009-11-19 2011-06-02 Osaka Univ Argument image pickup device
CN101986353A (en) * 2010-11-02 2011-03-16 北京新岸线软件科技有限公司 Multi-angle optical characteristic detection method and device
CN102999964B (en) * 2011-09-16 2015-02-11 谭伟基 Variable ink recognition device and banknote discriminating device
CN103018243B (en) * 2011-09-27 2015-08-05 中钞特种防伪科技有限公司 For shielding the device of the hologram in detected material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277252A (en) * 2009-05-27 2010-12-09 Toshiba Corp Paper sheet handling apparatus
JP2013527909A (en) * 2010-01-07 2013-07-04 デ ラ ルー ノース アメリカ インコーポレイテッド System and method for detecting optically variable materials
JP2013020540A (en) * 2011-07-13 2013-01-31 Glory Ltd Paper sheet identification device and paper sheet identification method
JP2014223768A (en) * 2013-05-17 2014-12-04 凸版印刷株式会社 Antifalsification medium and method for reading antifalsification medium
JP2014240832A (en) * 2013-05-17 2014-12-25 旭硝子株式会社 Inspection method for inspection object, inspection device for inspection object and method for producing glass plate

Also Published As

Publication number Publication date
JP6751569B2 (en) 2020-09-09
CN108496207A (en) 2018-09-04
JP2017151654A (en) 2017-08-31
CN108496207B (en) 2020-11-17

Similar Documents

Publication Publication Date Title
KR102549881B1 (en) Validation of security documents
EP1490828B1 (en) Currency verification
JP4703403B2 (en) Inspection device
CN102224530A (en) Determining document fitness using sequenced illumination
EP2541467A2 (en) Sequenced Illumination for documents such as bank notes.
RU2598296C2 (en) Method for checking optical security feature of value document
JP4188111B2 (en) Paper sheet authenticity discrimination device
EP3598401B1 (en) Paper sheet detection device, paper sheet processing apparatus, and paper sheet detection method
US20170193726A1 (en) Banknote Processing Apparatus
WO2011036748A1 (en) Paper sheet identification device and paper sheet identification method
US20110164804A1 (en) Detection of Color Shifting Elements Using Sequenced Illumination
JP2019040315A (en) Invisibility detection device, sheet identification device, sheet processor, print inspection device, and invisibility detection method
JP5752549B2 (en) Optical reader and paper sheet processing apparatus
WO2012119409A1 (en) Paper currency discrimination detector
WO2017145779A1 (en) Valuable document identification apparatus, valuable document processor, image sensor unit, and method for detecting optical variable element area
JP2020113270A (en) Image acquisition device, paper sheet processing device, bill processing device and image acquisition method
CN106780957B (en) Image acquisition device, paper product processing device, and image acquisition method
JP7473677B2 (en) Optical sensor, paper sheet identification device, paper sheet processing device, and optical detection method
JP4074917B1 (en) Paper sheet identification device
CN108604397B (en) Value document processing device and value document processing method
KR20120069841A (en) A banknote discrimination apparatus using contact image sensor module
JP4377872B2 (en) Surface inspection device
JP2021149833A (en) Optical sensor and paper sheet identification device
JP7496744B2 (en) Paper sheet identification device, paper sheet processing device, and paper sheet identification method
JP4062200B2 (en) Paper sheet discrimination device and discrimination method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756220

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756220

Country of ref document: EP

Kind code of ref document: A1