WO2017145623A1 - インサート組品、翼、ガスタービン、および、翼の製造方法 - Google Patents

インサート組品、翼、ガスタービン、および、翼の製造方法 Download PDF

Info

Publication number
WO2017145623A1
WO2017145623A1 PCT/JP2017/002505 JP2017002505W WO2017145623A1 WO 2017145623 A1 WO2017145623 A1 WO 2017145623A1 JP 2017002505 W JP2017002505 W JP 2017002505W WO 2017145623 A1 WO2017145623 A1 WO 2017145623A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
blade
radial direction
holding member
peripheral surface
Prior art date
Application number
PCT/JP2017/002505
Other languages
English (en)
French (fr)
Inventor
咲生 松尾
羽田 哲
敬三 塚越
芳史 岡嶋
邦彦 脇
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to CN201780007068.4A priority Critical patent/CN108474261B/zh
Priority to EP17756065.3A priority patent/EP3392462B1/en
Priority to US16/069,260 priority patent/US10612397B2/en
Priority to KR1020187020504A priority patent/KR102130969B1/ko
Publication of WO2017145623A1 publication Critical patent/WO2017145623A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/75Shape given by its similarity to a letter, e.g. T-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/608Aeration, ventilation, dehumidification or moisture removal of closed spaces

Definitions

  • the present invention relates to an insert assembly, a blade, a gas turbine, and a method for manufacturing the blade.
  • cooling air flows in a blade such as a stationary blade.
  • a blade such as a stationary blade.
  • Such a blade includes a blade air passage for flowing cooling air inside the blade.
  • a cylindrical body such as an insert having a large number of holes is disposed in the blade air passage to impingement cool the blade wall with cooling air.
  • cooling air after impingement cooling is discharged into the combustion gas from a plurality of cooling holes provided in the blade wall, the blade wall is film-cooled.
  • This type of cylindrical body has a difference in thermal elongation between the blade body. Therefore, in such a case, the cylindrical body is fixed to the wing body by seal welding or brazing the first end of the two ends, and the second end is fixed to the cylindrical body. Free for longitudinal elongation. In this way, the cylindrical body absorbs the difference in thermal expansion while maintaining the sealing performance with the blade body.
  • Patent Document 1 describes a configuration that absorbs a difference in thermal expansion of an insert.
  • the free end of the insert is held by a holding member so that the cooling air does not leak from the gap between the free ends.
  • An object of the present invention is to provide an insert assembly, a blade, a gas turbine, and a blade manufacturing method capable of obtaining stable insert sealing performance.
  • the insert assembly is disposed on a turbine blade including a blade body, an outer shroud, and an inner shroud.
  • the outer shroud and the inner shroud are respectively formed at both ends in the radial direction of the blade body.
  • the insert assembly is provided in a blade air passage through which cooling air is supplied into the blade body.
  • the insert assembly includes an insert, a reinforcing member, and a holding member.
  • the insert is formed in a cylindrical body having a plurality of cooling holes.
  • the insert is fixed to one end of the wing body in the radial direction.
  • the reinforcing member is formed in a plate shape and is provided in the insert.
  • the reinforcing member extends in a direction orthogonal to the radial direction, and is fixed to the inner peripheral surface of the cylindrical body at both ends thereof.
  • the insert is further disposed adjacent to the other end of the cylindrical body in the radial direction.
  • the holding member is fixed to the other end in the radial direction of the wing body.
  • the holding member is formed in an annular shape.
  • the holding member is formed with a seal surface that comes into contact with the end of the insert and allows the insert to slide in the radial direction.
  • the holding member positions the insert in a direction perpendicular to the radial direction with respect to the wing body.
  • the seal surface may be formed on the inner peripheral surface of the end portion of the insert.
  • the seal surface may be formed on the outer peripheral surface of the end portion of the insert.
  • the insert assembly according to any one of the first to third aspects is an L-shaped tapering toward the one end in the radial direction of the wing body.
  • a cross-sectional shape may be provided.
  • the insert assembly may be formed including a positioning portion, a positioning convex portion, and a flange portion.
  • the positioning portion is formed at the tip on the one end side in the radial direction, and is formed in an annular shape.
  • the positioning convex portion is formed adjacent to the positioning portion and has a larger diameter than the positioning portion on the other end side in the radial direction.
  • the flange portion is fixed to the wing body.
  • the flange portion is disposed on the other end side in the radial direction adjacent to the positioning convex portion, and has a larger diameter than the positioning convex portion.
  • the insert assembly according to the fourth aspect may include a positioning portion that fits in the radial direction to the other end of the insert. By comprising in this way, positioning of the insert with respect to a holding member becomes easy via a positioning part.
  • the insert assembly according to the fourth aspect may include a positioning convex portion whose side surface is fitted into the opening on the other end side of the blade air passage.
  • the insert assembly may include a reinforcing member that covers the entire surface of the passage section of the internal cavity surrounded by the insert.
  • the insert assembly may include a reinforcing member having at least one through hole.
  • the reinforcing member has at least one through hole (extract hole)
  • the dust in the internal cavity can be removed through the through hole by moving the dust in the internal cavity to the dust storage space.
  • It can also be used as a flow rate adjusting plate for adjusting the flow rate of cooling air supplied to the internal cavity.
  • the insert component according to any one of the first to seventh aspects includes a cover plate that closes the opening provided at the other end of the wing body. May be. By comprising in this way, it can prevent that the cooling air in a wing body leaks out by fixing a cover plate to a wing body.
  • the insert assembly according to the eighth aspect may include a reinforcing member having a through hole that is a through hole for removing dust accumulated in the internal space of the insert.
  • the insert may have a dust accommodating space surrounded by the reinforcing member and the lid plate, and the holding member may be formed so as to be able to fit into the insert via the seal surface.
  • the insert assembly according to the ninth aspect may include an integrated holding member to which the lid plate is fixed.
  • the lid plate according to the ninth aspect may be fixed to the holding member.
  • the cover plate may be integrated with the holding member.
  • the wing includes the insert assembly according to any one of the first to eleventh aspects.
  • a gas turbine includes the blade according to the twelfth aspect.
  • a method for manufacturing a wing includes a step of forming an insert that can be inserted into a wing air passage formed to penetrate from the outer shroud of the wing to the inner shroud.
  • blade further includes the process of fixing a reinforcement member to the internal peripheral surface of the said insert, and integrating as an insert provided with the reinforcement member.
  • the blade manufacturing method further includes a step of forming a holding member capable of positioning the first end portion of the insert with respect to the blade air passage.
  • the blade manufacturing method further includes the step of fixing the flange portion of the holding member to the periphery of the first opening of the blade air passage.
  • the blade manufacturing method further includes inserting an insert into the blade air passage from a second opening opposite to the first opening to which the holding member is attached, and holding the first end of the insert.
  • blade further includes the process of fixing the 2nd edge part of the said insert to the periphery of the 2nd opening part of the said wing
  • a gas turbine includes the blade according to the twelfth aspect.
  • the insert assembly can stably maintain a good sealing performance, and therefore it is possible to suppress a decrease in the thermal efficiency of the gas turbine.
  • the assembly work of the insert assembly can be easily performed, and a stable cooling performance of the blade can be obtained.
  • FIG. 1 is a schematic cross-sectional view of a gas turbine according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the main part of the gas turbine in the first embodiment of the present invention.
  • the gas turbine 10 in this embodiment includes a compressor 20, a combustor 30, and a turbine 40.
  • the compressor 20 compresses the air A.
  • the combustor 30 burns fuel in the air A compressed by the compressor 20 to generate combustion gas.
  • the turbine 40 is driven by combustion gas.
  • the compressor 20 includes a compressor rotor 21, a compressor casing 25, and a stationary blade stage 26.
  • the compressor rotor 21 rotates about the axis line Ar.
  • the compressor casing 25 covers the compressor rotor 21.
  • a plurality of stationary blade stages 26 are provided.
  • the turbine 40 includes a turbine rotor 41, a turbine casing 45, and a stationary blade stage 46.
  • the turbine rotor 41 rotates about the axis Ar.
  • the turbine casing 45 covers the turbine rotor 41.
  • a plurality of stationary blade stages 46 are provided.
  • the compressor rotor 21 and the turbine rotor 41 are located on the axis Ar.
  • the compressor rotor 21 and the turbine rotor 41 constitute a gas turbine rotor 11 by being connected to each other.
  • This gas turbine rotor 11 is connected to the rotor of the generator GEN, for example.
  • the compressor casing 25 and the turbine casing 45 constitute a gas turbine casing 15 by being connected to each other.
  • the direction in which the axis Ar extends is the axial direction Da
  • the circumferential direction around the axis Ar is simply the circumferential direction Dc
  • the direction perpendicular to the axis Ar is the radial direction Dr.
  • the compressor 20 side is defined as the upstream side Dau and the opposite side as the downstream side Dad with reference to the turbine 40.
  • a side closer to the axis Ar in the radial direction Dr is defined as a radially inner side Dri
  • the opposite side is defined as a radially outer side Dro.
  • the compressor rotor 21 includes a rotor shaft 22 and a plurality of blade stages 23.
  • the rotor shaft 22 extends in the axial direction Da around the axis line Ar.
  • the plurality of blade stages 23 are respectively attached to the rotor shaft 22 along the axial direction Da.
  • Each of the rotor blade stages 23 includes a plurality of rotor blades 23a. In the moving blade stage 23, these moving blades 23a are arranged in the circumferential direction Dc.
  • a stationary blade stage 26 is disposed on each downstream side Dad of the plurality of blade stages 23. These stationary blade stages 26 are provided inside the compressor casing 25.
  • Each of the stationary blade stages 26 includes a plurality of stationary blades 26a. In the stationary blade stage 26, the plurality of stationary blades 26a are arranged in the circumferential direction Dc.
  • the turbine rotor 41 includes a rotor shaft 42 and a plurality of blade stages 43.
  • the rotor shaft 42 extends in the axial direction Da around the axis line Ar.
  • the plurality of blade stages 43 are attached to the rotor shaft 42.
  • the plurality of blade stages 43 are arranged in the axial direction Da.
  • Each of the plurality of moving blade stages 43 includes a plurality of moving blades 43a.
  • the plurality of blades 43a are arranged in the circumferential direction Dc.
  • a stationary blade stage 46 is disposed on each upstream side Dau of the plurality of blade stages 43. These stationary blade stages 46 are provided inside the turbine casing 45.
  • Each of the stationary blade stages 46 includes a plurality of stationary blades 46a.
  • the plurality of stationary blades 46a are arranged in the circumferential direction Dc.
  • the turbine casing 45 includes an outer casing 45a, an inner casing 45b, and a plurality of split rings 45c.
  • the outer casing 45a is formed in a cylindrical shape.
  • the inner casing 45b is fixed inside the outer casing 45a.
  • the plurality of split rings 45c are fixed inside the inner compartment 45b.
  • the plurality of split rings 45 c are all provided at positions between the plurality of stationary blade stages 46.
  • a rotor blade stage 43 is arranged on each radially inner side Dri of the divided rings 45c.
  • the space between the rotor shaft 42 and the turbine casing 45 is a combustion gas flow path 49 through which the combustion gas G from the combustor 30 flows.
  • a stationary blade 46 a and a moving blade 43 a are disposed in the combustion gas flow path 49.
  • the combustion gas channel 49 is formed in an annular shape that is long in the axial direction Da with the axis line Ar as the center.
  • the inner casing 45b of the turbine casing 45 is provided with a cooling air passage 45p penetrating from the radially outer side Dro to the radially inner side Dri.
  • the cooling air that has passed through the cooling air passage 45p is introduced into the stationary blade 46a and the split ring 45c, and is used for cooling the stationary blade 46a and the split ring 45c.
  • some of the stationary blade stages 46 may be supplied with air in the gas turbine casing 15 as cooling air to the stationary blades 46a without passing through the cooling air passage of the casing. is there.
  • FIG. 3 is a perspective view of the stationary blade in the first embodiment of the present invention.
  • the stationary blade 46a includes a blade body 51, an inner shroud 60i, and an outer shroud 60o.
  • the wing body 51 extends in the radial direction Dr.
  • the inner shroud 60 i is formed on the radially inner side Dri of the wing body 51.
  • the outer shroud 60 o is formed on the radially outer side Dro of the wing body 51.
  • the blade body 51 is disposed in the combustion gas flow path 49 (see FIG. 2).
  • the combustion gas G passes through this combustion gas flow path 49.
  • the blade body 51 has a leading edge 52 at the end of the upstream Dau.
  • the blade body 51 has a trailing edge 53 at the end of the downstream side Dad.
  • one of the surfaces (outer surfaces) facing the circumferential direction Dc is a convex surface, and the other is a concave surface.
  • the outer shroud 60 o has an outer shroud main body 61 and a peripheral wall 65.
  • the outer shroud main body 61 is formed in a plate shape that extends in the axial direction Da and the circumferential direction Dc.
  • the peripheral wall 65 projects from the outer shroud body 61 to the radially outer side Dro along the outer peripheral edge of the outer shroud body 61.
  • the outer shroud main body 61 includes a front end face 62f, a rear end face 62b, a ventral end face 63p, a back end face 63n, and a gas path face 64.
  • the front end face 62f is an end face of the upstream side Dau.
  • the rear end surface 62b is an end surface of the downstream side Dad.
  • the ventral side end face 63p is an end face of the circumferential direction ventral side Dcp.
  • the back end surface 63n is an end surface of the circumferential back side Dcn.
  • the gas path surface 64 faces the radially inner side Dri.
  • the outer shroud 60o is formed with a recess 66 that is recessed toward the radially inner side Dri.
  • the recess 66 is formed by the outer shroud main body 61 and the peripheral wall 65.
  • the outer shroud 60o and the inner shroud 60i described above have basically the same structure. Therefore, the detailed description about the inner shroud 60i is omitted.
  • a plurality of blade air passages 71 (cavities) extending in the radial direction Dr are formed in the blade body 51, the outer shroud 60o, and the inner shroud 60i. Each of these blade air passages 71 is formed continuously from the outer shroud 60o through the blade body 51 to the inner shroud 60i.
  • the plurality of blade air passages 71 are arranged along the chord of the blade body 51. Among the plurality of blade air passages 71, some adjacent blade air passages 71 communicate with each other at a radially outer portion Dro portion or a radially inner portion Dri to form a serpentine flow path.
  • any one of the blade air passages 71 is opened by the recess 66 of the outer shroud 60o.
  • any one of the blade air passages 71 is further opened by a recess of the inner shroud 60i.
  • some blade air passages 71 are formed so as to penetrate from the outer shroud 60o to the inner shroud 60i.
  • a part of the cooling air Ac supplied to the radially outer side Dro or the radially inner side Dri of the stationary blade 46a is from the opening of the blade air passage 71 (the opening 71b on the inner shroud 60i side, the opening 71c on the outer shroud 60o side). It flows into the blade air passage 71.
  • a plurality of blade surface ejection passages 72 penetrating from the blade air passage 71 to the combustion gas passage 49 are formed in the front edge portion 52 and the rear edge portion 53 of the blade body 51.
  • the blade body 51 is cooled in the process in which the cooling air Ac flows through the blade air passage 71.
  • the cooling air Ac flowing into the blade air passage 71 flows out from the blade surface ejection passage 72 into the combustion gas passage 49.
  • the front edge portion 52 and the rear edge portion 53 of the blade body 51 are cooled in the process in which the cooling air Ac flows out of the blade surface ejection passage 72.
  • a part of the cooling air Ac flowing out from the blade surface ejection passage 72 to the combustion gas flow path 49 partially covers the surface of the blade body 51 and also serves as film air.
  • FIG. 4 is a cross-sectional plan view taken along a plane orthogonal to the radial direction of the blade air passage in the first embodiment.
  • FIG. 5 is a cross-sectional view of the opening peripheral edge of the blade air passage in the first embodiment.
  • an insert assembly 79 including an insert 80, a reinforcing member 85, and a holding member 90 is disposed in the blade air passage 71.
  • the insert 80 is provided for impingement cooling the inner peripheral surface 71a of the blade body 51.
  • the reinforcing member 85 increases the rigidity of the insert 80.
  • the holding member 90 holds the insert 80 on the wing body 51.
  • a direction orthogonal to the radial direction Dr and crossing the passage cross section of the blade air passage 71 is defined as an insert radial direction Dir.
  • the insert 80 is a cylindrical body formed of a thin plate.
  • the insert 80 is arranged at the same distance from the inner peripheral surface (inner wall surface) 71a of the blade air passage 71 along the entire circumference.
  • an insert cavity 81 that is an annular space is formed between the inner peripheral surface 71 a of the blade body 51 and the outer peripheral surface 80 a of the insert 80.
  • seal dams 83 On the inner peripheral surface 71a of the blade air passage 71, two seal dams 83 extending in the radial direction Dr are formed. These seal dams 83 are formed to have substantially the same length as the insert 80 in the radial direction Dr.
  • the insert cavity 81 described above is divided into two spaces by a seal dam 83 in the circumferential direction of the insert 80. These two spaces communicate with the combustion gas flow path 49 via a blade surface ejection passage 72 formed in the blade body 51. Therefore, these two spaces are different from each other in pressure due to the pressure on the combustion gas flow path 49 side.
  • the insert 80 is formed with a plurality of impingement holes 82 that communicate the internal space (internal cavity 80b) and the external space (insert cavity 81).
  • an outer flange is formed at an end 88 (FIG. 3: second end, one end) of the radially outer side Dro of the insert 80, and this outer flange is an edge of the blade body 51. It is fixed by welding or the like.
  • the end portion 84 (the first end portion and the other end portion) of the insert 80 on the radially inner side Dri slides while contacting the holding member 90.
  • a sealing surface is formed between the holding member 90 and the end portion 84 of the insert 80 (details of the structure will be described later).
  • the second end portion refers to the end portion 88 of the insert 80 in which the insert 80 is fixed to the wing body 51
  • the first end portion refers to the end of the insert 80 in which the insert 80 slides with respect to the holding member 90.
  • the insert 80 further includes a reinforcing member 85.
  • the reinforcing member 85 is formed adjacent to the end portion 84 of the insert 80 on the radially inner side Dri and spaced from the end portion 84 toward the radially outer side Dro.
  • the reinforcing member 85 is formed in a plate shape so as to close the entire surface of the passage section when the insert 80 is viewed from the radial direction Dr.
  • an attachment portion 85 b is formed that is bent at a right angle in the direction of the radial inner side Dri with respect to the main body portion 85 a of the reinforcing member 85.
  • the attachment portion 85b is fixed to the inner peripheral surface 80c of the insert 80 by welding or the like.
  • the main body 85a of the reinforcing member 85 is formed with at least one through hole 87 as a through hole.
  • the waste storage space 100 is further arranged on the radially inner side Dri with the main body 85a as a boundary.
  • the dust storage space 100 communicates with the internal cavity 80 b through the punch hole 87.
  • the hole 87 is formed in a minimum size that allows only dust contained in the cooling air Ac to pass through. Dust contained in the cooling air Ac moves from the internal cavity 80 b to the dust storage space 100 through the hole 87 and accumulates in the dust storage space 100.
  • the dust accumulated in the waste storage space 100 is taken out from the waste storage space 100 during maintenance, for example.
  • the holding member 90 constituting a part of the insert assembly 79 is formed in an annular shape.
  • the holding member 90 further has an L-shaped cross section viewed from the insert radial direction Dir.
  • the holding member 90 has a positioning portion 91 (first positioning portion).
  • the positioning portion 91 is formed at the tip of the holding member 90 on the radially outer side Dro.
  • the positioning part 91 is formed in an annular thin plate shape.
  • the holding member 90 includes a plate-like flange 92 at the end of the radially inner side Dri.
  • the flange portion 92 has a side surface 92 a in the insert radial direction Dir arranged outside the inner peripheral surface 71 a of the blade air passage 71 in the insert radial direction Dir.
  • the flange portion 92 is formed to have a larger diameter than the inner peripheral surface 71 a of the blade air passage 71.
  • a positioning convex portion 93 (second positioning portion) is disposed between the positioning portion 91 and the flange portion 92.
  • the positioning protrusion 93 protrudes outward in the insert radial direction Dir from the outer peripheral surface 80 a of the insert 80. That is, the positioning convex portion 93 is formed with a larger diameter than the outer peripheral surface 80a.
  • the positioning convex portion 93 is further formed to have a smaller diameter in the insert radial direction Dir than the inner peripheral surface 71 a of the blade air passage 71.
  • the holding member 90 is an annular member that is integrally formed by the positioning portion 91, the positioning convex portion 93, and the flange portion 92.
  • the holding member 90 is fitted into an opening (first opening) 71 b on the radially inner side Dri of the blade air passage 71.
  • the outward direction of the insert radial direction Dir refers to a direction from the center line extending in the radial direction Dr of the insert 80 toward the inner peripheral surface 71a of the blade air passage 71 in the insert radial direction Dir.
  • the positioning portion 91 positions the end portion 84 of the insert 80 with respect to the inner peripheral surface (inner wall surface) 71 a of the blade air passage 71 in the insert radial direction Dir.
  • the positioning portion 91 further restricts the movement of the end portion 84 of the insert 80 in the insert radial direction Dir of the blade body 51.
  • the positioning portion 91 in this embodiment has an outer peripheral surface 91 b that is slightly larger in diameter than the inner peripheral surface 84 a of the end portion 84.
  • the positioning portion 91 is formed in a cylindrical shape that can be fitted in contact with the inner peripheral surface 84 a side of the end portion 84 of the insert 80.
  • the end portion 84 of the insert 80 is in contact with the inner peripheral surface 84a of the insert member 80 via the outer peripheral surface 91b of the positioning portion 91 without being fixed to the holding member 90 by welding or the like.
  • a seal surface is formed between the outer peripheral surface 91 b of the holding member 90 and the inner peripheral surface 84 a of the end portion 84.
  • the outer peripheral surface 93 a in the insert radial direction Dir of the positioning convex portion 93 of the holding member 90 is in contact with the inner peripheral surface 71 a of the opening 71 b of the blade main body 51.
  • the outer peripheral surface 93a of the holding member 90 is positioned with respect to the blade body 51 in the insert radial direction Dir.
  • the positioning portion 91 of the insert 80 is slidable in the radial direction Dr with respect to the end portion 84. Therefore, even if there is a difference in thermal elongation between the insert 80 and the blade body 51, no thermal stress is generated in the insert 80.
  • a certain gap may be provided between the end of the mounting portion 85 b of the reinforcing member 85 on the radially inner side Dri and the tip of the positioning portion 91.
  • the insert 80 does not interfere with the distal end portion of the positioning portion 91 facing the radially outer side Dro due to the thermal elongation in the radial direction Dr.
  • the attachment portion 85 b may be adjacent to the end portion 84 and may be fixed to the inner peripheral surface 84 a of the end portion 84 while maintaining a certain gap from the positioning portion 91.
  • the above-described constant gap is sufficient as long as it can absorb the difference in thermal elongation of the insert 80 in the radial direction Dr.
  • the outer diameter of the insert 80 is, for example, the largest width dimension h in the cross section of the insert 80 shown in FIG.
  • the flange portion 92 is fixed to the periphery of the opening 71b of the blade air passage 71 via a welded portion formed by fillet welding or the like, for example.
  • the flange portion 92 in the present embodiment is fixed to the periphery of the opening 71b via a welded portion w1 formed by fillet welding at the corner portion between the side surface 92a and the end edge of the blade body 51.
  • the welded portion w1 is formed on the entire circumference of the flange portion 92. Thereby, the cooling air Ac is prevented from leaking from the gap between the flange portion 92 and the blade body 51.
  • the positioning convex portion 93 positions the holding member 90 in the insert radial direction Dir with respect to the wing body 51.
  • the positioning convex portion 93 is fitted into the opening 71b of the blade air passage 71 by gap fitting or the like.
  • the holding member 90 is positioned with respect to the blade air passage 71 of the blade body 51 in the insert radial direction Dir. Therefore, the inner peripheral surface 71a of the blade air passage 71 and the outer peripheral surface 93b of the positioning convex portion 93 are in contact with each other in the insert radial direction Dir.
  • the distance between the outer peripheral surface 80a of the insert 80 positioned by the positioning portion 91 and the inner peripheral surface 71a of the blade air passage 71 is also maintained at an equal distance over the entire periphery.
  • the end portion 84 of the insert 80 on the radially inner side Dri is fitted into the outer peripheral surface 91b of the positioning portion 91 of the holding member 90, and the inner peripheral surface 84a of the end portion 84 and the outer peripheral surface 91b of the positioning portion 91 are Are in contact with each other, and a sealing surface is formed on the contact surface.
  • the effectiveness of the structure of this embodiment compared to the structure in which the reinforcing member 85 is not provided in the vicinity of the end portion 84 of the insert 80 on the radially inner side Dri will be described.
  • the end portion 84 of the insert 80 comes into contact with the positioning portion 91 to form a seal surface
  • the insert 80 receives the differential pressure of the cooling air Ac, expands outward in the insert radial direction Dir, and deforms.
  • the outer peripheral surface 80a of the insert 80 is deformed outward in the insert radial direction Dir due to a pressure difference between the internal cavity 80b and the insert cavity 81. Accordingly, a gap is likely to be generated on the seal surface between the inner peripheral surface 84 a of the end portion 84 and the outer peripheral surface 91 b of the positioning portion 91.
  • the internal cavity 80b to which the cooling air Ac is supplied from the outer shroud 60o has the highest pressure.
  • the pressure of the downstream insert cavity 81 communicating with the internal cavity 80b via the impingement hole 82 is lower than the pressure of the internal cavity 80b. Therefore, the insert 80 is deformed outward in the insert radial direction Dir under the pressure difference between the internal cavity 80b and the insert cavity 81.
  • the width dimension (for example, width dimension h) of the insert radial direction Dir of the insert 80 is expanded. Therefore, a gap is easily generated on the seal surface between the inner peripheral surface 84 a of the end portion 84 of the insert 80 and the outer peripheral surface 91 b of the positioning portion 91 of the holding member 90. Due to this gap, the amount of cooling air Ac leaking from the internal cavity 80b side to the insert cavity 81 side through the sealing surface increases, leading to a loss of the cooling air Ac.
  • the above example is a case where the seal surface is formed between the inner peripheral surface 84 a of the end portion 84 and the outer peripheral surface 91 b of the positioning portion 91.
  • the second factor is a case where the difference in thermal expansion in the insert radial direction Dir between the insert 80 and the holding member 90 affects the gap on the seal surface. That is, the inner peripheral surface 71a of the blade air passage 71 of the blade body 51 receives heat from the combustion gas G and spreads outward in the insert radial direction Dir. Thereby, the width dimension of the passage cross section of the blade air passage 71 is expanded.
  • the holding member 90 is fixed to the wing body 51. Therefore, the holding member 90 follows the movement of the wing body 51 and, like the wing body 51, spreads outward in the insert radial direction Dir and shows a tendency to increase its inner diameter.
  • the insert 80 Since the insert 80 is in direct contact with the cooling air Ac in the internal cavity 80b, the insert 80 does not reach a temperature as high as that of the holding member 90. That is, when the sealing surface is formed between the inner peripheral surface 84a of the end portion 84 and the outer peripheral surface 91b of the positioning portion 91, the outer peripheral surface 91b of the positioning portion 91 expands outward in the insert radial direction Dir. .
  • the end portion 84 of the insert 80 is relatively cooler than the holding member 90. Therefore, the end portion 84 of the insert 80 has a small degree of outward expansion in the insert radial direction Dir.
  • this tendency is more conspicuous in the end portion 84 that is held free with respect to the wing body 51 than in the end portion 88 of the insert 80 that is fixed to the wing body 51. Therefore, in the sealing surface, the outer displacement of the outer peripheral surface 91b of the positioning portion 91 in the insert radial direction Dir is larger than that of the inner peripheral surface 84a of the end portion 84. As a result, the pressing force in the insert radial direction Dir from the outer peripheral surface 91b to the inner peripheral surface 84a is increased, and the gap on the seal surface is reduced.
  • the first factor has a greater effect on the generation of the clearance between the seal surfaces. That is, the size of the gap due to the deformation of the insert 80 due to the pressure difference generated between the internal cavity 80b and the insert cavity 81, which is the first factor, is the second factor, the insert 80 and the holding member 90. It becomes larger than the size of the gap due to the displacement on the seal surface due to the difference in thermal expansion occurring during the period.
  • the effectiveness of the reinforcing member 85 varies depending on whether the sealing surface is on the inner peripheral surface 84a side or the outer peripheral surface 84b side of the end portion 84. The relationship between the gap generation factor on the seal surface of each embodiment and the effectiveness of the reinforcing member 85 will be described in each embodiment.
  • the inner peripheral surface 84a of the end portion 84 and the outer peripheral surface 91b of the positioning portion 91 are in contact with each other, and a seal surface is formed therebetween.
  • the gap is widened on the seal surface due to the pressure difference between the internal cavity 80 b and the insert cavity 81.
  • the gap at the sealing surface is further reduced due to the difference in thermal expansion between the insert 80 and the holding member 90.
  • the gap tends to widen on the sealing surface as a whole.
  • a structure in which the reinforcing member 85 is provided on the radially outer side Dro in the vicinity of the end portion 84 of the insert 80, for example, adjacent to the end portion 84, is employed.
  • the rigidity of the vicinity of the end 84 of the radially inner side Dri of the insert 80 is increased, and deformation of the insert 80 is suppressed. That is, the reinforcing member 85 is adjacent to the end portion 84 of the insert 80 and is attached at a position spaced radially outward from the end portion 84, so that the insert 80 extends outward in the insert radial direction Dir. This prevents the occurrence of a gap on the sealing surface and suppresses the loss of the cooling air Ac.
  • a lid plate 94 for closing the entire cross section of the blade air passage 71 is disposed in the opening 71 b of the blade air passage 71 on the radially inner side Dri.
  • the entire circumference of the cover plate 94 is fixed to the flange portion 92 of the holding member 90 by welding or the like.
  • the cover plate 94 may be fixed to the end portion of the blade body 51 on the radially inner side Dri by welding or the like.
  • the cooling air Ac supplied to the blade air passage 71 employs a one-side supply method in which the cooling air Ac is supplied to the internal cavity 80b only from the opening 71c (outer shroud 60o side) of the blade air passage 71.
  • a cover plate 94 is provided to close the opening 71b of the wing body 51.
  • the example of the both-sides supply system of cooling air Ac as other embodiment is mentioned later.
  • the rigidity of the holding member 90 can be increased.
  • the cover plate 94 the cooling air Ac does not flow into the blade air passage 71 from the opening 71 b of the blade air passage 71.
  • the cover plate 94 the cooling air Ac in the internal cavity 80b does not leak out from the blade body 51 to the outside.
  • the cooling air Ac supplied to the outer shroud 60o from the cooling air passage 45p or the like flows into the inner cavity 80b of the insert 80 from the opening (second opening) 71c on the radially outer side Dro of the blade air passage 71.
  • the cooling air Ac supplied to the internal cavity 80 b is ejected into the insert cavity 81 from a number of impingement holes 82 formed in the wall surface of the insert 80.
  • the cooling air Ac ejected from the impingement hole 82 into the insert cavity 81 impingement cools the inner peripheral surface 71a of the blade body 51 and is discharged from the blade surface ejection passage 72 to the combustion gas passage 49.
  • the blade surface is film-cooled.
  • a part of the cooling air Ac flows into the dust accommodating space 100 through the punched hole 87 of the reinforcing member 85 arranged on the radially inner side Dri of the insert 80.
  • a part of the cooling air Ac flowing into the dust accommodating space 100 is further cooled from the seal surface (contact surface) formed between the end portion 84 of the insert 80 and the positioning portion 91 of the holding member 90 to the insert cavity 81 side.
  • a small amount of air Ac leaks out.
  • the leaked cooling air Ac is finally discharged into the combustion gas passage 49.
  • the pressure of the cooling air Ac is the highest in the internal cavity 80b.
  • the pressure in the dust accommodating space 100 is lower than the pressure in the internal cavity 80b.
  • the pressure in the insert cavity 81 is further lower than the pressure in the dust storage space 100. That is, a part of the cooling air Ac in the internal cavity 80b flows into the dust storage space 100 from the internal cavity 80b.
  • the cooling air Ac in the dust accommodating space 100 leaks to the insert cavity 81 side from the seal surface between the inner peripheral surface 84a of the end portion 84 and the outer peripheral surface 91b of the positioning portion 91 of the holding member 90. That is, a flow of the cooling air Ac leaking from the internal cavity 80b to the insert cavity 81 side is generated.
  • the dust in the vicinity of the hole 87 in the internal cavity 80 b moves smoothly to the dust container space 100 through the hole 87 and accumulates on the bottom of the dust container space 100.
  • the cooling air Ac leaking from the sealing surface between the inner peripheral surface 84a of the end portion 84 and the outer peripheral surface 91b of the positioning portion 91 of the holding member 90 to the insert cavity 81 side is only a small amount, so that the dust storage space 100 dust is not discharged further from the dust accommodating space 100 to the insert cavity 81 side.
  • the above-described structure is a structure in which the cooling air Ac is supplied from the opening 71c of the blade air passage 71 on the outer shroud 60o side.
  • the cooling air Ac may be supplied from the opening 71b of the blade air passage 71 of the inner shroud 60i.
  • the holding member 90, the cover plate 94, the reinforcing member 85, and the dust storage space 100 are disposed in the vicinity of the opening 71 c of the end 88 on the radially outer side Dro of the blade air passage 71.
  • the side where the insert 80 is fixed to the end edge of the wing body 51 is called a second end, and the end opposite to the radial direction is called a first end.
  • the name of the blade air passage 71 and the radial end portion of the insert may also be called according to the blade body.
  • FIG. 6 is a flowchart of a method for manufacturing a wing in one embodiment of the present invention.
  • the insert 80 that can be inserted into the blade air passage 71 (cavity portion) formed so as to penetrate from the outer shroud 60o to the inner shroud 60i of the blade body 51 is formed (step S01).
  • the end edge of the main body portion 85a of the reinforcing member 85 is bent at a right angle to the radially inner Dri direction to form the attachment portion 85b.
  • the attachment portions 85 b of the reinforcing member 85 are fixed to the inner peripheral surfaces 84 a on both sides of the insert 80.
  • the attachment portion 85b of the reinforcing member 85 is fixed by welding or the like.
  • the mounting portion 85b is fixed to the inner peripheral surface 84a on both sides of the insert 80 facing the insert radial direction Dir, which is the inner peripheral surface 84a at the position of the radially outer side Dro adjacent to the end portion 84 of the insert 80.
  • the insert 80 including the reinforcing member 85 is integrated (step S02).
  • step S03 the holding member 90 that can position the end portion 84 of the insert 80 with respect to the blade air passage 71 is formed (step S03).
  • the order of performing the process of forming the insert 80 and the process of forming the holding member 90 is an example, and is not limited to the above order.
  • the positioning projection 93 of the holding member 90 is fitted into the opening 71b of the blade air passage 71, and the flange portion 92 of the holding member 90 is fixed to the periphery of the opening 71b of the blade air passage 71 by welding or the like (step S04). ).
  • the insert 80 is inserted into the blade air passage 71 from the opening 71 c on the radially outer side Dro of the blade air passage 71 opposite to the opening 71 b to which the holding member 90 is attached.
  • the end portion 84 of the insert 80 is fitted into the positioning portion 91 of the holding member 90 to position the end portion 84 of the insert 80 (step S05).
  • the end portion 88 on the radially outer side Dro of the insert 80 is fixed to the periphery of the opening of the blade air passage 71 by welding or the like (step S06).
  • the rigidity of the insert 80 in the vicinity of the end portion 84 of the insert 80 can be increased by the reinforcing member 85.
  • the leakage of the cooling air Ac from the sealing surface between the end portion 84 of the insert 80 constituting the insert assembly 79 and the holding member 90 to the insert cavity 81 can be suppressed. Therefore, the improvement in the cooling performance of the gas turbine and the decrease in thermal efficiency can be suppressed.
  • the dust containing space 100 can be formed between the reinforcing member 85 and the cover plate 94 (holding member 90). Furthermore, dust can be moved from the internal cavity 80 b of the insert 80 to the dust containing space 100 by the punch hole 87 formed in the reinforcing member 85. As a result, since dust can be stored in the dust storage space 100, the clogging of the dust into the impingement hole 82 of the insert 80 can be suppressed and reliability can be improved.
  • a hole 87 is provided in the reinforcing member 85, and the dust accommodating space 100 is disposed on the radially inner side Dri of the reinforcing member 85, thereby providing a function of removing dust in the cooling air Ac.
  • the reinforcing member 85 does not have to be provided with a hole. That is, the reinforcing member 85 may be a member only for the purpose of increasing the rigidity of the insert 80.
  • FIG. 1 The structure of the second embodiment will be described with reference to FIG.
  • This embodiment is different from the first embodiment in that the holding member 90 and the cover plate 94 in the first embodiment are integrated into a single holding member 110. That is, the insert assembly 79 of this embodiment is formed from the insert 80 and the holding member 110.
  • the second embodiment an example of a one-sided supply structure that supplies cooling air Ac from the opening 71c of the blade air passage 71 of the outer shroud 60o will be described.
  • the plate-like flange portion 112 that closes the opening 71 b of the blade air passage 71 is disposed at the end of the blade body 51 on the radially inner side Dri.
  • the holding member 110 is formed with an annular, thin plate-like positioning portion 111 that protrudes from the flange portion 112 to the distal end portion of the radially outer side Dro.
  • On the inner peripheral surface 111 a of the positioning portion 111 a seal surface that is in contact with the outer peripheral surface 84 b of the end portion 84 of the insert 80 is formed.
  • the outer peripheral surface 91b of the positioning portion 91 is fitted inside the inner peripheral surface 84a of the end portion 84 of the insert 80, and the end portion 84 of the insert 80 and the positioning portion 91 are formed.
  • the contacting seal surface was formed on the outer peripheral surface 91 b side of the positioning portion 91.
  • the inner peripheral surface 111 a of the positioning portion 111 of the holding member 110 is fitted to the outer side of the outer peripheral surface 84 b of the end portion 84 of the insert 80. That is, in the case of the second embodiment, the seal surface where the end portion 84 of the insert 80 and the positioning portion 111 are in contact is formed on the inner peripheral surface 111a side of the positioning portion 111. It is different from the surface. Also in the second embodiment, the thermal expansion difference in the radial direction Dr between the insert 80 and the blade body 51 is absorbed by the end portion 84 of the insert 80 sliding in the radial direction Dr on the sealing surface with respect to the holding member 110. Is done.
  • the positioning convex portion 113 has a side surface 113a protruding in the insert radial direction Dir.
  • the side surface 113 a of the positioning convex portion 113 is formed to have a larger diameter than the outer peripheral surface 111 b of the positioning portion 111 in the insert radial direction Dir and smaller than the inner peripheral surface 71 a of the blade air passage 71.
  • the side surface 113 a of the positioning projection 113 serves to position the holding member 110 in the insert radial direction Dir with respect to the blade body 51 when the holding member 110 is fitted into the opening 71 b of the blade air passage 71.
  • the flange portion 112 is fixed to the blade body 51 by welding or the like after being positioned in the insert radial direction Dir with respect to the blade body 51.
  • the outer peripheral surface 84 b of the end portion 84 of the insert 80 is in contact with the inner peripheral surface 111 a of the positioning portion 111 of the holding member 110. Therefore, in the case of the present embodiment, the gap between the seal surface formed between the outer peripheral surface 84b of the end portion 84 and the inner peripheral surface 111a of the positioning portion 111 decreases due to the pressure difference between the internal cavity 80b and the insert cavity 81. It becomes the direction to do. With the difference in thermal expansion between the insert 80 and the holding member 110, the gap between the outer peripheral surface 84b of the end portion 84 and the inner peripheral surface 111a of the positioning portion 111 is in an expanding direction. However, as described above, the factor of the pressure difference has a greater influence on the generation of the gap on the seal surface than the factor of the difference in thermal elongation, so that the gap on the seal surface is generally reduced.
  • the reinforcing member 85 is not provided in the vicinity of the end portion 84, the sealing performance on the sealing surface may not be sufficiently ensured. That is, when the reinforcing member 85 is not provided, the insert 80 is deformed in a direction that spreads outward in the insert radial direction Dir due to a pressure difference. However, in the vicinity of the end portion 84 of the insert 80, the spread in the insert radial direction Dir is restricted by the inner peripheral surface 111a of the positioning portion 111.
  • the portion of the insert 80 extending radially outward Dro from the distal end portion of the positioning portion 111 in the radial direction Dr expands outward in the insert radial direction Dir without being constrained by the positioning portion 111. Therefore, the end portion 84 of the insert 80 is deformed outwardly in the insert radial direction Dir, with the end portion on the radially outer side Dro of the inner peripheral surface 111a of the positioning portion 111 as a contact point. To do.
  • the insert 80 on the radially inner side Dri from the contact point is deformed inward in the insert radial direction Dir. Therefore, the seal surface between the outer peripheral surface 84b of the end portion 84 and the inner peripheral surface 111a of the positioning portion 111 is not in surface contact.
  • the edge of the radially outer side Dro of the inner peripheral surface 111a of the positioning portion 111 and the outer peripheral surface 84b of the end portion 84 are in contact with each other in the form of line contact. Since the sealing performance cannot be sufficiently secured in the line contact state, the reinforcing member 85 is provided in the vicinity of the end portion 84 to increase the rigidity in the vicinity of the end portion 84 of the insert 80 to ensure the sealing performance. . Also in this embodiment, as described above, the reinforcing member is effective in preventing deformation near the end portion 84 of the insert. In 1st embodiment, the structure which forms the position of a sealing surface in the outer peripheral surface 84b of the edge part 84 is also applicable.
  • the reinforcing member 85 may be a member that is only intended to increase the rigidity of the insert 80 without providing a hole in the reinforcing member 85.
  • the third embodiment is a double-sided supply that introduces cooling air Ac from the openings on both sides of the blade air passage 71 without providing a cover plate at the opening of the blade air passage 71.
  • the insert assembly 79 in the third embodiment is formed of the insert 80, the reinforcing member 85, and the holding member 90.
  • the cooling air Ac is supplied to the internal cavity 80b only from the opening 71c of the blade air passage 71 of the outer shroud 60o.
  • the cooling air Ac can be supplied to the internal cavity 80b from the openings 71b and 71c on both sides of the passage 71 on the outer shroud 60o side and the inner shroud 60i side.
  • the third embodiment is the same as the other embodiments in that the reinforcing member 85 is provided in the vicinity of the end portion 84 of the radially inner side Dri of the insert 80, for example, adjacent to the radially outer side Dro.
  • the reinforcing member 85 has a different structure from the other embodiments in that it functions as a flow rate adjusting plate that adjusts the flow rate of the cooling air Ac.
  • a large number of punch holes 87 (through holes) are formed in the main body 85 a of the reinforcing member 85.
  • the reinforcing member 85 can adjust the flow rate of the cooling air Ac flowing through the hole 87 by changing the number or the hole diameter of the holes 87 of the main body 85a formed in a perforated plate shape.
  • the shape and structure of the holding member 90 are substantially the same as in the first embodiment.
  • the distal end portion of the radially outer side Dro of the positioning portion 91 of the holding member 90 is fitted into the inner peripheral surface 84 a of the end portion 84 of the insert 80.
  • the inner peripheral surface 84a of the end portion 84 of the insert 80 and the outer peripheral surface 91b of the positioning portion 91 are in contact with each other to form a seal surface.
  • This structure is the same as that of the first embodiment.
  • an outer flange is formed at the end 88 of the radially outer side Dro of the insert 80 as in the first embodiment.
  • the outer flange is fixed to the edge of the blade body 51 by welding or the like. Therefore, the insert 80 extends in the radial direction Dri due to thermal expansion and slides in the radial direction Dr on the sealing surface to absorb the thermal elongation of the insert 80.
  • This structure is also the same as in the first embodiment.
  • the outer peripheral surface 84b of the end portion 84 of the insert 80 and the inner peripheral surface 91a of the positioning portion 91 are in contact with each other to form a seal surface. Also good.
  • the other configuration is the first embodiment. It is the same.
  • the same configurations as those of the first embodiment are denoted by the same names and the same reference numerals, and detailed description thereof is omitted.
  • a reinforcing member 85 for adjusting the flow rate is provided in the vicinity of the end 84 of the blade body 51 on the radially inner side Dri.
  • the reinforcing member 85 has an effect of preventing the spread of the gap between the seal surfaces formed between the inner peripheral surface 84a of the end portion 84 and the outer peripheral surface 91b of the positioning portion 91. .
  • a reinforcing member 85 for adjusting the flow rate is provided by providing a flow rate adjusting plate in the opening 71c (on the outer shroud 60o side) of the blade air passage 71 on the radially outer side Dro. Also good.
  • the insert 80 in the first to third embodiments is provided with a reinforcing member 85 in the vicinity of the end portion 84 of the insert 80 in the radial inner side Dri, for example, adjacent to the end portion 84 and on the radially outer side Dro. .
  • the reinforcing member 85 is disposed so as to cover the entire cross section of the internal cavity 80 b of the insert 80.
  • the insert 80 in this modification has the same structure as the other embodiments in that a reinforcing member 86 is provided in the vicinity of the end 84 of the insert 80 in the radial inner side Dri.
  • the reinforcing member 86 is different from the other embodiments in that the reinforcing member 86 is provided only in a part of the passage section of the internal cavity 80b and does not cover the entire surface of the passage section.
  • the reinforcing member 86 is disposed between the two inner peripheral surfaces 80 c of the insert 80 facing each other in the insert radial direction Dir of the insert 80.
  • the end edge in the longitudinal direction of the reinforcing member 86 is bent at a right angle to the radially inner side Dri to form a mounting portion 86b.
  • the attachment portion 86b is fixed to the inner peripheral surface 80c of the insert 80 by welding or the like.
  • no hole is formed in the main body 86a of the reinforcing member 86 in this modification.
  • the end portion 88 on the outer shroud 60o side of the insert 80 is fixed to the edge of the blade body 51 on the radially outer side Dro by welding or the like.
  • the holding member 90 is fixed to the edge of the wing body 51 on the inner shroud 60i side by welding or the like.
  • a seal surface is formed between the end portion 84 of the insert 80 and the holding member 90.
  • the insert 80 has a structure that slides in the radial direction Dr on the sealing surface and absorbs the difference in thermal elongation of the insert 80 in the radial direction Dr.
  • a structure in which the fixing position of the end portion of the insert 80 is on the inner shroud 60i side of the wing body 51 may be employed.
  • the holding member 90 is disposed on the outer shroud 60o side.
  • the seal surface where the insert 80 and the holding member 90 are in contact with each other is disposed in the vicinity of the opening 71 c on the radially outer side Dro of the blade air passage 71.
  • the reinforcing member 86 is provided in the vicinity of the end portion 84 of the insert 80 in the radial inner side Dri, for example, on the radially outer side Dro adjacent to the end portion 84.
  • the rigidity of the vicinity of the end portion 84 of the radially inner side Dri of the insert 80 is increased.
  • a part of the cooling air Ac supplied to the blade air passage 71 leaks from the sealing surface between the end portion 84 of the insert 80 and the positioning portion 91 of the holding member 90 to the insert cavity 81 side to cool the cooling air Ac. It can suppress that the loss amount of the air Ac increases.
  • the insert 80 shown in this modification can also be applied to the first embodiment and the second embodiment.
  • the space on the radially inner side Dri from the reinforcing member 86 is also a part of the internal cavity 80b, and the dust storage space 100 is not formed.
  • the reinforcing member 86 shown in this modification to the first and second embodiments, the rigidity in the vicinity of the end portion 84 of the insert 80 can be increased. Therefore, a part of the cooling air Ac in the internal cavity 80b can be prevented from leaking from the sealing surface between the end portion 84 of the insert 80 and the holding members 90, 110 to the insert cavity 81 side.
  • the rigidity of the insert 80 in the vicinity of the end portion 84 of the insert 80 can be increased by the reinforcing members 85 and 86 by including the above-described insert assembly. . Furthermore, the leakage of the cooling air Ac from the sealing surface between the end portion 84 of the insert 80 constituting the insert assembly 79 and the holding members 90 and 110 to the insert cavity 81 side can be suppressed. In addition, the cooling performance of the blade can be improved. According to the gas turbine of the embodiment described above, since the blades described above are provided, the cooling performance of the blades can be improved, so that the merchantability of the gas turbine can be improved.
  • the insert 80 can be arranged at a correct position with respect to the blade air passage 71 by a simple procedure. Therefore, no skill is required for assembling the wing, and the burden on the assembling worker can be reduced.
  • the insert assembly of the present invention can stably maintain good sealing performance, it is possible to suppress a decrease in the thermal efficiency of the gas turbine.
  • the insert assembly of the present invention can further easily assemble the insert assembly and can obtain a stable cooling performance of the blade.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Devices (AREA)

Abstract

インサート組品(79)は、インサート(80)と、補強部材(85)と、保持部材(90)と、を備えている。インサート(80)は、翼本体(51)の径方向の一方の端部に固定されている。補強部材(85)は、インサート(80)の径方向の他方の端部に隣接して配置され、インサート(80)の剛性を高める。保持部材(90)は、翼本体(51)の径方向の他方の端部に固定され、翼本体(51)に対するインサート(80)の径方向に直交する方向の位置決めをする。

Description

インサート組品、翼、ガスタービン、および、翼の製造方法
 この発明は、インサート組品、翼、ガスタービン、および、翼の製造方法に関する。
 本願は、2016年2月22日に、日本に出願された特願2016-031195号に基づき優先権を主張し、その内容をここに援用する。
 ガスタービンは、例えば、静翼などの翼の内部に冷却用空気を流している場合が多い。このような翼は、翼の内部に冷却用空気を流すための翼空気通路を備えている。この翼空気通路には、多数の孔を有するインサートなどの筒状体が配置されて、翼壁を冷却空気でインピンジメント冷却している。インピンジメント冷却後の冷却空気は、翼壁に設けられた複数の冷却孔から燃焼ガス中に排出される際、翼壁をフィルム冷却している。
 この種の筒状体は、翼本体との間に熱伸び差が生じる。そのため、このような場合には、筒状体は、その2つの端部のうち第一の端部をシール溶接又はろう付けして翼本体に固定し、第二の端部を筒状体の長手方向の伸びに対してフリーにしている。筒状体は、このようにすることで、翼本体との間のシール性を保持しつつ、熱伸び差を吸収するようにしている。
 特許文献1は、インサートの熱伸び差を吸収する構成が記載されている。この特許文献1は、インサートのフリーの端部を保持部材によって保持して、フリーの端部の隙間から冷却用空気が漏出しないようにしている。
特開2012-246785号公報
 しかしながら、特許文献1の構造では、インサートのシール性能が十分に確保されているとは言えない。
 この発明は、安定したインサートのシール性能を得ることができるインサート組品、翼、ガスタービン、および、翼の製造方法を提供することを目的とする。
 この発明の第一態様によれば、インサート組品は、翼本体と、外側シュラウド及び内側シュラウドと、からなるタービン翼に配置されている。外側シュラウドと内側シュラウドとは、翼本体の径方向の両端にそれぞれ形成されている。インサート組品は、翼本体内に冷却空気が供給される翼空気通路内に設けられている。インサート組品は、インサートと、補強部材と、保持部材と、を含む。インサートは、複数の冷却孔を有する筒状体に形成されている。インサートは、前記翼本体の径方向の一方の端部に固定されている。補強部材は、板状に形成され、インサートに設けられている。補強部材は、径方向に直交する方向に延在してその両端で前記筒状体の内周面に固定されている。インサートは、更に、前記筒状体の前記径方向の他方の端部に隣接して配置されている。保持部材は、前記翼本体の前記径方向の他方の端部に固定されている。保持部材は、環状に形成されている。保持部材は、前記インサートの端部に接触して前記インサートが径方向に摺動可能なシール面が形成されている。この保持部材は、前記インサートの前記翼本体に対する径方向に直交する方向の位置決めをする。
 このようなインサート組品を備えれば、前記インサートの径方向の他方の端部近傍に補強板を備えるので、インサートの剛性が上がる。そのため、インサートの端部の外径が広がるのを抑制して、インサートと保持部材の間のシール面に隙間が形成されるのを防止できるので、シール面からの冷却空気の漏洩が抑制される。その結果、漏洩空気の減少により、安定した冷却性能を得ることが可能となる。
 この発明の第二態様によれば、第一態様に係るインサート組品は、前記シール面が前記インサートの端部の内周面に形成されていてもよい。
 この発明の第三態様によれば、第一態様に係るインサート組品は、前記シール面が前記インサートの端部の外周面に形成されていてもよい。
 この発明の第四態様によれば、第一から第三態様の何れか一つの態様に係るインサート組品は、前記翼本体の径方向の前記一方の端部に向かうと共に先細るL字状の断面形状を備えていてもよい。インサート組品は、位置決め部と、位置決め凸部と、フランジ部とを含んで形成されてもよい。位置決め部は、径方向の前記一方の端部側の先端に形成され、た環状に形成されている。位置決め凸部は、前記位置決め部に隣接して径方向の前記他方の端部側に前記位置決め部より大径に形成されている。フランジ部は、前記翼本体に固定されている。フランジ部は、前記位置決め凸部に隣接して径方向の前記他方の端部側に配置され、前記位置決め凸部より大径に形成されている。
 このようなインサート組品を備えれば、翼空気通路に対するインサートの位置決めが容易になる。
 この発明の第五態様によれば、第四態様に係るインサート組品は、前記インサートの前記他方の端部に径方向で嵌合する位置決め部を備えていてもよい。
 このように構成することで、位置決め部を介して保持部材に対するインサートの位置決めが容易になる。
 この発明の第六態様によれば、第四態様に係るインサート組品は、側面が前記翼空気通路の前記他方の端部側の開口に嵌合する位置決め凸部を備えていてもよい。
 このように構成することで、インサート組品は、位置決め凸部を介して翼空気通路に対する保持部材の位置決めが容易になるので、インサートの翼空気通路に対する位置決めも容易になる。
 この発明の態様によれば、インサート組品は、インサートで囲まれた内部キャビティの通路断面の全面を覆う補強部材を備えていてもよい。
 この発明の第七態様によれば、第一から第六態様の何れか一つの態様に係るインサート組品は、少なくとも一つの貫通孔を有する補強部材を備えていてもよい。
 このように構成することで、補強部材が、少なくとも一つの貫通孔(抜き孔)を有するので、貫通孔を介して内部キャビティの塵埃をごみ収容空間に移動して、内部キャビティの塵埃を除去できる。内部キャビティに供給される冷却空気の流量を調整する流量調整板としても利用できる。
 この発明の第八態様によれば、第一から第七態様の何れか一つの態様に係るインサート部品は、前記翼本体の前記他方の端部に設けられた開口を閉塞する蓋板を備えていてもよい。
 このように構成することで、蓋板を翼本体に固定することにより、翼本体内の冷却空気が漏れ出すのを防止できる。
 この発明の第九態様によれば、第八態様に係るインサート組品は、前記インサートの内部空間に堆積するごみを除去する抜き孔である貫通孔を有する補強部材を備えていてもよい。前記インサートは、前記補強部材と前記蓋板とにより囲まれたごみ収容空間を有し、前記保持部材は、前記シール面を介して、前記インサートに嵌め合い可能に形成されていてもよい。
 このように構成することで、補強部材と蓋板との間のごみ収容空間が形成され、抜き孔によってインサートの内部空間からごみ収容空間へ塵埃を移動できる。従って、ごみ収容空間に塵埃を収容できるので、塵埃によりインサートの冷却孔等が詰まるのを防止できる。
 この発明の第十態様によれば、第九態様に係るインサート組品は、前記蓋板が固定され、一体化された保持部材を備えていてもよい。
 このように構成することで、部品点数が減少して、メンンテナンス作業が容易になる。
 この発明の第十一態様によれば、第九態様に係る蓋板は、前記保持部材に固定されていてもよい。前記蓋板は、前記保持部材が一体化されていてもよい。
 この発明の第十二態様によれば、翼は、第一から第十一態様の何れか一つの態様に係るインサート組品を備える。
 この発明の第十三態様によれば、ガスタービンは、第十二態様に記載の翼を備えている。
 この発明の第十四態様によれば、翼の製造方法は、翼の外側シュラウドから内側シュラウドまで貫通するように形成された翼空気通路に挿通可能なインサートを形成する工程を含む。翼の製造方法は、更に、前記インサートの内周面に補強部材を固定して、補強部材を備えたインサートとして一体化させる工程を含む。翼の製造方法は、更に、前記インサートの第一端部を前記翼空気通路に対して位置決め可能な保持部材を形成する工程を含む。翼の製造方法は、更に、前記翼空気通路の第一開口部の周縁に前記保持部材のフランジ部を固定する工程を含む。翼の製造方法は、更に、前記保持部材が取り付けられた第一開口部とは反対側の第二開口部から前記翼空気通路にインサートを挿入して、前記インサートの第一端部を前記保持部材により位置決めさせる工程を含む。翼の製造方法は、更に、前記インサートの第二端部を前記翼空気通路の第二開口部の周縁に固定する工程を含む。
 このように構成することで、インサートを翼空気通路に対して簡単な手順で正しい位置に配置させることができる。その結果、翼の組立に熟練を要さず、組み立て作業者の負担を軽減できる。
 この発明の第十四態様によれば、ガスタービンは、第十二態様に記載の翼を備えている。
 上記インサート組品、翼、ガスタービン、および、翼の製造方法によれば、インサート組品は安定して良好なシール性能を保持できるので、ガスタービンの熱効率の低下を抑制できる。また、容易にインサート組品の組立作業を行うことができるとともに、翼の安定した冷却性能を得ることができる。
この発明の第一実施形態におけるガスタービンの模式的な断面図である。 この発明の第一実施形態におけるガスタービンの要部断面図である。 この発明の第一実施形態における静翼の斜視図である。 この発明の第一実施形態における翼空気通路の平面断面図である。 この発明の第一実施形態における翼空気通路の開口周縁の断面図である。 この発明の第一実施形態における翼の製造方法のフローチャートである。 この発明の第二実施形態における翼空気通路の開口周縁の断面図である。 この発明の第三実施形態における翼空気通路の開口周縁の断面図である。 この発明の第三実施形態における翼空気通路の開口周縁の変形例の断面図である。
[第一実施形態]
 以下、この発明の第一実施形態に係るインサート組品、翼、ガスタービン、および、翼の製造方法を図面に基づき説明する。
(ガスタービンの実施形態)
 図1は、この発明の第一実施形態におけるガスタービンの模式的な断面図である。図2は、この発明の第一実施形態におけるガスタービンの要部断面図である。
 図1に示すように、この実施形態におけるガスタービン10は、圧縮機20と、燃焼器30と、タービン40と、を備えている。圧縮機20は、空気Aを圧縮する。燃焼器30は、圧縮機20で圧縮された空気A中で燃料を燃焼させて燃焼ガスを生成する。タービン40は、燃焼ガスにより駆動する。
 圧縮機20は、圧縮機ロータ21と、圧縮機車室25と、静翼段26と、を有する。圧縮機ロータ21は、軸線Arを中心として回転する。圧縮機車室25は、圧縮機ロータ21を覆う。静翼段26は、複数設けられている。
 タービン40は、タービンロータ41と、タービン車室45と、静翼段46と、を備えている。タービンロータ41は、軸線Arを中心として回転する。タービン車室45は、タービンロータ41を覆う。静翼段46は、複数設けられている。
 圧縮機ロータ21とタービンロータ41とは、軸線Ar上に位置している。圧縮機ロータ21とタービンロータ41とは、互いに接続されることでガスタービンロータ11を構成している。このガスタービンロータ11は、例えば、発電機GENのロータに接続されている。
 圧縮機車室25とタービン車室45とは、互いに接続されることでガスタービン車室15を構成している。
 以下の第一実施形態の説明においては、軸線Arが延びる方向を軸方向Da、この軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。軸方向Daでタービン40を基準にして圧縮機20側を上流側Dau、その反対側を下流側Dadとする。径方向Drで軸線Arに近づく側を径方向内側Dri、その反対側を径方向外側Droとする。
 圧縮機ロータ21は、ロータ軸22と、複数の動翼段23とを備えている。ロータ軸22は、軸線Arを中心として軸方向Daに延びている。複数の動翼段23は、軸方向Daに並んでロータ軸22にそれぞれ取り付けられている。動翼段23は、いずれも、複数の動翼23aを備えている。動翼段23は、これら複数の動翼23aが周方向Dcに並んでいる。複数の動翼段23の下流側Dadには、それぞれ静翼段26が配置されている。これら静翼段26は、圧縮機車室25の内側に設けられている。静翼段26は、いずれも、複数の静翼26aを備えている。静翼段26は、これら複数の静翼26aが周方向Dcに並んでいる。
 図2に示すように、タービンロータ41は、ロータ軸42と、複数の動翼段43と、を備えている。ロータ軸42は、軸線Arを中心として軸方向Daに延びる。複数の動翼段43は、このロータ軸42に取り付けられている。
 複数の動翼段43は、軸方向Daに並んでいる。複数の動翼段43は、いずれも、複数の動翼43aで構成されている。複数の動翼43aは、周方向Dcに並んでいる。複数の動翼段43の各上流側Dauには、静翼段46が配置されている。これら静翼段46は、タービン車室45の内側に設けられている。静翼段46は、いずれも、複数の静翼46aを備えている。複数の静翼46aは、周方向Dcに並んでいる。
 タービン車室45は、外側車室45aと、内側車室45bと、複数の分割環45cと、を備えている。外側車室45aは、筒状に形成されている。内側車室45bは、外側車室45aの内側に固定されている。複数の分割環45cは、内側車室45bの内側に固定されている。複数の分割環45cは、いずれも、複数の静翼段46の相互の間の位置に設けられている。これら分割環45cの径方向内側Driには、それぞれ動翼段43が配置されている。
 ロータ軸42とタービン車室45との間の空間は、燃焼器30からの燃焼ガスGが流れる燃焼ガス流路49となっている。この燃焼ガス流路49に、静翼46a及び動翼43aが配置されている。この燃焼ガス流路49は、軸線Arを中心とした軸方向Daに長い環状に形成されている。
 タービン車室45の内側車室45bは、径方向外側Droから径方向内側Driに貫通する冷却空気通路45pを備えている。この冷却空気通路45pを通った冷却空気は、静翼46a内及び分割環45c内に導入されて、静翼46a及び分割環45cの冷却に利用される。複数の静翼段46のうち、一部の静翼段46には、車室の冷却空気通路を経ずにガスタービン車室15内の空気が静翼46aに冷却空気として供給される場合もある。
 (翼の実施形態)
 次に、この発明の第一実施形態における翼を図面に基づき説明する。この実施形態における翼は、ガスタービンの静翼である。
 図3は、この発明の第一実施形態における静翼の斜視図である。
 図3に示すように、静翼46aは、翼本体51と、内側シュラウド60iと、外側シュラウド60oと、を備えている。翼本体51は、径方向Drに延びる。
内側シュラウド60iは、翼本体51の径方向内側Driに形成されている。外側シュラウド60oは、翼本体51の径方向外側Droに形成されている。
 翼本体51は、燃焼ガス流路49(図2参照)内に配置されている。燃焼ガスGは、この燃焼ガス流路49を通る。
 翼本体51は、その上流側Dauの端部が前縁部52を構成している。翼本体51は、その下流側Dadの端部が後縁部53を構成している。翼本体51は、周方向Dcを向く表面(外面)の一方が凸状の面、他方が凹状の面となっている。凸状面は、背側面54(=負圧面)を構成し、凹状の面は、腹側面55(=正圧面)を構成している。
 以下の説明においては、説明の都合上、周方向Dcで翼本体51の腹側(=正圧面側)を周方向腹側Dcp、翼本体51の背側(=負圧面側)を周方向背側Dcnとする。
 外側シュラウド60oは、外側シュラウド本体61と、周壁65と、を有する。外側シュラウド本体61は、軸方向Da及び周方向Dcに広がる板状に形成されている。周壁65は、外側シュラウド本体61の外周縁に沿って外側シュラウド本体61から径方向外側Droに突出する。
 外側シュラウド本体61は、前端面62fと、後端面62bと、腹側端面63pと、背側端面63nと、ガスパス面64と、を備えている。前端面62fは、上流側Dauの端面である。後端面62bは、下流側Dadの端面である。腹側端面63pは、周方向腹側Dcpの端面である。背側端面63nは、周方向背側Dcnの端面である。ガスパス面64は、径方向内側Driを向いている。
 外側シュラウド60oには、径方向内側Driに向かって凹む凹部66が形成されている。凹部66は、外側シュラウド本体61と周壁65とにより形成されている。
 ここで、上述した外側シュラウド60oと内側シュラウド60iとは、基本的に同じ構造である。そのため、内側シュラウド60iについての詳細説明は省略する。
 翼本体51、外側シュラウド60o、及び、内側シュラウド60iには、径方向Drに延びる複数の翼空気通路71(空洞部)が形成されている。これら翼空気通路71は、いずれも、外側シュラウド60oから、翼本体51を経て、内側シュラウド60iにまで連なって形成されている。複数の翼空気通路71は、翼本体51の翼弦に沿って並んでいる。複数の翼空気通路71のうち、一部の隣接する翼空気通路71同士は、径方向外側Droの部分、又は径方向内側Driの部分で互いに連通して、サーペンタイン流路を形成している。
 複数の翼空気通路71のうち、いずれかの翼空気通路71は、外側シュラウド60oの凹部66で開口している。複数の翼空気通路71のうち、いずれかの翼空気通路71は、更に、内側シュラウド60iの凹部で開口している。言い換えれば、複数の翼空気通路71のうち、一部の翼空気通路71は、外側シュラウド60oから内側シュラウド60iまで貫通するように形成されている。静翼46aの径方向外側Dro又は径方向内側Driに供給された冷却空気Acの一部は、この翼空気通路71の開口(内側シュラウド60i側の開口71b、外側シュラウド60o側の開口71c)から翼空気通路71内に流入する。
 翼本体51の前縁部52及び後縁部53には、翼空気通路71から燃焼ガス流路49へ貫通する複数の翼面噴出通路72が形成されている。翼本体51は、翼空気通路71内を冷却空気Acが流れる過程で冷却される。翼空気通路71に流入した冷却空気Acは、この翼面噴出通路72から燃焼ガス流路49内に流出する。このため、翼本体51の前縁部52及び後縁部53は、冷却空気Acが翼面噴出通路72から流出する過程で冷却される。翼面噴出通路72から燃焼ガス流路49に流出した冷却空気Acの一部は、翼本体51の表面を部分的に覆ってフィルム空気としての役目も果たす。
 図4は、第一実施形態における翼空気通路の径方向に直交する面で切った平面断面図である。図5は、第一実施形態における翼空気通路の開口周縁の断面図である。
 翼空気通路71には、インサート80と、補強部材85と、保持部材90と、を含むインサート組品79が配置されている。インサート80は、翼本体51の内周面71aをインピンジメント冷却するために設けられている。補強部材85は、インサート80の剛性を高める。保持部材90は、インサート80を翼本体51に保持させる。径方向Drに直交し翼空気通路71の通路断面を横切る方向をインサート径方向Dirとする。
 インサート80は、薄板で形成された筒状体である。インサート80は、翼空気通路71の内周面(内壁面)71aに対して、その全周で同じ距離だけ離れて配置されている。これにより、翼本体51の内周面71aとインサート80の外周面80aとの間には、環状の空間であるインサートキャビティ81が形成されている。
 翼空気通路71の内周面71aには、径方向Drに延びる2つのシールダム83が形成されている。これらのシールダム83は、径方向Drでインサート80とほぼ同じ長さに形成されている。上述したインサートキャビティ81は、インサート80の周方向において、シールダム83によって二つの空間に区分けされている。これら二つの空間は、翼本体51に形成された翼面噴出通路72を介して燃焼ガス流路49に連通している。そのため、これら二つの空間は、燃焼ガス流路49側の圧力の影響で、互いの空間の圧力が異なっている。
 インサート80には、その内部空間(内部キャビティ80b)と外部空間(インサートキャビティ81)とを連通する複数のインピンジメント孔82が形成されている。インサート80の径方向外側Droの端部88(図3:第二端部、一方の端部)には、図示していないが、外側フランジが形成され、この外側フランジが翼本体51の端縁に溶接等で固定されている。
 インサート80の径方向内側Driの端部84(第一端部、他方の端部)は、保持部材90に接触しながら摺動する。保持部材90とインサート80の端部84との間にシール面が形成されている(構造詳細は後述する)。第二端部とは、インサート80が翼本体51に固定されているインサート80の端部88を言い、第一端部とは、インサート80が保持部材90に対して摺動するインサート80の端部84を言う。
 図5に示すように、インサート80は、更に、補強部材85を備えている。補強部材85は、インサート80の径方向内側Driの端部84に隣接して端部84から径方向外側Droへ離間した位置に形成されている。この補強部材85は、インサート80を径方向Drから見た通路断面の全面を閉塞するように板状に形成されている。補強部材85の端縁には、補強部材85の本体部85aに対して径方向内側Driの方向に直角に曲げられた取付部85bが形成されている。取付部85bは、インサート80の内周面80cに溶接等で固定されている。
 本実施形態においては、補強部材85の本体部85aに、少なくとも一つの貫通孔である抜き孔87が形成されている。本実施形態においては、更に、本体部85aを境にして径方向内側Driに、ごみ収容空間100が配置されている。ごみ収容空間100は、抜き孔87を介して内部キャビティ80bに連通している。抜き孔87は、冷却空気Acに含まれる塵挨のみを通過可能な最小限の大きさに形成されている。冷却空気Acに含まれる塵埃は、抜き孔87を介して内部キャビティ80bからごみ収容空間100へ移動し、ごみ収容空間100に堆積する。ごみ収容空間100に堆積する塵挨は、例えば、メンテナンス時に、ごみ収容空間100から取り出される。
 図5に示すように、インサート組品79の一部を構成する保持部材90は、環状に形成されている。保持部材90は、更に、インサート径方向Dirから見た断面がL字状に形成されている。保持部材90は、位置決め部91(第一位置決め部)を有する。位置決め部91は、保持部材90の径方向外側Droの先端部に形成されている。位置決め部91は、環状の薄板状に形成されている。
 保持部材90は、径方向内側Driの端部に、板状のフランジ部92を備えている。フランジ部92は、そのインサート径方向Dirの側面92aが、翼空気通路71の内周面71aよりもインサート径方向Dirの外方に配置されている。言い換えれば、フランジ部92は、翼空気通路71の内周面71aより大径に形成されている。
 位置決め部91とフランジ部92との間には、位置決め凸部93(第二位置決め部)が配置されている。位置決め凸部93は、インサート80の外周面80aよりインサート径方向Dirの外方に突出している。つまり、位置決め凸部93は、外周面80aより大径に形成されている。位置決め凸部93は、更に、翼空気通路71の内周面71aよりインサート径方向Dirの径が小さく形成されている。
 保持部材90は、位置決め部91と位置決め凸部93とフランジ部92とにより、一体に形成された環状の部材である。この保持部材90は、翼空気通路71の径方向内側Driの開口(第一開口部)71bに嵌め込まれている。ここで、インサート径方向Dirの外方とは、インサート80の径方向Drに延びる中心線からインサート径方向Dirで翼空気通路71の内周面71aに向かう方向を言う。
 位置決め部91は、インサート80の端部84を翼空気通路71の内周面(内壁面)71aに対してインサート径方向Dirの位置決めをする。この位置決め部91は、更に、翼本体51のインサート径方向Dirに、インサート80の端部84が移動することを規制する。この実施形態における位置決め部91は、その外周面91bが、端部84の内周面84aより僅かに大径に形成されている。位置決め部91は、インサート80の端部84の内周面84a側に接触して嵌め合わせ可能な筒状に形成されている。つまり、インサート80の端部84は、その内周面84aが位置決め部91の外周面91bを介して保持部材90に溶接等で固定されることなく接触している。これにより、保持部材90の外周面91bと端部84の内周面84aとの間にシール面が形成されている。
 ここで、詳細は後述するが、保持部材90の位置決め凸部93のインサート径方向Dirの外周面93aは、翼本体51の開口71bの内周面71aに接触している。これにより、保持部材90の外周面93aは、翼本体51に対してインサート径方向Dirの位置決めがなされている。
 インサート80の位置決め部91は、端部84に対して径方向Drに摺動可能である。そのため、インサート80と翼本体51との間に熱伸び差が生じても、熱応力がインサート80に生じることはない。
 補強部材85の取付部85bの径方向内側Driの端部と位置決め部91の先端部との間には、一定の隙間をあけてもよい。このような隙間をあけることでインサート80は、その径方向Drの熱伸びにより、位置決め部91の径方向外側Droを向く先端部と干渉しない。この場合、取付部85bは、端部84に隣接させ、位置決め部91から一定の隙間を保持して端部84の内周面84aに固定すればよい。上記した一定の隙間は、インサート80の径方向Drの熱伸び差が吸収できる程度であれば十分である。ここで、インサート80の外径とは、例えば、図4に示すインサート80の断面において最も大きい幅寸法hである。
 フランジ部92は、翼空気通路71の開口71b周縁に、例えば、隅肉溶接等により形成された溶接部を介して固定されている。本実施形態におけるフランジ部92は、その側面92aと翼本体51の端縁との隅部に隅肉溶接により形成された溶接部w1を介して開口71bの周縁に固定されている。この溶接部w1は、フランジ部92の全周に形成されている。これにより、冷却空気Acがフランジ部92と翼本体51との隙間から漏れないようになっている。
 位置決め凸部93は、翼本体51に対して保持部材90のインサート径方向Dirの位置決めをする。この位置決め凸部93は、翼空気通路71の開口71bに、隙間ばめ等により嵌め合わされる。この嵌め合わせ構造により、保持部材90がインサート径方向Dirで翼本体51の翼空気通路71に対して位置決めされる。そのため、インサート径方向Dirにおける翼空気通路71の内周面71aと位置決め凸部93の外周面93bとの間が全周で接触する。その結果、位置決め部91によって位置決めされるインサート80の外周面80aと、翼空気通路71の内周面71aとの距離も全周で等距離に保たれている。
 インサート80の径方向内側Driの端部84は、上述したように、保持部材90の位置決め部91の外周面91bに嵌め込まれ、端部84の内周面84aと位置決め部91の外周面91bとが互いに接触し、この接触面にシール面が形成される。
 インサート80の径方向内側Driの端部84の近傍に補強部材85がない構造と比較した本実施形態の構造の有効性を説明する。一般的に、インサート80の端部84が位置決め部91に接触してシール面が形成される場合、補強部材85を備えていない構造において、シール面に生ずる隙間の発生に影響を及ぼす要因として、2つの項目が挙げられる。
 第1の要因は、インサート80が冷却空気Acの差圧を受け、インサート径方向Dirの外方に膨張して、変形する場合である。すなわち、インサート80は、内部キャビティ80bとインサートキャビティ81との圧力差のために、外周面80aがインサート径方向Dirの外方に変形する。これにより、端部84の内周面84aと位置決め部91の外周面91bとの間のシール面に隙間が生じやすい。
 冷却空気Acが外側シュラウド60oから供給される内部キャビティ80bは、圧力が最も高い。インピンジメント孔82を介して内部キャビティ80bに連通する下流側のインサートキャビティ81の圧力は、内部キャビティ80bの圧力より低くなる。従って、内部キャビティ80bとインサートキャビティ81との間の差圧を受けて、インサート80はインサート径方向Dirの外方に変形する。これにより、インサート80のインサート径方向Dirの幅寸法(例えば、幅寸法h)が拡大する。そのため、インサート80の端部84の内周面84aと保持部材90の位置決め部91の外周面91bとの間のシール面には隙間が生じ易い。この隙間により、内部キャビティ80b側からインサートキャビティ81側に、シール面を介して冷却空気Acの漏れ出す量が増加して、冷却空気Acの損失を招くことになる。
 上述の例は、シール面が端部84の内周面84aと位置決め部91の外周面91bの間に形成された場合である。しかし、端部84の外周面84bと位置決め部91の内周面91aとの間にシール面が形成されている場合、上述の例とはシール面の隙間が生じる状況が異なる。このようにシール面が端部84の外周面84bと位置決め部91の内周面91aとの間に形成された構造の場合、端部84の外周面84bが位置決め部91の内周面91aに押しつけられる。これは、インサート80が、内部キャビティ80bとインサートキャビティ81との差圧を受けて、むしろ、シール面での隙間は減少する方向に働くからである。
 つまり、第1の要因である差圧の影響は、シール面の位置によって、隙間を拡大する方向に働いたり、隙間を減少する方向に働いたりする。
 次に、第2の要因は、インサート80と保持部材90との間のインサート径方向Dirの熱伸び差が、シール面の隙間に影響を及ぼす場合である。すなわち、翼本体51の翼空気通路71の内周面71aは、燃焼ガスGからの熱を受けてインサート径方向Dirの外方に広がる。これにより、翼空気通路71の通路断面の幅寸法が拡大する。ここで、保持部材90は、翼本体51に固定されている。そのため、保持部材90は、翼本体51の動きに追随して、翼本体51と同様に、インサート径方向Dirの外方に広がり、その内径が大きくなる傾向を示す。
 インサート80は、内部キャビティ80b内の冷却空気Acに直接接触しているため、保持部材90ほどの高温にはならない。つまり、端部84の内周面84aと位置決め部91の外周面91bとの間にシール面が形成されている場合、位置決め部91の外周面91bは、インサート径方向Dirの外方に拡大する。
 インサート80の端部84は、相対的に保持部材90より低温である。そのため、インサート80の端部84は、インサート径方向Dirの外方への拡大の程度が小さい。特に、この傾向は、翼本体51に固定されているインサート80の端部88よりも、翼本体51に対してフリーに保持されている端部84の方が顕著である。
 従って、シール面においては、端部84の内周面84aと比較して、位置決め部91の外周面91bのインサート径方向Dirの外方への変位が大きい。その結果、外周面91bから内周面84aへのインサート径方向Dirの押し付け力が強まり、シール面での隙間は減少する。
 しかしながら、端部84の外周面84bと位置決め部91の内周面91aとの間にシール面が形成されている場合、上述の例とはシール面の隙間が生じる状況が異なる。このような構造の場合、インサート径方向Dirの外方への位置決め部91の内周面91aの変位は、インサート径方向Dirの外方への端部84の外周面84bの変位を上回る。従って、この場合は、シール面に隙間が生じやすくなる。
 但し、上述の2つの要因の中で、シール面の隙間の発生に与える影響は、第1の要因の方が大きい。すなわち、第1の要因である内部キャビティ80bとインサートキャビティ81との間に生ずる圧力差に伴うインサート80の変形による隙間の大きさの方が、第2の要因であるインサート80と保持部材90との間に生ずる熱伸び差に伴うシール面での変位による隙間の大きさより大きくなる。
 補強部材85の有効性は、シール面が端部84の内周面84a側にあるか又は外周面84b側にあるかによって異なってくる。各実施形態のシール面における隙間発生要因と補強部材85の有効性との関係は、それぞれの実施形態で説明する。
 本実施形態の場合、端部84の内周面84aと位置決め部91の外周面91bとが接触して、この間にシール面が形成される。
 このような構造では、上述のように、内部キャビティ80bとインサートキャビティ81との圧力差により、シール面で隙間が広がる方向である。このような構造では、更に、インサート80と保持部材90との熱伸び差により、シール面での隙間は減少する方向である。但し、上述のように、圧力差に伴う隙間の拡大が、熱伸び差による隙間の減少を上回るため、全体として、シール面では隙間が広がる傾向にある。
 そこで、本実施形態では、インサート80の端部84の近傍、例えば端部84に隣接させて、径方向外側Droに補強部材85を設ける構造を採用している。この構造により、インサート80の径方向内側Driの端部84の近傍の剛性を高めて、インサート80の変形を抑制している。
 つまり、補強部材85が、インサート80の端部84に隣接して、端部84から径方向外側の離間した位置に取付けられていることで、インサート80のインサート径方向Dirの外方への広がりを防止してシール面での隙間の発生を抑え、冷却空気Acの損失を抑制する効果がある。
 翼空気通路71の径方向内側Driの開口71bには、翼空気通路71の通路断面の全面を閉塞するための蓋板94が配置されている。蓋板94は、保持部材90のフランジ部92にその全周が溶接等で固定されている。蓋板94は、翼本体51の径方向内側Driの端部に溶接等で固定されてもよい。本実施形態においては、翼空気通路71に供給される冷却空気Acは、翼空気通路71の開口71c(外側シュラウド60o側)のみから内部キャビティ80bに供給される片側供給方式を適用する。そのため、翼本体51の開口71bを閉塞するために蓋板94が設けられる。他の実施形態としての冷却空気Acの両側供給方式の例は、後述する。
 蓋板94をフランジ部92に溶接等で固定することにより、保持部材90の剛性を上げることが出来る。この蓋板94を設けることにより、翼空気通路71の開口71bから翼空気通路71に冷却空気Acが流入することがない。この蓋板94を設けることにより、更に、内部キャビティ80b内の冷却空気Acが翼本体51から外部に漏れ出すこともない。インサート80の端部84と保持部材90の位置決め部91とは、互いに接触して、インサート80の端部84が径方向Drに摺動するので、インサート80のインサートの径方向Drの熱伸びを吸収できる構造である。
 次に、冷却空気Acの流れを説明する。冷却空気通路45p等から外側シュラウド60oに供給された冷却空気Acは、翼空気通路71の径方向外側Droの開口(第二開口部)71cからインサート80の内部キャビティ80bに流入する。内部キャビティ80bに供給された冷却空気Acは、インサート80の壁面に形成された多数のインピンジメント孔82からインサートキャビティ81に噴出する。このインピンジメント孔82からインサートキャビティ81に噴出した冷却空気Acは、翼本体51の内周面71aをインピンジメント冷却して、翼面噴出通路72から燃焼ガス流路49に排出される。この冷却空気Acが翼面噴出通路72から排出される過程で、翼面がフィルム冷却される。冷却空気Acの一部は、インサート80の径方向内側Driに配置された補強部材85の抜き孔87を介してごみ収容空間100に流入する。
 ごみ収容空間100に流入した冷却空気Acの一部は、更に、インサート80の端部84と保持部材90の位置決め部91の間に形成されたシール面(接触面)からインサートキャビティ81側に冷却空気Acの僅かな量が漏れ出す。この漏れ出した冷却空気Acは、最終的に燃焼ガス流路49に排出される。
 従って、冷却空気Acの圧力は、内部キャビティ80b内で最も高い。ごみ収容空間100の圧力は、内部キャビティ80bの圧力より低い。インサートキャビティ81の圧力は、ごみ収容空間100の圧力よりも更に低くなる。
 すなわち、内部キャビティ80bの冷却空気Acの一部は、内部キャビティ80bからごみ収容空間100に流入する。ごみ収容空間100内の冷却空気Acは、端部84の内周面84aと保持部材90の位置決め部91の外周面91bとの間のシール面から、インサートキャビティ81側に漏れ出す。つまり、内部キャビティ80bからインサートキャビティ81側に漏れ出す冷却空気Acの流れが生ずる。その結果、内部キャビティ80bの抜き孔87の近傍にある塵挨は、抜き孔87を介してごみ収容空間100にスムーズに移動して、ごみ収容空間100の底に堆積する。端部84の内周面84aと保持部材90の位置決め部91の外周面91bとの間のシール面からインサートキャビティ81側に漏れ出す冷却空気Acは、僅かな量に過ぎないので、ごみ収容空間100の塵埃が、ごみ収容空間100から更にインサートキャビティ81側に排出することはない。
 上述した構造は、外側シュラウド60o側の翼空気通路71の開口71cから冷却空気Acを供給する構造である。しかし、内側シュラウド60iの翼空気通路71の開口71bから冷却空気Acを供給する構造としてもよい。この場合は、保持部材90と蓋板94と補強部材85及びごみ収容空間100は、翼空気通路71の径方向外側Droの端部88の開口71cの近傍に配置される。翼本体51の径方向の端部の呼び方として、インサート80が翼本体51の端縁に固定される側を第二端部と呼び、径方向の反対側の端部を第一端部と呼ぶ場合もある。翼空気通路71及びインサートの径方向の端部の呼び方も、翼本体に準じて呼ぶ場合もある。
(翼の製造方法)
 この実施形態の保持部材、インサート組品、翼、および、ガスタービンは上述した構成を備えている。次にこの実施形態における翼の製造方法を図面に従って説明する。
 図6は、この発明の一実施形態における翼の製造方法のフローチャートである。
 まず、翼本体51の外側シュラウド60oから内側シュラウド60iまで貫通するように形成された翼空気通路71(空洞部)に挿通可能なインサート80を形成する(ステップS01)。
 次に、補強部材85の本体部85aの端縁を径方向内側Dri方向に直角に折り曲げ、取付部85bを形成する。
 次に、インサート80の両側の内周面84aに、補強部材85の取付部85bを固定する。具体的には、補強部材85の取付部85bを溶接等で固定する。この際、取付部85bは、インサート80の端部84に隣接した径方向外側Droの位置の内周面84aであってインサート径方向Dirで対向するインサート80の両側の内周面84aに固定する。このように取付部85bを固定することにより、補強部材85を備えたインサート80として一体化される(ステップS02)。
 同様に、インサート80の端部84を翼空気通路71に対して位置決め可能な保持部材90を形成する(ステップS03)。
 インサート80を形成する工程と保持部材90を形成する工程とを行う順番は一例であって、上記の順番に限られるものではない。
 次に、翼空気通路71の開口71bに保持部材90の位置決め凸部93を嵌め合わせて、翼空気通路71の開口71bの周縁に保持部材90のフランジ部92を溶接等により固定する(ステップS04)。
 その後、保持部材90が取り付けられた開口71bとは反対側の翼空気通路71の径方向外側Droの開口71cから翼空気通路71にインサート80を挿入する。更に、インサート80の端部84を保持部材90の位置決め部91に嵌め合わせて、インサート80の端部84を位置決めする(ステップS05)。
 次いで、インサート80の径方向外側Droの端部88を翼空気通路71の開口の周縁に溶接等により固定する(ステップS06)。
 上述した実施形態のインサート組品79によれば、補強部材85でインサート80の端部84近傍のインサート80の剛性を高めることができる。これにより、インサート組品79を構成するインサート80の端部84と保持部材90との間のシール面からインサートキャビティ81への冷却空気Acの漏洩を抑制できる。そのため、ガスタービンの冷却性能の向上及び熱効率の低下を抑制できる。
 上述のインサート組品、翼、ガスタービンの構造、であれば、インサート組品からの冷却空気の漏れを抑制でき、ガスタービンの熱効率の低下を防止できる。
 さらに、上述した実施形態のインサート組品によれば、補強部材85と蓋板94(保持部材90)との間にごみ収容空間100を形成することができる。更に、補強部材85に形成された抜き孔87によってインサート80の内部キャビティ80bからごみ収容空間100へと塵埃を移動させることができる。その結果、ごみ収容空間100に塵埃を収容することができるため、塵埃がインサート80のインピンジメント孔82に詰まることを抑制して信頼性を向上できる。
 本実施形態では、補強部材85に抜き孔87を設け、補強部材85の径方向内側Driにごみ収容空間100を配置して、冷却空気Ac中の塵埃を除去する機能を持たせている。しかし、補強部材85に抜き孔を設けなくてもよい。すなわち、補強部材85は、インサート80の剛性を高めることのみを目的とした部材であってもよい。
 [第二実施形態]
 図7を参照しながら、第二実施形態の構造を説明する。
 本実施形態は、第一実施形態における保持部材90と蓋板94を一体化して一つの保持部材110とした点が第一実施形態とは異なる。すなわち、本実施形態のインサート組品79は、インサート80と、保持部材110と、から形成されている。本第二実施形態においては、外側シュラウド60oの翼空気通路71の開口71cから冷却空気Acを供給する片側供給方式の構造を一例に説明する。
 翼空気通路71の開口71bを閉塞する板状のフランジ部112は、翼本体51の径方向内側Driの端部に配置されている。保持部材110には、フランジ部112から径方向外側Droの先端部に突出する環状で薄板状の位置決め部111が形成されている。位置決め部111の内周面111aには、インサート80の端部84の外周面84bと接触するシール面が形成されている。
 上述した第一実施形態の場合は、インサート80の端部84の内周面84aの内側に位置決め部91の外周面91bを嵌め合わせる構造であり、インサート80の端部84と位置決め部91とが接触するシール面が、位置決め部91の外周面91b側に形成されていた。
 しかし、本第二実施形態の場合、インサート80の端部84の外周面84bの外側に保持部材110の位置決め部111の内周面111aを嵌め合わせる構造である。つまり、第二実施形態の場合、インサート80の端部84と位置決め部111とが接触するシール面は、位置決め部111の内周面111a側に形成されている点で、第一実施形態のシール面と異なっている。この第二実施形態においても、インサート80と翼本体51との径方向Drの熱伸び差は、インサート80の端部84が保持部材110に対してシール面で径方向Drに摺動して吸収される。
 フランジ部112と位置決め部111との間には、位置決め凸部113が形成されている。位置決め凸部113は、インサート径方向Dirに突出する側面113aを有している。位置決め凸部113の側面113aは、インサート径方向Dirで位置決め部111の外周面111bより径が大きく、翼空気通路71の内周面71aより径が小さく形成されている。位置決め凸部113の側面113aは、保持部材110を翼空気通路71の開口71bに嵌め込む際に、翼本体51に対する保持部材110のインサート径方向Dirの位置決めをする役割を果たす。フランジ部112は、翼本体51に対してインサート径方向Dirの位置決めがされた後、翼本体51に溶接等で固定される。
 インサート80を含めたその他の構造は、第一実施形態と同様であり、第一実施形態と同じ構成は、同一名称、同一符号を付し、詳細な説明は省略する。内側シュラウド60iの翼空気通路71の開口71bから冷却空気Acを供給する片側供給方式の構造に本実施形態を適用する場合も、上記外側シュラウド60oの場合と同様に、保持部材110と補強部材85及びごみ収容空間100は、翼空気通路71の径方向外側Droの端部88の開口71cの近傍に配置すればよい。翼の製造方法も第一実施形態と同様であり、詳細な説明は省略する。
 本実施形態は、インサート80の端部84の外周面84bが、保持部材110の位置決め部111の内周面111aに接触する構造である。従って、本実施形態の場合、内部キャビティ80bとインサートキャビティ81との圧力差に伴い、端部84の外周面84bと位置決め部111の内周面111aの間に形成されるシール面の隙間は減少する方向になる。インサート80と保持部材110との熱伸び差に伴い、端部84の外周面84bと位置決め部111の内周面111aの間に形成されるシール面の隙間は、拡大する方向である。
 しかし、上述のように、圧力差の要因の方が、熱伸び差の要因よりシール面の隙間の発生に与える影響が大きいため、全体としてシール面の隙間は減少する方向である。
 但し、本第二実施形態の構造の場合、補強部材85を端部84の近傍に設けないと、シール面でのシール性が十分確保されない可能性がある。すなわち、補強部材85を設けない場合、インサート80は、圧力差によりインサート径方向Dirの外方に広がる方向に変形する。しかし、インサート80の端部84の近傍は、位置決め部111の内周面111aによってインサート径方向Dirの広がりが拘束される。言い換えれば、位置決め部111の径方向Drの先端部よりも径方向外側Droに延びるインサート80の部分は、位置決め部111に拘束されることなくインサート径方向Dirの外方に拡張する。
 従って、インサート80の端部84は、位置決め部111の内周面111aの径方向外側Droの端縁を接触点として、接触点より径方向外側Droの部分がインサート径方向Dirの外方に変形する。接触点より径方向内側Driのインサート80は、インサート径方向Dirの内方に変形する。
 そのため、端部84の外周面84bと位置決め部111の内周面111aとの間のシール面は、面接触とはならない。位置決め部111の内周面111aの径方向外側Droの端縁と端部84の外周面84bとは、線接触の形態で接触することになる。線接触の状態では、シール性が十分には確保できないため、端部84の近傍に補強部材85を設けてインサート80の端部84の近傍の剛性を高めて、シール性を確保する意義がある。本実施形態においても、上述のように、インサートの端部84の近傍の変形を防止する上で補強部材は有効である。
 第一実施形態において、シール面の位置を端部84の外周面84bに形成する構造も適用できる。しかし、その場合においても、本第二実施形態と同様に、補強部材85を端部84の近傍に設けることは有効である。
 本第二実施形態の補強部材は、補強部材85に抜き孔を設けず、インサート80の剛性を高めることのみを目的とした部材であってもよい。
[第三実施形態]
 図8を参照しながら、第三実施形態の構造を説明する。
 本第三実施形態は、第一実施形態及び第二実施形態とは異なり、翼空気通路71の開口に蓋板を設けず、翼空気通路71の両側の開口から冷却空気Acを導入する両側供給方式の翼構造に適用した場合である。すなわち、本第三実施形態におけるインサート組品79は、インサート80と補強部材85と保持部材90と、から形成されている。第一実施形態及び第二実施形態の場合は、冷却空気Acは、外側シュラウド60oの翼空気通路71の開口71cのみから内部キャビティ80bに供給されるが、本第三実施形態の場合、翼空気通路71の外側シュラウド60o側及び内側シュラウド60i側の両側の開口71b,71cから内部キャビティ80bに冷却空気Acが供給可能な構造である。本第三実施形態においても、インサート80の径方向内側Driの端部84の近傍、例えば径方向外側Droに隣接させて補強部材85を設ける点では、他の実施形態と同じである。但し、補強部材85は、冷却空気Acの流量を調整する流量調整板の機能を果たす点で他の実施形態とは異なる構造である。補強部材85の本体部85aには、多数の抜き孔87(貫通孔)が形成されている。補強部材85は、多孔板状に形成された本体部85aの抜き孔87の数又は孔径を変えることにより、抜き孔87を介して流入する冷却空気Acの流量を調整できる。
 図8に示すように、保持部材90の形状及び構造は、第一実施形態とほぼ同じである。保持部材90の位置決め部91の径方向外側Droの先端部は、インサート80の端部84の内周面84aに嵌まり込む。これにより、インサート80の端部84の内周面84aと位置決め部91の外周面91bが接触して、シール面が形成される構造である。この構造も第一実施形態と同様である。本第三実施形態の場合、図示していないが、第一実施形態と同様に、インサート80の径方向外側Droの端部88には、外側フランジが形成されている。この外側フランジは、翼本体51の端縁に溶接等で固定されている。従って、インサート80は、熱膨張により径方向内側Driに延び、シール面で径方向Drに摺動して、インサート80の熱伸びを吸収する。この構造も第一実施形態と同じである。本第三実施形態においても、第二実施形態と同様に、インサート80の端部84の外周面84bと位置決め部91の内周面91aとが接触して、シール面を形成する構造であってもよい。
 補強部材85が多数の抜き孔87を有する流量調整板である点及び翼空気通路71の径方向内側Driの開口71bに蓋板94を設けない点を除き、その他の構成は、第一実施形態と同様である。第一実施形態と同一の構成は、同一名称、同一符号を付し、詳細な説明は省略する。
 翼本体51の径方向内側Driの端部84の近傍に流量調整を目的とした補強部材85を設けている。これにより、インピンジメント孔82から排出する冷却空気量の調整ができると共に、インサート80の径方向内側Driの剛性を高めることが出来る。このため、本第三実施形態においても、補強部材85は、端部84の内周面84aと位置決め部91の外周面91bの間に形成されたシール面の隙間の広がりを防止する効果がある。すなわち、内部キャビティ80bとインサートキャビティ81との圧力差及びインサート80と保持部材90との熱伸び差の影響によるシール面の隙間の広がりを防止する効果がある。
 具体的には、補強部材85を端部84に隣接させて、径方向外側Droの近傍に配置することにより、インサート80が膨張によってインサート径方向Dirの外方へ広がることを防止している。これにより、保持部材90の位置決め部91とインサート80の端部84との間のシール面から冷却空気Acがインサートキャビティ81側に漏れ出し、冷却空気Acの損失が増加するのを抑制する効果がある。
 本第三実施形態においては、図示していないが、翼空気通路71の径方向外側Droの開口71c(外側シュラウド60o側)に流量調整板を備え流量調整を目的とした補強部材85を設けてもよい。
[変形例]
 第三実施形態におけるインサートの変形例について、図9を参照しながら説明する。
 第一実施形態から第三実施形態におけるインサート80は、インサート80の径方向内側Driの端部84の近傍、例えば、端部84に隣接させて径方向外側Droに補強部材85が設けられている。補強部材85は、インサート80の内部キャビティ80bの通路断面の全面を覆うように配置されている。本変形例におけるインサート80は、インサート80の径方向内側Driの端部84の近傍に補強部材86を設ける点では、他の実施形態と同じ構造である。しかし、補強部材86は内部キャビティ80bの通路断面の一部のみに設けられ、通路断面の全面を覆う構造ではない点が、他の実施形態とは異なる構造である。
 図9に示すように、補強部材86は、インサート80のインサート径方向Dirで対向するインサート80の二つの内周面80cの間に配置されている。補強部材86の長手方向の端縁は、他の実施形態と同様に、径方向内側Driに直角に曲げられて取付部86bが形成されている。取付部86bは、インサート80の内周面80cに溶接等で固定されている。但し、本変形例における補強部材86の本体部86aには抜き孔は形成されていない。
 本変形例においては、インサート80の外側シュラウド60o側の端部88は、翼本体51の径方向外側Droの端縁に溶接等で固定されている。保持部材90は、翼本体51の内側シュラウド60i側の端縁に溶接等で固定されている。インサート80の端部84と保持部材90との間には、シール面が形成されている。インサート80は、シール面で径方向Drに摺動して、インサート80の径方向Drの熱伸び差を吸収する構造である。但し、インサート80の端部の固定位置を翼本体51の内側シュラウド60i側とする構造であってもよい。この構造では、保持部材90は、外側シュラウド60o側に配置する。この構造では、更に、インサート80と保持部材90とが接触するシール面は、翼空気通路71の径方向外側Droの開口71cの近傍に配置する。
 その他の構成は、第三実施形態と同様であり、同一の構成は、同一名称、同一符号を付し、詳細な説明は省略する。本変形例におけるインサート80の径方向内側Driのインサート径方向Dirから見た断面は、補強部材86を補強部材85に読み替えて、図8に示す第三実施形態の断面図(図8)を流用できる。
 本変形例に示す構造によれば、補強部材86を、インサート80の径方向内側Driの端部84の近傍、例えば、端部84に隣接させて径方向外側Droに設ける。これにより、インサート80の径方向内側Driの端部84の近傍の剛性が高くなる。その結果、翼空気通路71に供給された冷却空気Acの一部が、インサート80の端部84と保持部材90の位置決め部91との間のシール面からインサートキャビティ81側に漏洩して、冷却空気Acの損失量が増加するのを抑制できる。
 本変形例に示すインサート80は、第一実施形態及び第二実施形態にも適用できる。この場合、補強部材86より径方向内側Driの空間も内部キャビティ80bの一部になり、ごみ収容空間100は形成されない。本変形例に示す補強部材86を第一実施形態及び第二実施形態に適用することにより、インサート80の端部84の近傍の剛性を大きくすることが出来る。従って、内部キャビティ80bの冷却空気Acの一部が、インサート80の端部84と保持部材90,110との間のシール面からインサートキャビティ81側に漏洩するのを抑制できる。
 上述した各実施形態及び変形例の翼によれば、上述したインサート組品を備えていることで、補強部材85,86によりインサート80の端部84の近傍のインサート80の剛性を高めることが出来る。更に、インサート組品79を構成するインサート80の端部84と保持部材90,110の間のシール面からインサートキャビティ81側への冷却空気Acの漏洩を抑制できる。また、翼の冷却性能を向上させることができる。
 上述した実施形態のガスタービンによれば、上述した翼を備えていることで、翼の冷却性能を向上できるため、ガスタービンの商品性を向上できる。
 各実施形態及び変形例の翼の製造方法によれば、インサート80を翼空気通路71に対して簡単な手順で正しい位置に配置させることができる。そのため、翼の組立に熟練を要さず、組み立て作業者の負担を軽減できる。
 この発明は、上述した各実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した各実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 この発明のインサート組品は、安定して良好なシール性能を保持できるので、ガスタービンの熱効率の低下を抑制できる。この発明のインサート組品は、更に、容易にインサート組品の組立作業を行うことができるとともに、翼の安定した冷却性能を得ることができる。
10 ガスタービン
11 ガスタービンロータ
15 ガスタービン車室
20 圧縮機
21 圧縮機ロータ
22 ロータ軸
23 動翼段
23a 複数の動翼
25 圧縮機車室
26 静翼段
26a 静翼
30 燃焼器
40 タービン
41 タービンロータ
42 ロータ軸
42p 冷却空気通路
43 動翼段
43a 動翼
45 タービン車室
45a 外側車室
45b 内側車室
45c 分割環
45p 冷却空気通路
46 静翼段
46a 静翼
49 燃焼ガス流路
51 翼本体
52 前縁部
53 後縁部
54 背側面
55 腹側面
60i 内側シュラウド
60o 外側シュラウド
64 ガスパス面
65 周壁
66 凹部
71 翼空気通路
71a 内周面(内壁面)
71b,71c 開口
72 翼面噴出通路
79 インサート組品
80 インサート
80a 外周面
80b 内部キャビティ
80c 内周面
81 インサートキャビティ
82 インピンジメント孔(冷却孔)
83 シールダム
84,88 端部
84a 内周面
84b 外周面
85,86 補強部材
85a 本体部
85b 取付部
86b 取付部
87 抜き孔(貫通孔)
90,110 保持部材
91,111 位置決め部
91a,111a 内周面
91b,111b 外周面
92,112 フランジ部
92a 側面
93,113 位置決め凸部
93a,113a 側面
94 蓋板
100 収容空間
A  空気
Ac 冷却空気
Ar 軸線
Da 軸方向
Dad 下流側
Dau 上流側
Dc 周方向
Dr 径方向
Dri 径方向内側
Dro 径方向外側
Dir インサート径方向
G 燃焼ガス
GEN 発電機
w1 溶接部
w2 溶接部

Claims (14)

  1.  翼本体と、
     前記翼本体の径方向の両端に形成された外側シュラウド及び内側シュラウドと、からなるタービン翼に配置され、
     前記翼本体内に冷却空気が供給される翼空気通路内に設けられたインサート組品であって、
     複数の冷却孔を有する筒状体に形成されて前記翼本体の径方向の一方の端部に固定されたインサートと、
     前記インサートに設けられ、径方向に直交する方向に延在してその両端で前記筒状体の内周面に固定されて前記筒状体の前記径方向の他方の端部に隣接して配置された板状の補強部材と、
     前記翼本体の前記径方向の他方の端部に固定され、前記インサートの端部に接触して、前記インサートが径方向に摺動可能なシール面が形成され、前記インサートの前記翼本体に対する径方向に直交する方向の位置決めをする環状に形成された保持部材と、
    を含むインサート組品。
  2.  前記シール面が、前記インサートの端部の内周面に形成されている請求項1に記載のインサート組品。
  3.  前記シール面が、前記インサートの端部の外周面に形成されている請求項1に記載のインサート組品。
  4.  前記保持部材は、
     径方向の前記一方の端部に向かうと共に先細るL字状の断面形状を備え、
     径方向の前記一方の端部側の先端に形成された環状の位置決め部と、
     前記位置決め部に隣接して径方向の前記他方の端部側に設けられ前記位置決め部より大径に形成された位置決め凸部と、
     前記位置決め凸部に隣接して径方向の前記他方の端部側に設けられ前記位置決め凸部より大径に形成され、前記翼本体に固定されているフランジ部と、
    を含んで形成されている請求項1から3のいずれか1項に記載のインサート組品。
  5.  前記位置決め部は、前記インサートの端部に径方向で嵌合する請求項4に記載のインサート組品。
  6.  前記位置決め凸部は、前記位置決め凸部の側面が前記翼空気通路の前記一方の端部側の開口に嵌合する請求項4に記載のインサート組品。
  7.  前記補強部材は、前記インサートで囲まれた内部キャビティの通路断面の全面を覆うように形成されている請求項1から6のいずれか1項に記載のインサート組品。
  8.  前記補強部材は、少なくとも一つの貫通孔を有する請求項1から7のいずれか1項に記載のインサート組品。
  9.  前記インサート組品は、前記翼本体の前記他方の端部に設けられた開口を閉塞する蓋板を更に含む、請求項8に記載のインサート組品。
  10.  前記補強部材に形成された貫通孔は、前記インサートの内部空間に堆積するごみを除去する抜き孔であり、
     前記インサートは、前記補強部材と前記蓋板とにより囲まれたごみ収容空間を有し、
     前記保持部材は、前記シール面を介して、前記インサートに嵌め合い可能に形成されている請求項9に記載のインサート組品。
  11.  前記蓋板は、前記保持部材に固定され前記保持部材が一体化されている請求項9に記載のインサート組品。
  12.  請求項1から11のいずれか1項に記載の前記インサート組品を備える翼。
  13.  請求項12に記載の翼を備えるガスタービン。
  14.  翼の外側シュラウドから内側シュラウドまで貫通するように形成された翼空気通路に挿通可能なインサートを形成する工程と、
     前記インサートの内周面に補強部材を固定して、補強部材を備えたインサートとして一体化させる工程と、
     前記インサートの第一端部を前記翼空気通路に対して位置決め可能な保持部材を形成する工程と、
     前記翼空気通路の第一開口部の周縁に前記保持部材のフランジ部を固定する工程と、
     前記保持部材が取り付けられた第一開口部とは反対側の第二開口部から前記翼空気通路にインサートを挿入して、前記インサートの第一端部を前記保持部材により位置決めさせる工程と、
     前記インサートの第二端部を前記翼空気通路の第二開口部の周縁に固定する工程と、
    を含む翼の製造方法。
PCT/JP2017/002505 2016-02-22 2017-01-25 インサート組品、翼、ガスタービン、および、翼の製造方法 WO2017145623A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780007068.4A CN108474261B (zh) 2016-02-22 2017-01-25 嵌入组件、叶片、燃气轮机以及叶片的制造方法
EP17756065.3A EP3392462B1 (en) 2016-02-22 2017-01-25 Insert assembly, blade, gas turbine, and blade manufacturing method
US16/069,260 US10612397B2 (en) 2016-02-22 2017-01-25 Insert assembly, airfoil, gas turbine, and airfoil manufacturing method
KR1020187020504A KR102130969B1 (ko) 2016-02-22 2017-01-25 인서트 조립품, 날개, 가스 터빈, 및, 날개의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-031195 2016-02-22
JP2016031195A JP6651378B2 (ja) 2016-02-22 2016-02-22 インサート組品、翼、ガスタービン、および、翼の製造方法

Publications (1)

Publication Number Publication Date
WO2017145623A1 true WO2017145623A1 (ja) 2017-08-31

Family

ID=59686375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002505 WO2017145623A1 (ja) 2016-02-22 2017-01-25 インサート組品、翼、ガスタービン、および、翼の製造方法

Country Status (7)

Country Link
US (1) US10612397B2 (ja)
EP (1) EP3392462B1 (ja)
JP (1) JP6651378B2 (ja)
KR (1) KR102130969B1 (ja)
CN (1) CN108474261B (ja)
TW (1) TWI649493B (ja)
WO (1) WO2017145623A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418667B2 (ja) * 2015-03-26 2018-11-07 三菱日立パワーシステムズ株式会社 翼、及びこれを備えているガスタービン
US10494931B2 (en) * 2015-08-28 2019-12-03 Siemens Aktiengesellschaft Internally cooled turbine airfoil with flow displacement feature
JP6725273B2 (ja) * 2016-03-11 2020-07-15 三菱日立パワーシステムズ株式会社 翼、これを備えているガスタービン
US10900364B2 (en) * 2017-07-12 2021-01-26 Raytheon Technologies Corporation Gas turbine engine stator vane support
KR102048863B1 (ko) 2018-04-17 2019-11-26 두산중공업 주식회사 인서트 지지부를 구비한 터빈 베인
JP6508499B1 (ja) * 2018-10-18 2019-05-08 三菱日立パワーシステムズ株式会社 ガスタービン静翼、これを備えているガスタービン、及びガスタービン静翼の製造方法
CN109356670B (zh) * 2018-11-16 2021-01-05 中国航发沈阳黎明航空发动机有限责任公司 一种空心叶片冷却导管装配干涉现象检测工具及制作方法
US11187092B2 (en) * 2019-05-17 2021-11-30 Raytheon Technologies Corporation Vane forward rail for gas turbine engine assembly
KR102180395B1 (ko) 2019-06-10 2020-11-18 두산중공업 주식회사 에어포일, 이를 포함하는 가스 터빈
KR102207971B1 (ko) 2019-06-21 2021-01-26 두산중공업 주식회사 터빈 베인, 및 이를 포함하는 터빈
FR3100564B1 (fr) * 2019-09-11 2022-06-24 Safran Aircraft Engines Chemise de pale de distributeur de turbine
US11525397B2 (en) * 2020-09-01 2022-12-13 General Electric Company Gas turbine component with ejection circuit for removing debris from cooling air supply
CN112196627A (zh) * 2020-09-25 2021-01-08 中国航发沈阳发动机研究所 一种具有冷气导管的涡轮气冷叶片
JPWO2022202636A1 (ja) * 2021-03-26 2022-09-29
CN113236371B (zh) * 2021-06-04 2023-01-17 中国航发沈阳发动机研究所 一种叶片冷气导管
US12025029B1 (en) * 2023-08-21 2024-07-02 Rtx Corporation Bathtub seal for damping CMC vane platform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301527A (en) * 1965-05-03 1967-01-31 Gen Electric Turbine diaphragm structure
JP2002004803A (ja) * 2000-06-01 2002-01-09 General Electric Co <Ge> 翼形部の後部空洞用の蒸気出口流設計
US20030026689A1 (en) * 2001-08-03 2003-02-06 Burdgick Steven Sebastian Turbine vane segment and impingement insert configuration for fail-safe impingement insert retention
JP2012246785A (ja) * 2011-05-25 2012-12-13 Mitsubishi Heavy Ind Ltd ガスタービン静翼

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3075744A (en) * 1960-08-16 1963-01-29 United Aircraft Corp Turbine nozzle vane mounting means
US3388888A (en) * 1966-09-14 1968-06-18 Gen Electric Cooled turbine nozzle for high temperature turbine
US3700348A (en) * 1968-08-13 1972-10-24 Gen Electric Turbomachinery blade structure
US6453557B1 (en) 2000-04-11 2002-09-24 General Electric Company Method of joining a vane cavity insert to a nozzle segment of a gas turbine
US6416275B1 (en) 2001-05-30 2002-07-09 Gary Michael Itzel Recessed impingement insert metering plate for gas turbine nozzles
ITTO20020607A1 (it) * 2002-07-12 2004-01-12 Fiatavio Spa Metodo per la realizzazione ed il montaggio di un dispositivo di raffreddamento in una paletta di una turbina assiale a gas e paletta per un
EP1413714B1 (de) * 2002-10-22 2013-05-29 Siemens Aktiengesellschaft Leitschaufel für eine Turbine
US6951444B2 (en) 2002-10-22 2005-10-04 Siemens Aktiengesselschaft Turbine and a turbine vane for a turbine
US7121796B2 (en) 2004-04-30 2006-10-17 General Electric Company Nozzle-cooling insert assembly with cast-in rib sections
WO2009016744A1 (ja) 2007-07-31 2009-02-05 Mitsubishi Heavy Industries, Ltd. タービン用翼
JP4885275B2 (ja) 2007-07-31 2012-02-29 三菱重工業株式会社 タービン用翼
JP5683336B2 (ja) 2011-03-14 2015-03-11 三菱重工業株式会社 ガスタービン
US8500405B1 (en) * 2012-09-20 2013-08-06 Florida Turbine Technologies, Inc. Industrial stator vane with sequential impingement cooling inserts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301527A (en) * 1965-05-03 1967-01-31 Gen Electric Turbine diaphragm structure
JP2002004803A (ja) * 2000-06-01 2002-01-09 General Electric Co <Ge> 翼形部の後部空洞用の蒸気出口流設計
US20030026689A1 (en) * 2001-08-03 2003-02-06 Burdgick Steven Sebastian Turbine vane segment and impingement insert configuration for fail-safe impingement insert retention
JP2012246785A (ja) * 2011-05-25 2012-12-13 Mitsubishi Heavy Ind Ltd ガスタービン静翼

Also Published As

Publication number Publication date
KR102130969B1 (ko) 2020-07-07
CN108474261B (zh) 2020-10-30
EP3392462B1 (en) 2020-08-12
TW201740014A (zh) 2017-11-16
KR20180094095A (ko) 2018-08-22
EP3392462A4 (en) 2018-12-26
JP2017150333A (ja) 2017-08-31
US10612397B2 (en) 2020-04-07
CN108474261A (zh) 2018-08-31
EP3392462A1 (en) 2018-10-24
US20190010809A1 (en) 2019-01-10
JP6651378B2 (ja) 2020-02-19
TWI649493B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2017145623A1 (ja) インサート組品、翼、ガスタービン、および、翼の製造方法
JP6344869B2 (ja) タービン静翼、タービン、及び、タービン静翼の改造方法
JP7467039B2 (ja) 複数の冷却通路を含むタービンシュラウド
US5522698A (en) Brush seal support and vane assembly windage cover
EP1746255A2 (en) Gas turbine shroud assembly and method for cooling thereof
JP2007263115A (ja) 羽根板と冷却用ライナとから構成されるアセンブリ、このアセンブリを含むターボ機械用ノズル案内羽根アセンブリ、ターボ機械、ならびにこのアセンブリの組み立ておよび補修方法
EP2221453B1 (en) Airfoil insert and corresponding airfoil and assembly
JPH1150805A (ja) ガスタービン静翼シュラウドのシール構造
US20130028704A1 (en) Blade outer air seal with passage joined cavities
KR20140089555A (ko) 회전 기계의 시일 구조 및 이를 구비한 가스 터빈
JP4395716B2 (ja) シールプレート構造
JP6197985B2 (ja) シール構造、これを備えたタービン装置
EP3832070B1 (en) Impingement insert for a hot gas path component and hot gas path component
US11459900B2 (en) Turbine stator blade
US20210254477A1 (en) Impingement insert for a turbomachine component, turbomachine component and gas turbine having the same
JP7232035B2 (ja) ガスタービンの静翼及びガスタービン
JP4385660B2 (ja) タービンシュラウドの回り止め構造
CN114829842B (zh) 具有壁冷却的燃烧室
US11542825B2 (en) Gas turbine ring assembly comprising ring segments having integrated interconnecting seal
JP4363149B2 (ja) タービン用シール構造、シールステータ、及びタービンノズルセグメント
CN221442671U (zh) 用于形成燃气轮机的涡轮冷却壁的环区段及燃气轮机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187020504

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020504

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017756065

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756065

Country of ref document: EP

Effective date: 20180719

NENP Non-entry into the national phase

Ref country code: DE