WO2017145452A1 - Cleaning system - Google Patents

Cleaning system Download PDF

Info

Publication number
WO2017145452A1
WO2017145452A1 PCT/JP2016/083588 JP2016083588W WO2017145452A1 WO 2017145452 A1 WO2017145452 A1 WO 2017145452A1 JP 2016083588 W JP2016083588 W JP 2016083588W WO 2017145452 A1 WO2017145452 A1 WO 2017145452A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
cleaning
amount
cleaning liquid
cleaned
Prior art date
Application number
PCT/JP2016/083588
Other languages
French (fr)
Japanese (ja)
Inventor
圭史 和田
和博 秦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017145452A1 publication Critical patent/WO2017145452A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention relates to a cleaning system.
  • a plurality of varieties may be manufactured on the same production line, and when the beverage varieties are switched, the piping is cleaned.
  • the scent component in the beverage that has penetrated into the rubber packing or the like in the production line is not effectively removed, and long-time warm water cleaning may be performed as a deodorizing treatment.
  • This warm water flow cleaning is often performed by circulating hot water in the piping from the viewpoint of energy saving.
  • the scent component that has penetrated into the rubber packing etc. is eluted into the warm water. Since warm water circulates as described above, if the warm water is circulated as it is, the eluted scent component can be reattached to the rubber packing or the like. Therefore, from the viewpoint of preventing reattachment, it is preferable that the scent component eluted in the warm water is removed before returning to the pipe and circulating.
  • Patent Document 1 The technique described in Patent Document 1 is known as a technique for reusing warm water after removing organic substances.
  • Patent Document 1 includes a step of adjusting the pH of water to be treated to 7 to 10, a step of adjusting the temperature of water to be treated to 35 ° C. or higher, and adding hydrogen peroxide and ozone to the heated water to be treated.
  • a method for decomposing organic matter in water having a step, a step of oxidizing and decomposing organic matter contained in the water to be treated, and a step of decomposing and removing hydrogen peroxide and ozone remaining in the treated water in which the organic matter has been oxidatively decomposed .
  • JP 2001-170663 A (refer to claim 1 and FIG. 1 in particular)
  • the amount of the scent component (organic matter) that has permeated into the rubber packing, etc. is constant, the amount of the scent component eluted from the rubber packing, etc. gradually decreases, and the amount of scent is finally zero (almost zero) The same applies hereinafter. Therefore, from the viewpoint of avoiding an excessive production line stop while considering energy saving, it is preferable to stop the removal of the scent component in the circulating hot water when the amount of the scent component eluted becomes zero.
  • Patent Document 1 does not describe a timing for stopping cleaning, that is, a method for determining the end of cleaning. Therefore, in the technique described in Patent Document 1, washing may be continued even after the amount of elution of the scent component becomes zero. As a result, the production line may be stopped for an excessively long time. is there.
  • ozone is prone to self-decomposition. Therefore, although the elution amount of the scent component becomes zero and the decomposition target (scent component) by ozone does not exist in the warm water, ozone can be continuously consumed by the self-decomposition of ozone. Therefore, even if the end of cleaning is determined based on the consumption of ozone, it is not possible to determine the exact end.
  • the present invention has been made in view of these problems, and an object thereof is to provide a cleaning system capable of accurately grasping the final stage of cleaning.
  • the gist of the present invention is a cleaning system for cleaning the object to be cleaned by eluting the organic substance into the cleaning liquid by bringing the cleaning liquid into contact with the object to be cleaned on which the organic substance is adsorbed.
  • a cleaning liquid contact device for contacting the cleaning liquid with the cleaning liquid and eluting the organic substance into the cleaning liquid; and an ozone injection apparatus for injecting ozone for oxidizing and decomposing the organic substances eluted from the cleaning target to the cleaning liquid to be contacted with the cleaning target
  • An inflow ozone amount measuring device that measures the amount of ozone injected by the ozone injection device, and an outflow that measures the amount of ozone remaining after the organic matter is oxidized and decomposed by the ozone injected by the ozone injection device Measured by the ozone amount measuring device, the amount of ozone measured by the inflow ozone amount measuring device, and the outflow ozone amount measuring device
  • the amount of ozone consumed is calculated using the amount of ozone, and the rate of change in ozone consumption per hour is calculated based on the calculated ozone consumption, thereby cleaning the object to be cleaned.
  • the present invention relates to a cleaning system comprising: an arithmetic device that determine
  • ozone gas gaseous ozone
  • warm water into which ozone gas is injected may be referred to as “warm water containing ozone”.
  • FIG. 1 is a system diagram of a cleaning system 100 according to the first embodiment.
  • the cleaning system 100 is performed on the piping of the beverage production line 30 used when producing a dairy beverage or the like.
  • a rubber packing or the like used to connect the piping or the piping to each other Cleaning by the cleaning system 100 is performed in order to remove scent components (organic matter such as citrus scent etc.) adsorbed on the surface.
  • hot water cleaning liquid
  • cleaning liquid hot water
  • removal washing
  • the cleaning system 100 includes a gas / liquid reactor 11, an inflow ozone gas concentration flow meter 12, an ozone generator 13, a gas / liquid separator 14, a mist separator 15, an outflow ozone gas concentration flow meter 16, and an ozone gas decomposition catalyst 17. And is configured.
  • the cleaning system 100 also includes an arithmetic control device 50 that controls the inverter-controlled liquid feed pump 10 based on the concentration and flow rate of ozone gas measured by the inflow ozone gas concentration flow meter 12 and the outflow ozone gas concentration flow meter 16. ing.
  • this liquid feed pump 10 cleaning liquid contact device
  • warm water is supplied to the beverage production system 30, and a scent component is eluted in the warm water.
  • the arithmetic and control unit 50 determines the end point of cleaning using warm water, as will be described later with reference to FIG. Then, the arithmetic and control unit 50 stops the driving of the liquid feeding pump 10 when the end point of cleaning is reached, whereby the cleaning of the beverage production line 30 is stopped.
  • the arithmetic and control unit 50 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), an I / F (interface), and the like. And a predetermined control program stored in the ROM is executed by the CPU.
  • Ozone gas injected into used hot water that is, hot water containing a scent component
  • an ozone generator 13 ozone injection device
  • generated ozone gas is inject
  • ozone gas is generated by, for example, irradiating the air with ultraviolet rays.
  • the generated ozone gas is measured for its concentration (C in ) and flow rate (Q in ) (that is, the absolute amount of ozone injected into the hot water) by the inflow ozone gas concentration flow meter 12 (inflow ozone amount measuring device). Then, it is injected into the used hot water in the gas-liquid reactor 11.
  • this inflow ozone gas concentration flow meter 12 for example, a combination of an apparatus capable of measuring the absorbance of light having a wavelength peculiar to ozone and an existing flow meter is applicable.
  • the concentration and flow rate of ozone gas measured by the inflow ozone gas concentration flow meter 12 are input to the arithmetic and control unit 50.
  • the control of the liquid feeding pump 10 based on these values performed by the arithmetic and control unit 50 will be described later with reference to FIG.
  • the scent component (organic substance) contained in the hot water comes into contact with the injected ozone (ozone gas). If it does so, the fragrance component which contacted ozone will be decomposed
  • the ozone that has been contained in the hot water is also decomposed by autolysis and changes to oxygen.
  • the hot water that contains ozone is supplied to the gas-liquid separator 14. And in the gas-liquid separator 14, it isolate
  • the hot water not containing the scent component is heated to, for example, about 80 ° C. to 90 ° C. by the heater 18 and then supplied to the beverage production line 30 again.
  • the water vapor is mainly removed by the mist separator 15 in order to measure the concentration of ozone gas (described later).
  • the gas after the water vapor is mainly removed is the concentration (C out ) and flow rate (Q out ) (that is, the absolute amount of ozone consumed) by the outflow ozone gas concentration flow meter 16 (outflow ozone amount measuring device). Is supplied to the ozone gas decomposition catalyst 17 while being measured.
  • the outflow ozone gas concentration flow meter 16 the same one as the inflow ozone gas concentration flow meter 12 can be applied.
  • the concentration and flow rate of ozone gas measured by the outflow ozone gas concentration flow meter 16 are input to the arithmetic and control unit 50.
  • the control of the liquid feeding pump 10 based on these values performed by the arithmetic and control unit 50 will be described later with reference to FIG.
  • the ozone gas is decomposed into oxygen, and the generated oxygen is discharged out of the system together with other gases (carbon dioxide, oxygen generated by self-decomposition, etc.).
  • FIG. 2 is a control flow performed in the cleaning system 100 of the first embodiment. This control flow is performed by the arithmetic control device 50 (arithmetic device) shown in FIG. 1 unless otherwise specified.
  • the arithmetic and control unit 50 starts cleaning the beverage production line 30 by starting driving of the liquid feeding pump 10 (step S101). At the same time, the arithmetic and control unit 50 drives the ozone generator 13 to generate ozone, and starts injection of ozone gas into the used hot water in the gas-liquid reactor 11 (step S102). Thereby, the oxidative decomposition of the scent component contained in the used hot water is started. Then, the arithmetic and control unit 50 drives the ozone generator 13 so that the ozone gas concentration (C in ) and the flow rate (Q in ) measured by the inflow ozone gas concentration flow meter 12 are constant. ing.
  • the arithmetic and control unit 50 uses the outflow ozone gas concentration flow meter 16 to discharge the ozone gas concentration (C out ) and flow rate (Q out ). Is measured (step S103). These measured values are recorded in the arithmetic and control unit 50. Then, after the measurement starts, measurement and recording of the concentration and flow rate of the discharged ozone gas are continued until a preset time (for example, about several tens of minutes) elapses (No direction in step S104).
  • a preset time for example, about several tens of minutes
  • the arithmetic and control unit 50 calculates the consumption rate ⁇ of ozone gas at each recorded time using the following equation (1) (Ste S105). Further, the arithmetic and control unit 50 calculates the time change rate ⁇ ′ (change rate ⁇ ′ per time) of the consumption rate ⁇ using the calculated consumption rate ⁇ and the following equation (2) (step S105). ).
  • C in and Q in represent the concentration and flow rate of ozone gas measured by the inflow ozone gas concentration flow meter 12, respectively, and C out and flow rate Q out respectively represent the outflow ozone gas concentration flow meter 16.
  • the time change rate ⁇ ′ calculated here represents the time change of the ozone consumption rate ⁇ . That is, at the initial stage where the time has not passed so much since the start of cleaning, the amount of scent components that are oxidatively decomposed is large, so the ozone consumption rate ⁇ also increases. On the other hand, when there is almost no scent component that is oxidatively decomposed after a certain time from the start of cleaning, the ozone consumption rate ⁇ is small. However, since ozone self-decomposes in warm water as described above, even if all the scent components are oxidatively decomposed and no scent components exist, the ozone consumption rate ⁇ may not become zero.
  • the cleaning system 100 since the temperature of the hot water is constant or substantially constant, it is considered that the self-decomposition of ozone occurs at a constant or substantially constant rate. Therefore, in the cleaning system 100, paying attention to the change in the ozone consumption rate ⁇ (that is, the time change rate ⁇ ′), the change becomes smaller, that is, other than self-decomposition of ozone consumed at a constant or substantially constant rate. When it is determined that there is no consumption of ozone and there is almost no scent component to be oxidatively decomposed, it is determined that the end of the cleaning has been reached.
  • the arithmetic and control unit 50 determines whether or not the calculated time change rate ⁇ ′ is equal to or less than a predetermined end point change rate ⁇ 1 (step S106).
  • the calculated time change rate ⁇ ′ is equal to or less than the end point change rate ⁇ 1 (Yes in step S106)
  • it can be said that the consumption amount of ozone gas is substantially constant.
  • consumption of ozone gas is substantially constant, it is thought that most of the ozone gas consumed is not based on oxidative decomposition of scent components but based on self-decomposition.
  • the arithmetic and control unit 50 cleans the beverage production line 30. Is finished (step S107). That is, the arithmetic and control unit 50 stops the injection of the ozone gas into the hot water and stops the driving of the liquid feeding pump 10.
  • the arithmetic and control unit 50 continuously measures the concentration and flow rate of the discharged ozone gas while continuing to clean the beverage production line 30 (step S103).
  • the end of cleaning is determined based on the time change rate ⁇ ′ for the ozone gas consumption rate ⁇ . Therefore, the end of cleaning is determined in consideration of the self-decomposition of ozone gas. Therefore, although the environmental load can be reduced, it is possible to accurately grasp the end of the cleaning while using ozone gas that is easily decomposed in water. Moreover, ozone gas exists stably even at about 100 degrees C or less. Therefore, for example, the scent component contained in hot water of about 80 ° C. to 90 ° C. can be removed stably and effectively as compared with the case where activated carbon or a membrane that is relatively unstable to heat is used.
  • FIG. 3 is a system diagram of the cleaning system 200 according to the second embodiment.
  • the same components as those in the cleaning system 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a total of 19 are provided.
  • the arithmetic control device 50 controls the liquid feed pump 10 based on the ozone gas concentration and the like as described above, and hot water measured by the flow meter 19 (cleaning liquid contact amount control device).
  • the liquid feed pump 10 (cleaning liquid contact amount control device) is also controlled based on the flow rate of the liquid.
  • the calculation control unit 50 performs feedback control of the liquid feeding pump 10 using the flow meter 19 in order to increase the amount of hot water circulating through the beverage production line 30. . That is, at the initial stage where there are many fragrance components to be decomposed, washing is performed at the maximum flow rate, and the number of times hot water is circulated to the beverage production line 30 is increased. On the other hand, when the cleaning proceeds to some extent and the amount of the scent component eluted becomes small, the output of the liquid feed pump 10 is reduced to perform the cleaning. At the end of cleaning, cleaning is performed at the minimum flow rate.
  • the reason for reducing the flow rate of the hot water as the cleaning progresses in the cleaning system 200 will be described.
  • the amount of adsorption of the scent component adsorbed on equipment such as rubber packing gradually decreases by leaching into warm water as it is washed.
  • the elution flux of the scent component to the warm water follows Fick's law that "the diffusion flux is proportional to the concentration gradient". Therefore, at the initial stage of washing with a large amount of adsorbed scent components, the concentration on the elution side (rubber packing, etc.) is high, so the concentration gradient between the diffusion side (hot water used for washing) is large and elution proceeds quickly. Conceivable. Therefore, in such a case, the hot water is circulated at the maximum flow rate in order to promote elution by circulating as much hot water as possible.
  • the concentration on the elution side decreases near the end point of washing. Therefore, in order to ensure a large elution flux, it is preferable to sufficiently reduce the concentration on the diffusion side.
  • the concentration on the diffusion side in the vicinity of the end point of cleaning is preferably lower than the concentration on the diffusion side in the initial stage of cleaning.
  • the oxidative decomposition rate of the scent component contained in the hot water has a correlation with the ozone gas injection amount per unit flow rate of the hot water. That is, as the ozone injection amount is increased, that is, when the ozone gas injection amount is constant as described above, the lower the flow rate of hot water, the higher the oxidative decomposition rate of the scent component due to contact with ozone.
  • the oxidative decomposition of the scent component in the warm water is made efficient by reducing the treatment flow rate as described above.
  • concentration of the scent component in warm water can be made low enough. Therefore, a large elution flux of the scent component to the hot water is ensured even in the vicinity of the cleaning end point where the amount of the scent component adsorbed by equipment such as rubber packing is reduced, and efficient cleaning becomes possible.
  • FIG. 4 is a control flow performed in the cleaning system 200 of the second embodiment.
  • the same steps as those in the flow shown in FIG. 2 are given the same step numbers, and detailed descriptions thereof are omitted.
  • the control flow shown in FIG. 4 is performed by the arithmetic and control unit 50 shown in FIG. 3 unless otherwise specified.
  • the arithmetic and control unit 50 starts cleaning the beverage production line 30 by starting driving the liquid feed pump 10 with the maximum output (step S201). Since the output of the liquid feed pump 10 is maximized, the beverage production line 30 is washed with as much hot water as possible. Then, the time change rate ⁇ ′ of the consumption rate ⁇ is calculated through the same steps as steps S102 to S104 (step S105).
  • the arithmetic and control unit 50 determines whether or not the calculated time change rate ⁇ ′ is equal to or less than a preset pump output change rate ⁇ 2 (step S202).
  • the “pump output change rate ⁇ 2” here is a value larger than the “end point change rate ⁇ 1” described in step S106 in FIG. 2, and is a threshold value for changing the pump output. That is, as described above, when the end of cleaning is approaching, by reducing the flow rate of warm water, it is possible to effectively oxidize and decompose scent components.
  • the change in the consumption rate ⁇ is not as small as the “endpoint change rate ⁇ 1”, if the change in the consumption rate ⁇ is small to some extent and it is determined that the end point of cleaning is close, the flow rate is reduced. By squeezing, effective oxidative decomposition of the scent component is achieved.
  • step S202 when the calculated time change rate ⁇ ′ is equal to or less than the pump output change rate ⁇ 2 (and greater than the end point change rate ⁇ 1) (Yes direction in step S202), the amount of the scent component to be decomposed into the hot water It is thought that there is less. Therefore, in this case, the circulation amount of the hot water (that is, the flow rate of the hot water) is reduced by changing the output of the liquid feeding pump 10 to the minimum (step S203). Thereby, an effective decomposition
  • step S103 when the calculated time change rate ⁇ ′ is larger than the pump output change rate ⁇ 2 (No direction in step S202), the consumption amount of ozone gas still fluctuates greatly. Therefore, the concentration and flow rate of the discharged ozone gas are continuously measured (step S103).
  • the arithmetic and control unit 50 After the pump output is changed to the minimum in step S203, the arithmetic and control unit 50 performs control in the same manner as in steps S102 to S107, and the cleaning is completed.
  • the end of cleaning is determined based on the time change rate ⁇ ′ of the ozone gas consumption rate ⁇ , and the output of the liquid feed pump 10 is also changed. Yes. By doing in this way, the end of washing
  • cleaning by the cleaning systems 100 and 200 is performed after the CIP cleaning, but the cleaning systems 100 and 200 may be applied for CIP cleaning.
  • an alkali such as hypochlorous acid can be used as the cleaning liquid in addition to the warm water.
  • a neutralizing agent etc. can be used together as needed.
  • warm water of about 80 ° C. to 90 ° C. is used in the above example, but it may be any temperature and type of water such as room temperature water.
  • the concentration and flow rate of ozone gas injected into the gas-liquid reactor 11 are constant.
  • a large amount of ozone gas is introduced at the initial stage of cleaning, and the amount of ozone gas injected gradually is reduced.
  • the injection amount of ozone gas may be changed stepwise.
  • ozone gas may be injected immediately after the hot water is circulated, or ozone gas may be injected after a while after the hot water is circulated.
  • the output of the liquid delivery pump 10 is changed to only two of the maximum and the minimum, but the output decreases stepwise as the time change rate ⁇ ′ decreases. It may be. That is, for example, at the initial stage of cleaning, the output of the liquid feeding pump 10 is maximized as described above, but when the time change rate ⁇ ′ falls below a preset threshold value, the output is slightly reduced. Further, when the time change rate ⁇ ′ falls below another preset threshold value, the output is further reduced a little, and these are repeated as appropriate, and finally the output of the liquid feed pump 10 is minimized as described above. It may be made to become.
  • the output of the liquid feed pump 10 is preferably reduced as the time change rate ⁇ ′ decreases, the output of the liquid feed pump 10 at the start of the cleaning may not be the maximum, and the liquid feed at the end of the cleaning is performed. The output of the pump 10 may not be the minimum.
  • warm water is circulated through the beverage production line 30, but the warm water may be disposable without being circulated.
  • the scent component is exemplified as the organic substance, but it may be other than the scent component such as organic dirt. Since ozone has a strong oxidizing power, it can be effectively oxidatively decomposed even if it is organic soil.
  • the ozone gas separated in the gas-liquid separator 14 is decomposed by the ozone gas decomposition catalyst 17, but the ozone gas may be returned to the gas-liquid reactor 11 without being decomposed. .
  • ozone water may be injected into warm water instead of ozone gas or together with ozone gas.
  • Liquid feed pump cleaning liquid contact device, cleaning liquid contact amount control device
  • Gas-liquid reactor Inflow ozone gas concentration flow meter (Inflow ozone amount measuring device) 13 Ozone generator (ozone injection device) 14
  • Gas-liquid separator 16
  • Outflow ozone gas concentration flow meter (Outflow ozone amount measuring device) 19
  • Flowmeter (Cleaning liquid contact amount control device) 30
  • Arithmetic control device (arithmetic device, cleaning liquid contact amount control device) 100 Cleaning system 200 Cleaning system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)

Abstract

Provided is a cleaning system with which the end of cleaning can be accurately ascertained. The present invention is provided with a liquid delivery pump 10, which brings hot water into contact with a rubber packing and elutes an aromatic component into the hot water, an ozone generator 13, which injects, into the hot water that has been brought into contact with the rubber packing, ozone which oxidatively decomposes the aromatic component eluted from the rubber packing, an inflow ozone gas concentration flow meter 12, which measures the quantity of ozone injected by the ozone generator 13, and an outflow ozone gas concentration flow meter 16, which measures the quantity of ozone remaining after the aromatic component has been oxidatively decomposed by the ozone injected by the ozone generator 13, wherein the quantity of ozone consumption is calculated using the quantity of ozone measured by the inflow ozone gas concentration flow meter 12 and the quantity of ozone measured by the outflow ozone gas concentration flow meter 16, and the end of cleaning of the rubber packing is determined by calculating the rate of change over time in the quantity of ozone consumption on the basis of the abovementioned calculated quantity of ozone consumption.

Description

洗浄システムCleaning system
 本発明は洗浄システムに関する。 The present invention relates to a cleaning system.
 飲料工場では同一製造ラインで複数の品種が製造されることがあり、飲料品種の切り替え時には、配管内の洗浄が行われる。しかし、この洗浄によっても、製造ライン中のゴムパッキン等に浸透した飲料中の香り成分が効果的に除去されず、脱臭処理として、長時間の温水通水洗浄が併せて行われることがある。この温水通水洗浄は、省エネルギの観点から、配管内を温水が循環することで行われることが多い。 In a beverage factory, a plurality of varieties may be manufactured on the same production line, and when the beverage varieties are switched, the piping is cleaned. However, even with this cleaning, the scent component in the beverage that has penetrated into the rubber packing or the like in the production line is not effectively removed, and long-time warm water cleaning may be performed as a deodorizing treatment. This warm water flow cleaning is often performed by circulating hot water in the piping from the viewpoint of energy saving.
 この温水通水洗浄では、ゴムパッキン等に浸透した香り成分は温水に溶出することになる。前記のように温水は循環しているため、そのまま温水を循環させると、溶出した香り成分がゴムパッキン等に再付着し得る。そこで、再付着を防止する観点から、温水に溶出した香り成分は、配管に戻されて循環する前に除去されることが好ましい。 In this warm water washing, the scent component that has penetrated into the rubber packing etc. is eluted into the warm water. Since warm water circulates as described above, if the warm water is circulated as it is, the eluted scent component can be reattached to the rubber packing or the like. Therefore, from the viewpoint of preventing reattachment, it is preferable that the scent component eluted in the warm water is removed before returning to the pipe and circulating.
 有機物を除去した上で温水を再利用する技術として、特許文献1に記載の技術が知られている。特許文献1には、被処理水のpHを7~10に調整する工程、被処理水の温度を35℃以上に調整する工程、加温された被処理水に過酸化水素とオゾンを添加する工程、被処理水中に含まれる有機物を酸化分解する工程及び有機物が酸化分解された被処理水中に残存する過酸化水素とオゾンを分解除去する工程を有する水中の有機物の分解方法が記載されている。 The technique described in Patent Document 1 is known as a technique for reusing warm water after removing organic substances. Patent Document 1 includes a step of adjusting the pH of water to be treated to 7 to 10, a step of adjusting the temperature of water to be treated to 35 ° C. or higher, and adding hydrogen peroxide and ozone to the heated water to be treated. There is described a method for decomposing organic matter in water having a step, a step of oxidizing and decomposing organic matter contained in the water to be treated, and a step of decomposing and removing hydrogen peroxide and ozone remaining in the treated water in which the organic matter has been oxidatively decomposed .
特開2001-170663号公報(特に請求項1、図1参照)JP 2001-170663 A (refer to claim 1 and FIG. 1 in particular)
 ゴムパッキン等に浸透していた香り成分(有機物)の量は一定であるから、ゴムパッキン等からの香り成分の溶出量は徐々に減少する、そして、溶出量は最終的にはゼロ(ほぼゼロの概念を含む。以下同じ)になる。従って、省エネルギを考慮しつつ、過度の生産ライン停止を避ける観点から、香り成分の溶出量がゼロになった時点で、循環させる温水における香り成分の除去を停止することが好ましい。 Since the amount of the scent component (organic matter) that has permeated into the rubber packing, etc. is constant, the amount of the scent component eluted from the rubber packing, etc. gradually decreases, and the amount of scent is finally zero (almost zero) The same applies hereinafter. Therefore, from the viewpoint of avoiding an excessive production line stop while considering energy saving, it is preferable to stop the removal of the scent component in the circulating hot water when the amount of the scent component eluted becomes zero.
 しかし、特許文献1には、洗浄を停止させる時期、即ち洗浄の終期を判断する方法は記載されていない。従って、特許文献1に記載の技術においては、香り成分の溶出量がゼロになった後も洗浄が引き続き行われることがあり、その結果、生産ラインの停止が過度に長期間に渡る可能性がある。 However, Patent Document 1 does not describe a timing for stopping cleaning, that is, a method for determining the end of cleaning. Therefore, in the technique described in Patent Document 1, washing may be continued even after the amount of elution of the scent component becomes zero. As a result, the production line may be stopped for an excessively long time. is there.
 また、オゾンは自己分解しやすい。そのため、香り成分の溶出量がゼロになってオゾンによる分解対象物(香り成分)が温水中に存在しないにも関わらず、オゾンの自己分解によってオゾンは引き続き消費され得る。従って、オゾンの消費量に基づいて洗浄の終期を判断しても、正確な終期を判断することができない。 Also, ozone is prone to self-decomposition. Therefore, although the elution amount of the scent component becomes zero and the decomposition target (scent component) by ozone does not exist in the warm water, ozone can be continuously consumed by the self-decomposition of ozone. Therefore, even if the end of cleaning is determined based on the consumption of ozone, it is not possible to determine the exact end.
 本発明はこれらの課題に鑑みて為されたものであり、洗浄の終期を正確に把握することが可能な洗浄システムを提供することにある。 The present invention has been made in view of these problems, and an object thereof is to provide a cleaning system capable of accurately grasping the final stage of cleaning.
 本発明者らは前記課題を解決するべく鋭意検討を行った結果、以下の知見を見出した本発明を完成させた。即ち、本発明の要旨は、有機物が吸着した被洗浄物に洗浄液を接触させることで前記有機物を前記洗浄液に溶出させて、前記被洗浄物の洗浄を行う洗浄システムであって、前記被洗浄物に前記洗浄液を接触させて前記有機物を前記洗浄液に溶出させる洗浄液接触装置と、前記被洗浄物に接触させる洗浄液に対し、前記被洗浄物から溶出した有機物を酸化分解させるオゾンを注入するオゾン注入装置と、当該オゾン注入装置によって注入されるオゾンの量を計測する流入オゾン量計測装置と、前記オゾン注入装置によって注入されたオゾンによって前記有機物が酸化分解された後に残存するオゾンの量を計測する流出オゾン量計測装置と、前記流入オゾン量計測装置により計測されたオゾンの量と、前記流出オゾン量計測装置により計測されたオゾンの量とを用いて消費されたオゾンの量を算出するとともに、当該算出されたオゾンの消費量に基づいてオゾンの消費量の時間あたりの変化率を算出することで前記被洗浄物の洗浄の終期を判断する演算装置と、を備えることを特徴とする、洗浄システムに関する。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have completed the present invention with the following findings. That is, the gist of the present invention is a cleaning system for cleaning the object to be cleaned by eluting the organic substance into the cleaning liquid by bringing the cleaning liquid into contact with the object to be cleaned on which the organic substance is adsorbed. A cleaning liquid contact device for contacting the cleaning liquid with the cleaning liquid and eluting the organic substance into the cleaning liquid; and an ozone injection apparatus for injecting ozone for oxidizing and decomposing the organic substances eluted from the cleaning target to the cleaning liquid to be contacted with the cleaning target An inflow ozone amount measuring device that measures the amount of ozone injected by the ozone injection device, and an outflow that measures the amount of ozone remaining after the organic matter is oxidized and decomposed by the ozone injected by the ozone injection device Measured by the ozone amount measuring device, the amount of ozone measured by the inflow ozone amount measuring device, and the outflow ozone amount measuring device The amount of ozone consumed is calculated using the amount of ozone, and the rate of change in ozone consumption per hour is calculated based on the calculated ozone consumption, thereby cleaning the object to be cleaned. The present invention relates to a cleaning system comprising: an arithmetic device that determines the end of the cleaning.
 本発明によれば洗浄の終期を正確に把握することが可能な洗浄システムを提供することができる。 According to the present invention, it is possible to provide a cleaning system that can accurately grasp the end of cleaning.
第一実施形態の洗浄システムの系統図である。It is a systematic diagram of the washing system of a first embodiment. 第一実施形態の洗浄システムにおいて行われる制御フローである。It is a control flow performed in the cleaning system of the first embodiment. 第二実施形態の洗浄システムの系統図である。It is a systematic diagram of the cleaning system of the second embodiment. 第二実施形態の洗浄システムにおいて行われる制御フローである。It is a control flow performed in the cleaning system of the second embodiment.
 以下、本発明を実施するための形態(本実施形態)を説明するが、本実施形態は以下の例に何ら限定されるものではない。なお、各図において、説明の簡略化のために、電気信号線の一部の図示を省略している。また、以下の記載において、気体状態のオゾンのことを特に「オゾンガス」と称するものとする。また、説明の便宜のために、オゾンガスが注入された温水のことは、「オゾンを含む温水」と称することがある。 Hereinafter, although the form (this embodiment) for implementing this invention is demonstrated, this embodiment is not limited to the following examples at all. In each figure, for simplification of explanation, a part of the electric signal line is not shown. In the following description, gaseous ozone is particularly referred to as “ozone gas”. For convenience of explanation, warm water into which ozone gas is injected may be referred to as “warm water containing ozone”.
[1.第一実施形態]
 図1は、第一実施形態の洗浄システム100の系統図である。洗浄システム100は、乳製品飲料等を製造する際に使用した飲料製造ライン30の配管に対して行われる。特に、洗浄システム100では、図示及び説明を省略するが、飲料製造ライン30の配管に対してCIP洗浄(定置洗浄)を行った後、配管や配管同士を接続するために使用されるゴムパッキン等に吸着した香り成分(有機物、例えば柑橘系の香り等)を除去するために、洗浄システム100による洗浄が行われる。
[1. First embodiment]
FIG. 1 is a system diagram of a cleaning system 100 according to the first embodiment. The cleaning system 100 is performed on the piping of the beverage production line 30 used when producing a dairy beverage or the like. In particular, in the cleaning system 100, although illustration and description are omitted, after performing CIP cleaning (fixed cleaning) on the piping of the beverage production line 30, a rubber packing or the like used to connect the piping or the piping to each other Cleaning by the cleaning system 100 is performed in order to remove scent components (organic matter such as citrus scent etc.) adsorbed on the surface.
 即ち、洗浄システム100では、CIP洗浄が行われた後に、例えば80℃~90℃程度の温水(洗浄液)を飲料製造ライン30の配管に循環させることで、飲料製造ライン30に残存する香り成分の除去(洗浄)が行われる。この循環に際しては、温水に溶出した香り成分のゴムパッキン等への再吸着を防止する観点から、飲料製造ライン30に一度温水を通流させるたびに、オゾンガスを用いて、温水中の香り成分が酸化分解されている。 That is, in the cleaning system 100, after CIP cleaning is performed, hot water (cleaning liquid) of, for example, about 80 ° C. to 90 ° C. is circulated through the piping of the beverage manufacturing line 30 to remove the scent component remaining in the beverage manufacturing line 30. Removal (washing) is performed. At the time of this circulation, from the viewpoint of preventing re-adsorption of the scent component eluted in the warm water to the rubber packing or the like, every time the warm water is passed through the beverage production line 30, the scent component in the warm water is changed using ozone gas. It is oxidatively decomposed.
 洗浄システム100は、気液反応器11と、流入オゾンガス濃度流量計12と、オゾン発生機13と、気液分離機14と、ミストセパレータ15と、流出オゾンガス濃度流量計16と、オゾンガス分解触媒17とを備えて構成される。また、洗浄システム100は、流入オゾンガス濃度流量計12及び流出オゾンガス濃度流量計16により計測されたオゾンガスの濃度及び流量に基づいて、インバータ制御される送液ポンプ10を制御する演算制御装置50を備えている。この送液ポンプ10(洗浄液接触装置)が駆動することで温水が飲料製造システム30に供給され、温水に香り成分が溶出するようになっている。 The cleaning system 100 includes a gas / liquid reactor 11, an inflow ozone gas concentration flow meter 12, an ozone generator 13, a gas / liquid separator 14, a mist separator 15, an outflow ozone gas concentration flow meter 16, and an ozone gas decomposition catalyst 17. And is configured. The cleaning system 100 also includes an arithmetic control device 50 that controls the inverter-controlled liquid feed pump 10 based on the concentration and flow rate of ozone gas measured by the inflow ozone gas concentration flow meter 12 and the outflow ozone gas concentration flow meter 16. ing. When this liquid feed pump 10 (cleaning liquid contact device) is driven, warm water is supplied to the beverage production system 30, and a scent component is eluted in the warm water.
 これらのうち、演算制御装置50は、詳細は図2を参照しながら後記するが、温水を用いた洗浄の終点を判断する。そして、演算制御装置50は、洗浄の終点になったときに送液ポンプ10の駆動を停止し、これにより、飲料製造ライン30の洗浄が停止される。なお、演算制御装置50は、いずれも図示はしないが、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、I/F(インターフェイス)等を備え、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。 Of these, the arithmetic and control unit 50 determines the end point of cleaning using warm water, as will be described later with reference to FIG. Then, the arithmetic and control unit 50 stops the driving of the liquid feeding pump 10 when the end point of cleaning is reached, whereby the cleaning of the beverage production line 30 is stopped. Although not shown, the arithmetic and control unit 50 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), an I / F (interface), and the like. And a predetermined control program stored in the ROM is executed by the CPU.
 使用済みの温水、即ち香り成分を含む温水に注入するオゾンガスは、空気を原料として、オゾン発生機13(オゾン注入装置)において生成される。そして、生成したオゾンガスが、オゾン発生機13に備えられたポンプ(図示しない)によって温水に注入される。オゾン発生機13では、空気に対して例えば紫外線を照射する等により、オゾンガスが生成される。 Ozone gas injected into used hot water, that is, hot water containing a scent component, is generated in an ozone generator 13 (ozone injection device) using air as a raw material. And the produced | generated ozone gas is inject | poured into warm water with the pump (not shown) with which the ozone generator 13 was equipped. In the ozone generator 13, ozone gas is generated by, for example, irradiating the air with ultraviolet rays.
 そして、この生成したオゾンガスは、流入オゾンガス濃度流量計12(流入オゾン量計測装置)によってその濃度(Cin)及び流量(Qin)(即ち、温水に注入するオゾンの絶対量)が計測されつつ、気液反応器11において使用済み温水に注入される。この流入オゾンガス濃度流量計12としては、例えばオゾンに特有の波長の光の吸光度を測定可能な装置と、既存の流量計とを組み合わせたものが適用可能である。 The generated ozone gas is measured for its concentration (C in ) and flow rate (Q in ) (that is, the absolute amount of ozone injected into the hot water) by the inflow ozone gas concentration flow meter 12 (inflow ozone amount measuring device). Then, it is injected into the used hot water in the gas-liquid reactor 11. As this inflow ozone gas concentration flow meter 12, for example, a combination of an apparatus capable of measuring the absorbance of light having a wavelength peculiar to ozone and an existing flow meter is applicable.
 流入オゾンガス濃度流量計12により計測されたオゾンガスの濃度及び流量は、演算制御装置50に入力される。演算制御装置50によって行われる、これらの値に基づいた送液ポンプ10の制御は、図2を参照しながら後記する。 The concentration and flow rate of ozone gas measured by the inflow ozone gas concentration flow meter 12 are input to the arithmetic and control unit 50. The control of the liquid feeding pump 10 based on these values performed by the arithmetic and control unit 50 will be described later with reference to FIG.
 気液反応器11において温水にオゾンガスが注入されると、温水に含まれる香り成分(有機物)と注入されたオゾン(オゾンガス)とが接触することになる。そうすると、オゾンに接触した香り成分は、オゾンの酸化力によって分解されることになる。分解された香り成分は、最終的には二酸化炭素となる。また、温水に含まれることになったオゾンは、自己分解によっても分解されて酸素に変化することになる。 When ozone gas is injected into the hot water in the gas-liquid reactor 11, the scent component (organic substance) contained in the hot water comes into contact with the injected ozone (ozone gas). If it does so, the fragrance component which contacted ozone will be decomposed | disassembled by the oxidizing power of ozone. The decomposed scent component eventually becomes carbon dioxide. In addition, the ozone that has been contained in the hot water is also decomposed by autolysis and changes to oxygen.
 気液反応器11においてオゾンガスが注入された後、オゾンを含有することとなった温水は、気液分離器14に供給される。そして、気液分離器14では、香り成分の分解やオゾンの自己分解に伴って発生した二酸化炭素や酸素等の気体と、香り成分を含まない温水とに分離される。また、ここで分離される気体には、未反応のオゾンガスも含まれる。そして、香り成分を含まない温水は、ヒータ18によって例えば80℃~90℃程度にまで加熱された後、再び飲料製造ライン30に供給される。 After the ozone gas is injected in the gas-liquid reactor 11, the hot water that contains ozone is supplied to the gas-liquid separator 14. And in the gas-liquid separator 14, it isolate | separates into gas, such as a carbon dioxide and oxygen which generate | occur | produced with decomposition | disassembly of a fragrance component or ozone self-decomposition, and warm water which does not contain a fragrance component. Moreover, unreacted ozone gas is also contained in the gas isolate | separated here. The hot water not containing the scent component is heated to, for example, about 80 ° C. to 90 ° C. by the heater 18 and then supplied to the beverage production line 30 again.
 一方で、気液分離器14において分離された気体については、ミストセパレータ15によって、オゾンガスの濃度測定(後記する)のために、主として水蒸気が除去される。そして、主として水蒸気が除去された後の気体は、流出オゾンガス濃度流量計16(流出オゾン量計測装置)によってその濃度(Cout)及び流量(Qout)(即ち、消費されたオゾンの絶対量)が計測されつつ、オゾンガス分解触媒17に供給される。この流出オゾンガス濃度流量計16としては、前記の流入オゾンガス濃度流量計12と同様のものが適用可能である。 On the other hand, with respect to the gas separated in the gas-liquid separator 14, the water vapor is mainly removed by the mist separator 15 in order to measure the concentration of ozone gas (described later). The gas after the water vapor is mainly removed is the concentration (C out ) and flow rate (Q out ) (that is, the absolute amount of ozone consumed) by the outflow ozone gas concentration flow meter 16 (outflow ozone amount measuring device). Is supplied to the ozone gas decomposition catalyst 17 while being measured. As the outflow ozone gas concentration flow meter 16, the same one as the inflow ozone gas concentration flow meter 12 can be applied.
 流出オゾンガス濃度流量計16により計測されたオゾンガスの濃度及び流量は、演算制御装置50に入力される。演算制御装置50によって行われる、これらの値に基づいた送液ポンプ10の制御は、図2を参照しながら後記する。 The concentration and flow rate of ozone gas measured by the outflow ozone gas concentration flow meter 16 are input to the arithmetic and control unit 50. The control of the liquid feeding pump 10 based on these values performed by the arithmetic and control unit 50 will be described later with reference to FIG.
 そして、オゾンガス分解触媒17に供給された気体のうち、オゾンガスは分解されて酸素に変化し、生成した酸素は、他の気体(二酸化炭素や自己分解により生じた酸素等)とともに系外に排出される。 Of the gases supplied to the ozone gas decomposition catalyst 17, the ozone gas is decomposed into oxygen, and the generated oxygen is discharged out of the system together with other gases (carbon dioxide, oxygen generated by self-decomposition, etc.). The
 図2は、第一実施形態の洗浄システム100において行われる制御フローである。この制御フローは、特に断らない限り、図1に示した演算制御装置50(演算装置)によって行われる。 FIG. 2 is a control flow performed in the cleaning system 100 of the first embodiment. This control flow is performed by the arithmetic control device 50 (arithmetic device) shown in FIG. 1 unless otherwise specified.
 演算制御装置50は、送液ポンプ10の駆動を開始させることで、飲料製造ライン30の洗浄を開始させる(ステップS101)。併せて、演算制御装置50は、オゾン発生機13を駆動させてオゾンを発生させ、気液反応器11において、使用済温水へのオゾンガスの注入を開始する(ステップS102)。これにより、使用済温水に含まれる香り成分の酸化分解が開始される。そして、演算制御装置50は、流入オゾンガス濃度流量計12により計測されるオゾンガスの濃度(Cin)及び流量(Qin)が一定になるように、演算制御装置50はオゾン発生機13を駆動させている。 The arithmetic and control unit 50 starts cleaning the beverage production line 30 by starting driving of the liquid feeding pump 10 (step S101). At the same time, the arithmetic and control unit 50 drives the ozone generator 13 to generate ozone, and starts injection of ozone gas into the used hot water in the gas-liquid reactor 11 (step S102). Thereby, the oxidative decomposition of the scent component contained in the used hot water is started. Then, the arithmetic and control unit 50 drives the ozone generator 13 so that the ozone gas concentration (C in ) and the flow rate (Q in ) measured by the inflow ozone gas concentration flow meter 12 are constant. ing.
 オゾンガスの注入を開始してから所定時間(例えば数分程度)が経過後、演算制御装置50は、流出オゾンガス濃度流量計16によって、排出されるオゾンガスの濃度(Cout)及び流量(Qout)を計測する(ステップS103)。計測されたこれらの値は、演算制御装置50に記録される。そして、計測開始後、予め設定された設定時間(例えば数十分程度)が経過するまで、排出されるオゾンガスの濃度及び流量の計測及び記録が継続される(ステップS104のNo方向)。 After a predetermined time (for example, about several minutes) has elapsed since the start of ozone gas injection, the arithmetic and control unit 50 uses the outflow ozone gas concentration flow meter 16 to discharge the ozone gas concentration (C out ) and flow rate (Q out ). Is measured (step S103). These measured values are recorded in the arithmetic and control unit 50. Then, after the measurement starts, measurement and recording of the concentration and flow rate of the discharged ozone gas are continued until a preset time (for example, about several tens of minutes) elapses (No direction in step S104).
 計測開始後、予め設定された設定時間が経過すると(ステップS104のYes方向)、演算制御装置50は、以下の式(1)を用い、記録した各時刻におけるオゾンガスの消費率λを算出する(ステップS105)。また、演算制御装置50は、算出された消費率λと以下の式(2)とを用いて、消費率λの時間変化率λ’(時間あたりの変化率λ’)を算出する(ステップS105)。 When a preset set time has elapsed after the start of measurement (Yes direction in step S104), the arithmetic and control unit 50 calculates the consumption rate λ of ozone gas at each recorded time using the following equation (1) ( Step S105). Further, the arithmetic and control unit 50 calculates the time change rate λ ′ (change rate λ ′ per time) of the consumption rate λ using the calculated consumption rate λ and the following equation (2) (step S105). ).
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Cin及びQinは、それぞれ、流入オゾンガス濃度流量計12により計測されるオゾンガスの濃度及び流量を表し、Cout及び流量Qoutは、それぞれ、流出オゾンガス濃度流量計16により計測されるオゾンガスの濃度及び流量を表す。
Figure JPOXMLDOC01-appb-M000001
In Expression (1), C in and Q in represent the concentration and flow rate of ozone gas measured by the inflow ozone gas concentration flow meter 12, respectively, and C out and flow rate Q out respectively represent the outflow ozone gas concentration flow meter 16. Represents the concentration and flow rate of ozone gas to be measured.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで算出される時間変化率λ’は、オゾン消費率λの時間変化を表すものである。即ち、洗浄開始から時間がそれほど経っていない初期段階では、酸化分解される香り成分の量が多いため、オゾン消費率λも大きくなる。一方で、洗浄開始からある程度時間が経って酸化分解される香り成分が殆ど存在しない場合には、オゾン消費率λは小さくなる。ただし、前記のようにオゾンは温水中で自己分解するため、仮に香り成分が全て酸化分解されて香り成分が存在しなくなったとしても、オゾン消費率λはゼロにならない可能性がある。一方で、温水の温度は一定又は略一定であるから、オゾンの自己分解も一定又は略一定の速度で生じていると考えられる。そこで、洗浄システム100では、オゾン消費率λの変化(即ち時間変化率λ’)に着目して、当該変化が小さくなった、即ち、一定又は略一定の速度で消費されるオゾンの自己分解以外にオゾンの消費が生じておらず、酸化分解の対象となる香り成分がほとんど存在しないと判断されるときに、洗浄の終期が到達したと判断されている。 The time change rate λ ′ calculated here represents the time change of the ozone consumption rate λ. That is, at the initial stage where the time has not passed so much since the start of cleaning, the amount of scent components that are oxidatively decomposed is large, so the ozone consumption rate λ also increases. On the other hand, when there is almost no scent component that is oxidatively decomposed after a certain time from the start of cleaning, the ozone consumption rate λ is small. However, since ozone self-decomposes in warm water as described above, even if all the scent components are oxidatively decomposed and no scent components exist, the ozone consumption rate λ may not become zero. On the other hand, since the temperature of the hot water is constant or substantially constant, it is considered that the self-decomposition of ozone occurs at a constant or substantially constant rate. Therefore, in the cleaning system 100, paying attention to the change in the ozone consumption rate λ (that is, the time change rate λ ′), the change becomes smaller, that is, other than self-decomposition of ozone consumed at a constant or substantially constant rate. When it is determined that there is no consumption of ozone and there is almost no scent component to be oxidatively decomposed, it is determined that the end of the cleaning has been reached.
 前記のステップS105における算出の結果、演算制御装置50は、算出された時間変化率λ’が、予め定められた終点変化率λ1以下であるか否かを判断する(ステップS106)。算出された時間変化率λ’が終点変化率λ1以下である場合(ステップS106のYes方向)、オゾンガスの消費量は略一定であるといえる。そして、オゾンガスの消費量が略一定のときには、消費されるオゾンガスの大部分は、香り成分の酸化分解によるものではなく、自己分解に基づくものであると考えられる。そこで、このような場合には、分解される香り成分が存在しないか又はその存在量が十分に少なく、これ以上洗浄する必要が無いと考えられるため、演算制御装置50は飲料製造ライン30の洗浄を終了する(ステップS107)。即ち、演算制御装置50は、オゾンガスの温水への注入を停止するとともに、送液ポンプ10の駆動を停止する。 As a result of the calculation in step S105, the arithmetic and control unit 50 determines whether or not the calculated time change rate λ ′ is equal to or less than a predetermined end point change rate λ1 (step S106). When the calculated time change rate λ ′ is equal to or less than the end point change rate λ1 (Yes in step S106), it can be said that the consumption amount of ozone gas is substantially constant. And when consumption of ozone gas is substantially constant, it is thought that most of the ozone gas consumed is not based on oxidative decomposition of scent components but based on self-decomposition. Therefore, in such a case, it is considered that there is no fragrance component to be decomposed or the amount of the fragrance component is sufficiently small and there is no need to wash any more. Therefore, the arithmetic and control unit 50 cleans the beverage production line 30. Is finished (step S107). That is, the arithmetic and control unit 50 stops the injection of the ozone gas into the hot water and stops the driving of the liquid feeding pump 10.
 一方で、算出された時間変化率λ’が終点変化率λ1より大きい場合(ステップS106のNo方向)、オゾンガスの消費量の変動が依然として大きいことになる。このとき、当該消費は、オゾンガスの自己分解に加えて、温水中の香り成分の分解によって生じているものであると考えられる。従って、このような場合には、分解される香り成分が依然として多く存在しており、飲料製造ライン30をさらに洗浄する必要があると考えられる。そこで、演算制御装置50は飲料製造ライン30の洗浄を継続しながら、引き続き、排出されるオゾンガスの濃度及び流量を計測する(ステップS103)。 On the other hand, when the calculated time change rate λ ′ is larger than the end point change rate λ1 (No direction in step S106), the fluctuation of the consumption amount of ozone gas is still large. At this time, the consumption is considered to be caused by the decomposition of the scent component in the warm water in addition to the self-decomposition of ozone gas. Therefore, in such a case, there are still many fragrant components to be decomposed, and it is considered that the beverage production line 30 needs to be further washed. Therefore, the arithmetic and control unit 50 continuously measures the concentration and flow rate of the discharged ozone gas while continuing to clean the beverage production line 30 (step S103).
 以上のように、洗浄システム100において行われる制御では、オゾンガスの消費率λについての時間変化率λ’に基づいて洗浄の終期が判断されている。そのため、オゾンガスの自己分解を考慮して洗浄の終期が判断されることになる。従って、環境負荷の低減を図れるものの水中で分解され易いオゾンガスを使用しつつ、洗浄の終期を正確に把握することが可能となる。また、オゾンガスは100℃程度以下でも安定に存在する。そのため、例えば80℃~90℃程度の温水に含まれる香り成分を、熱に対して比較的不安定な活性炭や膜を使用した場合と比べて、安定的かつ効果的に除去することができる。 As described above, in the control performed in the cleaning system 100, the end of cleaning is determined based on the time change rate λ ′ for the ozone gas consumption rate λ. Therefore, the end of cleaning is determined in consideration of the self-decomposition of ozone gas. Therefore, although the environmental load can be reduced, it is possible to accurately grasp the end of the cleaning while using ozone gas that is easily decomposed in water. Moreover, ozone gas exists stably even at about 100 degrees C or less. Therefore, for example, the scent component contained in hot water of about 80 ° C. to 90 ° C. can be removed stably and effectively as compared with the case where activated carbon or a membrane that is relatively unstable to heat is used.
[2.第二実施形態]
 図3は、第二実施形態の洗浄システム200の系統図である。図3において、前記の図1に示す洗浄システム100と同じものについては同じ符号を付すものとし、その詳細な説明は省略する。
[2. Second embodiment]
FIG. 3 is a system diagram of the cleaning system 200 according to the second embodiment. In FIG. 3, the same components as those in the cleaning system 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図3に示す洗浄システム200では、前記の洗浄システム100とは異なり、送液ポンプ10と気液反応器11との間に、飲料製造ライン30から排出された使用済温水の流量を計測する流量計19が備えられている。そして、演算制御装置50(洗浄液接触量制御装置)は、前記のようにオゾンガスの濃度等に基づいて送液ポンプ10を制御するほか、流量計19(洗浄液接触量制御装置)により計測された温水の流量に基づいても送液ポンプ10(洗浄液接触量制御装置)を制御するようになっている。 In the cleaning system 200 shown in FIG. 3, unlike the cleaning system 100 described above, a flow rate for measuring the flow rate of used hot water discharged from the beverage production line 30 between the liquid feed pump 10 and the gas-liquid reactor 11. A total of 19 are provided. The arithmetic control device 50 (cleaning liquid contact amount control device) controls the liquid feed pump 10 based on the ozone gas concentration and the like as described above, and hot water measured by the flow meter 19 (cleaning liquid contact amount control device). The liquid feed pump 10 (cleaning liquid contact amount control device) is also controlled based on the flow rate of the liquid.
 具体的には、オゾンガスの濃度等に基づいて香り成分の溶出量が多いと判断された場合には、飲料製造ライン30に残存する香り成分も多いと考えられる。そこで、このような場合には、演算制御部50は、飲料製造ライン30を循環する温水の水量を増やすために、流量計19を用いた送液ポンプ10のフィードバック制御を行うようになっている。即ち、分解される香り成分が多く存在する初期段階には最大流量で洗浄が行われ、飲料製造ライン30への温水の循環回数が多くなるようになっている。一方で、洗浄がある程度進み、香り成分の溶出量が少なくなってきた場合には、送液ポンプ10の出力を小さくして洗浄が行われる。そして、洗浄終期には、最小流量で洗浄が行われる。 Specifically, if it is determined that the amount of scent components eluted is large based on the concentration of ozone gas or the like, it is considered that there are also many scent components remaining in the beverage production line 30. Therefore, in such a case, the calculation control unit 50 performs feedback control of the liquid feeding pump 10 using the flow meter 19 in order to increase the amount of hot water circulating through the beverage production line 30. . That is, at the initial stage where there are many fragrance components to be decomposed, washing is performed at the maximum flow rate, and the number of times hot water is circulated to the beverage production line 30 is increased. On the other hand, when the cleaning proceeds to some extent and the amount of the scent component eluted becomes small, the output of the liquid feed pump 10 is reduced to perform the cleaning. At the end of cleaning, cleaning is performed at the minimum flow rate.
 ここで、洗浄システム200において、洗浄の進行に伴って温水の流量を小さくする理由について説明する。ゴムパッキン等の設備に吸着している香り成分は、洗浄に伴って温水に溶出することで、徐々にその吸着量が低下する。このとき、香り成分の温水への溶出流束は「拡散流束は濃度勾配に比例する」というフィックの法則に従うと考えられる。従って、香り成分の吸着量が多い洗浄初期には、溶出側(ゴムパッキン等)の濃度が高いため、拡散側(洗浄に用いる温水)との間の濃度勾配が大きく、溶出が速やかに進行すると考えられる。そのため、このようなときには、できるだけ多くの温水を循環させることで溶出を促すため、最大流量で温水が循環される。 Here, the reason for reducing the flow rate of the hot water as the cleaning progresses in the cleaning system 200 will be described. The amount of adsorption of the scent component adsorbed on equipment such as rubber packing gradually decreases by leaching into warm water as it is washed. At this time, it is considered that the elution flux of the scent component to the warm water follows Fick's law that "the diffusion flux is proportional to the concentration gradient". Therefore, at the initial stage of washing with a large amount of adsorbed scent components, the concentration on the elution side (rubber packing, etc.) is high, so the concentration gradient between the diffusion side (hot water used for washing) is large and elution proceeds quickly. Conceivable. Therefore, in such a case, the hot water is circulated at the maximum flow rate in order to promote elution by circulating as much hot water as possible.
 一方で、洗浄終点付近になると、溶出側の濃度が低くなる。そのため、大きな溶出流束を確保するためには、拡散側の濃度を十分に低くすることが好ましい。具体的には、洗浄終点付近における拡散側の濃度は、洗浄初期における拡散側の濃度よりも、低くすることが好ましい。ここで、温水に含まれる香り成分の酸化分解率は、温水の単位流量あたりのオゾンガス注入量と相関関係にある。即ち、オゾン注入量を多くするほど、即ちオゾンガスの注入量が前記のように一定の場合には温水の流量が少ないほど、オゾンの接触による香り成分の酸化分解率が高くなることになる。そこで、洗浄終点付近では、前記のように処理流量を低下させることで、温水中の香り成分の酸化分解を効率化させている。これにより、温水中の香り成分の濃度を十分に低くすることができる。そのため、ゴムパッキン等の設備での香り成分の吸着量が少なくなった洗浄終点付近においても、温水への香り成分の大きな溶出流束が確保され、効率的な洗浄が可能となる。 On the other hand, the concentration on the elution side decreases near the end point of washing. Therefore, in order to ensure a large elution flux, it is preferable to sufficiently reduce the concentration on the diffusion side. Specifically, the concentration on the diffusion side in the vicinity of the end point of cleaning is preferably lower than the concentration on the diffusion side in the initial stage of cleaning. Here, the oxidative decomposition rate of the scent component contained in the hot water has a correlation with the ozone gas injection amount per unit flow rate of the hot water. That is, as the ozone injection amount is increased, that is, when the ozone gas injection amount is constant as described above, the lower the flow rate of hot water, the higher the oxidative decomposition rate of the scent component due to contact with ozone. Therefore, in the vicinity of the end point of cleaning, the oxidative decomposition of the scent component in the warm water is made efficient by reducing the treatment flow rate as described above. Thereby, the density | concentration of the scent component in warm water can be made low enough. Therefore, a large elution flux of the scent component to the hot water is ensured even in the vicinity of the cleaning end point where the amount of the scent component adsorbed by equipment such as rubber packing is reduced, and efficient cleaning becomes possible.
 図4は、第二実施形態の洗浄システム200において行われる制御フローである。図4において、前記の図2に示すフローと同じステップについては同じステップ番号を付すものとし、その詳細な説明は省略する。図4に示す制御フローは、特に断らない限り、図3に示した演算制御装置50によって行われる FIG. 4 is a control flow performed in the cleaning system 200 of the second embodiment. In FIG. 4, the same steps as those in the flow shown in FIG. 2 are given the same step numbers, and detailed descriptions thereof are omitted. The control flow shown in FIG. 4 is performed by the arithmetic and control unit 50 shown in FIG. 3 unless otherwise specified.
 演算制御装置50は、送液ポンプ10を最大出力で駆動開始させることで、飲料製造ライン30の洗浄を開始させる(ステップS201)。送液ポンプ10の出力が最大となっていることで、できるだけ多くの流量の温水によって飲料製造ライン30の洗浄が行われることになる。そして、前記のステップS102~S104と同様のステップを経て、消費率λの時間変化率λ’が算出される(ステップS105)。 The arithmetic and control unit 50 starts cleaning the beverage production line 30 by starting driving the liquid feed pump 10 with the maximum output (step S201). Since the output of the liquid feed pump 10 is maximized, the beverage production line 30 is washed with as much hot water as possible. Then, the time change rate λ ′ of the consumption rate λ is calculated through the same steps as steps S102 to S104 (step S105).
 そして、演算制御装置50は、算出された時間変化率λ’が予め設定されたポンプ出力変更変化率λ2以下であるか否かを判断する(ステップS202)。ここでいう「ポンプ出力変更変化率λ2」とは、図2のステップS106において説明した「終点変化率λ1」よりも大きな値であり、ポンプ出力を変更する閾値となる値である。即ち、前記のように、洗浄の終期が近づいたときには温水の流量を小さくすることで、香り成分の効果的な酸化分解が可能となる。そこで、洗浄システム200では、「終点変化率λ1」ほどの小さな消費率λの変化ではないものの、消費率λの変化がある程度小さくなって洗浄の終点が近いと判断される場合には、流量を絞ることで、香り成分の効果的な酸化分解が図られている。 Then, the arithmetic and control unit 50 determines whether or not the calculated time change rate λ ′ is equal to or less than a preset pump output change rate λ2 (step S202). The “pump output change rate λ2” here is a value larger than the “end point change rate λ1” described in step S106 in FIG. 2, and is a threshold value for changing the pump output. That is, as described above, when the end of cleaning is approaching, by reducing the flow rate of warm water, it is possible to effectively oxidize and decompose scent components. Therefore, in the cleaning system 200, although the change in the consumption rate λ is not as small as the “endpoint change rate λ1”, if the change in the consumption rate λ is small to some extent and it is determined that the end point of cleaning is close, the flow rate is reduced. By squeezing, effective oxidative decomposition of the scent component is achieved.
 判断の結果、算出された時間変化率λ’がポンプ出力変更変化率λ2以下(かつ終点変化率λ1より大きい)である場合(ステップS202のYes方向)、温水には分解すべき香り成分の量が少なくなってきていると考えられる。そこで、この場合には、送液ポンプ10の出力を最小に変更することで、温水の循環量(即ち温水の流量)が少なくされる(ステップS203)。これにより、香り成分の効果的な分解除去が図られ、洗浄の終期を早めることができる。 As a result of the determination, when the calculated time change rate λ ′ is equal to or less than the pump output change rate λ2 (and greater than the end point change rate λ1) (Yes direction in step S202), the amount of the scent component to be decomposed into the hot water It is thought that there is less. Therefore, in this case, the circulation amount of the hot water (that is, the flow rate of the hot water) is reduced by changing the output of the liquid feeding pump 10 to the minimum (step S203). Thereby, an effective decomposition | disassembly removal of a scent component is achieved and the last stage of washing | cleaning can be advanced.
 一方で、算出された時間変化率λ’がポンプ出力変更変化率λ2より大きい場合(ステップS202のNo方向)、オゾンガスの消費量は依然として大きく変動していることになる。従って、引き続き、排出されるオゾンガスの濃度及び流量が計測される(ステップS103)。 On the other hand, when the calculated time change rate λ ′ is larger than the pump output change rate λ2 (No direction in step S202), the consumption amount of ozone gas still fluctuates greatly. Therefore, the concentration and flow rate of the discharged ozone gas are continuously measured (step S103).
 前記のステップS203においてポンプ出力が最小に変更された後、演算制御装置50は、前記のステップS102~S107と同様にして制御を行って、洗浄が終了される。 After the pump output is changed to the minimum in step S203, the arithmetic and control unit 50 performs control in the same manner as in steps S102 to S107, and the cleaning is completed.
 以上のように、洗浄システム200において行われる制御では、オゾンガスの消費率λの時間変化率λ’に基づいて洗浄の終期が判断されるとともに、併せて、送液ポンプ10の出力も変更されている。このようにすることで、洗浄の終期をより正確に判断して、洗浄をより早く終了させることができる。 As described above, in the control performed in the cleaning system 200, the end of cleaning is determined based on the time change rate λ ′ of the ozone gas consumption rate λ, and the output of the liquid feed pump 10 is also changed. Yes. By doing in this way, the end of washing | cleaning can be judged more correctly and washing | cleaning can be completed earlier.
[3.変形例]
 以上、本実施形態を説明したが、本発明は前記の例に限られず、本発明の要旨を逸脱しない範囲で適宜任意の変更を加えて本発明を実施することができる。
[3. Modified example]
Although the present embodiment has been described above, the present invention is not limited to the above-described example, and the present invention can be implemented with appropriate modifications as appropriate without departing from the gist of the present invention.
 例えば、前記の例では、CIP洗浄の後に洗浄システム100,200による洗浄を行ったが、洗浄システム100,200は、CIP洗浄用として適用してもよい。この場合、洗浄液としては、前記の温水のほか、例えば次亜塩素酸等のアルカリを使用することができる。アルカリを使用する場合、必要に応じて、中和剤等を併用することができる。そして、例えば、洗浄に使用する洗浄液は、前記の例では80℃~90℃程度の温水を使用したが、常温の水等、どのような温度や種類の水であってもよい。 For example, in the above example, cleaning by the cleaning systems 100 and 200 is performed after the CIP cleaning, but the cleaning systems 100 and 200 may be applied for CIP cleaning. In this case, an alkali such as hypochlorous acid can be used as the cleaning liquid in addition to the warm water. When using an alkali, a neutralizing agent etc. can be used together as needed. For example, as the cleaning liquid used for cleaning, warm water of about 80 ° C. to 90 ° C. is used in the above example, but it may be any temperature and type of water such as room temperature water.
 また、前記の例では、気液反応器11において注入されるオゾンガスの濃度や流量は一定にしたが、例えば、洗浄初期には多くのオゾンガスを流入し、徐々に注入するオゾンガスの注入量を減らす等、オゾンガスの注入量を段階的に変化させるようにしてもよい。また、温水を循環させ始めた後すぐにオゾンガスを注入し始めてもよいし、温水を循環させ始めた後、暫く時間をおいてからオゾンガスを注入し始めてもよい。 In the above example, the concentration and flow rate of ozone gas injected into the gas-liquid reactor 11 are constant. For example, a large amount of ozone gas is introduced at the initial stage of cleaning, and the amount of ozone gas injected gradually is reduced. For example, the injection amount of ozone gas may be changed stepwise. In addition, ozone gas may be injected immediately after the hot water is circulated, or ozone gas may be injected after a while after the hot water is circulated.
 さらに、前記の図4に示した例では、送液ポンプ10の出力を最大と最小との二つのみに変更したが、時間変化率λ’が小さくなるにつれて当該出力が段階的に小さくなるようにしてもよい。即ち、例えば、洗浄の初期段階には前記のように送液ポンプ10の出力が最大になっているが、その後、時間変化率λ’が予め設定した閾値を下回ったときに出力を少し小さくして、さらに、時間変化率λ’が予め設定した別の閾値を下回ったときに出力をさらに少し小さくして、そしてこれらの適宜繰り返し、最終的に送液ポンプ10の出力が前記のように最小になるようにしてもよい。また、送液ポンプ10の出力は、時間変化率λ’が小さくなるにつれて小さくなることが好ましいものの、洗浄開始時の送液ポンプ10の出力は最大でなくてもよく、洗浄の終期における送液ポンプ10の出力は最小でなくてもよい。 Further, in the example shown in FIG. 4, the output of the liquid delivery pump 10 is changed to only two of the maximum and the minimum, but the output decreases stepwise as the time change rate λ ′ decreases. It may be. That is, for example, at the initial stage of cleaning, the output of the liquid feeding pump 10 is maximized as described above, but when the time change rate λ ′ falls below a preset threshold value, the output is slightly reduced. Further, when the time change rate λ ′ falls below another preset threshold value, the output is further reduced a little, and these are repeated as appropriate, and finally the output of the liquid feed pump 10 is minimized as described above. It may be made to become. In addition, although the output of the liquid feed pump 10 is preferably reduced as the time change rate λ ′ decreases, the output of the liquid feed pump 10 at the start of the cleaning may not be the maximum, and the liquid feed at the end of the cleaning is performed. The output of the pump 10 may not be the minimum.
 また、例えば、前記の例では、飲料製造ライン30に対して温水を循環させるようにしたが、温水は循環させずに使い捨てであってもよい。 For example, in the above example, warm water is circulated through the beverage production line 30, but the warm water may be disposable without being circulated.
 さらに、例えば、前記の例では、有機物として香り成分を例示したが、例えば有機汚れ等の香り成分以外のものであってもよい。オゾンは強い酸化力を有するため、有機汚れ等であっても効果的に酸化分解することができる。 Further, for example, in the above example, the scent component is exemplified as the organic substance, but it may be other than the scent component such as organic dirt. Since ozone has a strong oxidizing power, it can be effectively oxidatively decomposed even if it is organic soil.
 また、例えば、前記の例では、気液分離器14において分離されたオゾンガスはオゾンガス分解触媒17によって分解されているが、このオゾンガスを分解せずに気液反応器11に戻すようにしてもよい。 Further, for example, in the above example, the ozone gas separated in the gas-liquid separator 14 is decomposed by the ozone gas decomposition catalyst 17, but the ozone gas may be returned to the gas-liquid reactor 11 without being decomposed. .
 さらに、例えば、オゾンガスに代えて、又はオゾンガスとともに、温水に対してオゾン水を注入するようにしてもよい。 Furthermore, for example, ozone water may be injected into warm water instead of ozone gas or together with ozone gas.
10 送液ポンプ(洗浄液接触装置、洗浄液接触量制御装置)
11 気液反応器
12 流入オゾンガス濃度流量計(流入オゾン量計測装置)
13 オゾン発生機(オゾン注入装置)
14 気液分離器
16 流出オゾンガス濃度流量計(流出オゾン量計測装置)
19 流量計(洗浄液接触量制御装置)
30 飲料製造ライン
50 演算制御装置(演算装置、洗浄液接触量制御装置)
100 洗浄システム
200 洗浄システム
10 Liquid feed pump (cleaning liquid contact device, cleaning liquid contact amount control device)
11 Gas-liquid reactor 12 Inflow ozone gas concentration flow meter (Inflow ozone amount measuring device)
13 Ozone generator (ozone injection device)
14 Gas-liquid separator 16 Outflow ozone gas concentration flow meter (Outflow ozone amount measuring device)
19 Flowmeter (Cleaning liquid contact amount control device)
30 Beverage production line 50 Arithmetic control device (arithmetic device, cleaning liquid contact amount control device)
100 Cleaning system 200 Cleaning system

Claims (5)

  1.  有機物が吸着した被洗浄物に洗浄液を接触させることで前記有機物を前記洗浄液に溶出させて、前記被洗浄物の洗浄を行う洗浄システムであって、
     前記被洗浄物に前記洗浄液を接触させて前記有機物を前記洗浄液に溶出させる洗浄液接触装置と、
     前記被洗浄物に接触させる洗浄液に対し、前記被洗浄物から溶出した有機物を酸化分解させるオゾンを注入するオゾン注入装置と、
     当該オゾン注入装置によって注入されるオゾンの量を計測する流入オゾン量計測装置と、
     前記オゾン注入装置によって注入されたオゾンによって前記有機物が酸化分解された後に残存するオゾンの量を計測する流出オゾン量計測装置と、
     前記流入オゾン量計測装置により計測されたオゾンの量と、前記流出オゾン量計測装置により計測されたオゾンの量とを用いて消費されたオゾンの量を算出するとともに、当該算出されたオゾンの消費量に基づいてオゾンの消費量の時間あたりの変化率を算出することで前記被洗浄物の洗浄の終期を判断する演算装置と、を備えることを特徴とする、洗浄システム。
    A cleaning system for cleaning the object to be cleaned by eluting the organic substance into the cleaning liquid by bringing the cleaning liquid into contact with the object to be cleaned adsorbed with organic matter,
    A cleaning liquid contact device for bringing the cleaning liquid into contact with the object to be cleaned and eluting the organic matter into the cleaning liquid;
    An ozone injection device for injecting ozone for oxidizing and decomposing organic substances eluted from the object to be cleaned with respect to the cleaning liquid brought into contact with the object to be cleaned;
    An inflow ozone amount measuring device for measuring the amount of ozone injected by the ozone injecting device;
    An outflow ozone amount measuring device that measures the amount of ozone remaining after the organic matter is oxidatively decomposed by ozone injected by the ozone injection device;
    The amount of ozone consumed is calculated using the amount of ozone measured by the inflow ozone amount measuring device and the amount of ozone measured by the outflow ozone amount measuring device, and the calculated consumption of ozone. A cleaning system comprising: an arithmetic unit that determines the end of cleaning of the object to be cleaned by calculating a rate of change per hour of consumption of ozone based on the amount.
  2.  前記有機物は香り成分であることを特徴とする、請求項1に記載の洗浄システム。 The cleaning system according to claim 1, wherein the organic substance is a scent component.
  3.  前記オゾン注入装置によって注入されたオゾンによって有機物を酸化分解した後の洗浄液を、前記洗浄液接触装置によって再び前記被洗浄物に接触させることを特徴とする、請求項1又は2に記載の洗浄システム。 The cleaning system according to claim 1 or 2, wherein the cleaning liquid after the organic substance is oxidatively decomposed by ozone injected by the ozone injection apparatus is again brought into contact with the object to be cleaned by the cleaning liquid contact apparatus.
  4.  前記演算装置は、算出された前記時間あたりの変化率が予め定められた設定値以下になったときに前記被洗浄物の洗浄が終期に至ったと判断することを特徴とする、請求項1又は2に記載の洗浄システム。 The arithmetic unit determines that the cleaning of the object to be cleaned has reached a final stage when the calculated rate of change per time is equal to or lower than a predetermined set value. 2. The cleaning system according to 2.
  5.  前記被洗浄物に接触させる洗浄液の量を制御可能な洗浄液接触量制御装置を備え、
     前記演算装置は、算出された前記時間あたりの変化率が小さくなるにつれて前記被洗浄物に接触させる洗浄液の量が少なくなるように、前記洗浄液接触量制御装置を制御することを特徴とする、請求項1又は2に記載の洗浄システム。
    A cleaning liquid contact amount control device capable of controlling the amount of cleaning liquid brought into contact with the object to be cleaned,
    The arithmetic device controls the cleaning liquid contact amount control device so that the amount of cleaning liquid brought into contact with the object to be cleaned decreases as the calculated rate of change per time decreases. Item 3. The cleaning system according to Item 1 or 2.
PCT/JP2016/083588 2016-02-23 2016-11-11 Cleaning system WO2017145452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016031743A JP6650780B2 (en) 2016-02-23 2016-02-23 Cleaning system
JP2016-031743 2016-02-23

Publications (1)

Publication Number Publication Date
WO2017145452A1 true WO2017145452A1 (en) 2017-08-31

Family

ID=59686204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083588 WO2017145452A1 (en) 2016-02-23 2016-11-11 Cleaning system

Country Status (2)

Country Link
JP (1) JP6650780B2 (en)
WO (1) WO2017145452A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117708A (en) * 1994-10-24 1996-05-14 Hitachi Ltd Method and device for cleaning
JP2005052803A (en) * 2003-08-07 2005-03-03 Tamura Teco:Kk Method for washing inside face of production line, and device therefor
JP4919388B2 (en) * 2006-03-09 2012-04-18 国立大学法人広島大学 Cleaning apparatus and method for cleaning an object to be cleaned in a food production facility
WO2014069259A1 (en) * 2012-10-29 2014-05-08 株式会社日立製作所 Cleaning method for pipes and cleaning system for pipes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117708A (en) * 1994-10-24 1996-05-14 Hitachi Ltd Method and device for cleaning
JP2005052803A (en) * 2003-08-07 2005-03-03 Tamura Teco:Kk Method for washing inside face of production line, and device therefor
JP4919388B2 (en) * 2006-03-09 2012-04-18 国立大学法人広島大学 Cleaning apparatus and method for cleaning an object to be cleaned in a food production facility
WO2014069259A1 (en) * 2012-10-29 2014-05-08 株式会社日立製作所 Cleaning method for pipes and cleaning system for pipes

Also Published As

Publication number Publication date
JP2017148703A (en) 2017-08-31
JP6650780B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US7919059B2 (en) Vaporized hydrogen peroxide decontamination system with concentration adjustment mode
KR101001155B1 (en) Multi-stage chemical cleaning apparatus for remove high concentration of complex odor
US20170028095A1 (en) Air purifier for bringing gas into contact with plasma-treated liquid
KR102660335B1 (en) Method for producing heated ozonated water, heated ozonated water and semiconductor wafer cleaning liquid
US8066020B2 (en) Substrate cleaning apparatus and substrate cleaning method
JP2006271981A (en) Methods and apparatus for vapor phase sterilization
JP2009287823A (en) Heat pump water heater and sterilization method of hot water
TW201233635A (en) Method and system for providing ultrapure water
US20090044838A1 (en) Ozonation for elimination of bacteria for wet processing systems
WO2017145452A1 (en) Cleaning system
JP2007006956A (en) Air cleaner having bactericidal and deodorization function
JP6413088B2 (en) Air purification device
CN106166301A (en) Method for treating liquids, liquid handling device and washing machine
US20210214250A1 (en) Ozone water generation device, water treatment device, ozone water generation method, and cleaning method
JP6643648B2 (en) Plasma liquid processing method, plasma liquid processing apparatus, and oral cavity cleaning apparatus
JP5213601B2 (en) Circulating ozone water generation method and circulating ozone water production apparatus
CA2796881C (en) Method for sanitizing an electrodeionization device
KR100918758B1 (en) Progress apparatus of water treatment system used in advanced ultraviolet and oxidation, and method for progressing the same
JP2015009214A (en) Hydrogen peroxide-containing effluent treatment apparatus and treatment method
JP5581090B2 (en) Method and apparatus for treating waste liquid containing acid or base and hydrogen peroxide
JP2006281061A (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2005324121A (en) Water treatment method and water treatment apparatus
JP4704265B2 (en) Sludge treatment method
JP4907988B2 (en) Gas purification device
JP4373992B2 (en) Ozone supply device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891608

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891608

Country of ref document: EP

Kind code of ref document: A1