WO2017138514A1 - 防曇装置 - Google Patents

防曇装置 Download PDF

Info

Publication number
WO2017138514A1
WO2017138514A1 PCT/JP2017/004359 JP2017004359W WO2017138514A1 WO 2017138514 A1 WO2017138514 A1 WO 2017138514A1 JP 2017004359 W JP2017004359 W JP 2017004359W WO 2017138514 A1 WO2017138514 A1 WO 2017138514A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fogging
evaporator
heater
front window
Prior art date
Application number
PCT/JP2017/004359
Other languages
English (en)
French (fr)
Inventor
浩司 太田
池上 真
雅志 渡邉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017138514A1 publication Critical patent/WO2017138514A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present disclosure relates to an antifogging device that suppresses fogging of a front window of a vehicle.
  • the vehicle is provided with an air conditioner, and this air conditioner suppresses fogging of the front window of the vehicle.
  • an air conditioner one using a refrigeration cycle is known. Air dehumidified by the evaporator constituting the refrigeration cycle is supplied into the passenger compartment, and fogging of the front window is suppressed.
  • Patent Document 1 In addition to the anti-fogging device using such an air conditioner, an anti-fogging device described in Patent Document 1 below has also been proposed.
  • the anti-fogging device described in Patent Document 1 below forms a heater, which is a metal pattern thin enough to secure a field of view, on the front window of a vehicle. Suppressed.
  • This disclosure is intended to provide an anti-fogging device that realizes power reduction on the air-conditioning device side by integrating the anti-fogging by an air-conditioning device using a refrigeration cycle and the anti-fogging control using a heater.
  • the present disclosure is an anti-fogging device that suppresses fogging of a front window (20) of a vehicle, the evaporator (102) provided in the air-conditioning air passage (101) and constituting a part of a refrigeration cycle, and the air flowing out of the evaporator
  • a compressor (103) for compressing the refrigerant
  • a heater core (106) provided on the downstream side of the evaporator in the air conditioning air passage
  • an air mix door (107) for adjusting the inflow of the air that has passed through the evaporator into the heater core
  • a control unit (30) for controlling the behavior of the air mix door and the compressor, and a heater unit (21) for heating the front window without obstructing the field of view of the front window is provided on the vehicle interior side of the front window.
  • the control unit also controls energization to the heater unit, and executes suppression control that suppresses the behavior of the compressor according to the position of the air mix door, and energization to the heater unit is necessary during execution of the suppression control. If it is determined that the heater portion is energized.
  • the control unit executes the suppression control according to the position of the air mix door, for example, it is grasped when it is not essential to drive the compressor according to the position of the air mix door, and the behavior of the compressor is suppressed. can do. If the behavior of the compressor is suppressed, the dehumidifying effect of the air that has passed through the evaporator is reduced. Therefore, the control unit can reduce the fogging of the front window while suppressing the behavior of the compressor by energizing the heater unit when the heater unit needs to be energized during the suppression control.
  • FIG. 1 is a diagram for explaining a schematic configuration of an antifogging apparatus according to an embodiment.
  • FIG. 2 is a diagram for explaining a mutual relationship between functional components of the anti-fogging device according to the embodiment.
  • FIG. 3 is a flowchart for explaining the operation of the antifogging apparatus according to the embodiment.
  • FIG. 4 is a flowchart for explaining the operation of the antifogging apparatus according to the embodiment.
  • FIG. 5 is a flowchart for explaining the operation of the antifogging apparatus according to the embodiment.
  • FIG. 6 is a flowchart for explaining the operation of the antifogging apparatus according to the embodiment.
  • the antifogging device 2 includes an air conditioner 10 and a film heater 21.
  • the anti-fogging device 2 further includes a humidity sensor 22, an operation panel 23, an outside air temperature sensor 24, and a solar radiation amount sensor 25.
  • the air conditioner 10 is an apparatus that performs indoor air conditioning of a vehicle in which the antifogging device 2 is provided.
  • the air conditioner 10 includes an air conditioning air passage 101, an evaporator 102, a compressor 103, a condenser 104, an expansion valve 105, a heater core 106, an air mix door 107, an air conditioning fan 108, and an evaporation drying sensor 109. I have.
  • the evaporator 102, the compressor 103, the condenser 104, and the expansion valve 105 constitute a refrigeration cycle.
  • the compressor 103 is driven by the driving force of an engine mounted on the vehicle.
  • the compressor 103 sucks the refrigerant from the evaporator 102 by being driven, compresses it, and sends it out to the condenser 104.
  • the capacitor 104 is a heat exchanger that cools the high-temperature refrigerant.
  • the refrigerant cooled by the condenser 104 is sent to the expansion valve 105.
  • the refrigerant sent to the expansion valve 105 is expanded and depressurized and sent to the evaporator 102.
  • the evaporator 102 evaporates the refrigerant decompressed by the expansion valve 105.
  • the evaporator 102 is disposed in the air conditioning air passage 101.
  • the air that has passed through the evaporator 102 is cooled and dehumidified, and is sent out to the vehicle interior side.
  • An evaporator drying sensor 109 is disposed in the vicinity of the evaporator 102.
  • the evaporation drying sensor 109 is a sensor for detecting the humidity of the evaporator 102 or the vicinity of the evaporator 102.
  • a heater core 106 is disposed on the downstream side of the evaporator 102.
  • the heater core 106 is a heat exchanger in which the cooling water of the engine that drives the vehicle circulates, and warms the air that passes therethrough.
  • an air mix door 107 is provided between the evaporator 102 and the heater core 106.
  • the air mix door 107 adjusts the flow of air that has passed through the evaporator 102 into the heater core 106.
  • the air mix door 107 is positioned at the maximum cool position 107a indicated by the broken line in the drawing, the air that has passed through the evaporator 102 is completely or substantially completely blocked from flowing into the heater core 106.
  • the film heater 21 is provided on the vehicle interior side of the front window 20.
  • the film heater 21 is formed so as not to block the field of view through the front window 20.
  • the film heater 21 is a layer including a transparent thin film-like or linear heater portion containing any of carbon nanotubes (also called CNT), metal particles, carbon particles, and metal oxide particles, and is configured as a metal vapor deposition film. It may be. For example, it may be configured as a thin film in which any of carbon nanotubes, metal particles, carbon particles, and metal oxide particles is dispersed in a resin serving as a binder. Moreover, you may be comprised by the several line-shaped heating wire using the wire formed using the carbon nanotube. It is also a preferable aspect that the film heater 21 is provided with a protective film or a heat insulating film. The film heater 21 and the components associated therewith correspond to the heater unit of the present disclosure.
  • the humidity sensor 22 is a sensor for detecting the humidity in the passenger compartment, particularly in the vicinity of the front window 20.
  • the humidity sensor 22 corresponds to the fog detection sensor of the present disclosure because it can be determined whether or not the front window 20 is clouded depending on the humidity detected by the humidity sensor 22.
  • the operation panel 23 is an input means that can set the air conditioning state.
  • the air conditioner 10 can be driven as an automatic air conditioner, or can be driven as a manual air conditioner in which parameters such as temperature and air volume can be freely adjusted.
  • the outside air temperature sensor 24 is a sensor for detecting the temperature outside the passenger compartment.
  • the solar radiation amount sensor 25 is a sensor for detecting the solar radiation amount.
  • an ECU (Electronic Control Unit) 30 corresponding to the control unit of the present disclosure includes a humidity sensor 22, an operation panel 23, an outside air temperature sensor 24, a solar radiation amount sensor 25, and an evaporation drying sensor 109.
  • An output detection signal or operation signal is input.
  • the ECU 30 performs calculations based on these detection signals and operation signals, and outputs drive signals for driving them to the compressor 103, the air mix door 107, and the film heater 21.
  • step S101 it is determined whether or not the air mix door 107 is at the max school position 107a. If the air mix door 107 is at the max school position 107a, the process proceeds to step S102. If the air mix door 107 is not at the max school position 107a, the process proceeds to step S103.
  • step S102 the air conditioner 10 is driven in a normal mode in which the compressor 103 is operated.
  • the temperature setting and the air volume setting are appropriately performed based on information input from the operation panel 23.
  • step S103 the air conditioner 10 and the film heater 21 are driven in a heater use mode in which the compressor 103 is not operated.
  • the heater use mode corresponds to the suppression control of the present disclosure.
  • the compressor 103 is stopped, and air that is not cooled and dehumidified by the evaporator 102 is supplied.
  • step S104 it is determined whether or not the front window 20 is cloudy.
  • the ECU 30 determines whether or not fogging has occurred based on the humidity data detected by the humidity sensor 22. If it is determined that the front window 20 is not fogged, the process returns. If it is determined that the front window 20 is fogged, the process proceeds to step S105.
  • step S105 the film heater 21 is energized.
  • the process of step S105 returns to step S104.
  • the ECU 30 that is the control unit executes the suppression control according to the position of the air mix door 107, and it is not essential to drive the compressor 103 by the position of the air mix door 107. And the behavior of the compressor 103 is suppressed. If the behavior of the compressor 103 is suppressed, the dehumidifying effect of the air that has passed through the evaporator 102 is reduced. Therefore, the ECU 30 reduces the fogging of the front window 20 while suppressing the behavior of the compressor 103 by energizing the film heater 21 when the film heater 21 needs to be energized during execution of the suppression control.
  • the ECU 30 executes suppression control when the position of the air mix door 107 is not the max cool position 107a where the air that has passed through the evaporator 102 does not mainly pass through the heater core 106.
  • the air mix door 107 is in the max cool position 107 a, the air that has passed through the evaporator 102 is blown out into the vehicle interior without passing through the heater core 106. If the driving of the compressor 103 is stopped in this state, there is a high probability that the temperature in the passenger compartment will not reach the set temperature, so the compressor 103 is driven without executing the suppression control.
  • the humidity sensor 22 that is a fogging detection sensor that detects the fogging state of the front window 20 is provided.
  • the ECU 30 energizes the film heater 21 when the humidity sensor 22 detects fogging of the front window 20 during execution of the suppression control.
  • the suppression control is executed, the compressor 103 stops, so that the air passing through the evaporator 102 is introduced into the vehicle interior without being dehumidified, and the possibility that the front window 20 becomes cloudy increases. Therefore, the presence or absence of fogging of the front window 20 is determined based on the detection result of the humidity sensor 22, and the film heater 21 is energized based on the determination result. Haze can be removed without driving.
  • step S201 it is determined whether the thermal load on the vehicle on which the antifogging device 2 is mounted is equal to or greater than a predetermined load.
  • the heat load is a load caused by outside air or solar radiation. When the heat load is high, it is necessary to operate the air conditioner 10 so as to lower the temperature in the passenger compartment. If the heat load is grasped from the outside air temperature, whether or not the heat load is equal to or higher than a predetermined load is determined based on whether or not the outside air temperature is equal to or higher than a threshold temperature.
  • step S202 If the heat load is grasped by the amount of solar radiation, whether or not the heat load is equal to or greater than a predetermined load is determined based on whether or not the amount of solar radiation is equal to or greater than a threshold amount. If the thermal load on the vehicle on which the antifogging device 2 is mounted is greater than or equal to the predetermined load, the process proceeds to step S202, and if the thermal load on the vehicle on which the antifogging device 2 is mounted is not greater than the predetermined load, step The process proceeds to S203.
  • step S203 it is determined whether or not the air mix door 107 is at the max cool position 107a. If the air mix door 107 is in the max school position 107a, the process proceeds to step S202. If the air mix door 107 is not in the max school position 107a, the process proceeds to step S204.
  • step S202 the air conditioner 10 is driven in a normal mode in which the compressor 103 is operated.
  • the temperature setting and the air volume setting are appropriately performed based on information input from the operation panel 23.
  • the process of step S202 ends, the process returns.
  • step S204 the air conditioner 10 and the film heater 21 are driven in a heater use mode in which the compressor 103 is not operated.
  • the heater use mode corresponds to the suppression control of the present disclosure.
  • the compressor 103 is stopped, and air that is not cooled and dehumidified by the evaporator 102 is supplied.
  • step S205 it is determined whether or not the front window 20 is cloudy.
  • the ECU 30 determines whether or not fogging has occurred based on the humidity data detected by the humidity sensor 22. If it is determined that the front window 20 is not fogged, the process returns. If it is determined that the front window 20 is fogged, the process proceeds to step S206.
  • step S206 the film heater 21 is energized.
  • the process of step S206 returns to step S207.
  • the ECU 30 executes the suppression control when it is determined that the thermal load on the vehicle is equal to or lower than the predetermined load. If the heat load on the vehicle is higher than the predetermined load, it is necessary to lower the temperature in the passenger compartment, and it may be necessary to cool the air by driving the compressor 103 regardless of whether the front window 20 is fogged or not. High nature. Then, even if the heater utilization mode for stopping the compressor 103 is entered, the compressor 103 is driven immediately, and the compressor 103 may be frequently driven and stopped. This leads to frequent and frequent condensation and evaporation of moisture in the evaporator 102, and the odor derived from the condensed moisture flows into the room. Therefore, when it is assumed that there is a high possibility that the compressor 103 will be driven to cool the air, the generation of odor is suppressed by not entering the heater use mode. Can do.
  • step S201A it is determined whether or not the evaporator 102 is dry. Whether or not the evaporator 102 is dry can be detected by the evaporation drying sensor 109. If the evaporator 102 is not dry, the process proceeds to step S202. If the evaporator 102 is dry, the process proceeds to step S203. Since the processing after step S202 is the same as that described with reference to FIG. 4, the description thereof is omitted.
  • the ECU 30 executes the suppression control when it is determined that the evaporator 102 is dry.
  • the possibility of odor increases. Therefore, by detecting the humidity of the evaporator 102 by the evaporator drying sensor 109 and accurately detecting the water remaining in the evaporator 102, the compressor 103 can be driven in the normal mode when an odor is likely to occur. Since the execution of the heater use mode can be suppressed when moisture remains in the evaporator 102, the generation of odor can be suppressed more reliably.
  • step S201B it is determined whether the humidity in the passenger compartment is equal to or lower than a predetermined humidity. If the humidity in the passenger compartment is not lower than the predetermined humidity, the process proceeds to step S202. If the humidity in the passenger compartment is lower than the predetermined humidity, the process proceeds to step S203. Since the processing after step S202 is the same as that described with reference to FIG. 4, the description thereof is omitted.
  • the ECU 30 executes the suppression control when it is determined that the humidity in the vehicle compartment is equal to or lower than the predetermined humidity. If the humidity in the passenger compartment exceeds the predetermined humidity, there is a high possibility that moisture remains in the evaporator 102. Therefore, when the heater usage mode is executed when the humidity in the vehicle compartment exceeds the predetermined humidity, there is a concern about the generation of odor as described above. Therefore, in this example, since the execution of the heater use mode can be suppressed when the humidity in the vehicle compartment exceeds the predetermined humidity, the generation of odor can be suppressed more reliably.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

防曇装置2は、エアミックスドア107の位置に応じてコンプレッサ103の挙動を抑制する抑制制御を実行し、抑制制御の実行中においてフロントウィンドウ20に設けられたヒータ部21への通電が必要だと判断される場合に通電する。

Description

防曇装置 関連出願の相互参照
 本出願は、2016年2月12日に出願された日本国特許出願2016-024556号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、車両のフロントウィンドウの曇りを抑制する防曇装置に関する。
 車両には空調装置が設けられており、この空調装置によって車両のフロントウィンドウの曇りが抑制される。空調装置としては、冷凍サイクルを利用したものが知られている。冷凍サイクルを構成するエバポレータによって除湿された空気が車室内に供給され、フロントウィンドウの曇りが抑制される。
 このような空調装置を利用した防曇装置の他に、下記特許文献1記載の防曇装置も提案されている。下記特許文献1記載の防曇装置は、車両のフロントウィンドウに視界を確保できる程度の薄さの金属パターンであるヒータを形成し、このヒータに通電することでフロントウィンドウを昇温して曇りを抑制している。
特開2014-218103号公報
 ヒータに通電することのみを考慮しているため、フロントウィンドウの曇りを除去しようとする間はヒータに通電し続ける必要がある。また、空調装置と連動した曇り除去には言及がないため、ヒータへの通電電力の低減にも空調装置の駆動動力の低減にもいずれも配慮されておらず、エネルギーの効率的な利用という観点からは改善の余地があるものであった。
 本開示は、冷凍サイクルを利用した空調装置による曇り抑制と、ヒータを利用した曇り抑制とを統合することで、空調装置側の動力低減を実現する防曇装置を提供することを目的とする。
 本開示は、車両のフロントウィンドウ(20)の曇りを抑制する防曇装置であって、空調風路(101)に設けられ冷凍サイクルの一部を構成するエバポレータ(102)と、エバポレータから流出した冷媒を圧縮するコンプレッサ(103)と、空調風路においてエバポレータよりも下流側に設けられているヒータコア(106)と、エバポレータを通過した空気のヒータコアへの流入を調整するエアミックスドア(107)と、エアミックスドア及びンプレッサの挙動を制御する制御部(30)と、を備え、フロントウィンドウの車室内側にフロントウィンドウの視界を遮らずにフロントウィンドウを加熱するヒータ部(21)が設けられている。制御部は、ヒータ部への通電も制御するものであって、エアミックスドアの位置に応じてコンプレッサの挙動を抑制する抑制制御を実行し、抑制制御の実行中においてヒータ部への通電が必要だと判断される場合にヒータ部に通電する。
 本開示によれば、制御部はエアミックスドアの位置に応じて抑制制御を実行するので、例えばエアミックスドアの位置によってコンプレッサを駆動することが必須ではない場合を把握し、コンプレッサの挙動を抑制することができる。コンプレッサの挙動を抑制すれば、エバポレータを通過した空気の除湿効果が低くなる。そこで制御部は、抑制制御の実行中においてヒータ部への通電が必要な場合にはヒータ部に通電することで、コンプレッサの挙動を抑制しつつフロントウィンドウの曇りを低減することができる。
 尚、「発明の概要」及び「特許請求の範囲」に記載した括弧内の符号は、後述する「発明を実施するための形態」との対応関係を示すものであって、「発明の概要」及び「特許請求の範囲」に記載の発明が、後述する「発明を実施するための形態」に限定されることを示すものではない。
図1は、実施形態である防曇装置の概略構成を説明するための図である。 図2は、実施形態である防曇装置の機能的な構成要素の相互関係を説明するための図である。 図3は、実施形態である防曇装置の動作を説明するためのフローチャートである。 図4は、実施形態である防曇装置の動作を説明するためのフローチャートである。 図5は、実施形態である防曇装置の動作を説明するためのフローチャートである。 図6は、実施形態である防曇装置の動作を説明するためのフローチャートである。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 図1に示されるように、実施形態である防曇装置2は、空調装置10と、フィルムヒータ21とを備えている。防曇装置2は更に、湿度センサ22と、操作パネル23と、外気温センサ24と、日射量センサ25と、を備えている。
 空調装置10は、防曇装置2が設けられている車両の室内空調を行う装置である。空調装置10は、空調風路101と、エバポレータ102と、コンプレッサ103と、コンデンサ104と、膨張弁105と、ヒータコア106と、エアミックスドア107と、空調ファン108と、エバ乾燥センサ109と、を備えている。
 エバポレータ102、コンプレッサ103、コンデンサ104、及び膨張弁105は、冷凍サイクルを構成している。コンプレッサ103は、車両に搭載されているエンジンの駆動力によって駆動される。コンプレッサ103は、その駆動によりエバポレータ102から冷媒を吸引し、圧縮してコンデンサ104に送り出す。
 コンデンサ104は、高温冷媒を冷卻する熱交換器である。コンデンサ104によって冷却された冷媒は膨張弁105に送り出される。膨張弁105に送り込まれた冷媒は、膨張し減圧されてエバポレータ102に送り出される。
 エバポレータ102は、膨張弁105によって減圧された冷媒を蒸発させる。エバポレータ102は、空調風路101に配置されている。エバポレータ102を通過した空気は冷却されると共に除湿され、車室内側に送り出される。エバポレータ102の近傍には、エバ乾燥センサ109が配置されている。エバ乾燥センサ109は、エバポレータ102又はエバポレータ102近傍の湿度を検出するためのセンサである。
 空調風路101において、エバポレータ102の下流側にはヒータコア106が配置されている。ヒータコア106は、車両を駆動するエンジンの冷却水が循環する熱交換器であって、通過する空気を加温する。
 空調風路101において、エバポレータ102とヒータコア106との間には、エアミックスドア107が設けられている。エアミックスドア107は、エバポレータ102を通過した空気のヒータコア106への流入を調整するものである。エアミックスドア107が、図中破線のマックスクール位置107aに位置すると、エバポレータ102を通過した空気のヒータコア106への流入は完全に又は略完全に遮断される。
 フィルムヒータ21は、フロントウィンドウ20の車室内側に設けられている。フィルムヒータ21は、フロントウィンドウ20を通した視界を遮らないように形成されている。フィルムヒータ21は、カーボンナノチューブ(CNTとも呼ばれる)、金属粒子、カーボン粒子、及び金属酸化物粒子のいずれかを含む透明薄膜状又は線状のヒータ部を含む層であり、金属蒸着膜として構成されていてもよい。また、例えばバインダとなる樹脂内にカーボンナノチューブ、金属粒子、カーボン粒子、及び金属酸化物粒子のいずれかを分散させた薄膜として構成されていてもよい。また、カーボンナノチューブを用いて形成したワイヤを用いた複数の線分状の発熱線によって構成されてもよい。フィルムヒータ21には、保護膜や断熱膜が設けられることも好ましい態様である。フィルムヒータ21及びそれに付随する構成要素は、本開示のヒータ部に相当する。
 湿度センサ22は、車室内、特にフロントウィンドウ20近傍の湿度を検出するためのセンサである。湿度センサ22が検知する湿度に寄って、フロントウィンドウ20が曇っているか否かを判断できるので、湿度センサ22は本開示の曇り検知センサに相当する。
 操作パネル23は、空調状態を設定することができる入力手段である。操作パネル23を操作することで、空調装置10をオートエアコンとして駆動させたり、温度風量といったパラメータを自由に調整可能なマニュアルエアコンとして駆動させたりすることができる。
 外気温センサ24は、車室外の温度を検出するためのセンサである。日射量センサ25は、日射量を検出するためのセンサである。
 図2に示されるように、本開示の制御部に相当するECU(Electronic Control Unit)30には、湿度センサ22、操作パネル23、外気温センサ24、日射量センサ25、及びエバ乾燥センサ109から出力される検出信号や操作信号が入力される。ECU30は、これらの検出信号や操作信号に基づいて演算を実行し、コンプレッサ103、エアミックスドア107、及びフィルムヒータ21に対して、それらを駆動するための駆動信号を出力する。
 続いて、図3を参照しながら、防曇装置2の動作について説明する。尚、特記しない限り判断及び動作の主体はECU30である。ステップS101では、エアミックスドア107がマックスクール位置107aにあるか否かを判断する。エアミックスドア107がマックスクール位置107aにあれば、ステップS102の処理に進み、エアミックスドア107がマックスクール位置107aになければ、ステップS103の処理に進む。
 ステップS102では、コンプレッサ103を作動させる通常モードで空調装置10を駆動する。温度設定や風量設定は、操作パネル23から入力された情報に基づいて適宜行われる。ステップS102の処理が終了するとリターンする。
 ステップS103では、コンプレッサ103を作動させないヒータ利用モードで空調装置10及びフィルムヒータ21を駆動する。ヒータ利用モードは、本開示の抑制制御に相当する。コンプレッサ103は停止され、エバポレータ102による冷却及び除湿が行われない空気が供給される。
 ステップS103に続くステップS104では、フロントウィンドウ20に曇りが発生したか否かを判断する。ECU30は、湿度センサ22が検出する湿度データに基づいて曇り発生の有無を判断する。フロントウィンドウ20に曇りが発生していないと判断すれば、リターンし、フロントウィンドウ20に曇りが発生していると判断すれば、ステップS105の処理に進む。
 ステップS105では、フィルムヒータ21に通電を行う。ステップS105の処理が完了すると、ステップS104の処理に戻る。
 本実施形態によれば、制御部であるECU30は、エアミックスドア107の位置に応じて抑制制御を実行しており、エアミックスドア107の位置によってコンプレッサ103を駆動することが必須ではない場合を把握し、コンプレッサ103の挙動を抑制している。コンプレッサ103の挙動を抑制すれば、エバポレータ102を通過した空気の除湿効果が低くなる。そこでECU30は、抑制制御の実行中においてフィルムヒータ21への通電が必要な場合にフィルムヒータ21に通電することで、コンプレッサ103の挙動を抑制しつつフロントウィンドウ20の曇りを低減している。
 ECU30は、エアミックスドア107の位置が、エバポレータ102を通過した空気が主にヒータコア106を通過しないマックスクール位置107aではない場合に、抑制制御を実行している。エアミックスドア107が、マックスクール位置107aにある場合、エバポレータ102を通過した空気はヒータコア106を通過せずに車室内に吹き出される。この状態でコンプレッサ103の駆動を停止してしまうと、車室内の温度が設定温度にならない蓋然性が高いので、抑制制御を実行せずにコンプレッサ103を駆動する。
 また本実施形態では、フロントウィンドウ20の曇り状態を検知する曇り検知センサである湿度センサ22を備えている。ECU30は、抑制制御を実行している際に、湿度センサ22によってフロントウィンドウ20の曇を検知した場合に、フィルムヒータ21に通電している。抑制制御を実行すると、コンプレッサ103が停止するので、エバポレータ102を通過する空気は除湿されずに車室内に導入され、フロントウィンドウ20が曇る可能性が高くなる。そこで、湿度センサ22の検出結果に基づいてフロントウィンドウ20の曇り発生有無を判断し、その判断結果に基づいてフィルムヒータ21に通電することで、フロントウィンドウ20に曇りが発生してもコンプレッサ103を駆動させずに曇りを除去することができる。
 続いて、図4を参照しながら、本実施形態の防曇装置2の別の動作について説明する。ステップS201では、防曇装置2が搭載される車両への熱負荷が所定負荷以上であるか否かを判断する。熱負荷とは、外気や日射によってもたらされる負荷であって、熱負荷が高いと車室内の温度を下げるように空調装置10を運転する必要が高まる。熱負荷を外気温で把握するとすれば、熱負荷が所定負荷以上であるか否かは、外気温度が閾値温度以上であるか否かに基づいて判断される。熱負荷を日射量で把握するとすれば、熱負荷が所定負荷以上であるか否かは、日射量が閾値量以上であるか否かに基づいて判断される。防曇装置2が搭載される車両への熱負荷が所定負荷以上であれば、ステップS202の処理に進み、防曇装置2が搭載される車両への熱負荷が所定負荷以上でなければ、ステップS203の処理に進む。
 ステップS203では、エアミックスドア107がマックスクール位置107aにあるか否かを判断する。エアミックスドア107がマックスクール位置107aにあれば、ステップS202の処理に進み、エアミックスドア107がマックスクール位置107aになければ、ステップS204の処理に進む。
 ステップS202では、コンプレッサ103を作動させる通常モードで空調装置10を駆動する。温度設定や風量設定は、操作パネル23から入力された情報に基づいて適宜行われる。ステップS202の処理が終了するとリターンする。
 ステップS204では、コンプレッサ103を作動させないヒータ利用モードで空調装置10及びフィルムヒータ21を駆動する。ヒータ利用モードは、本開示の抑制制御に相当する。コンプレッサ103は停止され、エバポレータ102による冷却及び除湿が行われない空気が供給される。
 ステップS204に続くステップS205では、フロントウィンドウ20に曇りが発生したか否かを判断する。ECU30は、湿度センサ22が検出する湿度データに基づいて曇り発生の有無を判断する。フロントウィンドウ20に曇りが発生していないと判断すれば、リターンし、フロントウィンドウ20に曇りが発生していると判断すれば、ステップS206の処理に進む。
 ステップS206では、フィルムヒータ21に通電を行う。ステップS206の処理が完了すると、ステップS207の処理に戻る。
 図4を参照しながら説明した例によれば、ECU30は、車両への熱負荷が所定負荷以下であると判断した場合に抑制制御を実行している。車両への熱負荷が所定負荷より高ければ、車室内の温度を下げる必要があり、フロントウィンドウ20における曇り発生の有無に関わらず、コンプレッサ103を駆動して空気を冷卻する必要が出てくる可能性が高い。そうすると、コンプレッサ103を停止させるヒータ利用モードに入ったとしても、すぐにコンプレッサ103を駆動させることになり、コンプレッサ103の駆動と停止とが頻繁に発生する可能性がある。これは、エバポレータ102における水分の凝縮と蒸発とが交互に且つ頻繁に発生することに繋がり、凝縮した水分に由来する臭気が室内に流れ込むことになる。そこで、コンプレッサ103を駆動して空気を冷卻する必要が出てくる可能性が高いと想定される場合には、あえてヒータ利用モードには入らないようにすることで、臭気の発生を抑制することができる。
 続いて、図5を参照しながら、本実施形態の防曇装置2の別の動作について説明する。ステップS201Aでは、エバポレータ102が乾いているか否かを判断する。エバポレータ102が乾いているか否かは、エバ乾燥センサ109によって検出することができる。エバポレータ102が乾いていなければ、ステップS202の処理に進み、エバポレータ102が乾いていれば、ステップS203の処理に進む。ステップS202以降の処理は、図4を参照しながら説明した内容と同様であるので、その説明を省略する。
 図5を参照しながら説明した例によれば、ECU30は、エバポレータ102が乾いていると判断した場合に抑制制御を実行している。上記したように、エバポレータ102に水分が残存している状態でヒータ利用モードに入ると、臭気が発生する可能性が高まる。そこで、エバ乾燥センサ109によって、エバポレータ102の湿度を検出し、エバポレータ102に残存する水分を精度良く検出することで、臭気が発生しそうな場合にはコンプレッサ103を通常モードで駆動することができる。エバポレータ102に水分が残存している場合にヒータ利用モードの実行を抑制することができるので、より確実に臭気の発生を抑制することができる。
 続いて、図6を参照しながら、本実施形態の防曇装置2の別の動作について説明する。ステップS201Bでは、車室内の湿度が所定湿度以下であるか否かを判断する。車室内の湿度が所定湿度以下でなければ、ステップS202の処理に進み、車室内の湿度が所定湿度以下であれば、ステップS203の処理に進む。ステップS202以降の処理は、図4を参照しながら説明した内容と同様であるので、その説明を省略する。
 図6を参照しながら説明した例によれば、ECU30は、車室内の湿度が所定湿度以下であると判断した場合に抑制制御を実行している。車室内の湿度が所定湿度を超えていると、エバポレータ102に水分が残存している可能性が高い。従って、車室内の湿度が所定湿度を超えている場合に、ヒータ利用モードを実行すると、上記したように臭気の発生が懸念される。そこでこの例では、車室内の湿度が所定湿度を超えている場合にヒータ利用モードの実行を抑制することができるので、より確実に臭気の発生を抑制することができる。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (6)

  1.  車両のフロントウィンドウ(20)の曇りを抑制する防曇装置であって、
     空調風路(101)に設けられ冷凍サイクルの一部を構成するエバポレータ(102)と、
     前記エバポレータから流出した冷媒を圧縮するコンプレッサ(103)と、
     前記空調風路において前記エバポレータよりも下流側に設けられているヒータコア(106)と、
     前記エバポレータを通過した空気の前記ヒータコアへの流入を調整するエアミックスドア(107)と、
     前記エアミックスドア及び前記コンプレッサの挙動を制御する制御部(30)と、を備え、
     前記フロントウィンドウの車室内側に前記フロントウィンドウの視界を遮らずに前記フロントウィンドウを加熱するヒータ部(21)が設けられ、
     前記制御部は、前記ヒータ部への通電も制御するものであって、
     前記制御部は、前記エアミックスドアの位置に応じて前記コンプレッサの挙動を抑制する抑制制御を実行し、前記抑制制御の実行中において前記ヒータ部への通電が必要だと判断される場合に前記ヒータ部に通電する、防曇装置。
  2.  前記制御部は、前記エアミックスドアの位置が、前記エバポレータを通過した空気が主に前記ヒータコアを通過しないマックスクール位置ではない場合に、前記抑制制御を実行する、請求項1記載の防曇装置。
  3.  更に、前記フロントウィンドウの曇り状態を検知する曇り検知センサ(22)を備え、
     前記制御部は、前記抑制制御を実行している際に、前記曇り検知センサによって前記フロントウィンドウの曇を検知した場合に、前記ヒータ部に通電する、請求項2記載の防曇装置。
  4.  前記制御部は、前記車両への熱負荷が所定負荷以下であると判断した場合に、前記抑制制御を実行する、請求項1記載の防曇装置。
  5.  前記制御部は、前記エバポレータが乾いていると判断した場合に、前記抑制制御を実行する、請求項1記載の防曇装置。
  6.  前記制御部は、車室内の湿度が所定湿度以下であると判断した場合に、前記抑制制御を実行する、請求項1記載の防曇装置。
PCT/JP2017/004359 2016-02-12 2017-02-07 防曇装置 WO2017138514A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016024556A JP2017140974A (ja) 2016-02-12 2016-02-12 防曇装置
JP2016-024556 2016-02-12

Publications (1)

Publication Number Publication Date
WO2017138514A1 true WO2017138514A1 (ja) 2017-08-17

Family

ID=59563077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004359 WO2017138514A1 (ja) 2016-02-12 2017-02-07 防曇装置

Country Status (2)

Country Link
JP (1) JP2017140974A (ja)
WO (1) WO2017138514A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268727A (ja) * 1986-05-15 1987-11-21 Diesel Kiki Co Ltd 車輌空調制御装置
JPH0825951A (ja) * 1994-05-11 1996-01-30 Nippondenso Co Ltd 空調装置
JP2005247083A (ja) * 2004-03-03 2005-09-15 Denso Corp 車両用空調装置
JP2011063251A (ja) * 2009-09-21 2011-03-31 Denso Corp 車両用空調装置
JP2014008859A (ja) * 2012-06-29 2014-01-20 Denso Corp 車両用空調装置
JP2014061799A (ja) * 2012-09-21 2014-04-10 Denso Corp 電動車両用空調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268727A (ja) * 1986-05-15 1987-11-21 Diesel Kiki Co Ltd 車輌空調制御装置
JPH0825951A (ja) * 1994-05-11 1996-01-30 Nippondenso Co Ltd 空調装置
JP2005247083A (ja) * 2004-03-03 2005-09-15 Denso Corp 車両用空調装置
JP2011063251A (ja) * 2009-09-21 2011-03-31 Denso Corp 車両用空調装置
JP2014008859A (ja) * 2012-06-29 2014-01-20 Denso Corp 車両用空調装置
JP2014061799A (ja) * 2012-09-21 2014-04-10 Denso Corp 電動車両用空調装置

Also Published As

Publication number Publication date
JP2017140974A (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
CN107709067B (zh) 车用空调装置
JP5532095B2 (ja) 車両用空調装置
WO2015004967A1 (ja) ヒートポンプ式車両用空調システムおよびその除霜方法
JP5750797B2 (ja) 車両用空気調和装置
JP5445514B2 (ja) 車両用空調装置
JP5640485B2 (ja) 車両用空調装置
JP6391907B2 (ja) 車両用空調装置およびその運転方法
JP5510418B2 (ja) 車両用空調装置
US20150158365A1 (en) Vehicular air conditioner
JP2009208620A (ja) 車両用空調装置
JP6583195B2 (ja) 車両用空調装置
JP5625878B2 (ja) 車両用空調装置
WO2018221137A1 (ja) 車両用空調装置
JP5640484B2 (ja) 車両用空調装置
JP2009166629A (ja) 車両用空調装置
JP3360591B2 (ja) 車両用空調装置
JP2018131023A (ja) 圧力低下抑制装置
JP2009202735A (ja) 車両用空調装置
JP2009035153A (ja) 車両用空調装置
WO2017138514A1 (ja) 防曇装置
JP2015128961A (ja) 車両用空調装置
JP2009190640A (ja) 保水量制御装置、車両用空気調和装置、及び保水量制御プログラム
JP6121056B2 (ja) 車両用空気調和装置、それを備えた車両、及び、車両用空気調和装置の制御方法
WO2019017150A1 (ja) 車両用空気調和装置
JP2008137532A (ja) 車両用空調制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750236

Country of ref document: EP

Kind code of ref document: A1