WO2017145199A1 - 半導体基体及び半導体装置 - Google Patents

半導体基体及び半導体装置 Download PDF

Info

Publication number
WO2017145199A1
WO2017145199A1 PCT/JP2016/001060 JP2016001060W WO2017145199A1 WO 2017145199 A1 WO2017145199 A1 WO 2017145199A1 JP 2016001060 W JP2016001060 W JP 2016001060W WO 2017145199 A1 WO2017145199 A1 WO 2017145199A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composition gradient
composition
semiconductor substrate
semiconductor
Prior art date
Application number
PCT/JP2016/001060
Other languages
English (en)
French (fr)
Inventor
洋志 鹿内
憲 佐藤
勝 篠宮
慶太郎 土屋
和徳 萩本
Original Assignee
サンケン電気株式会社
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社, 信越半導体株式会社 filed Critical サンケン電気株式会社
Priority to PCT/JP2016/001060 priority Critical patent/WO2017145199A1/ja
Priority to CN201680081872.2A priority patent/CN108886000A/zh
Priority to US16/077,263 priority patent/US10586701B2/en
Priority to JP2018501400A priority patent/JP6653750B2/ja
Priority to TW106104976A priority patent/TWI699822B/zh
Publication of WO2017145199A1 publication Critical patent/WO2017145199A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Definitions

  • the present invention relates to a semiconductor substrate and a semiconductor device.
  • the nitride semiconductor layer is generally formed on an inexpensive silicon substrate or sapphire substrate.
  • the lattice constants of these substrates and the nitride semiconductor layers are greatly different, and the thermal expansion coefficients are also different. Therefore, large strain energy is generated in the nitride semiconductor layer formed by epitaxial growth on the substrate. As a result, the nitride semiconductor layer is likely to generate cracks and crystal quality.
  • GaN on Si semiconductors are provided with a composition gradient layer between each layer of a GaN multilayer buffer layer to control stress, suppress cracks, and improve crystallinity.
  • the present invention has been made in view of the above problems, and even when a composition gradient layer having a lattice constant change amount larger than 0.7% / nm is provided between each layer of the multilayer buffer layer, the crystallinity degradation or An object of the present invention is to provide a semiconductor substrate and a semiconductor device capable of suppressing an increase in cracks.
  • the present invention provides a silicon-based substrate, a first layer of a nitride-based compound semiconductor containing a first material on the silicon-based substrate, and a lattice constant greater than that of the first material.
  • a buffer layer including a layer in which a second layer of a nitride compound semiconductor including a large second material is repeatedly provided; and a channel layer of the nitride compound semiconductor including the second material on the buffer layer.
  • the buffer layer at least one of the first layer and the second layer has a composition ratio of the second material gradually increasing upward.
  • the composition ratio of the first material gradually decreases, and the first composition gradient layer of a nitride-based compound semiconductor is provided, and at least one of the first material and the first layer on the second layer is The composition ratio of the first material gradually increases upward.
  • the composition ratio of the second material gradually decreases upward, and has a second composition gradient layer of a nitride-based compound semiconductor, and the first composition gradient layer is thicker than the second composition gradient layer.
  • a semiconductor substrate is provided.
  • the first composition gradient layer thicker than the second composition gradient layer, compressive stress can be applied to the channel layer provided on the buffer layer, thereby reducing crystal defects in the channel layer. Even when a composition gradient layer having a lattice constant variation greater than 0.7% / nm is provided, it is possible to suppress the deterioration of crystallinity and the lengthening of cracks.
  • the average composition change rate with respect to the thickness of the first composition gradient layer is preferably smaller than the average composition change rate with respect to the thickness of the second composition gradient layer.
  • the average composition change rate of the first composition gradient layer and the average composition change rate of the second composition gradient layer have such a relationship, the crystallinity deterioration and cracks are effectively lengthened. Can be suppressed.
  • first composition gradient layer and the second composition gradient layer are provided between all of them, it is possible to reliably suppress the deterioration of crystallinity and the lengthening of cracks.
  • the uppermost layer of the buffer layer is provided with the first composition gradient layer, and the first layer is provided under the first composition gradient layer.
  • the upper portion of the buffer layer By configuring the upper portion of the buffer layer with such a configuration, it is possible to suppress the deterioration of crystallinity and the lengthening of cracks more effectively.
  • the first material and the second material can be selected from the group consisting of B, Al, Ga, and In.
  • the above materials can be suitably used as the first material and the second material.
  • the first layer can be an AlN layer and the second layer can be a GaN layer.
  • the first layer and the second layer constituting the buffer layer those described above can be particularly preferably used.
  • the average composition change rate of the first material of the first and second composition gradient layers is greater than 29% / nm and not more than 75% / nm.
  • the first and second composition gradient layers can be made thinner.
  • the layer deposition time can be shortened, thereby reducing the production time.
  • the average composition change rate of the first material of the first and second composition gradient layers is 75% / nm or less, it is possible to maintain the effect of suppressing the deterioration of crystallinity and the lengthening of cracks.
  • the present invention provides a semiconductor device characterized in that an electrode is provided on the semiconductor substrate.
  • Such a semiconductor device can be a semiconductor device in which the deterioration of crystallinity and cracks in the channel layer are suppressed, so that the yield and characteristics of the semiconductor device can be improved.
  • the semiconductor substrate of the present invention even when a composition gradient layer having a lattice constant variation greater than 0.7% / nm is provided between each layer of the multilayer buffer layer, the crystallinity deterioration and cracks are long. It can be suppressed. Therefore, since the growth time can be shortened, the cost can be reduced.
  • the semiconductor device of the present invention can be a semiconductor device in which the deterioration of crystallinity and cracks in the channel layer are suppressed, the yield and characteristics of the semiconductor device can be improved.
  • FIG. 10 is a schematic cross-sectional view of a semiconductor substrate of Experimental Example 2.
  • FIG. 10 is a schematic cross-sectional view of a semiconductor substrate of Experimental Example 3.
  • FIG. 10 is a schematic cross-sectional view of a semiconductor substrate of Experimental Example 3.
  • a buffer layer in which nitride semiconductor layers having different compositions are stacked is disposed between a substrate and a functional layer made of a nitride semiconductor, it is conventionally performed between each layer of the multilayer buffer layer. It has also been attempted to provide a composition gradient layer to control stress, suppress cracking, and improve crystallinity.
  • the composition gradient layer is provided between the layers, there is a problem that the growth time is extended as compared with the case where the composition gradient layer is not provided. Therefore, in order to shorten the growth time of the composition gradient layer as much as possible, the present inventors examined increasing the lattice constant change amount of the composition gradient layer to make the composition gradient layer thinner.
  • the semiconductor substrate 100 is provided on the substrate 112 made of single crystal silicon, the buffer layer 113 provided on the substrate 112, the channel layer 126 made of GaN provided on the buffer layer 113, and the channel layer 126. And a barrier layer 127 made of AlGaN (see FIG. 5A).
  • the buffer layer 113 has a structure in which an AlN layer 114 and a GaN layer 115 are repeatedly stacked (see FIG. 5B).
  • the AlN layer 114 corresponds to the first layer described above
  • the GaN layer 115 corresponds to the second layer described above.
  • the semiconductor substrate 101 of Experimental Example 2 has substantially the same configuration as the semiconductor substrate 100 of Experimental Example 1.
  • the first composition gradient layer 116 is provided between the GaN layer 115 on the AlN layer 114, and the GaN This is different from the semiconductor substrate 100 of Experimental Example 1 in that a second composition gradient layer 117 is provided between the AlN layer 114 on the layer 115 (see FIG. 6B).
  • the first composition gradient layer 116 includes Al and Ga having a larger lattice constant than Al, the Al composition ratio gradually decreases upward, and the Ga composition ratio gradually increases upward. It is getting bigger.
  • the second composition gradient layer 117 includes Al and Ga, the Al composition ratio gradually increases upward, and the Ga composition ratio gradually decreases upward.
  • the first composition graded layer 116 and the second composition graded layer 117 had the same thickness, and the lattice constant variation was 0.88% / nm, which was larger than 0.7% / nm.
  • the semiconductor substrate 102 of Experimental Example 3 has substantially the same configuration as the semiconductor substrate 100 of Experimental Example 1, but a first composition gradient layer 116 ′ is provided between the GaN layer 115 on the AlN layer 114, and Experimental Example 1 in that a second composition gradient layer 117 ′ is provided between the AlN layer 114 on the GaN layer 115 and the second composition gradient layer 117 ′ is thicker than the first composition gradient layer 116 ′.
  • the semiconductor substrate 100 is different (see FIG. 7B).
  • the change amount of the lattice constant of the first composition gradient layer 116 ′ is set to a value larger than the change amount of the lattice constant of the second composition gradient layer 117 ′, and the change amount of the lattice constant of the second composition gradient layer 117 ′ is 0. .88% / nm, both were greater than 0.7% / nm.
  • the semiconductor substrates of Experimental Examples 2 and 3 in which the composition gradient layers are provided between the multilayer buffer layers are as follows: Compared with the semiconductor substrate of Experimental Example 1 in which no composition gradient layer was provided between the multilayer buffer layers, the crystallinity decreased and the crack length increased. In particular, in Experimental Example 3 in which the second composition gradient layer 117 ′ was thicker than the first composition gradient layer 116 ′, the crystallinity was remarkably deteriorated and cracks were generated on the entire surface.
  • Patent Document 3 that is, in the multilayer buffer layer, a composition gradient layer is provided between the GaN layer and the AlN layer, and the thickness of the composition gradient layer between the AlN layer on the GaN layer is set. It was found that the structure (thickening the composition gradient layer between the GaN layer on the AlN layer) is not applicable.
  • the present inventors can suppress the deterioration of crystallinity and long cracks even when a composition gradient layer having a lattice constant variation greater than 0.7% / nm is provided between each layer of the multilayer buffer layer.
  • the substrate was studied earnestly. As a result, the first composition gradient layer provided between the second layer on the first layer and the second composition gradient layer provided between the first layer on the second layer and the second composition gradient layer are provided.
  • the semiconductor substrate 10 includes a substrate 12, a buffer layer 13 provided on the substrate 12 and made of a nitride semiconductor, and a channel layer 26 provided on the buffer layer 13 and made of a nitride semiconductor.
  • the buffer layer 13 includes a first layer 14 of a nitride compound semiconductor containing a first material and a second layer 15 of a nitride compound semiconductor containing a second material having a lattice constant larger than that of the first material. It includes a layer provided repeatedly.
  • the substrate 12 can be, for example, a silicon-based substrate such as a silicon substrate or a SiC substrate, and the channel layer 26 is made of a nitride-based compound semiconductor containing the second material, and can be, for example, a GaN layer.
  • the composition ratio of the second material gradually increases upward, and the first upward
  • the first composition gradient layer 16 of the nitride-based compound semiconductor is provided, and at least one of the first layer 14 on the second layer 15 includes an upper
  • the composition ratio of the first material gradually increases toward the upper side, and the composition ratio of the second material gradually decreases toward the upper side. .
  • the first composition gradient layer 16 is thicker than the second composition gradient layer 17 (see FIG. 1B).
  • the maximum value of the composition ratio of the first material is equal to or less than the composition ratio of the first material of the first layer 14, and the composition of the second material.
  • the maximum value of the ratio is equal to or less than the composition ratio of the second material of the second layer 15.
  • the semiconductor substrate 10 can further include a barrier layer 27 on the channel layer 26, and the active layer 29 can be formed by the channel layer 26 and the barrier layer 27.
  • the barrier layer 27 can be an AlGaN layer, for example.
  • the first composition gradient layer 16 thicker than the second composition gradient layer 17
  • compressive stress can be applied to the channel layer 26 provided on the buffer layer 13.
  • Crystal defects can be reduced, and even when a composition gradient layer having a lattice constant variation greater than 0.7% / nm is provided, it is possible to suppress the deterioration of crystallinity and the lengthening of cracks.
  • a first composition gradient therebetween When the layer is inserted thicker than the second composition gradient layer between the AlN layer on the GaN layer, the upper GaN layer is likely to grow coherently by the AlN layer (that is, the lattice constant of the GaN layer is closer to the AlN layer side). To be smaller). This is because a thick composition gradient layer has a small amount of change in the lattice constant (that is, the lattice constant changes more gently), and therefore, lattice relaxation due to misfit dislocation generation is less likely to occur.
  • the lattice constant of the AlN layer does not increase so much toward the GaN layer.
  • the composition gradient layer is thin has a large change in lattice constant (that is, the lattice constant changes more rapidly), so that lattice relaxation due to the occurrence of misfit dislocation is more likely to occur. Therefore, it is presumed that the compressive stress generated in the active GaN layer on the upper layer of the buffer layer is increased, and as a result, the crystallinity of the channel layer is deteriorated and crack elongation is suppressed.
  • the upper AlN layer grows coherently with the GaN layer (ie, the AlN layer).
  • the lattice constant of the GaN layer increases toward the GaN layer side).
  • the GaN layer is grown on the AlN layer, if the first composition gradient layer therebetween is inserted thinner than the second composition gradient layer, the upper GaN layer is difficult to grow coherently on the AlN layer (that is, The lattice constant of the GaN layer is not so small on the AlN layer side).
  • the average composition change rate with respect to the thickness of the first composition gradient layer 16 is preferably smaller than the average composition change rate with respect to the thickness of the second composition gradient layer 17. If the average composition change rate of the first composition gradient layer 16 and the average composition change rate of the second composition gradient layer 17 have such a relationship, it is possible to effectively reduce the crystallinity in the channel layer 26. It can suppress that a crack becomes long.
  • the semiconductor substrate 10 has the first composition gradient layer 16 between the first layer 14 and the second layer 15 on the first layer 14, and between the first layer 14 on the second layer 15. In all, it is preferable to have the second composition gradient layer 17.
  • the first composition gradient layer 16 and the second composition gradient layer 17 in this manner, it is possible to reliably suppress the deterioration of crystallinity and the lengthening of cracks in the channel layer 26.
  • the first material and the second material can be selected from the group consisting of B, Al, Ga, and In.
  • Al can be suitably used as the first material and Ga can be used as the second material.
  • the first layer 14 can be an AlN layer
  • the second layer 15 can be a GaN layer.
  • the above can be suitably used.
  • the average composition change rate of the first material of the first and second composition gradient layers is greater than 29% / nm. 75% / nm or less.
  • the semiconductor substrate can be configured at low cost.
  • the average composition change rate of the first material changing between the first material and the second material in the first and second composition gradient layers is 75% / nm or less, crystallinity deterioration and cracks are generated. The effect which suppresses becoming long can be maintained.
  • composition change ratio of the first material on the upper surface side and the lower surface side of the first and second composition gradient layers is smaller than the composition change ratio of the first material on the center side of the first and second composition gradient layers. It is more desirable. Thereby, it can suppress that crystallinity deterioration and a crack become longer effectively.
  • a first composition gradient layer 16 is provided on the uppermost layer of the buffer layer 13, and a first layer 14 is provided below the first composition gradient layer 16 on the uppermost layer. 1 is different from the semiconductor substrate 10 of FIG. 1 (see FIG. 2B).
  • the uppermost portion of the buffer layer has such a configuration, the compressive stress generated in the channel layer is increased, and it is possible to more effectively suppress the deterioration of crystallinity and cracks of the channel layer.
  • electrodes for example, a source electrode 30, a gate electrode 31, and a drain electrode 32 are provided on the channel layer 26 of the semiconductor substrate 10 of FIG. Is.
  • the source electrode 30 and the drain electrode 32 may be arranged so that current flows from the source electrode 30 to the drain electrode 32 through the two-dimensional electron gas 28 formed in the channel layer 26. it can.
  • the current flowing between the source electrode 30 and the drain electrode 32 can be controlled by the potential applied to the gate electrode 31.
  • Such a semiconductor device can be a semiconductor device in which the deterioration of crystallinity and cracks in the channel layer 26 are suppressed, so that the yield and characteristics of the semiconductor device can be improved.
  • Example 1 Three semiconductor substrates 10 as shown in FIG. 1 were produced.
  • the substrate 12 is a silicon single crystal substrate
  • the channel layer 26 is made of GaN
  • the barrier layer 27 is made of AlGaN.
  • the second layer 15 is a GaN layer
  • the first composition graded layer 16 and the second composition graded layer 17 Al x Ga 1-x
  • the composition represented by N (0 ⁇ x ⁇ 1) and the distribution of the Al content x in the buffer layer 13 was as shown in FIG.
  • d1 is the thickness of the first composition gradient layer 16
  • d2 is the thickness of the second composition gradient layer 17, and has a relationship of d1> d2.
  • the lattice constant change amount of the first composition gradient layer 16 is 0.88% / nm and its thickness is 2.8 nm.
  • the lattice constant change amount of the second composition gradient layer 17 is the first composition gradient layer 16.
  • the lattice constant change amount is larger than 0.25 nm and less than 2.8 nm, and any lattice constant change amount is larger than 0.7% / nm.
  • the first composition gradient layer 16 is provided between the first layer 14 and the second layer 15 on the first layer 14, and the first layer 14 on the second layer 15 is provided between the first layer 14 and the second layer 15.
  • a second composition gradient layer was provided.
  • Example 2 In the same manner as in Example 1, three semiconductor substrates were produced. However, the lattice constant variation of the first composition gradient layer 16 is 1.76% / nm and the thickness thereof is 1.4 nm, and the lattice constant variation of the second composition gradient layer 17 is the first composition gradient. It is larger than the change amount of the lattice constant of the layer 16, the thickness is set to 0.25 nm or more and less than 1.4 nm, and any change amount of the lattice constant is set to 1.4% / nm or more.
  • a composition gradient layer is provided between each layer of the multilayer buffer layer, the first composition gradient layer is made thicker than the second composition gradient layer, and the lattice constant variation of the composition gradient layer is 0.7.
  • Example 1 which was larger than% / nm, the crystallinity was higher and the crack length was shorter than in Experimental Example 1 in which no composition gradient layer was provided between the multilayer buffer layers.
  • a composition gradient layer is provided between each layer of the multilayer buffer layer, the first composition gradient layer is made thicker than the second composition gradient layer, and the lattice constant variation of the composition gradient layer is 1.4% / nm or more.
  • Example 2 the crystallinity was higher and the crack length was the same as in Experimental Example 1 in which the composition gradient layer was not provided between the multilayer buffer layers.
  • Example 2 in which the lattice constant change amount of the composition gradient layer was 1.4% / nm or more, compared with Example 1 in which the lattice constant change amount of the composition gradient layer was greater than 0.7% / nm.
  • the crystallinity was higher.
  • the lattice constant variation of the composition gradient layer is 0.7% / It was confirmed that deterioration of crystallinity and an increase in cracks can be suppressed even when the thickness is larger than nm.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 本発明は、シリコン系基板と、シリコン系基板上に、第1材料を含む窒化物系化合物半導体の第1の層と、第1材料よりも格子定数が大きい第2材料を含む窒化物系化合物半導体の第2の層とが繰り返し設けられた層を含むバッファ層と、バッファ層上に第2材料を含む窒化物系化合物半導体のチャネル層とを備え、バッファ層において、第1の層上の第2の層との間の少なくとも1つには、上方に向かって第2材料の組成比が徐々に大きくなり、上方に向かって第1材料の組成比が徐々に小さくなる、窒化物系化合物半導体の第1の組成傾斜層を有し、第2の層上の第1の層との間の少なくとも1つには、上方に向かって第1材料が徐々に大きくなり、上方に向かって第2材料の組成比が徐々に小さくなる、窒化物系化合物半導体の第2の組成傾斜層を有し、第1の組成傾斜層は第2の組成傾斜層より厚いものであることを特徴とする半導体基体である。これにより、多層バッファ層の各層間に格子定数変化量が0.7%/nmより大きい組成傾斜層を設けた場合でも、結晶性劣化やクラックが長くなることを抑制できる半導体基体が提供される。

Description

半導体基体及び半導体装置
 本発明は、半導体基体及び半導体装置に関する。
 窒化物半導体層は安価なシリコン基板上やサファイア基板上に形成されるのが一般的である。しかし、これらの基板の格子定数と窒化物半導体層の格子定数は大きく異なり、また、熱膨張係数も異なる。このため、基板上にエピタキシャル成長によって形成された窒化物半導体層に、大きな歪みエネルギーが発生する。その結果、窒化物半導体層にクラックの発生や結晶品質の低下が生じやすい。
 上記問題を解決するために、基板と窒化物半導体からなる機能層との間に組成の異なる窒化物半導体層を積層したバッファ層を配置することが従来行われていた。
 また、特許文献1~3等のように、GaN on Si系半導体はGaN系の多層バッファ層の各層間に組成傾斜層を設け、応力をコントロールし、クラック抑制、結晶性向上を図っている。
特開2005-158889号公報 特開2007-221001号公報 特開2010-232293号公報
 しかしながら、各層間に組成傾斜層を設ける場合、それが無い場合と比較し成長時間が延びる問題が有る。また各層間に組成傾斜層が有る場合、その組成傾斜層の格子定数変化量を0.7%/nmより大きくすると(すなわち、組成傾斜層を薄くすると)、結晶性劣化が生じ、クラックが長くなり、ウェーハの歩留まり及びこのウェーハを用いて作製したデバイスの歩留まりが低下する事が後述する実験で分かった。これは格子定数の大きい層上に格子定数の小さい層を成長させる際、その間の組成傾斜層が大きく影響していると考えられる。このため、組成傾斜層を成長させる時間の短縮のため、組成傾斜層の格子定数変化量を0.7%/nmより大きくした場合では、特許文献2の構造(すなわち、多層バッファ層において、GaN層とAlN層との間に組成傾斜層を設ける構造)は適用できない事が分かった。この影響はバッファ層上に能動層であるGaN層を成長させる際、その膜厚を厚くするとより顕著になる。
 本発明は、上記問題点に鑑みてなされたものであって、多層バッファ層の各層間に格子定数変化量が0.7%/nmより大きい組成傾斜層を設けた場合でも、結晶性劣化やクラックが長くなることを抑制できる半導体基体及び半導体装置を提供することを目的とする。
 上記目的を達成するために、本発明は、シリコン系基板と、該シリコン系基板上に、第1材料を含む窒化物系化合物半導体の第1の層と、前記第1材料よりも格子定数が大きい第2材料を含む窒化物系化合物半導体の第2の層とが繰り返し設けられた層を含むバッファ層と、該バッファ層上に前記第2材料を含む窒化物系化合物半導体のチャネル層とを備え、前記バッファ層において、前記第1の層上の前記第2の層との間の少なくとも1つには、上方に向かって前記第2材料の組成比が徐々に大きくなり、上方に向かって前記第1材料の組成比が徐々に小さくなる、窒化物系化合物半導体の第1の組成傾斜層を有し、前記第2の層上の前記第1の層との間の少なくとも1つには、上方に向かって前記第1材料の組成比が徐々に大きくなり、上方に向かって前記第2材料の組成比が徐々に小さくなる、窒化物系化合物半導体の第2の組成傾斜層を有し、前記第1の組成傾斜層は前記第2の組成傾斜層より厚いものであることを特徴とする半導体基体を提供する。
 このように、第1の組成傾斜層を第2の組成傾斜層より厚くすることで、バッファ層上に設けられるチャネル層に圧縮応力を加えることができ、これによりチャネル層の結晶欠陥を低減でき、格子定数変化量が0.7%/nmより大きい組成傾斜層を設けた場合でも、結晶性劣化やクラックが長くなることを抑制することができる。
 このとき、前記第1の組成傾斜層の厚みに対する平均組成変化率は、前記第2の組成傾斜層の厚みに対する平均組成変化率より小さいことが好ましい。
 第1の組成傾斜層の平均組成変化率と、第2の組成傾斜層の平均組成変化率が、このような関係を有していれば、効果的に結晶性劣化やクラックが長くなることを抑制することができる。
 このとき、前記第1の層上の前記第2の層との間の全てにおいて、前記第1の組成傾斜層を有し、前記第2の層上の前記第1の層との間の全てにおいて、前記第2の組成傾斜層を有することが好ましい。
 第1の組成傾斜層及び第2の組成傾斜層がこのようにすべての間に設けられていることにより、確実に結晶性劣化やクラックが長くなることを抑制することができる。
 このとき、前記バッファ層の最上層には前記第1の組成傾斜層が設けられ、該第1の組成傾斜層の下には、前記第1の層が設けられていることが好ましい。
 バッファ層の上部をこのような構成とすることにより、より効果的に結晶性劣化やクラックが長くなることを抑制することができる。
 このとき、前記第1材料及び前記第2材料を、B、Al、Ga、Inからなるグループの中から選択することができる。
 第1材料及び第2材料として、上記のものを好適に用いることができる。
 このとき、前記第1の層をAlN層とし、前記第2の層をGaN層とすることができる。
 バッファ層を構成する第1の層及び第2の層として、特に上記のものを好適に用いることができる。
 このとき、前記第1及び第2の組成傾斜層の前記第1材料の平均組成変化割合が29%/nmより大きく、75%/nm以下であることが好ましい。
 第1及び第2の組成傾斜層の第1材料の平均組成変化割合が29%/nmより大きければ、第1及び第2の組成傾斜層をより薄くできるので、第1及び第2の組成傾斜層の成膜時間を短くすることができ、それにより製造時間を短縮することができる。
 また、第1及び第2の組成傾斜層の第1材料の平均組成変化割合が75%/nm以下であれば、結晶性劣化やクラックが長くなることを抑制する効果を維持できる。
 また、本発明は、上記の半導体基体の上に、電極を備えるものであることを特徴とする半導体装置を提供する。
 このような半導体装置であれば、チャネル層において結晶性劣化やクラックが長くなることが抑制された半導体装置とすることができるので、半導体装置の歩留まりや特性を向上させることができる。
 以上のように、本発明の半導体基体であれば、多層バッファ層の各層間に格子定数変化量が0.7%/nmより大きい組成傾斜層を設けた場合でも、結晶性劣化やクラックが長くなることを抑制することができる。従って、成長時間を短縮できるので低コストのものとすることができる。また、本発明の半導体装置であれば、チャネル層において結晶性劣化やクラックが長くなることが抑制された半導体装置とすることができるので、半導体装置の歩留まりや特性を向上させることができる。
本発明の半導体基体の実施形態の一例を示す概略断面図である。 本発明の半導体基体の実施形態の別の例を示す概略断面図である。 本発明の半導体装置の実施形態の一例を示す概略断面図である。 実施例1、2のバッファ層のアルミ含有率の分布を示す図である。 実験例1の半導体基体の概略断面図である。 実験例2の半導体基体の概略断面図である。 実験例3の半導体基体の概略断面図である。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 上述したように、基板と窒化物半導体からなる機能層との間に組成の異なる窒化物半導体層を積層したバッファ層を配置することが従来行われている一方で、多層バッファ層の各層間に組成傾斜層を設け、応力をコントロールし、クラック抑制、結晶性向上を図ることも行われていた。
 しかしながら、各層間に組成傾斜層を設ける場合、それが無い場合と比較し成長時間が延びる問題が有る。
 そこで、組成傾斜層の成長時間をできるだけ短縮するために、本発明者らは、組成傾斜層の格子定数変化量を大きくして組成傾斜層を薄くすることを検討した。
 まず、実験例1として、図5に示すように、多層バッファ層において、各層間に組成傾斜層を設けない半導体基体100を3枚作製した。なお、半導体基体100は、単結晶シリコンからなる基板112と、基板112上に設けられたバッファ層113と、バッファ層113上に設けられたGaNからなるチャネル層126と、チャネル層126上に設けられたAlGaNからなるバリア層127を有している(図5(a)参照)。バッファ層113は、AlN層114とGaN層115が繰り返し積層されている構造を有している(図5(b)参照)。
 なお、AlN層114は上述した第1の層に相当し、GaN層115は上述した第2の層に相当する。
 作製した実験例1の半導体基体100を用いて、0002方向のGaN層(チャネル層)の結晶性をX線回折を用いて測定した。また、実験例1の半導体基体100の表面を観察することによりクラックの長さを測定した。その結果を表1に示す。
 次に、実験例2として、図6に示すように、多層バッファ層において、各層間に組成傾斜層を設けた半導体基体101を3枚作製した。なお、実験例2の半導体基体101は、実験例1の半導体基体100とほぼ同様の構成であるが、AlN層114上のGaN層115との間に第1の組成傾斜層116を設け、GaN層115上のAlN層114との間に第2の組成傾斜層117を設けた点で、実験例1の半導体基体100と異なっている(図6(b)参照)。ここで、第1の組成傾斜層116はAlとAlより格子定数が大きいGaを含み、上方に向かってAlの組成比が徐々に小さくなり、かつ、上方に向かってGaの組成比が徐々に大きくなっている。また、第2の組成傾斜層117はAlとGaを含み、上方に向かってAlの組成比が徐々に大きくなり、かつ、上方に向かってGaの組成比が徐々に小さくなっている。第1の組成傾斜層116と第2の組成傾斜層117は同じ厚さとし、格子定数変化量をそれぞれ0.88%/nmとして、0.7%/nmより大きくした。
 作製した実験例2の半導体基体101を用いて、実験例1と同様にして結晶性、クラックの長さを測定した。その結果を表1に示す。
 次に、実験例3として、図7に示すように、多層バッファ層において、各層間に組成傾斜層を設けた半導体基体102を3枚作製した。なお、実験例3の半導体基体102は、実験例1の半導体基体100とほぼ同様の構成であるが、AlN層114上のGaN層115との間に第1の組成傾斜層116’を設け、GaN層115上のAlN層114との間に第2の組成傾斜層117’を設けるとともに、第2の組成傾斜層117’を第1の組成傾斜層116’より厚くした点で、実験例1の半導体基体100と異なっている(図7(b)参照)。ここで、第1の組成傾斜層116’の格子定数変化量を第2の組成傾斜層117’の格子定数変化量より大きい値とし、第2の組成傾斜層117’の格子定数変化量を0.88%/nmとして、いずれも0.7%/nmより大きくした。
 作製した実験例3の半導体基体102を用いて、実験例1と同様にして結晶性、クラックの長さを測定した。その結果を表1に示す。なお、実験例3の半導体基体102においては、クラックが半導体基体の全面に生成されたため、X線回析による結晶性の測定ができなかったが、結晶性はかなり低いものと推定される。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、組成傾斜層の格子定数変化量を0.7%/nmより大きくした場合、多層バッファ層の各層間に組成傾斜層を設けた実験例2、3の半導体基体は、多層バッファ層の各層間に組成傾斜層を設けない実験例1の半導体基体と比較して、結晶性は低下し、クラックの長さが増加した。特に第2の組成傾斜層117’を第1の組成傾斜層116’より厚くした実験例3では、結晶性が顕著に劣化し、クラックは全面に発生した。
 上記の実験結果より、多層バッファ層の各層間に組成傾斜層が有る場合、その組成傾斜層の格子定数変化量を0.7%/nmより大きくすると(すなわち、組成傾斜層を薄くすると)、結晶性劣化が生じ、クラックが長くなり、ウェーハの歩留まり及びこのウェーハを用いて作製したデバイス歩留まりが低下する事が分かった。このため、組成傾斜層の格子定数変化量を0.7%/nmより大きくした場合では、特許文献2の構造(すなわち、多層バッファ層においてGaN層とAlN層との間に組成傾斜層を設ける構造)、及び、特許文献3の構造(すなわち、多層バッファ層においてGaN層とAlN層との間に組成傾斜層を設けるとともに、GaN層上のAlN層との間の組成傾斜層の厚さをAlN層上のGaN層との間の組成傾斜層より厚くする構造)は適用できない事が分かった。
 そこで、本発明者らは、多層バッファ層の各層間に格子定数変化量が0.7%/nmより大きい組成傾斜層を設けた場合でも、結晶性劣化やクラックが長くなることを抑制できる半導体基体について鋭意検討を重ねた。
 その結果、第1の層上の第2の層との間に設けられる第1の組成傾斜層を、第2の層上の第1の層との間に設けられる第2の組成傾斜層より厚くすることで、バッファ層上に設けられるチャネル層に圧縮応力を加えることができ、これによりチャネル層の結晶欠陥を低減でき、多層バッファ層の各層間に格子定数変化量が0.7%/nmより大きい組成傾斜層を設けた場合でも、結晶性劣化やクラックが長くなることを抑制することができることを見出し、本発明をなすに至った。
 まず、図1を参照しながら、本発明の半導体基体の実施形態の一例について説明する。
 図1に示すように、半導体基体10は、基板12と、基板12上に設けられ窒化物半導体からなるバッファ層13と、バッファ層13上に設けられ窒化物半導体からなるチャネル層26を備えている。
 バッファ層13は、第1材料を含む窒化物系化合物半導体の第1の層14と、第1材料よりも格子定数が大きい第2材料を含む窒化物系化合物半導体の第2の層15とが繰り返し設けられた層を含むものである。
 基板12は、例えば、シリコン基板又はSiC基板等のシリコン系基板とすることができ、チャネル層26は第2材料を含む窒化物系化合物半導体からなり、例えば、GaN層とすることができる。
 このバッファ層13において、第1の層14上の第2の層15との間の少なくとも1つには、上方に向かって第2材料の組成比が徐々に大きくなり、上方に向かって第1材料の組成比が徐々に小さくなる、窒化物系化合物半導体の第1の組成傾斜層16を有し、第2の層15上の第1の層14との間の少なくとも1つには、上方に向かって第1材料の組成比が徐々に大きくなり、上方に向かって前記第2材料の組成比が徐々に小さくなる、窒化物系化合物半導体の第2の組成傾斜層17を有している。第1の組成傾斜層16は第2の組成傾斜層17より厚いものである(図1(b)参照)。
 なお、第1及び第2の組成傾斜層16、17において、第1材料の組成比の最大値は、第1の層14の第1材料の組成比以下であり、かつ、第2材料の組成比の最大値は、第2の層15の第2材料の組成比以下である。
 なお、半導体基体10は、さらに、チャネル層26上にバリア層27を含むことができ、チャネル層26とバリア層27とで、能動層29を形成することができる。このバリア層27は、例えば、AlGaN層とすることができる。
 上記のように、第1の組成傾斜層16を第2の組成傾斜層17より厚くすることで、バッファ層13上に設けられるチャネル層26に圧縮応力を加えることができ、これによりチャネル層の結晶欠陥を低減でき、格子定数変化量が0.7%/nmより大きい組成傾斜層を設けた場合でも、結晶性劣化やクラックが長くなることを抑制することができる。
 ここで、第1の組成傾斜層を第2の組成傾斜層より厚くすることで、チャネル層の結晶欠陥を低減できる、推定されるメカニズムについて、以下に説明する。
 格子定数が小さい第1の層(以下、AlN層を例とする)上に格子定数が大きい第2の層(以下、GaN層を例とする)を成長させる際にその間の第1の組成傾斜層を、GaN層上のAlN層との間の第2の組成傾斜層より厚く挿入すると、上層のGaN層はAlN層によりコヒーレントに成長し易くなる(すなわち、GaN層の格子定数がAlN層側に小さくなる)。これは、組成傾斜層が厚いという事はその格子定数変化量が小さい(すなわち、より緩やかに格子定数が変化する)のでミスフィット転位発生による格子緩和がより起こりにくくなるためである。一方で、GaN層上にAlN層を成長させる際にその間の第2の組成傾斜層を上記の第1の組成傾斜層より薄く挿入すると、上層のAlN層はGaN層にコヒーレントに成長しにくくなる(すなわち、AlN層の格子定数がそれほどGaN層側に大きくならない)。これは、組成傾斜層が薄いという事はその格子定数変化量が大きい(すなわち、より急激に格子定数が変化する)のでミスフィット転位発生による格子緩和がより起こり易くなるためである。そのため、バッファ層の上層の能動層のGaN層に生じる圧縮応力が大きくなり、結果として、チャネル層の結晶性の劣化、クラックの伸長の抑制が出来ると推定される。
 逆にGaN層上にAlN層を成長させる際にその間に第2の組成傾斜層を第1の組成傾斜層より厚く挿入すると、上層のAlN層がGaN層によりコヒーレントに成長する(すなわち、AlN層の格子定数がGaN層側に大きくなる)。また、AlN層上にGaN層を成長させる際にその間の第1の組成傾斜層を第2の組成傾斜層より薄く挿入すると、上層のGaN層はAlN層にコヒーレントに成長しにくくなる(すなわち、GaN層の格子定数がそれほどAlN層側に小さくならない)。そのため、バッファ層の上層の能動層のGaN層を成長させる際の圧縮応力が弱まり、結果として、結晶性の劣化、クラックの伸長(品質低下)となると推測される。これは格子定数変化量が大きい(すなわち、格子定数変化量が0.7%/nmより大きい)場合により顕著になると推測される。
 半導体基体10において、第1の組成傾斜層16の厚みに対する平均組成変化率は、第2の組成傾斜層17の厚みに対する平均組成変化率より小さいことが好ましい。
 第1の組成傾斜層16の平均組成変化率と、第2の組成傾斜層17の平均組成変化率が、このような関係を有していれば、チャネル層26において効果的に結晶性劣化やクラックが長くなることを抑制することができる。
 半導体基体10において、第1の層14上の第2の層15との間の全てにおいて、第1の組成傾斜層16を有し、第2の層15上の第1の層14との間の全てにおいて、第2の組成傾斜層17を有することが好ましい。
 第1の組成傾斜層16及び第2の組成傾斜層17がこのように設けられていることにより、チャネル層26において確実に結晶性劣化やクラックが長くなることを抑制することができる。
 半導体基体10において、第1材料及び第2材料を、B、Al、Ga、Inからなるグループの中から選択することができる。
 特に、第1材料としてAl、第2材料としてGaを好適に用いることができる。
 半導体基体10において、第1の層14をAlN層とし、第2の層15をGaN層とすることができる。
 バッファ層13を構成する第1の層14及び第2の層15として、上記のものを好適に用いることができる。
 第1の層14をAlN層とし、第2の層15をGaN層としたときに、前記第1及び第2の組成傾斜層の前記第1材料の平均組成変化割合が29%/nmより大きく、75%/nm以下であることが好ましい。
 第1及び第2の組成傾斜層の中で第1材料と第2材料の間で変化する第1材料の平均組成変化割合が29%/nmより大きければ、第1及び第2の組成傾斜層をより薄くできるので、第1及び第2の組成傾斜層の成膜時間を短くすることができ、それによりバッファ層の製造時間を短縮することができる。結果として、半導体基体を安価に構成することができる。
 また、第1及び第2の組成傾斜層の中で第1材料と第2材料の間で変化する第1材料の平均組成変化割合が75%/nm以下であれば、結晶性劣化やクラックが長くなることを抑制する効果を維持できる。
 なお、第1及び第2の組成傾斜層の上面側と下面側における第1材料の組成変化割合が、第1及び第2の組成傾斜層の中央側における第1材料の組成変化割合よりも小さいことがより望ましい。これにより、より効果的に結晶性劣化やクラックが長くなることを抑制できる。
 次に、図2を参照しながら、本発明の半導体基体の実施形態の別の例について説明する。
 図2の半導体基体10’は、バッファ層13の最上層に第1の組成傾斜層16が設けられ、この最上層の第1の組成傾斜層16の下には、第1の層14が設けられている点で図1の半導体基体10と異なっている(図2(b)参照)。
 バッファ層の最上部をこのような構成とすることにより、チャネル層に生じる圧縮応力が高まり、より効果的にチャネル層の結晶性劣化やクラックが長くなることを抑制することができる。
 次に、図3を参照しながら、本発明の半導体装置の実施形態の一例について説明する。
 図3に示す半導体装置11は、図1の半導体基体10のチャネル層26上に、例えば、バリア層27を介して電極(例えば、ソース電極30、ゲート電極31、ドレイン電極32)が設けられたものである。
 半導体装置11において、例えば、ソース電極30、ドレイン電極32は、ソース電極30からチャネル層26内に形成された2次元電子ガス28を介して、ドレイン電極32に電流が流れるように配置することができる。
 ソース電極30とドレイン電極32との間に流れる電流は、ゲート電極31に印加される電位によってコントロールすることができる。
 このような半導体装置であれば、チャネル層26において結晶性劣化やクラックが長くなることが抑制された半導体装置とすることができるので、これにより半導体装置の歩留まりや特性を向上させることができる。
 以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 図1に示すような半導体基体10を3枚作製した。ただし、基板12はシリコン単結晶基板とし、チャネル層26はGaNからなるものとし、バリア層27はAlGaNからなるものとした。また、バッファ層13において、第1の層14はAlN層とし、第2の層15はGaN層とし、第1の組成傾斜層16及び第2の組成傾斜層17は、AlGa1-xN(0≦x≦1)で表される組成を有し、バッファ層13中のAlの含有率xの分布は、図4に示すようなものとした。図4において、d1は第1の組成傾斜層16の厚さであり、d2は第2の組成傾斜層17の厚さであり、d1>d2なる関係を有している。
 第1の組成傾斜層16の格子定数変化量は0.88%/nmであってその厚みは2.8nmとし、第2の組成傾斜層17の格子定数変化量は第1の組成傾斜層16の格子定数変化量よりも大きく、その厚みは0.25nm以上2.8nm未満とし、いずれの格子定数変化量も0.7%/nmより大きくした。
 また、第1の層14上の第2の層15との間の全てにおいて、第1の組成傾斜層16を設け、第2の層15上の第1の層14との間の全てにおいて、第2の組成傾斜層を設けた。
 作製した実施例1の半導体基体を用いて、実験例1と同様にして結晶性、クラックの長さを測定した。その結果を表2に示す。
(実施例2)
 実施例1と同様にして半導体基体を3枚作製した。ただし、第1の組成傾斜層16の格子定数変化量は1.76%/nmであってその厚みは1.4nmとし、第2の組成傾斜層17の格子定数変化量は第1の組成傾斜層16の格子定数変化量よりも大きく、その厚みは0.25nm以上1.4nm未満とし、いずれの格子定数変化量も1.4%/nm以上とした。
 作製した実施例2の半導体基体を用いて、実験例1と同様にして結晶性、クラックの長さを測定した。その結果を表2に示す。
 また、前述の実験例1~3の測定結果についても、比較のため表2に再掲する。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、多層バッファ層の各層間に組成傾斜層を設けるとともに、第1の組成傾斜層を第2の組成傾斜層より厚くし、組成傾斜層の格子定数変化量を0.7%/nmより大きくした実施例1では、多層バッファ層の各層間に組成傾斜層を設けない実験例1と比較して結晶性が高くなり、クラック長も短くなった。また、多層バッファ層の各層間に組成傾斜層を設けるとともに、第1の組成傾斜層を第2の組成傾斜層より厚くし、組成傾斜層の格子定数変化量を1.4%/nm以上とした実施例2では、多層バッファ層の各層間に組成傾斜層を設けない実験例1と比較して結晶性が高くなり、クラック長は同等であった。特に、組成傾斜層の格子定数変化量を1.4%/nm以上とした実施例2では、組成傾斜層の格子定数変化量を0.7%/nmより大きくした実施例1と比較して、結晶性がより高くなっていた。
 このように、多層バッファ層の各層間に組成傾斜層を設けるとともに、第1の組成傾斜層を第2の組成傾斜層より厚くすれば、組成傾斜層の格子定数変化量を0.7%/nmより大きくした場合でも、結晶性の劣化、クラックが長くなることを抑制できることが確認できた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  シリコン系基板と、
     該シリコン系基板上に、第1材料を含む窒化物系化合物半導体の第1の層と、前記第1材料よりも格子定数が大きい第2材料を含む窒化物系化合物半導体の第2の層とが繰り返し設けられた層を含むバッファ層と、
     該バッファ層上に前記第2材料を含む窒化物系化合物半導体のチャネル層と
    を備え、
     前記バッファ層において、前記第1の層上の前記第2の層との間の少なくとも1つには、上方に向かって前記第2材料の組成比が徐々に大きくなり、上方に向かって前記第1材料の組成比が徐々に小さくなる、窒化物系化合物半導体の第1の組成傾斜層を有し、前記第2の層上の前記第1の層との間の少なくとも1つには、上方に向かって前記第1材料の組成比が徐々に大きくなり、上方に向かって前記第2材料の組成比が徐々に小さくなる、窒化物系化合物半導体の第2の組成傾斜層を有し、
     前記第1の組成傾斜層は前記第2の組成傾斜層より厚いものであることを特徴とする半導体基体。
  2.  前記第1の組成傾斜層の厚みに対する平均組成変化率は、前記第2の組成傾斜層の厚みに対する平均組成変化率より小さいことを特徴とする請求項1に記載の半導体基体。
  3.  前記第1の層上の前記第2の層との間の全てにおいて、前記第1の組成傾斜層を有し、
     前記第2の層上の前記第1の層との間の全てにおいて、前記第2の組成傾斜層を有することを特徴とする請求項1又は請求項2に記載の半導体基体。
  4.  前記バッファ層の最上層には前記第1の組成傾斜層が設けられ、該第1の組成傾斜層の下には、前記第1の層が設けられていることを特徴とする請求項1から請求項3のいずれか1項に記載の半導体基体。
  5.  前記第1材料及び前記第2材料は、B、Al、Ga、Inからなるグループの中から選択されるものであることを特徴とする請求項1から請求項4のいずれか1項に記載の半導体基体。
  6.  前記第1の層がAlN層であり、前記第2の層がGaN層であることを特徴とする請求項1から請求項4のいずれか1項に記載の半導体基体。
  7.  前記第1及び第2の組成傾斜層の前記第1材料の平均組成変化割合が29%/nmより大きく、75%/nm以下であることを特徴とする請求項6に記載の半導体基体。
  8.  請求項1から請求項7のいずれか1項に記載の半導体基体の上に、電極を備えるものであることを特徴とする半導体装置。
PCT/JP2016/001060 2016-02-26 2016-02-26 半導体基体及び半導体装置 WO2017145199A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/001060 WO2017145199A1 (ja) 2016-02-26 2016-02-26 半導体基体及び半導体装置
CN201680081872.2A CN108886000A (zh) 2016-02-26 2016-02-26 半导体基体以及半导体装置
US16/077,263 US10586701B2 (en) 2016-02-26 2016-02-26 Semiconductor base having a composition graded buffer layer stack
JP2018501400A JP6653750B2 (ja) 2016-02-26 2016-02-26 半導体基体及び半導体装置
TW106104976A TWI699822B (zh) 2016-02-26 2017-02-16 半導體基體以及半導體裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/001060 WO2017145199A1 (ja) 2016-02-26 2016-02-26 半導体基体及び半導体装置

Publications (1)

Publication Number Publication Date
WO2017145199A1 true WO2017145199A1 (ja) 2017-08-31

Family

ID=59685925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001060 WO2017145199A1 (ja) 2016-02-26 2016-02-26 半導体基体及び半導体装置

Country Status (5)

Country Link
US (1) US10586701B2 (ja)
JP (1) JP6653750B2 (ja)
CN (1) CN108886000A (ja)
TW (1) TWI699822B (ja)
WO (1) WO2017145199A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451364B1 (en) * 2017-08-28 2020-02-26 Siltronic AG Heteroepitaxial wafer and method for producing a heteroepitaxial wafer
KR20210045835A (ko) * 2019-10-17 2021-04-27 삼성전자주식회사 반도체 박막 구조체 및 이를 포함하는 전자 소자
TWI735212B (zh) * 2020-04-24 2021-08-01 環球晶圓股份有限公司 具有超晶格疊層體的磊晶結構
EP4281996A1 (en) * 2021-01-19 2023-11-29 Alliance for Sustainable Energy, LLC Dynamic hvpe of compositionally graded buffer layers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221001A (ja) * 2006-02-17 2007-08-30 Furukawa Electric Co Ltd:The 半導体素子
JP2010232293A (ja) * 2009-03-26 2010-10-14 Sanken Electric Co Ltd 半導体装置
JP2012243871A (ja) * 2011-05-17 2012-12-10 Advanced Power Device Research Association 半導体素子及びその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685030B2 (ja) * 1995-05-26 1997-12-03 日本電気株式会社 半導体装置及びその製造方法
JP4525894B2 (ja) 2003-11-21 2010-08-18 サンケン電気株式会社 半導体素子形成用板状基体及びこの製造方法及びこれを使用した半導体素子
US7535033B2 (en) * 2004-09-14 2009-05-19 Banpil Photonics, Inc. Multicolor photodiode array and method of manufacturing
US7599593B2 (en) * 2004-12-09 2009-10-06 The Board Of Trustees Of The Leland Stanford Junior University Ge-Si quantum well structures
WO2006085361A1 (ja) * 2005-02-09 2006-08-17 Fujitsu Limited 発光デバイス及び半導体装置
JP4592742B2 (ja) * 2007-12-27 2010-12-08 Dowaエレクトロニクス株式会社 半導体材料、半導体材料の製造方法及び半導体素子
US7998835B2 (en) * 2008-01-15 2011-08-16 Globalfoundries Singapore Pte. Ltd. Strain-direct-on-insulator (SDOI) substrate and method of forming
US7868318B2 (en) * 2008-11-07 2011-01-11 Intel Corporation Quantum well field-effect transistors with composite spacer structures, apparatus made therewith, and methods of using same
US8115235B2 (en) * 2009-02-20 2012-02-14 Intel Corporation Modulation-doped halo in quantum well field-effect transistors, apparatus made therewith, and methods of using same
US8946863B2 (en) * 2009-08-04 2015-02-03 Dowa Electronics Materials Co., Ltd. Epitaxial substrate for electronic device comprising a high resistance single crystal substrate on a low resistance single crystal substrate, and method of manufacturing
WO2011136052A1 (ja) * 2010-04-28 2011-11-03 日本碍子株式会社 エピタキシャル基板およびエピタキシャル基板の製造方法
JP5708187B2 (ja) * 2011-04-15 2015-04-30 サンケン電気株式会社 半導体装置
JP5624940B2 (ja) * 2011-05-17 2014-11-12 古河電気工業株式会社 半導体素子及びその製造方法
US8742396B2 (en) * 2012-01-13 2014-06-03 Dowa Electronics Materials Co., Ltd. III nitride epitaxial substrate and deep ultraviolet light emitting device using the same
JP5785103B2 (ja) * 2012-01-16 2015-09-24 シャープ株式会社 ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ
US9165766B2 (en) * 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
EP2819152A4 (en) * 2012-02-23 2015-10-14 Ngk Insulators Ltd SEMICONDUCTOR ELEMENT AND METHOD FOR MANUFACTURING THE SAME
US9437726B2 (en) * 2013-07-19 2016-09-06 Sharp Kabushiki Kaisha Field effect transistor
JP5698321B2 (ja) * 2013-08-09 2015-04-08 Dowaエレクトロニクス株式会社 Iii族窒化物半導体エピタキシャル基板およびiii族窒化物半導体発光素子ならびにこれらの製造方法
WO2015068448A1 (ja) * 2013-11-06 2015-05-14 シャープ株式会社 窒化物半導体
EP2983195A1 (en) * 2014-08-04 2016-02-10 EpiGan NV Semiconductor structure comprising an active semiconductor layer of the iii-v type on a buffer layer stack and method for producing semiconductor structure
US9653642B1 (en) * 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221001A (ja) * 2006-02-17 2007-08-30 Furukawa Electric Co Ltd:The 半導体素子
JP2010232293A (ja) * 2009-03-26 2010-10-14 Sanken Electric Co Ltd 半導体装置
JP2012243871A (ja) * 2011-05-17 2012-12-10 Advanced Power Device Research Association 半導体素子及びその製造方法

Also Published As

Publication number Publication date
TWI699822B (zh) 2020-07-21
US10586701B2 (en) 2020-03-10
US20190051515A1 (en) 2019-02-14
CN108886000A (zh) 2018-11-23
JPWO2017145199A1 (ja) 2018-12-06
JP6653750B2 (ja) 2020-02-26
TW201742118A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
JP5804768B2 (ja) 半導体素子及びその製造方法
JP5836158B2 (ja) 歪吸収中間層遷移モジュールを有するiii族窒化物半導体構造
JP5309451B2 (ja) 半導体ウエーハ及び半導体素子及び製造方法
CN106663596B (zh) 包括在缓冲层堆叠上的iii-v型有源半导体层的半导体结构和用于生产半导体结构的方法
US20120126239A1 (en) Layer structures for controlling stress of heteroepitaxially grown iii-nitride layers
JP5787417B2 (ja) 窒化物半導体基板
JP5133927B2 (ja) 化合物半導体基板
US8969880B2 (en) Epitaxial substrate and method for manufacturing epitaxial substrate
CN110544716B (zh) Iii-n半导体结构及形成iii-n半导体结构的方法
CN107004579B (zh) 外延晶片、半导体元件、外延晶片的制造方法、以及半导体元件的制造方法
EP2554719A1 (en) Epitaxial substrate and method for manufacturing epitaxial substrate
WO2017145199A1 (ja) 半導体基体及び半導体装置
JP2009260296A (ja) 窒化物半導体エピタキシャルウエハ及び窒化物半導体素子
JP5824814B2 (ja) 半導体ウエーハ及び半導体素子及びその製造方法
CN112687732B (zh) 半导体薄膜结构以及包括其的电子器件
US20160079408A1 (en) Semiconductor device and a method of manufacturing the same
US9530846B2 (en) Nitride semiconductor substrate
US9401420B2 (en) Semiconductor device
JP2015207771A (ja) 化合物半導体基板
JP2015103665A (ja) 窒化物半導体エピタキシャルウエハおよび窒化物半導体
US11316007B2 (en) Epitaxial structure
JP7388422B2 (ja) 窒化物半導体基板の製造方法
JP7457053B2 (ja) 窒化物半導体積層物、半導体装置、および窒化物半導体積層物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501400

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891362

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891362

Country of ref document: EP

Kind code of ref document: A1