WO2017139950A1 - 一种采用塔式太阳能发电技术的太阳能发电*** - Google Patents

一种采用塔式太阳能发电技术的太阳能发电*** Download PDF

Info

Publication number
WO2017139950A1
WO2017139950A1 PCT/CN2016/074038 CN2016074038W WO2017139950A1 WO 2017139950 A1 WO2017139950 A1 WO 2017139950A1 CN 2016074038 W CN2016074038 W CN 2016074038W WO 2017139950 A1 WO2017139950 A1 WO 2017139950A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solar power
drive
motor
driving
Prior art date
Application number
PCT/CN2016/074038
Other languages
English (en)
French (fr)
Inventor
刘湘静
Original Assignee
刘湘静
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘湘静 filed Critical 刘湘静
Priority to PCT/CN2016/074038 priority Critical patent/WO2017139950A1/zh
Publication of WO2017139950A1 publication Critical patent/WO2017139950A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a solar power generation system using tower solar power generation technology.
  • Solar energy is a clean energy source that is now being developed and utilized. At present, the utilization of solar energy is mainly two types of photovoltaic power generation and photothermal power generation.
  • tower power generation In the solar thermal power generation of solar energy, there are tower power generation, tubular power generation, and point power generation.
  • tower power generation is employed.
  • the tower type power generation performs light-heat power generation by emitting light through a solar panel and performing concentrated processing on the light energy.
  • the solar panel since the solar panel is too large, the angle adjustment of the solar panel by a single adjustment mechanism makes the efficiency of collecting solar energy low, and the efficiency of power generation is reduced.
  • the driving voltage of the driving motor is large, and the conventional H-bridge composed of a triode has a low withstand voltage, which greatly reduces the reliability of the driving motor.
  • the technical problem to be solved by the present invention is: in order to overcome the shortcomings of the prior art solar panel, such as poor angular adjustment precision and poor motor drive reliability, a solar energy using tower solar power generation technology with high solar panel angle adjustment precision and reliable motor drive is provided. Power system.
  • a solar power generation system using a tower solar power generation technology comprising a solar power generation device, the solar power generation device comprising four solar panels, a base and a vertical arrangement on the base a first driving device, the solar panel is provided with a second driving device, and the first driving device is drivingly connected to the solar panel through the second driving device;
  • the first driving device includes a vertically disposed first driving motor and is coupled to the first driving motor a first driving shaft, a first connecting shaft, a horizontally disposed second driving motor, two second driving shafts at two ends of the second driving motor and drivingly connected to the second driving motor, and a plurality of second connecting shafts
  • One end of the first connecting shaft is disposed at a top end of the first driving shaft, the other end of the first connecting shaft is coupled to the second driving motor, and the second driving motor is drivingly connected to the second connecting shaft through the second driving shaft
  • the second connecting shaft is connected to the second driving device;
  • the second driving device includes two holders disposed on the solar panel, a third driving motor located in the middle of the holder, a third driving shaft at the two ends of the third driving motor, a fourth driving motor, a fourth driving shaft, and a third connecting shaft, the third driving motor is drivingly connected to the bearing through a third driving shaft, and the fourth driving motor is drivingly connected to the third driving motor through the fourth driving shaft, and one end of the third connecting shaft is a fourth driving motor is connected, and the other end of the third connecting shaft is connected to the second connecting shaft;
  • a central control box is disposed on the first drive shaft, a central control device is disposed in the central control box, the central control device is a PLC, and the central control device is provided with a motor drive module, the first drive The motor, the second driving motor, the third driving motor and the fourth driving motor are all electrically connected to the motor driving module, the motor driving module comprises a motor driving circuit, and the motor driving circuit comprises an integrated circuit, a first resistor and a second resistor a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, and a fifth capacitor, wherein the integrated circuit is provided with one power terminal, one ground terminal, two input terminals, and two output terminals, and the integrated circuit
  • the power supply terminal is externally connected to a 15V DC voltage power supply, and the power supply end of the integrated circuit is grounded through a third capacitor, a fourth capacitor and a fifth capacitor respectively, the ground end of the integrated circuit is grounded, and the two input ends of the integrated circuit are all the way The input terminal is connected to the first resistor and
  • the central control box is provided with a display interface and a control device, and the display interface includes a liquid crystal display.
  • the central control device includes The central control system, the wireless communication module connected to the central control system, the working power module, the display control module and the button control module, the display interface is electrically connected to the display control module, and the control device is electrically connected to the button control module.
  • a battery is disposed in the central control box, and the battery is electrically connected to the working power module.
  • the accuracy of the angle adjustment of the solar power generation device is improved by the high control precision of the servo motor, and the first drive motor, the second drive motor, the third drive motor, and the fourth drive motor are all DC servo motors.
  • the capacitance value of the third capacitor is 10 nF
  • the capacitance value of the fourth capacitor is 100 nF
  • the fifth The capacitance of the capacitor is 1uF.
  • the type of the integrated circuit is BL8023S.
  • the lithium trifluoride battery has the characteristics of high energy storage, thereby improving the sustainable working ability of the solar power generation device, and the storage battery is a trifluoro lithium battery.
  • the outer shape of the solar panel is a curved surface, and the center of the curved surface is away from the first driving device.
  • the invention has the beneficial effects that the solar power generation system adopting the tower solar power generation technology performs rough adjustment of various angles of the solar power generation device by the first driving device, and simultaneously performs various angles on the solar panels by the second driving device. Adjustment, thereby improving the adjustment accuracy of solar energy; not only that, through the high withstand voltage characteristics of the integrated circuit in the motor drive circuit, the drive capability and reliability of the motor drive are improved.
  • FIG. 1 is a schematic structural view of a solar power generation system using a tower solar power generation technology according to the present invention
  • FIG. 2 is a schematic structural view of a solar power generation system using a tower solar power generation technology according to the present invention
  • FIG. 3 is a circuit schematic diagram of a motor drive circuit of a solar power generation system using a tower solar power generation technology according to the present invention
  • FIG. 4 is a system schematic diagram of a solar power generation system using a tower solar power generation technology of the present invention
  • a solar power generation system using a tower solar power generation technology includes a solar power generation device including four solar panels 1, a base 8 and a vertical arrangement on the base 8. a first driving device 3, the solar panel 1 is provided with a second driving device 2, and the first driving device 3 is drivingly connected to the solar panel 1 through the second driving device 2;
  • the first driving device 3 includes a first driving motor 7 disposed vertically, a first driving shaft 19 that is drivingly coupled to the first driving motor 7, a first connecting shaft 18, a second driving motor 17 disposed horizontally, and two a second drive shaft 16 and a plurality of second connecting shafts 15 at both ends of the second drive motor 17 and drivingly connected to the second drive motor 17, and one end of the first connecting shaft 18 is disposed at a top end of the first drive shaft 19, The other end of the first connecting shaft 18 is connected to the second driving motor 17, and the second driving motor 17 passes the The second drive shaft 16 is drivingly connected to the second connecting shaft 15 , and the second connecting shaft 15 is connected to the second driving device 2 ;
  • the second driving device 2 comprises two supports 9 arranged on the solar panel 1, a third driving motor 11 located in the middle of the support 9, a third driving shaft 10 at the two ends of the third driving motor 11, and a fourth driving
  • the motor 13, the fourth drive shaft 12 and the third connecting shaft 14, the third drive motor 11 is drivingly connected to the support 9 via the third drive shaft 10, and the fourth drive motor 13 passes through the fourth drive shaft 12 and
  • the third driving motor 11 is connected to the fourth driving shaft 13 , and the other end of the third connecting shaft 14 is connected to the second connecting shaft 15 ;
  • a central control box 4 is disposed on the first drive shaft 19, a central control device is disposed in the central control box 4, the central control device is a PLC, and a motor drive module 21 is disposed in the central control device.
  • the first drive motor 7, the second drive motor 17, the third drive motor 11, and the fourth drive motor 13 are all electrically connected to the motor drive module 21, the motor drive module 21 includes a motor drive circuit, and the motor drive circuit includes An integrated circuit U1, a first resistor R1, a second resistor R2, a first capacitor C1, a second capacitor C2, a third capacitor C3, a fourth capacitor C4, and a fifth capacitor C5.
  • the integrated circuit U1 is provided with a power supply terminal.
  • the power terminal of the integrated circuit U1 is externally connected with a 15V DC voltage power supply, and the power terminal of the integrated circuit U1 passes through a third capacitor C3, a fourth capacitor C4 and a fifth
  • the capacitor C5 is grounded, the ground of the integrated circuit U1 is grounded, and the two input ends of the integrated circuit U1 are connected to the first resistor R1 and grounded through the first capacitor C1, and the other end is connected to the second resistor.
  • R2 is connected and passed the second Capacitor C1 is grounded.
  • the central control box 4 is provided with a display interface 5 and a control device 6, and the display interface 5 includes a liquid crystal display.
  • the central control device includes a central control system 20, a wireless communication module 22 connected to the central control system 20, and a working power supply module 23,
  • the display control module 24 and the button control module 25 are electrically connected to the display control module 24, and the control device 6 is electrically connected to the button control module 25.
  • the central control box 4 is provided with a battery 26, which is electrically connected to the working power module 23.
  • the accuracy of the angle adjustment of the solar power generation device is improved by the high precision of the servo motor control, and the first drive motor 7, the second drive motor 17, the third drive motor 11, and the fourth drive motor 13 are both DC servo motor.
  • the capacitance value of the third capacitor C3 is 10 nF
  • the capacitance value of the fourth capacitor C4 is 100 nF
  • the capacitance value of the fifth capacitor C5 is 1 uF.
  • the integrated circuit U1 is of the type BL8023S.
  • the lithium trifluoride battery has the characteristics of high energy storage, thereby improving the sustainable working ability of the solar power generation device, and the storage battery 26 is a trifluoro lithium battery.
  • the outer shape of the solar panel 1 is a curved surface, and the center of the curved surface is away from the first driving device 3.
  • the solar power generation device in the solar power generation system using the tower solar power generation technology includes four solar panels 1, and the solar energy collection efficiency is improved by distributing and concentrating the sunlight in the region.
  • the drive mechanism is driven in two stages, a first drive unit 3 and a second drive unit 2.
  • the first driving device 3 is used for angle adjustment of the entire solar power generating device
  • the second driving device 2 is used for angle adjustment of each solar panel 1, thereby improving the accuracy of the angle adjustment.
  • the first driving motor 7 can control the rotation of the first connecting shaft 18 through the first driving shaft 19, and then the second connecting motor 18 drives the second driving motor 17 to rotate in the vertical axis direction;
  • the second drive motor 17 controls the rotation of the second connecting shaft 15 through the second drive shaft 16, thereby ensuring
  • the solar power generating device is rotated in the horizontal axis direction, thereby achieving a rough adjustment of various angles of the solar power generating device.
  • the third driving motor 11 is drivingly connected to the support 9 through the third driving shaft 10, then the solar panel 1 is controlled to rotate in the horizontal axis direction, and then passed through the fourth driving shaft 13 through the fourth driving shaft 12. Controlling the third drive motor 11 ensures that the solar panel 1 is rotated in the direction of the vertical axis, thereby achieving fine adjustment of various angles of the solar panel 1.
  • the integrated circuit U1 drives the driving motor through the first resistor R1 and the second resistor R2, and filters the input power through the third capacitor C3, the fourth capacitor C4 and the fifth capacitor C5 to ensure the driving.
  • Reliability, and the type of integrated circuit U1 is BL8023S, which has high withstand voltage characteristics, improves the drive capability and reliability of the motor drive circuit, and has a clamp reverse voltage function, which improves the reliability of the motor drive circuit. This ensures the reliability of the motor drive.
  • the solar power generation system using the tower solar power generation technology performs rough adjustment of various angles of the solar power generation device by the first driving device 3, and simultaneously performs the solar panel 1 by the second driving device 2. Fine adjustment of the angle, thereby improving the adjustment accuracy of the solar energy 1; not only that, through the high voltage resistance of the integrated circuit U1 in the motor drive circuit, the drive capability and reliability of the motor drive are improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种采用塔式太阳能发电技术的太阳能发电***,包括太阳能发电装置,所述太阳能发电装置包括四块太阳能板(1)、底座(8)和竖直设置在底座(8)上的第一驱动装置(3),所述太阳能板(1)上设有第二驱动装置(2),所述第一驱动装置(3)通过第二驱动装置(2)与太阳能板(1)传动连接。所述太阳能发电***通过第一驱动装置(3)对太阳能发电装置进行各种角度的粗略调节,同时通过第二驱动装置(2)对各太阳能板(1)进行各种角度精细调节,从而提高了太阳能发电***的调节精度性;通过电机驱动电路中的集成电路(U1)高耐压的特点,提高了电机驱动的驱动能力和可靠性。

Description

一种采用塔式太阳能发电技术的太阳能发电*** 技术领域
本发明涉及一种采用塔式太阳能发电技术的太阳能发电***。
背景技术
随着人们社会发展的不断进步,对于能源的需求不断提高,而传统的能源不仅污染严重,而且不可再生,已经无法满足人们对于能源的需求。
太阳能是一种清洁能源,现在人们已经对其进行开发和利用。而目前对于太阳能的利用主要是光电发电和光热发电两种。
在对太阳能进行光热发电中,有塔式发电、管式发电和点式发电,在本发明中,采用了塔式发电。在现有技术中,塔式发电都是通过太阳能板进行发射光,对光能进行集中处理的方式进行光热发电。但是由于太阳能板过大,通过单一的调整机构对太阳能板进行角度调节,使得采集太阳能的效率低下,降低了发电的效率。而且在驱动太阳能板时,驱动电机的驱动电压大,而常规的由三极管组成的H桥耐压较低,大大降低了驱动电机的可靠性。
发明内容
本发明要解决的技术问题是:为了克服现有技术太阳能板角度调节精度差且电机驱动可靠性差的不足,提供一种太阳能板角度调节精度高且电机驱动可靠的采用塔式太阳能发电技术的太阳能发电***。
本发明解决其技术问题所采用的技术方案是:一种采用塔式太阳能发电技术的太阳能发电***,包括太阳能发电装置,所述太阳能发电装置包括四块太阳能板、底座和竖直设置在底座上的第一驱动装置,所述太阳能板上设有第二驱动装置,所述第一驱动装置通过第二驱动装置与太阳能板传动连接;
所述第一驱动装置包括竖直设置的第一驱动电机、与第一驱动电机传动连 接的第一驱动轴、第一连接轴、水平设置的第二驱动电机、两个位于第二驱动电机两端且与第二驱动电机传动连接的第二驱动轴和若干第二连接轴,所述第一连接轴的一端设置在第一驱动轴的顶端,所述第一连接轴的另一端与第二驱动电机连接,所述第二驱动电机通过第二驱动轴与第二连接轴传动连接,所述第二连接轴与第二驱动装置连接;
所述第二驱动装置包括设置在太阳能板上的两个支座、位于支座中间的第三驱动电机、位于第三驱动电机两端的第三驱动轴、第四驱动电机、第四驱动轴和第三连接轴,所述第三驱动电机通过第三驱动轴与支座传动连接,所述第四驱动电机通过第四驱动轴与第三驱动电机传动连接,所述第三连接轴的一端与第四驱动电机连接,所述第三连接轴的另一端与第二连接轴连接;
所述第一驱动轴上设有中控箱,所述中控箱中设有中央控制装置,所述中央控制装置为PLC,所述中央控制装置中设有电机驱动模块,所述第一驱动电机、第二驱动电机、第三驱动电机和第四驱动电机均与电机驱动模块电连接,所述电机驱动模块包括电机驱动电路,所述电机驱动电路包括集成电路、第一电阻、第二电阻、第一电容、第二电容、第三电容、第四电容和第五电容,所述集成电路设有一路电源端、一路接地端、两路输入端和两路输出端,所述集成电路的电源端外接15V直流电压电源,所述集成电路的电源端分别通过第三电容、第四电容和第五电容接地,所述集成电路的接地端接地,所述集成电路的两路输入端,一路输入端与第一电阻连接且通过第一电容接地,另一端输入端与第二电阻连接且通过第二电容接地。
作为优选,为了提高太阳能发电装置的实用性,所述中控箱上设有显示界面和控制装置,所述显示界面包括液晶显示屏。
作为优选,为了提高太阳能发电装置的智能化,所述中央控制装置包括中 央控制***、与中央控制***连接的无线通讯模块、工作电源模块、显示控制模块和按键控制模块,所述显示界面与显示控制模块电连接,所述控制装置与按键控制模块电连接。
作为优选,所述中控箱中设有蓄电池,所述蓄电池与工作电源模块电连接。
作为优选,利用伺服电机控制精度高的特点,提高了太阳能发电装置的角度调节的精度,所述第一驱动电机、第二驱动电机、第三驱动电机和第四驱动电机均为直流伺服电机。
作为优选,为了保证对不同频率的干扰信号进行过滤,从而提高电机驱动电路的驱动可靠性,所述第三电容的电容值为10nF,所述第四电容的电容值为100nF,所述第五电容的电容值为1uF。
作为优选,所述集成电路的型号为BL8023S。
作为优选,三氟锂电池具有高储能的特点,从而提高了太阳能发电装置的可持续工作能力,所述蓄电池为三氟锂电池。
作为优选,为了保证太阳能板的聚焦能力,提高对太阳能的利用率,所述太阳能板的外形为曲面,所述曲面的球心远离第一驱动装置。
本发明的有益效果是,该采用塔式太阳能发电技术的太阳能发电***通过第一驱动装置对太阳能发电装置进行各种角度的粗略调节,同时通过第二驱动装置对各太阳能板进行各种角度精细调节,从而提高了太阳能的调节精度性;不仅如此,通过电机驱动电路中的集成电路高耐压的特点,提高了电机驱动的驱动能力和可靠性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的采用塔式太阳能发电技术的太阳能发电***的结构示意图;
图2是本发明的采用塔式太阳能发电技术的太阳能发电***的结构示意图;
图3是本发明的采用塔式太阳能发电技术的太阳能发电***的电机驱动电路的电路原理图;
图4是本发明的采用塔式太阳能发电技术的太阳能发电***的***原理图;
图中:1.太阳能板,2.第二驱动装置,3.第一驱动装置,4.中控箱,5.显示界面,6.控制装置,7.第一驱动电机,8.底座,9.支座,10.第三驱动轴,11.第三驱动电机,12.第四驱动轴,13.第四驱动电机,14.第三连接轴,15.第二连接轴,16.第二驱动轴,17.第二驱动电机,18.第一连接轴,19.第一驱动轴,20.中央控制***,21.电机驱动模块,22.无线通讯模块,23.工作电源模块,24.显示控制模块,25.按键控制模块,26.支座,U1.集成电路,R1.第一电阻,R2.第二电阻,C1.第一电容,C2.第二电容,C3.第三电容,C4.第四电容,C5.第五电容。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1-图4所示,一种采用塔式太阳能发电技术的太阳能发电***,包括太阳能发电装置,所述太阳能发电装置包括四块太阳能板1、底座8和竖直设置在底座8上的第一驱动装置3,所述太阳能板1上设有第二驱动装置2,所述第一驱动装置3通过第二驱动装置2与太阳能板1传动连接;
所述第一驱动装置3包括竖直设置的第一驱动电机7、与第一驱动电机7传动连接的第一驱动轴19、第一连接轴18、水平设置的第二驱动电机17、两个位于第二驱动电机17两端且与第二驱动电机17传动连接的第二驱动轴16和若干第二连接轴15,所述第一连接轴18的一端设置在第一驱动轴19的顶端,所述第一连接轴18的另一端与第二驱动电机17连接,所述第二驱动电机17通过第 二驱动轴16与第二连接轴15传动连接,所述第二连接轴15与第二驱动装置2连接;
所述第二驱动装置2包括设置在太阳能板1上的两个支座9、位于支座9中间的第三驱动电机11、位于第三驱动电机11两端的第三驱动轴10、第四驱动电机13、第四驱动轴12和第三连接轴14,所述第三驱动电机11通过第三驱动轴10与支座9传动连接,所述第四驱动电机13通过第四驱动轴12与第三驱动电机11传动连接,所述第三连接轴14的一端与第四驱动电机13连接,所述第三连接轴14的另一端与第二连接轴15连接;
所述第一驱动轴19上设有中控箱4,所述中控箱4中设有中央控制装置,所述中央控制装置为PLC,所述中央控制装置中设有电机驱动模块21,所述第一驱动电机7、第二驱动电机17、第三驱动电机11和第四驱动电机13均与电机驱动模块21电连接,所述电机驱动模块21包括电机驱动电路,所述电机驱动电路包括集成电路U1、第一电阻R1、第二电阻R2、第一电容C1、第二电容C2、第三电容C3、第四电容C4和第五电容C5,所述集成电路U1设有一路电源端、一路接地端、两路输入端和两路输出端,所述集成电路U1的电源端外接15V直流电压电源,所述集成电路U1的电源端分别通过第三电容C3、第四电容C4和第五电容C5接地,所述集成电路U1的接地端接地,所述集成电路U1的两路输入端,一路输入端与第一电阻R1连接且通过第一电容C1接地,另一端输入端与第二电阻R2连接且通过第二电容C1接地。
作为优选,为了提高太阳能发电装置的实用性,所述中控箱4上设有显示界面5和控制装置6,所述显示界面5包括液晶显示屏。
作为优选,为了提高太阳能发电装置的智能化,所述中央控制装置包括中央控制***20、与中央控制***20连接的无线通讯模块22、工作电源模块23、 显示控制模块24和按键控制模块25,所述显示界面5与显示控制模块24电连接,所述控制装置6与按键控制模块25电连接。
作为优选,所述中控箱4中设有蓄电池26,所述蓄电池26与工作电源模块23电连接。
作为优选,利用伺服电机控制精度高的特点,提高了太阳能发电装置的角度调节的精度,所述第一驱动电机7、第二驱动电机17、第三驱动电机11和第四驱动电机13均为直流伺服电机。
作为优选,为了保证对不同频率的干扰信号进行过滤,从而提高电机驱动电路的驱动可靠性,所述第三电容C3的电容值为10nF,所述第四电容C4的电容值为100nF,所述第五电容C5的电容值为1uF。
作为优选,所述集成电路U1的型号为BL8023S。
作为优选,三氟锂电池具有高储能的特点,从而提高了太阳能发电装置的可持续工作能力,所述蓄电池26为三氟锂电池。
作为优选,为了保证太阳能板1的聚焦能力,提高对太阳能的利用率,所述太阳能板1的外形为曲面,所述曲面的球心远离第一驱动装置3。
该采用塔式太阳能发电技术的太阳能发电***中的太阳能发电装置,包括了四块太阳能板1,通过对该区域内的太阳光进行分配集中处理,则提高了太阳能的采集效率。其中驱动机构分别两级驱动,第一驱动装置3和第二驱动装置2。第一驱动装置3用来对整个太阳能发电装置进行角度调节,第二驱动装置2用来对各个太阳能板1进行角度调节,从而提高了角度调节的精度。
第一驱动装置3中,第一驱动电机7通过第一驱动轴19能够控制第一连接轴18的转动,再由第一连接轴18带动第二驱动电机17在沿竖直轴线方向进行转动;第二驱动电机17通过第二驱动轴16控制第二连接轴15的转动,则保证 了太阳能发电装置沿水平轴线方向进行转动,从而实现了对太阳能发电装置的各种角度的粗略调节。
第二驱动装置2中,第三驱动电机11通过第三驱动轴10与支座9传动连接,则控制太阳能板1沿水平轴线方向进行转动,再通过第四驱动电机13通过第四驱动轴12控制第三驱动电机11,保证了太阳能板1沿竖直轴线方向进行转动,从而实现了对太阳能板1的各种角度精细调节。
电机驱动电路中,集成电路U1通过第一电阻R1和第二电阻R2对驱动电机进行驱动,通过第三电容C3、第四电容C4和第五电容C5对输入电源进行滤波处理,保证了驱动的可靠性,而且集成电路U1的型号为BL8023S,其具有高耐压的特点,提高了电机驱动电路的驱动能力和可靠性,而且具有嵌位反向电压功能,提高了电机驱动电路的可靠性,从而保证了电机驱动的可靠性。
与现有技术相比,该采用塔式太阳能发电技术的太阳能发电***通过第一驱动装置3对太阳能发电装置进行各种角度的粗略调节,同时通过第二驱动装置2对各太阳能板1进行各种角度精细调节,从而提高了太阳能1的调节精度性;不仅如此,通过电机驱动电路中的集成电路U1高耐压的特点,提高了电机驱动的驱动能力和可靠性。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

  1. 一种采用塔式太阳能发电技术的太阳能发电***,其特征在于,包括太阳能发电装置,所述太阳能发电装置包括四块太阳能板(1)、底座(8)和竖直设置在底座(8)上的第一驱动装置(3),所述太阳能板(1)上设有第二驱动装置(2),所述第一驱动装置(3)通过第二驱动装置(2)与太阳能板(1)传动连接;
    所述第一驱动装置(3)包括竖直设置的第一驱动电机(7)、与第一驱动电机(7)传动连接的第一驱动轴(19)、第一连接轴(18)、水平设置的第二驱动电机(17)、两个位于第二驱动电机(17)两端且与第二驱动电机(17)传动连接的第二驱动轴(16)和若干第二连接轴(15),所述第一连接轴(18)的一端设置在第一驱动轴(19)的顶端,所述第一连接轴(18)的另一端与第二驱动电机(17)连接,所述第二驱动电机(17)通过第二驱动轴(16)与第二连接轴(15)传动连接,所述第二连接轴(15)与第二驱动装置(2)连接;
    所述第二驱动装置(2)包括设置在太阳能板(1)上的两个支座(9)、位于支座(9)中间的第三驱动电机(11)、位于第三驱动电机(11)两端的第三驱动轴(10)、第四驱动电机(13)、第四驱动轴(12)和第三连接轴(14),所述第三驱动电机(11)通过第三驱动轴(10)与支座(9)传动连接,所述第四驱动电机(13)通过第四驱动轴(12)与第三驱动电机(11)传动连接,所述第三连接轴(14)的一端与第四驱动电机(13)连接,所述第三连接轴(14)的另一端与第二连接轴(15)连接;
    所述第一驱动轴(19)上设有中控箱(4),所述中控箱(4)中设有中央控制装置,所述中央控制装置为PLC,所述中央控制装置中设有电机驱动模块(21),所述第一驱动电机(7)、第二驱动电机(17)、第三驱动电机(11)和第四驱动电机(13)均与电机驱动模块(21)电连接,所述电机驱动模块(21)包括电 机驱动电路,所述电机驱动电路包括集成电路(U1)、第一电阻(R1)、第二电阻(R2)、第一电容(C1)、第二电容(C2)、第三电容(C3)、第四电容(C4)和第五电容(C5),所述集成电路(U1)设有一路电源端、一路接地端、两路输入端和两路输出端,所述集成电路(U1)的电源端外接15V直流电压电源,所述集成电路(U1)的电源端分别通过第三电容(C3)、第四电容(C4)和第五电容(C5)接地,所述集成电路(U1)的接地端接地,所述集成电路(U1)的两路输入端,一路输入端与第一电阻(R1)连接且通过第一电容(C1)接地,另一端输入端与第二电阻(R2)连接且通过第二电容(C1)接地。
  2. 如权利要求1所述的采用塔式太阳能发电技术的太阳能发电***,其特征在于,所述中控箱(4)上设有显示界面(5)和控制装置(6),所述显示界面(5)包括液晶显示屏。
  3. 如权利要求2所述的采用塔式太阳能发电技术的太阳能发电***,其特征在于,所述中央控制装置包括中央控制***(20)、与中央控制***(20)连接的无线通讯模块(22)、工作电源模块(23)、显示控制模块(24)和按键控制模块(25),所述显示界面(5)与显示控制模块(24)电连接,所述控制装置(6)与按键控制模块(25)电连接。
  4. 如权利要求2所述的采用塔式太阳能发电技术的太阳能发电***,其特征在于,所述中控箱(4)中设有蓄电池(26),所述蓄电池(26)与工作电源模块(23)电连接。
  5. 如权利要求1所述的采用塔式太阳能发电技术的太阳能发电***,其特征在于,所述第一驱动电机(7)、第二驱动电机(17)、第三驱动电机(11)和第四驱动电机(13)均为直流伺服电机。
  6. 如权利要求1所述的采用塔式太阳能发电技术的太阳能发电***,其特 征在于,所述第三电容(C3)的电容值为10nF,所述第四电容(C4)的电容值为100nF,所述第五电容(C5)的电容值为1uF。
  7. 如权利要求1所述的采用塔式太阳能发电技术的太阳能发电***,其特征在于,所述集成电路(U1)的型号为BL8023S。
  8. 如权利要求4所述的采用塔式太阳能发电技术的太阳能发电***,其特征在于,所述蓄电池(26)为三氟锂电池。
  9. 如权利要求1所述的采用塔式太阳能发电技术的太阳能发电***,其特征在于,所述太阳能板(1)的外形为曲面,所述曲面的球心远离第一驱动装置(3)。
PCT/CN2016/074038 2016-02-18 2016-02-18 一种采用塔式太阳能发电技术的太阳能发电*** WO2017139950A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074038 WO2017139950A1 (zh) 2016-02-18 2016-02-18 一种采用塔式太阳能发电技术的太阳能发电***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074038 WO2017139950A1 (zh) 2016-02-18 2016-02-18 一种采用塔式太阳能发电技术的太阳能发电***

Publications (1)

Publication Number Publication Date
WO2017139950A1 true WO2017139950A1 (zh) 2017-08-24

Family

ID=59625571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074038 WO2017139950A1 (zh) 2016-02-18 2016-02-18 一种采用塔式太阳能发电技术的太阳能发电***

Country Status (1)

Country Link
WO (1) WO2017139950A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666186B2 (en) * 2018-06-25 2020-05-26 Avertronics Inc. Movable solar power apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120067325A (ko) * 2012-06-04 2012-06-25 한밭대학교 산학협력단 태양광 발전 장치 및 태양광 전지판 조절 방법
WO2014081160A1 (ko) * 2012-11-24 2014-05-30 Ryu Ji Yeon 태양추적장치 및 그 운영방법
CN203872122U (zh) * 2014-04-02 2014-10-08 山东泰岱光伏科技有限公司 一种太阳能电池板自动跟踪发电装置
CN203861132U (zh) * 2014-06-02 2014-10-08 金陵科技学院 一种由太阳能供电的清理机器人
CN105105850A (zh) * 2015-08-14 2015-12-02 刘洋 一种用于医疗器械工程的智能辅助机器人
CN204883286U (zh) * 2015-07-22 2015-12-16 河南科技学院 一种基于物联网的农作物病虫害监测预警***
CN105763137A (zh) * 2016-02-18 2016-07-13 刘湘静 一种采用塔式太阳能发电技术的太阳能发电***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120067325A (ko) * 2012-06-04 2012-06-25 한밭대학교 산학협력단 태양광 발전 장치 및 태양광 전지판 조절 방법
WO2014081160A1 (ko) * 2012-11-24 2014-05-30 Ryu Ji Yeon 태양추적장치 및 그 운영방법
CN203872122U (zh) * 2014-04-02 2014-10-08 山东泰岱光伏科技有限公司 一种太阳能电池板自动跟踪发电装置
CN203861132U (zh) * 2014-06-02 2014-10-08 金陵科技学院 一种由太阳能供电的清理机器人
CN204883286U (zh) * 2015-07-22 2015-12-16 河南科技学院 一种基于物联网的农作物病虫害监测预警***
CN105105850A (zh) * 2015-08-14 2015-12-02 刘洋 一种用于医疗器械工程的智能辅助机器人
CN105763137A (zh) * 2016-02-18 2016-07-13 刘湘静 一种采用塔式太阳能发电技术的太阳能发电***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666186B2 (en) * 2018-06-25 2020-05-26 Avertronics Inc. Movable solar power apparatus

Similar Documents

Publication Publication Date Title
CN103558860B (zh) 一种光伏发电用阳光跟随装置
CN107171619B (zh) 一种多功能发电***
CN105763137B (zh) 一种采用塔式太阳能发电技术的太阳能发电***
CN204906253U (zh) 一种追踪反射式集太阳能发电***
CN105305561A (zh) 一种基于无线通讯技术的采用离网光伏发电的充电桩
CN205945625U (zh) 一种基于gps快速寻光的可移动太阳能电池组
CN108512498A (zh) 一种自动跟踪太阳能且能收拢撑开的发电装置
CN204494861U (zh) 一种双镜式太阳能锅炉
WO2017139950A1 (zh) 一种采用塔式太阳能发电技术的太阳能发电***
CN207787132U (zh) 一种高效清洁辊刷装置
CN207706112U (zh) 一种折叠型太阳能发电装置
CN207200641U (zh) 一种跟踪式太阳能板
CN205229817U (zh) 一种太阳能全自动追踪***
CN111987980A (zh) 用于光伏发电的可调式安装支架及其控制***
CN204425249U (zh) 用于太阳能光电板的支撑转动装置
CN106322801A (zh) 仿向日葵式太阳能热水器升降及旋转装置
CN206313515U (zh) 一种光伏板清洁机器人与换道小车之间供电装置
CN109445471A (zh) 一种方位跟踪光伏装置及阵列
CN206542369U (zh) 一种新型太阳能发电装置
CN202275326U (zh) 一种太阳能自动跟踪装置
CN208046537U (zh) 一种光伏支架
CN107544558A (zh) 一种太阳能旋转展示台
CN206041871U (zh) 一种凸镜聚光光伏发电装置
CN206575368U (zh) 一种可追光的太阳能电池板支架
CN104729114A (zh) 一种双镜式太阳能锅炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890184

Country of ref document: EP

Kind code of ref document: A1