WO2017143766A1 - 基于独立模块组合的3u机箱结构的列车烟火报警通讯方法 - Google Patents

基于独立模块组合的3u机箱结构的列车烟火报警通讯方法 Download PDF

Info

Publication number
WO2017143766A1
WO2017143766A1 PCT/CN2016/099189 CN2016099189W WO2017143766A1 WO 2017143766 A1 WO2017143766 A1 WO 2017143766A1 CN 2016099189 W CN2016099189 W CN 2016099189W WO 2017143766 A1 WO2017143766 A1 WO 2017143766A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
detector
command
information
port
Prior art date
Application number
PCT/CN2016/099189
Other languages
English (en)
French (fr)
Inventor
尹国瑞
许相凯
高松
安普春
孙佳胜
张振
Original Assignee
中车青岛四方车辆研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620742954.4U external-priority patent/CN205788629U/zh
Priority claimed from CN201610555116.0A external-priority patent/CN106205013B/zh
Priority claimed from CN201610555328.9A external-priority patent/CN106128001B/zh
Application filed by 中车青岛四方车辆研究所有限公司 filed Critical 中车青岛四方车辆研究所有限公司
Priority to RU2017137144A priority Critical patent/RU2674493C1/ru
Priority to KR1020177030886A priority patent/KR101914531B1/ko
Priority to EP16891214.5A priority patent/EP3267411B1/en
Priority to US15/737,240 priority patent/US10147292B2/en
Priority to JP2018511693A priority patent/JP6475395B1/ja
Publication of WO2017143766A1 publication Critical patent/WO2017143766A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0036Conductor-based, e.g. using CAN-Bus, train-line or optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning or like safety means along the route or between vehicles or trains
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/004Alarm propagated along alternative communication path or using alternative communication medium according to a hierarchy of available ways to communicate, e.g. if Wi-Fi not available use GSM
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/14Central alarm receiver or annunciator arrangements
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40032Details regarding a bus interface enhancer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5069Address allocation for group communication, multicast communication or broadcast communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the invention relates to the technical field of rail vehicle fire alarm, in particular to a train pyrotechnic alarm communication method based on a 3U chassis structure with independent module combination.
  • the high-speed EMU is a very complex and high-speed maneuvering tool. It is equipped with various electrical equipment and has a large number of wires and cables. Due to its small transportation environment, personnel crowding, evacuation and rescue difficulties, In the event of a fire, if it is not discovered in time and the corresponding measures are taken, it will bring about a large number of casualties and economic losses. Because there are too many monitoring positions in the train, and the number, location and functions of the detectors required by each type of vehicle are diversified, the traditional pyrotechnic alarm communication system and method can no longer meet the needs of high-speed train development. Therefore, it is necessary to invent an intelligent pyrotechnic alarm communication method suitable for high-speed EMUs, which can meet the functional requirements and interface requirements of various EMUs.
  • the traditional pyrotechnic alarm device adopts an integrated structure. Due to its single function and small volume, it is generally installed in a narrow space on the vehicle, and the mechanical interfaces of each model are various. Once the device fails, it needs to be completely disassembled and returned to the factory, which causes great inconvenience to the maintenance and maintenance of the device.
  • the traditional pyrotechnic alarm device In terms of electrical interface, the traditional pyrotechnic alarm device generally only has the RS485 communication interface or MVB communication interface or hard-wire interface of the applicable model, which can not fully integrate the characteristics of multiple networks of the vehicle to complete the redundancy of the interface and increase the security of the system. Sex.
  • CAN communication is a common communication method for vehicle systems, usually the device is suspended from the CAN bus, and the device address is configured by software or hardware to identify the device, but the number of detectors on the train is Changes in demand, the number of probes on each model and each car is not fixed, resulting in more restrictions on the number of detectors and configuration flexibility of existing pyrotechnic alarm devices.
  • a train pyrotechnic alarm system and method based on a wireless sensor network is disclosed.
  • the information of each location is collected by a plurality of pyrotechnic alarm nodes distributed in the train body, and the information is transmitted to the gateway node by wireless routing, and the gateway node collects and classifies the information uploaded by the pyrotechnic alarm node.
  • Data, the information data is uploaded to the train network control system by wire, and the train network control system processes the information and gives an alarm prompt.
  • the above alarm method only the wireless routing method between the alarm node and the network node is indicated, and multiple detectors are suspended on the same communication bus, because the number of detectors on the train changes with the demand, each type of vehicle, each section The number of probes on the carriage is not fixed.
  • the above-mentioned multi-node communication through a bus requires address coding of the detector in software or hardware, that is, each detector on the bus needs to set its own address to This identifies the corresponding detector, which is limited by the number of detectors that require a more flexible configuration.
  • the pyrotechnic controller of the pyrotechnic alarm device comprises a main controller, a fault detection module, a buzzer, an indicator light, a display screen and a communication module, and the main controller respectively uses an internal bus. Connected to the fault detection module, buzzer, indicator light, display and communication module.
  • the above alarm device does not disclose the communication mode of the internal bus, nor does it specifically disclose the interface and the specific connection mode of the main controller and each module, and thus cannot extract the versatility and communication reliability of the interface of the alarm device.
  • Chinese Patent No. CN104143246 A discloses an EMU pyrotechnic alarm system
  • the microprocessor of the alarm system has two CAN bus interfaces, and there are a plurality of pyrotechnic detectors, which are connected in series through the CAN bus.
  • Data transmission is two-way transmission, using different CAN mailboxes, one channel is transmitted to one CAN bus transceiver of the controller, and the other is transmitted to the opposite CAN line transceiver of the controller, when one CAN bus is broken After the opening, the other way can still work to ensure the normal transmission of data.
  • the above alarm system suspends multiple detectors on one CAN bus, and needs to address the detectors in software or hardware, that is, each detector on the bus needs to set its own address, thereby identifying the corresponding detection.
  • FIG. 201364635 Y discloses a high-speed train fire alarm control system.
  • the CAN bus transceiver module of the control system connects each detector and controller, and each connection is an independent CAN bus, each The detector and controller have two addresses. That is, although the controller and the detector and the detector and the detector are connected by a separate CAN bus, each detector needs to be provided with an independent address to identify the corresponding detector and affect the configuration flexibility.
  • the technical solution of the present invention is: a train pyrotechnic alarm communication method based on a 3U chassis structure of a separate module combination, the communication method comprising the following steps:
  • the IO board's car number connector X4 external address line identifies the car number, calling the detector configuration
  • the detector collects ambient temperature information and smoke fog information around each detector, and transmits the collected temperature information and the smoke dense fog information to the CPU board for processing;
  • the CPU board judges the collected temperature information and the smoke fog information. When the temperature or smoke concentration exceeds the set threshold, the alarm information is output; the CPU board sends the alarm information to the driver room HMI display through the vehicle network;
  • the IO board is disconnected from the signal output of the vehicle safety loop, and an alarm message is sent to the HMI display of the driver's cab, and the red alarm indicator corresponding to the DISP board and the alarm detector is illuminated;
  • the DS board collects temperature information, smoke fog information and alarm information for storage; the Enet board collects temperature information, smoke fog information and alarm information, and the status and storage status of each board, which is hung on the switch via Ethernet; wireless The board uploads the above information to the cloud server.
  • the detector comprises a CAN interface type detector or an FSK interface type detector
  • the CAN interface type detector or the FSK interface type detector collects temperature information and smoke dense fog information respectively through a CAN board or an FSK board. Transfer to CPU board processing.
  • the CAN interface detector and the CAN board, the FSK interface type detector and the FSK board adopt the same communication method, and the communication mechanisms include two types, namely, a group-response mechanism and a name-response mechanism.
  • the communication mechanism between the detector and the CAN board or the FSK board is a group sending-responding mechanism; the group sending-answering mechanism includes two processes of group command sending and group command answering.
  • the CAN board sends a command frame address incrementing operation to the cluster FSD group command.
  • the CAN board sends a command frame through its port CAN#0.
  • the first detector FSD1 receives the command frame from the CAN board and forwards it. At the same time of forwarding, the command frame address is subjected to address processing, and a new command frame address is calculated and sent to the next detector FSD; when the group command response process, the nth detector FSDn sends and forwards the node through its port CAN#1.
  • the detector responds from the command frame address and receives the response frame ID from other probes through its port CAN#0; the nth probe FSDn forwards the response of the local node detector from the command frame while addressing the command frame address
  • the addition process is performed to calculate a new transmission from the command frame address to the previous detector FSD.
  • the communication mechanism between the detector and the CAN board or the FSK board is a name-response mechanism; the name-response mechanism includes two processes of a point name command sending and a point name command answering.
  • the CAN board sends a command frame address decrement operation to the command FSD slave node.
  • the CAN board sends a command frame through its port CAN#0.
  • the first detector FSD1 receives the command frame from the CAN board and forwards it.
  • the command frame address is subjected to address decrement processing, and a new command frame address is calculated and sent to the next detector FSD; when the name command is answered, the command frame address of the nth detector FSDn port CAN#1 and the command of the point name command are executed.
  • the frame address is consistent, only the nth detector FSDn responds to the point name command, and forwards the response of the node from the command frame to the address of the command frame address, and calculates a new feedback from the command frame address to the previous one. Detector FSD.
  • the pyrotechnic alarm device used in the communication method includes a power board, an IO board, a CPU board, a CAN board, an FSK board, a DS board, a DISP board, an Enet board, an LCD touch screen, and a wireless board. Each board communicates through the backplane bus.
  • the CAN board and each detector FSD are provided with port CAN#0 and port CAN#1, and port CAN#0 and port CAN#1 both have frame address receiving and transmitting functions; CAN board port CAN#0 is connected.
  • Port CAN#1 of one detector FSD1, port CAN#0 of the first detector FSD1 is connected to port CAN#1 of the next detector FSD, and port CAN#0 of the next detector FSD is connected to the port of the nth detector FSDn CAN#1, the port of the nth detector FSDn CAN#0 is connected to the port CAN#1 of the CAN board;
  • the CAN board is connected to the adjacent detector FSD, and the adjacent detector FSD is independently connected by the CAN bus.
  • Each of the detectors FSD is internally provided with a data forwarding module, and the data forwarding module modifies and forwards the received command frame address.
  • the train fire alarm device adopts modular design, each board is independently installed in the 3U chassis, the layout is compact, and each board can be flexibly configured to realize module level maintenance and maintenance;
  • each board of the train pyrotechnic alarm device is compatible with the existing vehicle network interface, ensuring the device usability and improving the matching of the device with the multi-model vehicle;
  • the CAN frame address of the detector is incremented or decremented by the detector forwarding mechanism, and the CAN frame address of each detector is distinguished.
  • the address of the response frame is also different, eliminating the process of address encoding the detector and enhancing the configurability of the system;
  • FIG. 1 is a schematic structural view of a pyrotechnic alarm device of the present invention
  • FIG. 2 is a schematic diagram of a CAN board card group command sending process according to the present invention.
  • FIG. 3 is a schematic diagram of a CAN board card group command response process according to the present invention.
  • FIG. 4 is a schematic diagram of a CAN board card name command sending process according to the present invention.
  • FIG. 5 is a schematic diagram of a CAN board card name command response process according to the present invention.
  • the invention discloses a train pyrotechnic alarm communication method based on a 3U chassis structure with independent module combination.
  • the pyrotechnic alarm device used in the communication method comprises a plurality of independent boards, and each independent board can be separately disassembled and assembled, and can be increased or decreased according to vehicle needs. It is conducive to the maintenance and upgrade of the device.
  • each independent board is divided into functions according to functions, including power board, IO board, CPU board, CAN board, FSK board, DS board, DISP board, Enet board, LCD touch screen.
  • each board is electrically connected through the backplane bus, the power board is used to supply power to each board, detector and liquid crystal touch screen;
  • the digital board is equipped with digital input and output modules;
  • CAN board and FSK board The card is connected with the detector and collects temperature information and smoke fog information, and transmits the temperature information and the smoke fog information to the CPU board for processing;
  • the CPU board receives the temperature information and the smoke fog information and processes and judges, and outputs Alarm information;
  • DISP board panel is equipped with red alarm indicator, yellow fault indicator and reset button, red alarm indicator receives and displays alarm information, yellow fault indicator receives and displays fault information, red alarm indicator, yellow fault indication
  • the lamp corresponds to the detector one by one;
  • the DS board receives and stores temperature information, smoke concentration information, alarm information and fault information;
  • a voltage conversion module is built in the power board to convert DC110V/DC24V DC power into DC24V/DC12V/DC5V DC power.
  • the power board has two connectors, which are a power input connector X1 and a power output connector X2.
  • the power input connector X1 can be connected to a DC110V power supply and a DC24V power supply, and is compatible with different voltage outputs of ordinary trucks and EMUs; Connector X2 outputs DC24V, DC12V and DC5V DC voltages.
  • the DC24V is connected to the external detector through the backplane bus, and is used for powering the external detector.
  • the DC12V is connected to the liquid crystal touch screen through the backplane bus, and is used for powering the LCD touch screen, and the DC5V passes through the backplane bus and each board. Cards are connected to power each board.
  • the power input connector X1 uses a three-pin connector.
  • the input voltage is DC110V.
  • the pin definitions are shown in Table 1:
  • the power output connector X2 uses a three-pin connector.
  • the output voltage is DC24V.
  • the pin definitions are shown in Table 2:
  • Digital input and output modules are provided in the IO board for system digital input and output.
  • the IO board has two connectors, a safety loop connector X3 and a car number connector X4.
  • the safety loop connector X3 uses a 5-pin connector with pin definitions as shown in Table 3:
  • the DO1 end of the safety loop connector X3 is a normally open contact output; the D02 end is a normally closed contact output; the COM end is a common end; and the NC end is suspended.
  • the safety loop connector X3 is connected to the vehicle safety loop.
  • the IO board receives the alarm message determined by the CPU board, the normally closed contact of the safety loop connector X3 is disconnected, and then the vehicle safety loop is disconnected.
  • the car number connector X4 uses a 7-pin connector, and its pin definition is shown in Table 4:
  • the ADD0 ⁇ ADD4 end is used for the car number identification, and the GND end is the ground end.
  • the car number connector X4 is connected to the car address line and supports up to 32 car address codes to meet the requirements of up to 16 knots for all existing models.
  • Both the CAN board and the FSK board communicate with the detector to collect temperature and smoke fog information, and transmit the collected information to the CPU board through the backplane bus.
  • the CAN board collects CAN interface type detector status information, FSK
  • the board collects FSK interface type detector status information; at the same time, the CAN board and the FSK board transmit the collected detector information to the DS board.
  • the CAN board and the FSK board communicate with the detector, they use loop redundancy to automatically identify the detector position and diagnose the detector status.
  • the CAN board and the FSK board communicate with the detector through the detector connector X5.
  • the detector connector X5 includes the port CAN0 and the port CAN1
  • the detector includes the first detector FSD1 and the second detector.
  • FSD2... and nth detector FSDn each detector is provided with port CAN#0 and port CAN#1.
  • the port CAN#0 of the CAN board is connected to the port CAN#1 of the first detector FSD1, the port CAN#0 of the first detector FSD1 is connected to the port CAN#1 of the next detector FSD, and the port CAN of the next detector FSD #0 is connected to the port CAN#1 of the nth detector FSDn, and the port CAN#0 of the nth detector FSDn is connected to the port CAN#1 of the CAN board.
  • a CAN bus is connected between the CAN board and the adjacent detector FSD and the adjacent detector FSD.
  • Each of the detectors FSD is internally provided with a data forwarding module, and the data forwarding module modifies the received command frame address. And forwarding.
  • the CPU board communicates with the CAN board and the DS board through the backplane bus.
  • the CPU board processes and collects the collected detector information, and outputs an alarm message when the temperature or smoke concentration exceeds the set threshold.
  • the CPU board is provided with MVB interface, current loop and RS485 interface.
  • the CPU board is connected to the train monitoring system TCMS through the MVB interface, connected to the train communication network TCN through the current loop, connected to the vehicle network through the RS485 interface, and the CPU board passes the above.
  • the interface uploads system alarm information and downloads vehicle configuration information, such as vehicle speed, car number and time.
  • the vehicle network sends alarm information to the driver's room HMI display to alert the driver's cab.
  • the DS board communicates with the CAN board, the FSK board, and the CPU board through the backplane bus, receives the temperature and smoke concentration information collected by the detector, receives the alarm information transmitted by the CPU board, and stores the above information.
  • DC board It has a USB interface and an SPI interface, and downloads the stored information to a storage device such as a USB flash drive through the USB interface, and downloads the stored information to the SD card through the SPI interface, so as to facilitate information analysis after the subsequent fire.
  • the DISP board communicates with the CAN board, the FSK board, and the CPU board through the backplane bus.
  • the DISP board panel is provided with a red alarm indicator, a yellow fault indicator, and a reset button.
  • the red alarm indicator corresponds to the detector one by one, and when the detector detects that the temperature or the smoke concentration exceeds the set threshold, the red alarm indicator corresponding to the detector is illuminated to display the alarm information; when the detector fails The yellow fault indicator corresponding to the detector is lit. By pressing the reset button, all the red alarm indicator and the yellow fault indicator are off. When a fire or fault occurs again, the red alarm indicator and the yellow fault indicator Light up again.
  • the Enet board communicates with each of the above boards through the backplane bus, and collects all temperature information, smoke concentration information, fire alarm status, fault status, communication status between boards, and DS board storage status information. At the same time, the Enet board communicates with the switch through the vehicle Ethernet cable.
  • the user When the vehicle is being repaired, the user only needs to use one PC and connect to any switch to access all the pyrotechnic alarm devices of the vehicle to check whether there is any fault. Download the information recorded in the DS board of any pyrotechnic alarm device and arbitrarily refresh the software of the pyrotechnic alarm device.
  • the wireless board communicates with each of the above boards through the backplane bus, and collects all temperature, smoke concentration, fire alarm status, fault status, communication status and storage status information of the system, and the wireless data acquisition system external wireless data acquisition system GPRS passes the wireless data.
  • the collection system GPRS uploads the above information to the cloud server for the service terminal to monitor and monitor, which is convenient for the user to remotely view.
  • the LCD touch screen communicates with the above-mentioned boards through the backplane bus, collects the information of each board and displays the status of the pyrotechnic alarm device in real time, and can set the parameters of the pyrotechnic alarm device time through the liquid crystal touch screen, and can perform resetting and muffling operations.
  • Ability to view history
  • the pyrotechnic alarm communication method includes the following steps:
  • the car number connector X4 external address line of the IO board identifies the car number, and the detector configuration is called according to the car number.
  • the configuration includes the number of detectors, the detector position distribution, and the detector alarm temperature threshold.
  • the CAN interface detector or the FSK interface detector is used to collect ambient temperature information and smoke fog information around each detector, and the collected information is transmitted to the CPU board through the backplane bus.
  • the CPU board judges according to the collected information. When the temperature or smoke concentration exceeds the set threshold, the alarm information is output; the CPU board sends the alarm information to the vehicle network through the MVB interface, the current loop, and the RS485 interface, via the vehicle network. The alarm message is sent to the driver's room HMI display to alert the driver's cab.
  • the DS board starts, collects the temperature and smoke fog information collected by the CAN board and the FSK board, collects the alarm information of the CPU board, and stores it for subsequent information download and analysis.
  • the IO board After receiving the alarm information of the CPU board determination, the IO board disconnects the normally closed contact of the safety loop connector X3, and then disconnects the signal output with the vehicle safety loop. After the vehicle safety loop is disconnected, the alarm is issued. The information is sent to the driver's room HMI display as redundant information, alerting the driver's cab.
  • the red alarm indicator corresponding to the alarm detector on the panel of the DISP board is illuminated.
  • the yellow fault indicator corresponding to the fault detector is illuminated, indicating the fault information.
  • the wireless board uploads the above information to the cloud server through the wireless data acquisition system GPRS for convenient remote viewing; the system information collected through the backplane bus is displayed through the liquid crystal touch screen, and the system status is displayed in real time.
  • the CAN board of the present invention communicates with each detector by using a CAN communication network, wherein the CAN board acts as a network master node in the CAN communication network, and each detector acts as a network slave node in the CAN communication network.
  • the pyrotechnic alarm device of the invention realizes the connection between the CAN board and the plurality of detectors through the CAN bus, that is, between the CAN board and the adjacent detector, and the adjacent detectors are connected by the independently arranged CAN bus, The data is sent and fed back by the data forwarding mechanism between the detectors.
  • the CAN board acts as a fire controller FSDCU, and the plurality of detectors are a first detector FSD1, a second detector FSD2, ... and an nth detector FSDn.
  • Each unit of the fire controller FSDCU and detector FSD has two ports, port CAN#0 and port CAN#1, port CAN#0 and port CAN#1 can be used for data transmission and reception.
  • the detector has a data forwarding module inside, which can perform logical operation and forwarding on the received command frame address.
  • the connection manner between the fire controller FSDCU and the detector FSD is specifically as follows: the port CAN#0 of the fire controller FSDCU is connected to the port CAN#1 of the first detector FSD1, and the port CAN#0 of the first detector FSD1 is connected to the Port CAN#1 of the second detector FSD2, port CAN#0 of the second detector FSD2 is connected to ..., and so on, the port CAN#0 of the n-1th detector FSD(n-1) is connected to the nth The port CAN#1 of the detector FSDn, the port CAN#0 of the nth detector FSDn is connected to the port CAN#1 of the fire controller FSDCU.
  • the CAN board serving as the fire controller FSDCU is divided into two types according to the command of each detector: a group-response mechanism and a point-and-answer mechanism.
  • the group-send-response mechanism includes two procedures: group command transmission and group command response.
  • the group command transmission and the group command response are one-to-many commands.
  • all detectors FSD respond to fire control.
  • the FSDCU command simultaneously receives and forwards response command frames from other probes FSD.
  • the COM_Frame_ID represents the command frame address sent by the fire controller FSDCU; and the TX_COM_Frame_ID represents the command frame address after being forwarded by the first detector FSD1.
  • Equation (1) performs address increment on the command frame address of the fire controller FSDCU, calculates a new command frame address TX_COM_Frame_ID, and sends a new command frame address TX_COM_Frame_ID to the second through the port CAN#0 of the first detector FSD1. Port CAN#1 of detector FSD2.
  • the data forwarding module in the second detector FSD2 performs address addition processing on the command frame address according to the above formula (1), calculates a new command frame address and sends it to the next detector, and so on until nth.
  • the port CAN#0 of the detector FSDn sends the corresponding command frame address to the port CAN#1 of the fire controller FSDCU, and the fire controller FSDCU selects to answer or not respond to the corresponding command frame address according to the value of the COM_Frame_ID.
  • the CAN board in the group command transmission, sends a command frame address increment operation to the group FSD group command transmission process, and the CAN board sends a command frame through its port CAN#0, and the first detector FSD1 receives the command from The command frame of the CAN board is forwarded and forwarded.
  • the command frame address is processed and processed, and a new command frame address is calculated and sent to the next detector FSD.
  • the port CAN#0 of the first detector FSD1 forwards the command frame to the second probe FSD2 connected to the local node, that is, the group command transmission process described above; on the other hand, the first probe FSD1 port CAN#1 transmits the present
  • the response frame ID of the FSD2 port CAN#1 REP_Frame_ID.
  • TX_REP_Frame_ID REP_Frame_ID+1
  • REP_Frame_ID indicates that the first probe FSD1 receives the response frame ID from the response master node of the other slave node
  • TX_REP_Frame_ID indicates the response slave command frame address that the first probe FSD1 sends or forwards to the fire controller FSDCU through the port CAN#1.
  • the nth detector FSDn transmits and forwards the response of the local node from the command frame address through its port CAN#1 according to the above principle, and receives the response frame ID from other slave nodes through its port CAN#0, and receives the response frame.
  • the ID also includes the response frame of port CAN#1 of the fire controller FSDCU.
  • the nth detector FSDn sends and forwards the response of the local node detector from the command frame address through its port CAN#1, and receives the response from other detectors through its port CAN#0.
  • the frame ID; the nth detector FSDn forwards the response of the node detector from the command frame while performing the address rendition processing from the command frame address, and calculates a new slave command frame address to be sent to the previous detector FSD.
  • the second command transfer type of the CAN board and each detector is a point name-response mechanism.
  • the point name-response mechanism includes two processes of point name command sending and point name command answering.
  • the name command sending and the name command answering are one-to-one commands, acting as a one-to-one command.
  • the CAN board of the fire controller FSDCU contains the address information of the detector FSD. After the CAN board of the fire controller FSDCU issues the name command, only the name command and the detector FSD corresponding to the address of the node respond to the point name command, and The node information of the response is fed back to the CAN board.
  • ID COM_Frame_ID
  • the command frame address is processed by the data forwarding module in the first detector FSD1 according to the following formula (3):
  • the COM_Frame_ID represents the command frame address sent by the fire controller FSDCU; and the TX_COM_Frame_ID represents the command frame address after the first probe FSD1 is forwarded.
  • the address of the command frame address of the probe is decremented, and a new command frame address TX_COM_Frame_ID is calculated, and The new command frame address TX_COM_Frame_ID is transmitted to the port CAN#1 of the second detector FSD2 through the port CAN#0 of the first detector FSD1.
  • the data forwarding module in the second detector FSD2 performs address decrement processing on the command frame address according to the above formula (3), calculates a new command frame address and sends it to the next detector, and so on, until the nth detection.
  • the port CAN#0 of the FSDn sends the corresponding command frame address to the port CAN#1 of the fire controller FSDCU, and the fire controller FSDCU selects to answer or not respond to the corresponding command frame address according to the value of the COM_Frame_ID.
  • the CAN board in the transmission of the name command, sends a command frame address decrement operation to the command transmission process of the slave node of the FSD, and the CAN board sends a command frame through its port CAN#0, and the first detector FSD1 receives the command from The command frame of the CAN board is forwarded, and the address of the command frame is decremented at the same time as the forwarding, and a new command frame address is calculated and sent to the next detector FSD.
  • TX_REP_Frame_ID REP_Frame_ID+1 etc.Formula (4)
  • REP_Frame_ID indicates the response frame ID of the port CAN#0 of the nth probe FSDn in response to the master node
  • TX_REP_Frame_ID indicates the response slave command frame address transmitted or forwarded by the nth probe FSDn to the fire controller FSDCU through the port CAN#1.
  • the command frame address of the slave node that does not match the command frame address of the master node name command does not respond to the point name command.
  • the command frame address of the nth detector FSDn port CAN#1 matches the command frame address of the point name command, and only the nth detector FSDn responds to the point name command, and forwards the response of the node from At the same time as the command frame, the address is processed from the command frame address, and a new slave command frame address is calculated to be fed back to the previous detector FSD.
  • the structure of the FSK board and the communication mode with the detector are the same as those of the CAN board.
  • the group command transmission of the two boards and the group command response and the name command transmission and the name command response form a CAN communication loop and two loops. Data can be received and forwarded in both directions, which is equivalent to two CAN buses.
  • the two CAN buses are redundant with each other to increase communication accuracy and reliability.
  • the CAN bus connection between the fire detector of the present invention and the adjacent detector, and between adjacent detectors is Independently set, the data forwarding module is set inside each detector, and the received command frame address is modified and forwarded by the data forwarding module, and the command frame address is modified by data logic operation, wherein the data logic operation is the received command frame.
  • the address is incremented or decremented, and the frame address of each detector is differentiated by the frame address of the slave node that is incremented or decremented by the command frame address.
  • the master node By responding to the frame address feedback, the master node automatically identifies the number of fire detectors, without The probe is individually address coded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种基于独立模块组合3U机箱结构的列车烟火报警通讯方法,通过IO板卡外接地址线识别车厢号,调用探测器配置;探测器采集温度信息和烟雾浓雾信息,并传送至CPU板卡处理;CPU板卡对采集到的信息进行判断,并输出报警信息;报警后,CPU板卡发送报警信息至司机室HMI显示屏;IO板卡断开与车辆安全环路的信号输出,发送报警信息至司机室HMI显示屏,DISP板卡红色报警指示灯亮;DS板卡、Enet板卡和无线板卡收集存储并上传温度信息、烟雾浓雾信息和报警信息。探测器与CAN板卡通讯时,通过探测器转发机制,对探测器的CAN帧地址的进行递加或递减运算,探测器在收到地址不同CAN帧时,应答帧的地址也不相同,增强***的可配置性。

Description

基于独立模块组合的3U机箱结构的列车烟火报警通讯方法 技术领域
本发明涉及轨道车辆火灾报警技术领域,具体的说,涉及一种基于独立模块组合的3U机箱结构的列车烟火报警通讯方法。
背景技术
高速动车组是一个非常复杂、且处于高速运动状态的载人工具,装载了功能各异的电气设备,铺设了大量的电线电缆,由于其运输环境空间较小、人员密集、疏散和救援困难,一旦发生火情,如果没有及时发现并采取相应措施,会带来较大的人员伤亡和经济损失。由于列车内需要监测位置太多,且各车型车辆所需探测器的数量、位置和功能多样化,传统的烟火报警通讯***与方法已不能满足列车高速发展的需求。因此,发明一种适用于高速动车组、且可以满足各型动车组功能需要、接口需要的智能化烟火报警通讯方法十分必要。
在机械接口方面,传统的烟火报警装置多采用一体化结构,由于功能单一、体积较小,一般安装在车辆上空间较为狭小的位置,且各车型机械接口各式各样。一旦装置出现故障时,需要整体拆卸返厂,给装置的检修和维护造成极大的不方便。
在电气接口方面,传统的烟火报警装置一般只具备所适用车型的RS485通讯接口或者MVB通讯接口或者硬线接口,不能很好地结合车辆多种网络的特点完成接口的冗余,增加***的安全性。
在功能方面,传统的烟火报警装置一旦设计成型,其所具备功能也就固定,很难按照不同车辆的需求,将功能模块进行灵活增加或者删减。且一旦装置出现软件故障,整套***处于“死机”状态,很难判断出故障原因。
在报警通讯方面,由于CAN通信是车辆***常用的一种通信方式,通常设备悬挂于CAN总线,通过软件或硬件对设备地址配置,来对设备进行识别,但由于列车上探测器的个数随需求而更改,每种车型、每节车厢上探头数目并不固定,导致现有的烟火报警装置在探测器数量以及配置灵活性方面限制较多。
现有烟火报警方法中,如中国专利号CN103632484 A公开一种基于无线传感器网络的列车烟火报警***和方法。通过分布于列车车体内的若干烟火报警节点采集各个位置的信息,将信息通过无线路由方式传输给网关节点,网关节点收集并分类由烟火报警节点上传的信息 数据,将信息数据通过有线方式上传至列车网络控制***,列车网络控制***对信息进行处理,进行报警提示。即上述报警方法中,仅指出报警节点与网络节点之间采用无线路由方式,将多个探测器悬挂于同一通讯总线,由于列车上探测器的个数随需求而更改,每种车型、每节车厢上探头数目并不固定,如采用上述多节点通过一条总线进行通讯的方式,需要在软件或硬件上对探测器进行地址编码,即需要总线上的每一个探测器均设置自己的地址,以此来识别相应的探测器,这对于探测器数量多且要求配置较灵活的探测器较为限制。
又如专利号CN204348016 U公开一种列车烟火报警装置,烟火报警装置的烟火控制器包括主控制器、故障检测模块、蜂鸣器、指示灯、显示屏和通信模块,主控制器通过内部总线分别与故障检测模块、蜂鸣器、指示灯、显示屏和通信模块相连。但上述报警装置未公开内部总线的通讯方式,也未具体公开主控制器与各模块的接口及具体连接方式,因而无法提现报警装置接口的通用性及通讯可靠性。
如中国专利号CN104143246 A公开一种动车组烟火报警***,该报警***的微处理器具有两个CAN总线接口,烟火探测器有多个,相互之间通过CAN总线串联。数据传输时为双路传输,采用不同的CAN邮箱,一路传输至控制器的一个CAN总线收发器,另一路向相反的放线传输到控制器的另一个CAN总线收发器,当一路CAN总线断开后,另一路仍可工作,保证数据的正常传输。即上述报警***将多个探测器悬挂于一条CAN总线,需要在软件或硬件上对探测器进行地址编码,即需要总线上的每一个探测器均设置自己的地址,以此来识别相应的探测器,这对于探测器数量多且要求配置较灵活的探测器较为限制。
又如中国专利号CN201364635 Y公开一种高速列车火灾报警控制***,该控制***的CAN总线收发模块将各个探测器和控制器之间连接起来,每个连接都是一个独立的CAN总线,每个探测器和控制器带有两个地址。即上述控制器与探测器以及探测器与探测器之间,虽采用独立CAN总线连接,但仍需各探测器设置独立的地址,以此来识别相应的探测器,影响配置灵活性。
发明内容
本发明的目的是提供一种基于独立模块组合的3U机箱结构的列车烟火报警通讯方法。
本发明的技术方案是:一种基于独立模块组合的3U机箱结构的列车烟火报警通讯方法,该通讯方法包括以下步骤:
IO板卡的车号连接器X4外接地址线识别车厢号,调用探测器配置;
探测器采集各探测器周围环境温度信息和烟雾浓雾信息,将采集到温度信息和烟雾浓雾信息传送至CPU板卡处理;
CPU板卡对采集到温度信息和烟雾浓雾信息进行判断,当温度或烟雾浓度超过设定阈值时,输出报警信息;CPU板卡同时将报警信息通过车辆网络发送至司机室HMI显示屏;
报警后,IO板卡断开与车辆安全环路的信号输出,并发送报警信息至司机室HMI显示屏,同时DISP板卡与报警探测器相应的红色报警指示灯亮;
DS板卡收集温度信息、烟雾浓雾信息和报警信息,进行存储;Enet板卡收集温度信息、烟雾浓雾信息和报警信息以及各板卡通讯状态和存储状态,通过以太网挂在交换机;无线板卡将上述信息上传至云端服务器。
其中,所述的探测器包括CAN接口型探测器或FSK接口型探测器,CAN接口型探测器或FSK接口型探测器将采集到温度信息和烟雾浓雾信息分别通过CAN板卡或FSK板卡传送至CPU板卡处理。
CAN接口型探测器与CAN板卡、FSK接口型探测器与FSK板卡,采用相同的通讯方式,其通讯机制均包括两种,分别为群发-应答机制和点名-应答机制。
所述探测器与CAN板卡或FSK板卡之间的通讯机制为群发-应答机制;群发-应答机制包括群命令发送和群命令应答两个过程。CAN板卡向探测器FSD的群命令发送过程采用命令帧地址递加运算,CAN板卡通过其端口CAN#0发送命令帧,第一探测器FSD1接收来自CAN板卡的命令帧并进行转发,转发的同时对命令帧地址进行址递加处理,计算出新的命令帧地址发送至下一探测器FSD;群命令应答过程时,第n探测器FSDn通过其端口CAN#1发送和转发本节点探测器的应答从命令帧地址,并通过其端口CAN#0接收来自其它探测器的应答帧ID;第n探测器FSDn转发本节点探测器的应答从命令帧的同时对从命令帧地址进行址递加处理,计算出新的从命令帧地址发送至上一探测器FSD。
所述探测器与CAN板卡或FSK板卡之间的通讯机制为点名-应答机制;点名-应答机制包括点名命令发送和点名命令应答两个过程。CAN板卡向探测器FSD从节点的命令发送过程采用命令帧地址递减运算,CAN板卡通过其端口CAN#0发送命令帧,第一探测器FSD1接收来自CAN板卡的命令帧并进行转发,转发的同时对命令帧地址进行址递减处理,计算出新的命令帧地址发送至下一探测器FSD;点名命令应答时,第n探测器FSDn端口CAN#1的命令帧地址与点名命令的命令帧地址相符合,仅第n探测器FSDn响应点名命令,并转发本节点的应答从命令帧的同时对从命令帧地址进行址递加处理,计算出新的从命令帧地址反馈至上一 探测器FSD。
该通讯方法采用的烟火报警装置包括电源板卡、IO板卡、CPU板卡、CAN板卡、FSK板卡、DS板卡、DISP板卡、Enet板卡、液晶触控屏和无线板卡,各板卡通过背板总线进行通讯。
所述CAN板卡和各探测器FSD均设有端口CAN#0和端口CAN#1,端口CAN#0和端口CAN#1均具备帧地址接收与发送功能;CAN板卡端口CAN#0连接第一探测器FSD1的端口CAN#1,第一探测器FSD1的端口CAN#0连接下一探测器FSD的端口CAN#1,下一探测器FSD的端口CAN#0连接第n探测器FSDn的端口CAN#1,第n探测器FSDn的端口CAN#0连接CAN板卡的端口CAN#1;CAN板卡与邻近探测器FSD之间,以及相邻探测器FSD之间通过独立设置CAN总线连接,各探测器FSD内部均设有数据转发模块,数据转发模块对接收到的命令帧地址进行修改及转发。
本发明与现有技术相比的有益效果为:
1)该列车烟火报警装置采用模块化设计,各板卡独立安装于3U机箱中,布局紧凑,各板卡可灵活配置,实现模块级检修与维护;
2)该列车烟火报警装置各板卡的电气接口,兼容现有车辆网络接口,保证装置沿用性,提高装置与多型号车辆的匹配性;
3)CAN板卡通讯时,通过探测器转发机制,对探测器的CAN帧地址的进行递加或递减运算,而区分各探测器的CAN帧地址,探测器在收到地址不同CAN帧时,应答帧的地址也不相同,省去了对探测器进行地址编码的过程,增强***的可配置性;
4)CAN板卡与探测器通讯时,用一个CAN环路的两个方向形成了两路CAN通信,实现冗余功能,与现有两条CAN总线互冗余方式相比,减少走线数量。
附图说明
图1为本发明烟火报警装置的结构示意图;
图2为本发明CAN板卡群命令发送过程示意图;
图3为本发明CAN板卡群命令应答过程示意图;
图4为本发明CAN板卡点名命令发送过程示意图;
图5为本发明CAN板卡点名命令应答过程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
本发明公开一种基于独立模块组合的3U机箱结构的列车烟火报警通讯方法,该通讯方法采用的烟火报警装置包括多块独立板卡,各独立板卡可单独拆装,可根据车辆需要增减,利于装置的维护与升级。
参见图1,将各独立板卡按照功能划分,包括电源板卡、IO板卡、CPU板卡、CAN板卡、FSK板卡、DS板卡、DISP板卡、Enet板卡、液晶触控屏和无线板卡,各板卡通过背板总线实现电气连接,电源板卡为各板卡、探测器和液晶触控屏供电;IO板卡内设数字量输入输出模块;CAN板卡和FSK板卡均通过与探测器连接并采集温度信息和烟雾浓雾信息,并将温度信息和烟雾浓雾信息传送至CPU板卡处理;CPU板卡接收温度信息和烟雾浓雾信息并处理与判断,输出报警信息;DISP板卡面板设有红色报警指示灯、黄色故障指示灯和复位按键,红色报警指示灯接收并显示报警信息,黄色故障指示灯接收并显示故障信息,红色报警指示灯、黄色故障指示灯与探测器一一对应;DS板卡接收并存储温度信息、烟雾浓度信息、报警信息和故障信息;Enet板卡和无线板卡接收温度信息、烟雾浓度信息、报警信息、故障信息、各板卡间通讯状态、DS板卡存储状态,并分别上传至车辆以太网和车辆服务终端。
各板卡结构与功能如下:
电源板卡内设电压转换模块,将DC110V/DC24V直流电转换为DC24V/DC12V/DC5V直流电。电源板卡设有两个连接器,分别为电源输入连接器X1和电源输出连接器X2,电源输入连接器X1可连接DC110V供电和DC24V供电,兼容普通货车和动车组不同的电压输出;电源输出连接器X2输出DC24V、DC12V和DC5V直流电压。其中,DC24V通过背板总线与外部探测器相连,用于为外部探测器供电,DC12V通过背板总线与液晶触控屏相连,用于为液晶触控屏供电,DC5V通过背板总线与各板卡相连,用于为各板卡供电。
电源输入连接器X1采用三芯连接器,如输入电压为DC110V,其针脚定义如表1:
表1电源输入连接器X1针脚表
针脚号 1 2 3
信号名 110+ NC 110-
电源输出连接器X2采用三芯连接器,如输出电压为DC24V,其针脚定义如表2:
表2电源输出连接器X2针脚表
针脚号 1 2 3
信号名 DC24V+ NC DC24V-
IO板卡内设数字量输入输出模块,用于***数字量输入输出。IO板卡设有两个连接器,分别为安全环路连接器X3和车号连接器X4。
安全环路连接器X3采用5芯连接器,其针脚定义如表3:
表3安全环路连接器X3针脚表
针脚号 1 2 3 4 5
信号名 DO1 D02 COM端 NC NC
其中,安全环路连接器X3的DO1端为常开触点输出;D02端为常闭触点输出;COM端为公共端;NC端为悬空。安全环路连接器X3与车辆安全环路相连,当IO板卡收到CPU板卡判定的报警信息后,安全环路连接器X3的常闭触点断开,进而断开与车辆安全环路的信号输出,车辆安全环路断开后,报警信息作为冗余信息发送至司机室HMI显示屏,对司机室进行报警提示。
车号连接器X4采用7芯连接器,其针脚定义如表4:
表4车号连接器X4针脚表
针脚号 1 2 3 4 5 6 7
信号名 ADD0 ADD1 ADD2 ADD3 ADD4 GND GND
其中,ADD0~ADD4端用于车厢号识别,GND端为接地端。车号连接器X4与车厢地址线相连,最多支持32节车辆地址编码,满足现有所有车型最多16节编组的要求。
在进行车辆地址编码时,根据连接器环线接地方式进行二进制编码,车号连接器X4的ADD0~ADD4端与GND环接为0,ADD0~ADD4端悬空为1。ADD0~ADD4端在进行车厢号识别时,每个地址插头必须使用两根环线,否则地址识别为错误,该设置可防止地址重叠导致总线故障。各车厢号定义如表5:
表5车厢号地址编码
车厢号 ADD0 ADD1 ADD2 ADD3 ADD4
1 0 1 1 1 0
2 0 1 1 0 1
3 0 1 0 1 1
4 1 1 1 0 0
5 1 0 1 1 0
6 1 0 1 0 1
7 1 1 0 1 0
8 1 1 0 0 1
CAN板卡和FSK板卡均与探测器通讯,采集温度和烟雾浓雾信息,并通过背板总线将采集到信息传送至CPU板卡处理,CAN板卡采集CAN接口型探测器状态信息,FSK板卡采集FSK接口型探测器状态信息;同时,CAN板卡和FSK板卡将采集到的探测器信息传送至DS板卡。CAN板卡和FSK板卡与探测器通讯时,均采用环路冗余方式,自动识别探测器位置,诊断探测器状态。
CAN板卡和FSK板卡通过探测器连接器X5与探测器通讯,以CAN板卡为例,探测器连接器X5包括端口CAN0和端口CAN1,探测器包括第一探测器FSD1、第二探测器FSD2……和第n探测器FSDn,各探测器均设有端口CAN#0和端口CAN#1。
CAN板卡的端口CAN#0连接第一探测器FSD1的端口CAN#1,第一探测器FSD1的端口CAN#0连接下一探测器FSD的端口CAN#1,下一探测器FSD的端口CAN#0连接第n探测器FSDn的端口CAN#1,第n探测器FSDn的端口CAN#0连接CAN板卡的端口CAN#1。CAN板卡与邻近探测器FSD之间,以及相邻探测器FSD之间通过独立设置CAN总线连接,各探测器FSD内部均设有数据转发模块,数据转发模块对接收到的命令帧地址进行修改及转发。
CPU板卡通过背板总线与CAN板卡和DS板卡通讯,CPU板卡对采集到的探测器信息进行处理并判断,当温度或烟雾浓度超过设定阈值时,输出报警信息。CPU板卡设有MVB接口、电流环和RS485接口,CPU板卡通过MVB接口与列车监控***TCMS相连,通过电流环与列车通信网络TCN相连,通过RS485接口与车辆网络相连,CPU板卡通过上述接口上传***报警信息,并下载车辆配置信息,如车速、车号和时间等,车辆网络将报警信息发送至司机室HMI显示屏,对司机室进行报警提示。
DS板卡通过背板总线与CAN板卡、FSK板卡以及CPU板卡通讯,接收探测器采集的温度和烟雾浓度信息,同时接收CPU板卡传送的报警信息,并对上述信息进行存储。DC板卡 设有USB接口和SPI接口,通过USB接口将存储信息下载到U盘等存储设备,通过SPI接口将存储信息下载到SD卡,便于后续火灾后进行信息分析。
DISP板卡通过背板总线与CAN板卡、FSK板卡以及CPU板卡通讯,DISP板卡面板设有红色报警指示灯、黄色故障指示灯和复位按键。其中,红色报警指示灯与探测器一一对应,探测器检测到温度或烟雾浓度超过设定阈值时,与该探测器相应的红色报警指示灯点亮,显示报警信息;当探测器出现故障时,与该探测器相应的黄色故障指示灯点亮,通过按下复位按键,所有红色报警指示灯和黄色故障指示灯均熄灭,当再次发生火警或故障时,红色报警指示灯和黄色故障指示灯再次点亮。
Enet板卡通过背板总线与上述各板卡通讯,采集***所有的温度信息、烟雾浓度信息、火警状态、故障状态、各板卡间通讯状态和DS板卡存储状态信息。同时Enet板卡通过车辆以太网线与交换机通讯,在整车维修时,用户只需使用一台PC机,连接到任意一台交换机即可访问整车所有烟火报警装置,查看是否有故障,也可下载任意一台烟火报警装置的DS板卡中记录的信息,可任意刷新烟火报警装置的软件。
无线板卡通过背板总线与上述各板卡通讯,采集***所有的温度、烟雾浓度、火警状态、故障状态、通讯状态和存储状态信息,无线数据采集***外接无线数据采集***GPRS,通过无线数据采集***GPRS上传上述信息至云端服务器,供服务终端统筹监控,便于用户远程查看。
液晶触控屏通过背板总线与上述各板卡通讯,收集各板卡信息并实时显示烟火报警装置状态,通过液晶触控屏可进行烟火报警装置时间等参数设置,能够进行复位和消音作业,能够查看历史记录。
该烟火报警通讯方法包括以下步骤:
将IO板卡的车号连接器X4外接地址线识别车厢号,根据车厢号调用探测器配置,配置包括探测器数量、探测器位置分布和探测器报警温度阈值等。
采用CAN接口型探测器或FSK接口型探测器采集各探测器周围环境温度信息和烟雾浓雾信息,通过背板总线将采集到信息传送至CPU板卡处理。
CPU板卡根据采集到的信息进行判断,当温度或烟雾浓度超过设定阈值时,输出报警信息;CPU板卡同时通过MVB接口、电流环、RS485接口将报警信息发送至车辆网络,经车辆网络将报警信息发送至司机室HMI显示屏,对司机室进行报警提示。
DS板卡启动,收集CAN板卡和FSK板卡采集的温度和烟雾浓雾信息、采集CPU板卡的报警信息,进行存储,便于后续进行信息下载和分析。
IO板卡接收到CPU板卡判定的报警信息后,将安全环路连接器X3的常闭触点断开,进而断开与车辆安全环路的信号输出,车辆安全环路断开后,报警信息作为冗余信息发送至司机室HMI显示屏,对司机室进行报警提示。
DISP板卡收到报警信息后,DISP板卡面板上与报警探测器相应的红色报警指示灯亮,同样的,当探测器出现故障时,与故障探测器相应的黄色故障指示灯亮,提示故障信息。当报警与故障信息解除后,按下复位键,红色报警指示灯和黄色故障指示灯均熄灭。
Enet板卡采集***所有的温度、烟雾浓度、火警状态、故障状态、通讯状态和存储状态信息,并通过车辆以太网挂在交换机上,方便查询。
无线板卡通过无线数据采集***GPRS将上述信息上传至云端服务器,方便远程查看;通过液晶触控屏显示通过背板总线收集的***信息,实时显示***状态。
本发明的CAN板卡与各探测器之间采用CAN通讯网络进行通讯,其中,CAN板卡在CAN通讯网络中充当网络主节点,各探测器在CAN通讯网络中充当网络从节点。
本发明的烟火报警装置通过CAN总线实现CAN板卡与多个探测器之间的连接,即CAN板卡与邻近探测器之间,以及相邻探测器之间通过独立设置的CAN总线连接,多个探测器之间通过数据转发机制进行数据发送和反馈。
如图2-5所示,CAN板卡充当火灾控制器FSDCU,多个探测器分别为第一探测器FSD1、第二探测器FSD2……和第n探测器FSDn。火灾控制器FSDCU和探测器FSD每个单元均设有两个端口,分别为端口CAN#0和端口CAN#1,端口CAN#0和端口CAN#1均可用于数据收发。探测器内部均设有数据转发模块,可对接收到的命令帧地址进行数据逻辑运算并转发。
上述火灾控制器FSDCU与探测器FSD的连接方式具体为:火灾控制器FSDCU的端口CAN#0连接到第一探测器FSD1的端口CAN#1,第一探测器FSD1的端口CAN#0连接至第二探测器FSD2的端口CAN#1,第二探测器FSD2的端口CAN#0连接至……,以此类推,第n-1探测器FSD(n-1)的端口CAN#0连接至第n探测器FSDn的端口CAN#1,第n探测器FSDn的端口CAN#0连接至火灾控制器FSDCU的端口CAN#1。
上述通讯方法中,充当火灾控制器FSDCU的CAN板卡相对于各探测器命令分为两种类型:群发-应答机制和点名-应答机制。
群发-应答机制包括群命令发送和群命令应答两个过程,群命令发送和群命令应答为一对多命令,充当火灾控制器FSDCU的CAN板卡发出命令后,所有探测器FSD都响应火灾控制器FSDCU命令,同时接收及转发来自其它探测器FSD的应答命令帧。
群发-应答机制的具体工作过程为:
(1)群命令发送的工作过程为:参见图2,火灾控制器FSDCU作为CAN网络主设备,首先通过其端口CAN#0发送命令帧ID=COM_Frame_ID,第一探测器FSD1的端口CAN#1接收来自火灾控制器FSDCU的命令帧ID=COM_Frame_ID后,通过第一探测器FSD1内的数据转发模块对命令帧地址按照下述公式(1)进行处理:
TX_COM_Frame_ID=COM_Frame_ID+1…………………公式(1)
其中,COM_Frame_ID表示火灾控制器FSDCU发出的命令帧地址;TX_COM_Frame_ID表示经第一探测器FSD1转发后的命令帧地址。
公式(1)对火灾控制器FSDCU的命令帧地址进行地址递加,计算出新的命令帧地址TX_COM_Frame_ID,并将新的命令帧地址TX_COM_Frame_ID通过第一探测器FSD1的端口CAN#0发送至第二探测器FSD2的端口CAN#1。同理,第二探测器FSD2内的数据转发模块对命令帧地址按照上述公式(1)进行地址递加处理,计算出新的命令帧地址发送至下一探测器,以此类推,直至第n探测器FSDn的端口CAN#0将相应命令帧地址发送至火灾控制器FSDCU的端口CAN#1,火灾控制器FSDCU根据COM_Frame_ID值的不同,选择应答或不应答相应命令帧地址。
结合图2,在群命令发送中,CAN板卡向探测器FSD的群命令发送过程采用命令帧地址递加运算,CAN板卡通过其端口CAN#0发送命令帧,第一探测器FSD1接收来自CAN板卡的命令帧并进行转发,转发的同时对命令帧地址进行址递加处理,计算出新的命令帧地址发送至下一探测器FSD。
(2)群命令应答的工作过程为:
参见图3,在群命令的命令帧地址转发过程中,如第一探测器FSD1端口CAN#1在收到火灾控制器FSDCU的端口CAN#0发出的命令帧ID=COM_Frame_ID后,一方面要通过第一探测器FSD1的端口CAN#0向连接至本节点的第二探测器FSD2转发该命令帧,即上述的群命令发送过程;另一方面,通过第一探测器FSD1端口CAN#1发送本节点从命令帧地址以响应命令帧ID=COM_Frame_ID,同时,通过第一探测器FSD1端口CAN#0接收来自第二探测 器FSD2端口CAN#1的应答帧ID=REP_Frame_ID。其中,从命令帧ID通过公式(2)计算获得:
TX_REP_Frame_ID=REP_Frame_ID+1…………………公式(2)
其中REP_Frame_ID表示第一探测器FSD1接收到来自其它从节点的响应主节点的应答帧ID;TX_REP_Frame_ID表示第一探测器FSD1通过端口CAN#1向火灾控制器FSDCU发送或转发的应答从命令帧地址。
同理,第n探测器FSDn依据上述原则通过其端口CAN#1发送和转发本节点的应答从命令帧地址,及通过其端口CAN#0接收来自其它从节点的应答帧ID,接收的应答帧ID同样包括火灾控制器FSDCU的端口CAN#1的应答帧。
结合图3,在群命令应答过程中,第n探测器FSDn通过其端口CAN#1发送和转发本节点探测器的应答从命令帧地址,并通过其端口CAN#0接收来自其它探测器的应答帧ID;第n探测器FSDn转发本节点探测器的应答从命令帧的同时对从命令帧地址进行址递加处理,计算出新的从命令帧地址发送至上一探测器FSD。
CAN板卡与各探测器的第二种命令传递类型为点名-应答机制,点名-应答机制包括点名命令发送和点名命令应答两个过程,点名命令发送和点名命令应答为一对一命令,充当火灾控制器FSDCU的CAN板卡包含有探测器FSD的地址信息,充当火灾控制器FSDCU的CAN板卡发出点名命令后,仅点名命令与与本节点地址相符的探测器FSD响应该点名命令,并向CAN板卡反馈响应的节点信息。
点名-应答机制的具体工作过程为:
(1)点名命令发送的工作过程为:
参见图4,火灾控制器FSDCU作为CAN通讯网络的网络主设备,首先通过其端口CAN#0发送命令帧ID=COM_Frame_ID,第一探测器FSD1的端口CAN#1接收来自火灾控制器FSDCU的命令帧ID=COM_Frame_ID后,通过第一探测器FSD1内的数据转发模块对命令帧地址按照下述公式(3)进行处理:
TX_COM_Frame_ID=COM_Frame_ID-1…………………公式(3)
其中,COM_Frame_ID表示火灾控制器FSDCU发出的命令帧地址;TX_COM_Frame_ID表示第一探测器FSD1转发后的命令帧地址。
即对探测器的命令帧地址进行地址递减,计算出新的命令帧地址TX_COM_Frame_ID,并 将新的命令帧地址TX_COM_Frame_ID通过第一探测器FSD1的端口CAN#0发送至第二探测器FSD2的端口CAN#1。
同理,第二探测器FSD2内的数据转发模块对命令帧地址按照上述公式(3)进行地址递减处理,计算出新的命令帧地址发送至下一探测器,以此类推,直至第n探测器FSDn的端口CAN#0将相应命令帧地址发送至火灾控制器FSDCU的端口CAN#1,火灾控制器FSDCU根据COM_Frame_ID值的不同,选择应答或不应答相应命令帧地址。
结合图4,在点名命令发送中,CAN板卡向探测器FSD从节点的命令发送过程采用命令帧地址递减运算,CAN板卡通过其端口CAN#0发送命令帧,第一探测器FSD1接收来自CAN板卡的命令帧并进行转发,转发的同时对命令帧地址进行址递减处理,计算出新的命令帧地址发送至下一探测器FSD。
(2)点名命令应答的工作过程为:
参见图5,在点名命令的命令帧地址转发过程中,若第n探测器FSDn端口CAN#1的命令帧地址与主节点点名命令的命令帧地址相符合,则第n探测器FSDn响应点名命令,并按照公式(4)反馈从命令帧地址以响应命令帧ID,其中,从命令帧ID通过公式(4)计算获得:
TX_REP_Frame_ID=REP_Frame_ID+1…………………公式(4)
其中REP_Frame_ID表示第n探测器FSDn的端口CAN#0响应主节点的的应答帧ID;TX_REP_Frame_ID表示第n探测器FSDn通过端口CAN#1向火灾控制器FSDCU发送或转发的应答从命令帧地址。在点名命令应答过程中,与主节点点名命令的命令帧地址不相符的从节点的命令帧地址,不响应点名命令。
结合图5,在点名命令应答中,第n探测器FSDn端口CAN#1的命令帧地址与点名命令的命令帧地址相符合,仅第n探测器FSDn响应点名命令,并转发本节点的应答从命令帧的同时对从命令帧地址进行址递加处理,计算出新的从命令帧地址反馈至上一探测器FSD。
FSK板卡的结构和与探测器的通讯方式与CAN板卡相同,两种板卡的群命令发送与群命令应答以及点名命令发送和点名命令应答各自形成一条CAN通讯环路,两条环路的两个方向均能进行数据接收与转发,相当于两条CAN总线,两条CAN总线互相冗余,增加通讯准确性与可靠性。
同时,本发明的火灾探测器与邻近探测器之间,以及相邻探测器之间的CAN总线连接为 独立设置,各探测器内部均设置数据转发模块,通过数据转发模块对接收到的命令帧地址进行修改及转发,命令帧地址的修改采用数据逻辑运算,其中数据逻辑运算为对接收到的命令帧地址进行递加或递减,通过命令帧地址递加或递减后的从节点的帧地址,区分各探测器的帧地址,通过应答帧地址反馈,主节点自动识别火灾探测器个数,无需对各个探头单独进行地址编码。

Claims (6)

  1. 一种基于独立模块组合的3U机箱结构的列车烟火报警通讯方法,其特征在于包括以下方法步骤:
    IO板卡的车号连接器X4外接地址线识别车厢号,调用探测器配置;
    探测器采集各探测器周围环境温度信息和烟雾浓雾信息,将采集到温度信息和烟雾浓雾信息传送至CPU板卡处理;
    CPU板卡对采集到温度信息和烟雾浓雾信息进行判断,当温度或烟雾浓度超过设定阈值时,输出报警信息;CPU板卡同时将报警信息通过车辆网络发送至司机室HMI显示屏;
    报警后,IO板卡断开与车辆安全环路的信号输出,并发送报警信息至司机室HMI显示屏,同时DISP板卡与报警探测器相应的红色报警指示灯亮;
    DS板卡收集温度信息、烟雾浓雾信息和报警信息,进行存储;Enet板卡收集温度信息、烟雾浓雾信息和报警信息以及各板卡通讯状态和存储状态,通过以太网挂在交换机;无线板卡将上述信息上传至云端服务器。
  2. 根据权利要求1所述的列车烟火报警通讯方法,其特征在于:所述探测器包括CAN接口型探测器或FSK接口型探测器,探测器将采集到温度信息和烟雾浓雾信息分别通过CAN板卡或FSK板卡传送至CPU板卡处理。
  3. 根据权利要求2所述的列车烟火报警通讯方法,其特征在于:所述探测器与CAN板卡或FSK板卡之间的通讯机制为群发-应答机制;群发-应答机制包括群命令发送和群命令应答两个过程;
    CAN板卡向探测器FSD的群命令发送过程采用命令帧地址递加运算,CAN板卡通过其端口CAN#0发送命令帧,第一探测器FSD1接收来自CAN板卡的命令帧并进行转发,转发的同时对命令帧地址进行址递加处理,计算出新的命令帧地址发送至下一探测器FSD;
    群命令应答过程时,第n探测器FSDn通过其端口CAN#1发送和转发本节点探测器的应答从命令帧地址,并通过其端口CAN#0接收来自其它探测器的应答帧ID;第n探测器FSDn转发本节点探测器的应答从命令帧的同时对从命令帧地址进行址递加处理,计算出新的从命令帧地址发送至上一探测器FSD。
  4. 根据权利要求2所述的列车烟火报警通讯方法,其特征在于:所述探测器与CAN板卡或FSK板卡之间的通讯机制为点名-应答机制;点名-应答机制包括点名命令发送和点名命令应答 两个过程;
    CAN板卡向探测器FSD从节点的命令发送过程采用命令帧地址递减运算,CAN板卡通过其端口CAN#0发送命令帧,第一探测器FSD1接收来自CAN板卡的命令帧并进行转发,转发的同时对命令帧地址进行址递减处理,计算出新的命令帧地址发送至下一探测器FSD;
    点名命令应答时,第n探测器FSDn端口CAN#1的命令帧地址与点名命令的命令帧地址相符合,仅第n探测器FSDn响应点名命令,并转发本节点的应答从命令帧的同时对从命令帧地址进行址递加处理,计算出新的从命令帧地址反馈至上一探测器FSD。
  5. 根据权利要求1所述的列车烟火报警通讯方法,其特征在于:该通讯方法采用的烟火报警装置包括电源板卡、IO板卡、CPU板卡、CAN板卡、FSK板卡、DS板卡、DISP板卡、Enet板卡、液晶触控屏和无线板卡,各板卡通过背板总线进行通讯。
  6. 根据权利要求2所述的列车烟火报警通讯方法,其特征在于:所述CAN板卡和各探测器FSD均设有端口CAN#0和端口CAN#1,端口CAN#0和端口CAN#1均具备帧地址接收与发送功能;CAN板卡端口CAN#0连接第一探测器FSD1的端口CAN#1,第一探测器FSD1的端口CAN#0连接下一探测器FSD的端口CAN#1,下一探测器FSD的端口CAN#0连接第n探测器FSDn的端口CAN#1,第n探测器FSDn的端口CAN#0连接CAN板卡的端口CAN#1;CAN板卡与邻近探测器FSD之间,以及相邻探测器FSD之间通过独立设置CAN总线连接,各探测器FSD内部均设有数据转发模块,数据转发模块对接收到的命令帧地址进行修改及转发。
PCT/CN2016/099189 2016-07-14 2016-09-18 基于独立模块组合的3u机箱结构的列车烟火报警通讯方法 WO2017143766A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2017137144A RU2674493C1 (ru) 2016-07-14 2016-09-18 Способ обмена данными дымовой и пожарной сигнализации поезда, основанный на комбинации независимых модулей и конструкции шасси 3u
KR1020177030886A KR101914531B1 (ko) 2016-07-14 2016-09-18 독립 모듈 조합의 3 유닛 섀시 구조 기반의 열차 화재 경보 통신 방법
EP16891214.5A EP3267411B1 (en) 2016-07-14 2016-09-18 Independent module combination 3u chassis structure-based train fire alarm communication method
US15/737,240 US10147292B2 (en) 2016-07-14 2016-09-18 Train smoke and fire alarm communication method based on independent modules combination and 3U chassis structure
JP2018511693A JP6475395B1 (ja) 2016-07-14 2016-09-18 独立したモジュールの組合せおよび3uシャーシ構造に基づく列車の煙および火災警報の通信方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201620742954.4U CN205788629U (zh) 2016-07-14 2016-07-14 基于独立模块组合的3u机箱结构的列车烟火报警装置
CN201610555116.0A CN106205013B (zh) 2016-07-14 2016-07-14 基于自动寻址方式的烟火探测器及通讯方法
CN201610555328.9A CN106128001B (zh) 2016-07-14 2016-07-14 基于独立模块组合3u机箱结构的列车烟火报警通讯方法
CN201620742954.4 2016-07-14
CN201610555328.9 2016-07-14
CN201610555116.0 2016-07-14

Publications (1)

Publication Number Publication Date
WO2017143766A1 true WO2017143766A1 (zh) 2017-08-31

Family

ID=59684711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099189 WO2017143766A1 (zh) 2016-07-14 2016-09-18 基于独立模块组合的3u机箱结构的列车烟火报警通讯方法

Country Status (7)

Country Link
US (1) US10147292B2 (zh)
EP (1) EP3267411B1 (zh)
JP (1) JP6475395B1 (zh)
KR (1) KR101914531B1 (zh)
RU (1) RU2674493C1 (zh)
TR (1) TR201905500T4 (zh)
WO (1) WO2017143766A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582108A (zh) * 2022-03-21 2022-06-03 沈阳中科奥维科技股份有限公司 一种基于LoRa无线通信的列车火灾报警的通信方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674493C1 (ru) * 2016-07-14 2018-12-11 СиЭрЭрСи ЦИНДАО СЫФАН РОЛЛИН СТОК РИСЁРЧ ИНСТИТЬЮТ КО., ЛТД. Способ обмена данными дымовой и пожарной сигнализации поезда, основанный на комбинации независимых модулей и конструкции шасси 3u
US20180194380A1 (en) * 2018-01-09 2018-07-12 Saleh Akbari Method and system of railway track parameter measurement and calculation
CN110955162B (zh) * 2018-09-27 2023-04-07 株洲中车时代电气股份有限公司 一种机车及其多网络通信接口微机控制装置
CN112814675A (zh) * 2019-11-18 2021-05-18 南京宝地梅山产城发展有限公司 一种矿山铲运机故障快速检测装置
US11084120B2 (en) * 2019-11-21 2021-08-10 Stellar Group, Inc. Method and apparatus to monitor a fire state associated with a welding event
CN111080956B (zh) * 2019-12-12 2021-09-24 西安蓝豆新能源科技有限公司 电动汽车停车充电立体车库的两级消防预警***及方法
CN113129536A (zh) * 2019-12-31 2021-07-16 西安中核核仪器有限公司 一种***同步的火灾报警控制***
IT202000004465A1 (it) * 2020-03-03 2021-09-03 Hitachi Rail S P A Rete di comunicazione per treni che riduce il numero di cablaggi elementari
CN111831507B (zh) * 2020-05-31 2022-08-23 中车永济电机有限公司 具有安全等级设计的tcms-riom控制单元
CN113734235A (zh) * 2021-08-16 2021-12-03 中国科学院海洋研究所 一种地铁列车烟雾报警与轴承故障诊断组合装置
CN114283549B (zh) * 2022-01-28 2024-05-31 西安盛赛尔电子有限公司 一种火灾报警***用通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064746B1 (ko) * 2005-12-28 2011-09-15 현대중공업 주식회사 한국형 고속철도의 화재감시 경보 제어방법
CN202916941U (zh) * 2012-11-26 2013-05-01 西安奥赛福科技有限公司 一种列车用火灾报警控制器
CN202916942U (zh) * 2012-11-26 2013-05-01 西安奥赛福科技有限公司 一种列车用智能复合火灾探测器
CN103632484A (zh) * 2012-08-21 2014-03-12 南车青岛四方机车车辆股份有限公司 基于无线传感器网络的列车烟火报警***和方法
CN104091404A (zh) * 2014-07-08 2014-10-08 广西大学 列车车载防火监控***

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925763A (en) * 1973-09-13 1975-12-09 Romesh Tekchand Wadhwani Security system
US3987397A (en) * 1975-04-25 1976-10-19 Belcher Brian E Remote unit for a two-way cable communications system
US4097690A (en) * 1976-11-05 1978-06-27 Precision Components Inc. Intercommunication and alarm telephone system
JP3439507B2 (ja) * 1993-10-26 2003-08-25 能美防災株式会社 火災報知設備
JP3838594B2 (ja) * 1996-03-29 2006-10-25 能美防災株式会社 防災設備
US7154388B2 (en) * 2003-11-13 2006-12-26 The Boeing Company Vehicle compartment smoke and fire indication system and method for use
US20070173961A1 (en) * 2006-01-22 2007-07-26 Shalabh Kumar Automation controller with integrated hmi and modular i/o
US7768411B2 (en) * 2006-10-26 2010-08-03 Celauro Paul J Total temperature information management for commercial airliners apparatus and method therefor
CN201364635Y (zh) 2009-01-21 2009-12-16 深圳市动车电气自动化有限公司 高速列车火灾报警控制***
GB2511809B (en) * 2013-03-14 2015-12-23 Kidde Tech Inc Thermal event detection and notification system
CN104143246A (zh) 2013-05-09 2014-11-12 青岛四方车辆研究所有限公司 动车组烟火报警***
CN204348016U (zh) 2014-11-28 2015-05-20 大连交通大学 一种列车烟火报警装置
RU2674493C1 (ru) * 2016-07-14 2018-12-11 СиЭрЭрСи ЦИНДАО СЫФАН РОЛЛИН СТОК РИСЁРЧ ИНСТИТЬЮТ КО., ЛТД. Способ обмена данными дымовой и пожарной сигнализации поезда, основанный на комбинации независимых модулей и конструкции шасси 3u

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064746B1 (ko) * 2005-12-28 2011-09-15 현대중공업 주식회사 한국형 고속철도의 화재감시 경보 제어방법
CN103632484A (zh) * 2012-08-21 2014-03-12 南车青岛四方机车车辆股份有限公司 基于无线传感器网络的列车烟火报警***和方法
CN202916941U (zh) * 2012-11-26 2013-05-01 西安奥赛福科技有限公司 一种列车用火灾报警控制器
CN202916942U (zh) * 2012-11-26 2013-05-01 西安奥赛福科技有限公司 一种列车用智能复合火灾探测器
CN104091404A (zh) * 2014-07-08 2014-10-08 广西大学 列车车载防火监控***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, DONGJUN ET AL.: "Integrated Supervisory Control System for Power Supply and Safety of Express Freight Train", SYMPOSIA OF EXPRESS FREIGHT TRAIN BRAKING TECHNOLOGY SEMINAR OF VEHICLE COMMITTEE OF CHINA RAILWAY SOCIETY, 31 October 2015 (2015-10-31), pages 200 - 201, XP009502555 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114582108A (zh) * 2022-03-21 2022-06-03 沈阳中科奥维科技股份有限公司 一种基于LoRa无线通信的列车火灾报警的通信方法
CN114582108B (zh) * 2022-03-21 2023-08-22 沈阳中科奥维科技股份有限公司 一种基于LoRa无线通信的列车火灾报警的通信方法

Also Published As

Publication number Publication date
JP6475395B1 (ja) 2019-02-27
KR20180116128A (ko) 2018-10-24
EP3267411A4 (en) 2018-06-13
KR101914531B1 (ko) 2018-11-02
RU2674493C1 (ru) 2018-12-11
US10147292B2 (en) 2018-12-04
EP3267411B1 (en) 2019-03-27
JP2019508757A (ja) 2019-03-28
US20180174417A1 (en) 2018-06-21
TR201905500T4 (tr) 2019-05-21
EP3267411A1 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
WO2017143766A1 (zh) 基于独立模块组合的3u机箱结构的列车烟火报警通讯方法
CN106128001B (zh) 基于独立模块组合3u机箱结构的列车烟火报警通讯方法
CN106598014A (zh) 一种用于实验室的安全监控***
CN205788629U (zh) 基于独立模块组合的3u机箱结构的列车烟火报警装置
CN205203008U (zh) 一种具备列尾功能的车辆电空控制单元
KR102392250B1 (ko) 원격 자가진단이 가능한 소방 특장차량 및 모니터링 시스템
CN102508469B (zh) 安全工器具智能管理***
CN217767435U (zh) 一种Profibus总线双通道冗余通信模块
CN202785342U (zh) 一种集散型起重机测试***
CN206193209U (zh) 物联网电源管理***
CN211859067U (zh) 插座及空调***
CN211127845U (zh) 一种危化品运输车车载数据采集装置
CN102426445A (zh) 列检库双余度智能安全保障及联锁监控***
CN101267444A (zh) 用于动力环境中的监控点和监控中心之间的通讯协议
CN210091368U (zh) 一种车载设备综合监控远程报警***
CN202230384U (zh) 安全工器具智能管理***
CN207115689U (zh) 闸道装置
CN216053293U (zh) 一种报警***传输装置
CN210573247U (zh) 基于新型数字公路养护信息管理***与装置
CN220190527U (zh) 一种多通信手段的智能配电箱***及智能配电箱
CN221225359U (zh) 应用于发电机组并联控制器的扩展传感器***
CN210438254U (zh) 电梯光幕装置、电梯及电梯物联网***
CN210954679U (zh) 一种agv***控制接口模块
CN113888849B (zh) 火灾报警主机总线自适应装置
CN215643011U (zh) 一种基于声波采集的火灾预警***

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016891214

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2017137144

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20177030886

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020177030886

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 15737240

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018511693

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE