WO2017145519A1 - レーザアニール方法、レーザアニール装置及び薄膜トランジスタ基板 - Google Patents

レーザアニール方法、レーザアニール装置及び薄膜トランジスタ基板 Download PDF

Info

Publication number
WO2017145519A1
WO2017145519A1 PCT/JP2016/088857 JP2016088857W WO2017145519A1 WO 2017145519 A1 WO2017145519 A1 WO 2017145519A1 JP 2016088857 W JP2016088857 W JP 2016088857W WO 2017145519 A1 WO2017145519 A1 WO 2017145519A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
film transistor
laser annealing
laser
Prior art date
Application number
PCT/JP2016/088857
Other languages
English (en)
French (fr)
Inventor
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201680082314.8A priority Critical patent/CN108701591A/zh
Priority to KR1020187025750A priority patent/KR20180118664A/ko
Publication of WO2017145519A1 publication Critical patent/WO2017145519A1/ja
Priority to US16/109,640 priority patent/US10950437B2/en
Priority to US16/672,329 priority patent/US10971361B2/en
Priority to US16/672,331 priority patent/US20200066518A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Definitions

  • the present invention relates to a laser annealing method for crystallizing an amorphous silicon film by irradiating a laser beam, and in particular, a laser annealing method and a laser capable of manufacturing a plurality of thin film transistors having different electrical characteristics in one laser annealing treatment step.
  • the present invention relates to an annealing apparatus and a thin film transistor substrate.
  • a line beam is generated using a cylindrical lens, and the line beam is uniformly applied to the entire surface of the substrate while transporting the substrate coated with the amorphous silicon film in a direction crossing the long axis of the line beam. Irradiation causes the amorphous silicon film to be uniformly crystallized (see, for example, Patent Document 1).
  • the driving thin film transistor for controlling the driving current of the pixel and the gate voltage of the driving thin film transistor for selecting the pixel are controlled.
  • the required electrical characteristics are different from those of the selection thin film transistor.
  • the electrical characteristics of the thin film transistors have to be shared.
  • the crystal growth is promoted by increasing the amount of laser beam irradiation (energy) so that a large current can flow in accordance with the electrical characteristics required for the driving thin film transistor, and the electron mobility is increased.
  • Laser annealing has been performed. Therefore, there is a problem that the OFF leakage current of the selection thin film transistor increases and the gate voltage of the drive thin film transistor cannot be kept constant.
  • the present invention provides a laser annealing method, a laser annealing apparatus, and a thin film transistor substrate that can cope with such problems and that can manufacture a plurality of thin film transistors having different electrical characteristics in a single laser annealing process. For the purpose.
  • a laser annealing method is a laser annealing method for crystallizing an amorphous silicon film deposited on a substrate by irradiating it with laser light.
  • the thin film transistor forming portions are irradiated with laser beams having different light amounts, and the amorphous silicon films of the plurality of thin film transistor forming portions are crystallized into polysilicon films having different crystal states.
  • a laser annealing method is a laser annealing method for crystallizing an amorphous silicon film deposited on a substrate by irradiating the amorphous silicon film with laser light.
  • the first and second thin film transistor forming portions are irradiated with laser beams having different irradiation amounts, and the amorphous silicon films of the first and second thin film transistor forming portions are crystallized into polysilicon films having different crystal states. .
  • a laser annealing apparatus is a laser annealing apparatus for crystallizing an amorphous silicon film deposited on a substrate by irradiating the amorphous silicon film with a laser beam, the conveying means for conveying the substrate, and the conveying A light-shielding mask disposed opposite to the transport surface of the means and provided with a plurality of mask patterns corresponding to the first and second thin film transistor forming portions on the substrate, and provided on the transport means side of the light-shielding mask.
  • the first and second thin film transistors are irradiated by irradiating the first and second thin film transistor forming portions with different amounts of laser light.
  • the transmitted light amount of the mask pattern corresponding to the second thin film transistor forming portion corresponds to the first thin film transistor forming portion so that the amorphous silicon film of the distant forming portion can be crystallized into a polysilicon film having a different crystal state. It is adjusted to be smaller than the transmitted light amount of the mask pattern to be performed.
  • a laser annealing apparatus is a laser annealing apparatus for crystallizing an amorphous silicon film deposited on a substrate by irradiating it with a laser beam, the conveying means for conveying the substrate, A light-shielding mask disposed opposite to the transport surface of the transport means and provided with a plurality of mask patterns corresponding to the first and second thin film transistor forming portions on the substrate, and provided on the transport means side of the light-shielding mask, A projection optical system that forms an image of the plurality of mask patterns on the substrate, and the shading mask has a plurality of the mask patterns arranged in a direction crossing the transport direction and the same direction of the substrate, The first and second thin film transistor forming portions are irradiated with different amounts of laser light, and the amorphous thin film of the first and second thin film transistor forming portions is irradiated.
  • the number of the plurality of mask patterns arranged in the transport direction of the substrate corresponding to the second thin film transistor forming portion is such that the con film can be crystallized into polysilicon films having different crystal states. It is adjusted so as to be smaller than the number of the plurality of mask patterns arranged in the same direction corresponding to the forming portion.
  • a thin film transistor substrate is a thin film transistor in which a plurality of driving thin film transistors for driving a pixel and a plurality of selection thin film transistors for operating the driving thin film transistor to select the pixel are provided on the substrate.
  • the driving thin film transistor and the selection thin film transistor are different in the crystalline state of the polysilicon semiconductor layer.
  • the amorphous silicon films of the respective thin film transistor forming portions can be crystallized into polysilicon films having different crystal states. . Therefore, a plurality of thin film transistors having different electrical characteristics can be manufactured in one laser annealing process.
  • FIG. 1 is a schematic configuration diagram illustrating a first embodiment of a laser annealing apparatus according to the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of a microlens array used in the first embodiment, where (a) is a plan view, (b) is a cross-sectional view taken along line AA of (a), and (c) is (a).
  • FIG. It is a circuit diagram which shows the structural example of the thin-film transistor for organic EL drive. It is a top view which shows the structural example of the to-be-annealed process board
  • FIG. 6 is a view showing a modification of the microlens array used in the first embodiment, where (a) is a plan view and (b) is a cross-sectional view taken along line AA of (a). It is a principal part enlarged front view which shows 2nd Embodiment of the laser annealing apparatus by this invention. It is a figure which shows one structural example of the light shielding mask used for the said 2nd Embodiment, (a) is a top view, (b) is the sectional view on the AA line of (a).
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a laser annealing apparatus according to the present invention.
  • FIGS. 2A and 2B are diagrams showing a configuration example of the microlens array used in the first embodiment.
  • FIG. 2A is a plan view
  • FIG. 2B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a sectional view taken along line BB in FIG.
  • This laser annealing apparatus is for crystallizing an amorphous silicon film deposited on a substrate by irradiating it with laser light.
  • a carrier means 1 a laser illumination optical system 2, an imaging means 3, an alignment means 4,
  • the control device 5 is provided.
  • the transfer means 1 holds, for example, an edge portion of a substrate to be annealed 6 (hereinafter simply referred to as “substrate”) 6 in which a plurality of thin film transistor forming portions are arranged side by side and an amorphous silicon film is deposited on the surface,
  • substrate 6 is transported in the direction of the arrow shown in FIG. 1 while slightly floating from the transport surface, and a plurality of the levitation units 7 are arranged side by side so that a uniform levitation force can be applied to the substrate 6. It has become.
  • the organic EL thin film transistor substrate has an organic EL driving thin film transistor (hereinafter referred to as “TFT”) at the intersection of the data line 8 and the select line 9 provided vertically and horizontally as shown in FIG. ”) Is formed.
  • TFT organic EL driving thin film transistor
  • the TFT located on the right side is the driving TFT 10 that controls the driving current of the organic EL pixel
  • the drain 11 is connected to the power supply line 12
  • the source 13 is connected to the anode of the organic EL 14.
  • the TFT located on the left side is a selection TFT 15 for controlling the gate voltage of the driving TFT 10
  • the gate 16 is connected to the select line 9
  • the drain 17 is connected to the data line 8
  • the source 18 is connected.
  • a storage capacitor 20 is provided between the gate 19 and the source 13 of the driving TFT 10.
  • the cathode of the organic EL 14 is grounded. Note that the arrangement of the drain and source of each TFT may be reversed.
  • the data line 8, the select line 9, and the power supply line 12 are provided on the substrate 6 so as to be insulated from each other, and further, the gate electrode 21 of the driving TFT 10 and the gate of the selecting TFT 15.
  • An electrode 22 is provided in advance, and an amorphous silicon film is deposited thereon via an insulating film such as SiO 2 (not shown).
  • the first TFT forming portion 23 is on the gate electrode 21 of the driving TFT 10
  • the second TFT forming portion 24 is on the gate electrode 22 of the selecting TFT 15.
  • the substrate 6 is parallel to the direction (arrow direction shown in FIG. 4) intersecting with the direction in which the first and second TFT forming portions 23 and 24 are alternately arranged, that is, parallel to the data line 8. It is conveyed to.
  • a laser illumination optical system 2 is provided above the conveying means 1.
  • the laser illumination optical system 2 irradiates the first and second TFT forming portions 23 and 24 on the substrate 6 with pulsed laser beams L having different irradiation amounts, and the first and second TFT forming portions 23 and 24
  • the amorphous silicon film is crystallized into a polysilicon film having a different crystal state, and includes a laser light source 25, a coupling optical system 26, and a microlens array 27 in order from the upstream in the light traveling direction. .
  • the laser light source 25 emits a pulse laser beam L having a predetermined frequency, for example, and is a YAG laser having a wavelength of 355 nm, an excimer laser having a wavelength of 308 nm, or the like.
  • the coupling optical system 26 expands the beam diameter of the pulsed laser light L emitted from the laser light source 25 and irradiates a microlens array 27 described later with parallel light with a uniform luminance distribution.
  • a beam expander, a photo integrator, a collimator lens, and the like are provided.
  • the microlens array 27 is disposed opposite to the transport surface of the transport means 1, and as shown in FIG. 2B, on the light incident side of a transparent substrate 28 such as a quartz substrate, the microlens array 27 is placed on the substrate 6.
  • a light shielding mask 30 having a plurality of mask patterns 29 is provided so as to correspond to the first and second TFT forming portions 23 and 24, and individually correspond to the plurality of mask patterns 29 on the light emission side of the transparent substrate 28.
  • a plurality of microlenses (projection optical systems) 31 for reducing and projecting the mask pattern 29 onto the substrate 6 are provided.
  • the microlens array 27 includes a plurality of the mask patterns 29 and a plurality of the microlenses 31 in the transport direction (arrow direction in the figure) and the same direction of the substrate 6.
  • the number of microlenses 31 is adjusted so as to be smaller than the number of the plurality of mask patterns 29 and the plurality of microlenses 31 arranged in the same direction corresponding to the first TFT forming portion 23.
  • the first and second TFT forming units are completed.
  • 23 and 24 can be irradiated with pulsed laser light L having different irradiation light amounts (energy), and the amorphous silicon films of the first and second TFT forming portions 23 and 24 are crystallized into polysilicon films having different crystal states. be able to.
  • laser annealing of the first TFT forming portion 23 is completed by three times of multiple irradiation of the pulsed laser light L, and laser annealing of the second TFT forming portion 24 is performed by one time of laser light irradiation.
  • the number of times of irradiation with the pulsed laser light L is not limited thereto.
  • the number of microlenses 31 is also adjusted together with the adjustment of the number of mask patterns 29. Will be described.
  • the imaging means 3 is provided on the upstream side in the substrate transport direction with respect to the irradiation position of the pulse laser beam L by the laser illumination optical system 2.
  • the image pickup means 3 is a line camera that images a data line 8 and a select line 9 formed in advance on a substrate 6 and includes a line-shaped light receiving portion having a long axis in a direction intersecting the substrate transport direction. , Between the plurality of floating units 7 of the conveying means 1. The data line 8 and the select line 9 provided on the front surface of the substrate 6 can be photographed through the substrate 6 from the back surface. Further, the imaging means 3 finely moves in the same direction in synchronism with the alignment operation in the direction intersecting the substrate transport direction of the laser illumination optical system 2 or the microlens array 27 by the alignment means 4 described later. ing.
  • Alignment means 4 is provided so that the laser illumination optical system 2 or the microlens array 27 can be finely moved in a direction intersecting the substrate transport direction.
  • the alignment means 4 is for aligning the plurality of mask patterns 29 of the microlens array 27 and the first and second TFT forming portions 23 and 24 on the substrate 6.
  • the laser illumination optical system 2 or the micro lens array 27 is finely moved in the same direction so as to correct the lateral shift of the substrate 6 in the direction crossing the substrate transport direction. In the following description, the case where the alignment unit 4 finely moves the microlens array 27 will be described.
  • a control device 5 is provided in electrical connection with the conveying means 1, laser illumination optical system 2, imaging means 3 and alignment means 4.
  • the control device 5 controls the transport means 1 so that the substrate 6 is transported at a constant speed in the direction of the arrow shown in FIG.
  • the laser light source 25 is driven.
  • the light emission timing is controlled so as to emit laser light
  • the amount of lateral deviation of the substrate 6 is calculated based on the image data input from the imaging means 3, and the alignment means 4 is driven and controlled to correct the lateral deviation.
  • the conveyance means drive controller 32, the laser light source drive controller 33, the image processing section 34, the alignment means drive controller 35, the memory 36, and the calculation section 3 are shown.
  • it is configured to include a control unit 38, a.
  • the transfer means drive controller 32 controls the ejection and stop of air from the levitation unit 7 and also controls the start, stop, transfer direction, and transfer speed of the substrate 6 by the transfer means 1. .
  • the laser light source drive controller 33 controls the light emission of the pulsed laser light L from the laser light source 25 based on a light emission command input from the calculation unit 37 described later.
  • the image processing unit 34 processes the image data input from the imaging unit 3, detects the position of the data line 8 from the luminance change in the direction intersecting the transport direction of the substrate 6, and the data line 8 designated in advance.
  • the edge detection information on the select line 9 on the downstream side in the transport direction for example, from the position information on the right edge and the luminance change in the transport direction of the substrate 6 is output to the calculation unit 37 described later.
  • the alignment means drive controller 35 controls the drive of the alignment means 4 so that the amount of lateral displacement of the substrate 6 calculated by the calculation unit 37 becomes zero.
  • the memory 36 includes, for example, a conveyance speed of the conveyance unit 1, a target value of a distance that the substrate 6 moves from when the select line 9 is first detected by the imaging unit 3 to when the laser light source 25 is driven, and the imaging unit 3.
  • the position information of a predetermined reference position and the arrangement pitch W in the transport direction of the first and second TFT forming units 23 and 24, etc. are stored in the light receiving unit, and the calculation result by the calculation unit 37 is also temporarily stored. Can be memorized.
  • the calculation unit 37 calculates the movement distance of the substrate 6 from the conveyance speed and time of the conveyance means 1, and reads this from the memory 36 to obtain the target value of the movement distance of the substrate 6 and the formation of the first and second TFTs.
  • the emission command of the pulsed laser light L is output to the laser light source drive controller 33, and the position information of the data line 8 input from the image processing unit 34 and the memory 36
  • the distance between the two is calculated based on the position information of the reference position determined in advance in the read image pickup means 3, and the calculation result is compared with the reference value stored in the memory 36 as the reference distance between the two.
  • the deviation amount is calculated and output to the alignment means drive controller 35.
  • the movement distance of the substrate 6 may be detected by a position sensor provided in the transport unit 1 or may be calculated by counting the number of pulses of a pulse motor of a moving mechanism that moves the substrate 6.
  • control part 38 integrates and controls the whole apparatus, for example, is a control PC (personal computer).
  • the substrate 6 is placed on the transfer surface of the transfer means 1 with the surface on which the amorphous silicon film is applied facing up, and the edge of the substrate 6 is held by the moving mechanism.
  • the substrate 6 is installed such that the data line 8 is parallel to the substrate transport direction.
  • the image processing unit 34 detects, for example, the downstream edge of the select line 9 provided at the most downstream side in the substrate transport direction from the luminance change in the substrate transport direction, and outputs the detection information to the calculation unit 37.
  • the calculation unit 37 calculates the movement distance of the substrate 6 using it as a trigger. Then, the movement distance of the substrate 6 obtained by calculation is compared with the target value of the movement distance of the substrate 6 read from the memory 36, and if they match, a light emission command of the pulsed laser light L is output to the laser light source drive controller 33. Is done.
  • the plurality of first and second TFT forming portions 23 and 24 located on the most downstream side in the substrate carrying direction are arranged on the most upstream side in the substrate carrying direction of the microlens array 27. This is when the condensing position of the pulsed laser light L by the lens 31 (hereinafter referred to as “first microlens array 31A”) is reached.
  • the laser light source driving controller 33 drives the laser light source 25 to emit the pulsed laser light L having a predetermined frequency from the laser light source 25.
  • the pulsed laser light L emitted from the laser light source 25 is expanded in luminous flux diameter by the coupling optical system 26, and then the luminance distribution is made uniform to be collimated to illuminate the microlens array 27. Then, the pulsed laser light L that has passed through the mask pattern 29 formed on the light shielding mask 30 of the microlens array 27 is condensed on the substrate 6 by the microlens 31.
  • the first annealing process using the pulsed laser light L is performed on the amorphous silicon films of the first and second TFT forming portions 23 and 24 located on the most downstream side in the substrate transport direction.
  • the amorphous silicon film crystallizes to become a polysilicon film.
  • the calculation unit 37 calculates the movement distance of the substrate 6.
  • the moving distance of the substrate 6 matches the arrangement pitch W of the first and second TFT forming units 23 and 24 in the substrate transport direction
  • the light emission command of the pulsed laser light L is again sent from the calculation unit 37 to the laser light source drive controller. 33 is output.
  • the laser light source 25 is driven by the laser light source drive controller 33, and the pulse laser light L is emitted from the laser light source 25 in the same manner as described above, and the micro lens array 27 is illuminated by the pulse laser light L.
  • the pulse laser beam L is condensed on the substrate 6 by the microlens 31 after passing through the mask pattern 29 of the microlens array 27.
  • the plurality of first and second TFT forming portions 23 and 24 that are positioned are a plurality of microlenses 31 (hereinafter referred to as “second”) positioned one downstream from the first microlens array 31A of the microlens array 27. It is in a state where the condensing position of the pulsed laser light L by the “microlens array 31B” is reached.
  • the plurality of first and second TFT forming portions 23 and 24 positioned upstream from the plurality of first and second TFT forming portions 23 and 24 positioned on the most downstream side in the substrate transport direction are illustrated in FIG.
  • the light beam has reached the condensing position of the pulsed laser light L by the first microlens array 31 ⁇ / b> A of the microlens array 27.
  • the pulsed laser light L that has passed through the microlens array 27 is transmitted to the plurality of first TFT forming portions 23 located on the most downstream side in the substrate transport direction.
  • the light is condensed and a second annealing process is performed on the portion.
  • the irradiation light quantity (energy) of the pulsed laser light L irradiated to the plurality of first TFT forming portions 23 is increased, and the crystal growth of the portion is promoted.
  • the mask pattern 29 and the microlens 31 do not exist at the position corresponding to the second TFT forming portion 24 in the second microlens row 31B, a plurality of second TFTs positioned at the most downstream side in the substrate transport direction.
  • the forming unit 24 is not irradiated with the pulsed laser light L. Therefore, the state of the first annealing process is maintained in the portion, and the crystal growth of the polysilicon film does not proceed.
  • the pulsed laser light L that has passed through the first microlens array 31 ⁇ / b> A forms a plurality of first and second TFTs located on the most downstream side in the substrate transport direction.
  • the light is condensed on a plurality of first and second TFT forming portions 23 and 24 located one upstream of the portions 23 and 24, and the first annealing process is performed on the portions.
  • the amorphous silicon film in the portion is crystallized to become a polysilicon film.
  • the moving distance of the substrate 6 is continuously calculated.
  • the light emission command of the pulsed laser light L is again sent from the calculation unit 37 to the laser light source drive controller. 33 is output.
  • the laser light source 25 is driven by the laser light source drive controller 33, the pulse laser light L is emitted from the laser light source 25, and the micro lens array 27 is illuminated by the pulse laser light L.
  • the pulse laser beam L is condensed on the substrate 6 by the microlens 31 after passing through the mask pattern 29 of the microlens array 27.
  • the substrate 6 is further moved by a distance equal to the arrangement pitch W in the substrate transport direction of the first and second TFT forming portions 23 and 24, as shown in FIG.
  • the plurality of first and second TFT forming portions 23, 24 located in the plurality of microlenses 31 (hereinafter “third”) are located two downstream from the first microlens row 31 ⁇ / b> A of the microlens array 27.
  • the microlens array 31 ⁇ / b> C ”) has reached the condensing position of the pulsed laser light L.
  • the plurality of first and second TFT forming portions 23 and 24 positioned upstream from the plurality of first and second TFT forming portions 23 and 24 positioned on the most downstream side in the substrate transport direction are illustrated in FIG. As shown in FIG. 8, the light beam has reached the condensing position of the pulsed laser light L by the second microlens array 31 ⁇ / b> B of the microlens array 27.
  • the plurality of first and second TFT forming portions 23 and 24 located upstream of the plurality of first and second TFT forming portions 23 and 24 located on the most downstream side in the substrate transport direction are shown in FIG.
  • the first laser lens array 31 ⁇ / b> A of the microlens array 27 has reached the condensing position of the pulsed laser light L.
  • the pulsed laser light L that has passed through the third microlens array 31C is applied to the plurality of first TFT forming portions 23 located on the most downstream side in the substrate transport direction.
  • the light is condensed and the third annealing process is performed on the portion.
  • the irradiation light quantity (energy) of the pulsed laser light L applied to the plurality of first TFT forming portions 23 is further increased, and the crystal growth of the portion is further promoted.
  • the mask pattern 29 and the microlens 31 do not exist at a position corresponding to the second TFT forming portion 24, so that the third microlens array 31C is positioned at the most downstream side in the substrate transport direction.
  • the pulsed laser light L that has passed through the microlens array 27 is transmitted to the plurality of first TFT forming portions 23 located on the most downstream side in the substrate transport direction.
  • the light is condensed on the first TFT forming portion 23 located one upstream, and the second annealing process is performed on the portion.
  • the irradiation light quantity (energy) of the pulsed laser light L irradiated to the plurality of first TFT forming portions 23 is increased, and the crystal growth of the portion is promoted.
  • the mask pattern 29 and the microlens 31 do not exist at the position corresponding to the second TFT forming portion 24 in the second microlens row 31B, a plurality of second TFTs positioned at the most downstream side in the substrate transport direction.
  • the plurality of second TFT forming portions 24 positioned one upstream from the forming portion 24 are not irradiated with the pulsed laser light L. Therefore, the state of the first annealing process is maintained in the portion, and the crystal growth of the polysilicon film does not proceed.
  • the pulsed laser light L that has passed through the first microlens array 31A forms a plurality of first and second TFTs located on the most downstream side in the substrate transport direction.
  • the light is condensed on a plurality of first and second TFT forming portions 23 and 24 located two upstream with respect to the portions 23 and 24, and the first annealing process is performed on the portions.
  • the amorphous silicon film in the portion is crystallized to become a polysilicon film.
  • the annealing process by multiple irradiation of the pulse laser beam L is performed three times on the first TFT forming portion 23 in the same manner, and one pulse laser is applied to the second TFT forming portion 24.
  • Annealing treatment by irradiation with light L is executed.
  • the irradiation light quantity (integrated energy of the pulsed laser light L) of the pulsed laser light L with respect to the first and second TFT forming parts 23 and 24 can be made different, and the first and second TFT forming parts 23, Twenty-four amorphous silicon films can be crystallized into polysilicon films having different crystal states.
  • an organic EL TFT substrate including a plurality of driving TFTs 10 and selection TFTs 15 having different crystal states of the polysilicon semiconductor layer is manufactured.
  • the polysilicon film of the driving TFT 10 (first TFT forming portion 23) having a large amount of irradiation energy of the pulse laser light L and a large integrated energy is selected with a small amount of irradiation light of the pulse laser light L and a small integrated energy.
  • the crystal grain size is larger than that of the polysilicon film of the TFT 15 (second TFT forming portion 24). Therefore, as shown in FIG. 10A, the electrical characteristics of the driving TFT 10 are slightly large (about 1 ⁇ 10 ⁇ 9 A), but have a high electron mobility (about 30 cm 2 / Vs). A large current can be supplied to the organic EL.
  • the crystal grain size of the polysilicon film of the selection TFT 15 (second TFT forming portion 24) is smaller than the crystal grain size of the polysilicon film of the driving TFT 10 (first TFT forming portion 23).
  • the electrical characteristics of the selection TFT 15 are small in electron mobility (about 2 cm 2 / Vs), but the OFF leakage current is small (1 ⁇ 10 ⁇ 11 A), and the driving TFT It becomes possible to keep the gate voltage of the TFT 10 constant.
  • the first and second TFT forming portions 23 and 24 on the substrate 6 can be irradiated with the pulsed laser light L having different irradiation amounts in one laser annealing process.
  • the amorphous silicon films of the first and second TFT forming portions 23 and 24 can be crystallized into polysilicon films having different crystal states. Therefore, when the laser annealing method according to the present invention is applied to the manufacture of a thin film transistor substrate for organic EL, different individual electrical characteristics required for the driving TFT 10 and the selection TFT 15 can be obtained.
  • the data line 8 is always photographed by the image pickup means 3, and this is subjected to image processing by the image processing unit 34 to change the luminance in a direction intersecting the transport direction of the substrate 6. From this, the position of the specific data line 8 is detected. Further, the calculation unit 37 calculates the distance between the two based on the detected position information of the data line 8 and the position information of the reference position preset in the imaging means 3, and the reference position stored in the memory 36. In comparison, the lateral displacement amount of the substrate 6 is calculated.
  • the alignment means 4 is driven by the alignment means drive controller 35, and the microlens array 27 is finely moved in the direction intersecting the substrate transport direction integrally with the imaging means 3 so that the lateral displacement amount becomes zero.
  • the lateral shift of the substrate 6 is corrected, the pulsed laser light L is irradiated onto the plurality of first and second TFT forming portions 23 and 24 on the substrate 6 with high positional accuracy, and annealing is performed.
  • the microlens array 27 has a plurality of mask patterns 29 and a plurality of microlens arrays 27 arranged side by side in the direction in which the substrate 6 is transported and in the direction intersecting the same direction.
  • the number of mask patterns 29 and microlenses 31 aligned in the substrate transport direction corresponding to the portion 24 is adjusted to be smaller than the number of mask patterns 29 aligned in the same direction corresponding to the first TFT forming portion 23.
  • the present invention is not limited to this, and as shown in FIG. 11, a light-reducing film 40 having a predetermined transmittance is formed on the mask pattern 29 corresponding to the second TFT formation portion 24.
  • the transmitted light amount may be adjusted so as to be smaller than the transmitted light amount of the mask pattern 29 corresponding to the first TFT forming unit 23.
  • the annealing process for the first and second TFT forming portions 23 and 24 may be performed by multiple irradiation of the pulsed laser light L through the plurality of microlenses 31, but the first and second TFT forming portions may be performed.
  • the microlens array 27 has a plurality of mask patterns 29 and a plurality of microlenses 31 arranged in a direction intersecting the substrate transport direction. It may have a set of arranged mask pattern rows and micro lens rows.
  • FIG. 12 is an enlarged front view of a main part showing a second embodiment of the laser annealing apparatus according to the present invention.
  • a different part from the said 1st Embodiment is demonstrated.
  • a plurality of mask patterns 29 formed on the light shielding mask 30 are provided corresponding to the plurality of mask patterns 29 individually.
  • the plurality of mask patterns 29 are reduced and projected onto the substrate 6 using one projection lens (projection optical system) 41.
  • the projection lens 41 may have a lens configuration for forming an inverted image of the light shielding mask 30 on the substrate 6 or a lens configuration for forming an erect image.
  • the light shielding mask 30 to be used has the arrangement of the plurality of mask patterns 29, the arrangement of the mask pattern 29 shown in FIG. This is a 180-degree rotationally symmetric relationship with respect to the axis.
  • the light shielding mask 30 shown in FIG. 13 corresponds to the light shielding mask 30 shown in FIG. 11 rotated 180 degrees around the center of the mask. That is, as shown in FIG. 13, the light shielding mask 30 corresponds to the first TFT formation portion 23 in which the amount of light transmitted through the mask pattern 29 corresponding to the second TFT formation portion 24 among the plurality of mask patterns 29 corresponds to the first TFT formation portion 23.
  • the light reducing film 40 is provided on the mask pattern 29 corresponding to the second TFT forming portion 24 so as to be smaller than the transmitted light amount of the mask pattern 29 to be performed.
  • the arrangement pitch of the mask patterns 29 is set to a value obtained by converting the vertical and horizontal arrangement pitches of the first and second TFT forming portions 23 and 24 by the magnification of the projection lens 41.
  • the irradiation with the pulsed laser light L is arranged in a direction intersecting the substrate transport direction of the plurality of mask patterns 29 formed on the light shielding mask 30, for example, among the mask pattern rows 29A, 29B, and 29C shown in FIG.
  • the process starts when the imaging position of the mask pattern row 29A positioned corresponding to the most downstream side in the substrate transport direction and the plurality of first and second TFT forming portions 23 and 24 positioned on the most downstream side in the substrate transport direction match.
  • the pulse laser beam L is irradiated,
  • the amorphous silicon films of the plurality of first and second TFT forming portions 23 and 24 are laser annealed and crystallized into a polysilicon film.
  • the projection lens 41 has a lens configuration that forms an erect image
  • the arrangement pitch of each mask pattern 29 is set to a value obtained by converting the vertical and horizontal arrangement pitches of the first and second TFT forming portions 23 and 24 by the magnification of the projection lens 41.
  • the irradiation with the pulsed laser light L forms an image of a mask pattern row positioned corresponding to the most upstream in the substrate transport direction among the plurality of mask pattern rows in which the plurality of mask patterns 29 are arranged in a direction intersecting the substrate transport direction.
  • the process starts when the position and the plurality of first and second TFT forming portions 23 and 24 located on the most downstream side in the substrate transport direction match.
  • the subsequent irradiation timing of the pulsed laser light L is the same as that in the first embodiment.
  • Laser annealing may be performed by laser irradiation of a shot or a plurality of shots.
  • the laser annealing is different from the plurality of TFT formation portions via the plurality of mask patterns 29 provided corresponding to the plurality of TFT formation portions on the substrate 6 and the plurality of microlenses 31 or the projection lens 41. It may be performed by irradiating pulsed laser light L with an irradiation light amount. The different irradiation light amounts of the pulsed laser light L may be adjusted by adjusting the transmitted light amount of the mask pattern 29.
  • the present invention is not limited to this, and two laser light sources having different radiant energies are provided, and pulsed laser beams L having different radiant energies emitted from the respective laser light sources are respectively provided in the first and second TFT forming portions 23. , 24 may be irradiated.
  • the formation of the TFT substrate for organic EL has been described.
  • the present invention is not limited to this, and amorphous silicon is used to form a plurality of TFTs having different crystalline states of the polysilicon semiconductor layer. It can be applied to any laser annealing treatment of the film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)

Abstract

本発明は、基板6上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール方法であって、前記基板6上の複数の第1及び第2のTFT形成部23,24に異なる照射光量のレーザ光を照射し、前記複数の第1及び第2のTFT形成部23,24の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化するものである。

Description

レーザアニール方法、レーザアニール装置及び薄膜トランジスタ基板
 本発明は、アモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール方法に関し、特に1回のレーザアニール処理工程で電気特性の異なる複数の薄膜トランジスタを製造し得るようにするレーザアニール方法、レーザアニール装置及び薄膜トランジスタ基板に係るものである。
 従来のレーザアニール方法は、シリンドリカルレンズを用いてラインビームを生成し、該ラインビームの長軸と交差する方向にアモルファスシリコン膜を被着した基板を搬送しながら基板の全面に均一にラインビームを照射し、アモルファスシリコン膜を一様に結晶化するものとなっていた(例えば、特許文献1参照)。
特開2013-191743号公報
 しかし、このような従来のレーザアニール方法においては、基板全面のアモルファスシリコン膜が一様に結晶化されるため、全ての薄膜トランジスタ形成部のポリシリコン半導体層の結晶状態が同じになっていた。そのため、形成される全ての薄膜トランジスタが同じ電気特性を有するものとなっていた。
 したがって、従来のレーザアニール方法を、例えば有機EL用薄膜トランジスタ基板の製造に適用した場合には、画素の駆動電流を制御する駆動用薄膜トランジスタと、画素を選択するために駆動用薄膜トランジスタのゲート電圧を制御する選択用薄膜トランジスタとでは、本来、要求される電気特性は異なっているのであるが、上記理由により、各薄膜トランジスタの電気特性は、共通化せざるを得なかった。
 そこで、従来は、駆動用薄膜トランジスタに要求される電気特性に合わせて、大きな電流が流せるように、レーザ光の照射光量(エネルギー)を増加させて結晶成長を促進し、電子移動度を上げる条件によりレーザアニール処理がなされていた。そのため、選択用薄膜トランジスタのOFFリーク電流が増加してしまい、駆動用薄膜トランジスタのゲート電圧を一定に保持することができないという問題があった。
 そこで、本発明は、このような問題点に対処し、1回のレーザアニール処理工程で電気特性の異なる複数の薄膜トランジスタを製造し得るようにするレーザアニール方法、レーザアニール装置及び薄膜トランジスタ基板を提供することを目的とする。
 上記目的を達成するために、第1の発明によるレーザアニール方法は、基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール方法であって、前記基板上の複数の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射し、前記複数の薄膜トランジスタ形成部の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化するものである。
 また、第2の発明によるレーザアニール方法は、基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール方法であって、前記基板を搬送しながら、前記基板上の第1及び第2の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射し、前記第1及び第2の薄膜トランジスタ形成部の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化するものである。
 さらに、第3の発明によるレーザアニール装置は、基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール装置であって、前記基板を搬送する搬送手段と、前記搬送手段の搬送面に対向配置され、前記基板上の第1及び第2の薄膜トランジスタ形成部に対応させて複数のマスクパターンを設けた遮光マスクと、前記遮光マスクの前記搬送手段側に設けられ、複数の前記マスクパターンを前記基板上に結像する投影光学系と、を備え、前記遮光マスクは、複数の前記マスクパターンを前記基板の搬送方向と交差する方向、又は前記基板の搬送方向及び同方向と交差する方向に並べて有し、前記第1及び第2の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射して、前記第1及び第2の薄膜トランジスタ形成部の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化させ得るように、前記第2の薄膜トランジスタ形成部に対応するマスクパターンの透過光量が、前記第1の薄膜トランジスタ形成部に対応するマスクパターンの透過光量よりも小さくなるように調整されている。
 さらにまた、第4の発明によるレーザアニール装置は、基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール装置であって、前記基板を搬送する搬送手段と、前記搬送手段の搬送面に対向配置され、前記基板上の第1及び第2の薄膜トランジスタ形成部に対応させて複数のマスクパターンを設けた遮光マスクと、前記遮光マスクの前記搬送手段側に設けられ、複数の前記マスクパターンを前記基板上に結像する投影光学系と、を備え、前記遮光マスクは、複数の前記マスクパターンを前記基板の搬送方向及び同方向と交差する方向に並べて有し、前記第1及び第2の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射して、前記第1及び第2の薄膜トランジスタ形成部の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化させ得るように、前記第2の薄膜トランジスタ形成部に対応して前記基板の搬送方向に並ぶ複数の前記マスクパターンの数が、前記第1の薄膜トランジスタ形成部に対応して同方向に並ぶ複数の前記マスクパターンの数よりも少なくなるように調整されている。
 そして、第5の発明による薄膜トランジスタ基板は、画素を駆動する複数の駆動用薄膜トランジスタと、前記画素を選択するために前記駆動用薄膜トランジスタを動作させる複数の選択用薄膜トランジスタと、を基板上に設けた薄膜トランジスタ基板であって、前記駆動用薄膜トランジスタと前記選択用薄膜トランジスタとは、ポリシリコン半導体層の結晶状態が異なるものである。
 本発明によれば、基板上の複数の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射することにより、各薄膜トランジスタ形成部のアモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化することができる。したがって、1回のレーザアニール処理工程で電気特性の異なる複数の薄膜トランジスタを製造することができる。
本発明によるレーザアニール装置の第1の実施形態を示す概略構成図である。 上記第1の実施形態に使用するマイクロレンズアレイの一構成例を示す図で、(a)は平面図、(b)は(a)のA-A線断面図、(c)は(a)のB-B線断面図である。 有機EL駆動用の薄膜トランジスタの構成例を示す回路図である。 複数の薄膜トランジスタ形成部が配置された被アニール処理基板の構成例を示す平面図である。 本発明によるレーザアニール装置の制御装置の概略構成を示すブロック図である。 本発明によるレーザアニール方法を示す図であり、1回目のアニール処理の説明図である。 本発明によるレーザアニール方法を示す図であり、2回目のアニール処理の説明図である。 本発明によるレーザアニール方法を示す図であり、3回目のアニール処理の説明図である。 本発明によるレーザアニール方法により製造される有機EL用の薄膜トランジスタ基板を示す平面図である。 本発明によるレーザアニール方法により製造される有機EL用の薄膜トランジスタの電気特性を示す図であり、(a)は駆動用薄膜トランジスタの特性を示し、(b)は選択用薄膜トランジスタの特性を示す。 上記第1の実施形態に使用するマイクロレンズアレイの変形例を示す図で、(a)は平面図、(b)は(a)のA-A線断面図である。 本発明によるレーザアニール装置の第2の実施形態を示す要部拡大正面図である。 上記第2の実施形態に使用する遮光マスクの一構成例を示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるレーザアニール装置の第1の実施形態を示す概略構成図である。また、図2は第1の実施形態に使用するマイクロレンズアレイの一構成例を示す図で、(a)は平面図、(b)は(a)のA-A線断面図、(c)は(a)のB-B線断面図である。このレーザアニール装置は、基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するもので、搬送手段1と、レーザ照明光学系2と、撮像手段3と、アライメント手段4と、制御装置5と、を備えて構成されている。
 上記搬送手段1は、複数の薄膜トランジスタ形成部が縦横に並べて配置され、表面にアモルファスシリコン膜を被着させた被アニール処理基板(以下、単に「基板」という)6の例えば縁部を保持し、搬送面からわずかに浮上させた状態で基板6を図1に示す矢印方向に搬送するものであり、複数の浮上ユニット7を並べて配置し、基板6に均一な浮上力を付与することができるようになっている。
 なお、ここでは、上記基板6が有機EL用の薄膜トランジスタ基板を製造するための基板である場合について説明する。上記有機EL用の薄膜トランジスタ基板は、図3に示すように縦横に設けられたデータライン8とセレクトライン9との交差部に、例えば同図に示すような有機EL駆動用の薄膜トランジスタ(以下「TFT」という)が形成されている。
 詳細には、図3において、右側に位置するTFTが有機EL画素の駆動電流を制御する駆動用TFT10であり、ドレイン11を電源ライン12に接続し、ソース13を有機EL14のアノードに接続して設けられている。また、同図において、左側に位置するTFTが上記駆動用TFT10のゲート電圧を制御する選択用TFT15であり、ゲート16をセレクトライン9に接続し、ドレイン17をデータライン8に接続し、ソース18を駆動用TFT10のゲート19に接続して設けられている。さらに、駆動用TFT10のゲート19及びソース13間には保持容量20が設けられている。そして、有機EL14のカソードは接地されている。なお、上記各TFTのドレイン及びソースの配置は、逆であってもよい。
 上記基板6上には、図4に示すように、データライン8、セレクトライン9及び電源ライン12が互いに絶縁された状態で設けられ、さらに、駆動用TFT10のゲート電極21及び選択用TFT15のゲート電極22が予め設けられており、それらの上に、図示省略のSiO等の絶縁膜を介してアモルファスシリコン膜が被着されている。この場合、駆動用TFT10のゲート電極21上が第1のTFT形成部23となり、選択用TFT15のゲート電極22上が第2のTFT形成部24となる。そして、本実施形態においては、基板6は、第1及び第2のTFT形成部23,24が交互に並ぶその並び方向と交差する方向(図4に示す矢印方向)、即ちデータライン8に平行に搬送される。
 上記搬送手段1の上方には、レーザ照明光学系2が設けられている。このレーザ照明光学系2は、基板6上の第1及び第2のTFT形成部23,24に異なる照射光量のパルスレーザ光Lを照射し、第1及び第2のTFT形成部23,24のアモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化させるものであり、光進行方向上流からレーザ光源25と、カップリング光学系26と、マイクロレンズアレイ27と、を順に備えて構成されている。
 ここで、上記レーザ光源25は、例えば所定周波数のパルスレーザ光Lを放出するものであり、波長が355nmのYAGレーザや波長が308nmのエキシマレーザ等である。
 また、上記カップリング光学系26は、レーザ光源25から放射されたパルスレーザ光Lの光束径を拡張すると共に、輝度分布が均一にされた平行光を後述のマイクロレンズアレイ27に照射させるのもので、図示省略のビームエキスパンダ、フォトインテグレータ及びコリメータレンズ等を備えて構成されている。
 さらに、上記マイクロレンズアレイ27は、搬送手段1の搬送面に対向配置され、図2(b)に示すように、例えば石英基板のような透明基板28の光入射側に、上記基板6上の第1及び第2のTFT形成部23,24に対応させて複数のマスクパターン29を有する遮光マスク30を設け、上記透明基板28の光射出側に、複数のマスクパターン29に個別に対応させて該マスクパターン29を基板6上に縮小投影する複数のマイクロレンズ(投影光学系)31を設けたものである。
 詳細には、マイクロレンズアレイ27は、図2(a)に示すように、複数の上記マスクパターン29及び複数の上記マイクロレンズ31を基板6の搬送方向(同図の矢印方向)及び同方向と交差する方向に並べて有し、同図(a)に示すように第2のTFT形成部24に対応して基板6の搬送方向(以下、「基板搬送方向」という)に並ぶ複数のマスクパターン29及び複数のマイクロレンズ31の数が、第1のTFT形成部23に対応して同方向に並ぶ複数のマスクパターン29及び複数のマイクロレンズ31の数よりも少なくなるように調整されている。
 これにより、基板搬送方向に並んだ複数のマイクロレンズ31を介するパルスレーザ光Lの多重照射により、一つのTFT形成部のアニール処理が完了するようにすれば、第1及び第2のTFT形成部23,24に異なる照射光量(エネルギー)のパルスレーザ光Lを照射することができ、第1及び第2のTFT形成部23,24のアモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化させることができる。
 なお、本実施形態においては、パルスレーザ光Lの3回の多重照射により第1のTFT形成部23のレーザアニールが完了し、1回のレーザ光照射により第2のTFT形成部24のレーザアニールが完了する場合について説明するが、パルスレーザ光Lの照射回数はこれらに限定されない。また、第2のTFT形成部24に対応したマイクロレンズ31の数の調整は必ずしも必要ではないが、ここでは、マスクパターン29の数の調整と合せてマイクロレンズ31の数の調整も行った場合について説明する。
 上記レーザ照明光学系2によるパルスレーザ光Lの照射位置に対して基板搬送方向上流側には、撮像手段3が設けられている。この撮像手段3は、基板6に予め形成されたデータライン8及びセレクトライン9を撮影するもので、基板搬送方向と交差する方向に長軸を有するライン状の受光部を備えたラインカメラであり、上記搬送手段1の複数の浮上ユニット7間に配設されている。そして、上記基板6を裏面から透かして基板6の表面に設けられた上記データライン8及びセレクトライン9を撮影できるようになっている。また、撮像手段3は、後述のアライメント手段4によるレーザ照明光学系2又はマイクロレンズアレイ27の基板搬送方向と交差する方向へのアライメント動作に同期して一体的に同方向に微動するようになっている。
 上記レーザ照明光学系2又はマイクロレンズアレイ27を基板搬送方向と交差する方向に微動可能にアライメント手段4が設けられている。このアライメント手段4は、マイクロレンズアレイ27の複数のマスクパターン29と、基板6上の第1及び第2のTFT形成部23,24とを位置合わせさせるためのものであり、後述の制御装置5により制御されて基板6の基板搬送方向と交差する方向への横ずれを補正するようにレーザ照明光学系2又はマイクロレンズアレイ27を同方向に微動させるようになっている。以下の説明においては、アライメント手段4がマイクロレンズアレイ27を微動させる場合について述べる。
 上記搬送手段1、レーザ照明光学系2、撮像手段3及びアライメント手段4に電気的に接続して制御装置5が設けられている。この制御装置5は、基板6を浮上ユニット7上に所定量だけ浮上させた状態で基板6を、図1に示す矢印方向に一定速度で搬送させるように搬送手段1を制御し、基板6が搬送されて基板6上の各第1及び第2のTFT形成部23,24がマイクロレンズアレイ27のマイクロレンズ31によるパルスレーザ光Lの集光位置に達する度に、レーザ光源25を駆動してレーザ発光させるように発光タイミングを制御し、撮像手段3から入力する画像データに基づいて基板6の横ずれ量を算出し、横ずれを補正するようにアライメント手段4を駆動制御するもので、図5に示すように搬送手段駆動コントローラ32と、レーザ光源駆動コントローラ33と、画像処理部34と、アライメント手段駆動コントローラ35と、メモリ36と、演算部37と、制御部38と、を備えて構成されている。
 ここで、上記搬送手段駆動コントローラ32は、浮上ユニット7からのエアの噴出及び停止を制御すると共に、搬送手段1による基板6の搬送開始、搬送停止、搬送方向及び搬送速度を制御するものである。
 また、レーザ光源駆動コントローラ33は、後述の演算部37から入力する発光指令に基づいてレーザ光源25のパルスレーザ光Lの発光を制御するものである。
 さらに、画像処理部34は、撮像手段3から入力する画像データを処理して、基板6の搬送方向と交差する方向の輝度変化からデータライン8の位置を検出し、予め指定されたデータライン8の例えば右縁部の位置情報、及び基板6の搬送方向の輝度変化からセレクトライン9の、例えば搬送方向下流側の縁部検出情報を後述の演算部37に出力するようになっている。
 また、アライメント手段駆動コントローラ35は、演算部37によって算出された基板6の横ずれ量がゼロとなるようにアライメント手段4の駆動を制御するものである。
 さらに、メモリ36は、例えば搬送手段1の搬送速度、撮像手段3によりセレクトライン9が最初に検出されてからレーザ光源25が駆動されるまでに基板6が移動する距離の目標値、撮像手段3の受光部に予め定められた基準位置の位置情報、及び第1及び第2のTFT形成部23,24の搬送方向の配列ピッチW等を記憶するものであり、演算部37による演算結果も一時的に記憶することができるようになっている。
 さらにまた、演算部37は、搬送手段1の搬送速度と時間から基板6の移動距離を演算し、これをメモリ36から読み出した基板6の移動距離の目標値及び第1及び第2のTFT形成部23,24の搬送方向の配列ピッチWと比較し、パルスレーザ光Lの発光指令をレーザ光源駆動コントローラ33に出力すると共に、画像処理部34から入力したデータライン8の位置情報とメモリ36から読み出した撮像手段3に予め定められた基準位置の位置情報とにより両者間の距離を演算し、その演算結果と、両者間の基準距離としてメモリ36に保存された基準値とを比較し、そのずれ量を算出してアライメント手段駆動コントローラ35に出力するようになっている。なお、基板6の移動距離は、搬送手段1に設けたポジションセンサによって検出してもよく、基板6を移動させる移動機構のパルスモータのパルス数をカウントして算出してもよい。
 そして、制御部38は、装置全体を統合して制御するものであり、例えば制御用PC(パーソナルコンピュータ)である。
 次に、このように構成されたレーザアニール装置の第1の実施形態の動作及びレーザアニール方法について説明する。
 先ず、基板6がアモルファスシリコン膜を被着した面を上にして搬送手段1の搬送面に設置され、基板6の縁部が移動機構に保持される。この場合、基板6は、データライン8が基板搬送方向と平行になるように設置される。
 次に、アニール開始のスイッチが投入されると、搬送手段1の浮上ユニット7からエアが噴出して基板6を浮上させ、上記移動機構によって図1に示す矢印方向への基板6の搬送が開始される。
 次いで、撮像手段3により基板6の裏面側から基板6を透かして表面に形成されたデータライン8及びセレクトライン9が撮影される。撮像手段3により取得された画像データは、画像処理部34において処理される。画像処理部34では、基板搬送方向の輝度変化から基板搬送方向最下流に設けられたセレクトライン9の例えば下流側縁部を検出し、その検出情報を演算部37に出力する。
 演算部37では、画像処理部34から上記セレクトライン9の検出情報が入力されると、それをトリガーとして基板6の移動距離を演算する。そして、演算して得た基板6の移動距離とメモリ36から読み出した基板6の移動距離の目標値とを比較し、両者が合致するとパルスレーザ光Lの発光指令がレーザ光源駆動コントローラ33に出力される。この瞬間は、図6に示すように、基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24がマイクロレンズアレイ27の基板搬送方向最上流に位置する複数のマイクロレンズ31(以下「第1のマイクロレンズ列31A」という)によるパルスレーザ光Lの集光位置に達したときである。
 レーザ光源駆動コントローラ33は、演算部37からパルスレーザ光Lの発光指令を受けると、レーザ光源25を駆動して所定周波数のパルスレーザ光Lをレーザ光源25から放出させる。レーザ光源25から放出されたパルスレーザ光Lは、カップリング光学系26により光束径が拡張された後、輝度分布が均一化され、平行光にされてマイクロレンズアレイ27を照明する。そして、マイクロレンズアレイ27の遮光マスク30に形成されたマスクパターン29を通過したパルスレーザ光Lがマイクロレンズ31によって基板6上に集光される。
 これにより、図6に示すように、基板搬送方向最下流に位置する第1及び第2のTFT形成部23,24のアモルファスシリコン膜に対して、パルスレーザ光Lによる1回目のアニール処理が実行されてアモルファスシリコン膜が結晶化し、ポリシリコン膜となる。
 引き続き、演算部37においては、基板6の移動距離が演算される。そして、基板6の移動距離が第1及び第2のTFT形成部23,24の基板搬送方向における配列ピッチWに合致すると、再び、演算部37からパルスレーザ光Lの発光指令がレーザ光源駆動コントローラ33に出力される。
 これにより、レーザ光源駆動コントローラ33によりレーザ光源25が駆動されて、上記と同様にレーザ光源25からパルスレーザ光Lが放出され、このパルスレーザ光Lによってマイクロレンズアレイ27が照明される。
 パルスレーザ光Lは、マイクロレンズアレイ27のマスクパターン29を通過した後、マイクロレンズ31により基板6上に集光される。この場合、基板6は、第1及び第2のTFT形成部23,24の基板搬送方向における配列ピッチWに等しい距離だけ移動しているため、図7に示すように、基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24は、マイクロレンズアレイ27の第1のマイクロレンズ列31Aに対して一つ下流に位置する複数のマイクロレンズ31(以下「第2のマイクロレンズ列31B」という)によるパルスレーザ光Lの集光位置に達した状態にある。
 また、基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24に対して一つ上流に位置する複数の第1及び第2のTFT形成部23,24は、図7に示すように、マイクロレンズアレイ27の第1のマイクロレンズ列31Aによるパルスレーザ光Lの集光位置に達している。
 したがって、マイクロレンズアレイ27を通過したパルスレーザ光Lのうち、第2のマイクロレンズ列31Bを通過したパルスレーザ光Lは、基板搬送方向最下流に位置する複数の第1のTFT形成部23に集光し、当該部分に対して2回目のアニール処理を実行する。これにより、上記複数の第1のTFT形成部23に照射されるパルスレーザ光Lの照射光量(エネルギー)が増して、当該部分の結晶成長が促進される。
 一方、第2のマイクロレンズ列31Bには、第2のTFT形成部24に対応した位置にマスクパターン29及びマイクロレンズ31が存在しないため、基板搬送方向最下流に位置する複数の第2のTFT形成部24には、パルスレーザ光Lは照射されない。したがって、当該部分は、1回目のアニール処理の状態が維持され、ポリシリコン膜の結晶成長は進行しない。
 また、マイクロレンズアレイ27を通過したパルスレーザ光Lのうち、第1のマイクロレンズ列31Aを通過したパルスレーザ光Lは、基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24に対して一つ上流に位置する複数の第1及び第2のTFT形成部23,24に集光し、当該部分に対して1回目のアニール処理を実行する。これにより、当該部分のアモルファスシリコン膜が結晶化し、ポリシリコン膜となる。
 演算部37においては、継続して基板6の移動距離が演算される。そして、基板6の移動距離が第1及び第2のTFT形成部23,24の基板搬送方向における配列ピッチWに合致すると、再び、演算部37からパルスレーザ光Lの発光指令がレーザ光源駆動コントローラ33に出力される。
 これにより、レーザ光源駆動コントローラ33によりレーザ光源25が駆動されて、レーザ光源25からパルスレーザ光Lが放出され、このパルスレーザ光Lによってマイクロレンズアレイ27が照明される。
 パルスレーザ光Lは、マイクロレンズアレイ27のマスクパターン29を通過した後、マイクロレンズ31により基板6上に集光される。この場合、基板6は、第1及び第2のTFT形成部23,24の基板搬送方向における配列ピッチWに等しい距離だけさらに移動しているため、図8に示すように、基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24は、マイクロレンズアレイ27の第1のマイクロレンズ列31Aに対して二つ下流に位置する複数のマイクロレンズ31(以下「第3のマイクロレンズ列31C」という)によるパルスレーザ光Lの集光位置に達した状態にある。
 また、基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24に対して一つ上流に位置する複数の第1及び第2のTFT形成部23,24は、図8に示すように、マイクロレンズアレイ27の第2のマイクロレンズ列31Bによるパルスレーザ光Lの集光位置に達している。
 さらに、基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24に対して二つ上流に位置する複数の第1及び第2のTFT形成部23,24は、図8に示すように、マイクロレンズアレイ27の第1のマイクロレンズ列31Aによるパルスレーザ光Lの集光位置に達している。
 したがって、マイクロレンズアレイ27を通過したパルスレーザ光Lのうち、第3のマイクロレンズ列31Cを通過したパルスレーザ光Lは、基板搬送方向最下流に位置する複数の第1のTFT形成部23に集光し、当該部分に対して3回目のアニール処理を実行する。これにより、上記複数の第1のTFT形成部23に照射されるパルスレーザ光Lの照射光量(エネルギー)がより増して、当該部分の結晶成長がより促進される。
 一方、第3のマイクロレンズ列31Cには、図8に示すように、第2のTFT形成部24に対応した位置にマスクパターン29及びマイクロレンズ31が存在しないため、基板搬送方向最下流に位置する複数の第2のTFT形成部24には、パルスレーザ光Lは照射されない。したがって、当該部分は、1回目のアニール処理の状態が維持され、ポリシリコン膜の結晶成長は進行しない。
 また、マイクロレンズアレイ27を通過したパルスレーザ光Lのうち、第2のマイクロレンズ列31Bを通過したパルスレーザ光Lは、基板搬送方向最下流に位置する複数の第1のTFT形成部23に対して一つ上流に位置する第1のTFT形成部23に集光し、当該部分に対して2回目のアニール処理を実行する。これにより、上記複数の第1のTFT形成部23に照射されるパルスレーザ光Lの照射光量(エネルギー)が増して、当該部分の結晶成長が促進される。
 一方、第2のマイクロレンズ列31Bには、第2のTFT形成部24に対応した位置にマスクパターン29及びマイクロレンズ31が存在しないため、基板搬送方向最下流に位置する複数の第2のTFT形成部24に対して一つ上流に位置する複数の第2のTFT形成部24には、パルスレーザ光Lは照射されない。したがって、当該部分は、1回目のアニール処理の状態が維持され、ポリシリコン膜の結晶成長は進行しない。
 さらに、マイクロレンズアレイ27を通過したパルスレーザ光Lのうち、第1のマイクロレンズ列31Aを通過したパルスレーザ光Lは、基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24に対して二つ上流に位置する複数の第1及び第2のTFT形成部23,24に集光し、当該部分に対して1回目のアニール処理を実行する。これにより、当該部分のアモルファスシリコン膜が結晶化し、ポリシリコン膜となる。
 以降、同様にして第1のTFT形成部23に対して、3回のパルスレーザ光Lの多重照射によるアニール処理が実行され、第2のTFT形成部24に対しては、1回のパルスレーザ光Lの照射によるアニール処理が実行される。これにより、第1及び第2のTFT形成部23,24に対するパルスレーザ光Lの照射光量(パルスレーザ光Lの積算エネルギー)を異ならせることができ、第1及び第2のTFT形成部23,24のアモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化することができる。
 さらに、不要なアモルファスシリコン膜及びポリシリコン膜をエッチングして除去してゲート電極21,22上に半導体層を形成した後、ソース電極、ドレイン電極、保持容量20及び絶縁保護膜を順次形成することにより、図9に示すように、ポリシリコン半導体層の結晶状態が異なる複数の駆動用TFT10及び選択用TFT15を備えた有機EL用TFT基板が製造される。
 この場合、パルスレーザ光Lの照射光量が多くて積算エネルギーの大きい駆動用TFT10(第1のTFT形成部23)のポリシリコン膜は、パルスレーザ光Lの照射光量が少なくて積算エネルギーの小さい選択用TFT15(第2のTFT形成部24)のポリシリコン膜に比して結晶粒径が大きくなる。したがって、駆動用TFT10の電気特性は、図10(a)に示すように、OFFリーク電流がやや大きい(約1×10-9A)ものの、電子移動度が大きくなり(約30cm/Vs)、有機ELに大きな電流を供給することが可能となる。
 一方、選択用TFT15(第2のTFT形成部24)のポリシリコン膜の結晶粒径は、駆動用TFT10(第1のTFT形成部23)のポリシリコン膜の結晶粒径に比して小さいため、選択用TFT15の電気特性は、図10(b)に示すように、電子移動度が小さい(約2cm/Vs)ものの、OFFリーク電流が小さくなり(1×10-11A)、駆動用TFT10のゲート電圧を一定に保持することが可能となる。
 このように本発明によるレーザアニール方法によると、1回のレーザアニール処理工程で基板6上の第1及び第2のTFT形成部23,24に異なる照射光量のパルスレーザ光Lを照射することができ、第1及び第2のTFT形成部23,24のアモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化することができる。したがって、本発明によるレーザアニール方法を有機EL用の薄膜トランジスタ基板の製造に適用した場合には、駆動用TFT10及び選択用TFT15に要求される、夫々異なる個別の電気特性を得ることができる。
 なお、基板6を搬送しながら行うレーザアニール中は、撮像手段3によりデータライン8が常時撮影され、これを画像処理部34で画像処理して、基板6の搬送方向と交差する方向における輝度変化から特定のデータライン8の位置が検出される。また、演算部37では、検出されたデータライン8の位置情報と撮像手段3に予め設定された基準位置の位置情報と基づいて両者間の距離が算出され、メモリ36に保存された基準置と比較して基板6の横ずれ量が算出される。さらに、アライメント手段駆動コントローラ35によってアライメント手段4が駆動され、上記横ずれ量がゼロとなるようにマイクロレンズアレイ27が撮像手段3と一体的に基板搬送方向と交差する方向に微動される。これにより、基板6の横ずれが補正されてパルスレーザ光Lが基板6上の複数の第1及び第2のTFT形成部23,24に位置精度よく照射され、アニール処理が実行される。
 上記第1の実施形態においては、マイクロレンズアレイ27は、複数のマスクパターン29及び複数のマイクロレンズアレイ27を基板6の搬送方向及び同方向と交差する方向に並べて有し、第2のTFT形成部24に対応して基板搬送方向に並ぶマスクパターン29及びマイクロレンズ31の数が、第1のTFT形成部23に対応して同方向に並ぶマスクパターン29の数よりも少なくなるように調整されている場合について説明したが、本発明はこれに限られず、図11に示すように、第2のTFT形成部24に対応するマスクパターン29に所定の透過率の減光膜40を形成して透過光量が、第1のTFT形成部23に対応するマスクパターン29の透過光量よりも小さくなるように調整されてもよい。この場合、第1及び第2のTFT形成部23,24に対するアニール処理が複数のマイクロレンズ31を介するパルスレーザ光Lの多重照射により行われてもよいが、第1及び第2のTFT形成部23,24に対するアニール処理が1回のパルスレーザ光Lの照射で完了する場合には、マイクロレンズアレイ27は、基板搬送方向と交差する方向に複数のマスクパターン29及び複数のマイクロレンズ31を並べて配置した1組のマスクパターン列及びマイクロレンズ列を有するものであってもよい。
 図12は本発明によるレーザアニール装置の第2の実施形態を示す要部拡大正面図である。ここでは、上記第1の実施形態と異なる部分について説明する。
 この第2の実施形態においては、第1の実施形態におけるような、遮光マスク30に形成された複数のマスクパターン29を、該複数のマスクパターン29に個別に対応させて設けられたマイクロレンズ31により基板6上に縮小投影する代わりに、上記複数のマスクパターン29を一つの投影レンズ(投影光学系)41を使用して基板6上に縮小投影するものである。上記投影レンズ41は、基板6上に遮光マスク30の倒立像を結像するレンズ構成であっても、正立像を結像するレンズ構成であってもよい。
 投影レンズ41が倒立像を結像するレンズ構成のときには、使用する遮光マスク30は、複数のマスクパターン29の配置が、図2又は図11に示すマスクパターン29の配置と、遮光マスク30の中心を軸とする180度の回転対称の関係となる。例えば図13に示す遮光マスク30は、図11に示す遮光マスク30をマスクの中心を軸に180度回転したものに対応する。即ち、この遮光マスク30は、図13に示すように、複数のマスクパターン29のうち、第2のTFT形成部24に対応するマスクパターン29の透過光量が、第1のTFT形成部23に対応するマスクパターン29の透過光量よりも小さくなるように、第2のTFT形成部24に対応するマスクパターン29に減光膜40が設けられている。当然ながら、各マスクパターン29の配列ピッチは、第1及び第2のTFT形成部23,24の縦横配列ピッチを投影レンズ41の倍率で換算した値に設定される。
 この場合、パルスレーザ光Lの照射は、遮光マスク30に形成された複数のマスクパターン29の基板搬送方向と交差する方向に並ぶ、例えば図13に示すマスクパターン列29A,29B,29Cのうち、基板搬送方向最下流に対応して位置するマスクパターン列29Aの結像位置と基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24とが合致したときから開始される。以降、第1の実施形態と同様に、基板6が第1及び第2のTFT形成部23,24の基板搬送方向の配列ピッチWと同じ距離だけ移動する度にパルスレーザ光Lが照射され、複数の第1及び第2のTFT形成部23,24のアモルファスシリコン膜がレーザアニールされてポリシリコン膜に結晶化される。
 また、投影レンズ41が正立像を結像するレンズ構成のときには、遮光マスク30として複数のマスクパターン29が、図2又は図11に示す複数のマスクパターン29と同様に配置されたマスクを使用することができる。この場合も、各マスクパターン29の配列ピッチは、第1及び第2のTFT形成部23,24の縦横配列ピッチを投影レンズ41の倍率で換算した値に設定される。そして、パルスレーザ光Lの照射は、複数のマスクパターン29が基板搬送方向と交差する方向に並ぶ複数のマスクパターン列のうち、基板搬送方向最上流に対応して位置するマスクパターン列の結像位置と基板搬送方向最下流に位置する複数の第1及び第2のTFT形成部23,24とが合致したときから開始される。以降のパルスレーザ光Lの照射タイミングは、第1の実施形態と同じである。
 なお、上記第1及び第2の実施形態においては、基板6を搬送しながらレーザアニールが実施される場合について説明したが、本発明はこれに限られず、設置固定された基板6に対して1ショット、又は複数ショットのレーザ光照射によりレーザアニールが実施されるものであってもよい。この場合、レーザアニールは、基板6上の複数のTFT形成部に対応して設けた複数のマスクパターン29、及び複数のマイクロレンズ31又は投影レンズ41を介して、上記複数のTFT形成部に異なる照射光量のパルスレーザ光Lを照射して行うとよい。そして、パルスレーザ光Lの異なる照射光量は、上記マスクパターン29の透過光量を調整して行うとよい。
 また、上記第1及び第2の実施形態においては、一つのレーザ光源25から放出されるパルスレーザ光Lを異なる照射光量で第1及び第2のTFT形成部23,24に照射させる場合について説明したが、本発明はこれに限られず、放射エネルギーの異なる二つのレーザ光源を備え、各レーザ光源から放出される放射エネルギーの異なるパルスレーザ光Lを夫々、第1及び第2のTFT形成部23,24に照射させるようにしてもよい。
 そして、以上の説明においては、有機EL用のTFT基板の形成について述べたが、本発明はこれに限られず、ポリシリコン半導体層の結晶状態の異なる複数のTFTを形成するために行われるアモルファスシリコン膜の如何なるレーザアニール処理にも適用することができる。
 1…搬送手段
 6…基板
 10…駆動用TFT
 15…選択用TFT
 23…第1のTFT形成部
 24…第2のTFT形成部
 27…マイクロレンズアレイ
 28…透明基板
 29…マスクパターン
 30…遮光マスク
 31…マイクロレンズ(投影光学系)
 40…減光膜
 41…投影レンズ(投影光学系)
 L…パルスレーザ光

Claims (14)

  1.  基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール方法であって、
     前記基板上の複数の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射し、前記複数の薄膜トランジスタ形成部の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化することを特徴とするレーザアニール方法。
  2.  基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール方法であって、
     前記基板を搬送しながら、前記基板上の第1及び第2の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射し、前記第1及び第2の薄膜トランジスタ形成部の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化することを特徴とするレーザアニール方法。
  3.  前記第1及び第2の薄膜トランジスタ形成部の前記アモルファスシリコン膜の結晶化は、前記基板の搬送方向と交差する方向に並べて遮光マスクに設けられた複数のマスクパターンを介するレーザ光の1回照射により完了することを特徴とする請求項2記載のレーザアニール方法。
  4.  前記第1及び第2の薄膜トランジスタ形成部の前記アモルファスシリコン膜の結晶化は、前記基板の搬送方向及び同方向と交差する方向に並べて遮光マスクに設けられた複数のマスクパターンのうち、前記基板の搬送方向に並んだ複数の前記マスクパターンを介するレーザ光の多重照射により実施されることを特徴とする請求項2記載のレーザアニール方法。
  5.  前記第1及び第2の薄膜トランジスタ形成部に対する前記レーザ光の異なる照射光量は、複数の前記マスクパターンのうち、前記第2の薄膜トランジスタ形成部に対応するマスクパターンの透過光量が、前記第1の薄膜トランジスタ形成部に対応するマスクパターンの透過光量よりも小さくなるように調整して得られることを特徴とする請求項3又は4記載のレーザアニール方法。
  6.  前記第1及び第2の薄膜トランジスタ形成部に対する前記レーザ光の異なる照射光量は、複数の前記マスクパターンのうち、前記第2の薄膜トランジスタ形成部に対応して前記基板の搬送方向に並ぶ複数の前記マスクパターンの数が、前記第1の薄膜トランジスタ形成部に対応して同方向に並ぶ複数の前記マスクパターンの数よりも少なくなるように調整して得られることを特徴とする請求項4記載のレーザアニール方法。
  7.  前記基板への前記レーザ光の照射は、複数の前記マスクパターンに個別に対応させて前記遮光マスクの前記基板側に設けられた複数のマイクロレンズを介して行われることを特徴とする請求項3又は4記載のレーザアニール方法。
  8.  前記基板への前記レーザ光の照射は、複数の前記マスクパターンを前記基板上に縮小投影する投影レンズを介して行われることを特徴とする請求項3又は4記載のレーザアニール方法。
  9.  基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール装置であって、
     前記基板を搬送する搬送手段と、
     前記搬送手段の搬送面に対向配置され、前記基板上の第1及び第2の薄膜トランジスタ形成部に対応させて複数のマスクパターンを設けた遮光マスクと、
     前記遮光マスクの前記搬送手段側に設けられ、複数の前記マスクパターンを前記基板上に結像する投影光学系と、
    を備え、
     前記遮光マスクは、複数の前記マスクパターンを前記基板の搬送方向と交差する方向、又は前記基板の搬送方向及び同方向と交差する方向に並べて有し、前記第1及び第2の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射して、前記第1及び第2の薄膜トランジスタ形成部の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化させ得るように、前記第2の薄膜トランジスタ形成部に対応するマスクパターンの透過光量が、前記第1の薄膜トランジスタ形成部に対応するマスクパターンの透過光量よりも小さくなるように調整されていることを特徴とするレーザアニール装置。
  10.  基板上に被着されたアモルファスシリコン膜にレーザ光を照射して結晶化するレーザアニール装置であって、
     前記基板を搬送する搬送手段と、
     前記搬送手段の搬送面に対向配置され、前記基板上の第1及び第2の薄膜トランジスタ形成部に対応させて複数のマスクパターンを設けた遮光マスクと、
     前記遮光マスクの前記搬送手段側に設けられ、複数の前記マスクパターンを前記基板上に結像する投影光学系と、
    を備え、
     前記遮光マスクは、複数の前記マスクパターンを前記基板の搬送方向及び同方向と交差する方向に並べて有し、前記第1及び第2の薄膜トランジスタ形成部に異なる照射光量のレーザ光を照射して、前記第1及び第2の薄膜トランジスタ形成部の前記アモルファスシリコン膜を異なる結晶状態のポリシリコン膜に結晶化させ得るように、前記第2の薄膜トランジスタ形成部に対応して前記基板の搬送方向に並ぶ複数の前記マスクパターンの数が、前記第1の薄膜トランジスタ形成部に対応して同方向に並ぶ複数の前記マスクパターンの数よりも少なくなるように調整されていることを特徴とするレーザアニール装置。
  11.  前記投影光学系は、複数の前記マスクパターンに個別に対応させて設けられた複数のマイクロレンズであることを特徴とする請求項9又は10記載のレーザアニール装置。
  12.  前記投影光学系は、複数の前記マスクパターンを前記基板上に縮小投影する投影レンズであることを特徴とする請求項9又は10記載のレーザアニール装置。
  13.  画素を駆動する複数の駆動用薄膜トランジスタと、前記画素を選択するために前記駆動用薄膜トランジスタを動作させる複数の選択用薄膜トランジスタと、を基板上に設けた薄膜トランジスタ基板であって、
     前記駆動用薄膜トランジスタと前記選択用薄膜トランジスタとは、ポリシリコン半導体層の結晶状態が異なることを特徴とする薄膜トランジスタ基板。
  14.  前記駆動用薄膜トランジスタのポリシリコン半導体層の結晶粒径又は電子移動度は、前記選択用薄膜トランジスタのポリシリコン半導体層の結晶粒径又は電子移動度よりも大きいことを特徴とする請求項13記載の薄膜トランジスタ基板。
     
PCT/JP2016/088857 2016-02-23 2016-12-27 レーザアニール方法、レーザアニール装置及び薄膜トランジスタ基板 WO2017145519A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680082314.8A CN108701591A (zh) 2016-02-23 2016-12-27 激光退火方法、激光退火装置及薄膜晶体管基板
KR1020187025750A KR20180118664A (ko) 2016-02-23 2016-12-27 레이저 어닐링 방법, 레이저 어닐링 장치 및 박막 트랜지스터 기판
US16/109,640 US10950437B2 (en) 2016-02-23 2018-08-22 Laser annealing method, laser annealing apparatus, and thin film transistor substrate
US16/672,329 US10971361B2 (en) 2016-02-23 2019-11-01 Laser annealing method, laser annealing apparatus, and thin film transistor substrate
US16/672,331 US20200066518A1 (en) 2016-02-23 2019-11-01 Laser annealing method, laser annealing apparatus, and thin film transistor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032469A JP6623078B2 (ja) 2016-02-23 2016-02-23 レーザアニール方法及びレーザアニール装置
JP2016-032469 2016-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/109,640 Continuation US10950437B2 (en) 2016-02-23 2018-08-22 Laser annealing method, laser annealing apparatus, and thin film transistor substrate

Publications (1)

Publication Number Publication Date
WO2017145519A1 true WO2017145519A1 (ja) 2017-08-31

Family

ID=59686360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088857 WO2017145519A1 (ja) 2016-02-23 2016-12-27 レーザアニール方法、レーザアニール装置及び薄膜トランジスタ基板

Country Status (6)

Country Link
US (3) US10950437B2 (ja)
JP (1) JP6623078B2 (ja)
KR (1) KR20180118664A (ja)
CN (1) CN108701591A (ja)
TW (1) TWI713091B (ja)
WO (1) WO2017145519A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102548A1 (ja) * 2017-11-22 2019-05-31 堺ディスプレイプロダクト株式会社 レーザアニール方法、レーザアニール装置およびアクティブマトリクス基板の製造方法
WO2019234856A1 (ja) * 2018-06-06 2019-12-12 堺ディスプレイプロダクト株式会社 レーザアニール方法、レーザアニール装置およびアクティブマトリクス基板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120833B2 (ja) * 2018-07-10 2022-08-17 Jswアクティナシステム株式会社 レーザ処理装置
CN109801837A (zh) * 2019-02-02 2019-05-24 京东方科技集团股份有限公司 驱动背板的激光退火工艺及掩膜版
WO2023079648A1 (ja) * 2021-11-04 2023-05-11 Jswアクティナシステム株式会社 レーザ照射装置、レーザ照射方法、及びディスプレイの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266316A (ja) * 1996-03-29 1997-10-07 Toshiba Corp 半導体素子
JP2001127302A (ja) * 1999-10-28 2001-05-11 Hitachi Ltd 半導体薄膜基板、半導体装置、半導体装置の製造方法および電子装置
WO2011161715A1 (ja) * 2010-06-21 2011-12-29 パナソニック株式会社 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法
JP2012004250A (ja) * 2010-06-15 2012-01-05 V Technology Co Ltd 低温ポリシリコン膜の形成装置及び方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136632A (en) * 1995-12-26 2000-10-24 Seiko Epson Corporation Active matrix substrate, method of producing an active matrix substrate, liquid crystal display device, and electronic equipment
US5981974A (en) * 1996-09-30 1999-11-09 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
JP2003059858A (ja) * 2001-08-09 2003-02-28 Sony Corp レーザアニール装置及び薄膜トランジスタの製造方法
US7473621B2 (en) * 2002-11-27 2009-01-06 Canon Kabushiki Kaisha Producing method for crystalline thin film
KR100606450B1 (ko) * 2003-12-29 2006-08-11 엘지.필립스 엘시디 주식회사 주기성을 가진 패턴이 형성된 레이저 마스크 및 이를이용한 결정화방법
JP2007281421A (ja) * 2006-03-13 2007-10-25 Sony Corp 半導体薄膜の結晶化方法
KR101293570B1 (ko) * 2007-03-21 2013-08-06 삼성디스플레이 주식회사 박막 트랜지스터 및 이를 포함하는 유기 발광 표시 장치
JP2008244374A (ja) * 2007-03-29 2008-10-09 Nec Lcd Technologies Ltd 半導体薄膜の製造方法、半導体薄膜及び薄膜トランジスタ
CN102403207B (zh) * 2011-10-26 2016-05-25 昆山工研院新型平板显示技术中心有限公司 一种用于薄膜晶体管的多晶硅激光退火方法
JP5526173B2 (ja) 2012-03-14 2014-06-18 株式会社東芝 レーザアニール方法、レーザアニール装置、および薄膜トランジスタの製造方法
KR102105075B1 (ko) * 2013-05-02 2020-04-28 삼성디스플레이 주식회사 비정질 실리콘 박막의 결정화 모니터링 방법 및 시스템, 및 이를 이용한 박막 트랜지스터 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266316A (ja) * 1996-03-29 1997-10-07 Toshiba Corp 半導体素子
JP2001127302A (ja) * 1999-10-28 2001-05-11 Hitachi Ltd 半導体薄膜基板、半導体装置、半導体装置の製造方法および電子装置
JP2012004250A (ja) * 2010-06-15 2012-01-05 V Technology Co Ltd 低温ポリシリコン膜の形成装置及び方法
WO2011161715A1 (ja) * 2010-06-21 2011-12-29 パナソニック株式会社 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019102548A1 (ja) * 2017-11-22 2019-05-31 堺ディスプレイプロダクト株式会社 レーザアニール方法、レーザアニール装置およびアクティブマトリクス基板の製造方法
WO2019234856A1 (ja) * 2018-06-06 2019-12-12 堺ディスプレイプロダクト株式会社 レーザアニール方法、レーザアニール装置およびアクティブマトリクス基板の製造方法

Also Published As

Publication number Publication date
JP6623078B2 (ja) 2019-12-18
US20200066518A1 (en) 2020-02-27
KR20180118664A (ko) 2018-10-31
US20180366327A1 (en) 2018-12-20
TWI713091B (zh) 2020-12-11
US10950437B2 (en) 2021-03-16
US10971361B2 (en) 2021-04-06
CN108701591A (zh) 2018-10-23
JP2017152498A (ja) 2017-08-31
TW201740434A (zh) 2017-11-16
US20200066517A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2017145519A1 (ja) レーザアニール方法、レーザアニール装置及び薄膜トランジスタ基板
TWI692035B (zh) 薄膜電晶體、薄膜電晶體之製造方法及雷射退火裝置
US10644133B2 (en) Laser annealing method, laser annealing apparatus, and manufacturing process for thin film transistor
CN102449740B (zh) 激光退火方法及激光退火装置
KR101872469B1 (ko) 레이저 어닐링 장치 및 레이저 어닐링 방법
US10818492B2 (en) Method for manufacturing thin film transistor and mask for use in the manufacturing method
JP5344766B2 (ja) フォトマスク及びそれを使用するレーザアニール装置並びに露光装置
JP7154592B2 (ja) レーザアニール方法およびレーザアニール装置
JP2020098867A (ja) レーザアニール方法および薄膜トランジスタの製造方法
US20200168642A1 (en) Laser irradiation device, projection mask, laser irradiation method, and program
TW202037440A (zh) 雷射退火裝置
WO2020129562A1 (ja) レーザアニール装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187025750

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891674

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891674

Country of ref document: EP

Kind code of ref document: A1